Si5376B-A-GL [SILICON]

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR;
Si5376B-A-GL
型号: Si5376B-A-GL
厂家: SILICON    SILICON
描述:

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR

衰减器
文件: 总66页 (文件大小:342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5376  
4-PLL ANY-FREQUENCY PRECISION CLOCK  
MULTIPLIER/JITTER ATTENUATOR  
Features  
Highly-integrated, 4 PLL clock  
multiplier/jitter attenuator  
Four independent DSPLLs support  
any-frequency synthesis and jitter  
attenuation  
Supports all ITU G.709 and any  
custom FEC ratios (239/237,  
255/238, 255/237, 255/236, 253/226)  
Integrated loop filter with  
programmable bandwidth  
Simultaneous free-run and  
synchronous operation  
Automatic/manual hitless input clock  
switching  
Selectable output clock signal format  
(LVPECL, LVDS, CML, CMOS)  
LOL and interrupt alarm outputs  
I2C programmable  
Single 1.8 V ±5% or 2.5 V ±10%  
operation with high PSRR on-chip  
voltage regulator  
8 inputs/8 outputs  
Each DSPLL can generate any  
frequency from 2 kHz to 808 MHz  
from a 2 kHz to 710 MHz input  
350 fs rms (12 kHz– 20 MHz) and  
410 fs rms (50 kHz–80 MHz)  
typical  
Meets ITU-T G.8251 and Telcordia  
GR-253-CORE OC-192 jitter  
specifications  
Programmable loop bandwidth:  
60 Hz to 8 kHz  
Faster lock acquisition compared to  
the Si5374: <1.2 s  
Ordering Information:  
See page 61.  
10x10 mm PBGA  
For a very low-loop BW version, see  
the Si5374  
Applications  
High-density, any-port, any-protocol, 1/2/4/8/10G Fibre Channel  
any-frequency line cards  
ITU-T G.709 OTN custom FEC  
10/40/100G  
GbE/10 GbE Synchronous Ethernet  
Carrier Ethernet, multi-service  
switches and routers  
MSPP, ROADM, P-OTS,  
muxponders  
OC-48/192, STM-16/64  
Description  
The Si5376 is a highly-integrated, 4-PLL, jitter-attenuating precision clock  
multiplier for applications requiring sub-1 ps jitter performance. Each of the  
DSPLL® clock multiplier engines accepts two input clocks ranging from 2 kHz to  
710 MHz and generates two independent synchronous output clocks ranging  
from 2 kHz to 808 MHz. The device provides virtually any frequency translation  
combination across this operating range. For asynchronous, free-running clock  
generation applications, the Si5376’s reference oscillator can be used as a clock  
source for any of the four DSPLLs. The Si5376 input clock frequency and clock  
multiplication ratio are programmable through an I2C interface. The Si5376 is  
based on Silicon Laboratories’ third-generation DSPLL® technology, which  
provides any-frequency synthesis and jitter attenuation in a highly-integrated  
PLL solution that eliminates the need for external VCXO and loop filter  
components. Each DSPLL loop bandwidth is digitally-programmable, providing  
jitter performance optimization at the application level. The device operates from  
a single 1.8 or 2.5 V supply with on-chip voltage regulators with excellent PSRR.  
The Si5376 is ideal for providing clock multiplication and jitter attenuation in  
high-port-count optical line cards requiring independent timing domains.  
Rev. 1.0 9/12  
Copyright © 2012 by Silicon Laboratories  
Si5376  
Si5376  
Functional Block Diagram  
PLL Bypass  
Input Stage  
Synthesis Stage  
Output Stage  
CKIN1P_A  
PLL Bypass  
CKOUT1P_A  
CKOUT1N_A  
÷ N31  
Input  
Monitor  
CKIN1N_A  
÷ NC1  
f3  
f3  
f3  
®
fOSC  
DSPLL  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1_HS  
CKIN2P_A  
Hitless  
Switch  
A
CKIN2N_A  
÷ NC2  
÷ N32  
CKOUT2P_A  
CKOUT2N_A  
Internal  
Osc  
PLL Bypass  
÷ N2  
PLL Bypass  
CKIN3P_B  
PLL Bypass  
CKOUT3P_B  
CKOUT3N_B  
÷ N31  
Input  
Monitor  
CKIN3N_B  
÷ NC1  
®
fOSC  
fOSC  
fOSC  
DSPLL  
CKIN4P_B  
Hitless  
Switch  
B
CKIN4N_B  
÷ NC2  
÷ N32  
CKOUT4P_B  
CKOUT4N_B  
Internal  
Osc  
PLL Bypass  
÷ N2  
PLL Bypass  
CKIN5P_C  
PLL Bypass  
CKOUT5P_C  
CKOUT5N_C  
÷ N31  
Input  
Monitor  
CKIN5N_C  
÷ NC1  
®
DSPLL  
CKIN6P_C  
Hitless  
Switch  
C
CKIN6N_C  
÷ NC2  
÷ N32  
CKOUT6P_C  
CKOUT6N_C  
Internal  
Osc  
PLL Bypass  
÷ N2  
PLL Bypass  
CKIN7P_D  
PLL Bypass  
CKOUT7P_D  
CKOUT7N_D  
÷ N31  
Input  
Monitor  
CKIN7N_D  
÷ NC1  
f3  
®
DSPLL  
CKIN8P_D  
Hitless  
Switch  
D
CKIN8N_D  
÷ NC2  
÷ N32  
CKOUT8P_D  
CKOUT8N_D  
Internal  
Osc  
PLL Bypass  
÷ N2  
RSTL_q  
VDD_q  
GND  
High PSRR  
Voltage Regulator  
Status / Control  
CS_CA_q  
OSC_P/N  
Low Jitter  
XO or Clock  
SCL SDA  
IRQ_q  
LOL_q  
2
Rev. 1.0  
Si5376  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Typical Phase Noise Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5. Si5376 Application Examples and Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.1. Schematic and PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.2. Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.3. SCL Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.4. RSTL_x Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.5. Reference Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.6. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.7. OSC_P and OSC_N Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
6. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
7. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
7.1. ICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
8. Pin Descriptions: Si5376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
10. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
11. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
12. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
12.1. Si5376 Top Marking (PBGA, Lead-Free) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
12.2. Top Marking Explanation (PBGA, Lead-Free) . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
12.3. Si5376 Top Marking (PBGA, Lead-Finish) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
12.4. Top Marking Explanation (PBGA, Lead-Finish) . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Rev. 1.0  
3
Si5376  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Ambient Temperature  
T
–40  
2.25  
1.71  
25  
2.5  
1.8  
85  
C
V
V
A
Supply Voltage during  
Normal Operation  
V
2.5 V Nominal  
1.8 V Nominal  
2.75  
1.89  
DD  
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.  
V
SIGNAL +  
Single-Ended  
Peak-to-Peak Voltage  
V
ICM , VOCM  
Differential I/Os  
VISE,VOSE  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
V ,VOD  
ID  
VICM, VOCM  
t
SIGNAL +  
SIGNAL –  
VID = (SIGNAL+) – (SIGNAL–)  
Figure 1. Differential Voltage Characteristics  
80%  
20%  
CKIN, CKOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
4
Rev. 1.0  
Si5376  
Table 2. DC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Supply Current  
I
LVPECL Format  
622.08 MHz Out  
1000  
1100  
mA  
DD  
All CKOUTs Enabled  
LVPECL Format  
622.08 MHz Out  
4 CKOUTs Enabled  
870  
820  
780  
660  
970  
940  
880  
mA  
mA  
mA  
mA  
CMOS Format  
19.44 MHz Out  
All CKOUTs Enabled  
CMOS Format  
19.44 MHz Out  
4 CKOUTs Enabled  
Disable Mode  
2
CKINn Input Pins  
Input Common Mode  
Voltage (Input Thresh-  
old Voltage)  
V
1.8 V ± 5%  
2.5 V ± 10%  
Single-ended  
0.9  
1
40  
1.4  
1.7  
60  
V
V
ICM  
Input Resistance  
CKN  
20  
0.2  
k  
RIN  
Single-Ended Input  
Voltage Swing  
(See Absolute Specs)  
V
f
f
f
f
< 212.5 MHz  
V
V
V
V
ISE  
CKIN  
PP  
PP  
PP  
PP  
See Figure 1.  
> 212.5 MHz  
0.25  
0.2  
CKIN  
See Figure 1.  
< 212.5 MHz  
CKIN  
Differential Input  
Voltage Swing  
(See Absolute Specs)  
V
ID  
See Figure 1.  
> 212.5 MHz  
0.25  
CKIN  
See Figure 1.  
3,4  
Output Clocks (CKOUTn)  
Common Mode  
CKO  
LVPECL 100 load  
V
1.42  
V –1.25  
DD  
V
VCM  
DD  
line-to-line  
Differential Output  
Swing  
CKO  
LVPECL 100 load  
1.1  
1.9  
V
PP  
VD  
line-to-line  
Notes:  
1. Current draw is independent of supply voltage.  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD = 2.5 V.  
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
Rev. 1.0  
5
Si5376  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Single Ended Output  
Swing  
CKO  
LVPECL 100 load  
0.5  
0.93  
V
VSE  
PP  
line-to-line  
Differential Output  
Voltage  
CKO  
CML 100 load  
350  
425  
500  
mV  
VD  
PP  
line-to-line  
Common Mode Output  
Voltage  
CKO  
CML 100 load  
V
–0.36  
DD  
V
VCM  
line-to-line  
Differential Output  
Voltage  
CKO  
LVDS  
100 load line-to-line  
500  
350  
1.125  
700  
425  
1.2  
900  
500  
1.275  
mV  
mV  
VD  
PP  
PP  
Low Swing LVDS  
100 load line-to-line  
Common Mode Output  
Voltage  
CKO  
LVDS 100 load  
V
VCM  
line-to-line  
Differential Output  
Resistance  
CKO  
CML, LVPECL, LVDS  
200  
RD  
Output Voltage Low  
CKO  
CKO  
CMOS  
0.4  
V
V
VOLLH  
Output Voltage High  
V
= 1.71 V  
0.8 x  
VOHLH  
DD  
CMOS  
ICMOS[1:0] = 11  
= 1.8 V  
V
DD  
Output Drive Current  
(CMOS driving into  
CKO  
7.5  
5.5  
3.5  
1.75  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IO  
V
DD  
CKO  
for output low  
VOL  
ICMOS[1:0] = 10  
= 1.8 V  
or CKO  
for output  
VOH  
V
DD  
high. CKOUT+ and  
CKOUT– shorted  
externally)  
ICMOS[1:0] = 01  
= 1.8 V  
V
DD  
ICMOS[1:0] = 00  
= 1.8 V  
V
DD  
ICMOS[1:0] = 11  
= 2.5 V  
V
DD  
ICMOS[1:0] = 10  
= 2.5 V  
15  
V
DD  
ICMOS[1:0] = 01  
= 2.5 V  
10  
V
DD  
ICMOS[1:0] = 00  
= 2.5 V  
5
V
DD  
Notes:  
1. Current draw is independent of supply voltage.  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD = 2.5 V.  
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6
Rev. 1.0  
Si5376  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2-Level LVCMOS Input Pins  
Input Voltage Low  
Input Voltage High  
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 1.89 V  
= 2.25 V  
0.5  
0.7  
V
V
V
V
IL  
DD  
DD  
DD  
DD  
V
1.4  
1.8  
IH  
LVCMOS Output Pins  
Output Voltage Low  
V
IO = 2 mA  
= 1.71 V  
0.4  
0.4  
V
V
V
V
OL  
V
V
DD  
Output Voltage Low  
Output Voltage High  
Output Voltage High  
Notes:  
IO = 2 mA  
= 2.25 V  
DD  
V
IO = –2 mA  
= 1.71 V  
V
DD  
0.4  
OH  
V
DD  
IO = –2 mA  
= 2.25 V  
V
DD  
0.4  
V
DD  
1. Current draw is independent of supply voltage.  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD = 2.5 V.  
4. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
Rev. 1.0  
7
Si5376  
Table 3. AC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Single-Ended Reference Clock Input Pin OSC_P (OSC_N with cap to GND)  
OSC_P to OSC_N  
Resistance  
OSC  
RATE_REG = 0101 or  
0110, ac coupled  
100  
RIN  
Input Voltage Swing  
OSC  
RATE_REG = 0101 or  
0110, ac coupled  
0.5  
1.2  
V
VPP  
PP  
1
Differential Reference Clock Input Pins (OSC_P/OSC_N)  
Input Voltage Swing  
OSC  
RATE_REG = 0101 or  
0110, ac coupled  
0.5  
2.4  
V
VPP  
PP  
CKINn Input Pins  
Input Frequency  
CKN  
0.002  
40  
710  
60  
MHz  
%
F
Input Duty Cycle  
(Minimum Pulse  
Width)  
CKN  
Whichever is smaller  
(i.e., the 40% / 60%  
limitation applies only  
to high-frequency  
clocks)  
DC  
2
11  
ns  
ns  
Input Rise/Fall Time  
CKN  
20–80%  
TRF  
See Figure 2  
CKOUTn Output Pins  
Output Frequency  
(Output not config-  
ured for CMOS or  
Disabled)  
CKO  
CKO  
0.002  
808  
MHz  
F
Maximum Output  
Frequency in CMOS  
Format  
212.5  
350  
MHz  
ps  
F
Output Rise/Fall  
(20–80 %) @  
622.08 MHz output  
CKO  
CKO  
CKO  
Output not configured for  
CMOS or Disabled  
See Figure 2  
230  
TRF  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CMOS Output  
8
2
ns  
ns  
TRF  
TRF  
V
= 1.71  
DD  
C
= 5 pF  
LOAD  
Output Rise/Fall  
(20–80%) @  
CMOS Output  
= 2.25  
V
DD  
212.5 MHz output  
C
= 5 pF  
LOAD  
Notes:  
1. A crystal may not be used in place of an oscillator.  
2. Input to output skew after an ICAL is not controlled and can be any value.  
8
Rev. 1.0  
Si5376  
Table 3. AC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Duty Cycle  
Uncertainty @  
622.08 MHz  
CKO  
100 Load  
Line-to-Line  
Measured at 50% Point  
(differential)  
±40  
ps  
DC  
LVCMOS Input Pins  
Minimum Reset Pulse  
Width  
t
1
µs  
RSTMN  
Reset to Microproces-  
sor Access Ready  
t
10  
ms  
READY  
LVCMOS Output Pins  
Rise/Fall Times  
t
C
= 20pf  
LOAD  
25  
ns  
RF  
See Figure 2  
LOSn Trigger Window  
LOS  
From last CKINn to   
Internal detection of LOSn  
N3 1  
4.5 x N3  
T
CKIN  
TRIG  
Time to Clear LOL  
after LOS Cleared  
t
LOS to LOL  
Fold = Fnew  
10  
ms  
CLRLOL  
Stable OSC_P, OSC_N  
reference  
Notes:  
1. A crystal may not be used in place of an oscillator.  
2. Input to output skew after an ICAL is not controlled and can be any value.  
Rev. 1.0  
9
Si5376  
Table 3. AC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
Device Skew  
Output Clock Skew  
t
of CKOUTn to of  
CKOUT_m, CKOUTn  
and CKOUT_m at same  
frequency and signal  
format  
100  
ps  
SKEW  
PHASEOFFSET = 0  
CKOUT_ALWAYS_ON = 1  
SQ_ICAL = 1  
Phase Change due to  
Temperature Variation  
t
Max phase changes from  
–40 to +85 °C  
300  
500  
ps  
TEMP  
Notes:  
1. A crystal may not be used in place of an oscillator.  
2. Input to output skew after an ICAL is not controlled and can be any value.  
Table 4. Microprocessor Control  
(VDD = 1.8 ± 5%, 2.5 ±10%, TA = –40 to 85 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
2
I C Bus Lines (SDA, SCL)  
Input Voltage Low  
VIL  
0.25 x V  
V
V
V
V
V
I2C  
DD  
Input Voltage High  
VIH  
0.7 x V  
V
DD  
I2C  
DD  
DD  
Hysteresis of Schmitt  
Trigger Inputs  
VHYS  
V
= 1.8 V  
0.1 x V  
I2C  
DD  
DD  
V
= 2.5  
0.05 x V  
DD  
DD  
Output Voltage Low  
VOL  
V
= 1.8 V  
0.2 x V  
I2C  
DD  
IO = 3 mA  
V
= 2.5  
0.4  
V
DD  
IO = 3 mA  
10  
Rev. 1.0  
Si5376  
Table 5. Performance Specifications  
VDD = 1.8 V ±5% or 2.5 V ±10%, TA = –40 to 85 °C  
Parameter  
PLL Performance*  
Lock Time  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
t
Start of ICAL to of LOL,  
FASTLOCK disabled  
35  
1200  
ms  
ps  
LOCKMP  
Output Clock Phase Change  
t
After clock switch  
200  
P_STEP  
f3 128 kHz  
Closed Loop Jitter Peaking  
Jitter Tolerance  
J
0.05  
0.1  
dB  
PK  
J
Jitter Frequency Loop  
5000/BW  
ns  
TOL  
Bandwidth  
pk-pk  
CKO  
1 kHz Offset  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–106  
–114  
–116  
–132  
–70  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
Phase Noise  
fout = 622.08 MHz  
PN  
Spurious Noise  
Jitter Generation  
SP  
Max spur @ n x F3  
(n 1, n x F3 < 100 MHz)  
SPUR  
J
f
= f  
= 622.08 MHz,  
350  
410  
fs rms  
GEN  
IN  
OUT  
BW = 120 Hz  
LVPECL output  
12 kHz–20 MHz  
50 kHz–80 MHz  
410  
fs rms  
*Note: fin = fout = 622.08 MHz; BW = 120 Hz; LVDS.  
Rev. 1.0  
11  
Si5376  
Table 6. Thermal Characteristics1,2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum Junction  
Temperature  
125  
°C  
Thermal Resistance  
Junction to Ambient  
Still Air  
16  
14  
13  
12  
°C/W  
°C/W  
JA  
Air Flow 1 m/s  
Air Flow 2 m/s  
Air Flow 3 m/s  
Thermal Resistance  
Junction to Case  
Still Air  
3.4  
JC  
Notes:  
1. In most circumstances the Si5376 does not require special thermal management. A system level thermal analysis is  
strongly recommend. Contact Silicon Labs applications for further details if required.  
2. Thermal characteristic for the 80-pin Si5376 on an 8-layer PCB.  
Table 7. Absolute Maximum Ratings  
Parameter  
DC Supply Voltage  
Symbol  
Value  
Unit  
V
V
–0.5 to 2.8  
DD  
LVCMOS Input Voltage  
V
–0.3 to (V + 0.3)  
V
DIG  
DD  
CLKINnP/N_q  
CKN  
OSC  
0 to V  
V
VIN  
VIN  
DD  
OSC_P, OSC_N Voltage Limits  
Operating Junction Temperature  
Storage Temperature Range  
0 to 1.2  
–55 to 150  
–55 to 150  
2
V
T
°C  
°C  
kV  
JCT  
T
STG  
ESD HBM Tolerance (100 pF, 1.5 k); All pins  
except CKINnP/N-q  
ESD MM Tolerance; All pins except  
CKINnP/N_q  
200  
700  
V
V
V
ESD HBM Tolerance (100 pF, 1.5 k);  
CKINnP/N_q  
ESD MM Tolerance; CKINnP/N_q  
Latch-Up Tolerance  
125  
JESD78 Compliant  
Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
12  
Rev. 1.0  
Si5376  
2. Typical Application Schematic  
4-Port 10G Line Card  
with SyncE and IEEE1588  
Independent Port Timing  
FPGA  
Ethernet  
Datapath  
4
4
4
1588  
Slave  
PHY  
IEEE  
10G  
Tx  
Tx  
Rx  
Tx  
Tx  
SyncE  
Recovered  
Clocks  
1588  
Si5376  
Recovered  
Clocks  
SyncE_1  
1588_1  
Port  
Independent  
Timing  
(SyncE or 1588)  
DSPLL  
DSPLL  
DSPLL  
DSPLL  
SyncE_2  
1588_2  
SyncE_3  
1588_3  
SyncE_4  
1588_4  
Rev. 1.0  
13  
Si5376  
3. Typical Phase Noise Plot  
155.52 MHz input  
698.8123 MHz OTU4 output  
295 fs RMS jitter (12 kHz to 20 MHz)  
Figure 3. Typical Phase Noise Plot  
14  
Rev. 1.0  
Si5376  
4. Functional Description  
PLL Bypass  
Input Stage  
Synthesis Stage  
Output Stage  
CKIN1P_A  
CKIN1N_A  
PLL Bypass  
CKOUT1P_A  
CKOUT1N_A  
÷ N31  
Input  
Monitor  
÷ NC1  
f3  
f3  
f3  
f3  
®
fOSC  
DSPLL  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1_HS  
÷ NC1_HS  
CKIN2P_A  
CKIN2N_A  
Hitless  
Switch  
A
÷ NC2  
÷ N32  
CKOUT2P_A  
CKOUT2N_A  
Internal  
Osc  
PLL Bypass  
÷ N2  
PLL Bypass  
CKIN3P_B  
CKIN3N_B  
PLL Bypass  
CKOUT3P_B  
CKOUT3N_B  
÷ N31  
÷ N32  
Input  
Monitor  
÷ NC1  
®
fOSC  
fOSC  
fOSC  
DSPLL  
CKIN4P_B  
CKIN4N_B  
Hitless  
Switch  
B
÷ NC2  
CKOUT4P_B  
CKOUT4N_B  
Internal  
Osc  
PLL Bypass  
÷ N2  
PLL Bypass  
CKIN5P_C  
CKIN5N_C  
PLL Bypass  
CKOUT5P_C  
CKOUT5N_C  
÷ N31  
÷ N32  
Input  
Monitor  
÷ NC1  
®
DSPLL  
CKIN6P_C  
CKIN6N_C  
Hitless  
Switch  
C
÷ NC2  
CKOUT6P_C  
CKOUT6N_C  
Internal  
Osc  
PLL Bypass  
÷ N2  
PLL Bypass  
CKIN7P_D  
CKIN7N_D  
PLL Bypass  
CKOUT7P_D  
CKOUT7N_D  
÷ N31  
Input  
Monitor  
÷ NC1  
®
DSPLL  
CKIN8P_D  
CKIN8N_D  
Hitless  
Switch  
D
÷ NC2  
÷ N32  
CKOUT8P_D  
CKOUT8N_D  
Internal  
Osc  
PLL Bypass  
÷ N2  
RSTL_q  
VDD_q  
GND  
High PSRR  
Voltage Regulator  
Status / Control  
CS_CA_q  
OSC_P/N  
Low Jitter  
SCL SDA  
IRQ_q  
LOL_q  
XO or Clock  
Figure 4. Functional Block Diagram  
The Si5376 is a highly integrated jitter-attenuating clock multiplier that integrates four fully independent DSPLLs  
and provides ultra-low jitter generation with less than 410 fs RMS. Configuration and control of the Si5376 is mainly  
2
handled through the I C interface. The device accepts clock inputs ranging from 2 kHz to 710 MHz and generates  
independent, synchronous clock outputs ranging from 2 kHz to 808 MHz for each DSPLL. Virtually any frequency  
translation (M/N) combination across its operating range is supported. The Si5376 supports a digitally  
programmable loop bandwidth that can range from 60 Hz to 8.4 kHz requiring no external loop filter components.  
An external single-ended or differential reference clock or XO is required for the device to enable ultra-low jitter  
generation and jitter attenuation.  
The device monitors each input clock for loss-of-signal (LOS) and provides a LOS alarm when missing pulses on  
any of the input clocks are detected. The device monitors the lock status of each DSPLL and provides a Loss-of-  
Lock (LOL) alarm when the DSPLL is unlocked. The lock detect algorithm continuously monitors the phase of the  
selected input clock in relation to the phase of the feedback clock. The Si5376 provides a holdover capability that  
allows the device to continue generation of a stable output clock when the input reference is lost. The reference  
oscillator can be internally routed into CKIN2_q, so free-running clock generation is supported for each DSPLL  
offering simultaneous synchronous and asynchronous operation.  
The output drivers are configurable to support common signal formats, such as LVPECL, LVDS, CML, and CMOS  
loads. If the CMOS signal format is selected, each differential output buffer generates two in-phase CMOS clocks  
at the same frequency. For system-level debugging, a DSPLL bypass mode drives the clock output directly from  
the selected input clock, bypassing the internal DSPLL.  
Silicon Laboratories offers a PC-based software utility, Si537xDSPLLsim that can be used to determine valid  
frequency plans and loop bandwidth settings to simplify device setup. Si537xDSPLLsim provides the optimum  
input, output, and feedback divider values for a given input frequency and clock multiplication ratio that minimizes  
phase noise. This utility can be downloaded from http://www.silabs.com/timing. For further assistance, refer to the  
Si53xx Any-Frequency Precision Clocks Family Reference Manual.  
Rev. 1.0  
15  
Si5376  
5. Si5376 Application Examples and Suggestions  
5.1. Schematic and PCB Layout  
For a typical application schematic and PCB layout, see the Si537x-EVB Evaluation Board User's Guide, which  
can be downloaded from www.silabs.com/timing.  
In order to preserve the ultra low jitter of the Si5376 in applications where the four different DSPLL's are each  
operating at different frequency, special care and attention must be paid to the PCB layout. The following is a list of  
rules that should be observed:  
1. The four Vdd supplies should be isolated from one another with four ferrite beads. They should be  
separately bypassed with capacitors that are located very close to the Si5376 device.  
2. Use a solid and undisturbed ground plane for the Si5376 and all of the clock input and output return paths.  
3. For applications that wish to logically connect the four RESET signals, do not tie them together underneath  
the BGA package. Instead connect them outside of the BGA footprint.  
4. As much as is possible, do not route clock input and output signals underneath the BGA package. The  
clock output signals should go directly outwards from the BGA footprint.  
5. Avoid placing the OSC_P and OSC_N signals on the same layer as the clock outputs. Add grounded guard  
traces surrounding the OSC_P and OSC_N signals.  
6. Where possible, place the CKOUT and CKIN signals on separate PCB layers with a ground layer between  
them. The use of ground guard traces between all clock inputs and outputs is recommended.  
For more information, see the Si537x-EVB Evaluation Board User's Guide and Appendix I of the Si53xx Reference  
Manual, Rev 0.5 or higher.  
5.2. Thermal Considerations  
The Si5376 dissipates a significant amount of heat and it is important to take this into consideration when designing  
the Si5376 operating environment. Among other issues, high die temperatures can result in increased jitter and  
decreased long term reliability. It is therefore recommended that one or more of the following occur:  
1. Use a heat sink—A heat sink example is Aavid part number 375324B00035G.  
2. Use a Vdd voltage of 1.8 V.  
3. Limit the ambient temperature to significantly less that 85 °C.  
4. Implement very good air flow.  
5.3. SCL Leakage  
2
When selecting pull up resistors for the two I C signals, note that there is an internal pull down resistor of 18 k  
from the SCL pin to ground. This comment does not apply to the SDA pin.  
5.4. RSTL_x Pins  
It is recommended that the four RSTL_x pins (RSTL_A, RSTL_B, RSTL_C and RSTL_D) be logically connected  
together such that all four DSPLLs are either in or out of reset mode. When a DSPLL is in reset mode, its VCO will  
not be locked to any signal and may drift across its operating range. If a drifting VCO has a frequency similar to that  
of an operating VCO, there could be some crosstalk between the two VCOs. To avoid this from occurring during  
device initialization, DSPLLsim loads each DSPLL with default Free Run frequency plans with VCO values apart  
from one another. If the four RSTL_x pins are directly connected to one another, the connections should not be  
made directly underneath the BGA package. Instead, the connections should be made outside the package  
footprint.  
16  
Rev. 1.0  
Si5376  
5.5. Reference Oscillator Selection  
Care should be taken during the selection of the external oscillator that is connected to the OSC_P and OSC_N  
pins. There is no jitter attenuation from the OSC reference inputs to the output; so, to achieve low output jitter, a  
low-jitter reference OSC must be used. Also, the output drift during holdover will be the same as the drift of the  
OSC reference. For example, a Stratum 3 application will require an OSC reference source that has Stratum 3  
stability (though Stratum 3 accuracy is not required).  
The OSC frequency can be any value from 109 to 125.5 MHz. See the RATE_REG (reg 2) description. Alternately,  
for applications with less demanding jitter requirements, the OSC frequency can be in the range from 37 to  
41 MHz. For applications that use Free Run mode, the freedom to use any OSC frequency within these bands can  
be used to select an OSC frequency that has an integer relationship to the desired output frequency, which will  
make it easier to find a high-performance frequency plan.  
If Free Run is not being used, an OSC frequency that is not integer-related to the output frequency is preferred. A  
recommended choice for an external oscillator is the Silicon Labs 530EB121M109DG, which is a 2.5 V, LVPECL  
device with a temperature stability of 20 ppm. It was used to take the typical phase noise plot on page 14. For more  
details and a more complete discussion of these topics, see the Si53xx Reference Manual.  
5.6. Alarms  
To assist in the programming of the IRQ_n pins, refer to the below diagram of the Si5376 alarm structure.  
LOSx_INT  
LOS1_INT  
LOS2_INT  
FOS1_INT  
LOSX_FLG  
LOSX_MSK  
in  
in  
in  
out  
out  
out  
Sticky  
Write 0  
to clear  
INT_POL  
LOS1_FLG  
LOS1_MSK  
Sticky  
Write 0  
to clear  
IRQ_PIN  
LOS2_FLG  
LOS2_MSK  
Sticky  
Write 0  
to clear  
E
IRQ_n  
FOS1_FLG  
FOS1_MSK  
in  
out  
Sticky  
Write 0  
to clear  
FOS2_INT  
LOL_INT  
FOS2_FLG  
FOS2_MSK  
in  
out  
Sticky  
Write 0  
to clear  
LOL_FLG  
LOL_MSK  
in  
out  
Sticky  
Write 0  
to clear  
Figure 5. Si5376 Alarm Structure  
Rev. 1.0  
17  
Si5376  
5.7. OSC_P and OSC_N Connection  
Figures 6, 7, and 8 show examples of connecting various OSC reference sources to the OSC_P and OSC_N pins.  
A crystal may not be used in place of an external oscillator.  
Si5376  
1.2 V  
0.01 F  
OSC-P  
100   
OSC-N  
LVDS, LVPECL, CML, etc.  
2.5 k  
0.01 F  
0.6 V  
Figure 6. Differential OSC Reference Input Example for Si5376  
Si5376  
1.2 V  
0.01 F  
OSC-P  
OSC-N  
100  
LVDS, LVPECL, CML, etc.  
2.5 k  
0.01 F  
0.6 V  
Figure 7. Single-Ended OSC Reference Input Example for Si5376  
2.5 V  
2.5 V  
150  
82   
150   
Si5376  
OSC-P  
1.2 V  
10 nF  
CMOS  
XO  
E5  
E6  
OSC-N  
10 nF  
0.6 V  
Figure 8. Single-Ended, 2.5 V, CMOS XO Connection  
18  
Rev. 1.0  
Si5376  
6. Register Map  
2
The Si5376 has four identical register maps for each DSPLL. Each DSPLL has a unique I C address enabling  
2
independent control and device configuration. The I C address is 11010 [A1] [A0] for the entire device. Each  
corresponding DSPLL [A1] [A0] address is fixed as below.  
[A1] [A0]  
DSPLLA:  
DSPLLB:  
DSPLLC:  
DSPLLD:  
0
0
1
1
0
1
0
1
Note: The Si5376 register map is similar, but not identical, to the Si5324 device.  
All register bits that are not defined in this map should always be written with the specific reset values. Writing to  
these bits with values other than the specified reset values may result in undefined device behavior. Registers not  
listed, such as Register 64, should never be written to.  
Table 8. Si5376 Registers  
Reg.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
FREE_RU  
N
CKOUT_  
ALWAYS_ON  
BYPASS_REG  
1
2
CK_PRIOR2[1:0]  
CK_PRIOR1[1:0]  
RATE_REG [3:0]  
BWSEL_REG[3:0]  
3
CKSEL_REG[1:0]  
AUTOSEL_REG[1:0]  
ICMOS[1:0]  
DHOLD  
SQ_ICAL  
4
HIST_DEL[4:0]  
5
6
SFOUT2_REG[2:0}  
SFOUT1_REG[2:0]  
FOSREFSEL[2:0]  
7
8
HLOG_2[1:0]  
HLOG_1[1:0]  
HIST_AVG[4:0]  
9
10  
11  
19  
20  
21  
DSBL2_ REG DSBL1_ REG  
PD_CK2  
LOCKT[2:0]  
LOL_PIN  
PD_CK1  
FOS_EN  
Write 0  
FOS_THR[1:0]  
VALTIME[1:0]  
Write 0  
Write 0  
IRQ_PIN  
Write 0  
CK1_ACTV_PI  
N
CKSEL_PIN  
22  
CK_ACTV_  
POL  
LOL_POL  
INT_POL  
23  
24  
25  
31  
32  
LOS2_MSK  
FOS2_MSK  
LOS1_MSK  
FOS1_MSK  
LOSX_MSK  
LOL_MSK  
N1_HS[2:0]  
NC1_LS[19:16]  
NC1_LS[15:8]  
Rev. 1.0  
19  
Si5376  
Table 8. Si5376 Registers (Continued)  
Reg.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
33  
34  
35  
36  
40  
41  
42  
43  
44  
45  
46  
47  
48  
55  
128  
NC1_LS[7:0]  
NC2_LS[19:16]  
NC2_LS[15:8]  
NC2_LS[7:0]  
N2_HS[2:0]  
N2_LS[19:16]  
N2_LS[15:8]  
N2_LS[7:0]  
N31[18:16]  
N31[15:8]  
N31[7:0]  
N32[18:16]  
N32[15:8]  
N32[7:0]  
CLKIN2RATE[2:0]  
CLKIN1RATE[2:0]  
CK2_ACTV_RE CK1_ACTV_R  
G
EG  
129  
130  
LOS2_INT  
FOS2_INT  
LOS1_INT  
FOS1_INT  
LOSX_INT  
LOL_INT  
DIGHOLD  
VALID  
131  
132  
134  
135  
136  
137  
138  
139  
LOS2_FLG  
FOS1_FLG  
LOS1_FLG  
LOL_FLG  
LOSX_FLG  
FOS2_FLG  
PARTNUM_RO[11:4]  
PARTNUM_RO[3:0]  
ICAL  
REVID_RO[3:0]  
RST_REG  
FASTLOCK  
LOS2_EN [1:1] LOS1_EN [1:1]  
FOS2_EN FOS1_EN  
LOS2_EN[0: LOS1_EN[0:  
0] 0]  
142  
143  
INDEPENDENTSKEW1[7:0]  
INDEPENDENTSKEW2[7:0]  
20  
Rev. 1.0  
Si5376  
7. Register Descriptions  
Register 0.  
Bit  
D7  
D6  
FREE_RUN CKOUT_ALWAYS_ON  
R/W R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BYPASS_REG  
R/W  
R
R
R
R
R
Reset value = 0001 0100  
Bit  
7
Name  
Function  
Reserved  
FREE_RUN  
Reserved.  
Free Run.  
6
Internal to the device, route XA/XB to CKIN2. This allows the DSPLL to lock to  
its XA-XB reference to support free-running clock generation.  
0: Disable  
1: Enable  
5
CKOUT_ALWAYS_ON CKOUT Always On.  
This will bypass the SQ_ICAL function. Output will be available even if  
SQ_ICAL is on and ICAL is not complete or successful. See Table 9 on  
page 55.  
0: Squelch output until device is calibrated (ICAL).  
1: Provide an output.  
Notes:  
1. The frequency may be significantly off until the device is calibrated.  
2. Must be set to 1 to control output to output skew.  
4:2  
1
Reserved  
Reserved.  
BYPASS_REG  
Bypass Register.  
This bit enables or disables PLL bypass mode. Use only when the device is in  
digital hold or before the first ICAL. Bypass mode does not support CMOS  
clock outputs.  
0: Normal operation  
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypass-  
ing PLL.  
0
Reserved  
Reserved.  
Rev. 1.0  
21  
Si5376  
Register 1.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CK_PRIOR2 [1:0]  
R/W  
CK_PRIOR1 [1:0]  
R/W  
Type  
R
Reset value = 1110 0100  
Bit  
7:4  
3:2  
Name  
Function  
Reserved  
CK_PRIOR2 [1:0] 2nd Priority Input Clock.  
Selects which of the input clocks will be 2nd priority in the autoselection state  
machine.  
00: CKIN1 is 2nd priority.  
01: CKIN2 is 2nd priority.  
10: Reserved  
11: Reserved  
1:0  
CK_PRIOR1 [1:0] 1st Priority Input Clock.  
Selects which of the input clocks will be 1st priority in the autoselection state  
machine.  
00: CKIN1 is 1st priority.  
01: CKIN2 is 1st priority.  
10: Reserved  
11: Reserved  
22  
Rev. 1.0  
Si5376  
Register 2.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BWSEL_REG [3:0]  
R/W  
RATE_REG[3:0]  
R/W  
Reset value = 0100 0010  
Bit  
Name  
BWSEL_REG [3:0] BWSEL_REG.  
Function  
7:4  
Selects nominal f3dB bandwidth for PLL. See Si53xDSPLLsim for settings. After  
BWSEL_REG is written with a new value, an ICAL is required for the change to  
take effect.  
3:0  
RATE_REG [3:0] RATE Setting for Oscillator.  
An external oscillator or other clock source must be used. It is not possible to  
use just a crystal.  
Setting  
0101  
0110  
Minimum  
37  
109  
Recommended Maximum  
Units  
MHz  
MHz  
40  
41  
121.109  
125.5  
Others: Reserved  
Rev. 1.0  
23  
Si5376  
Register 3.  
Bit  
D7  
D6  
CKSEL_REG[1:0]  
R/W  
D5  
DHOLD  
R/W  
D4  
SQ_ICAL  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
Reset value = 0000 0101  
Bit  
7:6 CKSEL_REG [1:0] CKSEL_REG.  
If the device is operating in register-based manual clock selection mode  
Name  
Function  
(AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input  
clock will be the active input clock. If CKSEL_PIN = 1 and AUTOSEL_REG = 00, the  
CS_CA input pin continues to control clock selection and CKSEL_REG is of no con-  
sequence.  
00: CKIN_1 selected.  
01: CKIN_2 selected.  
10: Reserved  
11: Reserved  
5
DHOLD  
DHOLD.  
Forces the device into digital hold. This bit overrides all other manual and automatic  
clock selection controls.  
0: Normal operation.  
1: Force digital hold mode. Overrides all other settings and ignores the quality of the  
input clocks.  
4
SQ_ICAL  
Reserved  
SQ_ICAL.  
This bit determines if the output clocks will remain enabled or be squelched (dis-  
abled) during an internal calibration. See Table 9 on page 55.  
0: Output clocks enabled during ICAL.  
1: Output clocks disabled during ICAL.  
3:0  
24  
Rev. 1.0  
Si5376  
Register 4.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
HIST_DEL [4:0]  
R/W  
D1  
D0  
Name  
Type  
AUTOSEL_REG [1:0]  
R/W  
R
Reset value = 0001 0010  
Bit  
Name  
AUTOSEL_REG [1:0] AUTOSEL_REG [1:0].  
Selects input clock selection control method.  
Function  
7:6  
00: Manual (either register or pin controlled, see CKSEL_PIN)  
01: Automatic non-revertive  
10: Automatic revertive  
11: Reserved  
5
Reserved  
4:0  
HIST_DEL [4:0]  
HIST_DEL [4:0].  
Selects amount of delay to be used in generating the history information used  
for Digital Hold.  
Register 5.  
Bit  
D7  
ICMOS [1:0]  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 1110 1101  
Bit  
Name  
Function  
7:6  
ICMOS [1:0] ICMOS [1:0].  
When the output buffer is set to CMOS mode, these bits determine the output buffer drive  
strength. The first number below refers to 2.5 V operation; the second to 1.8 V operation.  
These values assume CKOUT+ is tied to CKOUT-.  
00: 5 mA/1.75 mA  
01: 10 mA/3.5 mA  
10: 15 mA/5.5 mA  
11: 20 mA/7.5 mA  
5:0  
Reserved  
Rev. 1.0  
25  
Si5376  
Register 6.  
Bit  
D7  
D6  
D5  
D4  
SFOUT2_REG [2:0]  
R/W  
D3  
D2  
D1  
SFOUT1_REG [2:0]  
R/W  
D0  
Name  
Type  
R
R
Reset value = 0010 1101  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
SFOUT2_  
REG [2:0]  
SFOUT2_REG [2:0].  
Controls output signal format and disable for CKOUT2 output buffer.  
000: Reserved  
001: Disable CKOUT2  
010: CMOS (Bypass mode not supported)  
011: Low swing LVDS  
100: Reserved  
101: LVPECL (not available when V = 1.8 V)  
DD  
110: CML  
111: LVDS  
2:0  
SFOUT1_  
REG [2:0]  
SFOUT1_REG [2:0].  
Controls output signal format and disable for CKOUT1 output buffer.  
000: Reserved  
001: Disable CKOUT1  
010: CMOS (Bypass mode not supported)  
011: Low swing LVDS  
100: Reserved  
101: LVPECL (not available when V = 1.8 V)  
DD  
110: CML  
111: LVDS  
26  
Rev. 1.0  
Si5376  
Register 7.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOSREFSEL [2:0]  
R/W  
R
R
R
R
R
Reset value = 0010 1010  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
FOSREFSEL FOSREFSEL [2:0].  
[2:0]  
Selects which input clock is used as the reference frequency for Frequency offset (FOS)  
monitoring.  
000: OSC (External reference)  
001: CKIN1  
010: CKIN2  
011: Reserved  
100: Reserved  
101: Reserved  
110: Reserved  
111: Reserved  
Rev. 1.0  
27  
Si5376  
Register 8.  
Bit  
D7  
HLOG_2[1:0]  
R/W  
D6  
D5  
HLOG_1[1:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7:6  
HLOG_2 [1:0] HLOG_2 [1:0].  
00: Normal operation  
01: Holds CKOUT2 output at static logic 0.  
Entrance and exit from this state will occur without glitches or runt pulses.  
10:Holds CKOUT2 output at static logic 1.  
Entrance and exit from this state will occur without glitches or runt pulses.  
11: Reserved  
5:4  
3:0  
HLOG_1 [1:0] HLOG_1 [1:0].  
00: Normal operation  
01: Holds CKOUT1 output at static logic 0.  
Entrance and exit from this state will occur without glitches or runt pulses.  
10: Holds CKOUT1 output at static logic 1.  
Entrance and exit from this state will occur without glitches or runt pulses.  
11: Reserved  
Reserved  
Register 9.  
Bit  
D7  
D6  
D5  
HIST_AVG [4:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
Reset value = 1100 0000  
Bit  
Name  
HIST_AVG [4:0] HIST_AVG [4:0].  
Function  
7:3  
Selects amount of averaging time to be used in generating frequency history informa-  
tion for Digital Hold.  
2:0  
Reserved  
28  
Rev. 1.0  
Si5376  
Register 10.  
Bit  
D7  
D6  
D5  
D4  
D3  
DSBL2_REG DSBL1_REG  
R/W R/W  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3
Name  
Function  
Reserved  
DSBL2_REG DSBL2_REG.  
This bit controls the powerdown of the CKOUT2 output buffer. If disable mode is  
selected, the NC2 output divider is also powered down.  
0: CKOUT2 enabled  
1: CKOUT2 disabled  
2
DSBL1_REG DSBL1_REG.  
This bit controls the powerdown of the CKOUT1 output buffer. If disable mode is  
selected, the NC1 output divider is also powered down.  
0: CKOUT1 enabled  
1: CKOUT1 disabled  
1:0  
Reserved  
Register 11.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PD_CK2  
R/W  
D0  
PD_CK1  
R/W  
Name  
Type  
R
R
R
R
R
R
Reset value = 0100 0000  
Bit  
7:2  
1
Name  
Function  
Reserved  
PD_CK2  
PD_CK2.  
This bit controls the powerdown of the CKIN2 input buffer.  
0: CKIN2 enabled  
1: CKIN2 disabled  
0
PD_CK1  
PD_CK1.  
This bit controls the powerdown of the CKIN1 input buffer.  
0: CKIN1 enabled  
1: CKIN1 disabled  
Rev. 1.0  
29  
Si5376  
Register 19.  
Bit  
D7  
D6  
D5  
D4  
VALTIME [1:0]  
R/W  
D3  
D2  
D1  
LOCKT [2:0]  
R/W  
D0  
Name FOS_EN  
FOS_THR [1:0]  
R/W  
Type  
R/W  
Reset value = 0010 1100  
Bit  
Name  
Function  
7:5  
FOS_EN  
FOS_EN.  
Frequency Offset Enable globally disables FOS. See the individual FOS enables  
(FOSX_EN, register 139).  
0: FOS disable  
1: FOS enabled by FOSx_EN  
6:5 FOS_THR [1:0] FOS_THR [1:0].  
Frequency Offset at which FOS is declared:  
00: ± 11 to 12 ppm (Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK.  
01: ± 48 to 49 ppm SONET Minimum Clock (SMC) with SMC used for REFCLK.  
10: ± 30 ppm (SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK.  
11: ± 200 ppm  
4:3  
2:0  
VALTIME [1:0] VALTIME [1:0].  
Sets amount of time for input clock to be valid before the associated alarm is removed.  
00: 2 ms  
01: 100 ms  
10: 200 ms  
11: 13 seconds  
LOCKT [2:0] LOCKT [2:0].  
Sets retrigger interval for one shot monitoring phase detector output. One shot is trig-  
gered by phase slip in DSPLL. To minimize lock time during an ICAL, a LOCKT value of  
001 is recommended. Refer to the Family Reference Manual for more details.  
000: 106 ms  
001: 53 ms  
010: 26.5 ms  
011: 13.3 ms  
100: 6.6 ms  
101: 3.3 ms  
110: 1.66 ms  
111: 0.833 ms  
30  
Rev. 1.0  
Si5376  
Register 20.  
Bit  
D7  
D6  
D5  
D4  
D3  
Write 0  
W
D2  
Write 0  
W
D1  
LOL_PIN  
R/W  
D0  
IRQ_PIN  
R/W  
Name  
Type  
R
R
R
R
Reset value = 0011 1110  
Bit  
7:4  
3:2  
1
Name  
Reserved  
Write 0  
Function  
Write to zero.  
LOL_PIN.  
LOL_PIN  
The LOL_INT status bit can be reflected on the LOL output pin.  
0: LOL output pin tristated  
1: LOL_INT status reflected to output pin  
0
IRQ_PIN  
IRQ_PIN.  
Reflects interrupt status on the IRQ output pin.  
0: Output is disabled.  
1: Output is enabled.  
Rev. 1.0  
31  
Si5376  
Register 21.  
Bit  
D7  
D6  
Write 0  
W
D5  
D4  
D3  
D2  
D1  
CK1_ACTV_PIN CKSEL_ PIN  
R/W R/W  
D0  
Name  
Type  
Write 0  
W
R
R
R
R
Reset value = 1111 1111  
Bit  
7:6  
5:2  
1
Name  
Write 0  
Function  
Write zero.  
Reserved  
CK1_ACTV_PIN CK1_ACTV_PIN.  
The CK1_ACTV_REG status bit can be reflected to the CS_CA output pin using the  
CK1_ACTV_PIN enable function. CK1_ACTV_PIN is of consequence only when pin  
controlled clock selection is being used.  
0: CS_CA output pin tristated.  
1: Clock Active status reflected to output pin.  
0
CKSEL_PIN  
CKSEL_PIN.  
If manual clock selection is used, clock selection can be controlled via the  
CKSEL_REG[1:0] register bits or the CS_CA input pin. This bit is only active when  
AUTOSEL_REG = Manual.  
0: CS_CA pin ignored. CKSEL_REG[1:0] register bits control clock selection.  
1: CS_CA input pin controls clock selection.  
32  
Rev. 1.0  
Si5376  
Register 22.  
Bit  
D7  
D6  
D5  
D4  
D3  
CK_ACTV_POL  
R/W  
D2  
D1  
LOL_POL  
R/W  
D0  
INT_POL  
R/W  
Name  
Type  
R
R
R
R
R
Reset value = 1101 1111  
Bit  
7:4  
3
Name  
Function  
Reserved  
CK_ACTV_ POL CK_ACTV_POL.  
Sets the active polarity for the CS_CA signals when reflected on an output pin.  
0: Active low  
1: Active high  
2
1
Reserved  
LOL_POL  
LOL_POL.  
Sets the active polarity for the LOL status when reflected on an output pin.  
0: Active low  
1: Active high  
0
INT_POL  
INT_POL.  
Sets the active polarity for the interrupt status when reflected on the INT_C1B out-  
put pin.  
0: Active low  
1: Active high  
Rev. 1.0  
33  
Si5376  
Register 23.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
LOS2_ MSK  
R/W  
D1  
LOS1_ MSK  
R/W  
D0  
LOSX_ MSK  
R/W  
Name  
Type  
R
R
R
R
R
Reset value = 0001 1111  
Bit  
7:3  
2
Name  
Function  
Reserved  
LOS2_MSK  
LOS2_MSK.  
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS2_FLG register.  
0: LOS2 alarm triggers active interrupt on IRQ output (if IRQ=1).  
1: LOS2_FLG ignored in generating interrupt output.  
1
0
LOS1_MSK  
LOSX_MSK  
LOS1_MSK.  
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS1_FLG register.  
0: LOS1 alarm triggers active interrupt on IRQ output (if IRQ=1).  
1: LOS1_FLG ignored in generating interrupt output.  
LOSX_MSK.  
Determines if a LOS on OSC (LOSX_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOSX_FLG register.  
0: LOSX alarm triggers active interrupt on IRQ output (if IRQ=1).  
1: LOSX_FLG ignored in generating interrupt output.  
34  
Rev. 1.0  
Si5376  
Register 24.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
FOS2_MSK  
R/W  
D1  
FOS1_MSK  
R/W  
D0  
LOL_MSK  
R/W  
Name  
Type  
R
R
R
R
R
Reset value = 0011 1111  
Bit  
7:3  
2
Name  
Function  
Reserved  
FOS2_MSK FOS2_MSK.  
Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS2_FLG register.  
0: FOS2 alarm triggers active interrupt on IRQ output (if IRQ_PIN=1).  
1: FOS2_FLG ignored in generating interrupt output.  
1
0
FOS1_MSK FOS1_MSK.  
Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS1_FLG register.  
0: FOS1 alarm triggers active interrupt on IRQ output (if IRQ_PIN=1).  
1: FOS1_FLG ignored in generating interrupt output.  
LOL_MSK  
LOL_MSK.  
Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this regis-  
ter do not change the value held in the LOL_FLG register.  
0: LOL alarm triggers active interrupt on IRQ output (if IRQ_PIN=1).  
1: LOL_FLG ignored in generating interrupt output.  
Rev. 1.0  
35  
Si5376  
Register 25.  
Bit  
D7  
D6  
N1_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0010 0000  
Bit  
Name  
Function  
7:5  
N1_HS [2:0] N1_HS [2:0].  
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 2) low-speed divider.  
000: N1 = 4  
001: N1 = 5  
010: N1 = 6  
011: N1 = 7  
100: N1 = 8  
101: N1 = 9  
110: N1 = 10  
111: N1 = 11  
4:0  
Reserved  
Register 31.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC1_LS  
[19:16]  
NC1_LS [19:16].  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ]  
36  
Rev. 1.0  
Si5376  
Register 32.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC1_LS  
[15:8]  
NC1_LS [15:8].  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ]  
Register 33.  
Bit  
D7  
D6  
D5  
D4  
NC1_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
Function  
7:0  
NC1_LS  
[19:0]  
NC1_LS [7:0].  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ]  
Rev. 1.0  
37  
Si5376  
Register 34.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC2_LS  
[19:16]  
NC2_LS [19:16].  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000=1  
00000000000000000001=2  
00000000000000000011=4  
00000000000000000101=6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ]  
Register 35.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
NC2_LS [15:8] NC2_LS [15:8].  
Function  
7:0  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ]  
38  
Rev. 1.0  
Si5376  
Register 36.  
Bit  
D7  
D6  
D5  
D4  
NC2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC2_LS [7:0] NC2_LS [7:0].  
Function  
7:0  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ]  
Rev. 1.0  
39  
Si5376  
Register 40.  
Bit  
D7  
D6  
N2_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
N2_LS [19:16]  
R/W  
D1  
D0  
Name  
Type  
R
Reset value = 1100 0000  
Bit  
Name  
Function  
7:5  
N2_HS [2:0]  
N2_HS [2:0].  
Sets value for N2 high speed divider which drives N2LS low-speed divider.  
000: 4  
001: 5  
010: 6  
011: 7  
100: 8  
101: 9  
110: 10  
111: 11  
4
Reserved  
3:0  
N2_LS [19:16] N2_LS [19:16].  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
40  
Rev. 1.0  
Si5376  
Register 41.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N2_LS [15:8] N2_LS [15:8].  
Function  
7:0  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
Register 42.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 1111 1001  
Bit  
Name  
N2_LS [7:0] N2_LS [7:0].  
Function  
7:0  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ]  
Rev. 1.0  
41  
Si5376  
Register 43.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
N31 [18:16]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N31 [18:16] N31 [18:16].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 44.  
Bit  
D7  
D6  
D5  
D4  
N31_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N31_[15:8] N31_[15:8].  
Function  
7:0  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
42  
Rev. 1.0  
Si5376  
Register 45.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N31_[7:0  
N31_[7:0].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 46.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32_[18:16]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N32_[18:16] N32_[18:16].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Rev. 1.0  
43  
Si5376  
Register 47.  
Bit  
D7  
D6  
D5  
D4  
N32_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N32_[15:8] N32_[15:8].  
Function  
7:0  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
Register 48.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N32_[7:0]  
N32_[7:0].  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ]  
44  
Rev. 1.0  
Si5376  
Register 55.  
Bit  
D7  
D6  
D5  
D4  
CLKIN2RATE[2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CLKIN1RATE[2:0]  
R/W  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
CLKIN2RATE[2:0] CLKIN2RATE_[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
2:0  
CLKIN1RATE [2:0] CLKIN1RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
Rev. 1.0  
45  
Si5376  
Register 128.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK2_ACTV_REG CK1_ACTV_REG  
R
R
R
R
R
R
R
R
Reset value = 0010 0000  
Bit  
7:2  
1
Name  
Function  
Reserved  
CK2_ACTV_REG CK2_ACTV_REG.  
Indicates if CKIN2 is currently the active clock for the DSPLL input.  
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.  
1: CKIN2 is the active input clock.  
0
CK1_ACTV_REG CK1_ACTV_REG.  
Indicates if CKIN1 is currently the active clock for the DSPLL input.  
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.  
1: CKIN1 is the active input clock.  
Register 129.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
LOS2_INT  
R
D1  
LOS1_INT  
R
D0  
LOSX_INT  
R
Name  
Type  
R
R
R
R
R
Reset value = 0000 0110  
Bit  
7:3  
2
Name  
Function  
Reserved  
LOS2_INT LOS2_INT.  
Indicates the LOS status on CKIN2.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN2 input.  
1
0
LOS1_INT LOS1_INT.  
Indicates the LOS status on CKIN1.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN1 input.  
LOSX_INT LOSX_INT.  
Indicates the LOS status of the external reference on the OSC pins.  
0: Normal operation.  
1: Internal loss-of-signal alarm on OSC reference clock input.  
46  
Rev. 1.0  
Si5376  
Register 130.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DIGHOLDVALID  
R
FOS2_INT FOS1_INT LOL_INT  
R
R
R
R
R
R
R
Reset value = 0000 0001  
Bit  
7
Name  
Function  
Reserved  
6
DIGHOLDVALID Digital Hold Valid.  
Indicates if the digital hold circuit has enough samples of a valid clock to meet dig-  
ital hold specifications.  
0: Indicates digital hold history registers have not been filled. The digital hold out-  
put frequency may not meet specifications.  
