TS1105-200ITD833 [SILICON]

Power Management Systems;
TS1105-200ITD833
型号: TS1105-200ITD833
厂家: SILICON    SILICON
描述:

Power Management Systems

光电二极管
文件: 总19页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS1105/06 Data Sheet  
TS1105 and TS1106 Unidirectional and Bidirectional Current-  
Sense Amplifiers + Buffered Unipolar Output with Adjustable Bias  
KEY FEATURES  
• Low Supply Current  
• Current Sense Amplifier: 0.68 μA  
The TS1105 and TS1106 combine the TS1100 or TS1101 current-sense amplifiers with  
a unipolar buffered output featuring adjustable bias.  
• I  
: 0.76 μA  
VDD  
The TS1105 and TS1106 high-side current-sense amplifiers consume 0.68 μA (typ) and  
1.2 μA (max) of supply current while the buffered output consumes 0.76 μA (typ) and 1.3  
μA (max) of supply current. With an input offset voltage of 100 μV (max) and a gain error  
of 0.6% (max), the TS1105 and TS1106 are optimized for high-precision current meas-  
urements.  
• High-Side Bidirectional and Unidirectional  
Buffered Current Sense Amplifiers  
• Wide CSA Input Common Mode Range: +2  
V to +27 V  
• Low CSA Input Offset Voltage: 100 μV  
(max)  
Applications  
• Low Gain Error: 0.6% (max)  
• Power Management Systems  
• Portable/Battery-Powered Systems  
• Smart Chargers  
• Two Gain Options Available:  
• Gain = 20 V/V: TS1105-20 and  
TS1106-20  
• Gain = 200 V/V: TS1105-200 and  
TS1106-200  
• Battery Monitoring  
• Overcurrent and Undercurrent Detection  
• Remote Sensing  
• 8-Pin TDFN Packaging (3 mm x 3 mm)  
• Industrial Controls  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0  
TS1105/06 Data Sheet  
Ordering Information  
1. Ordering Information  
Table 1.1. Ordering Part Numbers  
Description  
Ordering Part Number1  
TS1105-20ITD833  
TS1105-200ITD833  
TS1106-20ITD833  
TS1106-200ITD833  
Note:  
Gain V/V  
Unidirectional buffered unipolar current sense amplifier  
Unidirectional buffered unipolar current sense amplifier  
Bidirectional buffered unipolar current sense amplifier  
Bidirectional buffered unipolar current sense amplifier  
20  
200  
20  
200  
1. Adding the suffix “T” to the part number (e.g. TS1106-200ITD833T) denotes tape and reel.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 1  
TS1105/06 Data Sheet  
System Overview  
2. System Overview  
2.1 Functional Block Diagrams  
Figure 2.1. TS1105 Unidirectional Buffered Current Sense Amplifier Block Diagram  
Figure 2.2. TS1106 Bidirectional Buffered Current Sense Amplifier Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 2  
TS1105/06 Data Sheet  
System Overview  
2.2 Current Sense Amplifier + Output Buffer  
The internal configuration of the TS1105 unidirectional and TS1106 bidirectional current-sense amplifiers are buffered variations of the  
TS1100 unidirectional and TS1101 bidirectional current-sense amplifier respectively. The TS1106 current-sense amplifier is configured  
for fully differential input/output operation, therefore the behavior of the TS1106 current-sense amplifier is identical for either VRS+  
>
VRS– or VRS– > VRS+  
.
Referring to the block diagrams, the inputs of the TS1105/06’s differential input/output amplifier are connected to RS+ and RS– across  
an external RSENSE resistor that is used to measure current. At the non-inverting input of the current-sense amplifier, the applied volt-  
age difference in voltage between RS+ and RS– is ILOAD x RSENSE. Since the RS– terminal is the non-inverting input of the internal op-  
amp, the current-sense op-amp action drives PMOS[1/2] to drive current across RGAIN[A/B] to equalize voltage at its inputs.  
Thus, since the PMOS source for both M1 and M2 are connected to the inverting input of the internal op-amp and since the voltage  
drop across RGAINA or RGAINB is the same as the external VSENSE, the PMOS drain-source current for either M1 or M2 is equal to:  
V
SENSE  
I
=
DS(M 1&M 2)  
R
/
GAIN A B  
or  
I
× R  
LOAD  
R
SENSE  
I
=
DS(M 1&M 2)  
/
GAIN A B  
The drain terminal for PMOS[1/2] is connected to the transimpedance amplifier’s gain resistor, ROUT, via the inverting terminal. The  
non-inverting terminal of the transimpedance amplifier is internally connected to VBIAS, therefore the output voltage of the TS1105/06  
at the OUT terminal is  
R
OUT  
V
= V  
I  
× R  
×
OUT  
BIAS  
LOAD  
SENSE  
R
/
GAIN A B  
The current-sense amplifier’s gain accuracy is therefore the ratio match of ROUT to RGAIN[A/B]. For each of the gain options available,  
the table below lists the values for RGAIN[A/B]  
Table 2.1. Internal Gain Setting Resistors (Typical Values)  
GAIN (V/V)  
RGAIN[A/B] (Ω)  
ROUT (Ω)  
40 k  
Part Number  
TS1105-20  
TS1105-200  
TS1106-20  
TS1106-200  
20  
200  
20  
2 k  
200  
2 k  
40 k  
40 k  
200  
200  
40 k  
The TS1105/06 allows access to the inverting terminal of the transimpedance amplifier by the FILT pin, whereby a series RC filter may  
be connected to reduce noise at the OUT terminal. The recommended RC filter is 4 kΩ and 0.47 μF connected in series from FILT to  
GND to suppress the noise. Any capacitance at the OUT terminal should be minimized for stable operation of the buffer.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 3  
TS1105/06 Data Sheet  
System Overview  
2.3 Sign Output—TS1106 Only  
The TS1106’s SIGN output indicates the load current’s direction. The SIGN output is a logic HIGH when M1 is conducting current (VRS  
+ > VRS–). Alternatively, the SIGN output is a logic LOW when M2 is conducting current (VRS– > VRS+). The SIGN comparator’s  
transfer characteristic is illustrated in the figure below. Unlike other current-sense amplifiers that implement an OUT/SIGN arrangement,  
the TS1106 exhibits no “dead zone” at ILOAD switchover  
Figure 2.3. TS1106 Sign Output Transfer Characteristic  
2.4 Selecting a Sense Resistor  
Selecting the optimal value for the external RSENSE is based on the following criteria, and commentary follows for each:  
1. RSENSE Voltage Loss  
2. VOUT Swing vs. Desired VSENSE and Applied Supply Voltage at VDD  
3. Total ILOAD Accuracy  
4. Circuit Efficiency and Power Dissipation  
5. RSENSE Kelvin Connections  
2.4.1 RSENSE Voltage Loss  
For lowest IR power dissipation in RSENSE, the smallest usable resistor value for RSENSE should be selected.  
2.4.2 VOUT Swing vs. Desired VSENSE and Applied Supply Voltage at VDD  
Although the Current Sense Amplifier draws its power from the voltage at its RS+ and RS– terminals, the signal voltage at the OUT  
terminal is provided by a buffer, and is therefore bounded by the buffer’s output range. As shown in the Electrical Characteristics table,  
the CSA Buffer has a maximum and minimum output voltage of:  
V
V
= VDD  
= 0.2V  
0.2V  
(min )  
OUT (max )  
OUT (min )  
Therefore, the full-scale sense voltage should be chosen so that the OUT voltage is neither greater nor less than the maximum and  
minimum output voltage defined above. To satisfy this requirement, the full-scale sense voltage, VSENSE(max), should be chosen so  
that:  
VBIAS V  
OUT (min )  
V
<
SENSE(max )  
GAIN  
For best performance, RSENSE should be chosen so that the full-scale VSENSE is less than ±75 mV.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 4  
TS1105/06 Data Sheet  
System Overview  
2.4.3 Total Load Current Accuracy  
In the TS1105/06’s linear region where VOUT(min) < VOUT < VOUT(max), there are two specifications related to the circuit’s accuracy: a)  
the TS1105/06 CSA’s input offset voltage (VOS(max) = 150 μV), b) the TS1105/06 CSA’s gain error (GE(max) = 1%). An expression for  
the TS1105/06’s total error is given by:  
V
= VBIAS + GAIN × 1 ± GE × V  
± GAIN × V  
SENSE OS  
(
)
(
)
OUT  
A large value for RSENSE permits the use of smaller load currents to be measured more accurately because the effects of offset voltag-  
es are less significant when compared to larger VSENSE voltages. Due care though should be exercised as previously mentioned with  
large values of RSENSE  
.
2.4.4 Circuit Efficiency and Power Dissipation  
IR loses in RSENSE can be large especially at high load currents. It is important to select the smallest, usable RSENSE value to minimize  
power dissipation and to keep the physical size of RSENSE small. If the external RSENSE is allowed to dissipate significant power, then  
its inherent temperature coefficient may alter its design center value, thereby reducing load current measurement accuracy. Precisely  
because the TS1105/06 CSA’s input stage was designed to exhibit a very low input offset voltage, small RSENSE values can be used to  
reduce power dissipation and minimize local hot spots on the pcb.  
2.4.5 RSENSE Kelvin Connections  
For optimal VSENSE accuracy in the presence of large load currents, parasitic pcb track resistance should be minimized. Kelvin-sense  
pcb connections between RSENSE and the TS1105/06’s RS+ and RS– terminals are strongly recommended. The drawing below illus-  
trates the connections between the current-sense amplifier and the current-sense resistor. The pcb layout should be balanced and sym-  
metrical to minimize wiring-induced errors. In addition, the pcb layout for RSENSE should include good thermal management techniques  
for optimal RSENSE power dissipation.  
Figure 2.4. Making PCB Connections to RSENSE  
2.4.6 RSENSE Composition  
Current-shunt resistors are available in metal film, metal strip, and wire-wound constructions. Wire-wound current-shunt resistors are  
constructed with wire spirally wound onto a core. As a result, these types of current shunt resistors exhibit the largest self-inductance. In  
applications where the load current contains high-frequency transients, metal film or metal strip current sense resistors are recommen-  
ded.  
2.4.7 Internal Noise Filter  
In power management and motor control applications, current-sense amplifiers are required to measure load currents accurately in the  
presence of both externally-generated differential and common-mode noise. An example of differential-mode noise that can appear at  
the inputs of a current-sense amplifier is high-frequency ripple. High-frequency ripple (whether injected into the circuit inductively or ca-  
pacitively) can produce a differential-mode voltage drop across the external current-shunt resistor, RSENSE. An example of externally-  
generated, common-mode noise is the high-frequency output ripple of a switching regulator that can result in common-mode noise in-  
jection into both inputs of a current-sense amplifier.  
Even though the load current signal bandwidth is dc, the input stage of any current-sense amplifier can rectify unwanted, out-of-band  
noise that can result in an apparent error voltage at its output. Against common-mode injection noise, the current-sense amplifier’s in-  
ternal common-mode rejection ratio is 130 dB (typ).  
To counter the effects of externally-injected noise, the TS1105-06 incorporates a 50 kHz (typ), 2nd-order differential low-pass filter as  
shown in the TS1105-06’s block diagram, thereby eliminating the need for an external low-pass filter which can generate errors in the  
offset voltage and the gain error.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 5  
TS1105/06 Data Sheet  
System Overview  
2.4.8 PC Board Layout and Power Supply Bypassing  
For optimal circuit performance, the TS1105/06 should be in very close proximity to the external current-sense resistor and the pcb  
tracks from RSENSE to the RS+ and the RS– input terminals of the TS1105/06 should be short and symmetric. Also recommended are  
surface mount resistors and capacitors, as well as a ground plane.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 6  
TS1105/06 Data Sheet  
Electrical Characteristics  
3. Electrical Characteristics  
Table 3.1. Recommended Operating Conditions1  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
System Specifications  
Operating Voltage Range  
Common-Mode Input Range  
Note:  
VDD  
VCM  
1.7  
2
5.25  
27  
V
V
VRS+, Guaranteed by CMRR  
1. All devices 100% production tested at TA = +25 °C. Limits over Temperature are guaranteed by design and characterization.  
Table 3.2. DC Characteristics1  
Parameter  
Symbol  
IRS+ + IRS–  
IVDD  
Conditions  
Min  
Typ  
Max  
Units  
System Specifications  
No Load Input Supply  
Current  
See Note  
0.68  
µA  
µA  
µA  
2
V
RS+ = 25 V  
1.2  
1.3  
See Note 2  
0.76  
Current Sense Amplifier  
Common Mode Re-  
jection Ratio  
CMRR  
VOS  
2 V < VRS+ < 27 V  
120  
130  
dB  
Input Offset Voltage3  
TA = +25 °C  
–40 °C < TA < +85 °C  
TA = +25 °C  
±30  
±100  
±200  
µV  
µV  
µV  
VOS Hysteresis4  
Gain  
VHYS  
G
10  
TS1105-20, TS1106-20  
TS1105-200, TS1106-200  
TA = +25 °C  
28  
20  
200  
±0.1  
V/V  
V/V  
%
Gain Error5  
GE  
GM  
±0.6  
±1  
–40 °C < TA < +85 °C  
TA = +25 °C  
%
Gain Match 5  
±0.2  
±0.6  
±1  
%
–40C < TA < +85 °C  
From FILT to OUT  
%
Transfer Resistance  
CSA Buffer  
ROUT  
40  
52  
kW  
Input Bias Current  
IBuffer_BIAS  
VBuffer_OS  
–40C < TA < +85 °C  
0.3  
nA  
Input referred DC Off-  
set  
±2.5  
mV  
Offset Drift  
TCVBuffer_OS  
VCM_Buffer  
–40 °C < TA < +85 °C  
–40 °C < TA < +85 °C  
0.6  
µV/°C  
V
Input Common Mode  
Range  
0.2  
VDD – 0.2  
Output Range  
VOUT(MIN,  
IOUT = ±150 µA  
0.2  
VDD – 0.2  
V
MAX)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 7  
TS1105/06 Data Sheet  
Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Sign Comparator Parameters (TS1106 Only)  
Output Low Voltage  
Output High Voltage  
Note:  
VSIGN_OL  
VSIGN_OH  
ISINK = 35 µA  
0.2  
V
V
ISOURCE = 35 µA  
VDD – 0.2  
1. RS+ = RS– = 3.6 V, VSENSE = (VRS+ – VRS–) = 0 V, VDD = 3 V, VBIAS = 1.5 V. TA = TJ = –40 °C to +85 °C unless otherwise  
noted. Typical values are at TA = +25 °C.  
2. Extrapolated to VOUT = VFILT. IRS+ + IRS– is the total current into the RS+ and the RS– pins.  
3. Input offset voltage VOS is extrapolated from a VOUT(+) measurement with VSENSE set to +1 mV and a VOUT(–) measurement with  
VSENSE set to –1 mV; Average VOS = (VOUT(–) – VOUT(+))/(2 x GAIN).  
4. Amplitude of VSENSE lower or higher than VOS required to cause the comparator to switch output states.  
5. Gain error is calculated by applying two values for VSENSE and then calculating the error of the actual slope vs. the ideal transfer  
characteristic. TS1105 only applies positive VSENSE values. For GAIN = 20 V/V, the applied VSENSE for GE± is ±25 mV and ±60  
mV. For GAIN = 200 V/V, the applied VSENSE for GE± is ±2.5 mV and ±6 mV.  
Table 3.3. AC Characteristics1  
Parameter  
CSA Buffer  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Output Settling  
time  
tOUT_s  
1% Final value, Gain = 20 V/V  
1.35  
msec  
V
OUT = 1.3 V  
Sign Comparator Parameters (TS1106 Only)  
Propagation  
Delay  
tSIGN_PD  
V
SENSE = ±1 mV  
3
msec  
msec  
VSENSE = ±10 mV  
0.4  
Note:  
1. RS+ = RS– = 3.6 V, VSENSE = (VRS+ – VRS–) = 0 V, VDD = 3 V, VBIAS = 1.5 V. TA = TJ = –40 °C to +85 °C unless otherwise  
noted. Typical values are at TA = +25 °C.  
Table 3.4. Thermal Conditions  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Operating Tempera-  
ture Range  
TOP  
–40  
+85  
°C  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 8  
TS1105/06 Data Sheet  
Electrical Characteristics  
Table 3.5. Absolute Maximum Limits  
Parameter  
Symbol  
VRS+  
Conditions  
Min  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
Typ  
Max  
Units  
RS+ Voltage  
27  
V
V
V
V
V
V
V
V
RS– Voltage  
VRS–  
27  
Supply Voltage  
VDD  
6
OUT Voltage  
VOUT  
6
SIGN Voltage (TS1106 Only)  
FILT Voltage  
VSIGN  
VFILT  
VVBIAS  
RS+ – VRS–  
6
6
VDD + 0.3  
27  
VBIAS Voltage  
RS+ to RS– Voltage  
Short Circuit Duration: OUT to GND  
Continuous Input Current (Any Pin)  
Junction Temperature  
Storage Temperature Range  
Lead Temperature (Soldering, 10 s)  
Soldering Temperature (Reflow)  
ESD Tolerance  
V
Continuous  
20  
–20  
mA  
°C  
°C  
°C  
°C  
150  
–65  
150  
300  
260  
Human Body Model  
Machine Model  
2000  
200  
V
V
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 9  
TS1105/06 Data Sheet  
Electrical Characteristics  
For the following graphs, VRS+ = VRS– = 3.6 V; VDD = 3 V; VBIAS = 1.5 V, and TA = +25 C unless otherwise noted.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 10  
TS1105/06 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 11  
TS1105/06 Data Sheet  
Electrical Characteristics  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 12  
TS1105/06 Data Sheet  
Typical Application Circuit  
4. Typical Application Circuit  
Figure 4.1. TS1105 Typical Application Circuit  
Figure 4.2. TS1106 Typical Application Circuit  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 13  
TS1105/06 Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
TS1106  
TS1105  
Table 5.1. Pin Descriptions  
Pin  
Label  
SIGN  
NC  
Function  
TS1106  
TS1105  
1
Sign output. SIGN is HIGH for VRS+ > VRS– and LOW for VRS–>VRS+  
No connection. Leave open.  
2
3
4
5
6
VDD  
VBIAS  
GND  
OUT  
FILT  
External power supply pin. Connect this to the system’s VDD supply.  
Bias voltage for CSA output. When VREF is activated, leave open.  
Ground. Connect to analog ground.  
CSA buffered output. Connect to CIN–.  
Inverting terminal of CSA Buffer. Connect a series RC Filter of 4 kΩ and 0.47 µF; otherwise,  
leave open.  
7
RS+  
RS–  
External Sense Resistor Power-Side Connection  
External Sense Resistor Load-Side Connection  
8
Exposed Pad  
EPAD  
Exposed backside paddle. For best electrical and thermal performance, solder to analog  
ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 14  
TS1105/06 Data Sheet  
Packaging  
6. Packaging  
Figure 6.1. TS1105-06 3x3 mm 8-TDFN Package Diagram  
Table 6.1. Package Dimensions  
Dimension  
Min  
0.70  
0.00  
Nom  
0.75  
Max  
0.80  
0.05  
A
A1  
A2  
b
0.02  
0.20 REF  
0.30  
0.25  
1.49  
0.35  
1.51  
D
3.00 BSC  
1.50  
D2  
e
0.65 BSC  
3.00 BSC  
1.75  
E
E2  
L
1.65  
0.30  
0.20  
1.85  
0.50  
0.30  
0.40  
K
0.25  
J
0.65 REF  
0.10  
aaa  
bbb  
ccc  
0.05  
0.05  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
4. This drawing conforms to the JEDEC Solid State Outline MO-229.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 15  
TS1105/06 Data Sheet  
Top Marking  
7. Top Marking  
Figure 7.1. Top Marking  
Table 7.1. Top Marking Explanation  
Mark Method  
Laser  
Circle = 0.50 mm Diameter (lower left corner)  
0.50 mm (20 mils)  
Pin 1 Mark:  
Font Size:  
Line 1 Mark Format:  
Line 2 Mark Format:  
Line 3 Mark Format:  
Product ID  
Note: A = 20 gain, B = 200 gain  
Manufacturing code  
TTTT – Mfg Code  
YY = Year; WW = Work Week  
Year and week of assembly  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 16  
Table of Contents  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1 Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.2 Current Sense Amplifier + Output Buffer . . . . . . . . . . . . . . . . . . . . . 3  
2.3 Sign Output—TS1106 Only . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4 Selecting a Sense Resistor . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.4.1 R  
2.4.2 V  
Voltage Loss. . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SENSE  
Swing vs. Desired V  
and Applied Supply Voltage at VDD . . . . . . . . . . 4  
SENSE  
OUT  
2.4.3 Total Load Current Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.4.4 Circuit Efficiency and Power Dissipation . . . . . . . . . . . . . . . . . . . . 5  
2.4.5 R  
2.4.6 R  
Kelvin Connections . . . . . . . . . . . . . . . . . . . . . . . . 5  
Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SENSE  
SENSE  
2.4.7 Internal Noise Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.4.8 PC Board Layout and Power Supply Bypassing . . . . . . . . . . . . . . . . . . 6  
3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
7. Top Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table of Contents 17  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

TS1105-20ITD833

Analog Circuit,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1106-200ITD833

Power Management Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1106-20ITD833

Power Management Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1107

Power Management Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1107-200ITQ1633

Power Management Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1107-20ITQ1633

Power Management Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1108

Portable/Battery-Powered Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1108-200IQT1633

Portable/Battery-Powered Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1108-20IQT163

Portable/Battery-Powered Systems

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1109

Overcurrent and Undercurrent Detection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1109-200IDT833

Overcurrent and Undercurrent Detection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON

TS1109-20IDT833

Overcurrent and Undercurrent Detection

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SILICON