ESDALC6V1P6 [STMICROELECTRONICS]

QUAD LOW CAPACITANCE TRANSIL⑩ ARRAY FOR ESD PROTECTION; 四路低电容的Transil ™阵列的ESD保护
ESDALC6V1P6
型号: ESDALC6V1P6
厂家: ST    ST
描述:

QUAD LOW CAPACITANCE TRANSIL⑩ ARRAY FOR ESD PROTECTION
四路低电容的Transil ™阵列的ESD保护

瞬态抑制器 二极管 光电二极管 局域网
文件: 总9页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ESDALC6V1P6  
®
QUAD LOW CAPACITANCE TRANSIL™ ARRAY  
FOR ESD PROTECTION  
ASD™  
MAIN APPLICATIONS  
Where transient overvoltage protection in ESD  
sensitive equipment is required, such as :  
Computers  
Printers  
Communication systems and cellular phones  
Video equipment  
This device is particularly adapted to the  
protection of symmetrical signals.  
SOT-666IP  
(Internal Pad)  
FEATURES  
4 Unidirectional Transil™ functions  
Breakdown voltage V = 6.1 V min.  
BR  
FUNCTIONAL DIAGRAM  
Low diode capacitance (12pF @ 0V)  
Low leakage current < 500 nA  
2
Very small PCB area < 2.6 mm  
DESCRIPTION  
The ESDALC6V1P6 is  
designed to protect up to 4 lines against ESD  
transients.  
I/O1  
GND  
I/O2  
I/O4  
GND  
I/O3  
a
monolithic array  
The device is ideal for situations where board  
space saving is required.  
BENEFITS  
High ESD protection level  
High integration  
Suitable for high density boards  
COMPLIES WITH THE FOLLOWING STANDARDS:  
IEC61000-4-2 level 4:  
15kV (air discharge)  
8kV (contact discharge)  
MIL STD 883E-Method 3015-7: class3  
25kV HBM (Human Body Model)  
Order Codes  
Part Number  
Marking  
ESDALC6V1P6  
D
July 2004  
REV. 3  
1/9  
ESDALC6V1P6  
ABSOLUTE RATING (T  
= 25°C)  
amb  
Symbol  
Parameter  
Value  
Unit  
V
ESD discharge  
15  
8
IEC61000-4-2 air discharge  
IEC61000-4-2 contact discharge  
PP  
kV  
P
Peak pulse power (8/20µs) (see note 1) T initial = T  
30  
125  
W
°C  
°C  
°C  
°C  
PP  
j
amb  
T
Junction temperature  
j
T
Storage temperature range  
-55 to +150  
260  
stg  
T
Maximum lead temperature for soldering during 10 s at 5mm for case  
Operating temperature range  
L
T
-40 to +125  
op  
Note 1: for a surge greater than the maximum values, the diode will fail in short-circuit.  
THERMAL RESISTANCES  
Symbol  
Parameter  
Value  
Unit  
R
220  
°C/W  
Junction to ambient on printed circuit on recommended pad layout  
th(j-a)  
ELECTRICAL CHARACTERISTICS (T  
= 25°C)  
amb  
I
Symbol  
Parameter  
Stand-off voltage  
IF  
V
RM  
V
Breakdown voltage  
Clamping voltage  
Leakage current  
Peak pulse current  
BR  
VF  
V
CL  
VCLVBR VRM  
V
IRM  
I
RM  
I
PP  
αT  
Voltage temperature coefficient  
Forward voltage drop  
Capacitance  
Slope: 1/Rd  
IPP  
V
F
C
Rd  
Dynamic resistance  
V
@ I  
I
@
V
R
d
αT  
C
BR  
R
RM  
RM  
min.  
max.  
max.  
typ.  
max.  
typ.  
@ 0V  
pF  
Part Number  
-4  
V
V
mA  
µA  
V
3
10 /°C  
ESDALC6V1P6  
6.1  
7.2  
1
0.5  
1.5  
4.5  
12  
2/9  
®
ESDALC6V1P6  
Fig. 1: Peak power dissipation versus initial  
Fig. 2: Peak pulse power versus exponential pulse  
junction temperature.  
duration (Tj initial = 25°C).  
P
(W)  
PP  
P [T initial] / P [T initial=25°C]  
PP j PP j  
1000  
100  
10  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Tj initial = 25°C  
T initial (°C)  
j
t (µs)  
p
0
25  
50  
75  
100  
125  
150  
1
10  
100  
Fig. 3: Clamping voltage versus peak pulse  
current (Tj initial = 25°C). Rectangular waveform  
tp = 2.5µs.  
Fig. 4: Peak forward voltage drop versus peak  
forward current (typical values).  
I
(A)  
I
(A)  
FM  
PP  
1.E+00  
1.E-01  
1.E-02  
1.E-03  
100.0  
10.0  
1.0  
tp = 2.5µs  
Tj = 125°C  
Tj = 25°C  
V (V)  
CL  
V
(V)  
FM  
0.1  
0
10  
20  
30  
40  
50  
60  
70  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
Fig. 5: Capacitance versus reverse applied  
Fig. 6: Relative variation of leakage current versus  
voltage (typical values).  
junction temperature (typical values).  
I [T ] / I [T =25°C]  
C(pF)  
R
j
R
j
1000  
100  
10  
13  
F=1MHz  
VOSC=30mVRMS  
Tj=25°C  
12  
11  
VR = 3V  
10  
9
8
7
6
5
4
3
2
1
T (°C)  
j
V (V)  
R
0
1
0
1
2
3
4
5
6
25  
50  
75  
100  
125  
3/9  
®
ESDALC6V1P6  
TECHNICAL INFORMATION  
Fig. A: Application example.  
1. ESD protection by ESDALC6V1P6  
I/O2  
I/O1  
With the focus of lowering the operation levels, the  
problem of malfunction caused by the environment  
is critical. Electrostatic discharge (ESD) is a major  
cause of failure in electronic systems.  
IC  
to be  
protected  
I/O4  
I/O3  
As a transient voltage suppressor, ESDALC6V1P6  
is an ideal choice for ESD protection by  
suppressing ESD events. It is capable of clamping  
the incoming transient to a low enough level such  
that any damage is prevented on the device  
protected by ESDALC6V1P6.  
ESDALC6V1P6 serves as a parallel protection  
elements, connected between the signal line and  
ground. As the transient rises above the operating  
voltage of the device, the ESDALC6V1P6 becomes a low impedance path diverting the transient current  
to ground.  
The clamping voltage is given by the following formula:  
V
= V + R .I  
BR d PP  
CL  
As shown in figure A2, the ESD strikes are clamped by the transient voltage suppressor.  
Fig. A2: ESD clamping behavior.  
R
G
I
PP  
R
d
R
LOAD  
V
G
V(i/o)  
V
BR  
Device  
to be  
ESD surge  
ESDALC6V1P6  
protected  
I
1
slope =  
R
d
I
PP  
V
= V +R x I  
PP  
CL  
BR  
d
V
V
BR  
V
CL  
To have a good approximation of the remaining voltages at both Vi/o side, we provide the typical  
dynamical resistance value R . By taking into account the following hypothesis:  
d
RG > Rd""and""Rload > Rd  
we have:  
VG  
-------  
V(i o)= VBR + Rd ×  
RG  
The results of the calculation done V = 8kV, R = 330(IEC61000-4-2 standard), V = 6.4V (typ.) and  
G
G
BR  
R = 1.5(typ.) give:  
d
V(i o) = 42.8 Volts  
This confirms the very low remaining voltage across the device to be protected. It is also important to note  
that in this approximation the parasitic inductance effect was not taken into account. This could be a few  
tenths of volts during a few ns at the Vi/o side.  
4/9  
®
ESDALC6V1P6  
Fig. A3: ESD test board.  
Fig. A4: ESD test condition.  
15kV ESD  
Air discharge  
I/O1, I/O2, I/O3 or I/O4  
V(i/o)  
15kV ESD  
V(i/o)  
Air discharge  
GND  
ESDALC6V1P6  
The measurements done here after show very clearly (figure A5) the high efficiency of the ESD protection:  
the clamping voltage V(i/o) becomes very close to V (positive way, figure A5a) and -V (negative way,  
BR  
F
figure A5b).  
Fig. A5: Remaining voltage during ESD surge.  
a: Response in the positive way  
b: Response in the negative way  
One can note that the ESDALC6V1P6 is not only acting for positive ESD surges but, also, for negative  
ones. For this kind of disturbances, it clamps close to ground voltage as shown in figure A5b.  
5/9  
®
ESDALC6V1P6  
2. Crosstalk behavior  
Fig. A6: Crosstalk phenomenon.  
RG1  
Line 1  
Line 2  
VG1  
RL1  
α1VG1 + β12VG2  
RG2  
V
G2  
RL2  
α2VG2 + β21VG1  
DRIVERS  
RECEIVERS  
The crosstalk phenomena are due to the coupling between 2 lines. Coupling factors ( β12 or β21 ) increase  
when the gap across lines decreases, particularly in silicon dice. In the example above, the expected  
signal on load R is α V , in fact the real voltage at this point has got an extra value β V . This part  
L2  
2
G2  
21 G2  
of the V signal represents the effect of the crosstalk phenomenon of the line 1 on the line 2. This  
G1  
phenomenon has to be taken into account when the drivers impose fast digital data or high frequency  
analog signals. The perturbed line will be more affected if it works with low voltage signal or high load  
impedance (few k).  
Fig. A7: Analog crosstalk test configuration.  
Fig. A8: Typical analog crosstalk response.  
0.00  
dB  
-10.00  
I/O1  
50  
unloaded  
-20.00  
-30.00  
-40.00  
-50.00  
-60.00  
-70.00  
-80.00  
-90.00  
-100.00  
VG  
Port 1  
GND  
50Ω  
Port 2  
I/O4  
100.0k  
1.0M  
10.0M  
100.0M  
1.0G  
f/Hz  
Figure A7 gives the measurement circuit for the analog crosstalk application. In figure 8, the curve shows  
the effect of the cell I/O1 on the cell I/O4. In usual frequency range of analog signals (up to 100 MHz) the  
effect on disturbed line is less than -55dB.  
6/9  
®
ESDALC6V1P6  
Fig. A9: Digital crosstalk test configuration.  
Fig. A10: Typical digital crosstalk response.  
I/O1  
unloaded  
VG1  
VG1  
0 - 5V  
pulse generator  
F= 100kHz  
GND  
β21VG1  
tR = 20ns  
β21VG1  
unloaded  
I/O4  
Figure A9 shows the measurement circuit used to quantify the crosstalk effect in a classical digital  
application.  
Figure A10 shows that in such a condition, ie signal from 0 to 5V and rise time of a few ns, the impact on  
the disturbed line is less than 5 mV peak to peak. No data disturbance was noted on the concerned line.  
The measurements performed with falling edges give an impact within the same range.  
3. PCB layout recommendations  
As ESD is a fast event, the dI/dt caused by this surge is about 30A/ns (risetime=1ns, Ipeak=30A), that  
means each nH causes an overvoltage of 30V.  
Thus, the circuit board layout is a critical design step in the suppression of ESD induced transients by  
reducing parasitic inductances. To ensure that, the following guidelines are recommended :  
The ESDALC6V1P6 should be placed as close as possible to the input terminals or connectors.  
The path length between the ESD suppressor and the protected line should be minimized.  
All conductive loops, including power and ground loops should be minimized.  
The ESD transient return path to ground should be kept as short as possible.  
The connections from the ground pins to the ground plane should be the shortest possible.  
4. Comparison with varistors  
Varistors  
TRANSIL™  
Leakage current  
--  
--  
--  
+++  
++  
Protection efficiency  
Ageing  
++  
Low leakage current for Transil™ device  
Improve the autonomy of portable equipments as mobile  
Better efficiency in terms of ESD protection by using Transil™ device  
Varistors are bidirectional devices and so are not suitable to protect sensitive ICs, because they will be  
submitted to high voltages in the negative way.  
Ratio V /V lower for Transil™ device  
CL BR  
Less dispersion in terms of V  
BR  
No ageing phenomena regarding ESD events with Transil™ device  
Higher efficiency in terms of ESD protection  
7/9  
®
ESDALC6V1P6  
ORDER CODE  
ESDA LC 6V1 P6  
ESD ARRAY  
PACKAGE: SOT-666IP  
VBR min  
LOW CAPACITANCE  
ORDERING INFORMATION  
Delivery  
mode  
Part Number  
Marking  
Package  
Weight  
Base qty  
ESDALC6V1P6  
D
SOT-666IP  
2.9 mg  
3000  
Tape & reel  
REVISION HISTORY  
Table 1: Revision history  
Date  
Revision  
Description of Changes  
January-2004  
25-May-2004  
05-Jul-2004  
1
2
3
First issue  
SOT-666 Internal Pad version package change  
Stylesheet update. No content change.  
8/9  
®
ESDALC6V1P6  
PACKAGE MECHANICAL DATA  
SOT-666IP (internal Pad)  
b
e
DIMENSIONS  
Millimeters Inches  
Min.  
L3  
L1  
REF.  
Min.  
0.53  
0.13  
1.50  
1.05  
1.50  
1.10  
0.23  
0.11  
0.10  
0.05  
Max.  
Max.  
0.024  
0.007  
0.067  
0.049  
0.067  
0.051  
0.017  
0.010  
0.012  
-
A
A3  
D
0.60  
0.18  
1.70  
1.25  
1.70  
1.30  
0.43  
0.26  
0.30  
-
0.021  
0.005  
0.059  
0.041  
0.059  
0.043  
0.009  
0.004  
0.004  
0.002  
L4  
b1  
e1  
D2  
E
Θ(4x)  
E1  
E2  
L1  
L2  
L3  
L4  
b
A
A3  
D
0.83 Ref  
0.032  
0.14  
-
0.25  
0.34  
0.006  
0.010  
0.013  
b1  
e
E
E1  
0.50 Bsc  
0.020  
e1  
Θ
0.20  
8°  
-
0.008  
12°  
L2  
12°  
8°  
FOOT PRINT DIMENSIONS (in millimeters)  
0.36  
0.30  
0.62  
2.30  
0.84  
0.20  
0.20  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
9/9  
®

相关型号:

ESDALC6V1PX

ASD (Application Specific Devices) Low capacitance TRANSIL⑩ arrays for ESD protection
STMICROELECTR

ESDALC6V1PX_08

Low capacitance Transil⑩ arrays for ESD protection
STMICROELECTR

ESDALC6V1W

QUAD TRANSIL ARRAY FOR ESD PROTECTION
ETC

ESDALC6V1W5

QUAD TRANSIL⑩ ARRAY FOR ESD PROTECTION
STMICROELECTR

ESDALC6V1W5_06

Quad TRANSIL array for data protection
STMICROELECTR

ESDALD03BC

ESD Protection Diodes Array
WEEN

ESDALD05BC

ESD Protection Diodes Array
WEEN

ESDALD08BC

ESD Protection Diodes Array
WEEN

ESDALD12BC

ESD Protection Diodes Array
WEEN

ESDALD15BC

ESD Protection Diodes Array
WEEN

ESDALD24BC

ESD Protection Diodes Array
WEEN

ESDALD36BC

ESD Protection Diodes Array
WEEN