VNQ600P-E [STMICROELECTRONICS]

QUAD CHANNEL HIGH SIDE DRIVER; 四通道高端驱动器
VNQ600P-E
型号: VNQ600P-E
厂家: ST    ST
描述:

QUAD CHANNEL HIGH SIDE DRIVER
四通道高端驱动器

外围驱动器 驱动程序和接口 接口集成电路 光电二极管 PC
文件: 总20页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VNQ600P-E  
QUAD CHANNEL HIGH SIDE DRIVER  
Figure 1. Package  
Table 1. General Features  
TYPE  
R
(*)  
I
V
CC  
DS(on)  
lim  
VNQ600P-E  
35mΩ  
25A  
36 V  
(*) Per each channel  
DC SHORT CIRCUIT CURRENT: 22A  
CMOS COMPATIBLE INPUTS  
PROPORTIONAL LOAD CURRENT SENSE  
UNDERVOLTAGE & OVERVOLTAGE  
SHUT-DOWN  
OVERVOLTAGE CLAMP  
THERMAL SHUT-DOWN  
SO-28 (DOUBLE ISLAND)  
CURRENT LIMITATION  
VERY LOW STAND-BY POWER DISSIPATION  
PROTECTION AGAINST:  
LOSS OF GROUND & LOSS OF V  
CC  
REVERSE BATTERY PROTECTION (**)  
IN COMPLIANCE WITH THE 2002/95/EC  
EUROPEAN DIRECTIVE  
The VNQ600P-E is intended for driving any type of  
multiple loads with one side connected to ground.  
This device has four independent channels and  
four analog sense outputs which deliver currents  
proportional to the outputs currents. Active current  
limitation combined with thermal shut-down and  
automatic restart protect the device against  
overload. Device automatically turns off in case of  
ground pin disconnection.  
DESCRIPTION  
The VNQ600P-E is a quad HSD formed by  
assembling two VND600-E chips in the same SO-  
28 package. The VND600-E is a monolithic device  
designed in| STMicroelectronics VIPower M0-3  
Technology.  
Table 2. Order Codes  
Package  
Tube  
VNQ600P-E  
Tape and Reel  
SO-28  
VNQ600PTR-E  
Note: (**) See application schematic at page 11.  
Rev. 1  
October 2004  
1/20  
VNQ600P-E  
Figure 2. Block Diagram  
V
CC  
1,2  
OVERVOLTAGE  
UNDERVOLTAGE  
DEMAG 1  
DRIVER 1  
OUTPUT 1  
INPUT 1  
I
LIM1  
LOGIC  
I
OUT1  
CURRENT  
SENSE 1  
K
INPUT 2  
GND 1,2  
DEMAG 2  
DRIVER 2  
OUTPUT 2  
I
LIM2  
OVERTEMP. 1  
OVERTEMP. 2  
I
OUT2  
CURRENT  
SENSE 2  
K
V
CC  
3,4  
OVERVOLTAGE  
UNDERVOLTAGE  
DEMAG 3  
DRIVER 3  
OUTPUT 3  
INPUT 3  
I
LIM3  
LOGIC  
I
OUT3  
CURRENT  
SENSE 3  
K
INPUT 4  
GND 3,4  
DEMAG 4  
DRIVER 4  
OUTPUT 4  
I
LIM4  
OVERTEMP. 3  
OVERTEMP. 4  
I
OUT4  
CURRENT  
SENSE 4  
K
2/20  
VNQ600P-E  
Table 3. Absolute Maximum Ratings  
Symbol  
Parameter  
Value  
41  
Unit  
V
V
CC  
Supply voltage (continuous)  
-V  
Reverse supply voltage (continuous)  
Output current (continuous), for each channel  
-0.3  
15  
V
CC  
I
A
OUT  
Reverse output current (continuous), for each chan-  
nel  
I
R
-15  
A
I
IN  
Input current  
+/- 10  
mA  
-3  
V
V
V
Current sense maximum voltage  
CSENSE  
+15  
I
Ground current at T  
< 25°C (continuous)  
pins  
-200  
mA  
GND  
Electrostatic Discharge (Human Body Model:  
R=1.5KΩ; C=100pF)  
4000  
2000  
5000  
5000  
V
V
V
V
- INPUT  
V
ESD  
MAX  
- CURRENT SENSE  
- OUTPUT  
- V  
CC  
Maximum Switching Energy  
(L=0.11mH; R =0; V =13.5V; T =150ºC;  
jstart  
E
126  
mJ  
L
bat  
I =40A)  
L
P
Power dissipation (per island) at T  
Junction operating temperature  
Storage temperature  
=25°C  
lead  
6.25  
W
°C  
°C  
tot  
T
Internally Limited  
-55 to 150  
j
T
stg  
Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins  
V
CC  
1,2  
1
28  
V
CC  
1,2  
GND 1,2  
OUTPUT 2  
OUTPUT 2  
OUTPUT 2  
INPUT 2  
INPUT 1  
CURRENT SENSE 1  
CURRENT SENSE 2  
OUTPUT 1  
OUTPUT 1  
OUTPUT 1  
V
1,2  
3,4  
CC  
V
CC  
OUTPUT 4  
OUTPUT 4  
OUTPUT 4  
OUTPUT 3  
GND 3,4  
INPUT 4  
INPUT 3  
CURRENT SENSE 3  
OUTPUT 3  
OUTPUT 3  
CURRENT  
SENSE 4  
V
CC  
3,4  
V
CC  
3,4  
14  
15  
Connection / Pin  
Floating  
Current Sense  
N.C.  
X
Output  
Input  
X
X
To Ground  
Through 1Kresistor  
X
Through 10Kresistor  
3/20  
VNQ600P-E  
Figure 4. Current and Voltage Conventions  
I
I
S1,2  
S3,4  
V
V
CC1,2  
CC3,4  
V
CC3,4  
V
V
(*)  
V
CC1,2  
F1  
I
IN1  
INPUT1  
I
I
I
OUT1  
SENSE1  
IN1  
CUR. SENSE1  
OUTPUT1  
OUTPUT2  
OUTPUT3  
I
IN2  
V
SENSE1  
V
OUT1  
I
INPUT2  
OUT2  
I
SENSE2  
V
IN2  
CUR. SENSE2  
I
V
IN3  
OUT2  
V
SENSE2  
OUT3  
INPUT3  
I
SENSE3  
V
IN3  
V
CUR. SENSE3  
V
OUT3  
I
IN4  
I
OUT4  
SENSE3  
INPUT4  
I
SENSE4  
OUTPUT4  
V
IN4  
V
OUT4  
CUR. SENSE4  
V
GND  
SENSE4  
3,4  
GND  
1,2  
I
I
GND1,2  
GND3,4  
(*) V = V  
- V during reverse battery condition  
OUTn  
Fn  
CCn  
Table 4. Thermal Data  
Symbol  
Parameter  
Value  
15  
Unit  
°C/W  
°C/W  
°C/W  
R
Thermal resistance junction-case  
(MAX)  
(MAX)  
(MAX)  
thj-case  
(1)  
(2)  
(2)  
R
R
Thermal resistance junction-ambient (one chip ON)  
Thermal resistance junction-ambient (two chips ON)  
60  
46  
44  
31  
thj-amb  
thj-amb  
(1)  
2
Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm of Cu (at least 35µm thick) connected to all V pins. Horizontal  
CC  
mounting and no artificial air flow.  
2
Note: 2. When mounted on a standard single-sided FR-4 board with 6cm of Cu (at least 35µm thick) connected to all V pins. Horizontal  
CC  
mounting and no artificial air flow.  
4/20  
VNQ600P-E  
ELECTRICAL CHARACTERISTICS (8V<V <36V; -40°C<T <150°C unless otherwise specified)  
CC  
j
(Per each channel)  
Table 5. Power  
Symbol  
Parameter  
Operating supply voltage  
(**) Undervoltage shut-down  
Test Conditions  
Min.  
5.5  
3
Typ.  
13  
4
Max.  
36  
Unit  
V
V
CC  
(**)  
V
USD  
5.5  
V
V
(**)  
Overvoltage shut-down  
On state resistance  
Clamp Voltage  
36  
V
OV  
I
I
I
1,2,3,4=5A; T =25°C  
35  
70  
mΩ  
mΩ  
mΩ  
OUT  
OUT  
OUT  
j
R
1,2,3,4=5A; T =150°C  
ON  
j
1,2,3,4=3A; V =6V  
CC  
120  
V
I
=20mA (see note 3)  
CC  
41  
48  
12  
55  
40  
V
clamp  
µA  
Off State; V =13V; V =V  
=0V  
OUT  
CC  
IN  
Off State; V =13V; V =V  
=0V;  
OUT  
CC  
IN  
I (**)  
S
Supply current  
12  
25  
µA  
T =25°C  
j
On State; V =13V; V =5V; I =0A;  
OUT  
CC  
IN  
R
=3.9KΩ  
SENSE  
6
50  
0
mA  
µA  
µA  
µA  
µA  
I
I
I
I
Off state output current  
Off State Output Current  
Off State Output Current  
Off State Output Current  
V =V =0V  
IN OUT  
0
L(off1)  
L(off2)  
L(off3)  
L(off4)  
V =0V; V  
IN  
=3.5V  
-75  
OUT  
V =V  
IN  
=0V; V =13V; T =125°C  
5
OUT  
OUT  
CC  
j
V =V  
IN  
=0V; V =13V; T =25°C  
3
CC  
j
Note: 3. V  
and V are correlated. Typical difference is 5V.  
OV  
clamp  
Note: (**) Per island.  
Table 6. Switching (V =13V)  
CC  
Symbol  
Parameter  
Turn-on delay time  
Turn-off delay time  
Test Conditions  
R =2.6channels 1,2,3,4 (see fig. 1)  
Min.  
Typ.  
40  
Max.  
Unit  
µs  
t
t
d(on)  
L
R =2.6channels 1,2,3,4 (see fig. 1)  
L
40  
µs  
d(off)  
See  
relative  
diagram  
(dV  
dt)  
/
/
OUT  
Turn-on voltage slope  
Turn-off voltage slope  
R =2.6channels 1,2,3,4 (see fig. 1)  
Vs  
Vs  
L
on  
See  
relative  
diagram  
(dV  
dt)  
OUT  
R =2.6channels 1,2,3,4 (see fig. 1)  
L
off  
Table 7. V - Output Diode  
CC  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
F
Forward on Voltage  
-I  
=2.3A; T =150°C  
0.6  
V
OUT  
j
5/20  
VNQ600P-E  
ELECTRICAL CHARACTERISTICS (continued)  
Table 8. Logic Input  
Symbol  
Parameter  
Low level input voltage  
High level input voltage  
Input hysteresis voltage  
Input current  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
V
V
1.25  
IL  
V
IH  
3.25  
0.5  
1
V
V
I(hyst)  
V
I
V =1.5V  
µA  
µA  
IL  
IN  
I
IN  
Input current  
V =3.5V  
IN  
10  
8
I =1mA  
IN  
6
6.8  
V
V
V
ICL  
Input clamp voltage  
I = -1mA  
IN  
-0.7  
Table 9. Protections (See note 4)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
V
=13V  
25  
40  
70  
70  
A
A
CC  
I
lim  
DC Short circuit current  
5.5V<V <36V  
CC  
Thermal shut-down  
temperature  
T
150  
175  
15  
200  
°C  
TSD  
Thermal reset tempera-  
ture  
T
135  
7
°C  
°C  
V
R
T
Thermal hysteresis  
hyst  
Turn-off output voltage  
clamp  
V
CC  
-
V
CC  
-
V
demag  
I
I
=2A; L=6mH  
V
-48  
OUT  
CC  
41  
55  
Output voltage drop  
limitation  
V
=0.5A; T = -40°C...+150°C  
50  
mV  
ON  
OUT  
j
Note: 4. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be  
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration  
and number of activation cycles.  
6/20  
VNQ600P-E  
ELECTRICAL CHARACTERISTICS (continued)  
Table 10. CURRENT SENSE (9V VCC 16V) (See Figure 5)  
Symbol  
Parameter  
Test Conditions  
=0.5A; V =0.5V;  
SENSE  
Min  
Typ  
Max  
Unit  
I
or I  
OUT1  
OUT2  
K
1
I
/I  
3300  
4400  
6000  
OUT SENSE  
other channels open; T = -40°C...150°C  
j
I
or I  
=0.5A; V  
=0.5V;  
SENSE  
OUT1  
OUT2  
dK /K  
Current Sense Ratio Drift  
-10  
+10  
%
1
1
2
other channels open; T = -40°C...150°C  
j
I
or I  
=5A; V  
SENSE  
=4V; other  
=4V; other  
OUT1  
OUT2  
channels open; T =-40°C  
K
2
I
/I  
j
4200  
4400  
4900  
4900  
6000  
5750  
OUT SENSE  
T =25°C...150°C  
j
I
or I  
=5A; V  
OUT1  
OUT2 SENSE  
channels open;  
dK /K  
Current Sense Ratio Drift  
-6  
+6  
%
%
2
T =-40°C...150°C  
j
I
or I  
=15A; V  
SENSE  
=4V; other  
=4V; other  
OUT1  
OUT2  
channels open; T =-40°C  
j
K
3
I
/I  
4200  
4400  
4900  
4900  
5500  
5250  
OUT SENSE  
T =25°C...150°C  
j
I
or I  
=15A; V  
OUT1  
OUT2 SENSE  
channels open;  
dK /K  
Current Sense Ratio Drift  
-6  
+6  
3
3
T =-40°C...150°C  
j
Max analog sense  
output voltage  
V
CC  
V
CC  
=5.5V; I  
=2.5A; R =10kΩ  
SENSE  
2
4
V
V
OUT1,2  
V
SENSE1,2  
>8V, I  
=5A; R  
=10kΩ  
SENSE  
OUT1,2  
Analog sense output  
voltage in overtemperature  
condition  
V
CC  
=13V; R  
=3.9kΩ  
SENSE  
V
5.5  
V
SENSEH  
Analog Sense Output  
Impedance in  
Overtemperature  
Condition  
R
t
V
=13V; T >T ; All channels open  
TSD  
400  
VSENSEH  
CC  
j
Current sense delay  
response  
to 90% I  
(see note 5)  
500  
µs  
DSENSE  
SENSE  
Note: 5. Current sense signal delay after positive input slope.  
7/20  
VNQ600P-E  
Figure 5. I  
/I  
versus I  
OUT SENSE  
OUT  
I
/I  
OUT SENSE  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
max.Tj=-40°C  
max.Tj=25...150°C  
min.Tj=25...150°C  
typical value  
min.Tj=-40°C  
0
2
4
6
8
10  
12  
14  
16  
I
(A)  
OUT  
Figure 6. Switching Characteristics (Resistive load R =2.6)  
L
V
OUT  
90%  
80%  
dV  
/dt  
OUT (off)  
dV /dt  
OUT (on)  
10%  
t
f
t
r
t
t
t
I
SENSE  
90%  
t
DSENSE  
INPUT  
t
d(on)  
t
d(off)  
8/20  
VNQ600P-E  
Table 11. Truth Table (Per channel)  
CONDITIONS  
INPUT  
OUTPUT  
SENSE  
L
L
0
Normal operation  
Nominal  
H
H
L
L
L
0
Overtemperature  
Undervoltage  
Overvoltage  
H
V
SENSEH  
L
L
L
0
0
H
L
L
L
0
0
H
L
H
H
L
L
L
0
Short circuit to GND  
(T <T  
) 0  
j
TSD  
(T >T  
) V  
j
TSD  
SENSEH  
L
H
H
0
Short circuit to V  
CC  
H
< Nominal  
Negative output voltage  
clamp  
L
L
0
Table 12. Electrical Transient Requirements on V Pin  
CC  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS  
III  
I
II  
IV  
Delays and  
Impedance  
1
2
-25 V  
+25 V  
-25 V  
-50 V  
+50 V  
-50 V  
-75 V  
+75 V  
-100 V  
+75 V  
-6 V  
-100 V  
+100 V  
-150 V  
+100 V  
-7 V  
2 ms 10 Ω  
0.2 ms 10 Ω  
0.1 µs 50 Ω  
0.1 µs 50 Ω  
100 ms, 0.01 Ω  
400 ms, 2 Ω  
3a  
3b  
4
+25 V  
-4 V  
+50 V  
-5 V  
5
+26.5 V  
+46.5 V  
+66.5 V  
+86.5 V  
ISO T/R 7637/1  
Test Pulse  
TEST LEVELS RESULTS  
I
II  
C
C
C
C
C
E
III  
C
C
C
C
C
E
IV  
C
C
C
C
C
E
1
2
C
C
C
C
C
C
3a  
3b  
4
5
CLASS  
CONTENTS  
C
E
All functions of the device are performed as designed after exposure to disturbance.  
One or more functions of the device is not performed as designed after exposure to disturbance  
and cannot be returned to proper operation without replacing the device.  
9/20  
VNQ600P-E  
Figure 7. Waveforms (Per each chip)  
NORMAL OPERATION  
INPUT  
n
LOAD CURRENT  
n
SENSE  
n
UNDERVOLTAGE  
V
CC  
VUSDhyst  
VUSD  
INPUT  
n
LOAD CURRENT  
n
SENSE  
n
OVERVOLTAGE  
VOV  
VCC < VOV  
V
CC  
VCC > VOV  
INPUT  
n
LOAD CURRENT  
n
SENSE  
n
SHORT TO GROUND  
INPUT  
n
LOAD CURRENT  
n
LOAD VOLTAGE  
n
SENSE  
n
SHORT TO V  
CC  
INPUT  
n
LOAD VOLTAGE  
n
LOAD CURRENT  
n
SENSE  
n
<Nominal  
<Nominal  
OVERTEMPERATURE  
TTSD  
TR  
T
j
INPUT  
n
LOAD CURRENT  
n
VSENSEH  
SENSE  
ISENSE  
=
n
RSENSE  
10/20  
VNQ600P-E  
Figure 8. Application Schematic  
+5V  
R
prot  
INPUT1  
V
CC1,2  
V
CC3,4  
D
ld  
R
prot  
OUTPUT1  
OUTPUT2  
C. SENSE 1  
INPUT2  
R
prot  
µC  
R
prot  
C. SENSE 2  
R
prot  
INPUT3  
OUTPUT3  
OUTPUT4  
R
prot  
C. SENSE 3  
INPUT4  
R
prot  
R
prot  
C. SENSE 4  
GND3,4  
GND1,2  
R
GND  
R
SENSE1,2,3,4  
D
GND  
V
GND  
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.  
This small signal diode can be safely shared amongst  
several different HSD. Also in this case, the presence of  
the ground network will produce a shift (j600mV) in the  
input threshold and the status output values if the  
microprocessor ground is not common with the device  
ground. This shift will not vary if more than one HSD  
shares the same diode/resistor network.  
GND PROTECTION NETWORK AGAINST  
REVERSE BATTERY  
Solution 1: Resistor in the ground line (R  
can be used with any type of load.  
only). This  
GND  
The following is an indication on how to dimension the  
R
resistor.  
GND  
1) R  
2) R  
where -I  
600mV / 2(I  
).  
S(on)max  
Series resistor in INPUT line is also required to prevent  
that, during battery voltage transient, the current exceeds  
the Absolute Maximum Rating.  
Safest configuration for unused INPUT pin is to leave it  
unconnected, while unused SENSE pin has to be  
connected to Ground pin.  
GND  
GND  
≥ (−V ) / (-I  
)
GND  
CC  
is the DC reverse ground pin current and can  
GND  
be found in the absolute maximum rating section of the  
device’s datasheet.  
Power Dissipation in R  
battery situations) is:  
(when V <0: during reverse  
CC  
GND  
LOAD DUMP PROTECTION  
2
P = (-V ) /R  
D
is necessary (Voltage Transient Suppressor) if the  
D
CC  
GND  
ld  
load dump peak voltage exceeds V  
max DC rating.  
CC  
This resistor can be shared amongst several different  
HSD. Please note that the value of this resistor should be  
The same applies if the device will be subject to  
transients on the V  
line that are greater than the ones  
CC  
calculated with formula (1) where I  
becomes the  
S(on)max  
shown in the ISO T/R 7637/1 table.  
sum of the maximum on-state currents of the different  
devices.  
µC I/Os PROTECTION:  
Please note that if the microprocessor ground is not  
If a ground protection network is used and negative  
common with the device ground then the R  
will  
GND  
transients are present on the V line, the control pins will  
CC  
produce a shift (I  
* R  
) in the input thresholds  
GND  
S(on)max  
be pulled negative. ST suggests to insert a resistor (R  
in line to prevent the µC I/Os pins to latch-up.  
)
prot  
and the status output values. This shift will vary  
depending on how many devices are ON in the case of  
The value of these resistors is a compromise between the  
leakage current of µC and the current required by the  
HSD I/Os (Input levels compatibility) with the latch-up  
limit of µC I/Os.  
several high side drivers sharing the same R  
.
GND  
If the calculated power dissipation leads to a large  
resistor or several devices have to share the same  
resistor then the ST suggests to utilize Solution 2 (see  
below).  
Solution 2: A diode (D  
A resistor (R  
-V  
/I  
R  
(V  
-V -V  
OHµC IH GND  
) / I  
CCpeak latchup  
prot  
IHmax  
Calculation example:  
) in the ground line.  
GND  
For V  
= - 100V and I  
20mA; V  
4.5V  
CCpeak  
latchup  
OHµC  
=1kΩ) should be inserted in parallel to  
GND  
D
if the device will be driving an inductive load.  
5kΩ ≤ R  
65k.  
GND  
prot  
Recommended R  
value is 10kΩ.  
prot  
11/20  
VNQ600P-E  
Figure 9. Off State Output Current  
Figure 10. Low Level Input Current  
Iil (µA)  
6
IL(off1) (µA)  
4
5.5  
Vcc=13V  
3.5  
Vin=1.5V  
Vcc=13V  
5
3
4.5  
4
2.5  
2
3.5  
3
1.5  
1
2.5  
2
0.5  
0
1.5  
1
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Figure 11. Input Clamp Voltage  
Figure 13. Input High Level  
Vicl (V)  
10  
Vih (V)  
5
9.5  
4.5  
4
Iin=1mA  
9
8.5  
8
3.5  
3
7.5  
7
2.5  
2
6.5  
6
1.5  
1
5.5  
5
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
Figure 12. Input Low Level  
Figure 14. Input Hysteresis Voltage  
Vil (V)  
4
Vhyst (V)  
1.5  
1.4  
1.3  
1.2  
1.1  
1
3.5  
3
2.5  
2
0.9  
0.8  
0.7  
0.6  
0.5  
1.5  
1
0.5  
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc (°C)  
Tc (°C)  
12/20  
VNQ600P-E  
Figure 15. Overvoltage Shutdown  
Figure 16. I  
Vs T  
LIM case  
Ilim (A)  
80  
Vov (V)  
55  
52.5  
50  
70  
60  
50  
40  
30  
20  
10  
0
Vcc=13V  
47.5  
45  
42.5  
40  
37.5  
35  
32.5  
30  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
Tc (°C)  
Tc (°C)  
Figure 17. Turn-on Voltage Slope  
Figure 19. Turn-off Voltage Slope  
dVout/dt(off) (V/ms)  
dVout/dt(on) (V/ms)  
1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0.9  
Vcc=13V  
Rl=2.6Ohm  
Vcc=13V  
0.8  
Rl=2.6Ohm  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-50-25
0
25
50
75
100125150  
175  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Tc(°C)
Tc (°C)  
Figure 18. On State Resistance Vs T  
case  
Ron (mOhm)  
80  
70  
Vcc=13V  
Iout=5V  
60  
50  
40  
30  
20  
10  
0
-50  
-25  
0
25  
50  
75  
100 125 150 175  
Tc (°C)  
13/20  
VNQ600P-E  
Figure 20. Maximum Turn Off Current Versus Load Inductance  
LMAX (A)  
I
100  
A
B
C
10  
1
0.001  
0.01  
0.1  
1
10  
100  
L(mH)  
A = Single Pulse at T  
=150ºC  
Jstart  
B= Repetitive pulse at T  
=100ºC  
Jstart  
C= Repetitive Pulse at T  
=125ºC  
Jstart  
Conditions:  
V
=13.5V  
CC  
Values are generated with R =0Ω  
L
In case of repetitive pulses, T  
(at beginning of each demagnetization) of every pulse must not exceed  
jstart  
the temperature specified above for curves B and C.  
V , I  
IN  
L
Demagnetization  
Demagnetization  
Demagnetization  
t
14/20  
VNQ600P-E  
SO-28 Thermal Data  
Figure 21. SO-28 Double Island PC Board  
Layout condition of R and Z measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,  
th  
th  
2
2
2
Cu thickness=35µm, Copper areas: 0.5cm , 3cm , 6cm ).  
Table 13. Thermal Calculation According to the PCB Heatsink Area  
Chip 1 Chip 2  
Tjchip1  
Tjchip2  
Note  
ON  
OFF  
ON  
OFF  
ON  
ON  
ON  
R
R
R
x P  
x P  
+ T  
R
R
R
x P  
x P  
+ T  
thA  
thC  
thB  
dchip1  
amb  
amb  
thC  
thA  
thB  
dchip1  
amb  
+ T  
+ T  
dchip2  
dchip2  
amb  
x (P  
+ P  
) + T  
x (P  
+ P  
) + T  
P
P
=P  
dchip1  
dchip2  
amb  
dchip1  
dchip2  
amb  
dchip1  
dchip2  
ON  
(R  
x P  
) + R  
dchip1  
x P  
+ T  
(R x P  
) + R x P  
+ T  
amb  
P  
thA  
thC  
dchip2  
amb  
thA  
dchip2  
thC  
dchip1  
dchip1  
dchip2  
Note:R  
= Thermal resistance Junction to Ambient with one chip ON  
thA  
Note:R = Thermal resistance Junction to Ambient with both chips ON and P  
=P  
dchip2  
thB  
dchip1  
Note:R  
= Mutual thermal resistance  
thC  
Figure 22. R  
Vs PCB Copper Area In Open Box Free Air Condition  
thj-amb  
RTHj_am b  
(°C/W)  
70  
60  
50  
40  
30  
20  
R
R
thA  
thB  
R
thC  
10  
0
1
2
3
4
5
6
7
PCB Cu heatsink area (cm^2)/island  
15/20  
VNQ600P-E  
Figure 23. SO-28 Thermal Impedance Junction Ambient Single Pulse  
Zth(°C/W)  
100  
0,5 cm ^2/is land  
3 cm ^2/is land  
6 cm ^2/is land  
10  
One channel ON  
Two channels  
ON on same chip  
1
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
time(s)  
1
10  
100  
1000  
Figure 24. Thermal Fitting Model of a Quad  
Channels HSD in SO-28  
Pulse Calculation Formula  
= RTH δ + ZTHtp(1 – δ)  
THδ  
δ = tp T  
where  
Tj_1  
C1  
C2  
R2  
C3  
R3  
C4  
R4  
C5  
R5  
C6  
R6  
R1  
Pd1  
Table 14. Thermal Parameter  
C13  
R13  
C14  
Area/island (cm2)  
R1=R7=R13=R15 (°C/W)  
R2=R8=R14=R16 (°C/W)  
R3=R9 (°C/W)  
0.5  
0.05  
0.3  
3.4  
11  
6
Tj_2  
R14  
Pd2  
R17  
R18  
R4=R10 (°C/W)  
Tj_3  
C7  
R7  
C8  
C9  
R9  
C10  
R10  
C11  
R11  
C12  
R12  
R5=R11 (°C/W)  
15  
Pd3  
R6=R12 (°C/W)  
30  
13  
R8  
C1=C7=C13=C15 (W.s/°C)  
0.001  
C15  
R15  
C16  
Tj_4  
C2=C8=C14=C16 (W.s/°C)  
C3=C9 (W.s/°C)  
5.00E-03  
1.00E-02  
0.2  
R16  
Pd4  
C4=C10 (W.s/°C)  
C5=C11 (W.s/°C)  
C6=C12 (W.s/°C)  
R17=R18 (°C/W)  
1.5  
T_amb  
5
8
150  
16/20  
VNQ600P-E  
PACKAGE MECHANICAL  
Table 15. SO-28 Mechanical Data  
Symbol  
millimeters  
Typ  
Min  
Max  
A
a1  
b
2.65  
0.30  
0.49  
0.32  
0.10  
0.35  
0.23  
b1  
C
0.50  
c1  
D
45 (typ.)  
17.7  
18.1  
E
10.00  
10.65  
e
1.27  
e3  
F
16.51  
7.40  
0.40  
7.60  
1.27  
L
S
8 (max.)  
Figure 25. SO-28 Package Dimensions  
17/20  
VNQ600P-E  
Figure 26. SO-28 Tube Shipment (no suffix)  
Base Q.ty  
28  
700  
532  
3.5  
Bulk Q.ty  
Tube length (± 0.5)  
C
B
A
B
13.8  
0.6  
C (± 0.1)  
All dimensions are in mm.  
A
Figure 27. Tape and Reel Shipment (suffix “TR”)  
REEL DIMENSIONS  
Base Q.ty  
Bulk Q.ty  
A (max)  
B (min)  
C (± 0.2)  
F
1000  
1000  
330  
1.5  
13  
20.2  
16.4  
60  
G (+ 2 / -0)  
N (min)  
T (max)  
22.4  
TAPE DIMENSIONS  
According to Electronic Industries Association  
(EIA) Standard 481 rev. A, Feb 1986  
Tape width  
W
P0 (± 0.1)  
P
16  
4
Tape Hole Spacing  
Component Spacing  
Hole Diameter  
12  
D (± 0.1/-0) 1.5  
Hole Diameter  
D1 (min)  
F (± 0.05)  
K (max)  
1.5  
7.5  
6.5  
2
Hole Position  
Compartment Depth  
Hole Spacing  
P1 (± 0.1)  
End  
All dimensions are in mm.  
Start  
Top  
No components  
500mm min  
Components  
No components  
500mm min  
cover  
tape  
Empty components pockets  
saled with cover tape.  
User direction of feed  
18/20  
VNQ600P-E  
REVISION HISTORY  
Table 16. Revision History  
Date  
Revision  
Description of Changes  
Oct. 2004  
1
First issue.  
19/20  
VNQ600P-E  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
20/20  

相关型号:

VNQ600P13TR

BUF OR INV BASED PRPHL DRVR, PDSO28, SO-28
STMICROELECTR

VNQ600PTR-E

暂无描述
STMICROELECTR

VNQ6040S-E

for car body applications
STMICROELECTR

VNQ660

QUAD CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VNQ660SP

QUAD CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VNQ660SP-E

Quad channel high side solid state relay
STMICROELECTR

VNQ660SP13TR

QUAD CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VNQ660SPTR-E

Quad channel high side solid state relay
STMICROELECTR

VNQ690SP

QUAD CHANNEL HIGH SIDE SOLID STATE RELAY
STMICROELECTR

VNQ690SP-E

QUAD CHANNEL HIGH SIDE DRIVER
STMICROELECTR

VNQ690SP13TR

Quad channel high side solid state relay
STMICROELECTR

VNQ690SPTR-E

QUAD CHANNEL HIGH SIDE DRIVER
STMICROELECTR