VND7020AJ [STMICROELECTRONICS]

Double channel high-side driver with MultiSense analog feedback;
VND7020AJ
型号: VND7020AJ
厂家: ST    ST
描述:

Double channel high-side driver with MultiSense analog feedback

文件: 总44页 (文件大小:1757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VND7020AJ  
Double channel high-side driver with MultiSense analog  
feedback for automotive applications  
Datasheet - production data  
Loss of ground and loss of VCC  
Reverse battery with external  
components  
Electrostatic discharge protection  
Applications  
All types of Automotive resistive, inductive  
and capacitive loads  
Features  
Max transient supply voltage  
Operating voltage range  
Typ. on-state resistance (per Ch)  
Current limitation (typ)  
VCC  
VCC  
40 V  
4 to 28 V  
22 mΩ  
63 A  
Specially intended for automotive turn  
indicators (up to 2x P27W or SAE1156 and  
R5W paralleled or LED rear combinations)  
RON  
ILIMH  
ISTBY  
Description  
Standby current (max)  
0.5 µA  
The device is a double channel high-side driver  
manufactured using ST proprietary VIPower® M0-  
7 technology and housed in PowerSSO-16  
package. The device is designed to drive 12 V  
automotive grounded loads through a 3 V and  
5 V CMOS-compatible interface, providing  
protection and diagnostics.  
Automotive qualified  
General  
Double channel smart high side driver  
with MultiSense analog feedback  
Very low standby current  
The device integrates advanced protective  
functions such as load current limitation, overload  
active management by power limitation and  
overtemperature shutdown with configurable  
latch-off.  
Compatible with 3 V and 5 V CMOS  
outputs  
MultiSense diagnostic functions  
Multiplexed analog feedback of: load  
current with high precision proportional  
current mirror, VCC supply voltage and  
TCHIP device temperature  
A FaultRST pin unlatches the output in case of  
fault or disables the latch-off functionality.  
Overload and short to ground (power  
limitation) indication  
A dedicated multifunction multiplexed analog  
output pin delivers sophisticated diagnostic  
functions including high precision proportional  
load current sense, supply voltage feedback and  
chip temperature sense, in addition to the  
detection of overload and short circuit to ground,  
short to VCC and OFF-state open-load.  
Thermal shutdown indication  
OFF-state open-load detection  
Output short to VCC detection  
Sense enable/disable  
Protections  
Undervoltage shutdown  
Overvoltage clamp  
Load current limitation  
Self limiting of fast thermal transients  
Configurable latch-off on  
A sense enable pin allows OFF-state diagnosis to  
be disabled during the module low-power mode  
as well as external sense resistor sharing among  
similar devices.  
overtemperature or power limitation  
with dedicated fault reset pin  
February 2015  
DocID027393 Rev 1  
1/44  
www.st.com  
This is information on a product in full production.  
Contents  
VND7020AJ  
Contents  
1
2
Block diagram and pin description................................................5  
Electrical specification....................................................................7  
2.1  
2.2  
2.3  
2.4  
2.5  
Absolute maximum ratings................................................................7  
Thermal data.....................................................................................8  
Main electrical characteristics ...........................................................8  
Waveforms......................................................................................21  
Electrical characteristics curves ......................................................23  
3
4
Protections.....................................................................................27  
3.1  
3.2  
3.3  
3.4  
Power limitation...............................................................................27  
Thermal shutdown...........................................................................27  
Current limitation.............................................................................27  
Negative voltage clamp...................................................................27  
Application information ................................................................28  
4.1  
GND protection network against reverse battery.............................28  
4.1.1  
Diode (DGND) in the ground line ..................................................... 29  
4.2  
4.3  
4.4  
Immunity against transient electrical disturbances..........................29  
MCU I/Os protection........................................................................29  
Multisense - analog current sense ..................................................30  
4.4.1  
4.4.2  
4.4.3  
Principle of Multisense signal generation......................................... 31  
TCASE and VCC monitor................................................................. 33  
Short to VCC and OFF-state open-load detection ........................... 34  
5
6
Maximum demagnetization energy (VCC = 16 V)........................36  
Package and PCB thermal data....................................................37  
6.1  
PowerSSO-16 thermal data ............................................................37  
7
Package information .....................................................................40  
7.1  
PowerSSO-16 package information................................................40  
8
9
Order codes ...................................................................................42  
Revision history ............................................................................43  
2/44  
DocID027393 Rev 1  
VND7020AJ  
List of tables  
List of tables  
Table 1: Pin functions .................................................................................................................................5  
Table 2: Suggested connections for unused and not connected pins........................................................6  
Table 3: Absolute maximum ratings ...........................................................................................................7  
Table 4: Thermal data.................................................................................................................................8  
Table 5: Power section ...............................................................................................................................8  
Table 6: Switching.......................................................................................................................................9  
Table 7: Logic inputs.................................................................................................................................10  
Table 8: Protections..................................................................................................................................11  
Table 9: MultiSense ..................................................................................................................................12  
Table 10: Truth table.................................................................................................................................20  
Table 11: MultiSense multiplexer addressing...........................................................................................20  
Table 12: ISO 7637-2 - electrical transient conduction along supply line.................................................29  
Table 13: MultiSense pin levels in off-state ..............................................................................................33  
Table 14: PCB properties .........................................................................................................................37  
Table 15: Thermal parameters .................................................................................................................39  
Table 16: PowerSSO-16 mechanical data................................................................................................41  
Table 17: Device summary.......................................................................................................................42  
Table 18: Document revision history ........................................................................................................43  
DocID027393 Rev 1  
3/44  
List of figures  
VND7020AJ  
List of figures  
Figure 1: Block diagram..............................................................................................................................5  
Figure 2: Configuration diagram (top view).................................................................................................6  
Figure 3: Current and voltage conventions.................................................................................................7  
Figure 4: IOUT/ISENSE versus IOUT.......................................................................................................17  
Figure 5: Current sense accuracy versus IOUT .......................................................................................17  
Figure 6: Switching time and Pulse skew .................................................................................................18  
Figure 7: MultiSense timings (current sense mode).................................................................................18  
Figure 8: Multisense timings (chip temperature and VCC sense mode)..................................................19  
Figure 9: TDSTKON..................................................................................................................................19  
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD) ......................21  
Figure 11: Latch functionality - behavior in hard short circuit condition....................................................21  
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)....22  
Figure 13: Standby mode activation .........................................................................................................22  
Figure 14: Standby state diagram.............................................................................................................23  
Figure 15: OFF-state output current .........................................................................................................23  
Figure 16: Standby current .......................................................................................................................23  
Figure 17: IGND(ON) vs. Iout ...................................................................................................................24  
Figure 18: Logic Input high level voltage ..................................................................................................24  
Figure 19: Logic Input low level voltage....................................................................................................24  
Figure 20: High level logic input current ...................................................................................................24  
Figure 21: Low level logic input current ....................................................................................................24  
Figure 22: Logic Input hysteresis voltage .................................................................................................24  
Figure 23: FaultRST Input clamp voltage .................................................................................................25  
Figure 24: Undervoltage shutdown...........................................................................................................25  
Figure 25: On-state resistance vs. Tcase.................................................................................................25  
Figure 26: On-state resistance vs. VCC ...................................................................................................25  
Figure 27: Turn-on voltage slope..............................................................................................................25  
Figure 28: Turn-off voltage slope..............................................................................................................25  
Figure 29: Won vs. Tcase.........................................................................................................................26  
Figure 30: Woff vs. Tcase.........................................................................................................................26  
Figure 31: ILIMH vs. Tcase.......................................................................................................................26  
Figure 32: OFF-state open-load voltage detection threshold ...................................................................26  
Figure 33: Vsense clamp vs. Tcase..........................................................................................................26  
Figure 34: Vsenseh vs. Tcase ..................................................................................................................26  
Figure 35: Application diagram.................................................................................................................28  
Figure 36: Simplified internal structure .....................................................................................................28  
Figure 37: MultiSense and diagnostic – block diagram............................................................................30  
Figure 38: MultiSense block diagram .......................................................................................................31  
Figure 39: Analogue HSD – open-load detection in off-state ...................................................................32  
Figure 40: Open-load / short to VCC condition.........................................................................................33  
Figure 41: GND voltage shift ....................................................................................................................34  
Figure 42: Maximum turn off current versus inductance ..........................................................................36  
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)............................................37  
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7) ...........................................37  
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on).....................38  
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on) ..............38  
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16..........................................39  
Figure 48: PowerSSO-16 package dimensions........................................................................................40  
4/44  
DocID027393 Rev 1  
VND7020AJ  
Block diagram and pin description  
1
Block diagram and pin description  
Figure 1: Block diagram  
Table 1: Pin functions  
Function  
Name  
VCC  
Battery connection.  
OUTPUT0,1 Power output.  
Ground connection. Must be reverse battery protected by an external diode / resistor  
network.  
GND  
INPUT0,1  
MultiSense  
SEn  
Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS  
outputs. It controls output switch state.  
Multiplexed analog sense output pin; it delivers a current proportional to the selected  
diagnostic: load current, supply voltage or chip temperature.  
Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense  
diagnostic pin.  
Active high compatible with 3 V and 5 V CMOS outputs pin; they address the  
MultiSense multiplexer.  
SEL0,1  
Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in  
case of fault; If kept low, sets the outputs in auto-restart. mode  
FaultRST  
DocID027393 Rev 1  
5/44  
 
 
 
Block diagram and pin description  
VND7020AJ  
Figure 2: Configuration diagram (top view)  
Table 2: Suggested connections for unused and not connected pins  
SEn, SELx,  
FaultRST  
Connection /  
pin  
MultiSense  
N.C.  
Output  
Input  
Floating  
Not allowed  
X (1)  
X
X
X
X
Through 1 kΩ  
Not  
allowed  
Through 15 kΩ  
Through 15 kΩ  
To ground  
resistor  
resistor  
resistor  
Notes:  
(1)X: do not care.  
6/44  
DocID027393 Rev 1  
 
 
 
VND7020AJ  
Electrical specification  
2
Electrical specification  
Figure 3: Current and voltage conventions  
VFn = VOUTn - VCC during reverse battery condition.  
2.1  
Absolute maximum ratings  
Stressing the device above the rating listed in Table 3: "Absolute maximum ratings" may  
cause permanent damage to the device. These are stress ratings only and operation of the  
device at these or any other conditions above those indicated in the operating sections of  
this specification is not implied. Exposure to the conditions in table below for extended  
periods may affect device reliability.  
Table 3: Absolute maximum ratings  
Symbol  
VCC  
Parameter  
Value  
38  
Unit  
DC supply voltage  
V
-VCC  
Reverse DC supply voltage  
0.3  
Maximum transient supply voltage (ISO 16750-2:2010 Test B  
clamped to 40V; RL = 4 Ω)  
VCCPK  
40  
V
Maximum jump start voltage for single pulse short circuit  
protection  
VCCJS  
-IGND  
IOUT  
28  
V
DC reverse ground pin current  
OUTPUT0,1 DC output current  
200  
mA  
Internally  
limited  
A
-IOUT  
IIN  
Reverse DC output current  
INPUT0,1 DC input current  
SEn DC input current  
17  
ISEn  
ISEL  
IFR  
-1 to 10  
mA  
SEL0,1 DC input current  
FaultRST DC input current  
DocID027393 Rev 1  
7/44  
 
 
 
 
Electrical specification  
VND7020AJ  
Symbol  
Parameter  
Value  
Unit  
VFR  
FaultRST DC input voltage  
7.5  
10  
V
MultiSense pin DC output current (VGND = VCC and VSENSE < 0 V)  
MultiSense pin DC output current in reverse (VCC < 0 V)  
ISENSE  
mA  
mJ  
-20  
Maximum switching energy (single pulse) (TDEMAG = 0.4 ms;  
Tjstart = 150 °C)  
EMAX  
64  
Electrostatic discharge (JEDEC 22A-114F)  
4000  
2000  
4000  
4000  
4000  
V
V
V
V
V
INPUT0,1  
MultiSense  
SEn, SEL0,1, FaultRST  
OUTPUT0,1  
VCC  
VESD  
VESD  
Tj  
Charge device model (CDM-AEC-Q100-011)  
Junction operating temperature  
Storage temperature  
750  
V
-40 to 150  
-55 to 150  
°C  
Tstg  
2.2  
Thermal data  
Table 4: Thermal data  
Parameter  
Symbol  
Typ. value  
4.9  
Unit  
Rthj-board Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) (1)(2)  
Rthj-amb  
Rthj-amb  
Thermal resistance junction-ambient (JEDEC JESD 51-5)(1)(3)  
Thermal resistance junction-ambient (JEDEC JESD 51-7)(1)(2)  
55.5  
°C/W  
21.5  
Notes:  
(1)One channel ON.  
(2)Device mounted on four-layers 2s2p PCB  
(3)Device mounted on two-layers 2s0p PCB with 2 cm2 heatsink copper trace  
2.3  
Main electrical characteristics  
7 V < VCC < 28 V; -40°C < Tj < 150°C, unless otherwise specified.  
All typical values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
Table 5: Power section  
Symbol  
Parameter  
Test conditions  
Min. Typ. Max. Unit  
Operating supply  
voltage  
VCC  
4
13  
28  
4
V
V
V
Undervoltage  
shutdown  
VUSD  
Undervoltage  
shutdown reset  
VUSDReset  
5
Undervoltage  
VUSDhyst shutdown  
hysteresis  
0.3  
V
8/44  
DocID027393 Rev 1  
 
 
 
 
 
VND7020AJ  
Electrical specification  
Min. Typ. Max. Unit  
22  
Symbol  
Parameter  
Test conditions  
OUT = 3 A; Tj = 25°C  
I
On-state  
RON  
IOUT = 3 A; Tj = 150°C  
44  
30  
52  
mΩ  
resistance (1)  
IOUT = 3 A; VCC = 4 V; Tj = 25°C  
IS = 20 mA; 25°C < Tj < 150°C  
IS = 20 mA; Tj = -40°C  
41  
38  
46  
V
V
Vclamp  
Clamp voltage  
VCC = 13 V;  
V
IN = VOUT = VFR = VSEn = 0 V;  
0.5  
0.5  
3
VSEL0,1 = 0 V; Tj = 25°C  
Supply current in  
standby at  
V
VCC = 13 V;  
ISTBY  
VIN = VOUT = VFR = VSEn = 0 V;  
µA  
(3)  
CC = 13 V (2)  
VSEL0,1 = 0 V; Tj = 85°C  
VCC = 13 V;  
IN = VOUT = VFR = VSEn = 0 V;  
VSEL0,1 = 0 V; Tj = 125°C  
V
V
CC = 13 V  
Standby mode  
blanking time  
tD_STBY  
VIN = VOUT = VFR = VSEL0,1 = 0 V;  
60  
300  
5
550  
8
µs  
VSEn = 5 V to 0 V  
VCC = 13 V; VSEn = VFR = VSEL0,1 = 0 V;  
VIN0 = 5 V; VIN1 = 5 V;  
IS(ON)  
Supply current  
mA  
IOUT0 = 0 A; IOUT1 = 0 A  
Control stage  
current  
V
CC = 13 V; VSEn = 5 V;  
IGND(ON)  
consumption in ON VFR = VSEL0,1 = 0 V; VIN0 = 5 V;  
12  
mA  
state. All channels  
active.  
VIN1 = 5 V; IOUT0 = 3 A; IOUT1 = 3 A  
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 25°C  
0
0
0.01  
0.5  
3
Off-state output  
current at  
V
IL(off)  
µA  
V
VIN = VOUT = 0 V; VCC = 13 V;  
Tj = 125°C  
CC = 13 V (1)  
Output - VCC diode  
voltage (1)  
VF  
IOUT = -3 A; Tj = 150°C  
0.7  
Notes:  
(1)For each channel  
(2)PowerMOS leakage included.  
(3)Parameter specified by design; not subject to production test.  
Table 6: Switching  
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified  
Test  
conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
(1)  
td(on)  
Turn-on delay time at Tj = 25 °C  
Turn-off delay time at Tj = 25 °C  
Turn-on voltage slope at Tj = 25 °C  
Turn-off voltage slope at Tj = 25 °C  
10  
10  
60  
40  
120  
100  
0.7  
RL = 4.3 Ω  
RL = 4.3 Ω  
µs  
(1)  
td(off)  
(1)  
(1)  
(dVOUT/dt)on  
(dVOUT/dt)off  
0.1  
0.1  
0.36  
0.36  
V/µs  
0.7  
DocID027393 Rev 1  
9/44  
 
 
 
 
Electrical specification  
VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified  
VND7020AJ  
Test  
conditions  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Switching energy losses at turn-on  
WON  
RL = 4.3 Ω  
0.38 0.49(2)  
0.39 0.54(2)  
mJ  
(twon  
Switching energy losses at turn-off  
(twoff  
Differential Pulse skew (tPHL - tPLH  
)
WOFF  
RL = 4.3 Ω  
RL = 4.3 Ω  
mJ  
µs  
)
(1)  
tSKEW  
)
-75  
-25  
25  
Notes:  
(1)See Figure 6: "Switching time and Pulse skew".  
(2)Parameter guaranteed by design and characterization; not subject to production test.  
Table 7: Logic inputs  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
INPUT0,1 characteristics  
VIL  
IIL  
Input low level voltage  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
VIN = 2.1 V  
1
VIH  
2.1  
IIH  
10  
µA  
V
VI(hyst)  
0.2  
5.3  
I
IN = 1 mA  
7.2  
VICL  
Input clamp voltage  
V
IIN = -1 mA  
-0.7  
FaultRST characteristics  
VFRL  
IFRL  
VFRH  
IFRH  
Input low level voltage  
0.9  
V
µA  
V
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VFR(hyst)  
0.2  
5.3  
I
IN = 1 mA  
7.5  
VFRCL  
Input clamp voltage  
V
IIN = -1 mA  
-0.7  
SEL0,1 characteristics (7 V < VCC < 18 V)  
VSELL  
ISELL  
VSELH  
ISELH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEL(hyst)  
0.2  
5.3  
I
IN = 1 mA  
7.2  
VSELCL  
Input clamp voltage  
V
IIN = -1 mA  
-0.7  
10/44  
DocID027393 Rev 1  
 
 
 
VND7020AJ  
Electrical specification  
7 V < VCC < 28 V; -40°C < Tj < 150°C  
Symbol Parameter  
SEn characteristics (7 V < VCC < 18 V)  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
VSEnL  
ISEnL  
VSEnH  
ISEnH  
Input low level voltage  
Low level input current  
Input high level voltage  
High level input current  
Input hysteresis voltage  
0.9  
V
µA  
V
VIN = 0.9 V  
VIN = 2.1 V  
1
2.1  
10  
µA  
V
VSEn(hyst)  
0.2  
5.3  
IIN = 1 mA  
IIN = -1 mA  
7.2  
VSEnCL  
Input clamp voltage  
V
-0.7  
Table 8: Protections  
Test conditions  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
VCC = 13 V  
45  
63  
ILIMH  
DC short circuit current  
90  
4 V < VCC < 18 V (1)  
A
Short circuit current  
during thermal cycling  
VCC = 13 V;  
TR < Tj < TTSD  
ILIML  
23  
TTSD  
TR  
Shutdown temperature  
Reset temperature(1)  
150  
175  
200  
TRS + 1 TRS + 7  
Thermal reset of fault  
diagnostic indication  
°C  
TRS  
VFR = 0 V; VSEn = 5 V  
135  
Thermal hysteresis  
(TTSD - TR)(1)  
THYST  
7
ΔTJ_SD  
Dynamic temperature  
Tj = -40°C; VCC = 13 V  
VFR = 5 V to 0 V;  
60  
K
VSEn = 5 V;  
Fault reset time for  
output unlatch(1)  
E.g. Ch0:  
VIN0 = 5 V;  
tLATCH_RST  
3
10  
20  
µs  
VSEL0 = 0 V;  
VSEL1 = 0 V  
IOUT = 2 A; L = 6 mH;  
Tj = -40°C  
VCC  
38  
-
-
V
V
Turn-off output voltage  
clamp  
VDEMAG  
IOUT = 2 A; L = 6 mH;  
Tj = 25°C to 150°C  
VCC  
41  
VCC  
46  
-
VCC  
52  
-
Output voltage drop  
limitation  
VON  
IOUT = 0.5 A  
20  
mV  
Notes:  
(1)Parameter guaranteed by design and characterization; not subject to production test.  
DocID027393 Rev 1  
11/44  
 
 
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7020AJ  
Table 9: MultiSense  
Symbol  
Parameter  
Test conditions  
Min.  
Typ. Max.  
-12  
Unit  
VSEn = 0 V; ISENSE = 1 mA  
-17  
MultiSense clamp  
voltage  
VSENSE_CL  
V
VSEn = 0 V; ISENSE = -1 mA  
7
Current sense characteristics  
IOUT = 0.01 A;  
SENSE = 0.5 V; VSEn = 5 V  
KOL  
dKcal/Kcal  
KLED  
IOUT/ISENSE  
1020  
-30  
V
Current sense ratio  
drift at calibration  
point  
IOUT = 0.01 A to 0.05 A;  
cal = 30 mA; VSENSE = 0.5 V;  
(1)(2)  
I
30  
%
VSEn = 5 V  
IOUT = 0.1 A; VSENSE = 0.5 V;  
VSEn = 5 V  
IOUT/ISENSE  
1800 3450 5100  
-25 25  
2120 3020 3915  
-20 20  
2060 2875 3690  
-15 15  
2340 2755 3170  
-6  
2550 2740 2950  
Current sense ratio  
drift  
IOUT = 0.1 A; VSENSE = 0.5 V;  
(1)(2)  
dKLED/KLED  
K0  
%
%
%
%
%
VSEn = 5 V  
IOUT = 0.5 A; VSENSE = 0.5 V;  
VSEn = 5 V  
IOUT/ISENSE  
Current sense ratio  
drift  
IOUT = 0.5 A; VSENSE = 0.5 V;  
VSEn = 5 V  
(1)(2)  
dK0/K0  
K1  
IOUT = 1 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
Current sense ratio  
drift  
IOUT = 1 A; VSENSE = 4 V;  
VSEn = 5 V  
(1)(2)  
dK1/K1  
K2  
IOUT = 3 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
Current sense ratio  
drift  
IOUT = 3 A; VSENSE = 4 V;  
VSEn = 5 V  
(1)(2)  
(1)(2)  
dK2/K2  
K3  
6
IOUT = 9 A; VSENSE = 4 V;  
VSEn = 5 V  
IOUT/ISENSE  
Current sense ratio  
drift  
IOUT = 9 A; VSENSE = 4 V;  
VSEn = 5 V  
dK3/K3  
-5  
5
Calibration point:  
Ical = 2.4 A; Tj = 25°C;  
V
CC = 13 V  
-30  
-13  
-7  
30  
13  
7
%
%
%
%
%
%
I
OUT = 0.5 A  
Current sense ratio  
drift for single point  
calibration  
(1)(3)  
IOUT = 1.5 A  
IOUT = 2.0 A  
dK/K(tot)  
-6  
6
I
OUT = 2.4 A  
-7  
7
IOUT = 3.0 A  
IOUT = 4.0 A  
-8  
8
VSEn = 5 V; RSENSE = 2.7 kΩ;  
E.g. Ch0:  
IN0 = 5 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
Output Voltage for  
MultiSense  
shutdown  
V
(1)  
VOUT_MSD  
5
V
I
OUT0 = 3 A  
12/44  
DocID027393 Rev 1  
 
VND7020AJ  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min.  
Typ. Max.  
Unit  
MultiSense disabled:  
0
0.5  
VSEn = 0 V  
MultiSense disabled:  
-1 V < VSENSE < 5 V(1)  
-0.5  
0.5  
MultiSense enabled:  
VSEn = 5 V; All channels  
ON; IOUTX = 0 A; ChX  
diagnostic selected;  
0
2
E.g. Ch0:  
VIN0 = 5 V; VIN1 = 5 V;  
VSEL0 = 0 V;  
MultiSense leakage  
current  
ISENSE0  
µA  
VSEL1 = 0 V;  
IOUT0 = 0 A; IOUT1 = 3 A  
MultiSense enabled:  
SEn = 5 V; ChX OFF; ChX  
diagnostic selected:  
V
E.g. Ch0:  
VIN0 = 0 V; VIN1 = 5 V;  
0
2
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT1 = 3 A  
VCC = 7 V; RSENSE = 2.7 kΩ;  
SEn = 5 V; VIN0 = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
IOUT0 = 9 A; Tj = 150°C  
Multisense  
saturation voltage  
V
VSENSE_SAT  
5
4
V
mA  
A
VCC = 7 V; VSENSE = 4 V;  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
Tj = 150°C  
CS saturation  
current  
(1)  
ISENSE_SAT  
VCC = 7 V; VSENSE = 4 V;  
Output saturation  
current  
VIN0 = 5 V; VSEn = 5 V;  
VSEL0 = 0 V; VSEL1 = 0 V;  
Tj = 150°C  
(1)  
IOUT_SAT  
11.5  
OFF-state diagnostic  
VSEn = 5 V; ChX OFF;  
ChX diagnostic selected  
OFF-state open-  
load voltage  
detection threshold  
E.g: Ch0  
VOL  
2
3
4
V
VIN0 = 0 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V  
VIN = 0 V; VOUT = VOL  
;
OFF-state output  
sink current  
IL(off2)  
-100  
-15  
µA  
Tj = -40°C to 125°C  
DocID027393 Rev 1  
13/44  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7020AJ  
Symbol  
Parameter  
Test conditions  
Min.  
Typ. Max.  
Unit  
VSEn = 5 V; ChX ON to OFF  
transition;  
OFF-state  
ChX diagnostic selected  
diagnostic delay  
time from falling  
edge of INPUT (see  
Figure 9:  
E.g: Ch0  
VIN0 = 5 V to 0 V;  
VSEL0 = 0 V;  
VSEL1 = 0 V;  
IOUT0 = 0 A;  
VOUT = 4 V  
tDSTKON  
100  
350  
700  
µs  
"TDSTKON")  
Settling time for  
valid OFF-state  
open load diagnostic  
indication from rising  
edge of SEn  
V
V
IN0 = 0 V; VIN1 = 0 V;  
FR = 0 V; VSEL0 = 0 V;  
tD_OL_V  
60  
30  
µs  
µs  
VSEL1 = 0 V; VOUT0 = 4 V;  
VSEn = 0 V to 5 V  
V
SEn = 5 V; ChX OFF;  
ChX diagnostic selected  
OFF-state  
E.g: Ch0  
VIN0 = 0 V;  
diagnostic delay  
time from rising  
edge of VOUT  
tD_VOL  
5
VSEL0 = 0 V;  
VSEL1 = 0 V;  
VOUT = 0 V to 4 V  
Chip temperature analog feedback  
V
V
SEn = 5 V; VSEL0 = 0 V;  
SEL1 = 5 V; VIN0,1 = 0 V;  
2.325 2.41 2.495  
1.985 2.07 2.155  
V
V
RSENSE = 1 kΩ; Tj = -40°C  
MultiSense output  
voltage proportional  
to chip temperature  
VSEn = 5 V; VSEL0 = 0 V;  
VSEL1 = 5 V; VIN0,1 = 0 V;  
VSENSE_TC  
R
SENSE = 1 kΩ; Tj = 25°C  
VSEn = 5 V; VSEL0 = 0 V;  
SEL1 = 5 V; VIN0,1 = 0 V;  
V
1.435 1.52 1.605  
-5.5  
V
RSENSE = 1 kΩ; Tj = 125°C  
Temperature  
coefficient  
dVSENSE_TC/dT  
Tj = -40°C to 150°C  
mV/K  
Transfer function  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
VCC supply voltage analog feedback  
MultiSense output  
voltage proportional  
to VCC supply  
voltage  
VCC = 13 V; VSEn = 5 V;  
SEL0 = 5 V; VSEL1 = 5 V;  
VIN0,1 = 0 V; RSENSE = 1 kΩ  
VSENSE_VCC  
V
3.16  
3.23  
3.3  
V
Transfer function (4)  
VSENSE_VCC = VCC / 4  
Fault diagnostic feedback (see Table 10: "Truth table")  
VCC = 13 V; RSENSE = 1 kΩ;  
E.g: Ch0 in open load  
VIN0 = 0 V; VSEn = 5 V;  
VSEL0 = 0 V;  
MultiSense output  
voltage in fault  
condition  
VSENSEH  
5
6.6  
V
VSEL1 = 0 V;  
IOUT0 = 0 A; VOUT = 4 V  
14/44  
DocID027393 Rev 1  
VND7020AJ  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
Symbol  
Parameter  
Test conditions  
Min.  
Typ. Max.  
20 30  
Unit  
MultiSense output  
current in fault  
condition  
ISENSEH  
VCC = 13 V; VSENSE = 5 V  
7
mA  
MultiSense timings (current sense mode - see Figure 7: "MultiSense timings (current sense  
mode)")  
Current sense  
settling time from  
rising edge of SEn  
V
R
IN = 5 V; VSEn = 0 V to 5 V;  
SENSE = 1 kΩ; RL = 4.3 Ω  
tDSENSE1H  
60  
20  
µs  
µs  
Current sense  
disable delay time  
from falling edge of  
SEn  
V
IN = 5 V; VSEn = 5 V to 0 V;  
tDSENSE1L  
5
RSENSE = 1 kΩ; RL = 4.3 Ω  
Current sense  
settling time from  
rising edge of  
INPUT  
V
IN = 0 V to 5 V; VSEn = 5 V;  
tDSENSE2H  
ΔtDSENSE2H  
tDSENSE2L  
100  
250  
100  
250  
µs  
µs  
µs  
RSENSE = 1 kΩ; RL = 4.3 Ω  
Current sense  
settling time from  
rising edge of IOUT  
(dynamic response  
to a step change of  
VIN = 5 V; VSEn = 5 V;  
R
= 90 % of ISENSEMAX  
RL = 4.3 Ω  
SENSE = 1 kΩ; ISENSE  
;
IOUT  
)
Current sense turn-  
off delay time from  
falling edge of  
INPUT  
VIN = 5 V to 0 V; VSEn = 5 V;  
SENSE = 1 kΩ; RL = 4.3 Ω  
50  
R
MultiSense timings (chip temperature sense mode - see Figure 8: "Multisense timings (chip  
temperature and VCC sense mode)")  
V
SENSE_TC settling  
VSEn = 0 V to 5 V;  
SEL0 = 0 V; VSEL1 = 5 V;  
RSENSE = 1 kΩ  
tDSENSE3H  
time from rising  
edge of SEn  
V
60  
20  
µs  
µs  
VSENSE_TC disable  
delay time from  
VSEn = 5 V to 0 V;  
tDSENSE3L  
VSEL0 = 0 V; VSEL1 = 5 V;  
falling edge of SEn  
RSENSE = 1 kΩ  
MultiSense timings (VCC voltage sense mode - see Figure 8: "Multisense timings (chip  
temperature and VCC sense mode)")  
VSENSE_VCC settling  
time from rising  
edge of SEn  
VSEn = 0 V to 5 V;  
SEL0 = 5 V; VSEL1 = 5 V;  
RSENSE = 1 kΩ  
tDSENSE4H  
V
60  
20  
µs  
µs  
VSENSE_VCC disable  
VSEn = 5 V to 0 V;  
tDSENSE4L  
delay time from  
VSEL0 = 5 V; VSEL1 = 5 V;  
falling edge of SEn  
RSENSE = 1 kΩ  
MultiSense timings (Multiplexer transition times) (5)  
VIN0 = 5 V; VIN1 = 5 V;  
MultiSense  
VSEn = 5 V; VSEL1 = 0 V;  
tD_XtoY  
transition delay from  
ChX to ChY  
V
SEL0 = 0 V to 5 V;  
20  
µs  
IOUT0 = 0 A; IOUT1 = 3 A;  
RSENSE = 1 kΩ  
DocID027393 Rev 1  
15/44  
Electrical specification  
7 V < VCC < 18 V; -40°C < Tj < 150°C  
VND7020AJ  
Symbol  
Parameter  
MultiSense  
Test conditions  
Min.  
Typ. Max.  
Unit  
VIN0 = 5 V; VSEn = 5 V;  
transition delay from  
current sense to TC  
sense  
VSEL0 = 0 V; VSEL1 = 0 V to  
5 V; IOUT0 = 1.5 A;  
RSENSE = 1 kΩ  
tD_CStoTC  
60  
20  
60  
20  
20  
20  
µs  
MultiSense  
VIN0 = 5 V; VSEn = 5 V;  
transition delay from VSEL0 = 0 V; VSEL1 = 5 V to  
TC sense to current  
sense  
tD_TCtoCS  
tD_CStoVCC  
tD_VCCtoCS  
tD_TCtoVCC  
tD_VCCtoTC  
µs  
µs  
µs  
µs  
µs  
0 V; IOUT0 = 1.5 A;  
RSENSE = 1 kΩ  
MultiSense  
VIN1 = 5 V; VSEn = 5 V;  
transition delay from VSEL0 = 5 V; VSEL1 = 0 V to  
current sense to VCC 5 V; IOUT1 = 1.5 A;  
sense  
RSENSE = 1 kΩ  
MultiSense  
transition delay from  
VIN1 = 5 V; VSEn = 5 V;  
VSEL0 = 5 V; VSEL1 = 5 V to  
VCC sense to current 0 V; IOUT1 = 1.5 A;  
sense  
R
SENSE = 1 kΩ  
VCC = 13 V; Tj = 125°C;  
SEn = 5 V; VSEL0 = 0 V to  
5 V; VSEL1 = 5 V;  
SENSE = 1 kΩ  
VCC = 13 V; Tj = 125°C;  
SEn = 5 V; VSEL0 = 5 V to  
MultiSense  
transition delay from  
TC sense to VCC  
sense  
V
R
MultiSense  
transition delay from  
V
V
CC sense to TC  
0 V; VSEL1 = 5 V;  
sense  
RSENSE = 1 kΩ  
MultiSense  
VIN0 = 5 V; VIN1 = 0 V;  
transition delay from  
VSEn = 5 V; VSEL1 = 0 V;  
tD_CStoVSENSEH  
stable current sense VSEL0 = 0 V to 5 V;  
20  
µs  
on ChX to VSENSEH  
on ChY  
IOUT0 = 3 A; VOUT1 = 4 V;  
SENSE = 1 kΩ  
R
Notes:  
(1)Parameter guaranteed by design and characterization; not subject to production test.  
(2)All values refer to VCC = 13 V; Tj = 25°C, unless otherwise specified.  
(3)Total current drift over -40 °C to 150 °C, VCC: 7 V to 18 V and output current variation, respect to a calibration  
point measured at Tj = 25 °C and VCC = 13 V.  
(4)  
V
sensing and TC sensing are referred to GND potential.  
CC  
(5)Transition delay are measured up to +/- 10% of final conditions.  
16/44  
DocID027393 Rev 1  
 
 
 
VND7020AJ  
Electrical specification  
Figure 4: IOUT/ISENSE versus IOUT  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Max  
Min  
Typ  
0
0
1
2
3
4
5
6
7
8
9
10  
I
OUT [A]  
GAPGPS02107  
Figure 5: Current sense accuracy versus IOUT  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
Current sense uncalibrated precision  
Current sense calibrated precision  
%
0
0
1
2
3
45  
6
78  
9
10  
IOUT [A]  
GAPGPS02108  
DocID027393 Rev 1  
17/44  
 
 
Electrical specification  
VND7020AJ  
Figure 6: Switching time and Pulse skew  
twon  
twoff  
VOUT  
Vcc  
80% Vcc  
20% Vcc  
ON  
OFF  
dVOUT/dt  
dVOUT/dt  
t
INPUT  
td(off)  
td(on)  
tpLH  
tpHL  
t
GAPG2609141134CFT  
Figure 7: MultiSense timings (current sense mode)  
IN1  
High  
SEn  
Low  
High  
SEL0  
Low  
High  
SEL1  
IOUT1  
Low  
CURRENT SENSE  
tDSENSE2H  
tDSENSE1L  
tDSENSE1H tDSENSE2L  
GAPGCFT00318  
18/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Electrical specification  
Figure 8: Multisense timings (chip temperature and VCC sense mode)  
High  
SEn  
Low  
High  
SEL0  
Low  
High  
SEL1  
VCC  
Low  
VSENSE = VSENSE_VCC  
VSENSE = VSENSE_TC  
SENSE  
tDSENSE4H  
tDSENSE4L  
tDSENSE3H  
tDSENSE3L  
VCC VOLTAGE SENSE MODE  
CHIP TEMPERATURE SENSE MODE  
GAPGCFT00319  
Figure 9: TDSTKON  
VINPU T  
VOU T  
VOU T > VOL  
MultiSense  
TDSTKON  
GAPG2609141140CFT  
DocID027393 Rev 1  
19/44  
 
 
Electrical specification  
VND7020AJ  
Comments  
Table 10: Truth table  
Mode  
Conditions  
INX  
L
FR  
SEn  
SELX  
OUTX MultiSense  
Low quiescent  
current  
consumption  
All logic  
inputs low  
Standby  
L
L
L
L
L
Hi-Z  
L
X
See (1)  
See (1)  
Outputs  
configured for  
auto-restart  
H
L
H
Nominal load  
connected;  
Tj < 150 °C  
Normal  
See (1)  
Outputs  
configured for  
Latch-off  
H
L
H
X
H
L
See (1)  
See (1)  
Output cycles  
with  
temperature  
hysteresis  
Overload or  
short to GND  
causing:  
Tj > TTSD or  
ΔTj > ΔTj_SD  
H
L
H
L
See (1)  
See (1)  
Overload  
See (1)  
Output  
latches-off  
H
X
H
X
Re-start when  
VCC > VUSD + V  
USDhyst (rising)  
L
L
Hi-Z  
Hi-Z  
VCC < VUSD  
(falling)  
Undervoltage  
X
X
Short to VCC  
Open-load  
Inductive  
L
L
X
X
H
H
See (1)  
See (1)  
OFF-state  
diagnostics  
See (1)  
See (1)  
External pull-  
up  
Negative  
L
X
< 0 V  
See (1)  
output voltage loads turn-off  
Notes:  
(1)Refer to Table 11: "MultiSense multiplexer addressing"  
Table 11: MultiSense multiplexer addressing  
MultiSense output  
OFF-state  
diag. (1)  
SEn SEL1 SEL0  
MUXchannel  
Normal  
mode  
Negative  
output  
Overload  
L
X
L
X
L
Hi-Z  
Channel 0  
diagnostic  
ISENSE  
1/K * IOUT0  
=
VSENSE  
VSENSEH  
=
VSENSE  
VSENSEH  
=
H
Hi-Z  
Hi-Z  
Channel 1  
diagnostic  
ISENSE  
1/K * IOUT1  
=
VSENSE  
VSENSEH  
=
VSENSE  
VSENSEH  
=
H
L
H
H
H
H
H
L
TCHIP Sense  
VCC Sense  
VSENSE = VSENSE_TC  
VSENSE = VSENSE_VCC  
H
Notes:  
(1)In case the output channel corresponding to the selected MUX channel is latched off while the  
relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic.  
Example 1: FR = 1; IN0 = 0; OUT0 = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0.  
Example 2: FR = 1; IN0 = 0; OUT0 = latched, VOUT0 > VOL; MUX channel = channel 0 diagnostic;  
Mutisense = VSENSEH  
20/44  
DocID027393 Rev 1  
 
 
 
 
VND7020AJ  
Electrical specification  
2.4  
Waveforms  
Figure 10: Latch functionality - behavior in hard short circuit condition (TAMB << TTSD)  
Figure 11: Latch functionality - behavior in hard short circuit condition  
DocID027393 Rev 1  
21/44  
 
 
 
Electrical specification  
VND7020AJ  
Figure 12: Latch functionality - behavior in hard short circuit condition (autorestart mode +  
latch off)  
Figure 13: Standby mode activation  
22/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Electrical specification  
Figure 14: Standby state diagram  
2.5  
Electrical characteristics curves  
Figure 16: Standby current  
Figure 15: OFF-state output current  
DocID027393 Rev 1  
23/44  
 
 
 
 
Electrical specification  
Figure 17: IGND(ON) vs. Iout  
VND7020AJ  
Figure 18: Logic Input high level voltage  
Figure 20: High level logic input current  
Figure 19: Logic Input low level voltage  
Figure 21: Low level logic input current  
Figure 22: Logic Input hysteresis voltage  
24/44  
DocID027393 Rev 1  
 
 
 
 
 
 
VND7020AJ  
Electrical specification  
Figure 23: FaultRST Input clamp voltage  
Figure 25: On-state resistance vs. Tcase  
Figure 27: Turn-on voltage slope  
Figure 24: Undervoltage shutdown  
Figure 26: On-state resistance vs. VCC  
Figure 28: Turn-off voltage slope  
DocID027393 Rev 1  
25/44  
 
 
 
 
 
 
Electrical specification  
Figure 29: Won vs. Tcase  
VND7020AJ  
Figure 30: Woff vs. Tcase  
Figure 32: OFF-state open-load voltage  
detection threshold  
Figure 31: ILIMH vs. Tcase  
Figure 33: Vsense clamp vs. Tcase  
Figure 34: Vsenseh vs. Tcase  
26/44  
DocID027393 Rev 1  
 
 
 
 
 
 
VND7020AJ  
Protections  
3
Protections  
3.1  
Power limitation  
The basic working principle of this protection consists of an indirect measurement of the  
junction temperature swing ΔTj through the direct measurement of the spatial temperature  
gradient on the device surface in order to automatically shut off the output MOSFET as  
soon as ΔTj exceeds the safety level of ΔTj_SD. According to the voltage level on the  
FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis  
according to the maximum instantaneous power which can be handled (FaultRST = Low)  
or remains off (FaultRST = High). The protection prevents fast thermal transient effects  
and, consequently, reduces thermo-mechanical fatigue.  
3.2  
3.3  
Thermal shutdown  
In case the junction temperature of the device exceeds the maximum allowed threshold  
(typically 175°C), it automatically switches off and the diagnostic indication is triggered.  
According to the voltage level on the FaultRST pin, the device switches on again as soon  
as its junction temperature drops to TR (FaultRST = Low) or remains off (FaultRST = High).  
Current limitation  
The device is equipped with an output current limiter in order to protect the silicon as well  
as the other components of the system (e.g. bonding wires, wiring harness, connectors,  
loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or  
during load power-up, the output current is clamped to a safety level, ILIMH, by operating the  
output power MOSFET in the active region.  
3.4  
Negative voltage clamp  
In case the device drives inductive load, the output voltage reaches a negative value during  
turn off. A negative voltage clamp structure limits the maximum negative voltage to a  
certain value, VDEMAG, allowing the inductor energy to be dissipated without damaging the  
device.  
DocID027393 Rev 1  
27/44  
 
 
 
 
 
Application information  
VND7020AJ  
4
Application information  
Figure 35: Application diagram  
4.1  
GND protection network against reverse battery  
Figure 36: Simplified internal structure  
28/44  
DocID027393 Rev 1  
 
 
 
 
VND7020AJ  
Application information  
4.1.1  
Diode (DGND) in the ground line  
A resistor (typ. RGND = 4.7 kΩ) should be inserted in parallel to DGND if the device drives an  
inductive load.  
This small signal diode can be safely shared amongst several different HSDs. Also in this  
case, the presence of the ground network produces a shift (≈600 mV) in the input threshold  
and in the status output values if the microprocessor ground is not common to the device  
ground. This shift does not vary if more than one HSD shares the same diode/resistor  
network.  
4.2  
Immunity against transient electrical disturbances  
The immunity of the device against transient electrical emissions, conducted along the  
supply lines and injected into the VCC pin, is tested in accordance with ISO7637-2:2011 (E)  
and ISO 16750-2:2010.  
The related function performance status classification is shown in Table 12: "ISO 7637-2 -  
electrical transient conduction along supply line".  
Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and  
in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present  
device only, without components and accessed through VCC and GND terminals.  
Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as  
follows: “The function does not perform as designed during the test but returns  
automatically to normal operation after the test”.  
Table 12: ISO 7637-2 - electrical transient conduction along supply line  
Test pulse severity  
Test  
Pulse  
2011(E)  
Burst cycle /  
pulse repetition  
time  
Minimum  
number of  
pulses or test  
time  
level with Status II  
functional  
performance status  
Pulse duration and  
pulse generator  
internal impedance  
(1)  
Level  
III  
US  
min  
0,5 s  
max  
1
-112V  
+55V  
-220V  
+150V  
-7V  
500 pulses  
500 pulses  
1h  
2ms, 10Ω  
50µs, 2Ω  
2a  
3a  
3b  
4 (2)  
III  
0,2 s  
5 s  
IV  
90 ms  
90 ms  
100 ms  
100 ms  
0.1µs, 50Ω  
0.1µs, 50Ω  
100ms, 0.01Ω  
IV  
1h  
IV  
1 pulse  
Load dump according to ISO 16750-2:2010  
Test B  
40V  
5 pulse  
1 min  
400ms, 2Ω  
(3)  
Notes:  
(1)US is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.  
(2)Test pulse from ISO 7637-2:2004(E).  
(3)With 40 V external suppressor referred to ground (-40°C < Tj < 150°C).  
4.3  
MCU I/Os protection  
If a ground protection network is used and negative transients are present on the VCC line,  
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line both to  
prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.  
DocID027393 Rev 1  
29/44  
 
 
 
 
 
 
 
Application information  
The value of these resistors is a compromise between the leakage current of  
VND7020AJ  
microcontroller and the current required by the HSD I/Os (Input levels compatibility) with  
the latch-up limit of microcontroller I/Os.  
Equation  
VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC - VIH - VGND) / IIHmax  
Calculation example:  
For VCCpeak = -150 V; Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V  
7.5 kΩ ≤ Rprot ≤ 140 kΩ.  
Recommended values: Rprot = 15 kΩ  
4.4  
Multisense - analog current sense  
Diagnostic information on device and load status are provided by an analog output pin  
(MultiSense) delivering the following signals:  
Current monitor: current mirror of channel output current  
VCC monitor: voltage propotional to VCC  
TCASE: voltage propotional to chip temperature  
Those signals are routed through an analog multiplexer which is configured and controlled  
by means of SELx and SEn pins, according to the address map in MultiSense multiplexer  
addressing Table.  
Figure 37: MultiSense and diagnostic – block diagram  
30/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Application information  
4.4.1  
Principle of Multisense signal generation  
Figure 38: MultiSense block diagram  
Current monitor  
When current mode is selected in the MultiSense, this output is capable to provide:  
Current mirror proportional to the load current in normal operation, delivering current  
proportional to the load according to known ratio named K  
Diagnostics flag in fault conditions delivering fixed voltage VSENSEH  
The current delivered by the current sense circuit, ISENSE, can be easily converted to a  
voltage VSENSE by using an external sense resistor, RSENSE, allowing continuous load  
monitoring and abnormal condition detection.  
Normal operation (channel ON, no fault, SEn active)  
While device is operating in normal conditions (no fault intervention), VSENSE calculation can  
be done using simple equations  
Current provided by MultiSense output: ISENSE = IOUT/K  
Voltage on RSENSE: VSENSE = RSENSE · ISENSE = RSENSE · IOUT/K  
Where:  
VSENSE is voltage measurable on RSENSE resistor  
ISENSE is current provided from MultiSense pin in current output mode  
DocID027393 Rev 1  
31/44  
 
 
Application information  
VND7020AJ  
IOUT is current flowing through output  
K factor represents the ratio between PowerMOS cells and SenseMOS cells; its  
spread includes geometric factor spread, current sense amplifier offset and process  
parameters spread of overall circuitry specifying ratio between IOUT and ISENSE  
.
Failure flag indication  
In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin  
which is switched to a “current limited” voltage source, VSENSEH  
.
In any case, the current sourced by the MultiSense in this condition is limited to ISENSEH  
.
The typical behavior in case of overload or hard short circuit is shown in Waveforms  
section.  
Figure 39: Analogue HSD – open-load detection in off-state  
32/44  
DocID027393 Rev 1  
 
VND7020AJ  
Application information  
Figure 40: Open-load / short to VCC condition  
Table 13: MultiSense pin levels in off-state  
Output  
Condition  
MultiSense  
SEn  
L
Hi-Z  
VOUT > VOL  
VSENSEH  
H
L
Open-load  
Hi-Z  
VOUT < VOL  
0
H
L
Hi-Z  
Short to VCC  
Nominal  
VOUT > VOL  
VSENSEH  
H
L
Hi-Z  
VOUT < VOL  
0
H
4.4.2  
TCASE and VCC monitor  
In this case, MultiSense output operates in voltage mode and output level is referred to  
device GND. Care must be taken in case a GND network protection is used, because of a  
voltage shift is generated between device GND and the microcontroller input GND  
reference.  
Figure 41: "GND voltage shift" shows link between VMEASURED and real VSENSE signal.  
DocID027393 Rev 1  
33/44  
 
 
 
Application information  
VND7020AJ  
Figure 41: GND voltage shift  
VCC monitor  
Battery monitoring channel provides VSENSE = VCC / 4.  
Case temperature monitor  
Case temperature monitor is capable to provide information about the actual device  
temperature. Since a diode is used for temperature sensing, the following equation  
describes the link between temperature and output VSENSE level:  
VSENSE_TC (T) = VSENSE_TC (T0) + dVSENSE_TC / dT * (T - T0)  
where dVSENSE_TC / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C).  
Short to VCC and OFF-state open-load detection  
Short to VCC  
4.4.3  
A short circuit between VCC and output is indicated by the relevant current sense pin set to  
VSENSEH during the device off-state. Small or no current is delivered by the current sense  
during the on-state depending on the nature of the short circuit.  
OFF-state open-load with external circuitry  
Detection of an open-load in off mode requires an external pull-up resistor RPU connecting  
the output to a positive supply voltage VPU.  
It is preferable VPU to be switched off during the module standby mode in order to avoid the  
overall standby current consumption to increase in normal conditions, i.e. when load is  
connected.  
RPU must be selected in order to ensure VOUT > VOLmax in accordance with the following  
equation:  
34/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Application information  
Equation  
VPU - 4  
IL(off2)min @ 4V  
RPU <  
DocID027393 Rev 1  
35/44  
Maximum demagnetization energy (VCC = 16 V)  
VND7020AJ  
5
Maximum demagnetization energy (VCC = 16 V)  
Figure 42: Maximum turn off current versus inductance  
Maximum turn off current versus inductance  
100  
10  
1
Single Pulse  
Repetitive pulse Tjstart=100°C  
Repetitive pulse Tjstart=125°C  
0.1  
0.1  
1
10  
100  
1000  
L (mH)  
Maximum turn off Energy versus Tdemag  
1000  
100  
10  
SinglePulse  
Repetitive pulse Tjstart=100°C  
Repetitive pulse Tjstart=125°C  
1
0.01  
0.1  
1
10  
100  
Tdemag [ms]  
GAPG1010141150CFT  
Values are generated with RL = 0 Ω.  
In case of repetitive pulses, Tjstart (at the beginning of each demagnetization) of  
every pulse must not exceed the temperature specified above for curves A and B.  
36/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Package and PCB thermal data  
6
Package and PCB thermal data  
6.1  
PowerSSO-16 thermal data  
Figure 43: PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)  
Figure 44: PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)  
Table 14: PCB properties  
Dimension  
Value  
1.6 mm +/- 10%  
77 mm x 86 mm  
FR4  
Board finish thickness  
Board dimension  
Board Material  
Copper thickness (top and bottom layers)  
Copper thickness (inner layers)  
Thermal vias separation  
0.070 mm  
0.035 mm  
1.2 mm  
Thermal via diameter  
0.3 mm +/- 0.08 mm  
0.025 mm  
Copper thickness on vias  
Footprint dimension (top layer)  
Heatsink copper area dimension (bottom layer)  
2.2 mm x 3.9 mm  
Footprint, 2 cm2 or 8 cm2  
DocID027393 Rev 1  
37/44  
 
 
 
 
 
Package and PCB thermal data  
VND7020AJ  
Figure 45: Rthj-amb vs PCB copper area in open box free air condition (one channel on)  
Figure 46: PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)  
Equation: : pulse calculation formula  
ZTHδ = RTH · δ + ZTHtp (1 - δ)  
where δ = tP/T  
38/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Package and PCB thermal data  
Figure 47: Thermal fitting model of a double-channel HSD in PowerSSO-16  
The fitting model is a simplified thermal tool and is valid for transient evolutions  
where the embedded protections (power limitation or thermal cycling during  
thermal shutdown) are not triggered.  
Table 15: Thermal parameters  
Area/island (cm2)  
R1 = R7 (°C/W)  
R2 = R8 (°C/W)  
R3 (°C/W)  
Footprint  
0.25  
2
2
8
4L  
7
7
6
7
6
5
4
3
7
R4 (°C/W)  
16  
R5 (°C/W)  
30  
20  
20  
10  
18  
R6 (°C/W)  
26  
C1 = C7 (W.s/°C)  
C2 = C8 (W.s/°C)  
C3 (W.s/°C)  
0.001  
0.025  
0.1  
C4 (W.s/°C)  
0.2  
0.3  
1
0.3  
1
0.4  
4
C5 (W.s/°C)  
0.4  
C6 (W.s/°C)  
3
5
7
18  
DocID027393 Rev 1  
39/44  
 
 
Package information  
VND7020AJ  
7
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
7.1  
PowerSSO-16 package information  
Figure 48: PowerSSO-16 package dimensions  
40/44  
DocID027393 Rev 1  
 
 
 
VND7020AJ  
Package information  
Table 16: PowerSSO-16 mechanical data  
Millimeters  
Symbol  
Min.  
0°  
Typ.  
Max.  
Θ
Θ1  
Θ2  
Θ3  
A
8°  
0°  
5°  
15°  
15°  
5°  
1.70  
0.10  
1.60  
0.30  
0.28  
0.25  
0.23  
A1  
A2  
b
0.00  
1.10  
0.20  
0.20  
0.19  
0.19  
b1  
c
0.25  
c1  
D
0.20  
4.9 BSC  
D1  
e
3.60  
4.20  
0.50 BSC  
6.00 BSC  
3.90 BSC  
E
E1  
E2  
h
1.90  
0.25  
0.40  
2.50  
0.50  
0.85  
L
0.60  
1.00 REF  
16  
L1  
N
R
0.07  
0.07  
0.20  
R1  
S
Tolerance of form and position  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.10  
0.08  
0.08  
0.10  
0.10  
0.15  
ggg  
DocID027393 Rev 1  
41/44  
 
Order codes  
VND7020AJ  
8
Order codes  
Table 17: Device summary  
Order codes  
Tape and reel  
VND7020AJTR  
Package  
Tube  
PowerSSO-16  
42/44  
DocID027393 Rev 1  
 
 
VND7020AJ  
Revision history  
9
Revision history  
Table 18: Document revision history  
Revision  
Date  
Changes  
04-Feb-2015  
1
Initial release.  
DocID027393 Rev 1  
43/44  
 
 
VND7020AJ  
IMPORTANT NOTICE – PLEASE READ CAREFULLY  
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and  
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST  
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order  
acknowledgement.  
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the  
design of Purchasers’ products.  
No license, express or implied, to any intellectual property right is granted by ST herein.  
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.  
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.  
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.  
© 2015 STMicroelectronics – All rights reserved  
44/44  
DocID027393 Rev 1  

相关型号:

VND7020AJTR

Double channel high-side driver with MultiSense analog feedback

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7030AJ

Double channel high-side driver with MultiSense analog feedback for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7030AJ-E

BUF OR INV BASED PRPHL DRVR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7030AJTR

Double channel high-side driver with MultiSense analog feedback for automotive applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7030AJTR-E

BUF OR INV BASED PRPHL DRVR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7040AJTR-E

BUF OR INV BASED PRPHL DRVR, PDSO16, ROHS COMPLIANT, SSOP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7050AJ

Double channel high-side driver with MultiSense analog feedback

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7050AJ12

Double channel high-side driver with CurrentSense analog feedback

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7050AJ12TR

Double channel high-side driver with CurrentSense analog feedback

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR

VND7050AJTR

Double channel high-side driver with MultiSense analog feedback

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
STMICROELECTR