SI5375B-A-BL [SILICON]

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, PLASTIC, MO-192, BGA-80;
SI5375B-A-BL
型号: SI5375B-A-BL
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, PLASTIC, MO-192, BGA-80

时钟 外围集成电路 晶体
文件: 总54页 (文件大小:724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5375  
4-PLL ANY-FREQUENCY PRECISION CLOCK  
MULTIPLIER/JITTER ATTENUATOR  
Features  
Highly integrated, 4–PLL clock Integrated loop filter with  
multiplier/jitter attenuator  
programmable bandwidth as low  
as 60 Hz  
Four independent DSPLLs  
support any-frequency synthesis Simultaneous free-run and  
and jitter attenuation  
synchronous operation  
Four inputs/four outputs  
Automatic/manual hitless input  
clock switching  
Each DSPLL can generate any  
frequency from 2 kHz to  
808 MHz from a 2 kHz to  
710 MHz input  
Selectable output clock signal  
format (LVPECL, LVDS, CML,  
CMOS)  
Ordering Information:  
See page 48.  
Ultra-low jitter clock outputs:  
350 fs rms (12 kHz– 20 MHz)  
and 410 fs rms (50 kHz–80 MHz)  
typical  
LOL and interrupt alarm outputs  
2
I C programmable  
Single 1.8 V ±5% or 2.5 V ±10%  
operation with high PSRR on-  
chip voltage regulator  
Meets ITU-T G.8251 and  
Telcordia GR-253-CORE OC-192  
jitter specifications  
10x10 mm PBGA  
Applications  
High density any-port, any-  
protocol, any-frequency line  
cards  
1/2/4/8/10G Fibre Channel  
GbE/10GbE Synchronous Ethernet  
Carrier Ethernet, multi-service  
ITU-T G.709 OTN custom FEC  
10/40/100G  
switches and routers  
MSPP, ROADM, P-OTS,  
OC-48/192, STM-16/64  
muxponders  
Description  
The Si5375 is a highly-integrated, 4-PLL, jitter-attenuating precision clock  
multiplier for applications requiring sub 1 ps jitter performance. Each of the  
DSPLL® clock multiplier engines accepts an input clock ranging from 2 kHz to  
710 MHz and generates an output clock ranging from 2 kHz to 808 MHz. The  
device provides virtually any frequency translation combination across this  
operating range. For asynchronous, free-running clock generation  
applications, the Si5375’s reference oscillator can be used as a clock source  
for any of the four DSPLLs. The Si5375 input clock frequency and clock  
multiplication ratio are programmable through an I2C interface. The Si5375 is  
based on Silicon Laboratories' third-generation DSPLL® technology, which  
provides any-frequency synthesis and jitter attenuation in a highly-integrated  
PLL solution that eliminates the need for external VCXO and loop filter  
components. Each DSPLL loop bandwidth is digitally-programmable,  
providing jitter performance optimization at the application level. The device  
operates from a single 1.8 or 2.5 V supply with on-chip voltage regulators with  
excellent PSRR. The Si5375 is ideal for providing clock multiplication and  
jitter attenuation in high port count optical line cards requiring independent  
timing domains.  
Rev. 1.0 8/12  
Copyright © 2012 by Silicon Laboratories  
Si5375  
 
Si5375  
Functional Block Diagram  
PLL Bypass  
Input Stage  
Synthesis Stage  
Output Stage  
CKIN1P_A  
÷ N31  
Input  
CKIN1N_A  
Monitor  
PLL Bypass  
CKOUT1P_A  
CKOUT1N_A  
f3  
fOSC  
®
DSPLL  
÷ NC1  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1_HS  
A
÷ N32  
÷ N2  
PLL Bypass  
CKIN1P_B  
÷ N31  
Input  
Monitor  
CKIN1N_B  
PLL Bypass  
CKOUT1P_B  
CKOUT1N_B  
f3  
fOSC  
®
DSPLL  
÷ NC1  
B
÷ N32  
÷ N2  
PLL Bypass  
CKIN1P_C  
÷ N31  
Input  
Monitor  
CKIN1N_C  
PLL Bypass  
CKOUT1P_C  
CKOUT1N_C  
fOSC  
f3  
®
DSPLL  
÷ NC1  
C
÷ N32  
÷ N2  
PLL Bypass  
CKIN1P_D  
÷ N31  
Input  
CKIN1N_D  
Monitor  
PLL Bypass  
CKOUT1P_D  
CKOUT1N_D  
fOSC  
f3  
®
DSPLL  
÷ NC1_HS  
÷ NC1  
D
÷ N32  
÷ N2  
RSTL_q  
VDD_q  
GND  
High PSRR  
Voltage Regulator  
Status / Control  
CS_q  
OSC_P/N  
Low Jitter  
SCL SDA  
IRQ_q  
LOL_q  
XO or Clock  
2
Rev. 1.0  
Si5375  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Typical Phase Noise Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5. Si5375 Application Examples and Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.1. Schematic and PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.2. Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.3. SCL Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.4. RSTL_x Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.5. Reference Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.6. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.7. OSC_P and OSC_N Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
6. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
7. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
7.1. ICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
8. Pin Descriptions: Si5375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
10. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
11. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
12. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
12.1. Si5375 Top Marking (PBGA, Lead-Free) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
12.2. Top Marking Explanation (PBGA, Lead-Free) . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
12.3. Si5375 Top Marking (PBGA, Lead-Finish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
12.4. Top Marking Explanation (PBGA, Lead-Finish) . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Rev. 1.0  
3
Si5375  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
V
T
Ambient Temperature  
A
2.5 V Nominal  
1.8 V Nominal  
2.25  
1.71  
2.5  
1.8  
2.75  
1.89  
Supply Voltage during  
Normal Operation  
V
DD  
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.  
V
SIGNAL +  
Single-Ended  
Peak-to-Peak Voltage  
V
ICM , VOCM  
Differential I/Os  
VISE,VOSE  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
V ,VOD  
ID  
VICM, VOCM  
t
SIGNAL +  
SIGNAL –  
VID = (SIGNAL+) – (SIGNAL–)  
Figure 1. Differential Voltage Characteristics  
80%  
20%  
CKIN, CKOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
4
Rev. 1.0  
Si5375  
Table 2. DC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
LVPECL Format  
622.08 MHz Out  
870  
980  
mA  
All CKOUTs Enabled  
1
I
CMOS Format  
19.44 MHz Out  
Supply Current  
DD  
780  
660  
880  
mA  
mA  
All CKOUTs Enabled  
Disable Mode  
2
CKINn Input Pins  
Input Common Mode  
Voltage (Input Thresh-  
old Voltage)  
1.8 V ± 5%  
2.5 V ± 10%  
Single-ended  
0.9  
1
40  
1.4  
1.7  
60  
V
V
V
ICM  
CKN  
20  
k  
Input Resistance  
RIN  
f
f
f
f
< 212.5 MHz  
See Figure 1.  
CKIN  
0.2  
0.25  
0.2  
V
V
V
V
PP  
PP  
PP  
PP  
Single-Ended Input  
Voltage Swing  
(See Absolute Specs)  
V
ISE  
> 212.5 MHz  
See Figure 1.  
CKIN  
< 212.5 MHz  
See Figure 1.  
CKIN  
Differential Input  
Voltage Swing  
(See Absolute Specs)  
V
ID  
> 212.5 MHz  
See Figure 1.  
CKIN  
0.25  
3,4  
Output Clocks (CKOUTn)  
LVPECL 100 load  
V
1.42  
DD  
CKO  
V
–1.25  
DD  
V
Common Mode  
VCM  
line-to-line  
LVPECL 100 load  
Differential Output  
Swing  
CKO  
1.1  
0.5  
350  
1.9  
0.93  
500  
V
VD  
PP  
PP  
line-to-line  
LVPECL 100 load  
Single Ended Output  
Swing  
CKO  
V
VSE  
line-to-line  
CML 100 load  
Differential Output  
Voltage  
CKO  
425  
mV  
PP  
VD  
line-to-line  
CML 100 load  
Common Mode Output  
Voltage  
CKO  
V
–0.36  
DD  
V
VCM  
line-to-line  
Notes:  
1. Current draw is independent of supply voltage.  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD = 2.5 V.  
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
Rev. 1.0  
5
 
