SL28506BZI-2T [SILICON]

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP2-56;
SL28506BZI-2T
型号: SL28506BZI-2T
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP2-56

时钟 光电二极管 外围集成电路 晶体
文件: 总27页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28506-2  
Clock Generator for Intel® Eaglelake Chipset  
• 25 MHz Video clocks  
Features  
• 1396 Firewire clock  
• Intel® CK505 Rev. 1.0 Compliant  
• Buffered Reference Clock 14.318 MHz  
• Low power push-pull type differential output buffers  
• 14.318 MHz Crystal Input or Clock Input  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• PCI-Express Gen 2 Compliant SRC clocks (exclude  
SRC0 and SRC1)  
• 8-step programmable drive strength for single-ended  
clocks  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Differential CPU clocks with selectable frequency  
• 100 MHz Differential SRC clocks  
• 100 MHz Differential LCD clock  
• 96 MHz Differential DOT clock  
• 48 MHz USB clock  
• Industrial Temperature -40°C to 85°C  
• 3.3V Power supply  
56-pin TSSOP packages  
CPU SRC PCI REF DOT96 USB_48 LCD SE  
• 33 MHz PCI clocks  
x2 / x3 x4/9  
x6  
x 1  
x 1  
x 1  
x1  
x2  
• 27MHz non-spread Video clock  
Pin Configuration  
Block Diagram  
* 100K-ohm Internal Pull Down  
......................... DOC #: SP-AP-0021 (Rev AB) Page 1 of 27  
400 West Cesar Chavez, Austin, TX 78701  
1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
SL28506-2  
56 TSSOP Pin Definition  
Pin No.  
Name  
Type  
Description  
1
PCI0/OE#_0/2_A  
I/O, SE 3.3V, 33MHz clock/3.3V OE# Input mappable via I2C to control either SRC0 or  
SRC2. (Default PCI0, 33MHz clock)  
2
3
VDD_PCI  
PWR 3.3V Power supply for PCI PLL.  
PCI1/OE#_1/4_B  
I/O, SE 3.3V, 33MHz clock/3.3V OE# Input mappable via I2C to control either SRC1 or  
SRC4. (Default PCI1, 33MHz clock)  
4
5
PCI2/TME  
I/O, SE 3.3V tolerance input for overclocking enable pin/3.3V, 33MHz clock.  
(Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications)  
PCI3/CFG0  
I/O, SE, 3.3V tolerant input for CPU frequency selection/3.3V 33MHz clock.  
PD  
(Refer to DC Electrical Specifications table for Vil_PCI3/CFG0 and  
Vih_PCI3/CFG0 specifications).  
6
7
PCI4/SRC5_EN  
PCIF/ITP_EN  
I/O, SE 3.3V tolerant input to enable SRC5/3.3V, 33MHz clock.  
(Sampled on the CKPWRGD assertion)  
1 = SRC5, 0 = CPU_STP#  
I/O, SE 3.3V LVTTL input to enable SRC8 or CPU2_ITP/3.3V, 33MHz clock.  
(Sampled on the CKPWRGD assertion)  
1 = CPU2_ITP, 0 = SRC8  
8
VSS_PCI  
GND Ground for outputs.  
9
VDD_48  
PWR 3.3V Power supply for outputs and PLL.  
10  
USB_48/FSA  
I/O  
3.3V tolerant input for CPU frequency selection/fixed 3.3V, 48MHz clock output.  
(Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications)  
11  
12  
13  
VSS_48  
GND Ground for outputs.  
VDD_IO  
PWR 0.7V Power supply for outputs.  
SRC0/DOT96  
O, DIF 100MHz Differential serial reference clocks/Fixed 96MHz clock output.  
(Selected via I2C default is SRC0)  
14  
SRC0#/DOT96#  
O, DIF 100MHz Differential serial reference clocks/Fixed 96MHz clock output.  
(Selected via I2C default is SRC0)  
15  
16  
17  
VSS_IO  
GND Ground for PLL2.  
VDD_PLL3  
PWR 3.3V Power supply for PLL3  
SRC1/LCD100/SE1  
O, DIF, 100MHz Differential serial reference clocks/100MHz LCD video clock/SE1 clocks.  
SE  
O, DIF, 100MHz Differential serial reference clocks/100MHz LCD video clock/SE2 clocks.  
SE (Default SRC1, 100MHz clock)  
(Default SRC1, 100MHz clock)  
18  
SRC1#/LCD100#/SE2  
19  
20  
21  
22  
23  
24  
VSS_PLL3  
GND Ground for PLL3.  
VDD_PLL3_IO  
SRC2/SATA  
PWR IO Power supply for PLL3 outputs.  
O, DIF 100MHz Differential serial reference clocks.  
O, DIF 100MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRC2#/SATA#  
VSS_SRC  
SRC3/OE#_0/2_B  
I/O, 100MHz Differential serial reference clocks / 3.3V OE#_0/2_B, input, mappable  
Dif  
I/O, 100MHz Differential serial reference clocks / 3.3V OE#_1/4_B input, mappable  
Dif via I2C to control either SRC1 or SRC4. (Default SRC3, 100MHz clock)  
via I2C to control either SRC0 or SRC2. (Default SRC3, 100MHz clock)  
25  
SRC3#OE#_1/4_B  
.........................DOC #: SP-AP-0021 (Rev AB) Page 2 of 27  
SL28506-2  
56 TSSOP Pin Definition (continued)  
Pin No.  
26  
Name  
VDD_SRC_IO  
SRC4  
Type  
Description  
PWR IO power supply for SRC outputs.  
27  
O, DIF 100MHz Differential serial reference clocks.  
O, DIF 100MHz Differential serial reference clocks.  
28  
SRC4#  
29  
SRC5#CPU_STP#  
I/O, 3.3V tolerant input for stopping CPU outputs/100MHz Differential serial reference  
Dif clocks.  
30  
SRC5/PCI_STP#  
I/O, 3.3V tolerant input for stopping PCI and SRC outputs/100MHz Differential serial  
Dif reference clocks.  
31  
32  
33  
34  
35  
VDD_SRC  
SRC6#  
PWR 3.3V Power supply for SRC PLL.  
O, DIF 100MHz Differential serial reference clocks.  
O, DIF 100MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRC6  
VSS_SRC  
SRC7#/OE#_6  
I/O, 100MHz Differential serial reference clocks/3.3V OE#6 Input controlling SRC6.  
Dif  
I/O, 100MHz Differential serial reference clocks/3.3V OE#8 Input controlling SRC8.  
Dif (Default SRC7, 100MHz clock).  
(Default SRC7, 100MHz clock).  
36  
SRC7/OE#_8  
37  
38  
VDD_SRC_IO  
PWR 0.7V power supply for SRC outputs.  
SRC8#/CPU2#_ITP#  
O, DIF Selectable differential CPU or SRC clock output. ITP_EN = 0 at CKPWRGD  
assertion = SRC8  
ITP_EN = 1 @ CKPWRGD assertion = CPU2  
(Note: CPU2 is an iAMT clock in iAMT mode depending on the configuration set in Byte 11  
Bit3:2)  
39  
SRC8/CPU2_ITP  
O, DIF Selectable differential CPU or SRC clock output. ITP_EN = 0 at CKPWRGD  
assertion = SRC8  
ITP_EN = 1 @ CKPWRGD assertion = CPU2  
(Note: CPU2 is an iAMT clock in iAMT mode depending on the configuration set in Byte 11  
Bit3:2)  
40  
41  
42  
IO_VOUT  
VDD_CPU_IO  
CPU1#  
PWR Integrated Linear Regulator Control.  
PWR IO Power supply for CPU outputs.  
O, DIF Differential CPU clock outputs. (Note: CPU1 is an iAMT clock in iAMT mode depending  
on the configuration set in Byte 11 Bit3:2)  
43  
CPU1  
O, DIF Differential CPU clock outputs. (Note: CPU1 is an iAMT clock in iAMT mode depending  
on the configuration set in Byte 11 Bit3:2)  
44  
45  
46  
47  
48  
VSS_CPU  
CPU#0  
GND Ground for outputs.  
O, DIF Differential CPU clock outputs.  
O, DIF Differential CPU clock outputs.  
PWR 3.3V Power supply for CPU PLL.  
CPU0  
VDD_CPU  
CKPWRGD/PD#  
I
3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A,  
FS_B, FS_C, FS_D, SRC5_SEL, and ITP_EN.  
After CKPWRGD (active HIGH) assertion, this pin becomes a real-time input for  
asserting power down (active LOW).  
49  
FSB/TEST_MODE  
I
3.3V tolerant input for CPU frequency selection.  
Selects Ref/N or Tri-state when in test mode  
0 = Tri-state, 1 = Ref/N.  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
50  
51  
52  
53  
VSS_REF  
XOUT  
GND Ground for outputs.  
O, SE 14.318MHz Crystal output. (Float XOUT if using CLKIN)  
XIN/CLKIN  
VDD_REF  
I
14.318MHz Crystal input or 3.3V, 14.318MHz input clock signal.  
PWR 3.3V Power supply for outputs and also maintains SMBUS registers during  
power-down.  
.........................DOC #: SP-AP-0021 (Rev AB) Page 3 of 27  
SL28506-2  
56 TSSOP Pin Definition (continued)  
Pin No.  
Name  
Type  
Description  
54  
REF0/FSC/TEST_SEL  
I/O  
3.3V tolerant input for CPU frequency selection/fixed 14.318MHz clock output.  
Selects test mode if pulled to VIHFS_C when CKPWRGD is asserted HIGH. Refer  
to DC Electrical Specifications table for VILFS_C, VIMFS_C, VIHFS_C specifications.  
55  
56  
SMB_DATA  
SMB_CLK  
I/O  
I
SMBus compatible SDATA.  
SMBus compatible SCLOCK.  
Table 1. Frequency Select Pin (FSA, FSB and FSC)  
FSC  
0
FSB  
0
FSA  
0
CPU  
SRC  
PCIF/PCI  
27MHz  
REF  
DOT96  
USB  
266MHz  
133MHz  
200MHz  
166MHz  
333MHz  
100MHz  
400MHz  
200MHz  
0
0
1
0
1
0
0
1
1
100MHz  
33MHz  
27MHz  
14.318MHz  
96MHz  
48MHz  
1
0
0
1
0
1
1
1
0
1
1
1
their default setting at power-up. The use of this interface is  
optional. Clock device register changes are normally made at  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
Frequency Select Pin (FSA, FSB and FSC)  
Apply the appropriate logic levels to FSA, FSB, and FSC  
inputs before CKPWRGD assertion to achieve host clock  
frequency selection. When the clock chip sampled HIGH on  
CKPWRGD and indicates that VTT voltage is stable then FSA,  
FSB, and FSC input values are sampled. This process  
employs a one-shot functionality and once the CKPWRGD  
sampled a valid HIGH, all other FSA, FSB, FSC, and  
CKPWRGD transitions are ignored except in test mode.  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 2.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h).  
.
Table 2. Command Code Definition  
Bit  
Description  
0 = Block read or block write operation, 1 = Byte read or byte write operation  
7
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
.........................DOC #: SP-AP-0021 (Rev AB) Page 4 of 27  
 
 
 
SL28506-2  
Table 3. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Command Code–8 bits  
Bit  
18:11  
19  
Description  
Command Code–8 bits  
Bit  
18:11  
19  
Acknowledge from slave  
Byte Count–8 bits  
Acknowledge from slave  
Repeat start  
27:20  
28  
20  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
36:29  
37  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
....  
....  
....  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
.........................DOC #: SP-AP-0021 (Rev AB) Page 5 of 27  
SL28506-2  
Control Registers  
Byte 0: Control Register 0  
Bit  
7
@Pup  
HW  
HW  
HW  
0
Name  
FS_C  
Description  
CPU Frequency Select Bit, set by HW  
6
FS_B  
CPU Frequency Select Bit, set by HW  
CPU Frequency Select Bit, set by HW  
5
FS_A  
4
iAMT_EN  
Set via SMBus or by combination of PWRDWN, CPU_STP, and PCI_STP  
0 = Legacy Mode, 1 = iAMT Enabled, Sticky 1  
3
2
0
0
RESERVED  
RESERVED  
SRC_MAIN_SEL  
Select source for SRC clock,  
0 = SRC_MAIN = PLL1, PLL3_CFB Table applies  
1 = SRC_MAIN = PLL3, PLL3_CFB Table does not apply  
1
0
0
1
SATA_SEL  
Select source of SATA clock  
0 = SATA SRC_MAIN, 1= SATA PLL2  
PD_Restore  
Save Config. In powerdown  
0 = Config. Cleared, 1 = Config. Saved  
Byte 1: Control Register 1  
Bit  
7
@Pup  
Name  
Description  
0
0
SRC0_SEL  
PLL1_SS_DC  
Select for SRC0 or DOT96, 0 = SRC0, 1 = DOT96  
6
Select for down or center SS,  
0 = Down spread, 1 = Center spread  
5
0
PLL3_SS_DC  
Select for down or center SS,  
0 = Down spread, 1 = Center spread  
4
3
2
1
0
0
0
1
PLL3_CFB3  
PLL3_CFB2  
PLL3_CFB1  
PLL3_CFB0  
Bit 4:1 only apply when SRC_SEL=0  
0000 = PLL3 Disable Default  
PLL3 OFF, SRC1 = SRC_MAIN  
0001 = 100 MHz 0.5% SSC Stby PLL3 ON, SRC1 = SRC_MAIN  
0010 = 100 MHz 0.5% SSC  
0011 = 100 MHz 1.0% SSC  
0100 = 100 MHz 1.5% SSC  
0101 = 100 MHz 2.0% SSC  
0110 = RESERVED  
Only SRC1 sourced from PLL3  
Only SRC1 sourced from PLL3  
Only SRC1 sourced from PLL3  
Only SRC1 sourced from PLL3  
Note: SE clocks required to be  
enabled through Byte 8 Bit[1:0]  
0111 = RESERVED  
1000 = 1394A(24.576M) on SE1 and SE2  
1001 = 1394A(24.576M) on SE1 and 1394B (98.304M) on SE2  
1010 = 1394B on SE1 and SE2  
1011 = 27MHz_NSS on SE1 and SE2  
1100 = 25MHz on SE1 and SE2  
1101 = 25MHz on SE1 and SE2 Disabled (set whenPCI3/CFB0 is set high to  
config to HW mode 3)  
1110 = RESERVED  
1111 = RESERVED  
0
1
PCI_SEL  
Select PCI Clock source from PLL1 or SRC_MAIN  
0 = PLL1, 1 = SRC_MAIN  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
REF_OE  
Output enable for REF  
0 = Output Disabled, 1 = Output Enabled  
6
1
USB_OE  
Output enable for USB  
0 = Output Disabled, 1 = Output Enabled  
.........................DOC #: SP-AP-0021 (Rev AB) Page 6 of 27  
SL28506-2  
Byte 2: Control Register 2 (continued)  
Bit  
@Pup  
Name  
Description  
5
1
PCIF0_OE  
Output enable for PCIF0  
0 = Output Disabled, 1 = Output Enabled  
4
3
2
1
0
1
1
1
1
1
PCI4_OE  
PCI3_OE  
PCI2_OE  
PCI1_OE  
PCI0_OE  
Output enable for PCI4  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI3  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI2  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI1  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI0  
0 = Output Disabled, 1 = Output Enabled  
Byte 3: Control Register 3  
Bit  
7
@Pup  
Name  
Description  
1
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
SRC8/ITP_OE  
SRC7_OE  
RESERVED  
RESERVED  
RESERVED  
6
5
4
Output enable for SRC8 or ITP, 0 = Output Disabled, 1 = Output Enabled  
3
Output enable for SRC7  
0 = Output Disabled, 1 = Output Enabled  
2
1
0
1
1
1
SRC6_OE  
SRC5_OE  
SRC4_OE  
Output enable for SRC6  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC5  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC4  
0 = Output Disabled, 1 = Output Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
1
SRC3_OE  
Output enable for SRC3  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC2/SATA_OE  
SRC1_OE  
Output enable for SATA/SRC2  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC  
0 = Output Disabled, 1 = Output Enabled  
SRC0/DOT96_OE  
CPU1_OE  
Output enable for SRC0/DOT96  
0 = Output Disabled, 1 = Output Enabled  
Output enable for CPU1  
0 = Output Disabled, 1 = Output Enabled  
CPU0_OE  
Output enable for CPU0  
0 = Output Disabled, 1 = Output Enabled  
PLL1_SS_EN  
PLL3_SS_EN  
Enable PLL1’s spread modulation,  
0 = Spread Disabled 1 = Spread Enabled  
Enable PLL3’s spread modulation  
0 = Spread Disabled, 1 = Spread Enabled  
.........................DOC #: SP-AP-0021 (Rev AB) Page 7 of 27  
SL28506-2  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
OE#_0/2_EN_A  
Enable OE#_0/2 (clk req)  
0 = Disabled OE#_0/2, 1 = Enabled OE#_0/2,  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
OE#_0/2_SEL_A  
OE#_1/4_EN_A  
OE#_1/4_SEL_A  
OE#_0/2_EN_B  
OE#_0/2_SEL_B  
OE#_1/4_EN_B  
OE#_1/4_SEL_B  
Set OE#_0/2 SRC0 or SRC2  
0 = OE#_0/2SRC0, 1 = OE#_0/2SRC2  
Enable OE#_1/4 (clk req)  
0 = Disabled OE#_1/4, 1 = Enabled OE#_1/4,  
Set OE#_1/4 SRC1 or SRC4  
0 = OE#_1/4SRC1, 1 = OE#_1/4SRC4  
Enable OE#_0/2 (clk req)  
0 = Disabled OE#_0/2 1 = Enabled OE#_0/2  
Set OE#_0/2 SRC0 or SRC2  
0 = OE#_0/2SRC0, 1 = OE#_0/2SRC2  
Enable OE#_1/4 (clk req)  
0 = Disabled OE#_1/4, 1 = Enabled OE#_1/4,  
Set OE#_1/4 SRC1 or SRC4  
0 = OE#_1/4SRC1, 1 = OE#_1/4SRC4  
Byte 6: Control Register 6  
Bit  
7
@Pup  
Name  
OE#_6_EN  
Description  
Enable OE#_6 (clk req) SRC6  
Enable OE#_8 (clk req) SRC8  
Enable OE#_9 (clk req) SRC9  
Enable OE#_10 (clk req) SRC10  
RESERVED  
0
0
0
0
0
0
0
6
OE#_8_EN  
5
OE#_9_EN  
4
OE#_10_EN  
RESERVED  
RESERVED  
LCD_100_STP_CTRL  
3
2
RESERVED  
1
Allows control of LCD_100 with assertion of PCI_STP#  
0 = Free runningLCD_100, 1 = Stopped with PCI_STP#  
0
0
SRC_STP_CTRL  
Allows control of SRC with assertion of PCI_STP#  
0 = Free running SRC 1 = Stopped with PCI_STP#  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
0
1
1
0
0
0
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
6
5
4
3
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
.........................DOC #: SP-AP-0021 (Rev AB) Page 8 of 27  
SL28506-2  
Byte 8: Control Register 8  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
0000 = CK505 Yellow Cover Device, 56-pin TSSOP  
0001 = CK505 Yellow Cover Device, 64-pin TSSOP  
6
0010 = CK505 Yellow Cover Device, 48-pin QFN (reserved)  
0011 = CK505 Yellow Cover Device, 56-pin QFN (reserved)  
0100 = CK505 Yellow Cover Device, 64-pin QFN (reserved)  
0101 = CK505 Yellow Cover Device, 72-pin QFN (reserved)  
0110 = CK505 Yellow Cover Device, 48-pin SSOP (reserved)  
0111 = CK505 Yellow Cover Device, 56-pin SSOP (reserved)  
1000 = Reserved  
5
4
1001 = Reserved  
1010 = Reserved  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
3
2
1
0
0
0
0
0
RESERVED  
RESERVED  
SE1_OE  
RESERVED  
RESERVED  
SE1 Output enable 0 = Output Disabled, 1 = Output Enabled  
SE2 Output enable 0 = Output Disabled, 1 = Output Enabled  
SE2_OE  
Byte 9: Control Register 9  
Bit  
@Pup  
Name  
Description  
7
0
PCIF0_STP_CTRL  
Allows control of PCIF0 with assertion of PCI_STP#  
0 = Free running PCIF, 1 = Stopped with PCI_STP#  
6
5
HW  
1
TME_STRAP  
REF_Bit1  
Trusted mode enable strap status, 0 = normal, 1 = no overclocking  
REF drive strength control, See Byte 18 for more setting  
0 = Low, 1 = High  
4
3
0
0
TEST_MODE_SEL  
Mode select either REF/N or tri-state  
0 = All output tri-state, 1 = All output REF/N  
TEST_MODE_ENTRY  
Allow entry into test mode  
0=Normal operation, 1=Enter test mode  
2
1
0
1
0
1
IO_VOUT2  
IO_VOUT1  
IO_VOUT0  
IO_VOUT[2,1,0]  
000 = 0.3V  
001 = 0.4V  
010 = 0.5V  
011 = 0.6V  
100 = 0.7V  
101 = 0.8V, Default  
110 = 0.9V  
111 = 1.0V  
Byte 10: Control Register 10  
Bit  
@Pup  
Name  
Description  
7
HW  
SRC5_EN_STRAP  
Read only bit for SRC5_EN_STRAP  
0 = CPU/PCI_STP enabled, 1 = SRC5 pair enabled  
6
5
4
1
1
1
PLL3_EN  
PLL2_EN  
PLL3 Enabled  
0 = PLL3 disabled, 1 = PLL3 enabled  
PLL2 Enabled  
0 = PLL2 disabled, 1 = PLL2 enabled  
SRC_DIV_EN  
SRC Divider Enabled  
0 = SRC Divider disabled, 1 = SRC Divider enabled  
.........................DOC #: SP-AP-0021 (Rev AB) Page 9 of 27  
SL28506-2  
Byte 10: Control Register 10 (continued)  
Bit  
@Pup  
Name  
Description  
3
1
PCI_DIV_EN  
PCI Divider Enabled  
0 = PCI Divider disabled, 1 = PCI Divider enabled  
2
1
0
1
1
1
CPU_DIV_EN  
CPU1_STP_CRTL  
CPU0_STP_CRTL  
CPU Divider Enabled  
0 = CPU Divider disabled, 1 = CPU Divider enabled  
Allow control of CPU1 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU0 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Byte 11: Control Register 11  
Bit  
7
@Pup  
HW  
Name  
Description  
PCI3_CFG1  
PCI3_CFG0  
6
HW  
C  
5
0
25MHz_EN_SE1  
25MHz Output Enabled applies to Powerdown / M1  
(Only applies when PCI3/CGFG0 strap is set high to enter HW mode 3)  
0 = 25MHz disabled in Powerdown / M1  
1 = 25MHz enabled in Powerdown / M1; Sticky 1  
4
3
2
1
0
1
RESERVED  
CPU2_AMT_EN  
CPU1_AMT_EN  
RESERVED  
PCIF0/ITP_EN AMT_EN  
CPU2_AMT_EN CPU1_AMT_EN  
Description  
x
x
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Reserved  
CPU1 = M1 Clock  
CPU2 - M1 Clock  
CPU1 and CPU2 = M1 Clock  
1
0
1
1
PCI-E_GEN2  
PCI-E_Gen2 Compliant (Read Only bit)  
0 = non Gen2, 1= Gen2 Compliant  
CPU2_STP_CRTL  
Allow control of CPU2 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Byte 12: Byte Count  
Bit  
7
@Pup  
Name  
RESERVED  
RESERVED  
BC5  
Description  
0
0
0
0
1
1
0
1
RESERVED  
RESERVED  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
6
5
4
BC4  
3
BC3  
2
BC2  
1
BC1  
0
BC0  
.......................DOC #: SP-AP-0021 (Rev AB) Page 10 of 27  
SL28506-2  
Byte 13: Control Register 13  
Bit  
@Pup  
Name  
Description  
7
1
USB_Bit1  
USB drive strength control, See Byte 18 for more setting  
0 = Low, 1= High  
6
5
4
3
1
0
0
1
PCI/PCIF_Bit1  
PLL1_Spread  
SATA_SS_EN  
EN_CFG0_SET  
PCI drive strength control, See Byte 18 for more setting  
0 = Low, 1 = High  
Select percentage of spread for PLL1  
0 = 0.5%, 1=0.45%  
Enable SATA spread modulation,  
0 = Spread Disabled 1 = Spread Enabled  
By defalult CFG0 pin strap sets the SMBus initial values to select the HW  
mode. When this bit is written0, subsequent SMBus accesses is the Lathes  
Open state, can overwrite the CFG0 pin setting into the SMBus bits and set  
the mode before the M0 state: specifically B0b2, B1b[6,4,3], B9b1, B11b5  
2
1
SE1/SE2_Bit1  
SE1 and SE2 drive strength control, See Byte 18 for more setting  
0 = Low, 1 = High  
1
0
1
1
RESERVED  
SW_PCI  
RESERVED  
SW PCI_STP# Function  
0 = SW PCI_STP assert, 1 = SW PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
Byte 14: Control Register 14  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
CPU_DAF_N7  
CPU_DAF_N6  
CPU_DAF_N5  
CPU_DAF_N4  
CPU_DAF_N3  
CPU_DAF_N2  
CPU_DAF_N1  
CPU_DAF_N0  
If Prog_CPU_EN is set, the values programmed in CPU_DAF_N[8:0] and  
CPU_DAF_M[6:0] will be used to determine the CPU output frequency. The  
setting of the FS_Override bit determines the frequency ratio for CPU and  
other output clocks. When it is cleared, the same frequency ratio stated in  
the Latched FS[C:A] register will be used. When it is set, the frequency ratio  
stated in the FSEL[2:0] register will be used  
6
5
4
3
2
1
0
Byte 15: Control Register 15  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
CPU_DAF_N8  
CPU_DAF_M6  
CPU_DAF_M5  
CPU_DAF_M4  
CPU_DAF_M3  
CPU_DAF_M2  
CPU_DAF_M1  
CPU_DAF_M0  
See Byte 14 for description  
6
If Prog_CPU_EN is set, the values programmed are in CPU_FSEL_N[8:0]  
and CPU_FSEL_M[6:0] will be used to determine the CPU output  
frequency. The setting of the FS_Override bit determines the frequency  
ratio for CPU and other output clocks. When it is cleared, the same  
frequency ratio stated in the Latched FS[C:A] register will be used. When it  
is set, the frequency ratio stated in the FSEL[2:0] register will be used  
5
4
3
2
1
0
Byte 16: Control Register 16  
Bit @Pup  
Name  
Description  
....................... DOC #: SP-AP-0021 (Rev AB) Page 11 of 27  
SL28506-2  
Byte 16: Control Register 16  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
PCI-E_N7  
PCI-E_N6  
PCI-E_N5  
PCI-E_N4  
PCI-E_N3  
PCI-E_N2  
PCI-E_N1  
PCI-E_N0  
If Prog_SRC_EN is set, the values programmed in SRC_DAF_N[7:0] will  
be used to determine the SRC output frequency.  
Byte 17: Control Register 17  
Bit  
7
@Pup  
Name  
Description  
Enable Smooth Switching, 0 = Disabled, 1= Enabled  
Smooth switch select, 0 = CPU_PLL, 1 = SRC_PLL  
RESERVED  
0
0
0
0
SMSW_EN  
6
SMSW_SEL  
RESERVED  
Prog_PCI-E_EN  
5
4
Programmable PCI-E frequency enable  
0 = Disabled, 1= Enabled  
3
0
Prog_CPU_EN  
Programmable CPU frequency enable  
0 = Disabled, 1= Enabled  
2
1
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 18: Control Register 18  
Bit  
7
@Pup  
Name  
Description  
0
1
0
0
0
0
0
0
PCIF/PCI_Bit2  
PCIF/PCI_Bit0  
USB_Bit2  
Drive Strength Control - Bit[2:0]  
6
Bit 2  
(Byte18)  
1
Bit 0  
(Byte 18)  
1
Buffer  
Strength  
Strongest  
Bit 1  
(Various Bytes)  
5
1
1
0
0
1
1
0
0
4
USB_Bit0  
1
1
1
0
0
0
0
0
1
0
1
0
1
0
3
SE1/SE2_Bit2  
SE1/SE2_Bit0  
REF_Bit2  
2
1
Default PCI  
0
REF_Bit0  
Default REF/Usb  
Weakest  
Table 5. Output Driver Status during PCI-STP# and CPU-STP#  
PCI_STP# Asserted  
CPU_STP# Asserted  
Running  
SMBus OE Disabled  
Single-ended Clocks Stoppable  
Non stoppable  
Stoppable  
Driven low  
Driven low  
Running  
Running  
Differential Clocks  
Clock driven high  
Clock# driven low  
Running  
Clock driven high  
Clock# driven low  
Running  
Clock driven Low or 20K  
pulldown  
Non stoppable  
.......................DOC #: SP-AP-0021 (Rev AB) Page 12 of 27  
SL28506-2  
Table 6. Output Driver Status  
All Differential Clocks except  
CPU1  
All Single-ended Clocks  
w/o Strap w/ Strap  
Low Hi-z  
CPU1  
Clock  
Clock#  
Clock  
Clock#  
Latches Open State  
Powerdown  
M1  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low  
Low  
Hi-z  
Hi-z  
Running  
Running  
Table 7. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The SL28506-2 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal causes the SL28506-2 to  
operate at the wrong frequency and violates the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading.  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, use the total capac-  
itance the crystal sees to calculate the appropriate capacitive  
loading (CL).  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. It is important that the trim capacitors are in  
series with the crystal. It is not true that load capacitors are in  
parallel with the crystal and are approximately equal to the  
load capacitance of the crystal.  
Figure 2. Crystal Loading Example  
,
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
Figure 1. Crystal Capacitive Clarification  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires, etc.)  
Calculating Load Capacitors  
In addition to the standard external trim capacitors, consider  
the trace capacitance and pin capacitance to calculate the  
crystal loading correctly. Again, the capacitance on each side  
is in series with the crystal. The total capacitance on both side  
is twice the specified crystal load capacitance (CL). Trim  
capacitors are calculated to provide equal capacitive loading  
on both sides.  
Dial-A-Frequency® (CPU andSRC)  
This feature allows the user to over-clock their system by  
slowly stepping up the CPU or SRC frequency. When the  
programmable output frequency feature is enabled, the CPU  
and SRC frequencies are determined by the following  
equation:  
.......................DOC #: SP-AP-0021 (Rev AB) Page 13 of 27  
 
SL28506-2  
Fcpu = G * N/M or Fcpu=G2 * N, where G2 = G / M.  
The Smooth Switch circuit assigns auto or manual. In Auto  
mode, clock generator assigns smooth switch automatically  
when the PLL does overclocking. For manual mode, assign  
the smooth switch circuit to PLL via Smbus. By default the  
smooth switch circuit is set to auto mode. PLL can be  
over-clocked when it does not have control of the smooth  
switch circuit but it is not guaranteed to transition to the new  
frequency without large frequency glitches.  
• “N” and “M” are the values programmed in Programmable  
Frequency Select N-Value Register and M-Value Register,  
respectively.  
• “G” stands for the PLL Gear Constant, which is determined  
by the programmed value of FS[E:A]. See Table 1,  
Frequency Select Table for the Gear Constant for each  
Frequency selection. The PCI Express only allows user  
control of the N register, the M value is fixed and  
documented in Table 1, Frequency Select Table.  
Do not enable over-clocking and change the N values of both  
PLLs in the same SMBUS block write and use smooth switch  
mechanism on spread spectrum on/off.  
In this mode, the user writes the desired N and M values into  
the DAF I2C registers. The user cannot change only the M  
value and must change both the M and the N values at the  
same time, if they require a change to the M value. The user  
may change only the N value.  
PD_RESTORE  
If a ‘0’ is set for Byte 0 bit 0 then, upon assertion of PD# LOW,  
the SL28506-2 initiates a full reset. The result of this is that the  
clock chip emulates a cold power on start and goes to the  
“Latches Open” state. If the PD_RESTORE bit is set to a ‘1’  
then the configuration is stored upon PD# asserted LOW. Note  
that if the iAMT bit, Byte 0 bit 3, is set to a ‘1’ then the  
PD_RESTORE bit must be ignored. In other words, in Intel  
iAMT mode, PD# reset is not allowed.  
Associated Register Bits  
CPU_DAF Enable – This bit enables CPU DAF mode. By  
default, it is not set. When set, the operating frequency is  
determined by the values entered into the CPU_DAF_N  
register. Note that the CPU_DAF_N and M register must  
contain valid values before CPU_DAF is set. Default = 0,  
(No DAF).  
PD# (Power down) Clarification  
The CKPWRGD/PD# pin is a dual-function pin. During initial  
power up, the pin functions as CKPWRGD. Once CKPWRGD  
has been sampled HIGH by the clock chip, the pin assumes  
PD# functionality. The PD# pin is an asynchronous active  
LOW input used to shut off all clocks cleanly before shutting  
off power to the device. This signal is synchronized internally  
to the device before powering down the clock synthesizer. PD#  
is also an asynchronous input for powering up the system.  
When PD# is asserted LOW, clocks are driven to a LOW value  
and held before turning off the VCOs and the crystal oscillator.  
CPU_DAF_N – There are nine bits (for 512 values) to  
linearly change the CPU frequency (limited by VCO range).  
Default = 0, (0000). The allowable values for N are detailed  
in Table 1, Frequency Select Table.  
CPU DAF M – There are 7 bits (for 128 values) to linearly  
change the CPU frequency (limited by VCO range). Default  
= 0, the allowable values for M are detailed in Table 1,  
Frequency Select Table  
SRC_DAF Enable – This bit enables SRC DAF mode. By  
default, it is not set. When set, the operating frequency is  
determined by the values entered into the SRC_DAF_N  
register. Note that the SRC_DAF_N register must contain  
valid values before SRC_DAF is set. Default = 0, (No DAF).  
PD# (Power down) Assertion  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must held  
LOW. When PD mode is desired as the initial power on state,  
PD must be asserted HIGH in less than 10 s after asserting  
CKPWRGD.  
SRC_DAF_N – There are nine bits (for 512 values) to  
linearly change the CPU frequency (limited by VCO range).  
Default = 0, (0000). The allowable values for N are detailed  
in Table 1, Frequency Select Table.  
PD# Deassertion  
Smooth Switching  
The power up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD# pin or the ramping of the power  
supply until the time that stable clocks are generated from the  
clock chip. All differential outputs stopped in a three-state  
condition, resulting from power down are driven high in less  
than 300 s of PD# deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
each clock. Figure 4 is an example showing the relationship of  
clocks coming up.  
The device contains one smooth switch circuit that is shared  
by the CPU PLL and SRC PLL. The smooth switch circuit  
ensures that when the output frequency changes by  
overclocking, the transition from the old frequency to the new  
frequency is a slow, smooth transition containing no glitches.  
The rate of change of output frequency when using the smooth  
switch circuit is less than 1 MHz/0.667 s. The frequency  
overshoot and undershoot is less than 2%.  
.......................DOC #: SP-AP-0021 (Rev AB) Page 14 of 27  
SL28506-2  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 3. Power down Assertion Timing Waveform  
Ts table  
<1.8 ms  
PD#  
CP UT , 133MHz  
CP UC, 133MHz  
S RCT 100MHz  
S RCC 100MHz  
US B , 48MHz  
DOT 96T  
DOT 96C  
P CI, 33MHz  
REF  
Tdriv e_PW R D N #  
<300 s , >200m V  
Figure 4. Power down Deassertion Timing Waveform  
FS_A, FS_B,FS_C,FS_D  
CKPWRGD  
PWRGD_VRM  
0.2-0.3 ms  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 5. CKPWRGD Timing Diagram  
.......................DOC #: SP-AP-0021 (Rev AB) Page 15 of 27  
SL28506-2  
CPU_STP# Assertion  
CPU_STP# Deassertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable are stopped  
within two to six CPU clock periods after sampled by two rising  
edges of the internal CPUC clock. The final states of the  
stopped CPU signals are CPUT = HIGH and CPUC = LOW.  
The deassertion of the CPU_STP# signal causes all stopped  
CPU outputs to resume normal operation in a synchronous  
manner. No short or stretched clock pulses are produced when  
the clock resumes. The maximum latency from the  
deassertion to active outputs is no more than two CPU clock  
cycles.  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
.
PCI_STP# Assertion  
The PCI_STP# signal is an active LOW input used for  
synchronously stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 8.) The PCIF clocks are affected by this pin if their  
corresponding control bit in the SMBus register is set to allow  
them to be free running.  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 8. PCI_STP# Assertion Waveform  
.......................DOC #: SP-AP-0021 (Rev AB) Page 16 of 27  
 
SL28506-2  
PCI_STP# Deassertion  
.
The deassertion of the PCI_STP# signal causes all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods, after PCI_STP# transi-  
tions to a HIGH level.  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 9. PCI_STP# Deassertion Waveform  
.
.
Figure 10. Clock Generator Power up/Run State Diagram  
.......................DOC #: SP-AP-0021 (Rev AB) Page 17 of 27  
SL28506-2  
C l o c k O f f t o M 1  
3.3V  
Vcc  
2.0V  
T_delay t  
FSC  
FSB  
FSA  
CPU_STP#  
PCI_STP#  
CKPWRGD/PD#  
CK505 SMBUS  
CK505 State  
Off  
Latches Open  
M1  
Off  
BSEL[0..2]  
Off  
CK505 Core Logic  
PLL1  
Locked  
CPU1  
PLL2 & PLL3  
All Other Clocks  
REF Oscillator  
T_delay2  
T_delay3  
Figure 11. BSEL Serial Latching  
Absolute Maximum Conditions  
Parameter  
VDD_3.3V  
VDD_IO  
VIN  
Description  
Supply Voltage  
Condition  
Functional  
Min.  
Max. Unit  
4.6  
1.5  
4.6  
150  
85  
V
V
IO Supply Voltage  
Input Voltage  
Functional  
Relative to VSS  
Non-functional  
Functional  
–0.5  
–65  
0
VDC  
°C  
°C  
TS  
Temperature, Storage  
TA  
Commercial Temperature,  
Operating Ambient  
Industrial Temperature,  
Operating Ambient  
-40  
+85  
°C  
TJ  
Temperature, Junction  
Functional  
150  
20  
°C  
°C/W  
ØJC  
ØJA  
Dissipation, Junction to Case JEDEC (JESD 51)  
Dissipation, Junction to Ambient JEDEC (JESD 51)  
60  
°C/  
W
ESDHBM  
ESD Protection (Human Body JEDEC (JESD 22-A114)  
Model)  
2000  
V
UL-94  
MSL  
Flammability Rating  
UL (CLASS)  
V–0  
Moisture Sensitivity Level  
1
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
.......................DOC #: SP-AP-0021 (Rev AB) Page 18 of 27  
SL28506-2  
DC Electrical Specifications  
Parameter  
VDD core  
Description  
Condition  
Min.  
Max.  
3.465  
VDD + 0.3  
0.8  
Unit  
3.3V Operating Voltage  
3.3V Input High Voltage (SE)  
3.3V Input Low Voltage (SE)  
Input High Voltage  
3.3 ± 5%  
3.135  
V
V
VIH  
2.0  
VIL  
VSS – 0.3  
V
VIHI2C  
VILI2C  
VIH_FS  
VIL_FS  
VIHFS_C_TEST  
SDATA, SCLK  
SDATA, SCLK  
2.2  
V
Input Low Voltage  
1.0  
V
FS_[A,B] Input High Voltage  
FS_[A,B] Input Low Voltage  
FS_C Input High Voltage  
0.7  
1.5  
V
VSS – 0.3  
0.35  
VDD + 0.3  
1.5  
V
2
V
VIMFS_C_NORMAL FS_C Input Middle Voltage  
VILFS_C_NORMAL FS_C Input Low Voltage  
0.7  
V
VSS – 0.3  
0.35  
VDD  
2.00  
0.900  
5
V
PCI3/CFG0_  
PCI3/CFG0 Input High Voltage Typ. 2.75V  
2.40  
1.30  
0
V
HIGH  
PCI3/CFG0_MID PCI3/CFG0 Input Mid Voltage Typ. 1.65V  
PCI3/CFG0_LOW PCI3/CFG0 Input Low Voltage Typ. 0.550V  
V
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Except internal pull-down resistors, 0 < VIN < VDD  
Except internal pull-up resistors, 0 < VIN < VDD  
A  
A  
V
IIL  
–5  
2.4  
VOH  
VOL  
VDD IO  
IOZ  
3.3V Output High Voltage (SE) IOH = –1 mA  
3.3V Output Low Voltage (SE) IOL = 1 mA  
Low Voltage IO Supply Voltage  
0.4  
V
1
1.5  
V
High-impedance Output  
Current  
–10  
10  
A  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
1.5  
5
6
pF  
pF  
nH  
V
COUT  
LIN  
0.7VDD  
0
7
VXIH  
Xin High Voltage  
VDD  
0.3VDD  
1
VXIL  
Xin Low Voltage  
V
IDDPWRDWN  
IDD3.3V  
Power Down Current  
Dynamic Supply Current  
mA  
mA  
250  
AC Electrical Specifications  
Parameter  
Crystal  
LACC  
Description  
Condition  
Min.  
Max.  
Unit  
Long-term Accuracy  
300  
ppm  
Clock Input  
TDC  
CLKIN Duty Cycle  
Measured at VDD/2  
47  
0.5  
53  
4.0  
%
V/ns  
ps  
TR/TF  
TCCJ  
CLKIN Rise and Fall Times  
CLKIN Cycle to Cycle Jitter  
CLKIN Long Term Jitter  
Input Low Voltage  
Measured between 0.2VDD and 0.8VDD  
Measured at VDD/2  
250  
TLTJ  
Measured at VDD/2  
350  
ps  
VIL  
XIN / CLKIN pin  
0.8  
V
VIH  
Input High Voltage  
XIN / CLKIN pin  
2
VDD+0.3  
20  
V
IIL  
Input LowCurrent  
XIN / CLKIN pin, 0 < VIN <0.8  
XIN / CLKIN pin, VIN = VDD  
uA  
uA  
IIH  
Input HighCurrent  
35  
CPU at 0.7V  
TDC  
45  
55  
CPU Clock Duty Cycle  
Measured at 0V differential at 0.1s  
%
.......................DOC #: SP-AP-0021 (Rev AB) Page 19 of 27  
SL28506-2  
AC Electrical Specifications (continued)  
Parameter  
TPERIOD  
Description  
Condition  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.99900  
7.49925  
5.99940  
4.99950  
3.74963  
2.99970  
2.49975  
10.00100  
7.50075  
6.00060  
5.00050  
3.75038  
3.00030  
2.50025  
100 MHz CPU Clock Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
TPERIOD  
133 MHz CPU Clock Period  
TPERIOD  
166 MHz CPU Clock Period  
TPERIOD  
200 MHz CPU Clock Period  
TPERIOD  
266 MHz CPU Clock Period  
TPERIOD  
333 MHz CPU Clock Period  
TPERIOD  
400 MHz CPU Clock Period  
10.02406 10.02607  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
100 MHz CPU Clock Period, SSC  
133 MHz CPU Clock Period, SSC  
166 MHz CPU Clock Period, SSC  
200 MHz CPU Clock Period, SSC  
266 MHz CPU Clock Period, SSC  
333 MHz CPU Clock Period, SSC  
400 MHz CPU Clock Period, SSC  
100 MHz CPU Clock Absolute period  
133 MHz CPU Clock Absolute period  
166 MHz CPU Clock Absolute period  
200 MHz CPU Clock Absolute period  
266 MHz CPU Clock Absolute period  
333 MHz CPU Clock Absolute period  
400 MHz CPU Clock Absolute period  
7.51804  
6.01444  
5.01203  
3.75902  
3.00722  
2.50601  
9.91400  
7.41425  
5.91440  
4.91450  
3.66463  
2.91470  
2.41475  
9.91406  
7.51955  
6.01564  
5.01303  
3.75978  
3.00782  
2.50652  
10.0860  
7.58575  
6.08560  
5.08550  
3.83538  
3.08530  
2.58525  
10.1362  
TPERIODSSAbs 100 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
7.41430  
5.91444  
4.91453  
3.66465  
2.91472  
2.41477  
7.62340  
6.11572  
5.11060  
3.85420  
3.10036  
2.59780  
TPERIODSSAbs 133 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
ns  
ns  
ns  
ns  
ns  
ns  
TPERIODSSAbs 166 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
TPERIODSSAbs 200 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
TPERIODSSAbs 266 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
TPERIODSSAbs 333 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
TPERIODSSAbs 400 MHz CPU Clock Absolute period, Measured at 0V differential at 1 clock  
SSC  
TCCJ  
CPU Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at 0V differential  
85  
125  
100  
100  
150  
8
ps  
ps  
TCCJ2  
LACC  
TSKEW  
TSKEW2  
R / TF  
Measured at 0V differential  
Measured at 0V differential  
ppm  
ps  
CPU0 to CPU1 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
CPU Rising/Falling Slew rate  
Rise/Fall Matching  
Measured at 0V differential  
Measured at 0V differential  
ps  
T
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
V/ns  
%
TRFM  
20  
VHIGH  
Voltage High  
1.15  
V
VLOW  
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
SRC at 0.7V  
.......................DOC #: SP-AP-0021 (Rev AB) Page 20 of 27  
SL28506-2  
AC Electrical Specifications (continued)  
Parameter  
TDC  
Description  
SRC Duty Cycle  
Condition  
Min.  
45  
Max.  
55  
Unit  
%
Measured at 0V differential  
9.99900  
10.0010  
TPERIOD  
100 MHz SRC Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
ns  
ns  
ns  
ns  
ns  
10.02406 10.02607  
TPERIODSS  
TPERIODAbs  
100 MHz SRC Period, SSC  
100 MHz SRC Absolute Period  
9.87400  
9.87406  
10.1260  
10.1762  
3.0  
TPERIODSSAbs 100 MHz SRC Absolute Period, SSC  
TSKEW(window) Any SRC Clock Skew from the earliest Measured at 0V differential  
bank to the latest bank  
TCCJ  
LACC  
SRC Cycle to Cycle Jitter  
SRC Long Term Accuracy  
SRC Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
125  
100  
8
ps  
ppm  
V/ns  
%
Measured at 0V differential  
T
R / TF  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
TRFM  
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
DOT96 at 0.7V  
TDC  
DOT96 Duty Cycle  
Measured at 0V differential  
45  
55  
10.4177  
10.6677  
250  
100  
8
%
ns  
10.4156  
TPERIOD  
TPERIODAbs  
TCCJ  
DOT96 Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
10.1656  
DOT96 Absolute Period  
DOT96 Cycle to Cycle Jitter  
DOT96 Long Term Accuracy  
DOT96 Rising/Falling Slew Rate  
Rise/Fall Matching  
ns  
ps  
LACC  
ppm  
V/ns  
%
TR / TF  
TRFM  
2.5  
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
LCD_100_SSC at 0.7V  
TDC  
LCD_100 Duty Cycle  
100 MHz LCD_100 Period  
Measured at 0V differential  
45  
55  
%
TPERIOD  
TPERIODSS  
TPERIODAbs  
Measured at 0V differential at 0.1s  
9.99900  
10.0010  
ns  
100 MHz LCD_100 Period, SSC -0.5% Measured at 0V differential at 0.1s  
10.02406 10.02607 ns  
9.74900 10.25100 ns  
100 MHz LCD_100 Absolute Period  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
TPERIODSSAbs 100 MHz LCD_100 Absolute Period,  
SSC  
9.74906  
10.3012  
ns  
TCCJ  
LCD_100 Cycle to Cycle Jitter  
LCD_100 Long Term Accuracy  
LCD_100 Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
250  
100  
8
ps  
ppm  
V/ns  
%
LACC  
TR / TF  
TRFM  
VHIGH  
VLOW  
VOX  
Measured at 0V differential  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
20  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
PCI/PCIF at 3.3V  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
ns  
ns  
ns  
29.99700 30.00300  
30.08421 30.23459  
29.49700 30.50300  
TPERIOD  
TPERIODSS  
TPERIODAbs  
Spread Disabled PCIF/PCI Period  
Spread Enabled PCIF/PCI Period  
Spread Disabled PCIF/PCI Period  
.......................DOC #: SP-AP-0021 (Rev AB) Page 21 of 27  
SL28506-2  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Measurement at 1.5V  
Min.  
Max.  
Unit  
29.56617 30.58421  
TPERIODSSAbs Spread Enabled PCIF/PCI Period  
ns  
THIGH  
TLOW  
THIGH  
Spread Enabled PCIF and PCI high time Measurement at 2V  
Spread Enabled PCIF and PCI low time Measurement at 0.8V  
12.27095 16.27995 ns  
11.87095 16.07995 ns  
12.27365 16.27665 ns  
Spread Disabled PCIF and PCI high  
time  
Measurement at 2.V  
TLOW  
Spread Disabled PCIF and PCI low time Measurement at 0.8V  
11.87365 16.07665 ns  
T
R / TF  
TSKEW  
TCCJ  
PCIF/PCI Rising/Falling Slew Rate  
Measured between 0.8V and 2.0V  
1.0  
4.0  
1000  
500  
V/ns  
ps  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
PCIF and PCI Cycle to Cycle Jitter  
PCIF/PCI Long Term Accuracy  
Measurement at 1.5V  
Measurement at 1.5V  
ps  
LACC  
100  
ppm  
48_M at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
ns  
20.83125 20.83542  
20.48125 21.18542  
8.216563 11.15198  
7.816563 10.95198  
TPERIOD  
TPERIODAbs  
THIGH  
Period  
Absolute Period  
48_M High time  
ns  
ns  
TLOW  
48_M Low time  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
T
R / TF  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
1.0  
2.0  
350  
100  
V/ns  
ps  
TCCJ  
LACC  
ppm  
27M_NSS/27M_SS at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
Spread Disabled 27M Period  
Spread Enabled 27M Period  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
Measurement at 1.5V  
37.03594 37.03813 ns  
37.01299 37.13172 ns  
Measurement at 1.5V  
T
R / TF  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
1.0  
4.0  
250  
50  
V/ns  
ps  
TCCJ  
LACC  
27_M Long Term Accuracy  
Measured at crossing point VOX  
ppm  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
ns  
69.82033 69.86224  
68.83429 70.84826  
29.97543 38.46654  
29.57543 38.26654  
TPERIOD  
TPERIODAbs  
THIGH  
TLOW  
REF Period  
ns  
REF Absolute Period  
REF High time  
ns  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
REF Low time  
TR / TF  
TSKEW  
TCCJ  
REF Rising and Falling Edge Rate  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Long Term Accuracy  
1.0  
4.0  
500  
V/ns  
ps  
1000  
100  
ps  
LACC  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
.......................DOC #: SP-AP-0021 (Rev AB) Page 22 of 27  
SL28506-2  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
The following diagram shows the test load configurations for  
the single-ended PCI, USB, and REF output signals.  
Measurement  
Point  
22  
L1  
L2  
50  
4 pF  
4 pF  
L1 = 0.5", L2 = 8"  
22  
PCI/USB  
Measurement  
Point  
50  
L2  
L1  
Figure 12. Single-ended PCI and USB Double Load Configuration  
Measurement  
15  
L2  
L1  
Point  
50  
4 pF  
Measurement  
Point  
4 pF  
15  
15  
L1  
L1  
L2  
REF  
50  
Measurement  
Point  
4 pF  
L2  
50  
L1 = 0.5", L2 = 8"  
Figure 13. Single-ended REF Triple Load Configuration  
Figure 14. Single-ended Output Signals (for AC Parameters Measurement)  
.......................DOC #: SP-AP-0021 (Rev AB) Page 23 of 27  
SL28506-2  
For CPU, SRC, and DOT96 Signals and Reference  
This diagram shows the test load configuration for the differential CPU and SRC outputs  
Measurement  
33  
L1  
L1  
L2  
Point  
OUT+  
OUT-  
50  
2 pF  
2 pF  
L1 = 0.5", L2 = 7"  
Measurement  
Point  
33  
L2  
50  
Figure 15. 0.7V Differential Load Configuration  
Clock Period (Differential)  
Positive Duty Cycle (Differential)  
Negative Duty Cycle (Differential)  
0.0V  
0.0V  
Clock-Clock#  
Rise  
Edge  
Rate  
Fall  
Edge  
Rate  
VIH = +150mV  
VIH = +150mV  
0.0V  
0.0V  
VIL = -150mV  
VIL = -150mV  
Clock-Clock#  
Figure 16. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
.......................DOC #: SP-AP-0021 (Rev AB) Page 24 of 27  
SL28506-2  
VMAX = 1.15V  
VMAX = 1.15V  
CLK#  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
CLK  
VMIN = 0.30V  
VMIN = 0.30V  
CLK#  
Vcross delta = 140mV  
Vcross delta = 140mV  
CLK  
CLK#  
CLK#  
Vcross median +75mV  
Vcross median  
Vcross median  
Vcross median -75mV  
CLK  
CLK  
Figure 17. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
Ordering Information  
Part Number  
Package Type  
Product Flow  
Lead-free  
SL28506BZC-2  
SL28506BZC-2T  
SL28506BZI-2  
SL28506BZI-2T  
56-pin TSSOP  
Commercial, 0to 85C  
Commercial, 0to 85C  
Industrial, -40to 85C  
Industrial, -40to 85C  
56-pin TSSOP–Tape and Reel  
56-pin TSSOP  
56-pin TSSOP–Tape and Reel  
This device is Pb-free, Halogen-free and RoHS compliant. Parts supporting extended temperature is available upon request  
.......................DOC #: SP-AP-0021 (Rev AB) Page 25 of 27  
SL28506-2  
Package Diagrams  
56-Lead Thin Shrunk Small Outline Package  
.......................DOC #: SP-AP-0021 (Rev AB) Page 26 of 27  
SL28506-2  
Document History Page  
Document Title: SL28506-2 Clock Generator for Intel® Eaglelake Chipset  
DOC #: SP-AP-0021 (Rev AB)  
Orig. of  
REV. ECR# Issue Date Change  
Description of Change  
1.0  
1.1  
1.2  
1.3  
7/12/07  
7/18/07  
7/19/07  
12/15/07  
JMA  
JMA  
New data sheet  
Merged TSSOP and SSOP into one datasheet  
Changed part number ordering information  
JMA  
BSHEN  
Changed part number ordering information to SL28506BZC  
Changed Revision ID to 0001  
1.4  
6/18/08  
JMA  
1. Removed “Priliminary Confidential” wording  
2. Changed operating temperature from 0C - 85C to 0C to 70C  
3. Added Pb and ROHs compliant note  
1.5  
AA  
10/23/08  
4/7/10  
JMA  
JMA  
1. Changed operating temperature back to 0-85C  
1458  
1458  
1. Added new feature for XIN to support also CLKIN input  
2. Updated revision and ordering information  
3. Updated JEDEC information  
4. Updated format to be ISO compliant  
5. Merged commercial and industrial temperature  
6. Updated TSSOP package drawing  
7. Removed SSOP package  
AB  
5/17/10  
JMA  
1. Added Bit 0 in Byte 3  
2. Updated package ID in Byte 8 to reflect package  
3. Updated Feature portion to include exclusion of SRC0 and SRC1 from PCIe  
Gen 2 requirements  
4. Updated Byte 11 Bit 1 to be a read only bit  
5. Added note to specified SRC0 and SRC1 are note PCIe Gen2 compliant.  
6. Specified Byte 11 bit 1 is a read only bit.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
.......................DOC #: SP-AP-0021 (Rev AB) Page 27 of 27  

相关型号:

SL28506BZIT

Clock Generator for Intel® Eaglelake Chipset
SILICON

SL28540ALC

Clock Generator, 200MHz, CMOS, 8 X 8 MM, LEAD FREE, QFN-56
SILICON

SL28540ALCT

Clock Generator, 200MHz, CMOS, 8 X 8 MM, LEAD FREE, QFN-56
SILICON

SL28541

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BQCR

Clock Generator, 400MHz, CMOS, HALOGEN FREE AND ROHS COMPLIANT, MO-220, QFN-64
SILICON

SL28541BQCRT

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BQIR

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BQIRT

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BZC

Clock Generator, 400MHz, CMOS, PDSO64, 6 X 17 MM, HALOGEN FREE AND ROHS COMPLIANT, MO-153EF, TSSOP-64
SILICON

SL28541BZC-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP-56
SILICON

SL28541BZC-2T

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP-56
SILICON

SL28541BZCT

Clock Generator, 400MHz, CMOS, PDSO64, 6 X 17 MM, HALOGEN FREE AND ROHS COMPLIANT, MO-153EF, TSSOP-64
SILICON