TSX7192IYST [STMICROELECTRONICS]

Low-power, precision, rail-to-rail, 9.0 MHz, 16 V operational amplifiers;
TSX7192IYST
型号: TSX7192IYST
厂家: ST    ST
描述:

Low-power, precision, rail-to-rail, 9.0 MHz, 16 V operational amplifiers

文件: 总25页 (文件大小:702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSX7192  
Low-power, precision, rail-to-rail, 9.0 MHz, 16 V operational  
amplifiers  
Datasheet - production data  
Description  
The TSX7192 dual, operational amplifier  
(op amp) offers high precision functioning with  
low input offset voltage down to a maximum of  
200 µV at 25 °C. In addition, its rail-to-rail input  
and output functionality allows this product to be  
used on full range input and output without  
limitation. This is particularly useful for a low-  
voltage supply such as 2.7 V that the TSX7192 is  
able to operate with.  
Features  
Thus, the TSX7192 has the great advantage of  
offering a large span of supply voltages, ranging  
from 2.7 V to 16 V. It can be used in multiple  
applications with a unique reference.  
Low input offset voltage: 200 µV max.  
Rail-to-rail input and output  
Low current consumption: 850 µA max.  
Gain bandwidth product: 9 MHz  
Low supply voltage: 2.7 to 16 V  
Stable when used with Gain ≥ 10  
Low input bias current: 50 pA max.  
High ESD tolerance: 4 kV HBM  
Extended temp. range: -40 °C to 125 °C  
Automotive qualification  
Low input bias current performance makes the  
TSX7192 perfect when used for signal  
conditioning in sensor interface applications. In  
addition, low-side and high-side current  
measurements can be easily made thanks to rail-  
to-rail functionality. The TSX7192 is  
a
decompensated amplifier and must be used with  
a gain greater than 10 to ensure stability.  
Related products  
High ESD tolerance (4 kV HBM) and a wide  
temperature range are also good arguments to  
use the TSX7192 in the automotive market  
segment.  
See the TSX7191 for single op amp version  
See the TSX712 for lower speeds with  
similar precision  
See the TSX562 for low-power features  
See the TSX632 for micro-power features  
See the TSX922 for higher speeds  
Applications  
Battery-powered instrumentation  
Instrumentation amplifier  
Active filtering  
High-impedance sensor interface  
Current sensing (high and low side)  
March 2015  
DocID027196 Rev 1  
1/25  
www.st.com  
This is information on a product in full production.  
Contents  
TSX7192  
Contents  
1
2
3
4
Package pin connections................................................................3  
Absolute maximum ratings and operating conditions .................4  
Electrical characteristics ................................................................5  
Application information ................................................................15  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
4.10  
Operating voltages..........................................................................15  
Input pin voltage ranges..................................................................15  
Rail-to-rail input...............................................................................15  
Rail-to-rail output.............................................................................15  
Input offset voltage drift over temperature.......................................16  
Long term input offset voltage drift..................................................16  
High values of input differential voltage...........................................17  
Capacitive load................................................................................18  
PCB layout recommendations.........................................................19  
Optimized application recommendation ..........................................19  
5
Package information .....................................................................20  
5.1  
5.2  
MiniSO8 package information.........................................................21  
SO8 package information................................................................22  
6
7
Ordering information.....................................................................23  
Revision history ............................................................................24  
2/25  
DocID027196 Rev 1  
TSX7192  
Package pin connections  
1
Package pin connections  
Figure 1: Pin connections (top view)  
MiniSO8 and SO8  
DocID027196 Rev 1  
3/25  
 
Absolute maximum ratings and operating  
TSX7192  
conditions  
2
Absolute maximum ratings and operating conditions  
Table 1: Absolute maximum ratings (AMR)  
Symbol  
VCC  
Vid  
Parameter  
Supply voltage (1)  
Differential input voltage (2)  
Value  
Unit  
V
18  
±VCC  
mV  
V
Vin  
Input voltage  
(VCC-) - 0.2 to (VCC+) + 0.2  
Iin  
Input current (3)  
10  
-65 to 150  
150  
mA  
Tstg  
Tj  
Storage temperature  
°C  
Maximum junction temperature  
HBM: human body model (4)  
MM: machine model (5)  
CDM: charged device model (6)  
Latch-up immunity  
4000  
100  
ESD  
V
1500  
200  
mA  
Notes:  
(1)All voltage values, except the differential voltage are with respect to the network ground terminal.  
(2)Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. See  
Section 4.7 for precautions to follow when using the TSX7192 with high differential input voltage.  
(3)Input current must be limited by a resistor in series with the inputs.  
(4)According to JEDEC standard JESD22-A114F.  
(5)According to JEDEC standard JESD22-A115A.  
(6)According to ANSI/ESD STM5.3.1.  
Table 2: Operating conditions  
Symbol  
VCC  
Parameter  
Value  
2.7 to 16  
Unit  
V
Supply voltage  
Vicm  
Common mode input voltage range  
Operating free air temperature range  
(VCC- ) - 0.1 to (VCC+) + 0.1  
-40 to 125  
Toper  
°C  
4/25  
DocID027196 Rev 1  
 
 
 
 
 
 
 
TSX7192  
Electrical characteristics  
3
Electrical characteristics  
Table 3: Electrical characteristics at VCC+ = 4 V with VCC- = 0 V, Vicm = VCC/2, Tamb = 25 ° C,  
and RL > 10 kΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
200  
365  
450  
2.5  
Unit  
μV  
T = 25 °C  
Vio  
Input offset voltage  
Tmin < Top < 85 °C  
Tmin < Top < 125 °C  
ΔVio/ΔT Input offset voltage drift (1)  
µV/°C  
nV  
month  
--------------------------  
Long term input offset  
ΔVio  
T = 25 °C  
1
voltage drift (2)  
Vout = VCC/2  
1
1
50  
200  
50  
Iib  
Input bias current (1)  
Input offset current (1)  
Tmin < Top < Tmax  
Vout = VCC/2  
pA  
Iio  
Tmin < Top < Tmax  
200  
RIN  
CIN  
Input resistance  
1
TΩ  
Input capacitance  
12.5  
98  
pF  
V
icm = -0.1 to 4.1 V, Vout = VCC/2  
80  
78  
Tmin < Top < Tmax  
Common mode rejection  
ratio 20 log (ΔVic/ΔVio)  
CMRR  
Vicm = -0.1 to 2 V, Vout = VCC/2  
Tmin < Top < Tmax  
91  
103  
136  
140  
28  
86  
dB  
RL= 2 kΩ, Vout = 0.3 to 3.7 V  
Tmin < Top < Tmax  
110  
96  
Avd  
Large signal voltage gain  
RL= 10 kΩ, Vout = 0.2 to 3.8 V  
Tmin < Top < Tmax  
110  
96  
RL= 2 kΩ to VCC/2  
Tmin < Top < Tmax  
50  
60  
15  
20  
50  
60  
15  
20  
High level output voltage  
(voltage drop from VCC+  
VOH  
)
RL= 10 kΩ tο VCC/2  
Tmin < Top < Tmax  
6
mV  
RL= 2 kΩ tο VCC/2  
Tmin < Top < Tmax  
23  
VOL  
Low level output voltage  
RL= 10 kΩ tο VCC/2  
Tmin < Top < Tmax  
5
V
out = VCC  
25  
15  
35  
20  
37  
Isink  
Tmin < Top < Tmax  
Vout = 0 V  
Iout  
mA  
45  
Isource  
Tmin < Top < Tmax  
No load, Vout = VCC/2  
Tmin < Top < Tmax  
570  
800  
900  
ICC  
Supply current per amplifier  
μA  
DocID027196 Rev 1  
5/25  
 
 
Electrical characteristics  
TSX7192  
Max. Unit  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
GBP  
Gain bandwidth product  
RL = 10 kΩ, CL = 100 pF  
5
7.7  
MHz  
Gain = 10, RL = 10 kΩ,  
CL = 100 pF  
ɸm  
Phase margin  
42  
Degrees  
Av = 10, Vout = 3 VPP  
10 % to 90 %  
,
1.3  
1.0  
1.5  
1.1  
2.3  
SRn  
Negative slew rate  
Tmin < Top < Tmax  
V/μs  
Av = 10, Vout = 3 VPP  
10 % to 90 %  
,
2.5  
SRp  
en  
Positive slew rate  
Tmin < Top < Tmax  
f = 1 kHz  
22  
19  
nV  
-----------  
Equivalent input noise  
voltage  
Hz  
f = 10 kHz  
Total harmonic distortion +  
noise  
f =1 kHz, Av = 10, RL= 10 kΩ,  
BW = 22 kHz, Vout = 3VPP  
THD+N  
0.003  
%
Notes:  
(1)Maximum values are guaranteed by design.  
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.6).  
Table 4: Electrical characteristics at VCC+ = 10 V with VCC- = 0 V, Vicm = VCC/2,  
Tamb = 25 °C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
200  
365  
450  
2.5  
Unit  
μV  
T = 25 °C  
Vio  
Input offset voltage  
Tmin < Top < 85 °C  
Tmin < Top < 125 °C  
ΔVio/ΔT Input offset voltage drift (1)  
μV/°C  
nV  
month  
--------------------------  
Long term input offset  
ΔVio  
T = 25 °C  
25  
voltage drift (2)  
Vout = VCC/2  
1
1
50  
200  
50  
Iib  
Input bias current (1)  
Input offset current (1)  
Tmin < Top < Tmax  
Vout = VCC/2  
pA  
Iio  
Tmin < Top < Tmax  
200  
RIN  
CIN  
Input resistance  
1
TΩ  
Input capacitance  
12.5  
100  
pF  
V
icm = -0.1 to 10.1 V, Vout = VCC/2  
88  
84  
Tmin < Top < Tmax  
Common mode rejection  
ratio 20 log (ΔVic/ΔVio)  
CMRR  
Vicm = -0.1 to 8 V, Vout = VCC/2  
Tmin < Top < Tmax  
98  
106  
140  
dB  
92  
RL= 2 kΩ, Vout = 0.3 to 9.7 V  
Tmin < Top < Tmax  
110  
100  
Avd  
Large signal voltage gain  
6/25  
DocID027196 Rev 1  
 
 
 
TSX7192  
Symbol  
Electrical characteristics  
Parameter  
Conditions  
RL= 10 kΩ, Vout = 0.2 to 9.8 V  
Tmin < Top < Tmax  
Min.  
110  
100  
Typ.  
Max.  
Unit  
Avd  
Large signal voltage gain  
dB  
RL= 2 kΩ tο VCC/2  
Tmin < Top < Tmax  
45  
10  
42  
9
70  
80  
30  
40  
70  
80  
30  
40  
High level output voltage  
VOH  
(voltage drop from VCC+  
)
RL= 10 kΩ tο VCC/2  
Tmin < Top < Tmax  
mV  
RL= 2 kΩ tο VCC/2  
Tmin < Top < Tmax  
VOL  
Low level output voltage  
RL= 10 kΩ tο VCC/2  
Tmin < Top < Tmax  
V
out = VCC  
30  
15  
50  
40  
39  
69  
630  
Isink  
Tmin < Top < Tmax  
Iout  
mA  
Vout = 0 V  
Isource  
Tmin < Top < Tmax  
No load, Vout = VCC/2  
Tmin < Top < Tmax  
850  
ICC  
Supply current per amplifier  
μA  
1000  
GBP  
Gain bandwidth product  
Phase margin  
RL = 10 kΩ, CL = 100 pF  
G = 10, RL = 10 kΩ, CL = 100 pF  
5
9
MHz  
ɸm  
48  
Degrees  
Av = 10, Vout = 8 VPP  
10 % to 90 %  
,
1.3  
1.0  
1.5  
1.1  
2.3  
2.5  
SRn  
SRp  
Negative slew rate  
Positive slew rate  
Tmin < Top < Tmax  
V/μs  
Av = 10, Vout = 8 VPP  
10 % to 90 %  
,
Tmin < Top < Tmax  
f = 1 kHz  
22  
19  
nV  
-----------  
Hz  
Equivalent input noise  
voltage  
en  
f = 10 kHz  
Total harmonic distortion +  
noise  
f = 1 kHz, Av = 10, RL= 10 kΩ,  
BW = 22 kHz, Vout = 9 VPP  
THD+N  
0.0001  
%
Notes:  
(1)Maximum values are guaranteed by design.  
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.6).  
DocID027196 Rev 1  
7/25  
 
 
Electrical characteristics  
TSX7192  
Table 5: Electrical characteristics at VCC+ = 16 V with VCC- = 0 V, Vicm = VCC/2,  
Tamb = 25 °C, and RL > 10 kΩ connected to VCC/2 (unless otherwise specified)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
200  
365  
450  
2.5  
Unit  
μV  
T = 25 °C  
Vio  
Input offset voltage  
Tmin < Top < 85 °C  
Tmin < Top < 125 °C  
ΔVio/ΔT Input offset voltage drift (1)  
μV/°C  
nV  
month  
--------------------------  
Long term input offset  
ΔVio  
T = 25 °C  
500  
voltage drift (2)  
Vout = VCC/2  
1
1
50  
200  
50  
Iib  
Input bias current (1)  
Input offset current (1)  
Tmin < Top < Tmax  
Vout = VCC/2  
pA  
Iio  
Tmin < Top < Tmax  
200  
RIN  
CIN  
Input resistance  
1
TΩ  
Input capacitance  
12.5  
107  
pF  
V
icm = -0.1 to 16.1 V, Vout = VCC/2  
94  
90  
Tmin < Top < Tmax  
Common mode rejection  
CMRR  
SVRR  
Avd  
ratio 20 log (ΔVicm/ΔVio)  
Vicm = -0.1 to 14 V, Vout = VCC/2  
Tmin < Top < Tmax  
100  
90  
107  
131  
146  
149  
100  
16  
V
cc = 4 to 16 V  
100  
90  
Supply voltage rejection  
ratio 20 log (ΔVcc/ΔVio)  
dB  
Tmin < Top < Tmax  
RL= 2 kΩ, Vout = 0.3 to 15.7 V  
Tmin < Top < Tmax  
RL= 10 kΩ, Vout = 0.2 to 15.8 V  
Tmin < Top < Tmax  
RL= 2 kΩ  
110  
100  
110  
100  
Large signal voltage gain  
130  
150  
40  
Tmin < Top < Tmax  
RL= 10 kΩ  
High level output voltage  
(voltage drop from VCC+  
VOH  
VOL  
Iout  
)
Tmin < Top < Tmax  
RL= 2 kΩ  
50  
mV  
70  
130  
150  
40  
Tmin < Top < Tmax  
RL= 10 kΩ  
Low level output voltage  
15  
Tmin < Top < Tmax  
Vout = VCC  
50  
30  
15  
50  
45  
40  
Isink  
Tmin < Top < Tmax  
Vout = 0 V  
mA  
68  
Isource  
Tmin < Top < Tmax  
No load, Vout = VCC/2  
Tmin < Top < Tmax  
660  
900  
ICC  
Supply current per amplifier  
μA  
1000  
8/25  
DocID027196 Rev 1  
 
TSX7192  
Electrical characteristics  
Symbol  
GBP  
Parameter  
Gain bandwidth product  
Phase margin  
Conditions  
Min.  
Typ.  
8.5  
51  
Max.  
Unit  
MHz  
RL = 10 kΩ, CL = 100 pF  
G = 10, RL = 10 kΩ, CL = 100 pF  
5
ɸm  
Degrees  
Av = 10, Vout = 10 VPP  
10 % to 90 %  
,
1.5  
1.1  
1.5  
1.1  
2.4  
SRn  
SRp  
Negative slew rate  
Positive slew rate  
Tmin < Top < Tmax  
V/μs  
Av = 10, Vout = 10 VPP  
10 % to 90 %  
,
2.5  
Tmin < Top < Tmax  
f = 1 kHz  
22  
19  
nV  
-----------  
Hz  
Equivalent input noise  
voltage  
en  
f = 10 kHz  
Total harmonic distortion +  
Noise  
f = 1 kHz, Av = 10, RL= 10 kΩ,  
BW = 22 kHz, Vout = 10 VPP  
THD+N  
0.0001  
%
Notes:  
(1)Maximum values are guaranteed by design.  
(2)Typical value is based on the Vio drift observed after 1000h at 125 °C extrapolated to 25 °C using the Arrhenius law and  
assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration (see Section 4.6).  
DocID027196 Rev 1  
9/25  
 
 
Electrical characteristics  
TSX7192  
Figure 2: Supply current vs. supply voltage  
Figure 3: Input offset voltage distribution at VCC = 16 V  
20  
800  
Vcc=16V  
Vicm=8V  
T=25°C  
Vicm=Vcc/2  
15  
600  
T=-40°C  
10  
5
400  
T=25°C  
T=125°C  
200  
0
0
0
2
4
6
8
10  
12  
14  
16  
-300 -250 -200 -150 -100 -50  
0
50  
100 150 200 250 300  
SupplyVoltage (V)  
Input offset voltage (µV)  
Figure 4: Input offset voltage distribution  
at VCC = 4 V  
Figure 5: Input offset voltage vs. temperature  
at VCC = 16 V  
20  
15  
10  
5
600  
Vcc=4V  
Vicm=2V  
T=25°C  
Vio limit  
400  
200  
0
-200  
-400  
Vcc=16V  
Vicm=8V  
-600  
0
-40 -20  
0
20  
40  
60  
80 100 120  
-300 -250 -200 -150 -100 -50  
0
50  
100 150 200 250 300  
Temperature (°C)  
Input offset voltage (µV)  
Figure 6: Input offset voltage  
drift population  
Figure 7: Input offset voltage vs. supply voltage  
at VICM = 0 V  
40  
35  
30  
25  
20  
15  
10  
5
600  
Vcc=16V  
Vicm=8V  
T=25°C  
Vicm=0V  
400  
200  
0
-200  
T=125°C  
14  
T=-40°C  
6
T=25°C  
10  
-400  
-600  
0
4
8
12  
16  
-4  
-3  
-2  
-1  
0
1
2
3
4
Supplyvoltage (V)  
Vio/∆T (µV/ºC)  
10/25  
DocID027196 Rev 1  
TSX7192  
Electrical characteristics  
Figure 8: Input offset voltage vs. common mode voltage  
at VCC = 2.7 V  
Figure 9: Input offset voltage vs. common mode voltage  
at VCC = 16 V  
600  
600  
Vcc=2.7V  
400  
400  
200  
0
Vcc=16V  
200  
0
-200  
-400  
-600  
-200  
T=125°C  
0.5  
T=25°C  
1.5  
T=-40°C  
T=-40°C  
T=125°C  
T=25°C  
8
-400  
-600  
0
2
4
6
10  
12  
14  
16  
0.0  
1.0  
2.0  
2.5  
Input Common Mode Voltage (V)  
Input Common Mode Voltage (V)  
Figure 10: Output current vs. output voltage  
at VCC = 2.7 V  
Figure 11: Output current vs. output voltage  
at VCC = 16 V  
30.0  
Sink  
22.5  
15.0  
7.5  
100  
Sink  
Vid=-1V  
75 Vid=-1V  
50  
25  
T=-40°C  
T=-40°C  
0
0.0  
T=25°C  
T=25°C  
T=125°C  
T=125°C  
-25  
-7.5  
-50  
-75  
-15.0  
-22.5  
-30.0  
Source  
Vid=1V  
Source  
Vcc=16V  
8
Vcc=2.7V  
1.5  
Vid=1V  
-100  
0
2
4
6
10  
12  
14 16  
0.0  
0.5  
1.0  
2.0  
2.5  
Output Voltage(V)  
Output Voltage(V)  
Figure 12: Output low voltage  
vs. supply voltage  
Figure 13: Output high voltage (drop from VCC+) vs.  
supply voltage  
30  
25  
20  
15  
10  
5
30  
Vid=-0.1V  
Rl=10kto Vcc/2  
Vid=0.1V  
T=-40°C  
T=-40°C  
Rl=10kto Vcc/2  
25  
20  
15  
10  
5
T=25°C  
T=25°C  
T=125°C  
T=125°C  
0
0
4
6
8
10  
12  
14  
16  
4
6
8
10  
12  
14  
16  
SupplyVoltage (V)  
SupplyVoltage (V)  
DocID027196 Rev 1  
11/25  
Electrical characteristics  
TSX7192  
Figure 14: Output voltage vs. input voltage close to the  
rail at VCC = 16 V  
Figure 15: Slew rate vs.  
supply voltage  
3.0  
2.0  
16.00  
15.95  
15.90  
15.85  
15.80  
15.75  
1.0  
Vicm=Vcc/2  
Vload=Vcc/2  
Gain=10  
0.0  
T=125°C  
T=25°C  
T=-40°C  
0.20  
0.15  
0.10  
Rl=10k  
Cl=100pF  
-1.0  
-2.0  
-3.0  
Vcc=16V  
Gain=10  
0.05  
0.00  
4
6
8
10  
12  
14  
16  
Input voltage (V)  
SupplyVoltage (V)  
Figure 16: Negative slew rate at VCC = 16 V  
Figure 17: Positive slew rate at VCC = 16 V  
10  
1.0  
10  
8
1.0  
8
6
Vcc=16V  
Vicm=Vcc/2  
Gain=11  
0.8  
0.8  
0.6  
6
T=-40°C  
0.6  
Rl=10k  
4
0.4  
4
0.4  
Cl=100pF  
2
0.2  
2
0.2  
T=25°C  
T=125°C  
0
0
0.0  
0.0  
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
T=125°C  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Vcc=16V  
Vicm=Vcc/2  
Gain=11  
T=25°C  
T=-40°C  
Rl=10k  
Cl=100pF  
0
2
4
6
8
0
2
4
Time (µs)  
6
8
Time (µs)  
Figure 18: Response to a small input  
voltage step  
Figure 19: Recovery behavior after a negative step on  
the input  
10  
5
10  
100  
50  
0.20  
Vcc=16V  
Vicm=8V  
Gain=101  
Rl=10k  
8
6
0.16  
0.12  
0.08  
0.04  
0.00  
-0.04  
Rl=10k  
Cl=100pF  
T=25°C  
Vin  
Cl=100pF  
Gain=10  
T=25°C  
Vcc=±8V  
Vcc=±1.35V  
0
4
0
2
-5  
-50  
0
-10  
0
-100  
-2  
-10  
2
4
6
8
10  
12  
0
10  
Time (µs)  
20  
30  
40  
Time (µs)  
12/25  
DocID027196 Rev 1  
TSX7192  
Electrical characteristics  
Figure 21: Bode diagram  
Figure 20: Recovery behavior after a positive step on  
the input  
at VCC = 2.7 V  
2
50  
40  
30  
20  
10  
0
300  
240  
180  
120  
60  
0.04  
0
-2  
0.00  
Gain  
T=25°C  
-0.04  
-0.08  
-0.12  
-0.16  
-0.20  
Vcc=±1.35V  
Vcc=±8V  
T=-40°C  
Phase  
-4  
0
-10  
-20  
-30  
-40  
-60  
-120  
-180  
-240  
-6  
Vcc=2.7V  
Vicm=1.35V  
Rl=10k  
Cl=100pF  
Gain=101  
Gain=101  
Rl=10k  
Cl=100pF  
Vin  
-8  
T=25°C  
T=125°C  
-10  
-10  
1k  
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
Time (µs)  
Frequency(Hz)  
Figure 22: Bode diagram  
at VCC = 16 V  
Figure 23: Power supply rejection ratio (PSRR) vs.  
frequency  
100  
50  
40  
30  
20  
10  
0
300  
240  
180  
120  
60  
PSRR+  
Gain  
80  
T=25°C  
60  
T=-40°C  
Phase  
0
Vcc=16V  
40  
Vicm=8V  
Gain=10  
-10  
-20  
-30  
-40  
-60  
-120  
-180  
-240  
Vcc=16V  
Vicm=8V  
Rl=10k  
Rl=10k  
20  
0
-
Cl=100pF  
Vosc=20mVPP  
T=25°C  
PSRR  
Cl=100pF  
Gain=101  
T=125°C  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
Frequency(Hz)  
10k  
100k  
Frequency(Hz)  
Figure 24: Output overshoot vs.  
capacitive load  
Figure 25: Output impedance vs. frequency in closed  
loop configuration  
10000  
100  
75  
50  
25  
0
Vicm=Vcc/2  
Gain=1  
Vosc=30mVRMS  
Vcc=16V  
Unstable  
Vicm=Vcc/2  
Rl=10k  
1000  
100  
10  
T=25°C  
Vin=10mVpp  
Gain=10  
T=25°C  
Rf=9.1k  
Vcc=16V  
Vcc=2.7V  
Rf=91k  
1
0.1  
1k  
10k  
100k  
Frequency(Hz)  
1M  
10M  
10  
100  
Cload (pF)  
1000  
DocID027196 Rev 1  
13/25  
Electrical characteristics  
Figure 26: THD + N vs. frequency  
TSX7192  
Figure 27: THD + N vs. output voltage  
1
1
Vcc=16V  
Vicm=8V  
Gain=10  
Vout=10Vpp  
BW=80kHz  
T=25°C  
Rl=2k  
0.1  
Rl=10k  
0.1  
Rl=2k  
Rl=100k  
0.01  
1E-3  
1E-4  
Rl=10k  
Rl=100k  
Vcc=16V  
Vicm=8V  
Gain=10  
f=1kHz  
BW=22kHz  
T=25°C  
0.01  
1E-3  
0.01  
0.1  
1
10  
100  
1000  
Frequency(Hz)  
10000  
Output Voltage (Vpp)  
Figure 28: Noise vs. frequency  
Figure 29: 0.1 to 10Hz noise  
6
4
120  
100  
80  
60  
40  
20  
0
Vcc=16V  
Vicm=8V  
T=25°C  
Vcc=16V  
Vicm=Vcc/2  
T=25°C  
2
0
-2  
-4  
-6  
0
2
4
6
8
10  
10  
100  
1k  
10k  
Time (s)  
Frequency(Hz)  
14/25  
DocID027196 Rev 1  
TSX7192  
Application information  
4
Application information  
4.1  
Operating voltages  
The TSX7192 device can operate from 2.7 to 16 V. The parameters are fully specified for  
4 V, 10 V, and 16 V power supplies. However, the parameters are very stable in the full VCC  
range. Additionally, the main specifications are guaranteed in extended temperature ranges  
from -40 to +125 °C.  
4.2  
Input pin voltage ranges  
The TSX7192 device has internal ESD diode protection on the inputs. These diodes are  
connected between the input and each supply rail to protect the input MOSFETs from  
electrical discharge.  
If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become  
conductive and excessive current can flow through them. Without limitation this over  
current can damage the device.  
In this case, it is important to limit the current to 10 mA, by adding resistance on the input  
pin, as described in Figure 30.  
Figure 30: Input current limitation  
9R2  
Vcc  
R2  
R1  
Vin  
4.3  
4.4  
Rail-to-rail input  
The TSX7192 device has a rail-to-rail input, and the input common mode range is extended  
from VCC- - 0.1 V to VCC+ + 0.1 V.  
Rail-to-rail output  
The operational amplifier output levels can go close to the rails: to a maximum of 40 mV  
above and below the rail when connected to a 10 kΩ resistive load to VCC/2.  
DocID027196 Rev 1  
15/25  
 
 
 
 
 
 
Application information  
TSX7192  
4.5  
Input offset voltage drift over temperature  
The maximum input voltage drift variation over temperature is defined as the offset  
variation related to the offset value measured at 25 °C. The operational amplifier is one of  
the main circuits of the signal conditioning chain, and the amplifier input offset is a major  
contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated  
during production at application level. The maximum input voltage drift over temperature  
enables the system designer to anticipate the effect of temperature variations.  
The maximum input voltage drift over temperature is computed using Equation 1.  
Equation 1  
Vio  
T  
°C  
Vio(T) Vio(25  
T 25 °C  
)
= max  
Where T = -40 °C and 125 °C.  
The TSX7192 datasheet maximum value is guaranteed by measurements on a  
representative sample size ensuring a Cpk (process capability index) greater than 1.3.  
4.6  
Long term input offset voltage drift  
To evaluate product reliability, two types of stress acceleration are used:  
Voltage acceleration, by changing the applied voltage  
Temperature acceleration, by changing the die temperature (below the maximum  
junction temperature allowed by the technology) with the ambient temperature.  
The voltage acceleration has been defined based on JEDEC results, and is defined using  
Equation 2.  
Equation 2  
AFV = eβ . (V  
S VU  
)
Where:  
AFV is the voltage acceleration factor  
β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)  
VS is the stress voltage used for the accelerated test  
VU is the voltage used for the application  
The temperature acceleration is driven by the Arrhenius model, and is defined in  
Equation 3.  
Equation 3  
Ea  
1
1
.
------  
AFT = e k  
TU TS  
Where:  
FT is the temperature acceleration factor  
A
Ea is the activation energy of the technology based on the failure rate  
16/25  
DocID027196 Rev 1  
 
 
 
 
 
TSX7192  
Application information  
k is the Boltzmann constant (8.6173 x 10-5 eV.K-1)  
TU is the temperature of the die when VU is used (K)  
TS is the temperature of the die under temperature stress (K)  
The final acceleration factor, AF, is the multiplication of the voltage acceleration factor and  
the temperature acceleration factor (Equation 4).  
Equation 4  
AF = AFT × AFV  
AF is calculated using the temperature and voltage defined in the mission profile of the  
product. The AF value can then be used in Equation 5 to calculate the number of months of  
use equivalent to 1000 hours of reliable stress duration.  
Equation 5  
(
/
Months = AF × 1000 h × 12 months 24 h × 365 25 days)  
.
To evaluate the op amp reliability, a follower stress condition is used where VCC is defined  
as a function of the maximum operating voltage and the absolute maximum rating  
(as recommended by JEDEC rules).  
The Vio drift (in µV) of the product after 1000 h of stress is tracked with parameters at  
different measurement conditions (see Equation 6).  
Equation 6  
VCC = maxVop with Vicm = VCC  
2
/
The long term drift parameter (ΔVio), estimating the reliability performance of the product, is  
obtained using the ratio of the Vio (input offset voltage value) drift over the square root of  
the calculated number of months (Equation 7).  
Equation 7  
Viodrift  
Vio  
=
(months)  
Where Vio drift is the measured drift value in the specified test conditions after 1000 h  
stress duration.  
4.7  
High values of input differential voltage  
In a closed loop configuration, which represents the typical use of an op amp, the input  
differential voltage is low (close to Vio). However, some specific conditions can lead to  
higher input differential values, such as:  
operation in an output saturation state  
operation at speeds higher than the device bandwidth, with output voltage dynamics  
limited by slew rate.  
use of the amplifier in a comparator configuration, hence in open loop  
Use of the TSX7191 in comparator configuration, especially combined with high  
temperature and long duration can create a permanent drift of Vio.  
DocID027196 Rev 1  
17/25  
 
 
 
 
 
Application information  
TSX7192  
4.8  
Capacitive load  
Driving large capacitive loads can cause stability problems. Increasing the load  
capacitance produces gain peaking in the frequency response, with overshoot and ringing  
in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an  
op amp might become unstable.  
Generally, the unity gain configuration is the worst case for stability and the ability to drive  
large capacitive loads.  
Figure 31 shows the serial resistor that must be added to the output, to make a system  
stable. Figure 32 shows the test configuration using an isolation resistor, Riso.  
Figure 31: Stability criteria with a serial resistor at different supply voltages  
Figure 32: Test configuration for Riso  
100k  
Vcc+  
11k  
Riso  
Vout  
Vin  
Cl  
10k  
Vcc-  
18/25  
DocID027196 Rev 1  
 
 
 
TSX7192  
Application information  
4.9  
PCB layout recommendations  
Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier,  
load, and power supply. The power and ground traces are critical as they must provide  
adequate energy and grounding for all circuits. The best practice is to use short and wide  
PCB traces to minimize voltage drops and parasitic inductance.  
In addition, to minimize parasitic impedance over the entire surface, a multi-via technique  
that connects the bottom and top layer ground planes together in many locations is often  
used.  
The copper traces that connect the output pins to the load and supply pins should be as  
wide as possible to minimize trace resistance.  
4.10  
Optimized application recommendation  
It is recommended to place a 22 nF capacitor as close as possible to the supply pin. A  
good decoupling will help to reduce electromagnetic interference impact.  
DocID027196 Rev 1  
19/25  
 
 
Package information  
TSX7192  
5
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
20/25  
DocID027196 Rev 1  
 
TSX7192  
Package information  
5.1  
MiniSO8 package information  
Figure 33: MiniSO8 package outline  
Table 6: MiniSO8 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Inches  
Min.  
Typ.  
Max.  
1.1  
Min.  
Typ.  
Max.  
0.043  
0.006  
0.037  
0.016  
0.009  
0.126  
0.203  
0.122  
A
A1  
A2  
b
0
0.15  
0.95  
0.40  
0.23  
3.20  
5.15  
3.10  
0
0.75  
0.22  
0.08  
2.80  
4.65  
2.80  
0.85  
0.030  
0.009  
0.003  
0.11  
0.033  
c
D
3.00  
4.90  
3.00  
0.65  
0.60  
0.95  
0.25  
0.118  
0.193  
0.118  
0.026  
0.024  
0.037  
0.010  
E
0.183  
0.11  
E1  
e
L
0.40  
0°  
0.80  
0.016  
0°  
0.031  
L1  
L2  
k
8°  
8°  
ccc  
0.10  
0.004  
DocID027196 Rev 1  
21/25  
 
Package information  
TSX7192  
5.2  
SO8 package information  
Figure 34: SO8 package outline  
Table 7: SO8 package mechanical data  
Dimensions  
Ref.  
Millimeters  
Inches  
Typ.  
Min.  
Typ.  
Max.  
1.75  
0.25  
Min.  
Max.  
0.069  
0.010  
A
A1  
A2  
b
0.10  
1.25  
0.28  
0.17  
4.80  
5.80  
3.80  
0.004  
0.049  
0.011  
0.007  
0.189  
0.228  
0.150  
0.48  
0.23  
5.00  
6.20  
4.00  
0.019  
0.010  
0.197  
0.244  
0.157  
c
D
4.90  
6.00  
3.90  
1.27  
0.193  
0.236  
0.154  
0.050  
E
E1  
e
h
0.25  
0.40  
0.50  
1.27  
0.010  
0.016  
0.020  
0.050  
L
L1  
k
1.04  
0.040  
1°  
8°  
1°  
8°  
ccc  
0.10  
0.004  
22/25  
DocID027196 Rev 1  
 
TSX7192  
Ordering information  
6
Ordering information  
Table 8: Order codes  
Order code  
Temperature range  
Package  
Packaging  
Marking  
TSX7192  
K210  
TSX7192IDT  
SO8  
MiniSO8  
SO8  
-40 to +125 °C  
TSX7192IST  
Tape and reel  
TSX7192IYDT (1)  
TSX7192IYST (1)  
TSX7192Y  
K213  
-40 to +125 °C,  
automotive grade  
MiniSO8  
Notes:  
(1)Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001  
& Q 002 or equivalent are on-going.  
DocID027196 Rev 1  
23/25  
 
 
 
Revision history  
TSX7192  
7
Revision history  
Table 9: Document revision history  
Date  
Revision Changes  
06-Mar-2015  
1
Initial release  
24/25  
DocID027196 Rev 1  
 
TSX7192  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
DocID027196 Rev 1  
25/25  

相关型号:

TSX8308500GL

ADC 8-bit 500 Msps
ATMEL

TSX83102G0BGS

ADC, Proprietary Method, 10-Bit, 1 Func, 1 Channel, Parallel, Word Access, CBGA152, HERMATIC, CI-CGA-152
ATMEL

TSX88915TCR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCRD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TCW70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TCWD/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CQCC28, CERAMIC, LCC-28
ATMEL

TSX88915TMR100

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMR70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL

TSX88915TMRB/T100

暂无描述
ATMEL

TSX88915TMRB/T70

PLL Based Clock Driver, 7 True Output(s), 1 Inverted Output(s), CMOS, CPGA29, CERAMIC, PGA-29
ATMEL