TS881 [STMICROELECTRONICS]

Rail-to-rail 1.1 V nanopower comparator; 轨至轨1.1 V纳安级比较
TS881
型号: TS881
厂家: ST    ST
描述:

Rail-to-rail 1.1 V nanopower comparator
轨至轨1.1 V纳安级比较

文件: 总17页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TS881  
Rail-to-rail 1.1 V nanopower comparator  
Datasheet production data  
Features  
Ultra low current consumption: 210 nA typ.  
Propagation delay: 2 µs typ.  
Rail-to-rail inputs  
Push-pull output  
Supply operation from 1.1 V to 5.5 V  
Wide temperature range: -40 to +125 °C  
ESD tolerance: 4 kV HBM / 300 V MM  
SMD package  
SC70-5 (top view)  
Applications  
Figure 1.  
Pin connections (top view)  
Portable systems  
Signal conditioning  
Medical  
/54  
6
##  
Description  
6
##  
The TS881 device is a single comparator  
featuring ultra low supply current (210 nA typical  
with output high, V = 1.2 V, no load) with rail-to-  
CC  
).ꢁ  
).ꢀ  
rail input and output capability. The performance  
of this comparator allows it to be used in a wide  
range of portable applications. The TS881 device  
minimizes battery supply leakage and therefore  
enhances battery lifetime.  
Operating from 1.1 to 5.5 V supply voltage, this  
comparator can be used over a wide temperature  
range (-40 to +125 °C) keeping the current  
consumption at an ultra low level.  
The TS881 device is available in the SC70-5  
package, allowing great space saving on the  
PCB.  
July 2012  
Doc ID 023340 Rev 1  
1/17  
This is information on a product in full production.  
www.st.com  
17  
Contents  
TS881  
Contents  
1
2
3
4
5
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2/17  
Doc ID 023340 Rev 1  
TS881  
Absolute maximum ratings and operating conditions  
1
Absolute maximum ratings and operating conditions  
Table 1.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
(1)  
V
Supply voltage  
6
6
V
V
V
CC  
(2)  
V
Differential input voltage  
ID  
IN  
V
Input voltage range  
(V -) - 0.3 to (V +) + 0.3  
CC CC  
Thermal resistance junction-to-  
(3)  
ambient  
R
°C/W  
THJA  
205  
SC70-5  
T
Storage temperature  
Junction temperature  
Lead temperature (soldering 10 seconds)  
-65 to +150  
150  
°C  
°C  
°C  
kV  
STG  
T
J
T
260  
LEAD  
(4)  
Human body model (HBM)  
4
(5)  
ESD  
Machine model (MM)  
300  
V
(6)  
Charged device model (CDM)  
1300  
200  
Latch-up immunity  
mA  
1. All voltage values, except differential voltages, are referenced to VCC-. VCC is defined as the difference  
between VCC+ and VCC-.  
2. The magnitude of input and output voltages must never exceed the supply rail 0.3 V.  
3. Short-circuits can cause excessive heating. These values are typical.  
4. According to JEDEC standard JESD22-A114F.  
5. According to JEDEC standard JESD22-A115A.  
6. According to ANSI/ESD STM5.3.1.  
Table 2.  
Symbol  
Operating conditions  
Parameter  
Value  
Unit  
T
Operating temperature range  
Supply voltage  
-40 to +125  
°C  
oper  
V
V
V
CC  
-40 °C < T  
< +125 °C  
1.1 to 5.5  
amb  
Common mode input voltage range  
V
-40 °C < T  
-40 °C < T  
< +85 °C  
< +125 °C  
V
- 0.2 to V  
+ 0.2  
CC+  
ICM  
amb  
amb  
CC-  
V
to V  
+ 0.2  
CC-  
CC+  
Doc ID 023340 Rev 1  
3/17  
Electrical characteristics  
TS881  
2
Electrical characteristics  
(1)  
Table 3.  
Symbol  
V
= +1.2 V, T  
= +25 °C, V  
= V /2 (unless otherwise specified)  
CC  
CC  
amb  
ICM  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
(2)  
V
Input offset voltage  
-40 °C < T  
< +125 °C  
< +125 °C  
< +125 °C  
-6  
1
3
6
mV  
µV/°C  
mV  
IO  
amb  
ΔV  
Input offset voltage drift  
Input hysteresis voltage  
-40 °C < T  
amb  
IO  
HYST  
(3)  
V
-40 °C < T  
1.6  
2.4  
4.2  
amb  
10  
100  
(4)  
I
Input offset current  
pA  
pA  
IO  
-40 °C < T  
< +125 °C  
< +125 °C  
amb  
1
10  
100  
(4)  
I
Input bias current  
IB  
-40 °C < T  
amb  
No load, output low, V = -0.1 V  
300  
450  
500  
ID  
-40 °C < T  
< +85 °C  
amb  
-40 °C < T  
< +125 °C  
1050  
amb  
I
I
Supply current per operator  
nA  
CC  
No load, output high, V = +0.1 V  
210  
350  
400  
950  
ID  
-40 °C < T  
< +85 °C  
amb  
-40 °C < T  
< +125 °C  
amb  
Source  
Sink  
1.4  
1.0  
Short-circuit current  
Output voltage high  
mA  
V
SC  
I
= 0.2 mA  
1.13  
1.10  
1.00  
1.15  
source  
V
-40 °C < T  
< +85 °C  
OH  
amb  
-40 °C < T  
< +125 °C  
amb  
I
= 0.2 mA  
40  
50  
60  
70  
sink  
V
Output voltage low  
-40 °C < T  
-40 °C < T  
< +85 °C  
< +125 °C  
mV  
dB  
OL  
amb  
amb  
0 < V  
-40 °C < T  
< V  
68  
ICM  
CC  
< +125 °C  
CMRR Common mode rejection ratio  
50  
amb  
f = 1 kHz, C = 30 pF, R = 1 MΩ  
L
L
6
11  
13  
Overdrive = 10 mV  
Propagation delay  
(low to high)  
-40 °C < T  
< +125 °C  
amb  
T
T
µs  
PLH  
PHL  
2.2  
3.1  
3.4  
Overdrive = 100 mV  
-40 °C < T < +125 °C  
amb  
f = 1 kHz, C = 30 pF, R = 1 MΩ  
L
L
Overdrive = 10 mV  
5.1  
8
10  
Propagation delay  
(high to low)  
-40 °C < T  
< +125 °C  
amb  
µs  
ns  
Overdrive = 100 mV  
-40 °C < T < +125 °C  
2.0  
2.6  
3.1  
amb  
T
Rise time (10% to 90%)  
C = 30 pF, R = 1 MΩ  
100  
R
L
L
4/17  
Doc ID 023340 Rev 1  
TS881  
Electrical characteristics  
(1)  
Table 3.  
Symbol  
V
= +1.2 V, T  
Parameter  
= +25 °C, V  
= V /2 (unless otherwise specified) (continued)  
CC  
CC  
amb  
ICM  
Test conditions  
C = 30 pF, R = 1 MΩ  
Min.  
Typ.  
Max.  
Unit  
T
Fall time (90% to 10%)  
Power-up time  
110  
1.0  
ns  
F
L
L
T
1.5  
ms  
ON  
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed  
at the temperature range limits.  
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to  
change the output state in each direction).  
3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.  
4. Maximum values include unavoidable inaccuracies of the industrial tests.  
(1)  
Table 4.  
Symbol  
V
= +2.7 V, T  
Parameter  
= +25 °C, V  
= V /2 (unless otherwise specified)  
CC  
CC  
amb  
ICM  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
1
(2)  
V
Input offset voltage  
mV  
µV/°C  
mV  
IO  
-40 °C < T  
< +125 °C  
< +125 °C  
amb  
-6  
6
amb  
ΔV  
Input offset voltage drift  
Input hysteresis voltage  
-40 °C < T  
3
IO  
2.7  
(3)  
V
HYST  
-40 °C < T  
< +125 °C  
< +125 °C  
< +125 °C  
1.6  
4.2  
amb  
10  
100  
(4)  
I
Input offset current  
pA  
pA  
IO  
-40 °C < T  
amb  
1
10  
100  
(4)  
I
Input bias current  
IB  
-40 °C < T  
amb  
No load, output low, V = -0.1 V  
310  
450  
500  
ID  
-40 °C < T  
< +85 °C  
amb  
-40 °C < T  
< +125 °C  
1150  
amb  
I
I
Supply current per operator  
nA  
CC  
No load, output high, V = +0.1 V  
220  
350  
400  
1050  
ID  
-40 °C < T  
< +85 °C  
amb  
-40 °C < T  
< +125 °C  
amb  
Source  
Sink  
12  
10  
Short-circuit current  
Output voltage high  
mA  
V
SC  
I
= 2 mA  
2.48  
2.40  
2.10  
2.51  
140  
74  
source  
V
-40 °C < T  
< +85 °C  
OH  
amb  
-40 °C < T  
< +125 °C  
amb  
I
= 2 mA  
210  
230  
310  
sink  
V
Output voltage low  
-40 °C < T  
< +85 °C  
mV  
dB  
OL  
amb  
-40 °C < T  
< +125 °C  
amb  
0 < V  
< V  
CC  
ICM  
CMRR Common mode rejection ratio  
-40 °C < T  
< +125 °C  
55  
amb  
f = 1 kHz, C = 30 pF, R = 1 MΩ  
L
L
Overdrive = 10 mV  
6.3  
2.4  
12  
13  
Propagation delay  
(low to high)  
-40 °C < T  
< +125 °C  
amb  
T
µs  
PLH  
Overdrive = 100 mV  
-40 °C < T < +125 °C  
3.0  
3.7  
amb  
Doc ID 023340 Rev 1  
5/17  
Electrical characteristics  
TS881  
(1)  
Table 4.  
Symbol  
V
= +2.7 V, T  
Parameter  
= +25 °C, V  
= V /2 (unless otherwise specified) (continued)  
CC  
CC  
amb  
ICM  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
f = 1 kHz, C = 30 pF, R = 1 MΩ  
L
L
Overdrive = 10 mV  
6.4  
12  
14  
Propagation delay  
(high to low)  
-40 °C < T  
< +125 °C  
amb  
T
µs  
PHL  
Overdrive = 100 mV  
-40 °C < T < +125 °C  
2.3  
3.0  
3.7  
amb  
T
T
Rise time (10% to 90%)  
Fall time (90% to 10%)  
Power-up time  
C = 30 pF, R = 1 MΩ  
120  
130  
0.9  
ns  
ns  
R
L
L
C = 30 pF, R = 1 MΩ  
F
L
L
T
1.5  
ms  
ON  
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed  
at the temperature range limits.  
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to  
change the output state in each direction).  
3. The hysteresis is a built-in feature of the TS881. It is defined as the voltage difference between the trip points.  
4. Maximum values include unavoidable inaccuracies of the industrial tests.  
(1)  
Table 5.  
Symbol  
V
= +5 V, T  
= +25 °C, V  
= V /2 (unless otherwise specified)  
ICM  
CC  
amb  
CC  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
1
(2)  
V
Input offset voltage  
mV  
µV/°C  
mV  
IO  
-40 °C < T  
< +125 °C  
< +125 °C  
amb  
-6  
6
amb  
ΔV  
Input offset voltage drift  
Input hysteresis voltage  
-40 °C < T  
3
IO  
3.1  
(3)  
V
HYST  
-40 °C < T  
< +125 °C  
< +125 °C  
< +125 °C  
1.6  
4.2  
amb  
10  
100  
(4)  
I
Input offset current  
pA  
pA  
IO  
-40 °C < T  
amb  
1
10  
100  
(4)  
I
Input bias current  
IB  
-40 °C < T  
amb  
No load, output low, V = -0.1 V  
350  
500  
750  
ID  
-40 °C < T  
< +85 °C  
amb  
-40 °C < T  
< +125 °C  
1350  
amb  
I
I
Supply current per operator  
nA  
CC  
No load, output high, V = +0.1 V  
250  
400  
650  
1250  
ID  
-40 °C < T  
< +85 °C  
amb  
-40 °C < T  
< +125 °C  
amb  
Source  
Sink  
32  
36  
Short-circuit current  
Output voltage high  
mA  
V
SC  
I
= 2 mA  
4.86  
4.75  
4.60  
4.90  
source  
V
-40 °C < T  
< +85 °C  
OH  
amb  
-40 °C < T  
< +125 °C  
amb  
I
= 2 mA  
95  
130  
170  
280  
sink  
V
Output voltage low  
-40 °C < T  
-40 °C < T  
< +85 °C  
< +125 °C  
mV  
OL  
amb  
amb  
6/17  
Doc ID 023340 Rev 1  
TS881  
Electrical characteristics  
(1)  
Table 5.  
Symbol  
V
= +5 V, T  
= +25 °C, V  
= V /2 (unless otherwise specified) (continued)  
ICM  
CC  
amb  
CC  
Test conditions  
< V  
Parameter  
Min.  
Typ.  
Max.  
Unit  
0 < V  
78  
ICM  
CC  
CMRR Common mode rejection ratio  
SVR Supply voltage rejection  
dB  
-40 °C < T  
< +125 °C  
55  
65  
amb  
ΔV = 1.2 V to 5 V  
80  
CC  
dB  
-40 °C < T  
< +125 °C  
amb  
f = 1 kHz, C = 30 pF, R = 1 MΩ  
L
L
Overdrive = 10 mV  
7.8  
2.6  
13  
22  
Propagation delay  
(low to high)  
-40 °C < T  
< +125 °C  
amb  
T
T
µs  
PLH  
PHL  
Overdrive = 100 mV  
-40 °C < T < +125 °C  
3.4  
4.1  
amb  
f = 1 kHz, C = 30 pF, R = 1 MΩ  
L
L
Overdrive = 10 mV  
8.9  
2.7  
16  
19  
Propagation delay  
(high to low)  
-40 °C < T  
< +125 °C  
amb  
µs  
Overdrive = 100 mV  
-40 °C < T < +125 °C  
3.5  
4.2  
amb  
T
T
Rise time (10% to 90%)  
Fall time (90% to 10%)  
Power-up time  
C = 30 pF, R = 1 MΩ  
160  
150  
1.1  
ns  
ns  
R
L
L
C = 30 pF, R = 1 MΩ  
F
L
L
T
1.5  
ms  
ON  
1. All values over the temperature range are guaranteed through correlation and simulation. No production test is performed  
at the temperature range limits.  
2. The offset is defined as the average value of positive and negative trip points (input voltage differences requested to  
change the output state in each direction).  
3. The hysteresis is a built-in feature of the TS881 device. It is defined as the voltage difference between the trip points.  
4. Maximum values include unavoidable inaccuracies of the industrial tests.  
Doc ID 023340 Rev 1  
7/17  
Electrical characteristics  
TS881  
Figure 2. Current consumption vs. supply  
voltage - output low  
Figure 3. Current consumption vs. supply  
voltage - output high  
6
ꢉ 6 ꢊꢃ  
##  
)#-  
OUTPUT ()'(  
6
ꢉ 6 ꢊꢃ  
##  
)#-  
OUTPUT ,/7  
6 ꢇ6ꢈ  
##  
6
ꢇ6ꢈ  
##  
!-ꢋꢋꢆꢌꢌ  
!-ꢋꢋꢆꢌꢍ  
Figure 4. Current consumption vs. input  
common mode voltage  
Figure 5. Current consumption vs. input  
common mode voltage at V = 5 V  
CC  
at V = 1.2 V  
CC  
6
ꢉ ꢅ 6  
6
ꢉ ꢂꢏꢃ 6  
##  
OUTPUT ,/7  
##  
OUTPUT ,/7  
6 ꢇ6ꢈ  
)#-  
6
ꢇ6ꢈ  
)#-  
!-ꢋꢋꢆꢎꢋ  
!-ꢋꢋꢆꢌꢎ  
Figure 6. Current consumption vs.  
temperature  
Figure 7. Current consumption vs. toggle  
frequency  
6
6
ꢉ ꢅ 6  
##  
)#- ꢉ ##  
6
6
ꢊꢃ  
)#- ꢉ ##  
6
ꢊꢃ  
4 ꢉ ꢃꢅ #  
6
ꢉ ꢅ 6  
##  
6
ꢉ ꢃꢏꢍ 6  
##  
6
ꢉ ꢂꢏꢃ 6  
##  
!-ꢋꢋꢆꢎꢂ  
!-ꢋꢋꢆꢎꢃ  
8/17  
Doc ID 023340 Rev 1  
TS881  
Electrical characteristics  
Figure 8. Input offset voltage vs. input  
common mode voltage  
Figure 9. Input hysteresis voltage vs. input  
common mode voltage  
at V = 1.2 V  
at V = 1.2 V  
CC  
CC  
6
ꢉ ꢂꢏꢃ 6  
6
ꢉ ꢂꢏꢃ 6  
##  
##  
6
ꢇ6ꢈ  
)#-  
6
ꢇ6ꢈ  
)#-  
!-ꢋꢋꢆꢎꢆ  
!-ꢋꢋꢆꢎꢄ  
Figure 10. Input offset voltage vs. input  
Figure 11. Input hysteresis voltage vs. input  
common mode voltage at V = 5 V  
common mode voltage at V = 5 V  
CC  
CC  
6 ꢉ ꢅ 6  
##  
6
ꢉ ꢅ 6  
##  
6
ꢇ6ꢈ  
6
ꢇ6ꢈ  
)#-  
)#-  
!-ꢋꢋꢆꢎꢅ  
!-ꢋꢋꢆꢎꢐ  
Figure 12. Input offset voltage vs. temperature Figure 13. Input hysteresis voltage vs.  
temperature  
6
ꢉ 6 ꢊꢃ  
##  
6
ꢉ 6 ꢊꢃ  
)#- ##  
)#-  
6 ꢉ ꢅ 6  
##  
6
ꢉ ꢂꢏꢃ 6  
##  
6
ꢉ ꢅ 6  
##  
6
ꢉ ꢂꢏꢃ 6  
##  
!-ꢋꢋꢆꢎꢍ  
!-ꢋꢋꢆꢎꢌ  
Doc ID 023340 Rev 1  
9/17  
Electrical characteristics  
TS881  
Figure 14. Output voltage drop vs. sink current Figure 15. Output voltage drop vs. source  
at V = 1.2 V current at V = 1.2 V  
CC  
ꢉ ꢂꢏꢃ 6  
CC  
6
##  
6
ꢉ ꢂꢏꢃ 6  
##  
)
ꢇ!ꢈ  
)
ꢇ!ꢈ  
3/52#%  
3).+  
!-ꢋꢋꢆꢎꢎ  
!-ꢋꢋꢅꢋꢋ  
Figure 16. Output voltage drop vs. sink current Figure 17. Output voltage drop vs. source  
at V = 2.7 V current at V = 2.7 V  
CC  
ꢉ ꢃꢏꢍ 6  
CC  
6
6
ꢉ ꢃꢏꢍ 6  
##  
##  
)
ꢇ!ꢈ  
)
ꢇ!ꢈ  
3/52#%  
3).+  
!-ꢂꢆꢐꢋꢋ  
!-ꢂꢆꢐꢋꢂ  
Figure 18. Output voltage drop vs. sink current Figure 19. Output voltage drop vs. source  
at V = 5 V  
current at V = 5 V  
CC  
CC  
6
ꢉ ꢅ 6  
6
ꢉ ꢅ 6  
##  
##  
)
ꢇ!ꢈ  
)
ꢇ!ꢈ  
3/52#%  
3).+  
!-ꢂꢆꢐꢋꢄ  
!-ꢂꢆꢐꢋꢃ  
10/17  
Doc ID 023340 Rev 1  
TS881  
Electrical characteristics  
Figure 20. Propagation delay TPLH vs. input  
common mode voltage at VCC = 1.2 V  
Figure 21. Propagation delay TPHL vs. input  
common mode voltage at VCC = 1.2 V  
6
6
ꢉ ꢂꢏꢃ 6  
6
6
ꢉ ꢂꢏꢃ 6  
ꢉ ꢂꢋꢋ M6  
##  
/6  
##  
/6  
ꢉ ꢂꢋꢋ M6  
6 ꢇ6ꢈ  
)#-  
6
ꢇ6ꢈ  
)#-  
!-ꢂꢆꢐꢋꢅ  
!-ꢂꢆꢐꢋꢆ  
Figure 22. Propagation delay T  
vs. input  
Figure 23. Propagation delay T  
vs. input  
PHL  
PLH  
common mode voltage at V = 5 V  
common mode voltage at V = 5 V  
CC  
CC  
6
6
ꢉ ꢅ 6  
6
6
ꢉ ꢅ 6  
##  
/6  
##  
ꢉ ꢂꢋꢋ M6  
ꢉ ꢂꢋꢋ M6  
/6  
6
ꢇ6ꢈ  
6
ꢇ6ꢈ  
)#-  
)#-  
!-ꢂꢆꢐꢋꢍ  
!-ꢂꢆꢐꢋꢐ  
Figure 24. Propagation delay T  
vs. input  
Figure 25. Propagation delay T  
vs. input  
PHL  
PLH  
signal overdrive at V = 1.2 V  
signal overdrive at V = 1.2 V  
CC  
CC  
6
6
ꢉ ꢂꢏꢃ 6  
##  
6
6
ꢉ ꢂꢏꢃ 6  
##  
ꢉ ꢋꢏꢐ 6  
)#-  
ꢉ ꢋꢏꢐ 6  
)#-  
6
ꢇM6ꢈ  
/6  
6
ꢇM6ꢈ  
/6  
!-ꢂꢆꢐꢋꢎ  
!-ꢂꢆꢐꢋꢌ  
Doc ID 023340 Rev 1  
11/17  
Electrical characteristics  
TS881  
Figure 26. Propagation delay T  
vs. input  
Figure 27. Propagation delay T  
vs. input  
PHL  
PLH  
signal overdrive at V = 5 V  
signal overdrive at V = 5 V  
CC  
CC  
6
6
ꢉ ꢅ 6  
##  
6
6
ꢉ ꢅ 6  
##  
ꢉ ꢃꢏꢅ 6  
)#-  
ꢉ ꢃꢏꢅ 6  
)#-  
6
ꢇM6ꢈ  
6
ꢇM6ꢈ  
/6  
/6  
!-ꢂꢆꢐꢂꢂ  
!-ꢂꢆꢐꢂꢋ  
Figure 28. Propagation delay T  
vs. supply Figure 29. Propagation delay T  
vs. supply  
PHL  
PLH  
voltage for signal overdrive 10 mV  
voltage for signal overdrive 10 mV  
6
6
ꢉ 6 ꢊꢃ  
6
6
ꢉ 6 ꢊꢃ  
)#-  
##  
)#-  
##  
ꢉ ꢂꢋ M6  
ꢉ ꢂꢋ M6  
/6  
/6  
6
ꢇ6ꢈ  
##  
6
ꢇ6ꢈ  
##  
!-ꢂꢆꢐꢂꢃ  
!-ꢂꢆꢐꢂꢄ  
Figure 30. Propagation delay T  
vs. supply Figure 31. Propagation delay T  
vs. supply  
PHL  
PLH  
voltage for signal overdrive 100 mV  
voltage for signal overdrive 100 mV  
6
6
ꢉ 6 ꢊꢃ  
6
6
ꢉ 6 ꢊꢃ  
##  
ꢉ ꢂꢋꢋ M6  
)#-  
##  
)#-  
ꢉ ꢂꢋꢋ M6  
/6  
/6  
6
ꢇ6ꢈ  
##  
6
ꢇ6ꢈ  
##  
!-ꢂꢆꢐꢂꢅ  
!-ꢂꢆꢐꢂꢆ  
12/17  
Doc ID 023340 Rev 1  
TS881  
Electrical characteristics  
Figure 32. Propagation delay vs. temperature Figure 33. Propagation delay vs. temperature  
for signal overdrive 10 mV  
for signal overdrive 100 mV  
6
6
ꢉ ꢂꢋ M6  
/6  
4
6
6
ꢉ ꢂꢋꢋ M6  
0(,  
/6  
ꢉ 6 ꢊꢃ  
##  
)#-  
4
6
ꢉ ꢅ 6  
ꢉ 6 ꢊꢃ  
##  
0,(  
ꢉ ꢅ 6  
##  
)#-  
4
0(,  
6
##  
6
ꢉ ꢅ 6  
##  
4
0,(  
ꢉ ꢅ 6  
6
##  
4
6
0(,  
4
6
0,(  
ꢉ ꢂꢏꢃ 6  
4
6
##  
4
0(,  
0,(  
ꢉ ꢂꢏꢃ 6  
ꢉ ꢂꢏꢃ 6  
##  
ꢉ ꢂꢏꢃ 6  
6
##  
##  
!-ꢂꢆꢐꢂꢐ  
!-ꢂꢆꢐꢂꢍ  
Doc ID 023340 Rev 1  
13/17  
Package information  
TS881  
3
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com. ECOPACK  
is an ST trademark.  
14/17  
Doc ID 023340 Rev 1  
TS881  
Package information  
Figure 34. SC70-5 (SOT323-5) package outline  
Table 6.  
SC70-5 (SOT323-5) package mechanical data  
Dimensions  
Symbol  
Millimeters  
Mils  
Min.  
0.80  
0.00  
0.80  
0.15  
0.10  
1.80  
1.80  
1.15  
Typ.  
Max.  
1.10  
0.10  
1.00  
0.30  
0.22  
2.20  
2.40  
1.35  
Min.  
31.5  
0.0  
Typ.  
Max.  
43.3  
3.9  
A
A1  
A2  
b
0.9  
31.5  
5.9  
35.4  
39.4  
11.8  
8.7  
C
3.9  
D
70.9  
70.9  
45.3  
86.6  
94.5  
53.1  
E
E1  
e
1.25  
0.65  
1.3  
49.2  
25.6  
51.2  
14.2  
e1  
L
0.26  
0.36  
0.46  
10.2  
18.1  
Doc ID 023340 Rev 1  
15/17  
Ordering information  
TS881  
4
Ordering information  
Table 7.  
Order codes  
Temperature  
Order code  
TS881ICT  
Package  
Packaging  
Marking  
K56  
range  
-40 to +125 °C  
SC70-5  
Tape and reel  
5
Revision history  
Table 8.  
Date  
18-Jul-2012  
Document revision history  
Revision  
Changes  
1
Initial release.  
16/17  
Doc ID 023340 Rev 1  
TS881  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2012 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 023340 Rev 1  
17/17  

相关型号:

TS882

Rail-to-rail 1.1 V dual and quad nanopower comparators
STMICROELECTR

TS882IQ2T

Rail-to-rail 1.1 V dual and quad nanopower comparators
STMICROELECTR

TS882IST

Rail-to-rail 1.1 V dual and quad nanopower comparators
STMICROELECTR

TS884IDT

Rail-to-rail 1.1 V dual and quad nanopower comparators
STMICROELECTR

TS884IPT

Rail-to-rail 1.1 V dual and quad nanopower comparators
STMICROELECTR

TS884IQ4T

Rail-to-rail 1.1 V dual and quad nanopower comparators
STMICROELECTR

TS88915T

TS88915T [Updated 6/02. 19 Pages] Low Skew CMOS PLL Clock Driver. 3 state 70 and 100 MHZ versions
ETC

TS88915TCRD/T100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TS88915TCRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TS88915TMR70

PLL Based Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TS88915TMRB/T70

PLL Based Clock Driver, 8 True Output(s), 0 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL