M41T81M6 [STMICROELECTRONICS]

SERIAL ACCESS RTC WITH ALARMS; 串行访问RTC使用报警
M41T81M6
型号: M41T81M6
厂家: ST    ST
描述:

SERIAL ACCESS RTC WITH ALARMS
串行访问RTC使用报警

计时器或实时时钟 微控制器和处理器 外围集成电路 光电二极管 PC
文件: 总28页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M41T81  
SERIAL ACCESS RTC WITH ALARMS  
FEATURES SUMMARY  
2.0 TO 5.5V CLOCK OPERATING VOLTAGE  
Figure 1. 8-pin SOIC Package  
COUNTERS FOR TENTHS/HUNDREDTHS  
OF SECONDS, SECONDS, MINUTES,  
HOURS, DAY, DATE, MONTH, YEAR, and  
CENTURY  
8
1
SO8 (M)  
AUTOMATIC SWITCH-OVER and DESELECT  
CIRCUITRY  
2
SERIAL INTERFACE SUPPORTS I C BUS  
Figure 2. 28-pin (300mil) SOIC Package*  
(400KHz PROTOCOL)  
EMBEDDED Crystal  
PROGRAMMABLE ALARM and INTERRUPT  
FUNCTION (valid even during Battery Back-up  
Mode)  
WATCHDOG TIMER  
LOW OPERATING CURRENT OF 400µA  
BATTERY BACK-UP NOT RECOMMENDED  
FOR 3.0V APPLICATIONS (CAPACITOR  
BACK-UP ONLY)  
SOX28 (MX)  
Figure 3. 18-pin (300mil) SOIC Package*  
BATTERY OR SUPER-CAP BACK-UP  
OPERATING TEMPERATURE OF –40 TO  
EMBEDDED Crystal  
85°C  
ULTRA-LOW BATTERY SUPPLY CURRENT  
OF 1µA  
18  
PACKAGE OPTIONS INCLUDE A 28-LEAD or  
1
18-LEAD EMBEDDED CRYSTAL SOIC  
SOX18 (MY)  
September 2003  
1/28  
Rev. 2.0  
M41T81  
TABLE OF CONTENTS  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 4. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 5. 8-pin SOIC (M) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 7. 28-pin, 300mil SOIC (MX) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 6. 18-pin, 300mil SOIC (MY) Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 8. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Table 2. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 7  
Table 3. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 9. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 6. Crystal Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2-Wire Bus Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 10. Serial Bus Data Transfer Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 11. Acknowledgement Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 12. Bus Timing Requirements Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 7. AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 13. Slave Address Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 14. READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 15. Alternative READ Mode Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 16. WRITE Mode Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Data Retention Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 17. Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 8. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 9. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
CLOCK OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
TIMEKEEPER® Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Table 10. TIMEKEEPER® Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Calibrating the Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Setting Alarm Clock Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 18. Alarm Interrupt Reset Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
2/28  
M41T81  
Figure 19. Back-up Mode Alarm Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. Alarm Repeat Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Square Wave Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 12. Square Wave Output Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Century Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Output Driver Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Preferred Initial Power-on Default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Table 13. Preferred Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 20. Crystal Accuracy Across Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 21. Clock Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3/28  
M41T81  
SUMMARY DESCRIPTION  
The M41T81 Serial Access TIMEKEEPER  
®
small lithium button supply when a power failure  
occurs. Functions available to the user include a  
non-volatile, time-of-day clock/calendar, Alarm in-  
terrupts, Watchdog Timer and programmable  
Square Wave output. The eight clock address lo-  
cations contain the century, year, month, date,  
day, hour, minute, second and tenths/hundredths  
of a second in 24 hour BCD format. Corrections for  
28, 29 (leap year - valid until year 2100), 30 and 31  
day months are made automatically.  
The M41T81 is supplied in either an 8-pin SOIC or  
an 18-pin (MY) or 28-pin (MX), 300mil SOIC pack-  
age which includes an embedded 32kHz crystal.  
The 8-pin and 28-pin, embedded crystal SOIC re-  
quires only a user-supplied battery to provide non-  
volatile operation.  
SRAM is a low power Serial RTC with a built-in  
32.768 KHz oscillator (external crystal controlled).  
Eight bytes of the SRAM (see Table 10, page 16)  
are used for the clock/calendar function and are  
configured in binary coded decimal (BCD) format.  
An additional 12 bytes of SRAM provide status/  
control of Alarm, Watchdog and Square Wave  
functions. Addresses and data are transferred se-  
rially via a two line, bi-directional I C interface. The  
built-in address register is incremented automati-  
cally after each WRITE or READ data byte.  
The M41T81 has a built-in power sense circuit  
which detects power failures and automatically  
switches to the battery supply when a power fail-  
ure occurs. The energy needed to sustain the  
SRAM and clock operations can be supplied by a  
2
Figure 4. Logic Diagram  
Table 1. Signal Names  
(1)  
Oscillator Input  
XI  
V
V
CC BAT  
(1)  
Oscillator Output  
XO  
IRQ/OUT/  
FT/SQW  
Interrupt / Output Driver / Frequency  
Test / Square Wave (Open Drain)  
(1)  
(1)  
XI  
XO  
SDA  
SCL  
Serial Data Input/Output  
Serial Clock Input  
M41T81  
IRQ/FT/OUT/SQW  
SCL  
SDA  
Battery Supply Voltage  
Supply Voltage  
Ground  
V
BAT  
V
CC  
V
SS  
V
Note: 1. For SO8 package only.  
SS  
AI04613  
Note: 1. For SO8 package only.  
4/28  
M41T81  
Figure 5. 8-pin SOIC (M) Connections  
Figure 7. 28-pin, 300mil SOIC (MX)  
Connections  
XI  
XO  
BAT  
1
2
3
4
8
7
6
5
V
CC  
IRQ/FT/OUT/SQW  
SCL  
SDA  
M41T81  
V
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
SS  
IRQ/FT/OUT/SQW  
NC  
AI04769  
V
SS  
NC  
SCL  
Figure 6. 18-pin, 300mil SOIC (MY)  
Connections  
M41T81  
NC  
(1)  
9
V
CC  
10  
11  
12  
13  
14  
NC  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
(1)  
NC  
NC  
NC  
NC  
V
IRQ/FT/OUT/SQW  
SDA  
SCL  
NC  
NC  
NC  
NC  
NC  
NC  
BAT  
(1)  
V
BAT  
(1)  
CC  
V
SDA  
SS  
NC  
AI07805  
IRQ/FT/OUT/SQW  
NC  
SCL  
SDA  
M41T81  
V
V
SS  
Note: 1. No Connect (NC) pin for 28-pin SOIC, but should be con-  
sidered to have indicated function in anticipation of re-  
placement with 18-pin SOIC.  
AI07830  
Figure 8. Block Diagram  
REAL TIME CLOCK  
CALENDAR  
32KHz  
OSCILLATOR  
RTC W/ALARM  
& CALIBRATION  
CRYSTAL  
AFE  
WDF  
SQWE  
(1)  
IRQ/FT/OUT/SQW  
WATCHDOG  
SDA  
SCL  
2
I C  
INTERFACE  
SQUARE WAVE  
WRITE  
PROTECT  
INTERNAL  
POWER  
V
CC  
V
BAT  
(2)  
COMPARE  
V
SO  
Note 1. Open drain output  
Note 2. V = V – 0.5V (typ)  
SO  
BAT  
AI04616  
5/28  
M41T81  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
“Absolute Maximum Ratings” table may cause  
permanent damage to the device. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Exposure to Absolute Maximum Rat-  
ing conditions for extended periods may affect de-  
vice  
reliability.  
Refer  
also  
to  
the  
STMicroelectronics SURE Program and other rel-  
evant quality documents.  
Table 2. Absolute Maximum Ratings  
Sym  
Parameter  
Value  
Unit  
°C  
T
Storage Temperature (V Off, Oscillator Off)  
SOIC  
–55 to 125  
–0.3 to 7  
STG  
CC  
V
Supply Voltage  
V
CC  
(1)  
Lead Solder Temperature for 10 Seconds  
Input or Output Voltages  
Output Current  
260  
°C  
V
T
SLD  
V
–0.3 to Vcc+0.3  
IO  
I
O
20  
1
mA  
W
P
Power Dissipation  
D
Note: 1. Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 to 120  
seconds).  
CAUTION: Negative undershoots below –0.3 volts are not allowed on any pin while in the Battery Back-Up Mode  
6/28  
M41T81  
DC AND AC PARAMETERS  
This section summarizes the operating and mea-  
surement conditions, as well as the DC and AC  
characteristics of the device. The parameters in  
the following DC and AC Characteristic tables are  
derived from tests performed under the Measure-  
ment Conditions listed in the relevant tables. De-  
signers should check that the operating conditions  
in their projects match the measurement condi-  
tions when using the quoted parameters.  
Table 3. Operating and AC Measurement Conditions  
Parameter  
M41T81  
2.0 to 5.5V  
–40 to 85°C  
100pF  
Supply Voltage (V  
)
CC  
Ambient Operating Temperature (T )  
A
Load Capacitance (C )  
L
Input Rise and Fall Times  
Input Pulse Voltages  
50ns  
0.2V to 0.8 V  
CC  
CC  
CC  
0.3V to 0.7 V  
Input and Output Timing Ref. Voltages  
CC  
Note: Output Hi-Z is defined as the point where data is no longer driven.  
Figure 9. AC Measurement I/O Waveform  
0.8V  
CC  
0.7V  
CC  
0.3V  
CC  
0.2V  
CC  
AI02568  
Table 4. Capacitance  
(1,2)  
Symbol  
Min  
Max  
7
Unit  
pF  
Parameter  
C
Input Capacitance  
Output Capacitance  
IN  
(3)  
10  
50  
pF  
C
OUT  
t
LP  
Low-pass filter input time constant (SDA and SCL)  
ns  
Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested.  
2. At 25°C, f = 1MHz.  
3. Outputs deselected.  
7/28  
M41T81  
Table 5. DC Characteristics  
(1)  
Sym  
Parameter  
Input Leakage Current  
Output Leakage Current  
Supply Current  
Min  
Typ  
Max  
±1  
Unit  
µA  
µA  
µA  
µA  
V
Test Condition  
I
0V V V  
LI  
IN  
CC  
I
0V V  
V  
OUT CC  
±1  
LO  
I
Switch Freq = 400kHz  
400  
100  
CC1  
I
SCL,SDA = V – 0.3V  
Supply Current (standby)  
Input Low Voltage  
CC2  
CC  
V
IL  
0.3V  
CC  
–0.3  
V
IH  
0.7V  
V
CC  
+ 0.3  
Input High Voltage  
V
CC  
I
= 3.0mA  
= 10mA  
0.4  
0.4  
Output Low Voltage  
V
OL  
V
OL  
(5)  
I
V
OL  
Output Low Voltage (Open Drain)  
(2)  
(3)  
(4)  
Battery Supply Voltage  
3
V
V
BAT  
2.5  
3.5  
T = 25°C, V = 0V  
A
CC  
I
Battery Supply Current  
0.6  
1
µA  
BAT  
Oscillator ON, V  
= 3V  
BAT  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.0 to 5.5V (except where noted).  
A
CC  
2. STMicroelectronics recommends the RAYOVAC BR1225 or BR1632 (or equivalent) as the battery supply.  
3. After switchover (V ), V (min) can be 2.0V for crystal with R = 40K.  
SO  
BAT  
S
4. For rechargeable back-up, V  
(max) may be considered V  
.
BAT  
CC  
5. For IRQ/FT/OUT/SQW pin (Open Drain)  
Table 6. Crystal Electrical Characteristics  
(1,2,3)  
Sym  
Min  
Typ  
Max  
Units  
kHz  
kΩ  
Parameter  
Resonant Frequency  
f
O
32.768  
R
Series Resistance  
Load Capacitance  
S
60  
C
12.5  
pF  
L
Note: 1. Externally supplied if using the SO8 package. STMicroelectronics recommends the KDS DT-38: 1TA/1TC252E127, Tuning Fork  
Type (thru-hole) or the DMX-26S: 1TJS125FH2A212, (SMD) quartz crystal for industrial temperature operations. KDS can be con-  
tacted at kouhou@kdsj.co.jp or http://www.kdsj.co.jp for further information on this crystal type.  
2. Load capacitors are integrated within the M41T81. Circuit board layout considerations for the 32.768 kHz crystal of minimum trace  
lengths and isolation from RF generating signals should be taken into account.  
8/28  
M41T81  
OPERATION  
The M41T81 clock operates as a slave device on  
the serial bus. Access is obtained by implementing  
a start condition followed by the correct slave ad-  
dress (D0h). The 20 bytes contained in the device  
can then be accessed sequentially in the following  
order:  
1. Tenths/Hundredths of a Second Register  
2. Seconds Register  
3. Minutes Register  
– Changes in the data line, while the clock line is  
High, will be interpreted as control signals.  
Accordingly, the following bus conditions have  
been defined:  
Bus not busy. Both data and clock lines remain  
High.  
Start data transfer. A change in the state of the  
data line, from high to Low, while the clock is High,  
defines the START condition.  
4. Century/Hours Register  
5. Day Register  
6. Date Register  
Stop data transfer. A change in the state of the  
data line, from Low to High, while the clock is High,  
defines the STOP condition.  
Data Valid. The state of the data line represents  
valid data when after a start condition, the data line  
is stable for the duration of the high period of the  
clock signal. The data on the line may be changed  
during the Low period of the clock signal. There is  
one clock pulse per bit of data.  
Each data transfer is initiated with a start condition  
and terminated with a stop condition. The number  
of data bytes transferred between the start and  
stop conditions is not limited. The information is  
transmitted byte-wide and each receiver acknowl-  
edges with a ninth bit.  
7. Month Register  
8. Year Register  
9. Control Register  
10. Watchdog Register  
11 - 16. Alarm Registers  
17 - 19. Reserved  
20. Square Wave Register  
The M41T81 clock continually monitors V for an  
out-of-tolerance condition. Should V  
CC  
fall below  
CC  
V
, the device terminates an access in progress  
SO  
By definition a device that gives out a message is  
called “transmitter,” the receiving device that gets  
the message is called “receiver.” The device that  
controls the message is called “master.” The de-  
vices that are controlled by the master are called  
“slaves.”  
Acknowledge. Each byte of eight bits is followed  
by one Acknowledge Bit. This Acknowledge Bit is  
a low level put on the bus by the receiver whereas  
the master generates an extra acknowledge relat-  
ed clock pulse. A slave receiver which is ad-  
dressed is obliged to generate an acknowledge  
after the reception of each byte that has been  
clocked out of the slave transmitter.  
and resets the device address counter. Inputs to  
the device will not be recognized at this time to  
prevent erroneous data from being written to the  
device from a an out-of-tolerance system. The de-  
vice also automatically switches over to the battery  
and powers down into an ultra low current mode of  
operation to conserve battery life. As system pow-  
er returns and V rises above V , the battery is  
CC  
SO  
disconnected, and the power supply is switched to  
external V  
.
CC  
For more information on Battery Storage Life refer  
to Application Note AN1012.  
2-Wire Bus Characteristics  
The bus is intended for communication between  
different ICs. It consists of two lines: a bi-direction-  
al data signal (SDA) and a clock signal (SCL).  
Both the SDA and SCL lines must be connected to  
a positive supply voltage via a pull-up resistor.  
The following protocol has been defined:  
– Data transfer may be initiated only when the bus  
is not busy.  
The device that acknowledges has to pull down  
the SDA line during the acknowledge clock pulse  
in such a way that the SDA line is a stable Low dur-  
ing the High period of the acknowledge related  
clock pulse. Of course, setup and hold times must  
be taken into account. A master receiver must sig-  
nal an end of data to the slave transmitter by not  
generating an acknowledge on the last byte that  
has been clocked out of the slave. In this case the  
transmitter must leave the data line High to enable  
the master to generate the STOP condition.  
– During data transfer, the data line must remain  
stable whenever the clock line is High.  
9/28  
M41T81  
Figure 10. Serial Bus Data Transfer Sequence  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
AI00587  
Figure 11. Acknowledgement Sequence  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCL FROM  
1
2
8
9
MASTER  
DATA OUTPUT  
MSB  
LSB  
BY TRANSMITTER  
DATA OUTPUT  
BY RECEIVER  
AI00601  
10/28  
M41T81  
Figure 12. Bus Timing Requirements Sequence  
SDA  
tBUF  
tHD:STA  
tR  
tHD:STA  
tF  
SCL  
tHIGH  
tSU:DAT  
tHD:DAT  
tSU:STA  
tSU:STO  
P
S
tLOW  
SR  
P
AI00589  
Table 7. AC Characteristics  
Sym  
(1)  
Min  
0
Typ  
Max  
Units  
kHz  
µs  
Parameter  
f
SCL Clock Frequency  
Clock Low Period  
400  
SCL  
t
1.3  
600  
LOW  
t
Clock High Period  
ns  
HIGH  
t
SDA and SCL Rise Time  
SDA and SCL Fall Time  
START Condition Hold Time  
300  
300  
ns  
R
t
ns  
F
t
600  
600  
ns  
ns  
HD:STA  
(after this period the first clock pulse is generated)  
START Condition Setup Time  
(only relevant for a repeated start condition)  
t
SU:STA  
(2)  
Data Setup Time  
100  
0
ns  
µs  
ns  
t
SU:DAT  
t
Data Hold Time  
HD:DAT  
SU:STO  
t
STOP Condition Setup Time  
600  
Time the bus must be free before a new  
transmission can start  
t
1.3  
µs  
BUF  
Note: 1. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.0 to 5.5V (except where noted).  
A
CC  
2. Transmitter must internally provide a hold time to bridge the undefined region (300ns max) of the falling edge of SCL.  
11/28  
M41T81  
READ Mode  
In this mode the master reads the M41T81 slave  
after setting the slave address (see Figure 14,  
page 12). Following the WRITE Mode Control Bit  
(R/W=0) and the Acknowledge Bit, the word ad-  
dress 'An' is written to the on-chip address pointer.  
Next the START condition and slave address are  
repeated followed by the READ Mode Control Bit  
(R/W=1). At this point the master transmitter be-  
comes the master receiver. The data byte which  
was addressed will be transmitted and the master  
receiver will send an Acknowledge Bit to the slave  
transmitter. The address pointer is only increment-  
ed on reception of an Acknowledge Clock. The  
M41T81 slave transmitter will now place the data  
byte at address An+1 on the bus, the master re-  
ceiver reads and acknowledges the new byte and  
the address pointer is incremented to “An+2.”  
This cycle of reading consecutive addresses will  
continue until the master receiver sends a STOP  
condition to the slave transmitter.  
The system-to-user transfer of clock data will be  
halted whenever the address being read is a clock  
address (00h to 07h). The update will resume due  
to a Stop Condition or when the pointer increments  
to any non-clock address (08h-13h).  
Note: This is true both in READ Mode and WRITE  
Mode.  
An alternate READ Mode may also be implement-  
ed whereby the master reads the M41T81 slave  
without first writing to the (volatile) address point-  
er. The first address that is read is the last one  
stored in the pointer (see Figure 15, page 13).  
Figure 13. Slave Address Location  
R/W  
START  
SLAVE ADDRESS  
A
1
1
0
1
0
0
0
AI00602  
Figure 14. READ Mode Sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
S
DATA n  
DATA n+1  
BUS ACTIVITY:  
SLAVE  
ADDRESS  
SLAVE  
ADDRESS  
DATA n+X  
P
AI00899  
12/28  
M41T81  
Figure 15. Alternative READ Mode Sequence  
BUS ACTIVITY:  
MASTER  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00895  
WRITE Mode  
In this mode the master transmitter transmits to  
the M41T81 slave receiver. Bus protocol is shown  
in Figure 16, page 13. Following the START con-  
dition and slave address, a logic '0' (R/W=0) is  
placed on the bus and indicates to the addressed  
device that word address “An” will follow and is to  
be written to the on-chip address pointer. The data  
word to be written to the memory is strobed in next  
and the internal address pointer is incremented to  
the next address location on the reception of an  
acknowledge clock. The M41T81 slave receiver  
will send an acknowledge clock to the master  
transmitter after it has received the slave address  
see Figure 13, page 12 and again after it has re-  
ceived the word address and each data byte.  
Figure 16. WRITE Mode Sequence  
BUS ACTIVITY:  
MASTER  
WORD  
ADDRESS (An)  
SDA LINE  
S
DATA n  
DATA n+1  
DATA n+X  
P
BUS ACTIVITY:  
SLAVE  
ADDRESS  
AI00591  
13/28  
M41T81  
Data Retention Mode  
With valid V  
cessed as described above with READ or WRITE  
Cycles. Should the supply voltage decay, the pow-  
applied, the M41T81 can be ac-  
will pass through the Register Bit Reset Voltage  
(V ) threshold, not only write protecting itself,  
CC  
RST  
but also resetting certain Control Bits (see Table  
13, page 21). On power-up, when V returns to a  
er input will be switched from the V  
pin to the  
CC  
CC  
battery when V falls below the Battery Back-up  
nominal value, write protection continues for t  
.
CC  
REC  
Switchover Voltage (V ). At this time the clock  
registers will be maintained by the attached bat-  
SO  
For a further, more detailed review of lifetime cal-  
culations, please see Application Note AN1012.  
tery supply. As V  
continues to fall, the M41T81  
CC  
Figure 17. Power Down/Up Mode AC Waveforms  
V
CC  
V
SO  
tPD  
tREC  
SDA  
SCL  
DON'T CARE  
AI00596  
Table 8. Power Down/Up AC Characteristics  
(1,2)  
Symbol  
Min  
0
Typ  
Max  
Unit  
nS  
Parameter  
t
SCL and SDA at V before Power Down  
PD  
IH  
t
SCL and SDA at V after Power Up  
10  
µS  
REC  
IH  
Note: 1. V fall time should not exceed 5mV/µs.  
CC  
2. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.0 to 5.5V (except where noted).  
A
CC  
Table 9. Power Down/Up Trip Points DC Characteristics  
(1,2)  
Sym  
Typ  
– 0.50  
Max  
V – 0.30  
BAT  
Unit  
V
Parameter  
Battery Back-up Switchover Voltage  
Register Bit Reset Voltage  
Min  
– 0.80  
V
SO  
V
BAT  
V
BAT  
V
RST  
1.1  
2.0  
V
Note: 1. All voltages referenced to V  
.
SS  
2. Valid for Ambient Operating Temperature: T = –40 to 85°C; V = 2.0 to 5.5V (except where noted).  
A
CC  
14/28  
M41T81  
CLOCK OPERATION  
The 20-byte Register Map (see Table 10, page 16)  
is used to both set the clock and to read the date  
and time from the clock, in a binary coded decimal  
format. Tenths/Hundredths of Seconds, Seconds,  
Minutes, and Hours are contained within the first  
four registers.  
Note: A WRITE to any clock register will result in  
the Tenths/Hundredths of Seconds being reset to  
“00,” and Tenths/Hundredths of Seconds cannot  
be written to any value other than “00.”  
Bits D6 and D7 of Clock Register 03h (Century/  
Hours Register) contain the CENTURY ENABLE  
Bit (CEB) and the CENTURY Bit (CB). Setting  
CEB to a '1' will cause CB to toggle, either from '0'  
to '1' or from '1' to '0' at the turn of the century (de-  
pending upon its initial state). If CEB is set to a '0,'  
CB will not toggle. Bits D0 through D2 of Register  
04h contain the Day (day of week). Registers 05h,  
06h, and 07h contain the Date (day of month),  
Month and Years. The ninth clock register is the  
Control Register (this is described in the Clock  
Calibration section). Bit D7 of Register 01h con-  
tains the STOP Bit (ST). Setting this bit to a '1' will  
cause the oscillator to stop. If the device is expect-  
ed to spend a significant amount of time on the  
shelf, the oscillator may be stopped to reduce cur-  
rent drain. When reset to a '0' the oscillator restarts  
within one second.  
eight clock addresses are being read. If a clock ad-  
dress is being read, an update of the clock regis-  
ters will be halted. This will prevent a transition of  
data during the READ.  
Note: When a power failure occurs, the HT Bit will  
automatically be set to a '1.' This will prevent the  
®
clock from updating the TIMEKEEPER registers,  
and will allow the user to read the exact time of the  
power-down event. Resetting the HT Bit to a '0' will  
allow the clock to update the TIMEKEEPER regis-  
ters with the current time.  
®
TIMEKEEPER Registers  
The M41T81 offers 20 internal registers which  
contain Clock, Alarm, Watchdog, Flag, Square  
Wave and Control data. These registers are mem-  
ory locations which contain external (user accessi-  
ble) and internal copies of the data (usually  
referred to as BiPORT TIMEKEEPER cells). The  
external copies are independent of internal func-  
tions except that they are updated periodically by  
the simultaneous transfer of the incremented inter-  
nal copy. The internal divider (or clock) chain will  
be reset upon the completion of a WRITE to any  
clock address.  
The system-to-user transfer of clock data will be  
halted whenever the address being read is a clock  
address (00h to 07h). The update will resume ei-  
ther due to a Stop Condition or when the pointer  
increments to any non-clock address (08h-13h).  
The eight Clock Registers may be read one byte at  
a time, or in a sequential block. The Control Reg-  
ister (Address location 08h) may be accessed in-  
dependently. Provision has been made to assure  
that a clock update does not occur while any of the  
TIMEKEEPER and Alarm Registers store data in  
BCD. Control, Watchdog and Square Wave Reg-  
isters store data in Binary Format.  
15/28  
M41T81  
®
Table 10. TIMEKEEPER Register Map  
Addr  
Function/Range  
BCD Format  
D7  
D6  
0.1 Seconds  
10 Seconds  
10 Minutes  
D5  
D4  
D3  
D2  
D1  
D0  
00h  
01h  
02h  
0.01 Seconds  
Seconds  
Seconds  
Seconds  
Minutes  
00-99  
00-59  
00-59  
ST  
0
Minutes  
Century/  
Hours  
03h  
CEB  
CB  
10 Hours  
Hours (24 Hour Format)  
0-1/00-23  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
0
0
0
0
0
0
0
0
0
Day of Week  
Date: Day of Month  
Month  
Day  
Date  
01-7  
01-31  
01-12  
00-99  
10 Date  
0
10M  
Month  
10 Years  
Year  
Year  
OUT  
0
FT  
BMB4  
SQWE  
RPT5  
HT  
S
Calibration  
Control  
Watchdog  
Al Month  
Al Date  
Al Hour  
Al Min  
BMB3  
ABE  
BMB2  
BMB1  
BMB0  
RB1  
RB0  
AFE  
RPT4  
RPT3  
RPT2  
RPT1  
WDF  
0
Al 10M  
Alarm Month  
01-12  
01-31  
00-23  
00-59  
00-59  
AI 10 Date  
AI 10 Hour  
Alarm Date  
Alarm Hour  
Alarm 10 Minutes  
Alarm Minutes  
Alarm Seconds  
Alarm 10 Seconds  
Al Sec  
AF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Flags  
Reserved  
Reserved  
Reserved  
SQW  
0
0
0
0
0
0
RS3  
RS2  
RS1  
RS0  
Keys: S = Sign Bit  
AFE = Alarm Flag Enable Flag  
FT = Frequency Test Bit  
ST = Stop Bit  
0 = Must be set to '0'  
BMB0-BMB4 = Watchdog Multiplier Bits  
CEB = Century Enable Bit  
CB = Century Bit  
RB0-RB1 = Watchdog Resolution Bits  
RPT1-RPT5 = Alarm Repeat Mode Bits  
WDF = Watchdog Flag (Read only)  
AF = Alarm Flag (Read only)  
SQWE = Square Wave Enable  
RS0-RS3 = SQW Frequency  
HT = Halt Update Bit  
OUT = Output level  
ABE = Alarm in Battery Back-up Mode Enable Bit  
16/28  
M41T81  
Calibrating the Clock  
The M41T81 is driven by a quartz controlled oscil-  
lator with a nominal frequency of 32,768 Hz. The  
devices are tested not exceed –25 to +45 PPM  
(parts per million) oscillator frequency error at  
which corresponds to a total range of +5.5 or –2.75  
minutes per month.  
Two methods are available for ascertaining how  
much calibration a given M41T81 may require.  
o
25 C, which equates to about +1.9 to –1.1 minutes  
The first involves setting the clock, letting it run for  
a month and comparing it to a known accurate ref-  
erence and recording deviation over a fixed period  
of time. Calibration values, including the number of  
seconds lost or gained in a given period, can be  
found in Application Note AN934, “TIMEKEEP-  
per month (see Figure 20, page 22). When the  
Calibration circuit is properly employed, accuracy  
improves to better than +1/–2 PPM at 25°C.  
The oscillation rate of crystals changes with tem-  
perature. The M41T81 design employs periodic  
counter correction. The calibration circuit adds or  
subtracts counts from the oscillator divider circuit  
at the divide by 256 stage, as shown in Figure 21,  
page 22. The number of times pulses which are  
blanked (subtracted, negative calibration) or split  
(added, positive calibration) depends upon the  
value loaded into the five Calibration Bits found in  
the Control Register. Adding counts speeds the  
clock up, subtracting counts slows the clock down.  
The Calibration Bits occupy the five lower order  
bits (D4-D0) in the Control Register 08h. These  
bits can be set to represent any value between 0  
and 31 in binary form. Bit D5 is a Sign Bit; '1' indi-  
cates positive calibration, '0' indicates negative  
calibration. Calibration occurs within a 64 minute  
cycle. The first 62 minutes in the cycle may, once  
per minute, have one second either shortened by  
128 or lengthened by 256 oscillator cycles. If a bi-  
nary '1' is loaded into the register, only the first 2  
minutes in the 64 minute cycle will be modified; if  
a binary 6 is loaded, the first 12 will be affected,  
and so on.  
®
ER CALIBRATION.” This allows the designer to  
give the end user the ability to calibrate the clock  
as the environment requires, even if the final prod-  
uct is packaged in a non-user serviceable enclo-  
sure. The designer could provide a simple utility  
that accesses the Calibration byte.  
The second approach is better suited to a manu-  
facturing environment, and involves the use of the  
IRQ/FT/OUT/SQW pin. The pin will toggle at  
512Hz, when the Stop Bit (ST, D7 of 01h) is '0,' the  
Frequency Test Bit (FT, D6 of 08h) is '1,' the Alarm  
Flag Enable Bit (AFE, D7 of 0Ah) is '0,' and the  
Square Wave Enable Bit (SQWE, D6 of 0Ah) is '0'  
and the Watchdog Register (09h = 0) is reset.  
Any deviation from 512 Hz indicates the degree  
and direction of oscillator frequency shift at the test  
temperature. For example,  
a
reading of  
512.010124 Hz would indicate a +20 PPM oscilla-  
tor frequency error, requiring a –10 (XX001010) to  
be loaded into the Calibration Byte for correction.  
Note that setting or changing the Calibration Byte  
does not affect the Frequency Test output fre-  
quency.  
Therefore, each calibration step has the effect of  
adding 512 or subtracting 256 oscillator cycles for  
every 125,829,120 actual oscillator cycles, that is  
+4.068 or –2.034 PPM of adjustment per calibra-  
tion step in the calibration register. Assuming that  
the oscillator is running at exactly 32,768 Hz, each  
of the 31 increments in the Calibration byte would  
represent +10.7 or –5.35 seconds per month  
The IRQ/FT/OUT/SQW pin is an open drain output  
which requires a pull-up resistor to V for proper  
CC  
operation. A 500-10k resistor is recommended in  
order to control the rise time. The FT Bit is cleared  
on power-down.  
17/28  
M41T81  
Setting Alarm Clock Registers  
Address locations 0Ah-0Eh contain the alarm set-  
tings. The alarm can be configured to go off at a  
prescribed time on a specific month, date, hour,  
minute, or second or repeat every year, month,  
day, hour, minute, or second. It can also be pro-  
grammed to go off while the M41T81 is in the bat-  
tery back-up mode to serve as a system wake-up  
call.  
Note: If the address pointer is allowed to incre-  
ment to the Flag Register address, an alarm con-  
dition will not cause the Interrupt/Flag to occur until  
the address pointer is moved to a different ad-  
dress. It should also be noted that if the last ad-  
dress written is the “Alarm Seconds,” the address  
pointer will increment to the Flag address, causing  
this situation to occur.  
Bits RPT5-RPT1 put the alarm in the repeat mode  
of operation. Table 11, page 19 shows the possi-  
ble configurations. Codes not listed in the table de-  
fault to the once per second mode to quickly alert  
the user of an incorrect alarm setting.  
The IRQ/FT/OUT/SQW output is cleared by a  
READ to the Flags Register as shown in Figure  
18. A subsequent READ of the Flags Register is  
necessary to see that the value of the Alarm Flag  
has been reset to '0.'  
When the clock information matches the alarm  
clock settings based on the match criteria defined  
by RPT5-RPT1, the AF (Alarm Flag) is set. If AFE  
(Alarm Flag Enable) is also set (and SQWE is '0.'),  
the alarm condition activates the IRQ/FT/OUT/  
SQW pin.  
The IRQ/FT/OUT/SQW pin can also be activated  
in the battery back-up mode. The IRQ/FT/OUT/  
SQW will go low if an alarm occurs and both ABE  
(Alarm in Battery Back-up Mode Enable) and AFE  
are set. Figure 19 illustrates the back-up mode  
alarm timing.  
Figure 18. Alarm Interrupt Reset Waveform  
0Eh  
0Fh  
10h  
ACTIVE FLAG  
HIGH-Z  
IRQ/FT/OUT/SQW  
AI04617  
Figure 19. Back-up Mode Alarm Waveform  
V
CC  
V
SO  
tREC  
ABE and AFE Bits  
AF Bit in Flags  
Register  
IRQ/FT/OUT/SQW  
HIGH-Z  
HIGH-Z  
AI05663  
18/28  
M41T81  
Table 11. Alarm Repeat Modes  
RPT5  
RPT4  
RPT3  
RPT2  
RPT1  
Alarm Setting  
Once per Second  
Once per Minute  
Once per Hour  
Once per Day  
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
Once per Month  
Once per Year  
Watchdog Timer  
The watchdog timer can be used to detect an out-  
of-control microprocessor. The user programs the  
watchdog timer by setting the desired amount of  
time-out into the Watchdog Register, address 09h.  
Bits BMB4-BMB0 store a binary multiplier and the  
two lower order bits RB1-RB0 select the resolu-  
tion, where 00 = 1/16 second, 01 = 1/4 second,  
10 = 1 second, and 11 = 4 seconds. The amount  
of time-out is then determined to be the multiplica-  
tion of the five-bit multiplier value with the resolu-  
tion. (For example: writing 00001110 in the  
Watchdog Register = 3*1, or 3 seconds). If the  
processor does not reset the timer within the spec-  
ified period, the M41T81 sets the WDF (Watchdog  
Flag) and generates a watchdog interrupt.  
The watchdog timer can be reset by having the mi-  
croprocessor perform a WRITE of the Watchdog  
Register. The time-out period then starts over.  
Should the watchdog timer time-out, a value of  
00h needs to be written to the Watchdog Register  
in order to clear the IRQ/FT/OUT/SQW pin. This  
will also disable the watchdog function until it is  
again programmed correctly. A READ of the Flags  
Register will reset the Watchdog Flag (Bit D7;  
Register 0Fh).  
The watchdog function is automatically disabled  
upon power-up and the Watchdog Register is  
cleared. If the watchdog function is set, the fre-  
quency test function is activated, and the SQWE  
Bit is '0,' the watchdog function prevails and the  
frequency test function is denied.  
19/28  
M41T81  
Square Wave Output  
The M41T81 offers the user a programmable  
square wave function which is output on the SQW  
pin. RS3-RS0 bits located in 13h establish the  
square wave output frequency. These frequencies  
are listed in Table 12. Once the selection of the  
SQW frequency has been completed, the IRQ/FT/  
OUT/SQW pin can be turned on and off under soft-  
ware control with the Square Wave Enable Bit  
(SQWE) located in Register 0Ah.  
Table 12. Square Wave Output Frequency  
Square Wave Bits  
Square Wave  
RS3  
0
RS2  
0
RS1  
0
RS0  
0
Frequency  
None  
32.768  
8.192  
4.096  
2.048  
1.024  
512  
Units  
-
0
0
0
1
kHz  
kHz  
kHz  
kHz  
kHz  
Hz  
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
256  
Hz  
1
0
0
0
128  
Hz  
1
0
0
1
64  
Hz  
1
0
1
0
32  
Hz  
1
0
1
1
16  
Hz  
1
1
0
0
8
Hz  
1
1
0
1
4
Hz  
1
1
1
0
2
Hz  
1
1
1
1
1
Hz  
20/28  
M41T81  
Century Bit  
Bits D7 and D6 of Clock Register 03h contain the  
CENTURY ENABLE Bit (CEB) and the CENTURY  
Bit (CB). Setting CEB to a '1' will cause CB to tog-  
gle, either from a '0' to '1' or from '1' to '0' at the turn  
of the century (depending upon its initial state). If  
CEB is set to a '0,' CB will not toggle.  
cation 08h are a '0,' then the IRQ/FT/OUT/SQW  
pin will be driven low.  
Note: The IRQ/FT/OUT/SQW pin is an open drain  
which requires an external pull-up resistor.  
Preferred Initial Power-on Default  
Upon initial application of power to the device, the  
following register bits are set to a '0' state: Watch-  
dog Register; AFE; ABE; SQWE; and FT. The fol-  
lowing bits are set to a '1' state: ST; OUT; and HT  
(see Table 13, page 21).  
Output Driver Pin  
When the FT Bit, AFE Bit, SQWE Bit, and Watch-  
dog Register are not set, the IRQ/FT/OUT/SQW  
pin becomes an output driver that reflects the con-  
tents of D7 of the Control Register. In other words,  
when D7 (OUT Bit) and D6 (FT Bit) of address lo-  
Table 13. Preferred Default Values  
WATCHDOG  
Condition  
ST  
1
HT  
1
Out  
1
FT  
0
AFE  
0
SQWE  
0
ABE  
0
(1)  
Register  
(2)  
0
Initial Power-up  
Subsequent Power-up (with battery  
UC  
1
UC  
0
UC  
UC  
UC  
0
(3)  
back-up)  
Note: 1. BMB0-BMB4, RB0, RB1.  
2. State of other control bits undefined.  
3. UC = Unchanged  
21/28  
M41T81  
Figure 20. Crystal Accuracy Across Temperature  
Frequency (ppm)  
20  
0
–20  
–40  
–60  
–80  
2
F  
F
ppm  
C2  
= -0.038  
(T - T0) ± 10%  
–100  
–120  
–140  
–160  
T0 = 25 °C  
–40  
–30  
–20  
–10  
0
10  
20  
30  
40  
50  
60  
70  
80  
Temperature °C  
AI00999  
Figure 21. Clock Calibration  
NORMAL  
POSITIVE  
CALIBRATION  
NEGATIVE  
CALIBRATION  
AI00594B  
22/28  
M41T81  
PACKAGE MECHANICAL INFORMATION  
Figure 22. SO8 – 8-lead Plastic Small Package Outline  
h x 45˚  
C
A2  
A
B
ddd  
e
D
8
1
E
H
A1  
α
L
SO-A  
Note: Drawing is not to scale.  
Table 14. SO8 – 8-lead Plastic Small Outline (150 mils body width), Package Mechanical Data  
mm  
Min  
1.35  
0.10  
1.10  
0.33  
0.19  
4.80  
3.80  
inches  
Min  
Symb  
Typ  
Max  
1.75  
0.25  
1.65  
0.51  
0.25  
5.00  
4.00  
Typ  
Max  
0.069  
0.010  
0.065  
0.020  
0.010  
0.197  
0.157  
A
A1  
A2  
B
0.053  
0.004  
0.043  
0.013  
0.007  
0.189  
0.150  
C
D
E
e
1.27  
0.050  
H
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
0.90  
8°  
0.228  
0.010  
0.016  
0°  
0.244  
0.020  
0.035  
8°  
h
L
α
N
8
8
ddd  
0.10  
0.004  
23/28  
M41T81  
Figure 23. SOX18 – 18-lead Plastic Small Outline, 300mils, Embedded Crystal, Package Outline  
D
9
1
h x 45°  
C
E
H
10  
18  
A2  
A
ddd  
A1  
B
e
A1  
α
L
SO-J  
Note: Drawing is not to scale.  
Table 15. SOX18 – 18-lead Plastic Small Outline, 300mils, Embedded Crystal, Package Mechanical  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
2.69  
0.31  
2.39  
0.51  
0.31  
11.66  
0.10  
7.67  
Typ  
Min  
Max  
0.106  
0.012  
0.094  
0.020  
0.012  
0.459  
0.004  
0.302  
A
A1  
A2  
B
2.44  
0.096  
0.006  
0.090  
0.016  
0.008  
0.455  
0.15  
2.29  
0.41  
C
0.20  
D
11.61  
1.27  
11.56  
0.457  
0.050  
ddd  
E
7.57  
0.298  
e
H
10.16  
0.51  
0°  
10.52  
0.81  
8°  
0.400  
0.020  
0°  
0.414  
0.032  
8°  
L
α
N
18  
18  
24/28  
M41T81  
Figure 24. SOX28 – 28-lead Plastic Small Outline, 300mils, Embedded Crystal, Package Outline  
D
14  
1
h x 45°  
C
E
H
15  
28  
A2  
A
ddd  
A1  
B
e
A1  
α
L
SO-E  
Note: Drawing is not to scale.  
Table 16. SOX28 – 28-lead Plastic Small Outline, 300mils, Embedded Crystal, Package Mechanical  
millimeters  
inches  
Symbol  
Typ  
Min  
Max  
2.69  
0.31  
2.39  
0.51  
0.31  
18.01  
0.10  
7.67  
Typ  
Min  
Max  
0.106  
0.012  
0.094  
0.020  
0.012  
0.709  
0.004  
0.302  
A
A1  
A2  
B
2.44  
0.096  
0.006  
0.090  
0.016  
0.008  
0.705  
0.15  
2.29  
0.41  
C
0.20  
D
17.91  
ddd  
E
7.57  
0.298  
e
1.27  
0.050  
H
10.16  
0.51  
0°  
10.52  
0.81  
8°  
0.400  
0.020  
0°  
0.414  
0.032  
8°  
L
α
N
28  
28  
25/28  
M41T81  
PART NUMBERING  
Table 17. Ordering Information Scheme  
Example:  
M41T  
81  
M
6
TR  
Device Type  
M41T  
Supply Voltage and Write Protect Voltage  
81 = V = 2.0 to 5.5V  
CC  
Package  
M = SO8  
(1)  
MX = SOX28  
(1)  
MY = SOX18  
Temperature Range  
6 = –40°C to 85°C  
Shipping Method for SOIC  
blank = Tubes  
TR = Tape & Reel  
Note: 1. The SOX28 and SOX18 packages include an embedded 32,768Hz crystal.  
For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device,  
please contact the ST Sales Office nearest to you.  
26/28  
M41T81  
REVISION HISTORY  
Table 18. Document Revision History  
Date  
December 2001  
21-Jan-02  
Rev. #  
1.0  
Revision Details  
First Issue  
1.1  
Fix table footnotes (Table 5, 6)  
01-May-02  
05-Jun-02  
1.2  
Modify reflow time and temperature footnote (Table 2)  
Modify Data Retention text, Trip Points (Table 9)  
Corrected Supply Voltage values (Table 2, 3)  
1.3  
10-Jun-02  
1.4  
Modify DC Characteristics, Crystal Electrical table footnotes, Preferred Default Values  
(Table 5, 6, 13)  
03-Jul-02  
11-Oct-02  
21-Jan-03  
1.5  
1.6  
1.7  
Add marketing status (Figure 3; Table 17); adjust footnotes (Figure 5; Table 5)  
Add embedded crystal package option (Figure 2, 7, 24; Table 16); modified pre-  
existing mechanical drawing (Figure 22; Table 14).  
®
05-Mar-03  
12-Sep-03  
1.8  
2.0  
Correct dimensions (Figure 24; Table 16); remove SNAPHAT package option  
Updated disclaimer, v2.2 template; add SOX18 package (Figure 3, 6, 23; Table 17, 15)  
M41T81, 41T81, T81Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial,  
Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial, Serial,  
Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Ac-  
cess, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access,  
Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Ac-  
cess, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Access, Interface, Interface, Inter-  
face, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface,  
Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Inter-  
face, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface,  
Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Inter-  
face, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface, Interface,  
Interface, Interface, Interface, Interface, Interface, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock,  
Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, Clock, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC, RTC,  
RTC, RTC, RTC, RTC, RTC, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Program-  
mable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable,  
Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Pro-  
grammable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Program-  
mable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable, Programmable,  
Programmable, Programmable, Programmable, Programmable, Programmable, Programmable Alarm, Programmable Alarm, Programmable Alarm, Programmable  
Alarm, Programmable Alarm, Programmable Alarm, Programmable Alarm, Programmable Alarm, Programmable Alarm, Programmable Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm, Alarm,  
Alarm, Alarm, Alarm, Alarm, Alarm, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Inter-  
rupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt,  
Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, In-  
terrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Inter-  
rupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt,  
Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, In-  
terrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Inter-  
rupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt,  
Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, In-  
terrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Inter-  
rupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Interrupt, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog,  
Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watch-  
dog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog,  
Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watchdog, Watch-  
dog, Watchdog, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery, Battery,  
Battery, Battery, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Switchover, Backup, Backup, Backup, Backup, Back-  
up, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Backup, Write Protect, Write Protect, Write  
Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect,  
Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Write Protect, Industrial,  
Industrial, Industrial, Industrial, Industrial, Industrial, Industrial, Industrial, Industrial, Industrial, Industrial, vIndustrial, Industrial, Industrial, SOIC, SOIC, SOIC, SOIC, SO-  
IC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC, SOIC  
27/28  
M41T81  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
28/28  

相关型号:

M41T81M6E

Serial access Real-Time Clock with alarm
STMICROELECTR

M41T81M6F

Serial access Real-Time Clock with alarm
STMICROELECTR

M41T81M6TR

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MH6

1 TIMER(S), REAL TIME CLOCK, PDSO28, 0.330 INCH, PLASTIC, SOH-28
STMICROELECTR

M41T81MQ6

1 TIMER(S), REAL TIME CLOCK, PDSO16, PLASTIC, SOIC-16
STMICROELECTR

M41T81MX

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MX6

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MX6F

1 TIMER(S), REAL TIME CLOCK, PDSO28, 0.300 INCH, LEAD FREE, PLASTIC, SO-28
STMICROELECTR

M41T81MX6TR

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MY

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MY6

SERIAL ACCESS RTC WITH ALARMS
STMICROELECTR

M41T81MY6E

1 TIMER(S), REAL TIME CLOCK, PDSO18, 0.300 INCH, LEAD FREE, PLASTIC, SO-18
STMICROELECTR