STE2004DIE2 [STMICROELECTRONICS]

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER; 102 ×65单芯片LCD控制器/驱动
STE2004DIE2
型号: STE2004DIE2
厂家: ST    ST
描述:

102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER
102 ×65单芯片LCD控制器/驱动

驱动 控制器 CD
文件: 总66页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STE2004  
102 X 65 SINGLE CHIP LCD CONTROLLER / DRIVER  
Low Power Consumption, suitable for battery  
1 FEATURES  
102 x 65 bits Display Data RAM  
Programmable MUX rate  
Programmable Frame Rate  
X,Y Programmable Carriage Return  
operated systems  
Logic Supply Voltage range from 1.7 to 3.6V  
High Voltage Generator Supply Voltage range  
from 1.75 to 4.5V  
Display Supply Voltage range from 4.5 to 14.5V  
Backward Compatibility with STE2001/2  
Dual Partial Display Mode  
Row by Row Scrolling  
N-Line Inversion  
2 DESCRIPTION  
Automatic data RAM Blanking procedure  
Selectable Input Interface:  
The STE2004 is a low power CMOS LCD control-  
ler driver. Designed to drive a 65 rows by 102 col-  
umns graphic display, it provides all necessary  
functions in a single chip, including on-chip LCD  
supply and bias voltages generators, resulting in a  
minimum of externals components and in a very  
low power consumption.  
STE2004 features six standard interfaces (3-lines  
Serial, 3-lines SPI, 4-lines SPI, 68000 Parallel,  
8080 parallel & I2C) for ease of interfacing with the  
host micro-controller  
• I2C Bus Fast and Hs-mode (read and write)  
• 68000 & 8080 Parallel Interfaces (read and write)  
• 3-lines and 4-lines SPI Interface (read and write)  
• 3-lines 9 bit Serial Interface (read and write)  
Fully Integrated Oscillator requires no external  
components  
CMOS Compatible Inputs  
Fully Integrated Configurable LCD bias voltage  
generator with:  
• Selectable multiplication factor (up to 5  
X)  
Table 1. Order Codes  
• Effective sensing for High Precision Output  
• Eight selectable temperature compensation  
coefficients  
Part Numbers  
STE2004DIE1  
STE2004DIE2  
Type  
Bumped Wafers  
Bumped Dice on Waffle Pack  
Designed for chip-on-glass (COG) applications.  
Figure 1. Block Diagram  
CO to C101  
R0 to R64  
OSC_IN  
OSC_OUT  
FR_IN  
TIMING  
GENERATOR  
OSC  
COLUMN  
DRIVERS  
ROW  
DRIVERS  
MASTER  
SLAVE SYNC  
CLOCK  
FR_OUT  
BIAS VOLTAGE  
GENERATOR  
DATA  
LATCHES  
SHIFT  
REGISTER  
VSENSE SLAVE  
VLCD  
HIGH VOLTAGE  
GENERATOR  
VLCDSENSE  
65 x 102  
RAM  
SCROLL  
LOGIC  
RES  
RESET  
TEST_MODE  
TEST_VREF  
TEST  
VSSAUX  
VDD1,2  
DISPLAY  
CONTROL  
LOGIC  
DATA  
REGISTER  
INSTRUCTION  
REGISTER  
ICON_MODE  
EXT  
VSS  
SEL1,2  
SEL 0  
SEL 1  
SEL 2  
3 & 4 Line SPI  
Parallel 68K  
I2C BUS  
Parallel 8080  
9 Bit SERIAL  
SA1 SAO SDOUT SCLK/SCL SDIN/SDA_IN SDA_OUT  
E/WR R/W- RD D/C  
CS  
DB0  
to  
LR0047  
DB7  
Rev. 4  
1/66  
July 2004  
STE2004  
Table 2. Pin Description  
N°  
Pad  
Type  
Function  
R0 to R64  
1-6  
O
LCD Row Driver Output  
109-141  
C0 to C101  
VSS  
6-107  
192-203  
156-163  
164-171  
205-209  
204  
O
LCD Column Driver Output  
Ground pads.  
GND  
VDD1  
Supply IC Positive Power Supply  
VDD2  
Supply Internal Generator Supply Voltages.  
VLCD  
Supply Voltage Multiplier Output  
VLCDSENSE  
Supply Voltage Multiplier Regulation Input. VLCDOUT Sensing for Output Voltage Fine Tuning  
Supply Voltage reference for SLAVE CHARGE PUMP  
VSENSE_SLAVE  
VSSAUX  
145  
190-177-  
147  
O
Ground Reference for Pins Configuration  
VDD1AUX  
142  
O
I
VDD1 Reference for Pins Configuration  
SEL1,2,3  
152  
153  
154  
Interface Mode Selection - CANNOT BE LEFT FLOATING  
SEL3  
SEL2  
SEL1  
Interface  
2
GND / VSSAUX GND / VSSAUX GND / VSSAUX  
I C  
GND / VSSAUX GND / VSSAUX  
VDD1  
GND / VSSAUX  
VDD1  
SPI 4-Lines 8 bit  
SPI 3-Lines 8 bit  
GND / VSSAUX  
GND / VSSAUX  
VDD1  
VDD1  
VDD1  
Serial 3-Lines 9 bit  
Parallel 8080-series  
Parallel 68000-series  
GND / VSSAUX GND / VSSAUX  
GND / VSSAUX VDD1  
VDD1  
EXT_SET  
151  
155  
I
I
Extended Instruction Set Selection - CANNOT BE LEFT FLOATING  
EXT PAD CONFIG  
GND or VSSAUX  
VDD1  
INSTRUCTION SET SELECTED  
BASIC  
EXTENDED  
ICON_MODE  
Extended Instruction Set Selection - CANNOT BE LEFT FLOATING  
ICON MODE PAD CONFIG  
GND or VSSAUX  
VDD1  
ICON MODE STATUS  
DISBLED  
ENABLED  
SDOUT  
180  
179  
O
I
Serial & SPI Data Output - IF UNUSED MUST BE LEFT FLOATING  
SDIN - Serial & SPI Interface Data Input - CANNOT BE LEFT FLOATING  
SDIN - SDAIN  
SDAIN - I2C Bus Data In - CANNOT BE LEFT FLOATING  
I
SCLK - SCL  
181  
I
I
SCLK - Serial & SPI Interface Clock - CANNOT BE LEFT FLOATING  
SCL - I2C bus Clock - CANNOT BE LEFT FLOATING  
I2C Bus Data Out IF UNUSED MUST BE LEFT FLOATING  
I2C Slave Address BIT 0 - CANNOT BE LEFT FLOATING  
SDA_OUT  
SA0  
178  
149  
148  
O
I
I2C Slave Address BIT 1- CANNOT BE LEFT FLOATING  
SA1  
I
DB0 to DB7  
R/W - RD  
182-189  
175  
I/O  
I
Parallel Interface 8 Bit Data Bus - CANNOT BE LEFT FLOATING  
R/W - 68000 Series Parallel Interface Read & Write Control Input  
- CANNOT BE LEFT FLOATING  
I
I
RD - 8080 Series Parallel Interface Read enable Clock Input  
- CANNOT BE LEFT FLOATING  
E / WR  
176  
E - 68000 Series Parallel Interface Read & Write Clock Input  
- CANNOT BE LEFT FLOATING  
2/66  
STE2004  
Table 2. Pin Description (continued)  
N°  
Pad  
Type  
Function  
E / WR  
176  
I
WR - 8080 Series Parallel Interface - Write enable clock input  
- CANNOT BE LEFT FLOATING  
RES  
D/C  
CS  
172  
174  
173  
I
I
I
Reset Input. Active Low.  
Interface Data/Command Selector- CANNOT BE LEFT FLOATING  
Serial & Parallel Interfaces ENABLE. When Low the Incoming Data are Clocked In.  
CANNOT BE LEFT FLOATING  
TEST_MODE  
TEST_VREF  
OSCIN  
191  
146  
144  
I
O
I
Test Pad - 50 kohm internal Pull-down MUST BE CONNECTED TO VSS/VSSAUX  
Test Pad - MUST BE LEFT FLOATING  
Oscillator Input:  
OSC_IN  
High  
Configuration  
Internal Oscillator Enabled  
Internal Oscillator Disabled  
Internal Oscillator Disabled  
Low  
External Scillator  
OSCOUT  
FR_OUT  
210  
211  
O
O
Internal/External Oscillator Out - IF UNUSED MUST BE LEFT FLOATING  
Master Slave Frame Inversion Synchronization.  
IF UNUSED MUST BE LEFT FLOATING  
FR_IN  
M/S  
143  
100  
I
I
Master Slave Frame Inversion Synchronization.  
CANNOT BE LEFT FLOATING  
Master/Slave Configuration Bit:- CANNOT BE LEFT FLOATING  
M/S PIN OSC_OUT FR_OUT  
FR_IN  
Charge Pump  
High  
Low  
ENABLED  
ENABLED  
Enabled Disabled AuxVsense Disabled  
Enabled Enabled Charge Pump in Slave Mode or Ext  
Power  
3/66  
STE2004  
Figure 2. Chip Mechanical Drawing  
MARK_1  
ROW  
5
ROW28  
ROW31  
ROW  
COL  
0
0
FR_OUT  
OSC_OUT  
MARK_3  
VLCD  
STE2004  
VLCDSENSE  
VSS  
TEST_MODE  
VSSAUX  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK - SCL  
SDOUT  
SDIN - SDAIN  
SDAOUT  
COL 50  
COL 51  
VSSAUX  
E - WR  
(0,0)  
X
R/W - RD  
D/C  
Y
CS  
RES  
MARK_4  
VDD2  
VDD1  
ICON  
SEL1  
SEL2  
SEL3  
EXT_SET  
M/S  
SA0  
SA1  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
COL 101  
ROW 32  
ROW64/ICON  
ROW63  
ROW 37  
ROW60  
MARK_2  
LR0048  
4/66  
STE2004  
Figure 3. Improved ALTH & PLESKO Driving Method  
V
LCD  
V
V
2
3
V (t)  
1
ROW 0  
R0 (t)  
V (t)  
2
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
ROW 1  
R1 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
COL 0  
C0 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
COL 1  
C1 (t)  
V
V
4
5
V
SS  
SS  
SS  
V
LCD  
- V  
- V  
V
3
V
LCD  
- V  
2
V - V  
4 5  
V (t)  
state1  
0V  
0V  
V
3
- V  
SS  
V - V  
SS 5  
V
V
- V  
LCD  
4
V
- V  
- V  
LCD  
SS  
- V  
LCD  
SS  
V
3
SS  
V
LCD  
- V  
2
V
4
- V  
5
V (t)  
state2  
0V  
0V  
V
3
- V  
SS  
V
SS  
- V  
5
V
V
- V  
LCD  
4
- V  
LCD  
SS  
.......  
.......  
0
..... 64  
1
2
3
4
5
6
7
8
9
..... 64  
0
1
2
3
4
5
6
7
8
9
FRAME n  
FRAME n + 1  
D00IN1154  
V (t) = C1(t) - R0(t)  
1
V (t) = C1(t) - R1(t)  
2
5/66  
STE2004  
3 CIRCUIT DESCRIPTION  
3.1 Supplies Voltages and Grounds  
VDD2 is supply voltages to the internal voltage generator (see below). If the internal voltage generator is  
not used, this should be connected to VDD1 pad. VDD1 supplies the rest of the IC. VDD1 supply voltage  
could be different form VDD2  
.
2 VLCD  
(n + 4)  
V
------------------------ + 200mV  
DD2  
3.2 Internal Supply Voltage Generator  
The IC has a fully integrated (no external capacitors required) charge pump for the Liquid Crystal Display  
supply voltage generation. The multiplying factor can be programmed to be: Auto, X5, X4, X3, X2, using  
the ’set CP Multiplication’ Command. If Auto is set, the multiplying factor is automatically selected to have  
the lowest current consumption in every condition. This make possible to have an input voltage that chang-  
es over time and a constant VLCD voltage. The output voltage (VLCD) is tightly controlled through the VL-  
pad. For this voltage, eight different temperature coefficients (TC, rate of change with  
CDSENSE  
temperature) can be programmed using TC1 & TC0 or T2, T1 and T0 bits. This will ensure no contrast  
degradation over the LCD operating range.  
An external supply could be connected to VLCD to supply the LCD without using the internal generator. In  
such event the internal voltage generator must be programmed to zero (PRS = [0;0], Vop = 0 - Reset con-  
dition) and the Charge pump (CP[0;0]) set to 5x or Auto Mode.  
3.3 Oscillator  
A fully integrated oscillator (requires no external components) is present to provide the clock for the Dis-  
play System. When used the OSC pad must be connected to VDD1 pad. An external oscillator could be  
used and fed into the OSC pin.If an external oscillator is used, it must be always present when STE2004  
is not in power down mode. An oscillator out is provided on the OSCOUT Pad to cascade two or more  
drivers.  
3.4 Master/Slave Mode  
STE2004 support the Master Slave working Mode for Both Control Logic and Charge Pump. This function  
allows to drive matrix such as 204x65 or 102x130 using two synchronized STE2004 and the internal  
Charge Pump of both device.  
If M/S is connected to VDD1, the driver is configured to work in Master Mode. When STE2004 is in Master  
Mode the Vsense_Slave Pin is disabled and is possible to control the VLCD value using Vop Bits. The  
Master Time Generator outputs on FR_OUT and on OSC_OUT the relevant timing references.  
If M/S is connected to GND, the driver is configured to work in Slave Mode. When STE2004 is in Slave  
Mode, the VLCD configuration set by Vop registers and the thermal compensation slope set by TC register  
are neglected. The VLCD Value generated is equal to the Voltage value present on Vsense_Slave Pin so  
the slave configuration can follow the master configuration. The only recognized configuration is Vop=0  
that forces the Charge Pump to be in off state whatever is the value of Vsense_aux.  
To Synchronize the Master & Slave timing circuits, the slave driver FR_IN pad must be connected to Mas-  
ter Driver FR_OUT pad and Slave Driver OSC_IN pad must be connected to the master driver OSC_OUT  
Pad (Fig. 4). This connection ensure a synchronization at both Frame level (R0 on the master is driven  
together with the Slave R0 driver) and at Oscillator Level (same Frame frequency on the master and on  
the slave). If the Synchronization at Frame level is not required, FR_IN pin must be connected toVDD1 or  
to VDD1_aux (Fig. 5).  
During Power Up Procesure, Master device must be forced to exit from power down before the slave de-  
vice. To enter in PowerDown Mode, Slave Device must be forced in Power Down state before Master De-  
vice.  
6/66  
STE2004  
Figure 4. Master Slave Logic Connection with frame Synchronization  
STE2004  
STE2004  
OSCOUT FROUT  
VDD1AUX OSCIN FRIN  
OSCOUT FROUT  
FRIN OSCIN  
LR0219  
Figure 5. Master Slave Logic Connection without frame Synchronization  
STE2004  
STE2004  
OSCIN  
OSCOUT FROUT  
VDD1AUX OSCIN FRIN  
OSCOUT FROUT  
LR0220  
VDD1AUX  
FRIN  
3.5 Bias Levels  
To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are generated.  
The ratios among these levels and VLCD, should be selected according to the MUX ratio (m). They are  
established to be (Fig. 6):  
n + 3  
n + 4  
n + 2  
n + 4  
2
n + 4  
1
n + 4  
------------  
------------  
------------  
------------  
V
,
V
,
V
,
V
,
V ,V  
LCD SS  
LCD  
LCD  
LCD  
LCD  
Figure 6. Bias level Generator  
VLCD  
R
R
n + 3  
n + 4  
·VLCD  
n + 2  
n + 4  
·VLCD  
·VLCD  
·VLCD  
nR  
R
2
n + 4  
1
n + 4  
R
VSS  
D00IN1150  
thus providing an 1/(n+4) ratio, with n calculated from:  
n= m 3  
For m = 65, n = 5 and an 1/9 ratio is set.  
For m = 49, n =4 and an 1/8 ratio is set.  
The STE2004 provides three bits (BS0, BS1, BS2) for programming the desired Bias Ratio as shown below:  
7/66  
STE2004  
Table 3.  
BS2  
0
BS1  
0
BS0  
0
n
7
6
5
4
3
2
1
0
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
The following table Bias Level for m = 65 and m = 49 are provided:  
Table 4.  
Symbol  
V1  
m = 65 (1/9)  
m = 49 (1/8)  
V
V
LCD  
LCD  
V2  
8/9*V  
7/9*V  
7/8*V  
6/8*V  
2/8*V  
1/8*V  
LCD  
LCD  
LCD  
LCD  
LCD  
LCD  
V3  
V4  
2/9*V V  
LCD  
V5  
1/9 *V  
LCD  
V6  
V
V
SS  
SS  
3.6 LCD Voltage Generation  
The LCD Voltage at reference temperature (To = 27°C) can be set using the VOP register content according to  
the following formula:  
V
(T=To) = V  
o = (Ai+V · B)  
(i=0,1,2)  
LCD  
LCD  
OP  
with the following values:  
Symbol  
Ao  
Value  
2.95  
Unit  
V
Note  
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
A1  
6.83  
V
A2  
10.71  
0.0303  
27  
V
B
V
To  
°C  
Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register and PRS bits  
are set to zero the internal voltage generator is switched off.  
The proper value for the VLCD is a function of the Liquid Crystal Threshold Voltage (Vth) and of the Mul-  
tiplexing Rate. A general expression for this is:  
1 + m  
-----------------------------------  
V
=
V
LCD  
th  
1
2
1 --------  
m
For MUX Rate m = 65 the ideal VLCD is:  
than:  
V
= 6.85 · V  
th  
LCD(to)  
(6.85 V A )  
th  
i
V
= ----------------------------------------  
op  
0.03  
8/66  
STE2004  
3.7 Temperature Coefficients  
As the viscosity, and therefore the contrast, of the LCD are subject to change with temperature, there's  
the need to vary the LCD Voltage with temperature. STE2004 provides the possibility to change the VLCD  
in a linear fashion against temperature with eight different Temperature Coefficient selectable through T2,  
T1 and T0 bits. Only four of them are available through basic instruction set.  
Table 5.  
NAME  
TC1  
TC0  
Value  
Unit  
-3  
-3  
TC0  
0
0
1/ °C  
-0.0· 10  
TC2  
TC3  
TC6  
0
1
1
1
0
1
1/°C  
1/°C  
1/°C  
-0.7 · 10  
-3  
-1.05· 10  
-3  
-2.1 · 10  
Table 6.  
NAME  
T2  
T1  
T0  
Value  
Unit  
-3  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
0
0
0
1/ °C  
-0.0· 10  
-3  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
-0.35 · 10  
-3  
-0.7 · 10  
-1.05· 10  
-3  
-3  
-1.4 · 10  
-3  
-1.75· 10  
-3  
-2.1 · 10  
-3  
-2.3· 10  
Figure 7.  
LCD  
V
B
2
A
1
A
0
A + B  
1
A
00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh  
O
V
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
Finally, the V  
voltage at a given (T) temperature can be calculated as:  
LCD  
V
(T) = V  
LCD  
o · [1 + (T-To) · TC]  
LCD  
9/66  
STE2004  
3.8 Display Data RAM  
The STE2004, provides an 102X65 bits Static RAM to store Display data. This is organized into 9 (Bank0  
to Bank8) banks with 102 Bytes. One of these Banks can be used for Icons. RAM access is accomplished  
in either one of the Bus Interfaces provided (see below). Allowed addresses are X0 to X101 (Horizontal)  
and Y0 to Y8 (Vertical).  
When writing to RAM, four addressing mode are provided:  
• Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on the left of the mem-  
ory map. The X pointer is increased after each byte written. After the last column address (X=X-Car-  
riage), Y address pointer is set to jump to the following bank and X restarts from X=0. (Fig. 8)  
• Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the left of the memory  
map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Carriage),  
X address pointer is set to jump to next column and Y restarts from Y=0 (Fig. 9).  
• Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on the right of the  
memory map. The X pointer is increased after each byte written. After the last column address (X=X-  
Carriage), Y address pointer is set to jump to the next bank and X restarts from X=0 (fig. 10).  
• Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the right of the mem-  
ory map. The Y pointer is increased after each byte written. After the last Y bank address (Y=Y-Car-  
riage), the X pointer is set to jump to next column and Y restarts from Y=0 (fig. 11).  
After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always jump to the  
cell with address (X;Y) = (0;0) (Fig. 12,13,14 & 15).  
Data bytes in the memory could have the MSB either on top (D0 = 0, Fig.16) or on the bottom (D0=1, Fig.  
17).  
The STE2004 provides also means to alter the normal output addressing. A mirroring of the Display along  
the X axis is enabled setting to a logic one MY bit.This function doesn't affect the content of the memory  
map. It is only related to the memory read process.  
When ICON MODE=1 the Icon Row is not mirrored with MY and is not scrolled.  
When ICON MODE=0 the Icon Row is like an other graphic line and is mirrored and scrolled.  
Three are the multiplex ratio available when the partial display mode is disabled (MUX 33, MUX 49 and  
MUX 65). Only a subset of writable rows are output on Row drivers in MUX 33,49 & 65 Mode.  
When Y-Carriage<MUX/8, if Mux 49 is selected only the first 49 memory rows are visualized; if Mux 33 is  
selected only the first 33 memory rows are visualized. The unused output row & column drivers must be  
left floating.  
When Y-Carriage<=MUX/8 the icon Bank is located to BANK 8 in MUX 65 Mode, to BANK6 in MUX 49  
Mode and to BANK 4 in MUX 33 Mode.  
In Mux 33 & 49 Mode, when Y-Carriage>MUX/8 lines only 33, 49 lines are visualized.  
It is possible to select which lines of DDRAM are connected on the output drivers using the scrolling func-  
tion (Range: 0-Y-Carriage*8). When Y-Carriage>MUX/8 lines, the icon row is moved in DDRAM to the  
first row of the Bank correspondant to Y-CARRIAGE Return value, being always connected on the same  
output Driver.  
When MY=0, the icon Row is output on R64 in mux 65 mode, on R56 in MUX 49 and on R48 in MUX33.  
When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever is the MUX Rate.  
10/66  
STE2004  
Figure 8. Automatic data RAM writing sequence with V=0 and Data RAM Normal Format (MX=0)1  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0049  
Figure 9. Automatic data RAM writing sequence with V=1 and Data RAM Normal Format (MX=0)1  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0050  
Figure 10. Automatic data RAM writing sequence with V=0 and Data RAM Mirrored Format (MX=1)1  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0051  
Figure 11. Automatic data RAM writing sequence with V=1 and Data RAM Mirrored Format (MX=1)1  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0052  
1. X Carriage=101; Y-Carriage = 8  
11/66  
STE2004  
Figure 12. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=0)  
X CARR  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0053  
Figure 13. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=0)  
X CARR  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0054  
Figure 14. Automatic data RAM writing sequence with X-Y Carriage Return (V=0; MX=1)  
X CARR  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0055  
Figure 15. Automatic data RAM writing sequence with X-Y Carriage Return (V=1; MX=1)  
X CARR  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0056  
12/66  
STE2004  
Figure 16. Data RAM Byte organization with D0 = 0  
MSB  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LSB  
LR0057  
Figure 17. Data RAM Byte organization with D0 = 1  
LSB  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
MSB  
LR0058  
13/66  
STE2004  
Figure 18. Memory Rows vs. Row Drivers Mapping ICON_MODE=1 and MUX 65  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
D3 D2 D1 D0  
Address  
a
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R63  
R62  
R61  
R60  
R59  
R58  
R57  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
Y-CARRIAGE  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
R0  
R64  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
lr0268  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
14/66  
STE2004  
Figure 19. Memory Rows vs. Row Drivers Mapping ICON_MODE=0 and MUX 65  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
Line  
D3 D2 D1 D0  
Address  
a
direction direction  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
40H  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R64  
R63  
R62  
R61  
R60  
R59  
R58  
R57  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
Y-CARRIAGE  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
R0  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
lr0269  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
15/66  
STE2004  
Figure 20. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage<=6 and MUX 49  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
D3 D2 D1 D0  
Address  
a
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R56  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
lr0270  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
16/66  
STE2004  
Figure 21. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage<=6 and MUX 49  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
Line  
D3 D2 D1 D0  
Address  
a
direction direction  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
lr0271  
Reverse  
Direction  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
17/66  
STE2004  
Figure 22. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage=7, Scrolling Pointer>07h and MUX 49  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
lr0275  
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
18/66  
STE2004  
Figure 23. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage=7, Scrolling Pointer>07h and MUX 49  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R56  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
lr0276  
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
19/66  
STE2004  
Figure 24. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage=8, Scrolling Pointer<10h and MUX 49  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
Scrolling Pointer  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R56  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
Y-CARRIAGE  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
LR0273  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
20/66  
STE2004  
Figure 25. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage=8, Scrolling Pointer<10h and MUX 49  
D
a
a
ROW Output  
Normal Reverse  
direction direction  
Y Address  
Line  
t
D3 D2 D1 D0  
Address  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
Scrolling Pointer  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
Y-CARRIAGE  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
LR0274  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
21/66  
STE2004  
Figure 26. Memory Rows vs. Row Drivers Mapping ICON_MODE=1, Y-Carriage<=4 and MUX33  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
Scrolling Pointer  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R48  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
LR0272  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
22/66  
STE2004  
Figure 27. Memory Rows vs. Row Drivers Mapping ICON_MODE=0, Y-Carriage<=4 and MUX 33  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
Line  
t
D3 D2 D1 D0  
Address  
direction direction  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
Scrolling Pointer  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Reverse  
Direction  
LR0272  
96  
98 97  
95  
4
6
5
0
101 100 99  
3
2
1
23/66  
STE2004  
Figure 28. Row Drivers vs. LCD Panel Interconnection in MUX65 Mode  
ICON  
MUX 65  
COLUMN DRIVERS  
R32  
R
R
R
R
R
R
R
R
R
R
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
0
1
2
3
4
5
6
7
8
9
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
ROW DRIVERS  
ROW DRIVERS  
R49  
R50 STE2004  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R30  
R31  
LR0109  
Figure 29. Row Drivers vs. LCD Panel Interconnection in MUX49 Mode  
ICON  
MUX 49  
COLUMN DRIVERS  
R32  
R
R
R
R
R
R
R
R
R
R
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
0
1
2
3
4
5
6
7
8
9
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
ROW DRIVERS  
ROW DRIVERS  
R45  
R46  
R47  
R48  
R49  
R50 STE2004  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R30  
R31  
LR0108  
24/66  
STE2004  
Figure 30. Row Drivers vs. LCD Panel Interconnection in MUX33 Mode  
ICON  
MUX 33  
COLUMN DRIVERS  
R32  
R
R
R
R
R
R
R
R
R
R
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
0
1
2
3
4
5
6
7
8
9
R33  
R34  
R35  
R36  
R37  
R38  
R39  
ROW DRIVERS  
R40  
ROW DRIVERS  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50 STE2004  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R30  
R31  
LR0107  
25/66  
STE2004  
4 BUS INTERFACES  
To provide the widest flexibility and ease of use the STE2004 features Six different methods for interfacing  
the host Controller. To select the desired interface the SEL1, SEL2 and SEL3 pads need to be connected  
to a logic LOW (connect to GND) or a logic HIGH (connect to VDD). All the I/O pins of the unused inter-  
faces must be connected to GND.  
All interfaces are working while the STE2004 is in Power Down.  
Table 7.  
SEL3  
SEL2  
SEL1  
Interface  
Note  
2
0
0
0
Read and Write; Fast and  
High Speed Mode  
I C  
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
SPI 4 lines 8 bit  
Read and Write  
Read and Write  
Read and Write  
Read and Write  
SPI 3 lines 8 bit  
Serial 3 lines 9 bit  
Parallel 8080-series  
Parallel 68000-series Read and Write  
4.1 I2C Interface  
The I2C interface is a fully complying I2C bus specification, selectable to work in both Fast (400kHz Clock)  
and High Speed Mode (3.4MHz).  
This bus is intended for communication between different Ics. It consists of two lines: one bi-directional for  
data signals (SDA) and one for clock signals (SCL). Both the SDA and SCL lines must be connected to a  
positive supply voltage via an active or passive pull-up.  
The following protocol has been defined:  
- Data transfer may be initiated only when the bus is not busy.  
- During data transfer, the data line must remain stable whenever the clock line is high. Changes in the  
data line while the clock line is high will be interpreted as control signals.  
Accordingly, the following bus conditions have been defined:  
BUS not busy: Both data and clock lines remain High.  
Start Data Transfer: A change in the state of the data line, from High to Low, while the clock is High, de-  
fine the START condition.  
Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock signal is High,  
defines the STOP condition.  
Data Valid: The state of the data line represents valid data when after a start condition, the data line is  
stable for the duration of the High period of the clock signal. The data on the line may be changed during  
the Low period of the clock signal. There is one clock pulse per bit of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition. The number of  
data bytes transferred between the start and the stop conditions is not limited. The information is transmit-  
ted byte-wide and each receiver acknowledges with the ninth bit.  
By definition, a device that gives out a message is called "transmitter", the receiving device that gets the  
signals is called "receiver". The device that controls the message is called "master". The devices that are  
controlled by the master are called "slaves"  
Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This acknowledge bit is a low  
level put on the bus by the receiver, whereas the master generates an extra acknowledge related clock  
pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also,  
a master receiver must generate an acknowledge after the reception of each byte that has been clocked  
26/66  
STE2004  
out of the slave transmitter. The device that acknowledges has to pull down the SDA_IN line during the  
acknowledge clock pulse. Of course, setup and hold time must be taken into account. A master receiver  
must signal an end-of-data to the slave transmitter by not generating an acknowledge on the last byte that  
has been clocked out of the slave. In this case, the transmitter must leave the data line High to enable the  
master to generate the STOP condition.  
Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line. Having the ac-  
knowledge output (SDAOUT) separated from the serial data line is advantageous in Chip-On-Glass  
(COG) applications. In COG applications where the track resistance from the SDAOUT pad to the system  
SDA line can be significant, a potential divider is generated by the bus pull-up resistor and the Indium Tin  
Oxide (ITO) track resistance. It is possible that during the acknowledge cycle the STE2004 will not be able  
to create a valid logic 0 level. By splitting the SDA input from the output the device could be used in a mode  
that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is nec-  
essary to minimize the track resistance from the SDACK pad to the system SDA line to guarantee a valid  
LOW level.  
To be compliant with the I2C-bus Hs-mode specification the STE2004 is able to detect the special se-  
quence "S00001xxx". After this sequence no acknowledge pulse is generated.  
Since no internal modification are applied to work in Hs-mode, the device is able to work in Hs-mode with-  
out detecting the master code.  
Figure 31. Bit transfer and START,STOP conditions definition  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
LR0069  
2
Figure 32. Acknowledgment on the I C-bus  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
LR0070  
4.1.1 Communication Protocol  
The STE2004 is an I2C slave. The access to the device is bi-directional since data write and status read  
are allowed.  
Four are the device addresses available for the device. All have in common the first 5 bits (01111). The  
two least significant bit of the slave address are set by connecting the SA0 and SA1 inputs to a logic 0 or  
to a logic 1.  
To start the communication between the bus master and the slave LCD driver, the master must initiate a  
START condition. Following this, the master sends an 8-bit byte, on the SDA bus line (Most significant bit  
first). This consists of the 7-bit Device select Code, and the 1-bit Read/Write Designator (R/W).  
All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I2C-bus  
transfer.  
27/66  
STE2004  
4.1.2 Writing Mode.  
If the R/W bit is set to logic 0 the STE2004 is set to be a receiver. After the slaves acknowledge one or  
more command word follows to define the status of the device.  
A command word is composed by three bytes. The first is a control byte which defines the Co and D/C  
values, the second and third are data bytes. The Co bit is the command MSB and defines if after this com-  
mand will follow two data bytes and an other command word or if will follow a stream of data (Co = 1 Com-  
mand word, Co = 0 Stream of data). The D/C bit defines whether the data byte is a command or RAM data  
(D/C = 1 RAM Data, D/C = 0 Command).  
If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the  
following data byte will be stored in the data RAM at the location specified by the data pointer.  
Every byte of a command word must be acknowledged by all addressed units.  
After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2004  
Display RAM starting at the address specified by the data pointer. The data pointer is automatically up-  
dated after every byte written and in the end points to the last RAM location written.  
Every byte must be acknowledged by all addressed units.  
4.1.3 Reading Mode.  
If the R/W bit is set to logic 1 the chip will output data immediately after the slave address. If the D/C bit  
during the last write access, is set to a logic 0, the byte read is the status byte.  
Figure 33. Communication Protocol  
WRITE MODE  
DRIVER ACK  
DRIVER ACK  
DRIVER ACK  
DRIVER ACK  
DRIVER ACK  
S S  
1 A A 0 A 1 DC Control Byte  
S 0  
1
1
1
A
DATA Byte  
A 0 DC Control Byte  
A
DATA Byte A P  
1
0
R/W Co  
Co  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
SLAVE ADDRESS  
COMMAND WORD  
READ MODE  
DRIVER ACK  
MASTER ACK  
P
S S  
1 A A 1 A  
S S R  
1 A A  
0 W  
H H H  
E [1][0]  
C D  
o C  
S 0  
1
1
1
0
1
1
1
/
0
0
0
A
1
0
1
DRIVER  
SLAVE ADDRESS  
R/W  
CONTROL BYTE  
LR0008  
4.2 SERIAL INTERFACES  
STE2004 can feature three different serial synchronized interfaces with the host controller. It is possible to select  
a 3-lines SPI, a 4-lines SPI or 3-line 9 bits Serial Interface.  
4.2.1 4-lines SPI interface  
STE2004 4-lines serial interface is a bidirectional link between the display driver and the application supervisor.  
It consists of four lines: one/two for data signals (SDIN, SOUT), one for clock signals (SCLK), one for the pe-  
ripheral enable (CS) and one for mode selection (SD/C).  
The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial peripheral power  
consumption is zero. While CS pin is high the serial interface is kept in reset.  
The STE2004 is always a slave on the bus and receive the communication clock on the SCLK pin from the mas-  
ter.  
Information are exchanged byte-wide. During data transfer, the data line is sampled on the positive SCLK edge.  
SD/C line status indicates whether the byte is a command (SD/C =0) or a data (SD/C =1); SD/C line is read on  
28/66  
STE2004  
the eighth SCLK clock pulse during every byte transfer.  
If CS stays low after the last bit of a command/data byte, the serial interface expects the MSB of the next byte  
at the next SCLK positive edge.  
A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the internal  
registers are cleared.  
If CS is low after the positive edge of RES, the serial interface is ready to receive data.  
2
Throughout SDOUT can be read the driver I C slave address or the status byte. The Command sequence that  
2
allows to read I C slave address or Status byte is reported in Fig. 34 & 35. SDOUT is in High impedance in  
steady state and during data write.  
It is possible to short circuit SDOUT and SDIN and read I2C address or status Byte without any additional lines.  
Figure 34. 4-lines serial bus protocol - one byte transmission  
CS  
D/C  
SCLK  
SDIN  
MSB  
LSB  
LR0071  
Figure 35. 4-lines serial bus protocol - several byte transmission  
CS  
D/C  
SCLK  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
LR0072  
Figure 36. 4-lines serial bus protocol - I2C Address or Status Byte Read  
CS  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
D/C  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
High-Z  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID Number  
SDOUT  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
STATUS BYTE  
DATA Read  
LR00076  
Command Write  
29/66  
STE2004  
Figure 37. 4-lines SPI Reading Sequence  
READING SEQUENCE  
Write a "00000000" Instruction  
SDOUT Buffer becomes active (Low Impedence)  
Source 8 pulses on SCLK and  
Read the ID Number or the Status Byte On SDOUT1  
SDOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SDOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0078  
4.2.2 3-lines SPI Interface  
The STE2004 3-lines serial Interface is a bidirectional link between the display driver and the application  
supervisor.  
It consists of three lines: one/two for data signals (SDIN,SDOUT), one for clock signals (SCLK) and one  
for peripheral enable (CS).  
If the R/W bit is set to logic 0 the STE2004 is set to be a receiver. One or more command word follows to  
define the status of the device.  
A command word is composed by two bytes. The first is a control byte which defines Co, D/C, R/W H[1;0]  
and HE values, the second is a data byte (fig 39). The Co bit is the command MSB and defines if after this  
command will follow one data byte and an other command word or if will follow a stream of Commands or  
a Steam of DDRAM Data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether  
the data byte is a command or DDRAM data (D/C = 1 RAM Data, D/C = 0 Command). The H[1;0] bits  
define the instruction Set Page if HE bit =1. If HE bit is set to 0 H[1;0] values are neglected and it is possible  
to update the instruction set page number using only the related instruction in the instruction Set.  
If Co =1 and D/C = 0 the incoming data byte is decoded as a command, and if Co =1 and D/C =1, the  
following data byte will be stored in the data RAM at the location specified by the data pointer.  
After the last control byte, if D/C is set to a logic 1 the incoming data bytes are stored inside the STE2004  
Display Data RAM starting at the address specified by the data pointer. The data pointer is automatically  
updated after every byte written and in the end points to the last RAM location written.  
Throughout SDOUT can be read the driver I2C slave address or the status Byte. The Command sequence  
that allows to read I2C slave address or the Status byte is reported in Fig. 39 & 40.  
If the R bit is set to logic 0 and D/C=0, the I2C slave address is read; If the R bit is set to logic 1 and D/  
C=0, the the I2C slave address is read  
SDOUT is in High impedance in steady state and during data write.  
It is possible to short circuit SDOUT and SDIN and read I2C address or status byte without any additional  
line.  
30/66  
STE2004  
Figure 38. 3-lines serial interface protocol in Writing Mode  
WRITE MODE  
R
/
W
H H H  
E [1][0]  
C D  
o C  
1
Control Byte  
DATA Byte  
0
Control Byte  
LAST  
DATA Byte  
0 0  
CONTROL BYTE  
Co  
N> 0 BYTE  
MSB........LSB  
Co  
COMMAND WORD  
Control Byte  
CONTROL BYTE  
TRANSFERRED  
ONLY COMMANDS  
0 0  
DATA Byte  
DATA Byte  
DATA Byte = Command  
if D/C=0  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
DATA Byte = DDRAM Data if D/C=1  
Control Byte  
TRANSFERRED  
ONLY DDRAM DATA  
0 1  
DATA Byte  
DATA Byte  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
LR0002  
Figure 39. 3-lines SPI interface protocol in Reading Mode  
CS  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Co=1  
D/C=0  
R/W=1  
"Command" "Read"  
High-Z  
High-Z  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID-Number  
SDOUT  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
STATUS BYTE  
DATA Read  
LR0077  
Command Write  
31/66  
STE2004  
Figure 40. 3-lines SPI Reading Sequence  
READING SEQUENCE  
Set Co bit =1, D/C Bit =0 R/W Bit =1  
SDOUT Buffer become active (Low Impedence)  
Source 8 pulses on SCLK and  
1
Read the ID-Number or the Status Byte On SDOUT  
SDOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SDOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0079  
4.2.3 3-lines 9 bits Serial Interface  
The STE2004 3-lines serial Interface is a bidirectional link between the display driver and the application  
supervisor.  
It consists of three lines: one/two for data signals (SDIN, SDOUT), one for clock signals (SCLK) and one  
for peripheral enable (CS).  
The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial peripheral  
power consumption is zero. While CS pin is high the serial interface is kept in reset.  
The STE2004 is always a slave on the bus and receive the communication clock on the SCLK pin from  
the master.  
Information are exchanged word-wide. The word is composed by 9 bit. The first bit is named SD/C and  
indicates whether the following byte is a command (SD/C =0) or Data Byte (SD/C =1). During data trans-  
fer, the data line is sampled on the positive SCLK edge.  
If CS stays low after the last bit of a command/data byte, the serial interface expects the SD/C Bit of the  
next word at the next SCLK positive edge.  
A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all the in-  
ternal registers are cleared.  
If CS is low after the positive edge of RES, the serial interface is ready to receive data.  
2
Throughout SDOUT can be read only the driver I C slave address or the status byte. The Command sequence  
2
that allows to read I C slave address or Status byte is reported in Fig. 43 & 44. SDOUT is in High impedance  
in steady state and during data write.  
It is possible to short circuit SDOUT and SDIN and read I C address or status byte without any additional line.  
2
32/66  
STE2004  
Figure 41. 3-lines serial bus protocol - one byte transmission  
CS  
SCLK  
SDIN  
SD/C  
MSB  
LSB  
LR0073  
Figure 42. 3-lines serial bus protocol - several byte transmission  
CS  
SCLK  
SDIN  
D/C  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
D/C  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
D/C  
DB7  
DB6  
LR0074  
Figure 43. 3-lines serial interface protocol in Reading Mode  
CS  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
SD/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID-Number  
SDOUT  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
STATUS BYTE  
LR0075  
DATA Read  
Command Write  
Figure 44. 3-lines Serial Reading Sequence  
READING SEQUENCE  
Write a "00000000" Instruction  
SDOUT Buffer becomes active (Low Impedence)  
Source 9 pulses on SCLK and  
Read the ID Number or the Status Byte On SDOUT1  
SDOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SDOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0080  
33/66  
STE2004  
4.3 Parallel Interface  
The STE2004 selectable parallel Interfaces are 68000-series and 8080-series. They are both an 8-bits bi-  
directional link between the display driver and the application supervisor.  
Throughout both parallel interfaces can be read the I2C driver slave address or the Status Byte.  
4.3.1 68000-series parallel interface  
If CS is low after the positive edge of RES, the 68000 parallel interface is ready to receive or transmit data.  
While CS pin is high the 68000 Parallel interface is kept in reset.  
4.3.2 Write Mode  
If R/W line is set to 0 Data are latched on E falling edge.  
4.3.3 Read Mode  
When R/W line is set to 1, data are output on D0-D7 bus on E rising edge. Data Bus is set in high imped-  
ance mode when E is set to logic 0.  
Accordingly to R bit value I2C Address or Status Byte is output on D0-D7 bus.  
Figure 45. 68000-series Parallel interface protocol - one byte transmission  
CS  
R/W  
D/C  
E
D0  
to  
D7  
LR0004  
Figure 46. 68000-series Parallel interface bus protocol - Several bytes transmission  
CS  
R/W  
D/C  
E
D0  
to  
D7  
LR0081  
34/66  
STE2004  
Figure 47. 68000-series Parallel interface protocol in Reading Mode  
CS  
D/C  
R/W  
E
D0  
to  
D7  
LR0082  
Figure 48. 68000-series Parallel interface protocol in Reading Mode (Several Bytes)  
CS  
D/C  
R/W  
E
D0  
to  
D7  
Note 1) Data Bus is configured in high impedence mode after evry RD rising edge  
2) Always the same data is output on D0-D7  
LR0046  
4.3.4 8080-series parallel interface  
If CS is low after the positive edge of RES, the 8080 parallel interface is ready to receive or transmit data.  
While CS pin is high the 8080 Parallel interface is kept in reset.  
Write Mode  
Data are latched on WR rising edge.  
Read Mode  
Data are output on D0-D7 bus on RD rising edge. Data Bus is set in high impedance mode when RD is set to  
logic 1.  
Accordingly to R bit value I2C Address or Status Byte is output on D0-D7 bus.  
Figure 49. 8080-series parallel bus protocol - one byte transmission  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0083  
35/66  
STE2004  
Figure 50. 8080-series parallel bus protocol - several bytes transmission  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0084  
Figure 51. 8080-series Parallel interface protocol in Reading Mode  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0085  
Figure 52. 8080-series Parallel interface protocol in Reading Mode (Several Bytes)  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0045  
Note 1) Data Bus is configured in high impedence mode after every RD rising edge  
2) Always the same data is output on D0-D7  
36/66  
STE2004  
5 INSTRUCTION SET  
Two different instructions formats are provided:  
- With D/C set to LOW : commands are sent to the Control circuitry.  
- With D/C set to HIGH : the Data RAM is addressed.  
Two different instruction set are embedded: the STE2001-like instruction set and the extended instruction  
set. To select the STE2001-like instruction set the EXT pad has to be connected to a logic LOW (connect  
to GND). To select the he extended instruction the EXT pad has to be connected to a logic HIGH (connect  
to VDD1).  
The instructions have the syntax summarized in Table 1 (basic-set) and Table 2 (extended set)  
5.1 Reset (RES)  
At power-on, all internal registers are configured with the default value. The RAM content is not defined.  
A Reset pulse on RES pad (active low) re-initialize the internal registers content (see Tables 3,4,5,&6).  
Every on-going communication with the host controller is interrupted, applying a reset pulse. After the  
power-on, the Software Reset instruction can be used to re-load the reset configuration into the internal  
registers.  
The Default configurations is:  
- Horizontal addressing (V = 0)  
- Frame Rate (FR[1:0]=”75Hz”)  
- Power Down (PD = 1)  
- Dual Partial Display Disabled (PE=0)  
- VOP=0  
- Normal instruction set (H[1:0] = 0)  
- Normal display (MX = MY = 0)  
- Display blank (E = D = 0)  
- Address counter X[6: 0] = 0 and Y[4: 0] = 0  
- Temperature coefficient (TC[1: 0] = 0)  
- Bias system (BS[2: 0] = 0)  
- Y-CARRIAGE=8  
- X-CARRIAGE=101  
- Multiplexing Ratio (M[1:0]=0 - MUX 65)  
A MEMORY BLANK instruction can be executed to clear the DDRAM content.  
5.2 Power Down (PD = 1)  
When at Power Down, all LCD outputs are kept at VSS (display off). Bias generator and VLCD generator  
are OFF (VLCDOUT output is discharged to VSS, and then is possible to disconnect VLCDOUT). The internal  
Oscillator is in off state. An external clock can be provided. The RAM contents is not cleared.  
5.3 Memory Blanking Procedure  
This instruction allows to fill the memory with "blank" patterns, in order to delete patterns randomly gener-  
ated in memory when starting up the device. This instruction substitutes (102X8) single "write" instruc-  
tions. It is possible to program "Memory Blanking Procedure" only under the following conditions:  
- PD bit  
= 0  
No instruction can be programmed for a period equivalent to 102X8 internal write cycles (102X8X1/fclock).  
The start of Memory blanking procedure will be between one and two fclock cycles from the last active  
edge (E fallig edge for the parallel interface, last SCLK rising edge for the Serial & SPI interfaces, last SCL  
rising edge for the I2C interface).  
5.4 Checker Board Procedure  
This instruction allows to fill the memory with "checker-board" pattern. It is mainly intended to developers,  
who can now simply obtain complex module test configuration by means of a single instruction. It is pos-  
sible to program "Checker Board Procedure" only under the following conditions:  
- PD bit  
= 0  
37/66  
STE2004  
No instruction can be programmed for a period equivalent to 102X8 internal write cycles (102X8X1/fclock).  
The start of Checker-board procedure will be between one and two fclock cycles from the last active edge  
(E falling edge for the parallel interface, last SCLK rising edge for the Serial & SPI interfaces, last SCL  
rising edge for the I2C interface).  
5.5 Scrolling Function  
The STE2004 can scroll the graphics display in units of raster-rows. The scrolling function is achieved  
changing the correspondence between the rows of the logical memory map and the output row drivers.  
The scroll function doesn't affect the data ram content. It is only related to the visualization process. The  
information output on the drivers is related to the row reading sequence (the 1st row read is output on R0,  
the 2nd on R1 and so on). Scrolling means reading the matrix starting from a row that is sequentially in-  
creased or decreased. After every scrolling command the offset between the memory address and the  
memory scanning pointer is increased or decreased by one. The offset range changes in accordance with  
MUX Rate. After 64th/65th scrolling commands in MUX 65 mode, or after the 48th/49th scrolling com-  
mands in mux 49 mode, or after 32nd/33rd scrolling command in MUX 33 mode, the offset between the  
memory address and the memory scanning pointer is again zero (Cyclic Scrolling).  
A Reset Scrolling Pointer instruction can be executed to force to zero the offset between the memory ad-  
dress and the memory scanning pointer  
If ICON MODE =1, the Icon Row is not scrolled. If ICON MODE=0 the last row is like a general purpose  
row and it is scrolled as other lines.  
If the DIR Bit is set to a logic zero the offset register is increased by one and the raster is scrolled from top  
down. If the DIR Bit is set to a logic one the offset register is decreased by one and the raster is scrolled  
from bottom-up.  
Table 8.  
MUX RATE  
MUX 33  
MUX 33  
MUX 49  
MUX 49  
MUX 65  
MUX 65  
ICON MODE  
DESCRIPTION  
ICON Row Driver with MY=0  
R48  
1
0
1
0
1
0
ICON ROW NOT SCROOLED  
33 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
49 LINE GRAPHIC MATRIX  
ICON ROW NOT SCROOLED  
65 LINE GRAPHIC MATRIX  
R48  
R56  
R56  
R64  
R64  
5.6 Dual Partial Display  
If the PE Bit is set to a logic one the dual partial display mode is enabled.  
Eight partial display modes are available. The offset of the two partial display zones is row by row pro-  
grammable. The Icon row is accessed last in each partial display frame.  
Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0], BS[2:0], CP[2:0].).  
This allows switching from normal mode to partial display mode only with one instruction. The HV gener-  
ator is automatically re configured using the parameters related to the enabled mode. The parameters of  
the two sets of registers with the same function are located in the same position of the instruction set. The  
registers related to the normal mode are accessible when normal mode (PE=0) is selected, the others are  
accessible when the partial display mode is enabled (PE=1). To Setup PRS[1:0], Vop[6:0], BS[2:0],  
CP[2:0] values the instruction flow proposed in Fig. 54 must be followed. To setup Partial Display Sectors  
Start Address and Partial Display Mode no particular instruction flow has to be followed.  
38/66  
STE2004  
Figure 53. Dual Partial Display Enabling Instruction Flow  
ENABLE DUAL PARTIAL DISPLAY  
SET 1st Sector Start Address  
SET 2nd Sector Start Address  
OPTIONAL1  
SET PE=1  
END OF ENABLING DUAL PARTIAL DISPLAY  
Figure 54. Dual Partial Display Mode configuration or Duty Change  
SETUP PARTIAL DISPLAY CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Partial Display Mode (PE=1)  
SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0]  
for Partial Display Operation  
SET Partial Display Configuration (PDC[2:0])  
SET 1st Sector Start Address  
SET 2nd Sector Start Address  
OPTIONAL  
SET Driver in Normal Mode (PE=0)  
END OF PARTIAL DISPLAY CONFIG.  
Table 9. Partial Display Configurations  
PDC PDC PDC  
SECTION 1  
SECTION2  
RESET STATE  
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
8
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
8
0
000  
16  
8
16  
16  
39/66  
STE2004  
6 ID-NUMBER  
The STE2004 allows to program a Driver Identification Number (ID-Number). This make possible to easily  
manage on one platform more than one LCD module with different configuration parameters.  
Four are the device ID-Numbers programmable: 00111100, 00111101, 0011110 & 0011111. All have in  
common the first 6 bits (001111). The two least significant bit could be set connecting the SA0 and SA1  
inputs to a VSS or VDD1.  
The driver ID-number can be read through all communication interfaces. The way to read-out the ID-Num-  
ber changes according the interface selected. The readout protocol for each interface is described in the  
Bus interfaces paragraph.  
Table 10. STE2001/2-like instruction Set  
Instruction  
D/C  
R
/W  
Description  
B7 B6 B5  
B4 B3 B2 B1  
B0  
H=0 or H=1  
Read I2C Address or Status Byte  
(with 3-Lines Serial & 4-lines SPI only)  
Read Commnad  
0
0
0
0
0
0
0
1
0
0
0
0
0
Function Set  
Status Byte  
0
0
0
1
MX MY PD  
V
H[0] Power Down Management; Entry  
Mode;  
2
PD BSY  
0
1
D
1
E
1
MX MY DO  
ID1 ID0  
(I C interface only)  
ID Code  
Write Data  
H=0  
0
1
1
0
0
0
1
D7 D6 D5  
D4 D3 D2 D1  
D0  
Writes data to RAM  
Memory Blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
Starts Memory Blank Procedure  
DIR Scrolls by one Row UP or DOWN  
V
LCD Range Setting  
PRS VLDC programming range selection  
[0]  
Display Control  
Set CP Factor  
0
0
0
0
0
0
0
0
0
0
0
1
1
0
D
0
E
Select Display Configuration  
S2  
S1  
S0  
Charge Pump Multiplication  
factor  
Set RAM Y  
Set RAM X  
H=1  
0
0
0
0
0
1
1
0
0
Y3  
X3  
Y2  
X2  
Y1  
X1  
Y0 Set Horizontal (Y) RAM Address  
X6  
X5  
X4  
X0  
Set Vertical (X) RAM Address  
Checker Board  
Duty  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
X
0
0
0
0
1
X
0
0
0
1
0
X
0
0
0
1
1
Starts Checker Board Procedure  
Selects Duty factor  
MUX  
TC Select  
Data Order  
Bias Ratios  
Reserved  
1
TC1 TC0 Set Temperature Coefficient for VLDC  
DO  
0
0
BS2 BS1 BS0  
Set desired Bias Ratios  
Not to be used  
X
X
X
Set V  
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
V
OP  
register Write instruction  
OP  
40/66  
STE2004  
Table 11. Extended Instruction Set  
Instruction  
D/C R/W  
Description  
B7  
B6 B5 B4 B3  
B2  
B1 B0  
H Independent Instructions  
Read I2C Address or Status Byte  
(with 3-Lines Serial & 4-lines SPI only)  
Read Command  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
MX MY PD H[1] H[0]  
Page selector, Power Down  
Management; Entry Mode  
Status Byte  
ID Code  
0
0
1
1
1
0
PD BSY  
0
1
D
1
E
1
MX MY DO  
0
0
1
ID1 ID0  
D1 D0  
Write Data  
D7  
D6 D5 D4 D3  
D2  
Writes data to RAM  
H=[0;0] RAM Commands  
Memory Blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
Starts Memory Blank Procedure  
Scrolls by one Row UP or DOWN  
DIR  
VLCD Range Setting  
PRS PRS VLDC programming range selection  
[1]  
[0]  
Display Control  
Set CP Factor  
Set RAM Y  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
D
0
E
Select Display Configuration  
Charge Pump Multiplication factor  
Set Horizontal (Y) RAM Address  
Set Vertical (X) RAM Address  
S2  
Y2  
X2  
S1  
Y1  
X1  
S0  
Y0  
X0  
1
0
0
Y3  
X3  
Set RAM X  
X6  
X5  
X4  
H=[0;1]  
Checker Board  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
R
0
0
0
1
1
Starts Checker Board Procedure  
Vertical Addressing Mode  
V
TC Select  
Data Order  
Bias Ratios  
Read Mode,  
1
TC1 TC0 Set Temperature Coefficient for VLDC  
DO  
0
0
MSB Position  
BS2 BS1 BS0  
Set desired Bias Ratios  
0
0
0
Set V  
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
VOP register Write instruction  
OP  
H=[1;0]  
Driver Control  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
Software RESET  
Partial Enable  
Display Control  
PE  
FR1 FR0  
M[1] M[0]  
Frame rate Control  
Mux Ratio  
Partial Mode  
PDC PDC PDC  
Partial Display Config  
2
1
0
1st Sector Start Address  
2nd Sector Start Address  
0
0
0
0
0
1
1
PD PD PD PD PD PD  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
PD PD PD PD PD PD PD  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
Y0  
H=[1;1]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
1
0
0
1
Scrolling Pointer Reset  
Not Used  
0
0
0
0
1
0
0
0
0
0
0
1
1
X
X
X
Not Used  
T2  
T1  
T0 Set Temperature Coefficient for VLDC  
NW3 NW2 NW1 NW0  
YC-3 YC-2 YC-1 YC-0  
N-Line Inversion  
Y-CARRIAGE RETURN  
X CARRIAGE RETURN  
XC-6 XC-5 XC-4 XC-3 XC-2 XC-1 XC-0  
41/66  
STE2004  
Table 12. Explanations of Table 3 & 4 symbols  
RESET  
STATE  
BIT  
0
1
DIR  
H[0]  
PD  
V
Scroll by one down  
Select page 0  
Scroll by one up  
Select page 1  
0
1
0
0
0
0
0
0
0
Device fully working  
Device in power down  
Vertical addressing  
Horizontal addressing  
Normal X axis addressing  
Image is displayed not vertically mirrored  
MSB on TOP  
MX  
MY  
DO  
PE  
MUX  
R
X axis address is mirrored.  
Image is displayed vertically mirrored  
MSB on BOTTOM  
Partial Display disabled  
MUx 65 Mode  
Partial Display enabled  
MUX 33 Mode  
Read ID-Number / I2C Address  
Read Status Byte  
Table 13. PAGE SELECTION  
H[1]  
H[0]  
DESCRIPTION  
RESET STATE  
0
0
1
1
0
1
0
1
Page 0  
Page 1  
Page 2  
Page 3  
Page 0  
Table 14. DISPLAY MODE  
D
0
0
1
1
E
0
1
0
1
DESCRIPTION  
RESET STATE  
display blank  
all display segments on  
normal mode  
E=0  
D=0  
inverse video mode  
Table 15. FRAME RATE CONTROL  
FR[1]  
FR[0]  
DESCRIPTION  
65Hz  
RESET STATE  
0
0
1
1
0
1
0
1
70Hz  
75Hz  
75Hz  
80Hz  
Table 16. VLCD RANGE SELECTION  
PRS[1]  
PRS[0]  
DESCRIPTION  
2.94  
RESET STATE  
0
0
1
1
0
1
0
1
6.78  
10.62  
10.62  
42/66  
STE2004  
Table 17. MULTIPLEXING RATIO  
M[1]  
M[0]  
DESCRIPTION  
RESET STATE  
0
0
1
1
0
1
0
1
49  
65  
33  
01  
Not Allowed  
Table 18. TEMPERATURE COEFFICIENT  
T2  
0
T1  
0
T0  
0
DESCRIPTION  
RESET STATE  
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 1  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
VLCD temperature Coefficient 4  
VLCD temperature Coefficient 5  
VLCD temperature Coefficient 6  
VLCD temperature Coefficient 7  
0
0
1
0
1
0
0
1
1
000  
1
0
0
1
0
1
1
1
0
1
1
1
Table 19.  
TC1  
TC0  
DESCRIPTION  
RESET STATE  
0
0
0
1
0
1
1
1
VLCD temperature Coefficient 0  
VLCD temperature Coefficient 2  
VLCD temperature Coefficient 3  
VLCD temperature Coefficient 6  
00  
Table 20. CHARGE PUMP MULTIPLICATION FACTOR  
CP2  
CP1  
CP0  
DESCRIPTION  
Multiplication Factor X2  
Multiplication Factor X3  
Multiplication Factor X4  
Multiplication Factor X5  
NOT USED  
RESET STATE  
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
000  
NOT USED  
NOT USED  
AUTOMATIC  
43/66  
STE2004  
Table 21. BIAS RATIO  
BS2  
0
BS1  
0
BS0  
0
DESCRIPTION  
RESET STATE  
Bias Ratio equal to 7  
Bias Ratio equal to 6  
Bias Ratio equal to 5  
Bias Ratio equal to 4  
Bias Ratio equal to 3  
Bias Ratio equal to 2  
Bias Ratio equal to 1  
Bias Ratio equal to 0  
0
0
1
0
1
0
0
1
1
000  
1
0
0
1
0
1
1
1
0
1
1
1
Table 22. Y CARRIAGE RETURN REGISTER  
Y-C[3] Y-C[2] Y-C[1] Y-C[0]  
DESCRIPTION  
RESET STATE  
0
0
0
0
0
.
0
0
0
0
1
.
0
0
1
1
0
.
0
1
0
1
0
.
Y-CARRIAGE =0  
Y-CARRIAGE =1  
Y-CARRIAGE =2  
Y-CARRIAGE =3  
Y-CARRIAGE =4  
1000  
0
0
1
1
1
0
1
1
0
0
1
0
Y-CARRIAGE =6  
Y-CARRIAGE =7  
Y-CARRIAGE =8  
Table 23. PARTIAL DISPLAY CONFIGURATION  
PD2 PD1 PD0  
SECTION 1  
SECTION2  
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
RESET STATE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
8
8
0
000  
16  
8
16  
16  
Table 24. N-LINE INVERSION  
NW3  
NW2  
NW1  
NW0  
DESCRIPTION  
RESET STATE  
0
0
0
0
0-Line Inversion  
(Frame Inversion)  
2-Line Inversion  
3-Line Inversion  
4-Line Inversion  
:
0
0
0
:
0
0
0
:
0
1
1
:
1
0
1
:
0000  
1
1
1
1
1
1
0
1
15-Line Inversion  
16-Line Inversion  
44/66  
STE2004  
Figure 55. I2C Interface Interconnection in Master/ Slave Mode  
STE2004  
STE2004  
RES  
SCL  
SDAOUT SDAIN  
RES  
SCL  
SDAOUT SDAIN  
LR0214  
NOTE:  
MASTER and SLAVE I2C AADDRESS  
MUST BE DIFFERENT  
RES  
SCL  
SDA  
Figure 56. I3-lines SPI & 3-lines Serial Interfaces Interconnection in Master Slave Mode  
STE2004  
STE2004  
RES  
CS SCLK  
SDIN SDOUT  
RES  
CS  
SCLK SDIN  
SDOUT  
LR0215  
RES MASTER SCLK  
CS  
SD  
SLAVE  
CS  
Figure 57. 4-lines SPI Interface Interconnection in Master Slave Mode  
STE2004  
STE2004  
RES  
D/C  
CS  
SCLK  
SDIN SDOUT  
RES  
CS  
D/C  
SCLK  
SDIN  
SDOUT  
LR0216  
RES  
D/C  
MASTER  
CS  
SCLK  
SD  
SLAVE  
CS  
45/66  
STE2004  
Figure 58. 8080-series & 68000-series Interface Interconnection in Master Slave Mode  
STE2004  
STE2004  
CS  
D/C RW-RD  
E-WR  
D7-D0  
RES  
D/C  
RW-RD  
D7-D0  
E-WR  
RES  
CS  
LR0217  
8 LINES  
8 LINES  
RES MASTER D/C  
CS  
RW-RD E-WR D7-D0  
SLAVE  
CS  
Figure 59. Host Processor Interconnection with I2C Interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
STE2004  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK -SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
VDD1  
ICON  
ANALOG VDD  
DIGITAL VDD  
VDD1 / VSSAUX  
VSSAUX  
SEL1  
SEL2  
SEL3  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0110  
46/66  
STE2004  
Figure 60. Host Processor Interconnection with 4-line SPI Interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
STE2004  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VDD1  
VSSAUX  
SEL3  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0111  
Figure 61. Host Processor Interconnection with 3-line SPI Interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
STE2004  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VSSAUX  
VDD1  
SEL3  
VSSAUX  
EXT_SET  
VDD1 / VSSAUX  
M/S  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0112  
47/66  
STE2004  
Figure 62. Host Processor Interconnection with 3-line Serial Interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
STE2004  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VDD1  
VDD1  
SEL3  
VSSAUX  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0113  
Figure 63. Host Processor Interconnection with 8080-series Parallel Interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
STE2004  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
VSSAUX  
SEL1  
SEL2  
VSSAUX  
SEL3  
VDD1  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0114  
48/66  
STE2004  
Figure 64. Host Processor Interconnection with 6800  
VSS  
TEST_MODE  
µP  
VSSAUX  
STE2004  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VDD1  
VSSAUX  
SEL3  
VDD1  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0115  
49/66  
STE2004  
Figure 65. Application Schematic using the Internal LCD Voltage Generator and two separate supplies  
I/O  
VDD2  
VDD2  
VDD1  
32  
102  
33  
VDD1  
1µF  
1µF  
VSS  
VSS  
65 x 102  
DISPLAY  
1µF  
VLCDSENSE  
VLCD  
Figure 66. Application Schematic using the Internal LCD Voltage Generator and a single supply  
I/O  
VDD  
VDD2  
VDD1  
32  
102  
33  
1µF  
65 x 102  
DISPLAY  
VSS  
VSS  
1µF  
VLCDSENSE  
VLCD  
50/66  
STE2004  
Figure 67. Power-ON timing diagram  
T
vdd  
Tw(res)  
Tlogic(res)  
VDD2  
VDD1  
RES  
CS  
SCLK  
SDIN  
D/C  
E
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SCL- SDAIN  
SDOUT -  
SDA OUT  
OSCIN, FR_IN  
(HOST)  
OSC OUT, FR_OUT  
(DRIVER)  
POWER ON  
INTERNAL  
RESET  
RESET  
Acceptance  
Time  
BOOSTER  
OFF  
LR0208  
51/66  
STE2004  
Figure 68. Power-OFF timing diagram  
TVDD  
VDD2  
VDD1  
RES  
CLK-SCL  
SDIN-SDAIN  
D/C  
E
CS  
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SDOUT  
SDA-OUT  
OSCIN  
(HOST)  
OSC OUT  
FR_OUT  
(DRIVER)  
FR_IN  
RESET  
TABLE  
LOADED  
LR0207  
52/66  
STE2004  
Figure 69. Initialization with built-in Booster  
SETUP NORMAL DISPLAY MODE CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Normal Display Mode (PE=0)  
SET Operative Voltage for Normal Display Operation  
( Vop[6:0] - PRS[1;0])  
SET Bias Raio for Normal Display Operation  
(BS[2:0])  
SET Temperature Compensation for  
Normal Display Operation (T[2:0] or TC[1:0])  
SET Multiplexing Rate  
M[1:0)  
SET Charge Pump for  
Normal Display Operation (CP[1:0])  
Switch "ON" Booster and Display Control Logic  
(PD=0)  
END OF NORMAL DISPLAY MODE CONFIG.  
LR0218  
53/66  
STE2004  
Figure 70. DATA RAM to display Mapping  
DISPLAY DATA RAM  
bank  
0
GLASS  
TOP VIEW  
bank  
1
DISPLAY DATA RAM = "1"  
DISPLAY DATA RAM = "0"  
bank  
2
LCD  
bank  
3
bank  
7
bank  
8
ICOR ROW  
D00IN1155  
Table 25. Test Pin Configuration  
Test Pin  
Pin Configuration  
OPEN  
TEST_VREF  
TEST_MODE  
GND  
54/66  
STE2004  
Table 26. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
Unit  
V
V
V
V
Supply Voltage Range  
Supply Voltage Range  
LCD Supply Voltage Range  
Supply Current  
- 0.5 to + 5  
- 0.5 to + 7  
- 0.5 to + 15  
- 50 to +50  
DD1  
DD2  
LCD  
V
V
I
SS  
mA  
V
V
Input Voltage (all input pads)  
DC Input Current  
-0.5 to V  
+ 0.5  
DD1  
i
in  
I
- 10 to + 10  
mA  
mA  
mW  
mW  
°C  
I
DC Output Current  
- 10 to + 10  
300  
out  
P
Total Power Dissipation (T = 85°C)  
tot  
j
P
o
Power Dissipation per Output  
Operating Junction Temperature  
Storage Temperature  
30  
T
-40 to + 85  
- 65 to 150  
j
T
°C  
stg  
Table 27. Electrical Characteristics  
DC OPERATION  
(VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Voltages  
V
Supply Voltage  
Note 9  
1.7  
3.6  
V
V
V
DD1  
V
DD2  
V
V
Supply Voltage  
LCD Voltage Internally  
generated  
1.75  
4.5  
DD2  
LCD  
LCD Supply Voltage  
LCD Supply Voltage  
Supply Current  
LCD Voltage Supplied externally  
Internally generated; note 1  
4.5  
4.5  
15  
14.5  
14.5  
30  
V
V
I(V  
)
)
V
= 2.8V; V = 10V;  
LCD  
20  
µA  
DD1  
DD1  
f
= 0;T  
= 25°C;  
sclk  
amb  
Parallel Port; note 3,8.  
Supply Current Write Mode  
V
= 2.8V; V = 10V;  
100  
120  
µA  
DD2  
LCD  
f
= 1Mhz;T  
= 25°C;  
sclk  
amb  
OSC_IN=GND; Note8.  
I(V  
Voltage Generator Supply  
Current  
with V = 0 and PRS = [0:0]  
1
µA  
µA  
DD2  
OP  
with external V  
LCD  
LCD  
V
= 2.8V; V  
= 10V;  
60  
80  
3
100  
DD2  
f
=0; T  
= 25°C; no display  
sclk  
amb  
load; 5x charge pump; note  
2,3,6,  
I(V  
I(V  
)
Total Supply Current  
V
= 2.8V; V  
= 10V; 5x  
= 0;  
130  
µA  
DD1,2  
DD2  
LCD  
sclk  
charge pump; f  
T
amb  
= 25°C; no display load;  
note 2, 3, 6  
Power down Mode with internal  
or External VLCD. Note 4  
10  
23  
µA  
µA  
)
External LCD Supply Voltage  
Current  
V
=2.8V; V  
LCD  
=10V;no  
= 0;  
LDCIN  
DD  
display load; f  
sclk  
T
amb  
= 25°C; note 3.  
Logic Outputs  
V
High logic Level Output Voltage IOH=-500µA  
Low logic Level Output Voltage IOL=+500µA  
0.8VDD1  
VSS  
VDD1  
V
V
0H  
OL  
V
0.2VDD1  
55/66  
STE2004  
Table 23 Electrical Characteristics (continued)  
DC OPERATION (continued)  
(VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Logic Inputs  
V
Logic LOW voltage level  
Logic HIGH Voltage Level  
Input Current  
VSS  
0.7  
0.3  
V
V
IL  
IH  
in  
V
DD1  
V
VDD2  
V
DD1  
I
V
= V  
or V  
DD1  
-1  
1
µA  
in  
SS1  
Logic Inputs/Outputs  
V
Logic LOW voltage level  
V
0.3  
V
V
IL  
SS  
V
DD1  
V
Logic HIGH Voltage Level  
0.7  
V
+
IH  
DD1  
V
DD1  
0.5  
Column and Row Driver  
R
ROW Output Resistance  
Column Output resistance  
Column Bias voltage accuracy  
Row Bias voltage accuracy  
3K  
5K  
5K  
kohm  
kohm  
mV  
row  
R
V
10K  
+50  
+50  
col  
No load  
-50  
-50  
col  
V
mV  
row  
LCD Supply Voltage  
V
LCD Supply Voltage accuracy;  
Internally generated  
V
= 2.8V; V = 10V;  
LCD  
-1.8  
+1.8  
%
LCD  
DD  
fsclk=0; T =25 C; no display  
amb  
load;note 2, 3, 6 & 7, VOP=69h,  
PRS=2Hex  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
Temperature coefficient  
-0.0·  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
-3  
10  
-0.35 ·  
-3  
10  
-0.7 ·  
-3  
10  
-1.05·  
-3  
10  
-1.4 ·  
-3  
10  
-1.75·  
-3  
10  
-2.1 ·  
-3  
10  
-2.3·  
-3  
10  
Notes: 1. The maximum possible V  
2. Internal clock  
voltage that can be generated is dependent on voltage, temperature and (display) load.  
LCD  
3. When f  
= 0 there is no interface clock.  
sclk  
4. Power-down mode. During power-down all static currents are switched-off.  
5. If external V , the display load current is not transmitted to I  
LCD  
DD  
6. Tolerance depends on the temperature; (typically zero at T  
ature range limit.  
= 27°C), maximum tolerance values are measured at the temper-  
amb  
7. For TC0 to TC7  
8. Data Byte Writing Mode  
9. VDD1<=VDD2  
56/66  
STE2004  
Table 23 Electrical Characteristics (continued)  
AC OPERATION  
(VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
INTERNAL OSCILLATOR  
F
Internal Oscillator frequency  
V
= 2.8V;  
DD  
63  
20  
72  
81  
kHz  
OSC  
Tamb = -20 to +70 °C  
F
External Oscillator frequency  
Frame frequency  
100  
kHz  
Hz  
µs  
EXT  
F
fosc or fext = 72 kHz; note 1  
75  
FRAME  
T
RES LOW pulse width  
Reset Pulse Rejection  
Internal Logic Reset Time  
5
w(RES)  
1
5
µs  
T
µs  
LOGIC  
(RES)  
T
VDD1 vs. VDD2 Delay  
0
µs  
VDD  
Figure 71. RESET timing diagram  
Tw(res)  
Tlogic(res)  
VDD2  
VDD1  
RES  
INPUTS  
I/O  
(HOST)  
I/O  
(DRIVER)  
Hi-Z  
Hi-Z  
INTERFACE  
OUTPUT  
OSCIN  
FR_IN  
(HOST)  
OSC OUT  
FR_OUT  
(DRIVER)  
RESET  
TABLE  
LOADED  
LR0209  
57/66  
STE2004  
Table 23 Electrical Characteristics (continued)  
AC OPERATION (continued)  
(VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
2
I C BUS INTERFACE (See note 4, 7)  
F
SCL Clock Frequency  
Fast Mode  
DC  
DC  
400  
3.4  
kHz  
SCL  
High Speed Mode; Cb=100pF  
(max);note 6;VDD1=2  
MHz  
High Speed Mode; Cb=400pF  
(max);note 6; VDD1=2  
DC  
1.7  
MHz  
Fast Mode; note 6; VDD1=1.7V  
Note 2,3, Cb = 100pF  
400  
KHz  
ns  
T
T
Set-up time (repeated) START  
Condition  
160  
160  
SU;STA  
Hold Time (repeated) START  
Condition  
Note 2,3, Cb = 100pF  
ns  
HD;STA  
T
Low Period of SCLH Clock  
HIGH Period of SCLH Clock  
Data set-up Time  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 100pF  
160  
160  
60  
ns  
ns  
ns  
ns  
ns  
ns  
LOW  
T
HIGH  
T
T
SU;DAT  
HD;DAT  
Data Hold Time  
10  
T
Rise Time of SCLH Signal  
10  
r;CL  
T
r;CL1  
Rise Time of SCLH Signal after Note 2,3, Cb = 100pF  
a repeated START condition  
10  
and aftyer an Acknowledge bit  
T
Fall time of SCLH signal  
Rise time of SCLH signal  
Fall time of SDAH signal  
Rise Time of SDAH signal  
Fall Time of SDAH signal  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 100pF  
Note 2,3, Cb = 400pF  
Note 2,3, Cb = 400pF  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
f;CL  
T
r;DA  
T
10  
80  
f;DA  
T
r;DA  
20  
T
20  
160  
f;DA  
T
Setup Time for STOP condition Note 2,3, Cb = 100pF  
160  
100  
SU;STO  
Cb  
Capacitive Load for SDAH and  
SCLH  
400  
400  
Cb  
Capacitive Load for SDAH  
pF  
+SDA line and SCLH +SCL Line  
2
Figure 72. I C-bus timings  
Sr  
Sr P  
t
t
rDA  
fDA  
SDAH  
SCLH  
t
HD;DAT  
t
HD;STA  
t
SU;DAT  
t
SU;STA  
t
fCL  
t
t
t
rCL1  
rCL  
rCL1  
(1)  
(1)  
t
t
t
t
LOW HIGH  
HIGH LOW  
LR0093  
= MCS current source pull-up  
= Rp resistor pull-up  
58/66  
STE2004  
Table 23 Electrical Characteristics (continued)  
AC OPERATION (continued)  
(VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
PARALLEL INTERFACE  
T
T
System Cycle Time  
V
= 1.7V; Read & Write  
DD1  
125  
20  
75  
40  
55  
60  
60  
60  
60  
10  
10  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CYC  
CLW  
CHW  
Control Low Pulse Width (WR)  
Control High Pulse Width (WR)  
Control Low Pulse Width (RD)  
Control High Pulse Width (RD)  
Enable High Pulse Width (Write)  
Enable Low Pulse Width (Write)  
Enable High Pulse Width (Read)  
Enable Low Pulse Width (Read)  
Address Set-up Time  
T
T
CLR  
CHR  
T
T
EWHW  
T
T
EWLW  
EWHR  
T
EWLR  
T
SU(A)  
T
Address Hold Time  
H(A)  
T
Data Set-Up Time  
SU1  
T
Data Hold Time  
H1  
T
Read Access Time  
40  
30  
SU2  
T
Output Disable Time  
0
H2  
Figure 73. 68000-series Parallel interface timing  
D/C  
R/W  
t
SU(A)  
tH(A)  
CS  
E
t
CYC  
t
EWHR, tEWHW  
t
EWLR, tEWLW  
t
SU1  
t
H1  
D0 to D7  
(Write)  
t
SU2  
tH2  
D0 to D7  
(Read)  
Figure 74. 8080-series parallel Interface timing  
D/C  
t
SU(A)  
tH (A)  
CS  
t
CYC  
t
CLR , tCLW  
WR, RD  
t
CHR , tCHW  
t
SU1  
t
H1  
D0 to D7  
(Write)  
t
SU2  
tH2  
D0 to D7  
(Read)  
59/66  
STE2004  
Table 23 Electrical Characteristics (continued)  
AC OPERATION (continued)  
(VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =-40 to 85°C; unless otherwise specified)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
SERIAL INTERFACE  
F
T
T
T
T
T
T
T
T
T
T
T
T
T
Clock Frequency  
V
V
= 1.7V;  
8
MHz  
SCLK  
CYC  
PWH1  
PWL1  
S2  
DD1  
DD1  
Clock Cycle SCLK  
SCLK pulse width HIGH  
SCLK Pulse width LOW  
CS setup time  
125  
60  
60  
40  
50  
50  
30  
30  
30  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
= 1.7V  
CS hold time  
H2  
CS minimum high time  
SD/C setup time  
PWH2  
S3  
SD/C hold time  
H3  
SDIN setup time  
S4  
SDIN hold time  
H4  
SDOUT Access Time  
SDOUT Disable Time vs. SCLK  
SDOUT Disable Time vs. CS  
30  
S5  
0
0
20  
20  
H5  
H6  
Figure 75. Serial interface Timing  
t
t
t
PWH2  
S2  
H2  
CS  
t
t
H3  
S3  
D/C  
t
CYC  
t
t
WH1  
PWL1  
t
S2  
SCLK  
SDIN  
SOUT  
t
t
H4  
S4  
t
H6  
t
t
H5  
S5  
LR0096  
fosc  
Notes: 1. Fframe = ---------  
960  
2. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to V and V with  
IL  
IH  
an input voltage swing of V to V  
SS  
DD  
3. Cb is the capacitive load for each bus line.  
4. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated  
5. C  
is the filtering CApacitor on VLCD  
VLCD  
6. Trise and Tfall (30%-70%) -10ns  
2
7. I C bus AC Characteristics are tested by correlation  
60/66  
STE2004  
Table 28. Pad Coordinates  
Table 28. Pad Coordinates (continued)  
NAME  
R5  
PAD  
1
X (µm)  
-2925.0  
-2875.0  
-2825.0  
-2775.0  
-2725.0  
-2675.0  
-2625.0  
-2575.0  
-2525.0  
-2475.0  
-2425.0  
-2375.0  
-2325.0  
-2275.0  
-2225.0  
-2175.0  
-2125.0  
-2075.0  
-2025.0  
-1975.0  
-1925.0  
-1875.0  
-1825.0  
-1775.0  
-1725.0  
-1675.0  
-1625.0  
-1575.0  
-1525.0  
-1475.0  
-1425.0  
Y(µm)  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
NAME  
C25  
C26  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
C54  
C55  
PAD  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
X (µm)  
-1375.0  
-1325.0  
-1275.0  
-1225.0  
-1175.0  
-1125.0  
-1075.0  
-1025.0  
-975.0  
-925.0  
-875.0  
-825.0  
-775.0  
-725.0  
-675.0  
-625.0  
-575.0  
-525.0  
-475.0  
-425.0  
-375.0  
-325.0  
-275.0  
-225.0  
-175.0  
-125.0  
125.0  
Y(µm)  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
R4  
2
R3  
3
R2  
4
R1  
5
R0  
6
C0  
7
C1  
8
C2  
9
C3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
175.0  
225.0  
275.0  
325.0  
61/66  
STE2004  
Table 28. Pad Coordinates (continued)  
Table 28. Pad Coordinates (continued)  
NAME  
C56  
C57  
C58  
C59  
C60  
C61  
C62  
C63  
C64  
C65  
C66  
C67  
C68  
C69  
C70  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
PAD  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
X (µm)  
375.0  
Y(µm)  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
NAME  
C87  
C88  
C89  
C90  
C91  
C92  
C93  
C94  
C95  
C96  
C97  
C98  
C99  
C100  
C101  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
PAD  
94  
X (µm)  
1925.0  
1975.0  
2025.0  
2075.0  
2125.0  
2175.0  
2225.0  
2275.0  
2325.0  
2375.0  
2425.0  
2475.0  
2525.0  
2575.0  
2625.0  
2675.0  
2725.0  
2775.0  
2825.0  
2875.0  
2925.0  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
Y(µm)  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-596.5  
-525.0  
-475.0  
-425.0  
-375.0  
-325.0  
-275.0  
-225.0  
-175.0  
-125.0  
-75.0  
425.0  
95  
475.0  
96  
525.0  
97  
575.0  
98  
625.0  
99  
675.0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
725.0  
775.0  
825.0  
875.0  
925.0  
975.0  
1025.0  
1075.0  
1125.0  
1175.0  
1225.0  
1275.0  
1325.0  
1375.0  
1425.0  
1475.0  
1525.0  
1575.0  
1625.0  
1675.0  
1725.0  
1775.0  
1825.0  
1875.0  
62/66  
STE2004  
Table 28. Pad Coordinates (continued)  
Table 28. Pad Coordinates (continued)  
NAME  
R48  
PAD  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
X (µm)  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
3086.5  
2925.0  
2875.0  
2825.0  
2775.0  
2725.0  
2475.0  
2425.0  
2375.0  
2325.0  
1975.0  
1925.0  
1875.0  
1825.0  
1775.0  
1725.0  
1675.0  
1625.0  
1575.0  
1525.0  
Y(µm)  
-25.0  
25.0  
NAME  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
RES  
PAD  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
X (µm)  
1475.0  
1425.0  
1375.0  
1325.0  
1275.0  
1225.0  
1175.0  
1125.0  
1075.0  
1025.0  
975.0  
Y(µm)  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
R49  
R50  
75.0  
R51  
125.0  
175.0  
225.0  
275.0  
325.0  
375.0  
425.0  
475.0  
525.0  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
925.0  
R60  
875.0  
R61  
825.0  
R62  
775.0  
R63  
725.0  
R64-ICON  
VDD1_AUX  
FR_IN  
OSC_IN  
VSENSE_SLAVE  
TEST_VREF  
VSSAUX  
SA1  
375.0  
CS  
275.0  
D/C  
175.0  
R/W - RD  
E - WR  
VSSAUX  
SDAOUT  
SDIN-SDAIN  
SDOUT  
SCLK-SCL  
D7  
75.0  
-25.0  
-75.0  
-175.0  
-225.0  
-275.0  
-375.0  
-425.0  
-475.0  
-525.0  
-575.0  
-625.0  
SA0  
M/S  
EXT_SET  
SEL3  
SEL2  
SEL1  
ICON  
D6  
D5  
D4  
D3  
63/66  
STE2004  
Table 28. Pad Coordinates (continued)  
Table 28. Pad Coordinates (continued)  
NAME  
D2  
PAD  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
X (µm)  
-675.0  
Y(µm)  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
596.5  
525.0  
R26  
NAME  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
217  
PAD  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
-3086.5  
X (µm)  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
-3086.5  
475.0  
Y(µm)  
425.0  
375.0  
325.0  
275.0  
225.0  
175.0  
125.0  
75.0  
D1  
-725.0  
D0  
-775.0  
VSSAUX  
TEST_MODE  
VSS  
-825.0  
-1225.0  
-1275.0  
-1325.0  
-1375.0  
-1425.0  
-1475.0  
-1525.0  
-1575.0  
-1625.0  
-1675.0  
-1725.0  
-1775.0  
-1825.0  
-2075.0  
-2125.0  
-2175.0  
-2225.0  
-2275.0  
-2325.0  
-2475.0  
-2525.0  
-2775.0  
-2825.0  
-2875.0  
-2925.0  
-3086.5  
VSS  
VSS  
VSS  
VSS  
25.0  
VSS  
-25.0  
VSS  
-75.0  
VSS  
-125.0  
-175.0  
-225.0  
-275.0  
-325.0  
-375.0  
-425.0  
-475.0  
-525.0  
VSS  
VSS  
VSS  
VSS  
VLCDSENSE  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
OSC_OUT  
FR_OUT  
R31  
R8  
R7  
R6  
Table 29. Alignment marks coordinates  
MARKS  
mark1  
mark2  
mark3  
mark4  
X
Y
-3089.5  
3089.5  
-2400.0  
538.1  
-599.5  
-599.5  
599.5  
599.5  
R30  
R29  
R28  
R27  
64/66  
STE2004  
Figure 76. Alignment marks dimensions  
Table 30. Bumps  
Bump  
Dimensions  
Number  
Bumps Size  
Pad Size  
30  
µ
m X 98  
µm X 17.5  
43 m X 107µm  
µ
Pad Pitch  
50  
µ
µ
m
m
39 µm  
Spacing between  
Bumps  
20  
94 µm  
Table 31. Die Mechanical Dimensions  
Die Size (X x Y)  
6.42mm x 1.46mm  
Wafers Thickness  
500µm  
Table 32. Revision History  
Date  
Revision  
Description of Changes  
May 2004  
3
Moved the value of FSCLK parameter from Min. to Max. on the page 60/  
66.  
July 2004  
4
Inserted Table 24 -N-Line Inversion in the page 44/66  
65/66  
STE2004  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
66/66  

相关型号:

STE2004S

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2004SDIE2

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2007

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007DIE2

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007_06

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2028

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2028D3

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2102

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR

STE2102D3

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR

STE2130S

240RGB x 320 single chip true 262K color controller/driver
STMICROELECTR

STE220-100T3KI

CAP TANT 220UF 100V 10% AXIAL
VISHAY

STE2200-50T4KI

CAP TANT 2200UF 50V 10% AXIAL
VISHAY