 
Si5375  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
LVDS  
100 load line-to-line  
500  
700  
900  
mV  
mV  
PP  
PP  
Differential Output  
Voltage  
CKO  
VD  
Low Swing LVDS  
100 load line-to-line  
350  
1.125  
425  
1.2  
500  
LVDS 100 load  
Common Mode Output  
Voltage  
CKO  
1.275  
V
VCM  
line-to-line  
Differential Output  
Resistance  
CKO  
CML, LVPECL, LVDS  
CMOS  
200  
0.4  
V
V
RD  
CKO  
Output Voltage Low  
VOLLH  
VOHLH  
V
= 1.71 V  
0.8 x  
DD  
CKO  
Output Voltage High  
CMOS  
ICMOS[1:0] = 11  
= 1.8 V  
V
DD  
7.5  
5.5  
3.5  
1.75  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
DD  
ICMOS[1:0] = 10  
= 1.8 V  
V
DD  
ICMOS[1:0] = 01  
= 1.8 V  
V
DD  
Output Drive Current  
(CMOS driving into  
ICMOS[1:0] = 00  
= 1.8 V  
CKO  
or CKO  
for output low  
for output  
V
VOL  
DD  
CKO  
IO  
VOH  
ICMOS[1:0] = 11  
= 2.5 V  
high. CKOUT+ and  
CKOUT– shorted  
externally)  
V
DD  
ICMOS[1:0] = 10  
= 2.5 V  
15  
V
DD  
ICMOS[1:0] = 01  
= 2.5 V  
10  
V
DD  
ICMOS[1:0] = 00  
= 2.5 V  
5
V
DD  
Notes:  
1. Current draw is independent of supply voltage.  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD = 2.5 V.  
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6
Rev. 1.0  
Si5375  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2-Level LVCMOS Input Pins  
V
V
V
V
= 1.71 V  
= 2.25 V  
= 1.89 V  
= 2.25 V  
0.5  
0.7  
V
V
V
V
DD  
DD  
DD  
DD  
V
Input Voltage Low  
IL  
1.4  
1.8  
V
Input Voltage High  
IH  
LVCMOS Output Pins  
Output Voltage Low  
IO = 2 mA  
= 1.71 V  
0.4  
0.4  
V
V
V
V
V
V
DD  
V
OL  
IO = 2 mA  
= 2.25 V  
Output Voltage Low  
Output Voltage High  
DD  
IO = –2 mA  
= 1.71 V  
V
DD  
0.4  
V
DD  
V
OH  
IO = –2 mA  
= 2.25 V  
V
DD  
0.4  
Output Voltage High  
V
DD  
Notes:  
1. Current draw is independent of supply voltage.  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD = 2.5 V.  
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
Rev. 1.0  
7
Si5375  
Table 3. AC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Single-Ended Reference Clock Input Pin OSC_P (OSC_N with Cap to GND)  
RATE_REG = 0101 or  
0110, ac coupled  
OSC_P to OSC_N  
Resistance  
OSC  
OSC  
100  
RIN  
RATE_REG = 0101 or  
0110, ac coupled  
0.5  
1.2  
V
Input Voltage Swing  
VPP  
PP  
1
Differential Reference Clock Input Pins (OSC_P/OSC_N)  
RATE_REG = 0101 or  
OSC  
0.5  
0.002  
40  
2.4  
710  
60  
V
Input Voltage Swing  
VPP  
PP  
0110, ac coupled  
CKINn Input Pins  
CKN  
MHz  
%
Input Frequency  
F
Whichever is smaller  
(i.e., the 40% / 60%  
limitation applies only  
to high frequency  
clocks)  
Input Duty Cycle  
(Minimum Pulse  
Width)  
CKN  
DC  
2
11  
ns  
ns  
20–80%  
See Figure 2  
CKN  
Input Rise/Fall Time  
TRF  
CKOUTn Output Pins  
(See ordering section for speed grade vs frequency limits)  
Output Frequency  
(Output not config-  
ured for CMOS or  
Disabled)  
CKO  
0.002  
808  
MHz  
F
F
Maximum Output  
Frequency in CMOS  
Format  
CKO  
CKO  
230  
212.5  
350  
8
MHz  
ps  
Output not configured for  
CMOS or Disabled  
See Figure 2  
Output Rise/Fall  
(20–80 %) @  
622.08 MHz output  
TRF  
TRF  
TRF  
CMOS Output  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CKO  
CKO  
V
= 1.71  
= 5 pF  
ns  
DD  
C
LOAD  
CMOS Output  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
V
= 2.25  
= 5 pF  
2
ns  
DD  
C
LOAD  
Notes:  
1. A crystal may not be used in place of an oscillator.  
2. Input to output skew after an ICAL is not controlled and can be any value.  
8
Rev. 1.0  
 
 
 
Si5375  
Table 3. AC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
100 Load  
Line-to-Line  
Measured at 50% Point  
(differential)  
Output Duty Cycle  
Uncertainty @  
622.08 MHz  
CKO  
±40  
ps  
DC  
LVCMOS Input Pins  
Minimum Reset Pulse  
Width  
t
1
µs  
RSTMN  
Reset to Microproces-  
sor Access Ready  
t
10  
ms  
READY  
LVCMOS Output Pins  
C
= 20pf  
LOAD  
t
25  
ns  
Rise/Fall Times  
RF  
See Figure 2  
From last CKINn to   
Internal detection of LOSn  
N3 1  
LOS  
4.5 x N3  
T
CKIN  
LOSn Trigger Window  
TRIG  
LOS to LOL  
Fold = Fnew  
Stable OSC_P, OSC_N  
reference  
Time to Clear LOL  
after LOS Cleared  
t
10  
ms  
CLRLOL  
2
Device Skew  
Max phase changes from  
–40 to +85 °C  
Phase Change due to  
Temperature Variation  
t
300  
500  
ps  
TEMP  
Notes:  
1. A crystal may not be used in place of an oscillator.  
2. Input to output skew after an ICAL is not controlled and can be any value.  
Rev. 1.0  
9
Si5375  
Table 4. Microprocessor Control  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
I C Bus Lines (SDA, SCL)  
Input Voltage Low  
VIL  
0.25 x V  
V
V
V
V
I2C  
DD  
Input Voltage High  
VIH  
0.7 x V  
0.1 x V  
V
DD  
I2C  
DD  
V
= 1.8V  
= 2.5  
Hysteresis of Schmitt  
trigger inputs  
DD  
DD  
VHYS  
I2C  
V
0.05 x V  
DD  
DD  
V
= 1.8 V  
DD  
0.2 x V  
V
V
DD  
IO = 3 mA  
Output Voltage Low  
VOL  
I2C  
V
= 2.5  
DD  
0.4  
IO = 3 mA  
10  
Rev. 1.0  
Si5375  
Table 5. Performance Specifications  
VDD = 1.8 V ±5% or 2.5 V ±10%, TA = –40 to 85 °C  
Parameter  
PLL Performance*  
Lock Time  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
t
Start of ICAL to of LOL  
35  
200  
0.05  
1200  
ms  
ps  
LOCKMP  
After clock switch  
t
Output Clock Phase Change  
Closed Loop Jitter Peaking  
Jitter Tolerance  
P_STEP  
f3 128 kHz  
J
0.1  
dB  
PK  
Jitter Frequency Loop Band-  
ns  
pk-pk  
J
5000/BW  
TOL  
width  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–106  
–114  
–116  
–132  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noise  
fout = 622.08 MHz  
CKO  
PN  
Phase Noise  
@ 100 kHz Offset  
SP  
–88  
–70  
dBc  
dBc  
Subharmonic Noise  
Spurious Noise  
SUBH  
SPUR  
Max spur @ n x F3  
(n 1, n x F3 < 100 MHz)  
SP  
f
= f  
= 622.08 MHz,  
IN  
OUT  
BW = 120 Hz  
LVPECL output  
12 kHz–20 MHz  
J
350  
410  
410  
fs rms  
fs rms  
GEN  
Jitter Generation  
50 kHz–80 MHz  
*Note: fin = fout = 622.08 MHz; BW = 120 Hz; LVDS.  
Rev. 1.0  
11  
 
Si5375  
Table 6. Thermal Characteristics1,2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum Junction  
Temperature  
125  
°C  
Thermal Resistance  
Junction to Ambient  
Still Air  
16  
14  
13  
12  
°C/W  
JA  
Air Flow 1 m/s  
Air Flow 2 m/s  
Air Flow 3 m/s  
Thermal Resistance  
Junction to Case  
Still Air  
3.4  
°C/W  
JC  
Notes:  
1. In most circumstances the Si5375 does not require special thermal management. A system level thermal analysis is  
strongly recommend. Contact Silicon Labs applications for further details if required.  
2. Thermal characteristic for the 80-pin Si5375 on an 8-layer PCB.  
Table 7. Absolute Maximum Ratings  
Parameter  
DC Supply Voltage  
Symbol  
Value  
Unit  
V
V
–0.5 to 2.8  
DD  
V
–0.3 to (V + 0.3)  
V
LVCMOS Input Voltage  
DIG  
DD  
CKN  
0 to V  
V
CLKIN1P/N_q  
VIN  
DD  
OSC  
0 to 1.2  
V
OSC_P, OSC_N Voltage Limits  
Operating Junction Temperature  
Storage Temperature Range  
VIN  
T
–55 to 150  
–55 to 150  
°C  
°C  
JCT  
T
STG  
ESD HBM Tolerance (100 pF, 1.5 k); All pins  
except CKINnP/N-q  
2
kV  
V
ESD MM Tolerance; All pins except  
CKINnP/N_q  
200  
700  
ESD HBM Tolerance (100 pF, 1.5 k);  
CKINnP/N_q  
V
V
125  
ESD MM Tolerance; CKINnP/N_q  
Latch-Up Tolerance  
JESD78 Compliant  
Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
12  
Rev. 1.0  
 
 
 
Si5375  
2. Typical Application Schematic  
OTU  
10GE  
XFP  
XFP  
XFP  
XFP  
XFP  
XFP  
XFP  
XFP  
SONET  
OTU  
Si5375  
DSPLL  
FPGA  
DSPLL  
DSPLL  
DSPLL  
Cross Point Switch  
XO  
Figure 3. Typical Application Schematic  
Rev. 1.0  
13  
 
Si5375  
3. Typical Phase Noise Plot  
622.08 MHz input  
641.52 MHz output  
321 fs RMS jitter (12 kHz to 20 MHz)  
Figure 4. Si5375 Phase Noise Plot  
14  
Rev. 1.0  
 
Si5375  
4. Functional Description  
PLL Bypass  
Input Stage  
Synthesis Stage  
Output Stage  
CKIN1P_A  
CKIN1N_A  
÷ N31  
Input  
Monitor  
PLL Bypass  
CKOUT1P_A  
CKOUT1N_A  
f3  
fOSC  
®
DSPLL  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1  
A
÷ N32  
÷ N2  
PLL Bypass  
CKIN1P_B  
CKIN1N_B  
÷ N31  
÷ N32  
Input  
Monitor  
PLL Bypass  
CKOUT1P_B  
CKOUT1N_B  
f3  
fOSC  
®
®
®
DSPLL  
B
÷ NC1  
÷ N2  
PLL Bypass  
CKIN1P_C  
CKIN1N_C  
÷ N31  
÷ N32  
Input  
Monitor  
PLL Bypass  
CKOUT1P_C  
CKOUT1N_C  
fOSC  
f3  
DSPLL  
C
÷ NC1  
÷ N2  
PLL Bypass  
CKIN1P_D  
CKIN1N_D  
÷ N31  
÷ N32  
Input  
Monitor  
PLL Bypass  
CKOUT1P_D  
CKOUT1N_D  
fOSC  
÷ NC1_HS  
f3  
DSPLL  
D
÷ NC1  
÷ N2  
RSTL_q  
CS_q  
VDD_q  
GND  
High PSRR  
Voltage Regulator  
Status / Control  
OSC_P/N  
Low Jitter  
SCL SDA LOL_q IRQ_q  
XO or Clock  
Figure 5. Functional Block Diagram  
The Si5375 is a highly integrated jitter-attenuating clock multiplier that integrates four fully independent DSPLLs  
and provides ultra-low jitter generation with less than 410 fs RMS. The device accepts clock inputs ranging from  
2 kHz to 710 MHz and generates independent, synchronous clock outputs ranging from 2 kHz to 808 MHz for each  
DSPLL. Virtually any frequency translation (M/N) combination across its operating range is supported. The Si5375  
supports a digitally programmable loop bandwidth that can range from 60 Hz to 8.4 kHz requiring no external loop  
filter components. An external single-ended or differential reference clock or XO is required for the device to enable  
ultra-low jitter generation and jitter attenuation. The Si5375 uses this external reference clock as both a jitter and  
holdover reference. The reference clock can be either single-ended or differential and should be connected to the  
OSC_P pin (and the OSC_N pin for differential signaling). Because there is very little jitter attenuation from the  
OSC_P and OSC_N pins to the output clocks, a low-jitter reference clock is strongly recommended. The stability  
during holdover is determined by the stability of the reference clock. For more details, see the description of  
RATE_REG (register 2 on page 12) and the Any-Frequency Precision Clocks Family Reference Manual, which can  
be downloaded from http://www.silabs.com/timing. The reference oscillator can be internally routed into CKIN2_q,  
so free-running clock generation is supported for each DSPLL offering simultaneous synchronous and  
2
asynchronous operation. Configuration and control of the Si5375 is primarily handled through the I C interface.  
The device monitors each input clock for Loss-of-Signal (LOS) and provides a LOS alarm when missing pulses on  
any of the input clocks are detected. The device monitors the lock status of each DSPLL and provides a Loss-of-  
Lock (LOL) alarm when the DSPLL is unlocked. The lock detect algorithm continuously monitors the phase of the  
selected input clock in relation to the phase of the feedback clock. The Si5375 provides a VCO freeze capability  
that allows the device to continue generation of a stable output clock when the input reference is lost.  
The output drivers are configurable to support common signal formats, such as LVPECL, LVDS, CML, and CMOS  
loads. If the CMOS signal format is selected, each differential output buffer generates two in-phase CMOS clocks  
at the same frequency. For system-level debugging, a bypass mode drives the clock output directly from the  
selected input clock, bypassing the internal DSPLL.  
Silicon Laboratories offers a PC-based software utility, Si537xDSPLLsim that can be used to determine valid  
frequency plans and loop bandwidth settings to simplify device setup. Si537xDSPLLsim provides the optimum  
input, output, and feedback divider values for a given input frequency and clock multiplication ratio that minimizes  
phase noise. This utility can be downloaded from http://www.silabs.com/timing. For further assistance, refer to the  
Si53xx Any-Frequency Precision Clocks Family Reference Manual.  
Rev. 1.0  
15  
Si5375  
5. Si5375 Application Examples and Suggestions  
5.1. Schematic and PCB Layout  
For a typical application schematic and PCB layout, see the Si537x-EVB Evaluation Board User's Guide, which  
can be downloaded from www.silabs.com/timing.  
In order to preserve the ultra low jitter of the Si5375 in applications where the four different DSPLL's are each  
operating at different frequency, special care and attention must be paid to the PCB layout. The following is a list of  
rules that should be observed:  
1. The four V supplies should be isolated from one another with four ferrite beads. They should be  
DD  
separately bypassed with capacitors that are located very close to the Si5375 device.  
2. Use a solid and undisturbed ground plane for the Si5375 and all of the clock input and output return paths.  
3. For applications that wish to logically connect the four RESET signals, do not tie them together underneath  
the BGA package. Instead connect them outside of the BGA footprint.  
4. As much as is possible, do not route clock input and output signals underneath the BGA package. The  
clock output signals should go directly outwards from the BGA footprint.  
5. Avoid placing the OSC_P and OSC_N signals on the same layer as the clock outputs. Add grounded guard  
traces surrounding the OSC_P and OSC_N signals.  
6. Where possible, place the CKOUT and CKIN signals on separate PCB layers with a ground layer between  
them. The use of ground guard traces between all clock inputs and outputs is recommended.  
For more information, see the Si537x-EVB Evaluation Board User's Guide and Appendix I of the Si53xx Reference  
Manual, Rev 0.5 or higher.  
5.2. Thermal Considerations  
The Si5375 dissipates a significant amount of heat and it is important to take this into consideration when designing  
the Si5375 operating environment. Among other issues, high die temperatures can result in increased jitter and  
decreased long term reliability. It is therefore recommended that one or more of the following occur:  
1. Use a heat sink: A heat sink example is Aavid part number 375324B00035G.  
2. Use a V voltage of 1.8 V.  
DD  
3. Limit the ambient temperature to significantly less that 85 °C.  
4. Implement very good air flow.  
5.3. SCL Leakage  
2
When selecting pull up resistors for the two I C signals, note that there is an internal pull down resistor of 18 k  
from the SCL pin to ground. This comment does not apply to the SDA pin.  
5.4. RSTL_x Pins  
It is recommended that the four RSTL_x pins (RSTL_A, RSTL_B, RSTL_C and RSTL_D) be logically connected  
together such that all four DSPLLs are either in or out of reset mode. When a DSPLL is in reset mode, its VCO will  
not be locked to any signal and may drift across its operating range. If a drifting VCO has a frequency similar to that  
of an operating VCO, there could be some crosstalk between the two VCOs. To avoid this from occurring during  
device initialization, DSPLLsim loads each DSPLL with default Free Run frequency plans with VCO values apart  
from one another. If the four RSTL_x pins are directly connected to one another, the connections should not be  
made directly underneath the BGA package. Instead, the connections should be made outside the package  
footprint.  
16  
Rev. 1.0  
 
 
Si5375  
5.5. Reference Oscillator Selection  
Care should be taken during the selection of the external oscillator that is connected to the OSC_P and OSC_N  
pins. There is no jitter attenuation from the OSC reference inputs to the output; so, to achieve low output jitter, a  
low-jitter reference OSC must be used. Also, the output drift during holdover will be the same as the drift of the  
OSC reference. For example, a Stratum 3 application will require an OSC reference source that has Stratum 3  
stability (though Stratum 3 accuracy is not required).  
The OSC frequency can be any value from 109 to 125.5 MHz. See the RATE_REG (reg 2) description. Alternately,  
for applications with less demanding jitter requirements, the OSC frequency can be in the range from 37 to  
41 MHz. For applications that use Free Run mode, the freedom to use any OSC frequency within these bands can  
be used to select an OSC frequency that has an integer relationship to the desired output frequency, which will  
make it easier to find a high-performance frequency plan.  
If Free Run is not being used, an OSC frequency that is not integer-related to the output frequency is preferred. A  
recommended choice for an external oscillator is the Silicon Labs 530HB121M109DG, which is a 2.5 V, CML  
device with a temperature stability of 20 ppm. It was used to take the typical phase noise plot on page 14. For more  
details and a more complete discussion of these topics, see the Si53xx Reference Manual.  
5.6. Alarms  
To assist in the programming of the IRQ_n pins, refer to the below diagram of the Si5375 alarm structure.  
LOSx_INT  
LOS1_INT  
LOL_INT  
LOSX_FLG  
LOSX_MSK  
in  
in  
in  
out  
out  
out  
Sticky  
Write 0  
to clear  
INT_POL  
IRQ_PIN  
LOS1_FLG  
LOS1_MSK  
Sticky  
E
IRQ_n  
Write 0  
to clear  
LOL_FLG  
LOL_MSK  
Sticky  
Write 0  
to clear  
Figure 6. Si5375 Alarm Structure  
Rev. 1.0  
17  
Si5375  
5.7. OSC_P and OSC_N Connection  
Figures 7, 8, and 9 show examples of connecting various OSC reference sources to the OSC_P and OSC_N pins.  
A crystal may not be used in place of an external oscillator.  
Si5374  
1.2 V  
0.01 F  
OSC-P  
100   
OSC-N  
LVDS, LVPECL, CML, etc.  
2.5 k  
0.01 F  
0.6 V  
Figure 7. Differential OSC Reference Input Example for Si5375  
Si5374  
1.2 V  
0.01 F  
OSC-P  
OSC-N  
100  
LVDS, LVPECL, CML, etc.  
2.5 k  
0.01 F  
0.6 V  
Figure 8. Single-Ended OSC Reference Input Example for Si5375  
2.5 V  
2.5 V  
150  
82   
150   
Si5374  
OSC-P  
1.2 V  
10 nF  
CMOS  
XO  
E5  
E6  
OSC-N  
10 nF  
0.6 V  
Figure 9. Single-Ended, 2.5 V, CMOS XO Connection  
18  
Rev. 1.0  
Si5375  
6. Register Map  
2
2
The Si5375 has four identical register maps for each DSPLL having a unique I C address. The I C address is  
11010 [A1] [A0] for the entire device. Each corresponding DSPLL [A1] [A0] address is fixed as below.  
[A1] [A0]  
DSPLLA:  
DSPLLB:  
DSPLLC:  
DSPLLD:  
0
0
1
1
0
1
0
1
Note: The Si5375 register map is similar to the Si5319, although not identical.  
All register bits that are not defined in this map should always be written with the specified Reset Values. Writing  
values other than the specified Reset Values may result in undefined device behavior. Registers not listed, such as  
Register 64, should never be written to.  
Register  
Address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
FREE_RUN  
CKOUT_  
ALWAYS_  
ON  
BYPASS_  
REG  
2
3
BWSEL_REG[3:0]  
RATE_REG [3:0]  
VCO_  
SQ_ICAL  
FREEZE  
5
ICMOS[1:0]  
6
SFOUT_REG[2:0]  
8
HLOG[1:0]  
10  
11  
16  
17  
18  
19  
20  
DSBL_ REG  
PD_CK  
CLAT[7:0]  
FLAT[14:8]  
FLAT[7:0]  
VALTIME[1:0]  
FLAT_VALID  
LOCK[T2:0]  
LOL_PIN  
Write to 0  
IRQ_PIN  
INT_POL  
21  
22  
Write to 0  
Write to 0  
LOL_POL  
23  
24  
LOS_MSK LOSX_MSK  
LOL_MSK  
Rev. 1.0  
19  
Si5375  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Address  
25  
N1_HS[2:0]  
31  
NC1_LS[19:16]  
32  
NC1_LS[15:8]  
33  
NC1_LS[7:0]  
40  
N2_HS[2:0]  
N2_LS[19:16]  
41  
N2_LS[15:8]  
N2_LS[7:0]  
42  
43  
N31[18:16]  
44  
N31[15:8]  
N31[7:0]  
45  
46  
N32[18:16]  
47  
N32[15:8]  
N32[7:0]  
48  
128  
OSC_ACT-  
V_REG  
CKACTV_  
REG  
129  
130  
131  
132  
134  
135  
136  
138  
LOS_INT  
LOSX_INT  
LOL_INT  
LOS_FLG LOSX_FLG  
LOL_FLG  
PARTNUM_RO[11:4]  
PARTNUM_RO[3:0]  
ICAL  
REVID_RO[3:0]  
RST_REG  
LOS_EN  
[1:1]  
139  
LOS_EN  
[0:0]  
20  
Rev. 1.0  
Si5375  
7. Register Descriptions  
Register 0.  
Bit  
D7  
D6  
FREE_RUN CKOUT_ALWAYS_ON  
R/W R/W  
D5  
D4  
D3  
D2  
D1  
BYPASS_REG  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0001 0100  
Bit  
7
Name  
Function  
Reserved  
6
FREE_RUN  
Free Run.  
This bit configures free run operation. The OSC_P/N in internally routed to the  
DSPLL. This allows the device to lock to its OSC reference.  
0: Disable  
1: Enable  
5
CKOUT_ALWAYS_ON CKOUT Always On.  
This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL  
is on and ICAL is not complete or successful.  
0: Squelch output until part is calibrated (ICAL).  
1: Provide an output.  
Notes:  
1. The frequency may be significantly off until the part is calibrated.  
2. Must be 1 to control output to output skew.  
4:2  
1
Reserved  
BYPASS_REG  
Bypass Register.  
This bit enables or disables the PLL bypass mode. Use only when the device is  
in digital hold or before the first ICAL. BYPASS mode is not supported with  
CMOS clock outputs.  
0: Normal operation  
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypass-  
ing PLL.  
0
Reserved  
Rev. 1.0  
21  
 
Si5375  
Register 2.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
BWSEL_REG [3:0]  
R/W  
RATE_REG [3:0]  
R/W  
Type  
Reset value = 0100 0010  
Bit  
Name  
BWSEL_REG [3:0] BWSEL_REG.  
Function  
7:4  
Selects nominal f3dB bandwidth for PLL. See the Si537xDSPLLsim software for  
settings. After BWSEL_REG is written with a new value, an ICAL is required for  
the change to take effect.  
3:0  
RATE_REG [3:0] RATE Setting for Oscillator.  
Set these for the frequency of the oscillator connected to OSC_P/OSC_N pins.  
An external oscillator or other clock source must be used. It is not possible to  
use just a crystal.  
Setting  
Minimum  
Recommended  
Maximum  
0101  
37 MHz  
40 MHz  
41 MHz  
0110  
109 MHz  
114.285 MHz  
125.5 MHz  
All others  
reserved  
22  
Rev. 1.0  
Si5375  
Register 3.  
Bit  
D7  
D6  
D5  
VCO_FREEZE  
R/W  
D4  
SQ_ICAL  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 0000 0101  
Bit  
7:6  
5
Name  
Function  
Reserved  
VCO_FREEZE VCO_FREEZE.  
Forces the part into VCO Freeze. This bit overrides all other manual and automatic  
clock selection controls.  
0: Normal operation.  
1: Force VCO Freeze mode. Overrides all other settings and ignores the quality of all of  
the input clocks.  
4
SQ_ICAL  
Reserved  
SQ_ICAL.  
This bit determines if the output clock will remain enabled or be squelched (disabled)  
during an internal calibration.  
0: Output clocks enabled during ICAL.  
1: Output clocks disabled during ICAL.  
3:0  
Register 5.  
Bit  
D7  
ICMOS [1:0]  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 1110 1101  
Bit  
Name  
Function  
7:6  
ICMOS [1:0] ICMOS [1:0].  
When the output buffer is set to CMOS mode, these bits determine the output buffer drive  
strength. These values assume CKOUT+ is tied to CKOUT–.  
00: 8 mA  
01: 16 mA  
10: 24 mA  
11: 32 mA  
5:0  
Reserved  
Rev. 1.0  
23  
Si5375  
Register 6.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SFOUT_REG [2:0]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0010 1101  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
SFOUT_REG [2:0] SFOUT_REG [2:0].  
Controls output signal format and disable for CKOUT1 output buffer.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL, only available when V = 2.5 V  
DD  
110: CML  
111: LVDS  
Register 8.  
Bit  
D7  
D6  
D5  
HLOG_1[1:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:4  
Name  
Function  
Reserved  
HLOG_1 [1:0] HLOG_1 [1:0].  
00: Normal operation  
01: Holds CKOUT_n output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT_n output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved  
3:0  
Reserved  
24  
Rev. 1.0  
Si5375  
Register 10.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
DSBL_REG  
R/W  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2
Name  
Function  
Reserved  
DSBL_REG DSBL_REG.  
This bit controls the powerdown of the CKOUT output buffer. If disable mode is selected,  
the NC1 output divider is also powered down.  
0: CKOUT enabled  
1: CKOUT disabled  
1:0  
Reserved  
Register 11.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PD_CK  
R/W  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0100 0000  
Bit  
7:1  
0
Name  
Reserved  
PD_CK  
Function  
PD_CK.  
This bit controls the powerdown of the CKIN input buffer.  
0: Enabled  
1: Disabled  
Rev. 1.0  
25  
Si5375  
Register 16.  
Bit  
D7  
D6  
D5  
D4  
CLAT [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
CLAT [7:0]  
CLAT [7:0].  
With INCDEC_PIN = 0, this register sets the phase delay for CKOUT in units of 1/Fosc.  
This can take as long as 20 seconds.  
01111111 = 127/Fosc (2s compliment)  
00000000 = 0  
10000000 = –128/Fosc (2s compliment)  
Register 17.  
Bit  
D7  
D6  
D5  
D4  
D3  
FLAT [14:8]  
R/W  
D2  
D1  
D0  
Name  
Type  
FLAT_VALID  
R/W  
Reset value = 1000 0000  
Bit  
Name  
FLAT_VALID FLAT_VALID.  
Function  
7
Before writing a new FLAT[14:0] value, this bit must be set to zero, which causes the  
existing FLAT[14:0] value to be held internally for use while the new value is being  
written. Once the new FLAT[14:0] value is completely written, set FLAT_VALID = 1 to  
enable its use.  
0: Memorize existing FLAT[14:0] value and ignore intermediate register values during  
write of new FLAT[14:0] value.  
1: Use FLAT[14:0] value directly from registers.  
6:0  
FLAT [14:8] FLAT [14:8].  
Fine resolution control for overall device latency from input clocks to output clocks.  
Positive values increase the skew. See DSPLLsim for details.  
26  
Rev. 1.0  
Si5375  
Register 18.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FLAT [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
FLAT [7:0]  
FLAT [7:0].  
Fine resolution control for overall device latency from input clocks to output clocks.  
Positive values increase the skew. See DSPLLsim for details.  
Register 19.  
Bit  
D7  
D6  
D5  
D4  
VALTIME [1:0]  
R/W  
D3  
D2  
D1  
LOCKT [2:0]  
R/W  
D0  
Name  
Type  
R
R
R
Reset value = 0010 1100  
Bit  
7:5  
4:3  
Name  
Function  
Reserved  
VALTIME [1:0] VALTIME [1:0].  
Sets amount of time for input clock to be valid before the associated alarm is removed.  
00: 2 ms  
01: 100 ms  
10: 200 ms  
11: 13 seconds  
2:0  
LOCKT [2:0] LOCKT [2:0].  
Sets retrigger interval for one shot monitoring phase detector output. One shot is  
triggered by phase slip in DSPLL.  
000: 106 ms  
001: 53 ms  
010: 26.5 ms  
011: 13.3 ms  
100: 6.6 ms  
101: 3.3 ms  
110: 1.66 ms  
111: .833 ms  
Rev. 1.0  
27  
Si5375  
Register 20.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LOL_PIN  
R/W  
D0  
IRQ_PIN  
R/W  
Name  
Type  
R
R
R
R
R
W
Reset value = 0011 1110  
Bit  
7:2  
1
Name  
Function  
Reserved  
LOL_PIN  
Must write to 0 for normal operation.  
LOL_PIN.  
The LOL_INT status bit can be reflected on the LOL output pin.  
0: LOL output pin tri-stated  
1: LOL_INT status reflected to output pin  
0
IRQ_PIN  
IRQ_PIN.  
Reflects the interrupt status on the IRQ output pin.  
0: IRQ output pin is tri-stated.  
1: Interrupt state reflected to output pin.  
Register 21.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
W
W
R
R
R
R
R
R
Reset value = 1111 1111  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
Reserved  
Must write to 0 for normal operation.  
28  
Rev. 1.0  
Si5375  
Register 22.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LOL_POL  
R/W  
D0  
IRQ_POL  
R/W  
Name  
Type  
R
R
R
R
R
R
Reset value = 1101 1111  
Bit  
7:3  
1
Name  
Function  
Reserved  
LOL_POL  
LOL_POL.  
Sets the active polarity for the LOL status when reflected on the LOL_q output pin.  
0: Active low  
1: Active high  
0
IRQ_POL  
INT_POL.  
Sets the active polarity for the interrupt status when reflected on the IRQ.  
output pin.  
0: Active low  
1: Active high  
Rev. 1.0  
29  
Si5375  
Register 23.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LOS_ MSK  
R/W  
D0  
LOSX_ MSK  
R/W  
Name  
Type  
R
R
R
R
R
R
Reset value = 0001 1111  
Bit  
7:2  
1
Name  
Function  
Reserved  
LOS_MSK  
LOS_MSK.  
Determines if a LOS on CKIN_q (LOS_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS_FLG register.  
0: LOS1 alarm triggers active interrupt on IRQ_q output (if INT_PIN=1).  
1: LOS_FLG ignored in generating interrupt output.  
0
LOSX_MSK  
LOSX_MSK.  
Determines if a LOS on OSC is used in the generation of an interrupt. Writes to this  
register do not change the value held in the LOSX_FLG register.  
0: LOSX alarm triggers active interrupt on IRQ_q output (if INT_PIN=1).  
1: LOSX_FLG ignored in generating interrupt output.  
Register 24.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOL_MSK  
R/W  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0011 1111  
Bit  
7:1  
0
Name  
Function  
Reserved  
LOL_MSK  
LOL_MSK.  
Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this  
register do not change the value held in the LOL_FLG register.  
0: LOL alarm triggers active interrupt on IRQ output (if IRQ_PIN=1).  
1: LOL_FLG ignored in generating interrupt output.  
30  
Rev. 1.0  
Si5375  
Register 25.  
Bit  
D7  
D6  
N1_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0010 0000  
Bit  
Name  
Function  
7:5  
N1_HS [2:0] N1_HS [2:0].  
Sets value for N1 high speed divider which drives NC1_LS (n = 1 to 2) low-speed divider.  
000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value.  
001: N1 = 5  
010: N1 = 6  
011: N1 = 7  
100: N1 = 8  
101: N1 = 9  
110: N1 = 10  
111: N1 = 11  
4:0  
Reserved  
Register 31.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC1_LS [19:16] NC1_LS [19:16].  
Sets value for NC1 low-speed divider, which drives CKOUTn_q output. Must be 0 or  
odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ]  
Rev. 1.0  
31  
Si5375  
Register 32.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC1_LS [15:8]  
NC1_LS [15:8].  
Sets value for NC1 low-speed divider, which drives CKOUTn_q output. Must be 0 or  
odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ]  
Register 33.  
Bit  
D7  
D6  
D5  
D4  
NC1_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC1_LS [7:0] NC1_LS [7:0].  
Function  
7:0  
Sets value for NC1 low-speed divider, which drives CKOUTn_q output. Must be 0 or  
odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ]  
32  
Rev. 1.0  
Si5375  
Register 40.  
Bit  
D7  
D6  
N2_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
N2_LS [19:16]  
R/W  
D1  
D0  
Name  
Type  
R
Reset value = 1100 0000  
Bit  
Name  
Function  
7:5  
N2_HS [2:0]  
N2_HS [2:0].  
Sets value for N2 high speed divider which drives N2_LS low-speed divider.  
000: 4  
001: 5  
010: 6  
011: 7  
100: 8  
101: 9  
110: 10  
111: 11  
4
Reserved  
3:0  
N2_LS [19:16] N2_LS [19:16].  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
Rev. 1.0  
33  
Si5375  
Register 41.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N2_LS [15:8] N2_LS [15:8].  
Function  
7:0  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
Register 42.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 1111 1001  
Bit  
Name  
N2_LS [7:0] N2_LS [7:0].  
Function  
7:0  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
34  
Rev. 1.0  
Si5375  
Register 43.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31 [18:16]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N31 [18:16] N31 [18:16].  
Sets value for input divider for CKINn_q.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 44.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
N31[15:8]  
N31[15:8].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Rev. 1.0  
35  
Si5375  
Register 45.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N31[7:0]  
N31[7:0].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 46.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
N32[18:16]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N32[18:16] N32[18:16].  
Sets value for input divider for OSC clock input operation.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values=[1, 2, 3, ..., 2 ]  
36  
Rev. 1.0  
Si5375  
Register 47.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32[15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
N32[15:8]  
N32[15:8].  
Sets value for input divider for OSC clock input operation.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 48.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N32[7:0]  
N32[7:0].  
Sets value for input divider for OSC clock input operation.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Rev. 1.0  
37  
Si5375  
Register 128.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OSC_ACTV_REG CK_ACTV_REG  
R
R
R
R
R
R
R
R
Reset value = 0010 0000  
Bit  
7:2  
1
Name  
Function  
Reserved  
OSC_ACTV_REG OSC_ACTV_REG.  
Indicates if OSC is currently the active clock for PLL input.  
CK_ACTV_REG CK_ACTV_REG.  
Indicates if CKIN_q is currently the active clock for the PLL input.  
0
0: CKIN_q is not the active input clock. Either it is not selected or LOS_INT is 1.  
1: CKIN_q is the active input clock.  
Register 129.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LOS_INT LOSX_INT  
R
R
R
R
R
R
R
R
Reset value = 0000 0110  
Bit  
7:2  
1
Name  
Function  
Reserved  
LOS_INT  
LOS_INT.  
Indicates the LOS status on CKINn_q.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKINn_q input.  
0
LOSX_INT LOSX_INT.  
Indicates the LOS status of the external reference on the OSC_P/N pins.  
0: Normal operation.  
1: Internal loss-of-signal alarm on OSC_P/N reference clock input.  
38  
Rev. 1.0  
Si5375  
Register 130.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOL_INT  
R
Name CLATPROGRESS  
Type  
Reset value = 0000 0001  
R
R
R
R
R
R
R
Bit  
Name  
CLATPROGRESS CLAT Progress.  
Function  
7
Indicates if the last change in the CLAT register has been processed.  
0: Coarse skew adjustment not in progress.  
1: Coarse skew adjustment in progress.  
6:1  
0
Reserved  
LOL_INT  
PLL Loss of Lock Status.  
0: PLL locked.  
1: PLL unlocked.  
Register 131.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LOS_FLG LOSX_FLG  
R/W R/W  
R
R
R
R
R
R
Reset value = 0001 1111  
Bit  
7:2  
1
Name  
Function  
Reserved  
LOS_FLG  
CKINn_q Loss-of-Signal Flag.  
0: Normal operation  
1: Held version of LOS_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOS_MSK bit. Flag cleared by writing 0 to  
this bit.  
0
LOSX_FLG External Reference (Signal on Pins OSC_P/N) Loss-of-Signal Flag.  
0: Normal operation  
1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOSX_MSK bit. Flag cleared by writing 0 to  
this bit.  
Rev. 1.0  
39  
Si5375  
Register 132.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LOL_FLG  
R/W  
D0  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0000 0010  
Bit  
7:2, 0  
1
Name  
Function  
Reserved  
LOL_FLG  
PLL Loss of Lock Flag.  
0: PLL locked  
1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing 0 to  
this bit.  
Register 134.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
PARTNUM_RO [11:4]  
R
Type  
Reset value = 0000 0100  
Bit  
Name  
Function  
7:0  
PARTNUM_RO [11:0] Device ID (1 of 2).  
0000 0100 1011: Si5375  
40  
Rev. 1.0  
Si5375  
Register 135.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
PARTNUM_RO [3:0]  
R
REVID_RO [3:0]  
R
Type  
Reset value = 1011 0010  
Bit  
Name  
PARTNUM_RO [11:0] Device ID (2 of 2).  
Function  
7:4  
0000 0100 1011: Si5375  
3:0  
REVID_RO [3:0]  
Device Revision Level.  
0010: Revision C  
Others: Reserved.  
Register 136.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name RST_REG  
ICAL  
R/W  
Type  
R/W  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7
RST_REG  
Internal Reset (Same as Pin Reset).  
Note: The I2C port may not be accessed until 10 ms after RST_REG is asserted.  
0: Normal operation.  
1: Reset of all internal logic. Outputs disabled or tristated during reset.  
6
ICAL  
Start an Internal Calibration Sequence.  
For proper operation, the device must go through an internal calibration sequence.  
ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The  
calibration is complete once the LOL alarm goes low. A valid stable clock (within  
100 ppm) must be present to begin ICAL.  
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take  
effect.  
0: Normal operation.  
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-cali-  
bration, LOL will go low.  
5:0  
Reserved  
Rev. 1.0  
41  
Si5375  
Register 138.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOS_EN [1:1]  
R/W  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0000 1111  
Bit  
7:1  
0
Name  
Function  
Reserved  
LOS_EN [1:0] Enable CKINn_q LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS.  
Register 139.  
Bit  
D7  
D6  
D5  
D4  
LOS_EN [0:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 1111 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS_EN [1:0] Enable CKIN_q LOS Monitoring on the Specified Input (2 of 2).  
Note: LOS_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS.  
3:0  
Reserved  
42  
Rev. 1.0  
Si5375  
7.1. ICAL  
The device registers must be configured for the device operation. After device configuration, a calibration  
procedure must be performed once a stable clock is applied to the selected CKINn input. The calibration process is  
triggered by writing a “1” to bit D6 in register 136. See the Family Reference Manual for details. In addition, after a  
successful calibration operation, changing any of the registers indicated in Table 8 requires that a calibration be  
performed again by the same procedure (writing a “1” to bit D6 in register 136).  
Table 8. ICAL-Sensitive Registers  
Address  
Register  
BYPASS_REG  
CKOUT_ALWAYS_ON  
BSWEL_REG  
RATE_REG  
ICMOS  
0
0
2
2
5
10  
11  
19  
19  
25  
31  
40  
40  
43  
46  
DSBL_REG  
PD_CK  
LOCKT  
VALTIME  
N1_HS  
NC1_LS  
N2_HS  
N2_LS  
N31  
N32  
Rev. 1.0  
43  
Si5375  
8. Pin Descriptions: Si5375  
9
8
7
6
5
4
3
2
1
CKOUT1P_B  
GND  
VDD_B  
CS_CA_B  
NC  
NC  
GND  
CKOUT1N_A  
A
B
C
D
E
F
CKOUT1N_B  
GND  
GND  
CKIN1P_B  
CKIN1N_B  
VDD_A  
LOL_B  
IRQ_A  
GND  
NC  
GND  
CKOUT1P_A  
VDD_A  
GND  
NC  
NC  
VDD_A  
CKIN1P_A  
NC  
NC  
IRQ_B  
LOL_C  
VDD_B  
VDD_C  
NC  
RSTL_B  
OSC_N  
RSTL_C  
VDD_B  
OSC_P  
VDD_C  
RSTL_A  
GND  
NC  
CKIN1N_A  
LOL_A  
CS_CA_A  
VDD_D  
VDD_D  
NC  
CS_CA_C  
CKIN1N_C  
RSTL_D  
IRQ_D  
NC  
G
VDD_C  
GND  
CKIN1P_C  
NC  
SDA  
IRQ_C  
NC  
SCL  
NC  
NC  
GND  
GND  
GND  
GND  
CKOUT1N_D  
CKOUT1P_D  
GND  
GND  
GND  
LOL_D  
CKIN1N_D  
CS_CA_D  
CKIN1P_D  
VDD_D  
H
J
CKOUT1P_C CKOUT1N_C  
NC  
Bottom View  
Figure 10. Si5375 Pin Configuration (Bottom View)  
44  
Rev. 1.0  
Si5375  
Table 9. Si5375 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
D4  
D6  
F6  
F4  
RSTL_A  
RSTL_B  
RSTL_C  
RSTL_D  
I
LVCMOS  
External Reset.  
Active low input that performs external hardware reset of all four  
DSPLLs. Resets all internal logic to a known state and forces  
the device registers to their default value. Clock outputs are tri-  
stated during reset. The part must be programmed after a reset  
or power-on to get a clock output. This pin has a weak pull-up.  
B4  
D8  
H6  
F2  
IRQ_A  
IRQ_B  
IRQ_C  
IRQ_D  
O
LVCMOS  
DSPLLq Interrupt Indicator.  
This pin functions as a device interrupt output. The interrupt  
output, IRQ_PINn must be set to 1. The pin functions as a  
maskable interrupt output with active polarity controlled by the  
IRQ_POLn register bit.  
0 = CKINn present  
1 = LOS on CKINn  
The active polarity is controlled by CK_BAD_POL. If no function  
is selected, the pin tri-states.  
C1, C4, B5  
A7, D5, D7  
E7, F5, G9  
E3, F3, J3  
VDD_A  
VDD_B  
VDD_C  
VDD_D  
V
Supply  
Supply.  
DD  
The device operates from a 1.8 or 2.5 V supply. A 0.1 µF bypass  
capacitive is required for every VDD_q pin. Bypass capacitors  
should be associated with the following VDD_q pins:  
0.1 µF per V pin.  
DD  
Four 1.0 µF should also be placed as close to each V domain  
DD  
as is practical. See recommended layout.  
E5  
E6  
OSC_P  
OSC_N  
I
Analog  
External OSC.  
An external low jitter reference clock should be connected to  
these pins. See the any-frequency precision clocks family  
reference manual for oscillator selection details.  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5375 Register Map.  
Rev. 1.0  
45  
Si5375  
Table 9. Si5375 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
B2  
A3  
B3  
E4  
C8  
A8  
B8  
C9  
H7  
J7  
H8  
H9  
G1  
H2  
J2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Supply  
Ground for each DSPLLq.  
Must be connected to system ground. Minimize the ground path  
impedance for optimal performance of this device. See  
recommended layout.  
G2  
I
Multi  
Clock Input for DSPLLq.  
C2  
D2  
B7  
B6  
G8  
F8  
H3  
H4  
E2  
C5  
E8  
H5  
CKIN1P_A  
CKIN1N_A  
CKIN1P_B  
CKIN1N_B  
CKIN1P_C  
CKIN1N_C  
CKIN1P_D  
CKIN1N_D  
LOL_A  
Differential input clock. This input can also be driven with a  
single-ended signal. Input frequency range is 2 kHz to 710 MHz.  
O
LVCMOS DSPLLq Loss of Lock Indicator.  
These pins function as the active high PLL loss of lock indicator  
LOL_B  
if the LOL_PIN register bit is set to 1.  
0 = PLL locked.  
LOL_C  
LOL_D  
1 = PLL unlocked.  
If LOL_PINn = 0, this pin will tri-state. Active polarity is  
controlled by the LOL_POLn bit. The PLL lock status will always  
be reflected in the LOL_INT read only register bit.  
I
LVCMOS  
DSPLLq Input Clock Select/Active Clock Indicator.  
D1  
A6  
F9  
J4  
CS_CA_A  
CS_CA_B  
CS_CA_C  
CS_CA_D  
Input: This pin functions as the input clock selector between  
CKIN and OSC.  
0 = Select CKIN1.  
1 = Select OSC (Internal).  
Must be high or low. Do not float. If a DSPLL is not used, its  
CS_CA_q pin should be tied high.  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5375 Register Map.  
46  
Rev. 1.0  
Si5375  
Table 9. Si5375 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
2
G5  
SCL  
I
LVCMOS  
I C Serial Clock.  
This pin functions as the serial clock input.  
This pin has a weak pull-down.  
2
G6  
SDA  
I/O LVCMOS  
I C Serial Data.  
2
I C pin functions as the bi-directional serial data port.  
O
Multi  
Output Clock for DSPLLq.  
B1  
A2  
CKOUT1P_A  
CKOUT1N_A  
CKOUT1P_B  
CKOUT1N_B  
CKOUT1P_C  
CKOUT1N_C  
CKOUT1P_D  
CKOUT1N_D  
NC  
Differential output clock with a frequency range of 0.002 to  
808 MHz. Output signal format is selected by SFOUT_REG  
register bits. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive in  
phase single-ended clock outputs at the same frequency.  
A9  
B9  
J9  
J8  
J1  
H1  
N/A  
N/A  
No Connection.  
A4, A5  
C3, C6  
C7, D3  
D9, E1  
E9, F1  
F7, G3  
G4, G7  
J5, J6  
Leave floating. Make no external connections to this pin for  
normal operation.  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5375 Register Map.  
Rev. 1.0  
47  
Si5375  
9. Ordering Guide  
Ordering Part  
Number  
Input/Output  
PLL  
Package  
ROHS6  
Pb-Free  
Temperature  
Range  
Clocks  
Bandwidth  
Range  
Si5375B-A-GL  
Si5375B-A-BL  
Si5375-EVB  
4/4  
60 Hz to 8.4 kHz  
10x10 mm  
80-PBGA  
Yes  
No  
–40 to 85 °C  
–40 to 85 °C  
4/4  
60 Hz to 8.4 kHz  
10x10 mm  
80-PBGA  
Device Development Kit  
48  
Rev. 1.0  
 
Si5375  
10. Package Outline  
Figure 11 illustrates the package details for the Si5375. Table 10 lists the values for the dimensions shown in the  
illustration.  
Figure 11. 80-Pin Plastic Ball Grid Array (PBGA)  
Table 10. Package Dimensions  
Symbol  
Min  
Nom  
Max  
Min  
Nom  
Max  
A
1.22  
1.39  
1.56  
E1  
e
8.00 BSC  
A1  
0.40  
0.50  
0.60  
1.00 BSC  
A2  
A3  
0.32  
0.46  
0.50  
0.36  
0.53  
0.40  
0.60  
0.70  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.12  
0.15  
0.08  
b
0.60  
D
10.00 BSC  
10.00 BSC  
8.00 BSC  
E
D1  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-192.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
Rev. 1.0  
49  
 
 
Si5375  
11. Recommended PCB Layout  
Figure 12. PBGA Card Layout  
Table 11. Layout Dimensions  
Symbol  
X
MIN  
NOM  
0.45  
8.00  
8.00  
1.00  
1.00  
MAX  
0.40  
0.50  
C1  
C2  
E1  
E2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between  
the solder mask and the metal pad is to be 60 µm minimum, all the way around  
the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
50  
Rev. 1.0  
Si5375  
12. Top Markings  
12.1. Si5375 Top Marking (PBGA, Lead-Free)  
Figure 13. Si5375 Top Marking  
12.2. Top Marking Explanation (PBGA, Lead-Free)  
Mark Method:  
Logo Size:  
Laser  
6.1 x 2.2 mm  
Center-Justified  
Font Size:  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
Si5375B-A-GL  
YY = Year  
WW = Work Week  
Assigned by the Assembly House.  
Corresponds to the year and work  
week of the mold date.  
TTTTTT = Mfg Code  
Pin 1 Identifier  
Manufacturing Code from the  
Assembly Purchase Order form.  
Line 3 Marking:  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
“e1” Lead-free Finish Symbol  
(Pb-free BGA Balls)  
Circle = 1.4 mm Diameter  
Center-Justified  
Country of Origin  
TW  
Rev. 1.0  
51  
Si5375  
12.3. Si5375 Top Marking (PBGA, Lead-Finish)  
12.4. Top Marking Explanation (PBGA, Lead-Finish)  
Mark Method:  
Logo Size:  
Laser  
6.1 x 2.2 mm  
Center-Justified  
Font Size:  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
Si5375B-A-BL, Pb finish  
YY = Year  
WW = Work Week  
Assigned by the Assembly House.  
Corresponds to the year and work  
week of the mold date.  
TTTTTT = Mfg Code  
Pin 1 Identifier  
Manufacturing Code from the  
Assembly Purchase Order form.  
Line 3 Marking:  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
“e0” Lead Finish Symbol  
(SnPb BGA Balls)  
Circle = 1.4 mm Diameter  
Center-Justified  
Country of Origin  
TW  
52  
Rev. 1.0  
Si5375  
DOCUMENT CHANGE LIST  
Revision 0.16 to Revision 0.2  
Improved the Functional Block Diagram.  
Added specifications for different output  
formats.  
Added 1.8 V operation.  
Added 40 MHz reference oscillator.  
Corrected Figure 11 title.  
Added comments to BYPASS and SFOUT  
registers.  
Revision 0.2 to Revision 0.3  
Expanded and improved the specification  
tables.  
Added comments on when a heat sink is  
required.  
Revision 0.3 to Revision 0.4  
Added Silicon Labs logo to device top mark  
Revision 0.4 to Revision 0.41  
Corrected Register Map numbering.  
Removed Register 185.  
Revision 0.41 to Revision 0.45  
Added comments indicating that a crystal may  
not be used in place of an external oscillator.  
Updated specification Tables 3, 4, and 5.  
Added maximum jitter specifications to Table 5.  
Added Thermal Characteristics table on  
page 12.  
Added Figure 3, “Typical Application  
Schematic,” on page 13.  
Added "5. Si5375 Application Examples and  
Suggestions" on page 16.  
Updated "7. Register Descriptions" on page 21.  
Added a part number for the non-RoHS6 device  
to "9. Ordering Guide" on page 48.  
Added recommendations on the four reset pins  
in "5.4. RSTL_x Pins" on page 16.  
Added Lead-Finish top marking.  
Revision 0.45 to Revision 1.0  
Updated " Features" on page 1.  
Minor corrections to Tables 2, 3, and 5.  
Rev. 1.0  
53  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5375B-A-GL

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, ROHS COMPLIANT, PLASTIC, MO-192, BGA-80
SILICON

SI5376

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

Si5376-EVB

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

Si5376B-A-BL

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

Si5376B-A-GL

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5380

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380-D

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

Si5380-D-EVB

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380-EVB

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380A-B-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

Si5380A-D-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380_16

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON