TSM102ID [STMICROELECTRONICS]

DUAL OPERATIONAL AMPLIFIER - DUAL COMPARATOR AND ADJUSTABLE VOLTAGE REFERENCE; 双路运算放大器 - 双比较器和可调电压基准
TSM102ID
型号: TSM102ID
厂家: ST    ST
描述:

DUAL OPERATIONAL AMPLIFIER - DUAL COMPARATOR AND ADJUSTABLE VOLTAGE REFERENCE
双路运算放大器 - 双比较器和可调电压基准

比较器 运算放大器 光电二极管
文件: 总10页 (文件大小:77K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSM102/A  
DUAL OPERATIONAL AMPLIFIER - DUAL COMPARATOR  
AND ADJUSTABLE VOLTAGE REFERENCE  
OPERATIONAL AMPLIFIERS  
.
.
.
LOW SUPPLYCURRENT : 200µA/amp.  
MEDIUM SPEED : 2.1MHz  
LOW LEVEL OUTPUT VOLTAGE CLOSE TO  
VCC- : 0.1V typ.  
.
INPUT COMMON MODE VOLTAGE RANGE  
INCLUDES GROUND  
N
DIP16  
(Plastic Package)  
COMPARATORS  
.
.
LOW SUPPLYCURRENT : 200µA/amp.  
(VCC = 5V)  
INPUT COMMON MODE VOLTAGE RANGE  
INCLUDES GROUND  
LOW OUTPUT SATURATION VOLTAGE :  
250mV (Io = 4mA)  
.
D
SO16  
(Plastic Micropackage)  
REFERENCE  
.
ADJUSTABLE OUTPUT VOLTAGE :  
V
ref to 32V  
.
.
ORDER CODES  
SINK CURRENT CAPABILITY : 1 to 100mA  
1% and 0.4% VOLTAGE PRECISION  
Package  
Part number Temperature Range  
N
D
.
LACTH-UP IMMUNITY  
TSM102I  
-40oC, +85oC  
-40oC, +85oC  
TSM102AI  
PIN CONNECTIONS  
Output  
1
16  
15  
14  
13  
12  
11  
10  
9
Output 4  
1
2
3
Inverting Input 1  
Inverting Input  
Non-inverting Input 1  
Non-inverting Input  
4
COMP  
COMP  
VCC  
-
VCC  
+
4
5
Non-inverting Input 2  
Inverting Input 2  
Non-inverting Input  
Inverting Input 3  
3
6
7
8
DESCRIPTION  
Output  
2
Output 3  
Ca thode  
The TSM102 is a monolithic IC that includes two  
op-amps, two comparators and a precisionvoltage  
reference. This device is offering space and cost  
savingin many applicationslike powersupply man-  
agement or data acquisitionsystems.  
Vref  
February1999  
1/10  
TSM102  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
36  
Unit  
V
VCC  
Vid  
Supply Voltage  
Differential Input Voltage  
Input Voltage  
36  
V
Vi  
-0.3 to +36  
-40 to +125  
150  
V
Toper  
Tj  
Operating Free-air Temperature Range  
Maximum Junction Temperature  
oC  
oC  
Thermal Resistance Juction to Ambient (SO package)  
150  
oC/W  
ELECTRICAL CHARACTERISTICS  
VCC+ = 5V, VCC- = 0V, Tamb = 25oC (unless otherwise specified)  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
ICC  
Total Supply Current  
Tmin. < Tamb < Tmax.  
0.8  
1.5  
2
mA  
OPERATIONAL AMPLIFIERS  
VCC+ = 5V, VCC = GND, R1 connectedto VCC/2,Tamb = 25oC (unlessotherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Vio  
Input Offset Voltage  
min. Tamb Tmax.  
1
4.5  
6.5  
mV  
T
DVio  
Iib  
Input Offset Voltage Drift  
10  
20  
µV/oC  
Input Bias Current  
100  
200  
nA  
T
min. Tamb Tmax.  
Input Offset Current  
min. Tamb Tmax.  
Iio  
5
20  
40  
nA  
T
Avd  
Large Signal Voltage Gain  
R1 = 10k, VCC+ = 30V, Vo = 5V to 25V  
50  
25  
100  
100  
V/mV  
dB  
T
min. Tamb Tmax.  
SVR  
Vicm  
CMR  
Isc  
Supply Voltage Rejection Ratio  
VCC = 5V to 30V  
80  
Input Common Mode Voltage Range  
(VCC-) to (VCC+) -1.8  
V
T
min. Tamb Tmax.  
(VCC-) to (VCC+) -2.2  
Common Mode Rejection Ratio  
70  
90  
dB  
VCC+ = 30V, Vicm = 0V to (VCC+) -1.8V  
Output Short Circuit Current  
Vid = ±1V, Vo = 2.5V  
Source  
mA  
3
3
6
6
Sink  
VOH  
High Level Output Voltage  
RL = 10kΩ  
RL = 10kΩ  
V
VCC+ = 30V  
27  
26  
28  
100  
2
T
min. Tamb Tmax.  
VOL  
SR  
Low Level Output Voltage  
min. Tamb Tmax.  
150  
210  
mV  
T
Slew Rate  
VCC = ±15V  
1.6  
1.4  
V/µs  
Vi = ±10V, RL = 10k, CL = 100pF  
GBP  
m
Gain Bandwidth Product  
2.1  
MHz  
Degrees  
%
RL = 10k, CL = 100pF, f = 100kHz  
Phase Margin  
RL = 10k,CL = 100pF  
45  
THD  
en  
Total Harmonic Distortion  
0.05  
Equivalent Input Noise Voltage  
f = 1kHz  
nV  
Hz  
29  
Cs  
Channel Separation  
120  
dB  
2/10  
TSM102  
COMPARATORS  
VCC+ = +5V, VCC = Ground, Tamb = 25oC (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Vio  
Input Offset Voltage  
min. Tamb Tmax.  
5
9
mV  
T
Iio  
Iib  
Input Offset Current  
min. Tamb Tmax.  
50  
nA  
nA  
T
150  
Input Bias Current  
min. Tamb Tmax.  
250  
400  
T
IOH  
High Level Output Current  
Vid = 1V, VCC = Vo = 30V  
0.1  
nA  
µA  
1
T
min. Tamb Tmax.  
VOL  
Low Level Output Voltage  
Vid = -1V, Isink = 4mA  
mV  
250  
400  
700  
T
min. Tamb Tmax.  
Avd  
Isink  
Vicm  
Large Signal Voltage Gain  
V/mV  
mA  
V
R1 = 15k, VCC = 15V, Vo = 1 to 11V  
200  
16  
Output Sink Current  
Vid = -1V, Vo = 1.5V  
6
Input Common Mode Voltage Range  
0
0
VCC+ -1.5  
VCC+ -2  
T
min. Tamb Tmax.  
+
Vid  
tre  
Differential Input Voltage  
VCC  
V
Response Time - (note 1)  
1.3  
µs  
R1 = 5.1k to VCC+, Vref = 1.4V  
trel  
Large Signal Response Time  
300  
ns  
+
Vref = 1.4V, Vi = TTL, R1 = 5.1k to VCC  
Note 1 : The response time specified is for 100mV input step with 5mV overdrive.  
For larger overdrive signals, 300ns can be obtained.  
3/10  
TSM102  
VOLTAGE REFERENCE  
Symbol  
Parameter  
Cathode to Anode Voltage  
Cathode Current  
Value  
Unit  
V
VKA  
IK  
Vref to 36  
1 to 100  
mA  
ELECTRICAL CHARACTERISTICS  
Tamb = 25oC (unless otherwise specified)  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Vref  
Reference Input Voltage - (figure 1) - Tamb = 25oC  
TSM102, VKA = Vref, IK = 10mA  
V
2.475  
2.490  
2.500  
2.500  
2.525  
2.510  
TSM102A, VKA = Vref, IK = 10mA  
Vref  
Reference Input Voltage Deviation Over  
Temperature Range - (figure 1, note1)  
VKA = Vref, IK = 10mA, Tmin. Tamb Tmax.  
mV  
7
30  
±100  
-2  
Vref  
T  
Temperature Coefficient of Reference Input Voltage - (note 2)  
ppm/oC  
mV/V  
µA  
V
KA = Vref, IK = 10mA, Tmin. Tamb Tmax.  
±22  
-1.1  
1.5  
Vref  
VKA  
Ratio of Change in Reference Input Voltage to Change in Cathode to  
Anode Voltage - (figure 2)  
IK = 10mA, VKA = 36 to 3V  
Iref  
Reference Input Current - (figure 2)  
IK = 10mA, R1 = 10k, R2 = ∞  
Tamb = 25oC  
2.5  
3
T
min. Tamb Tmax.  
Iref  
Reference Input Current Deviation Over  
Temperature Range - (figure 2)  
IK = 10mA, R1 = 10k, R2 = ∞  
µA  
0.5  
1
T
min. Tamb Tmax.  
Imin  
Ioff  
Minimum Cathode Current for Regulation - (figure 1)  
VKA = Vref  
mA  
nA  
0.5  
1
Off-State Cathode Current - (figure 3)  
180  
500  
Notes : 1. Vref is defined as the difference between the maximum and minimum values obtained over the full temperature  
range.  
Vref = Vref max. - Vref min  
Vref max.  
Vrefmin.  
Temperature  
T2  
T1  
2. The temperature coefficient is defined as the slopes (positive and negative) of the voltage vs temperature limits whithin  
which the reference voltage is guaranteed.  
ma x  
2.5V  
m in  
Tempera ture  
25  
C
VKA  
IK  
3. The dynamic Impedance is defined as |ZKA| =  
4/10  
TSM102  
Figure 1 : Test Circuit for VKA = Vref  
V
Input  
KA  
I
K
V
ref  
Figure 2 : Test Circuit for VKA > Vref  
VKA  
Input  
IK  
R
1
Iref  
R
2
R1  
R2  
V
ref  
VKA = Vref (1 +  
) + Iref . R1  
Figure 3 : Test Circuit for Ioff  
= 36V  
VKA  
Input  
Ioff  
5/10  
TSM102  
APPLICATION NOTE  
A Li-Ion BATTERY CHARGER USING TSM102A  
by R. LIOU  
This application note explains how to use the  
TSM102 in an SMPS-type battery charger which  
features :  
1 - TSM102 PRESENTATION  
TheTSM102 integratedcircuit includes twoOpera-  
tional Amplifiers, two Comparators and oneadjust-  
able precision Voltage Reference (2.5V to 36V,  
0.4% or 1%).  
.
Voltage Control  
Current Control  
Low Battery Detection and End Of Charge  
Detection  
.
.
TSM102 can sustain up to 36V power supply volt-  
age.  
Figure 1 : TSM102 Pinout  
16  
15  
1
2
TSM102  
14  
3
COMP  
COMP  
V
+
VCC  
12  
-
CC  
5
6
7
11  
10  
Vref  
Ca thode  
2 - APPLICATION CONTEXT AND PRINCIPLE  
OF OPERATION  
C4. R15 polarizes the base of the transistor and at  
the same time limits the current through the zener  
diodeduringregulationmode ofthe auxiliarypower  
supply.  
In the battery charging field which requires ever  
increasing performances in more and more re-  
duced space, the TSM102Aprovides an attractive  
solution interms ofPCB area saving,precisionand  
versatility.  
The current and voltage regulations are made  
thanks to the two Operational Amplifiers.  
The first amplifier senses the current flow through  
the sense resistor Rs and compares it with a part  
of the reference voltage (resistor bridge R7, R8,  
R9). The second amplifiercompares the reference  
voltage with a part ofthe charger’s output (resistor  
bridge R1, R2, R3).  
Figure 2 shows the secondary side of a battery  
charger (SMPS type) where TSM102A is used in  
optimised conditions : the two Operational Amplifi-  
ers perform current and voltage control, the two  
Comparators provide ”End of Charge” and ”Low  
Battery” signals and the Voltage Reference en-  
sures precise reference for all measurements.  
When either of these two operational amplifiers  
tends to lower its ouput, this linear information is  
propagatedtowardstheprimaryside viatwo ORing  
diodes (D1, D2) and an optocoupler (D3). The  
compensation loops of these regulation functions  
are ensuredby the capacitors C1 and C2.  
The TSM102A is supplied by an auxiliary power  
supply (forward configuration- D7) regulated by a  
bipolar transistoranda zenerdiode on its base (Q2  
and DZ), and smoothed by the capacitorsC3 and  
6/10  
TSM102  
Figure 2 : The Application Schematic - Battery Charger Secondary Side  
.
The first comparator ensures the ”Low Battery”  
signal generation thanks to the comparison of a  
part ofthe charger’s output voltage (resistor bridge  
R17, R19) and the reference voltage. Proper hys-  
teresis is given thanks to R20. An improvement to  
the chargers security and to the battery’s life time  
optimization is achieved by lowering the current  
control measurement thanks to Q1 that shunts the  
resistor R9 when the battery’s voltage is below the  
”Low Battery” level.  
Voltage Control : 8.4V (= 2x 4.2V)  
Low Battery : 5.6V (= 2x 2.5V + 0.6V)  
End of Charge : 8.3V (= 2x 4.15V)  
.
.
Current Control :  
The voltage referenceis polarized thanksto the R4  
resistor (2.5mA), and the cathode of the reference  
gives a fixed 2.500V voltage.  
I = U / R = [ Vref ( R8 + R9 ) / (R7 + R8 + R9) ] / Rs  
= [ 2.5 x (390 + 820) / (10000 + 390 + 820) ] / 0.375  
= 720mA  
The second comparator ensures the ”End of  
Charge” signal generation thanks to the compari-  
son of a partof the charger’s outputvoltage (resis-  
tor bridge R1, R2, R3) and the referencevoltage.  
I = 720mA  
P = power dissipation through the sense resistor = R I2  
= 0.375 x 0.7202 = 194mW  
In case of ”Low Battery” conditions, the current  
control is lowered thanks to the following  
equation :  
I = U / R = = [ Vref R8 / (R7 + R8) ] / Rs  
= [ 2.5 x 390 / (10000 + 390 ) ] / 0.375  
= 250mA  
When either of these two signals is active, the  
corresponding LED is polarized for convenient  
visualization of the battery status.  
3 - CALCULATION OF THE ELEMENTS  
I (LoBatt) = 250mA  
All the componentsvalues have been chosen for a  
two-Lithium-Ionbatteries charge application :  
Voltage Control :  
.
Current Control : 720mA (Low Battery current  
control : 250mA)  
Vout  
= Vref / [ R2 / (R1 + R2 + R3) ]  
7/10  
TSM102  
= 2.5 / [ 56 / (131.5 + 56 + 0.68 ) ]  
= 8.400V  
Vout = 8.400V  
The additionof the diode D9 is necessary to avoid  
dramatic discharge of the battery cells in case of  
the charger disconnectionfrom the mains voltage,  
and therefore, the voltage measurement is to be  
operated on the cathode side of the diode not to  
take its voltage drop into account. The total bridge  
value of R1, R2, R3 must ensure low battery dis-  
charge if the charger is disconnected from main,  
but remains connected to the battery by mistake.  
The chosen values impose a 44µA discharge cur-  
rent max.  
Low Battery signal :  
If R5 = 0and R6 = open :  
Vout(LoBatt) = Vref / [ R19 / ( R17 + R19 ) ]  
= 2.5 / [ 10 / (12.4 + 10) ]  
= 5.6V  
Vout(LoBatt) = 5.6V  
End of Charge signal :  
Vout(EOC) = Vref / [ (R2 + R3 ) / (R1 + R2 + R3) ]  
= 2.5 / [ (56 + 0.68) / (131.5 + 56 + 0.68) ]  
= 8.300V  
R12andR13 are theequivalentresistorsseenfrom  
the opamp and from the comparator.  
A hysteresis resistor can be connected to the ”End  
Of Chargecomparatorto ensureproperhysteresis  
to this signal, but this resistor must be chosen  
carefully not to degrade the output voltage preci-  
sion. It might be needed to impose unidirectionnal  
hysteresis (by inserting a diode on the positive  
feedback of the comparator).  
Vout (EOC)= 8.300V  
Notes:  
The current control values must be chosen in ac-  
cordancewiththe elementsoftheprimary side. The  
performancesof the batterycharger in their global-  
ity are highly dependent on the adequation of the  
primary and the secondary elements.  
Figure 3 shows how to use the integrated Voltage  
Reference to build a precise Power Supply for the  
Figure 3 : A precise power supply for the TSM102A and other components  
Vaux  
Vcc  
Vaux  
+
+
9
8
13  
TSM102 Vref  
8/10  
TSM102  
PACKAGE MECHANICAL DATA  
16 PINS - PLASTIC PACKAGE  
Millimeters  
Inches  
Typ.  
Dim.  
Min.  
0.51  
0.77  
Typ.  
Max.  
Min.  
0.020  
0.030  
Max.  
a1  
B
b
1.65  
0.065  
0.5  
0.020  
0.010  
b1  
D
E
e
0.25  
20  
0.787  
8.5  
2.54  
0.335  
0.100  
0.700  
e3  
F
17.78  
7.1  
5.1  
0.280  
0.201  
i
L
3.3  
0.130  
Z
1.27  
0.050  
9/10  
TSM102  
PACKAGE MECHANICAL DATA  
16 PINS - PLASTIC MICROPACKAGE (SO)  
Millimeters  
Dim.  
Inches  
Typ.  
Min.  
Typ.  
Max.  
1.75  
0.2  
Min.  
Max.  
0.069  
0.008  
0.063  
0.018  
0.010  
A
a1  
a2  
b
0.1  
0.004  
1.6  
0.35  
0.19  
0.46  
0.25  
0.014  
0.007  
b1  
C
0.5  
0.020  
c1  
D
45o (typ.)  
9.8  
5.8  
10  
0.386  
0.228  
0.394  
0.244  
E
6.2  
e
1.27  
8.89  
0.050  
0.350  
e3  
F
3.8  
4.6  
0.5  
4.0  
5.3  
0.150  
0.181  
0.020  
0.157  
0.209  
0.050  
0.024  
G
L
1.27  
0.62  
M
S
8o (max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied.STMicroelectronics productsare not authorized for useas critical components in life support devices orsystems  
without express written approval of STMicroelectronics.  
The ST logo is a trademark of STMicroelectroni cs  
1999 STMicroelectro nics– Printed in Italy – All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
http://www.st.com  
10/10  

相关型号:

TSM102IDR

DUAL OPERATIONAL AMPLIFIER, DUAL COMPARATOR, AND VOLTAGE REFERENCE
TI

TSM102IDRG4

QUAD OP-AMP, 6500uV OFFSET-MAX, 2.1MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, MS-012AC, SOIC-16
TI

TSM102IDT

Operational Amplifier
ETC

TSM102IN

DUAL OPERATIONAL AMPLIFIER - DUAL COMPARATOR AND ADJUSTABLE VOLTAGE REFERENCE
STMICROELECTR

TSM102IPW

DUAL OPERATIONAL AMPLIFIER, DUAL COMPARATOR, AND VOLTAGE REFERENCE
TI

TSM102IPWR

DUAL OPERATIONAL AMPLIFIER, DUAL COMPARATOR, AND VOLTAGE REFERENCE
TI

TSM102IPWRG4

QUAD OP-AMP, 6500uV OFFSET-MAX, 2.1MHz BAND WIDTH, PDSO16, GREEN, PLASTIC, TSSOP-16
TI

TSM102_04

VOLTAGE AND CURRENT CONTROLLER
STMICROELECTR

TSM102_15

DUAL OPERATIONAL AMPLIFIER, DUAL COMPARATOR
TI

TSM103

DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103A

DUAL OPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR

TSM103AD

DUALOPERATIONAL AMPLIFIER AND VOLTAGE REFERENCE
STMICROELECTR