1: Indicates digital hold history registers have been filled. The digital hold output  
frequency is valid.  
5:3  
2
Reserved  
FOS2_INT  
CKIN2 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN2 input.  
1
0
FOS1_INT  
LOL_INT  
CKIN1 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN1 input.  
PLL Loss of Lock Status.  
0: PLL locked.  
1: PLL unlocked.  
Rev. 1.0  
47  
Si5376  
Register 131.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
LOS2_FLG LOS1_FLG LOSX_FLG  
R/W R/W R/W  
D1  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0001 1111  
Bit  
7:3  
2
Name  
Function  
Reserved  
LOS2_FLG CKIN2 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (IRQ_PIN = 1) and if not masked by LOS2_MSK bit. Flag cleared by writing 0 to  
this bit.  
1
0
LOS1_FLG CKIN1 Loss-of-Signal Flag.  
0: Normal operation  
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (IRQ_PIN = 1) and if not masked by LOS1_MSK bit. Flag cleared by writing 0 to  
this bit.  
LOSX_FLG External Reference (signal on pins XA/XB) Loss-of-Signal Flag.  
0: Normal operation  
1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is  
enabled (IRQ_PIN = 1) and if not masked by LOSX_MSK bit. Flag cleared by writing 0 to  
this bit.  
48  
Rev. 1.0  
Si5376  
Register 132.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOS2_FLG FOS1_FLG LOL_FLG  
R
R
R
R
R/W  
R/W  
R/W  
R
Reset value = 0000 0010  
Bit  
7:4  
3
Name  
Function  
Reserved  
FOS2_FLG CLKIN_2 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (IRQ_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing 0 to  
this bit.  
2
1
0
FOS1_FLG CLKIN_1 Frequency Offset Flag.  
0: Normal operation  
1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (IRQ_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing 0 to  
this bit.  
LOL_FLG  
Reserved  
PLL Loss of Lock Flag.  
0: PLL locked  
1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is  
enabled (IRQ_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing 0 to  
this bit.  
Rev. 1.0  
49  
Si5376  
Register 134.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
PARTNUM_RO [11:4]  
R
Type  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
PARTNUM_RO [11:0] Device ID (1 of 2).  
0000 0100 1100: Si5376  
Others: Reserved  
Register 135.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
PARTNUM_RO [3:0]  
R
REVID_RO [3:0]  
R
Type  
Reset value = 1010 0010  
Bit  
Name  
Function  
7:4  
PARTNUM_RO [11:0] Device ID (2 of 2).  
0000 0100 1010: Si5376  
Others: Reserved  
3:0  
REVID_RO [3:0]  
Indicates Device Revision Level.  
0010: Revision C  
Others: Reserved.  
50  
Rev. 1.0  
Si5376  
Register 136.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name RST_REG  
ICAL  
R/W  
Type  
R/W  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7
RST_REG  
Internal Reset (Same as Pin Reset).  
Note: The I2C port may not be accessed until 10 ms after RST_REG is asserted.  
0: Normal operation.  
1: Reset all internal logic. Outputs disabled or tristated during reset.  
6
ICAL  
Start Internal Calibration Sequence.  
For proper operation, the device must go through an internal calibration sequence.  
ICAL is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibra-  
tion is complete once the LOL alarm goes low. A valid stable clock (within 100 ppm)  
must be present to begin ICAL.  
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take  
effect.  
0: Normal operation.  
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-cali-  
bration, LOL will go low.  
5:0  
Reserved  
Register 137.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FASTLOCK  
R/W  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:1  
0
Name  
Function  
Reserved  
FASTLOCK  
Do not modify.  
This bit must be set to 1 to enable FASTLOCK.  
This improves initial lock time by dynamically changing the loop bandwidth during  
PLL lock acquisition.  
Rev. 1.0  
51  
Si5376  
Register 138.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LOS2_EN [1:1]  
R/W  
D0  
LOS1_EN [1:1]  
R/W  
Name  
Type  
R
R
R
R
R
R
Reset value = 0000 1111  
Bit  
7:2  
1
Name  
Function  
Reserved  
LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).  
Note: LOS2_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual  
for details.  
0
LOS1_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Manual  
for details.  
52  
Rev. 1.0  
Si5376  
Register 139.  
Bit  
D7  
D6  
D5  
LOS2_EN [0:0] LOS1_EN [0:0]  
R/W R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOS2_EN FOS1_EN  
R/W R/W  
R
R
R
R
Reset value = 1111 1111  
Bit  
7:6  
5
Name  
Function  
Reserved  
LOS2_EN [1:0] Enable CKIN2 LOS Monitoring on the Specified Input (2 of 2).  
Note: LOS2_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
4
LOS_EN [1:0] Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
3:2  
1
Reserved  
FOS2_EN  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
0
FOS1_EN  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
Rev. 1.0  
53  
Si5376  
Register 142.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW1 [7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW1 [7:0] INDEPENDENTSKEW1.  
Function  
7:0  
Eight-bit field that represents a 2s complement of the phase offset in  
terms of clocks from the high speed output divider. Default = 0.  
Register 143.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW2 [7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW2 [7:0] INDEPENDENTSKEW2.  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider. Default = 0.  
54  
Rev. 1.0  
Si5376  
7.1. ICAL  
The device registers must be configured for the device operation. After device configuration, a calibration  
procedure must be performed once a stable clock is applied to the selected CKINn input. The calibration process is  
triggered by writing a “1” to bit D6 in register 136. See the Family Reference Manual for details. In addition, after a  
successful calibration operation, changing any of the registers indicated in Table 9 requires that a calibration be  
performed again by the same procedure (writing a “1” to bit D6 in register 136).  
Table 9. ICAL-Sensitive Registers  
Address  
0
Register  
BYPASS_REG  
CKOUT_ALWAYS_ON  
CK_PRIOR1  
CK_PRIOR2  
BSWEL_REG  
RATE_REG  
HIST_DEL  
ICMOS  
0
1
1
2
2
4
5
7
FOSREFSEL  
HIST_AVG  
DSBL1_REG  
DSBL2_REG  
PD_CK1  
9
10  
10  
11  
11  
19  
19  
19  
19  
25  
31  
34  
40  
40  
43  
46  
55  
55  
PD_CK2  
FOS_EN  
FOS_THR  
LOCKT  
VALTIME  
N1_HS  
NC1_LS  
NC2_LS  
N2_HS  
N2_LS  
N31  
N32  
CLKIN1RATE  
CLKIN2RATE  
Rev. 1.0  
55  
Si5376  
8. Pin Descriptions: Si5376  
9
8
7
6
5
4
3
2
1
CKOUT1P_B  
GND  
VDD_B  
CS_CA_B  
CKOUT2P_A CKOUT2N_A  
GND  
CKOUT1N_A  
A
B
C
D
E
F
CKOUT1N_B  
GND  
GND  
CKIN1P_B  
CKIN2P_B  
CKIN1N_B  
CKIN2N_B  
VDD_A  
LOL_B  
IRQ_A  
GND  
GND  
CKOUT1P_A  
VDD_A  
GND  
VDD_A  
CKIN2P_A  
CKIN1P_A  
CKOUT2N_B  
CKOUT2P_B  
CS_CA_C  
IRQ_B  
LOL_C  
VDD_B  
VDD_C  
RSTL_B  
OSC_N  
RSTL_C  
VDD_B  
OSC_P  
VDD_C  
RSTL_A  
GND  
CKIN2N_A  
VDD_D  
CKIN1N_A  
LOL_A  
CS_CA_A  
CKOUT2P_D  
CKOUT2N_D  
CKIN1N_C  
CKIN2N_C  
RSTL_D  
VDD_D  
IRQ_D  
G
VDD_C  
GND  
CKIN1P_C  
GND  
CKIN2P_C  
GND  
SDA  
SCL  
CKIN2N_D  
CKIN1N_D  
CS_CA_D  
CKIN2P_D  
CKIN1P_D  
VDD_D  
GND  
GND  
GND  
GND  
CKOUT1N_D  
CKOUT1P_D  
IRQ_C  
LOL_D  
H
J
CKOUT1P_C CKOUT1N_C  
GND  
CKOUT2N_C CKOUT2P_C  
Bottom View  
Figure 9. Si5376 Pin Configuration (Bottom View)  
56  
Rev. 1.0  
Si5376  
Table 10. Si5376 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
D4  
D6  
F6  
F4  
RSTL_A  
RSTL_B  
RSTL_C  
RSTL_D  
I
LVCMOS  
External Reset.  
Active low input that performs external hardware reset of all four  
DSPLLs. Resets all internal logic to a known state and forces the  
device registers to their default value. Clock outputs are tri-stated  
during reset. The part must be programmed after a reset or  
power-on to get a clock output. This pin has a weak pull-up.  
B4  
D8  
H6  
F2  
IRQ_A  
IRQ_B  
IRQ_C  
IRQ_D  
O
LVCMOS  
DSPLLq Interrupt Indicator.  
This pin functions as a device interrupt output. The interrupt out-  
put, IRQ_PINn must be set to 1. The pin functions as a maskable  
interrupt output with active polarity controlled by the IRQ_POLn  
register bit.  
0 = CKINn present  
1 = LOS (FOS) on CKINn  
The active polarity is controlled by CK_BAD_POL. If no function  
is selected, the pin tri-states.  
C1, C4, B5  
A7, D5, D7  
E7, F5, G9  
E3, F3, J3  
VDD_A  
VDD_B  
VDD_C  
VDD_D  
V
Supply  
Analog  
Supply.  
DD  
The device operates from a 1.8 or 2.5 V supply. A 0.1 µF bypass  
capacitive is required for every VDD_9 pin. Bypass capacitors  
should be associated with the following VDD_q pins:  
0.1 µF per VDD pin.  
Four 1.0 µF should also be placed as close to each VDD domain  
as is practical. See recommended layout.  
E5  
E6  
OSC_P  
OSC_N  
I
External OSC.  
An external low jitter reference clock should be connected to  
these pins. See the any-frequency precision clocks family refer-  
ence manual for oscillator selection details.  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5376 Register Map.  
Rev. 1.0  
57  
Si5376  
Table 10. Si5376 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
B2  
A3  
B3  
E4  
C8  
A8  
B8  
C9  
H7  
J7  
H8  
H9  
G1  
H2  
J2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Supply  
Ground for each DSPLLq.  
Must be connected to system ground. Minimize the ground path  
impedance for optimal performance of this device. See  
recommended layout.  
G2  
C2  
D2  
C3  
D3  
CKIN1P_A  
CKIN1N_A  
CKIN2P_A  
CKIN2N_A  
I
Multi  
Clock Inputs for DSPLLq.  
Differential input clocks. This input can also be driven with a sin-  
gle-ended signal.  
B7  
B6  
C7  
C6  
CKIN1P_B  
CKIN1N_B  
CKIN2P_B  
CKIN2N_B  
G8  
F8  
G7  
F7  
CKIN1P_C  
CKIN1N_C  
CKIN2P_C  
CKIN2N_C  
H3  
H4  
G3  
G4  
CKIN1P_D  
CKIN1N_D  
CKIN2P_D  
CKIN2N_D  
E2  
C5  
E8  
H5  
LOL_A  
LOL_B  
LOL_C  
LOL_D  
O
LVCMOS  
DSPLLq Loss of Lock Indicator.  
These pins function as the active high PLL loss of lock indicator if  
the LOL_PIN register bit is set to 1.  
0 = PLL locked.  
1 = PLL unlocked.  
If LOL_PINn = 0, this pin will tri-state. Active polarity is controlled  
by the LOL_POLn bit. The PLL lock status will always be  
reflected in the LOL_INTn read only register bit.  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5376 Register Map.  
58  
Rev. 1.0  
Si5376  
Table 10. Si5376 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
D1  
A6  
F9  
J4  
CS_CA_A  
CS_CA_B  
CS_CA_C  
CS_CA_D  
I/O  
LVCMOS DSPLLq Input Clock Select/Active Clock Indicator.  
Input: In manual clock selection mode, this pin functions as the  
manual input clock selector if the CKSEL_PIN is set to 1.  
0 = Select CKIN1  
1 = Select CKIN2  
If CKSEL_PIN = 0, the CKSEL_REG register bit controls this  
function and this input tristates. If configured for input, must be  
tied high or low.  
Output: In automatic clock selection mode, this pin indicates  
which of the two input clocks is currently the active clock. If  
alarms exist on both clocks, CK_ACTV will indicate the last active  
clock that was used before entering the digital hold state. The  
CK_ACTV_PIN register bit must be set to 1 to reflect the active  
clock status to the CK_ACTV output pin.  
0 = CKIN1 active input clock  
1 = CKIN2 active input clock  
If CK_ACTV_PIN = 0, this pin will tristate. The CK_ACTV status  
will always be reflected in the CK_ACTV_REG read only register  
bit.  
2
G5  
G6  
SCL  
SDA  
I
LVCMOS  
LVCMOS  
I C Serial Clock.  
This pin functions as the serial clock input.  
This pin has a weak pull-down.  
2
I/O  
I C Serial Data.  
2
I C pin functions as the bi-directional serial data port.  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5376 Register Map.  
Rev. 1.0  
59  
Si5376  
Table 10. Si5376 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal  
Level  
Description  
B1  
A2  
A5  
A4  
CKOUT1P_A  
CKOUT1N_A  
CKOUT2P_A  
CKOUT2N_A  
O
Multi  
Output Clock for DSPLLq.  
Differential output clocks. Output signal format is selected by  
SFOUT_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both out-  
put pins drive in phase single-ended clock outputs at the same  
frequency.  
A9  
B9  
E9  
D9  
CKOUT1P_B  
CKOUT1N_B  
CKOUT2P_B  
CKOUT2N_B  
J9  
CKOUT1P_C  
J8  
J5  
J6  
CKOUT1N_C  
CKOUT2P_C  
CKOUT2N_C  
J1  
H1  
E1  
F1  
CKOUT1P_D  
CKOUT1N_D  
CKOUT2P_D  
CKOUT2N_D  
Note: Internal register names are indicated by italics, e.g., IRQ_PIN. See Si5376 Register Map.  
60  
Rev. 1.0  
Si5376  
9. Ordering Guide  
Ordering Part  
Number  
Input/Output  
PLL  
Package  
RoHS6  
Temperature  
Range  
Clocks  
Bandwidth  
Range  
Pb-Free  
Si5376B-A-GL  
Si5376B-A-BL  
Si5376-EVB  
8/8  
60 Hz to 8.4 kHz  
10x10 mm  
80-PBGA  
Yes  
No  
–40 to 85 °C  
–40 to 85 °C  
8/8  
60 Hz to 8.4 kHz  
10x10 mm  
80-PBGA  
Evaluation Board  
Rev. 1.0  
61  
Si5376  
10. Package Outline  
Figure 10 illustrates the package details for the Si5376. Table 11 lists the values for the dimensions shown in the  
illustration. Visit www.silabs.com/support/quality/pages/RoHSInformation.aspx for more environmental information  
about the package.  
Figure 10. 80-Pin Plastic Ball Grid Array (PBGA)  
Table 11. Package Dimensions  
Symbol  
Min  
Nom  
Max  
Min  
Nom  
Max  
A
1.22  
1.39  
1.56  
E1  
e
8.00 BSC  
A1  
A2  
0.40  
0.32  
0.46  
0.50  
0.50  
0.36  
0.60  
0.40  
0.60  
0.70  
1.00 BSC  
0.10  
aaa  
bbb  
ccc  
ddd  
eee  
A3  
0.53  
0.10  
b
0.60  
0.12  
D
10.00 BSC  
10.00 BSC  
8.00 BSC  
0.15  
E
0.08  
D1  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-192.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
62  
Rev. 1.0  
Si5376  
11. Recommended PCB Layout  
Figure 11. PBGA Card Layout  
Table 12. Layout Dimensions  
Symbol  
X
MIN  
NOM  
0.45  
8.00  
8.00  
1.00  
1.00  
MAX  
0.40  
0.50  
C1  
C2  
E1  
E2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
Rev. 1.0  
63  
Si5376  
12. Top Markings  
12.1. Si5376 Top Marking (PBGA, Lead-Free)  
12.2. Top Marking Explanation (PBGA, Lead-Free)  
Mark Method:  
Logo Size:  
Laser  
6.1 x 2.2 mm  
Center-Justified  
Font Size:  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
Si5376B-A-GL, Pb-free  
YY = Year  
WW = Work Week  
Assigned by the Assembly House.  
Corresponds to the year and work  
week of the mold date.  
TTTTTT = Mfg Code  
Pin 1 Identifier  
Manufacturing Code from the  
Assembly Purchase Order form.  
Line 3 Marking:  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
“e1” Lead-Free Finish Symbol  
(Pb-Free BGA Balls)  
Circle = 1.4 mm Diameter  
Center-Justified  
Country of Origin  
TW  
64  
Rev. 1.0  
Si5376  
12.3. Si5376 Top Marking (PBGA, Lead-Finish)  
12.4. Top Marking Explanation (PBGA, Lead-Finish)  
Mark Method:  
Logo Size:  
Laser  
6.1 x 2.2 mm  
Center-Justified  
Font Size:  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
Si5376B-A-BL, Pb finish  
YY = Year  
WW = Work Week  
Assigned by the Assembly House.  
Corresponds to the year and work  
week of the mold date.  
TTTTTT = Mfg Code  
Pin 1 Identifier  
Manufacturing Code from the  
Assembly Purchase Order form.  
Line 3 Marking:  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
“e0” Lead Finish Symbol  
(SnPb BGA Balls)  
Circle = 1.4 mm Diameter  
Center-Justified  
Country of Origin  
TW  
Rev. 1.0  
65  
Si5376  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
66  
Rev. 1.0  

相关型号:

SI5380

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380-D

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

Si5380-D-EVB

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380-EVB

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380A-B-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

Si5380A-D-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380_16

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5381

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

SI5381A-D04991-GM

Processor Specific Clock Generator,
SILICON

Si5381A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON