MAS3529FBL [TDK]

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81;
MAS3529FBL
型号: MAS3529FBL
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81

文件: 总90页 (文件大小:644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
MAS 35x9F  
MPEG Layer 2/3,  
AAC Audio Decoder,  
G.729 Annex A Codec  
Edition April 09, 2001  
6251-505-3AI  
MICRONAS  
MAS 35X9F  
ADVANCE INFORMATION  
Contents  
Page  
Section  
Title  
5
5
6
7
1.  
Introduction  
1.1.  
1.2.  
1.3.  
Features  
Features of the MAS 35x9F Family  
Application Overview  
8
2.  
Functional Description of the MAS 35x9F  
Overview  
8
2.1.  
8
2.2.  
Architecture of the MAS 35x9F  
DSP Core  
8
2.3.  
8
2.3.1.  
2.3.2.  
2.3.2.1.  
2.3.2.2.  
2.4.  
RAM and Registers  
9
Firmware and Software  
Internal Program ROM and Firmware, MPEG-Decoding  
Program Download Feature  
Audio Codec  
9
9
9
9
2.4.1.  
2.4.2.  
2.4.2.1.  
2.4.2.2.  
2.4.2.3.  
2.4.2.4.  
2.4.3.  
2.4.4.  
2.5.  
A/D Converter and Microphone Amplifier  
Baseband Processing  
9
9
Bass, Treble, and Loudness  
Micronas Dynamic Bass (MDB)  
Automatic Volume Control (AVC)  
Balance and volume  
9
10  
10  
10  
10  
11  
11  
11  
11  
11  
12  
12  
14  
15  
15  
15  
15  
15  
15  
15  
16  
16  
16  
16  
17  
17  
17  
D/A Converters  
Output Amplifiers  
Clock Management  
2.5.1.  
2.5.2.  
2.6.  
DSP Clock  
Clock Output At CLKO  
Power Supply Concept  
Power Supply Regions  
DC/DC Converters  
2.6.1.  
2.6.2.  
2.6.3.  
2.7.  
Power Supply Configurations  
Battery Voltage Supervision  
Interfaces  
2.8.  
2.8.1.  
2.8.2.  
2.8.3.  
2.8.4.  
2.8.5.  
2.8.6.  
2.9.  
I2C Control Interface  
SPDIF Input Interface  
S/PDIF Output  
Multiline Serial Audio Input (SDI, SDIB)  
Multiline Serial Output (SDO)  
Parallel Input/Output Interface (PIO)  
MPEG Synchronization Output  
Default Operation  
2.10.  
2.10.1.  
2.10.2.  
2.10.3.  
2.10.4.  
2.10.5.  
Stand-by Functions  
Power-Up of the DC/DC Converters and Reset  
Control of the Signal Processing  
Start-up of the Audio Codec  
Power-Down  
2
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Contents, continued  
Page  
Section  
Title  
18  
18  
18  
18  
19  
20  
20  
20  
25  
25  
26  
26  
27  
27  
28  
28  
29  
29  
30  
30  
30  
30  
31  
31  
32  
32  
32  
32  
42  
42  
43  
44  
44  
44  
45  
52  
3.  
I2C Interface  
3.1.  
General  
3.1.1.  
Device Address  
3.1.2.  
I2C Registers and Subaddresses  
Naming Convention  
3.1.3.  
3.2.  
Direct Configuration Registers  
Write Direct Configuration Registers  
Read Direct Configuration Register  
DSP Core  
3.2.1.  
3.2.2.  
3.3.  
3.3.1.  
Access Protocol  
3.3.1.1.  
3.3.1.2.  
3.3.1.3.  
3.3.1.4.  
3.3.1.5.  
3.3.1.6.  
3.3.1.7.  
3.3.1.8.  
3.3.1.9.  
3.3.1.10.  
3.3.1.11.  
3.3.1.12.  
3.3.1.13.  
3.3.1.14.  
3.3.2.  
Run and Freeze  
Read Register (Code Ahex)  
Write Register (Code Bhex)  
Read D0 Memory (Code Chex)  
Short Read D0 Memory (Code C4hex)  
Read D1 Memory (Code Dhex)  
Short Read D1 Memory (Code D4hex)  
Write D0 Memory (Code Ehex)  
Short Write D0 Memory (Code E4hex)  
Write D1 Memory (Code Fhex)  
Short Write D1 Memory (Code F4hex)  
Clear SYNC Signal (Code 5hex)  
Default Read  
Serial Program Download  
List of DSP Registers  
3.3.3.  
List of DSP Memory Cells  
Application Select and Running  
Application Specific Control  
Ancillary Data  
3.3.3.1.  
3.3.3.2.  
3.3.4.  
3.3.5.  
DSP Volume Control  
3.3.6.  
Explanation of the G.729 Data Format  
Audio Codec Access Protocol  
Write Codec Register  
3.4.  
3.4.1.  
3.4.2.  
Read Codec Register  
3.4.3.  
Codec Registers  
3.4.4.  
Basic MDB Configuration  
53  
53  
55  
58  
58  
58  
58  
58  
58  
59  
4.  
Specifications  
4.1.  
Outline Dimensions  
4.2.  
Pin Connections and Short Descriptions  
Pin Descriptions  
4.3.  
4.3.1.  
4.3.2.  
4.3.3.  
4.3.4.  
4.3.5.  
4.3.6.  
Power Supply Pins  
Analog Reference Pins  
DC/DC Converters and Battery Voltage Supervision  
Oscillator Pins and Clocking  
Control Lines  
Parallel Interface Lines  
Micronas  
3
MAS 35X9F  
ADVANCE INFORMATION  
Contents, continued  
Page  
Section  
Title  
59  
59  
59  
59  
59  
59  
59  
59  
60  
61  
63  
65  
65  
66  
69  
70  
72  
74  
76  
77  
78  
79  
80  
84  
85  
87  
88  
4.3.6.1.  
4.3.7.  
4.3.8.  
4.3.9.  
4.3.10.  
4.3.11.  
4.3.12.  
4.3.13.  
4.3.14.  
4.4.  
PIO Handshake Lines  
Serial Input Interface (SDI)  
Serial Input Interface B (SDIB)  
Serial Output Interface (SDO)  
S/PDIF Input Interface  
S/PDIF Output Interface  
Analog Input Interfaces  
Analog Output Interfaces  
Miscellaneous  
Pin Configurations  
4.5.  
Internal Pin Circuits  
4.6.  
Electrical Characteristics  
4.6.1.  
4.6.2.  
4.6.3.  
4.6.3.1.  
4.6.3.2.  
4.6.3.3.  
4.6.3.4.  
4.6.3.5.  
4.6.3.6.  
4.6.3.7.  
4.6.4.  
4.6.5.  
4.6.6.  
4.7.  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Digital Characteristics  
I2C Characteristics  
Serial (I2S) Input Interface Characteristics (SDI, SDIB)  
Serial Output Interface Characteristics (SDO)  
S/PDIF Input Characteristics  
S/PDIF Output Characteristics  
PIO as Parallel Input Interface: DMA Mode  
PIO as Parallel Output Interface  
Analog Characteristics  
DC/DC Converter Characteristics  
Typical Performance Characteristics  
Typical Application in a Portable Player  
Recommended DC/DC Converter Application Circuit  
4.8.  
90  
5.  
Data Sheet History  
License Notice  
MPEG 2 AAC technology is developed in cooperation with Fraunhofer IIS (http://www.iis.fhg.de)  
Supply of this implementation of AAC technology does not convey a license nor imply any right to use this implemen-  
tation in any finished end-user or ready-to-use final product. An independent license for such use is required.  
contact: aacla@dolby.com  
G.729 License Notice  
Please contact:  
Sipro Lab Telecom Inc.  
email: patriciam@sipro.com  
http://www.sipro.com  
Fax: +1 (514) 737-2327  
4
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
MPEG Layer 2/3, AAC Audio Decoder,  
G.729 Annex A Codec  
1.1. Features  
Firmware  
Release Note: Revision bars indicate significant  
changes to the previous edition. This data sheet  
applies to MAS 35x9F version A2 .  
– MPEG 1/2 layer 2 and layer 3 decoder  
– Extension to MPEG 2 layer 3 for low bit rates  
(“MPEG 2.5”)  
1. Introduction  
– Extraction of MPEG Ancillary Data  
– MPEG 2 AAC2) decoder (low complexity profile)  
– Master or slave clock operation  
The MAS 35x9F is a single-chip, low-power MPEG  
layer 2/3 and MPEG2-AAC audio stereo decoder. It  
also contains the G.729 Annex A speech compression  
and decompression technology for use in memory-  
based or broadcast applications. Additional functional-  
ity is achievable via download software (e.g. CELP  
voice decoder, Micronas SC4 (ADPCM) encoder /  
decoder)  
– Adaptive bit rates (bit rate switching)  
– Intelligent power management (processor clock is  
dependent on sampling frequencies)  
– Micronas G.729 Annex A speech compression and  
decompression  
The MAS 35x9F decoding block accepts compressed  
digital data streams as serial bitstreams, or parallel for-  
mat and provides serial PCM and/or S/PDIF output1)  
of decompressed audio. In addition to the signal pro-  
cessing function the IC incorporates a high-perfor-  
mance stereo D/A converter, headphone amplifiers, a  
stereo A/D converter, a microphone amplifier, and two  
DC/DC converters.  
– SDMI-compliant security technology  
– Stereo channel mixer  
– Bass, treble and loudness function  
– Micronas Dynamic Bass (MDB)  
– Automatic Volume Control (AVC)  
Interfaces  
Thus, the MAS 35x9F provides a true ’ALL-IN-ONE’  
solution that is ideally suited for highly optimized mem-  
ory based portable music players with integrated  
speech decoding function.  
– 2 serial asynchronous interfaces for bitstreams and  
uncompressed digital audio  
– Parallel handshake bit stream input  
– Serial audio output via I2S and related formats  
– S/PDIF data input and output  
In MPEG 1 (ISO 11172-3), three hierarchical layers of  
compression have been standardized. The most  
sophisticated and complex, layer 3, allows compres-  
sion rates of approximately 12:1 for mono and stereo  
signals while still maintaining CD audio quality. Layer 2  
(widely used in e.g. in DVD) achieves a compression of  
8:1 without significant losses in audio quality.  
– Controlling via I2C interface  
Hardware Features  
– Two independent embedded DC/DC converters  
(e.g. for DSP and flash RAM supply)  
The MAS 35x9F supports the ’Advanced Audio Cod-  
ing’ (AAC) that is also defined as aprt of MPEG 2. AAC  
provides compression rates up to 16:1. MPEG 2  
defines several profiles for different applications. This  
IC decodes the ’low complexity profile’ that is espe-  
cially optimized for portable applications.  
– Low DC/DC converter start-up voltage (0.9 V)  
– DC converter efficiency up to 95 %  
– Battery voltage monitor  
– Low supply voltage (down to 2.5 V)  
– Low power dissipation down to 70 mW  
– High-performance RISC DSP core  
– On-chip crystal oscillator  
The MAS 35x9F also implements a voice encoder and  
decoder that is compliant to the ITU Standard G.729  
Annex A.  
SC4 is a proprietary Micronas speech codec technol-  
ogy that can be downloaded to the MAS 35x9F to  
allow recording and playing back speech at various  
sampling rates.  
– Hardware power management and power-off func-  
tions  
– Microphone amplifier  
– Stereo A/D converter for FM/AM-radio and speech  
input  
– CD quality stereo D/A converter  
– Headphone amplifier  
Micronas  
5
MAS 35X9F  
ADVANCE INFORMATION  
Noise and power-optimized volume  
External clock or crystal frequency of 13...20 MHz  
Standby current < 10 µA  
1) Not yet supported in version A2  
2) See License Note on page 4  
1.2. Features of the MAS 35x9F Family  
Feature  
3509  
X
3519  
X
3529  
3539  
3549  
3559  
Layer 3 Decoder  
G.729 Encoder/Decoder  
AAC Decoder  
X
X
X
X
X
X
X
X
6
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
1.3. Application Overview  
Fig. 11 depicts a portable audio application that is  
power optimized. The two embedded DC/DC convert-  
ers of the MAS 35x9F generate optimum power supply  
voltages for the DSP core and also for state-of-the art  
flash memories that typically require 2.7 to 3.3 V sup-  
ply.  
The following block diagram shows an example appli-  
cation for the MAS 35x9F in a portable audio player  
device. Besides a simple controller and the external  
flash memories, all required components are inte-  
grated in the MAS 35x9F. The MAS 35x9F supports  
both speech and radio quality audio encoding, as well  
as compressed-audio decoding tasks.  
The performance of the DC/DC converters reaches  
efficiencies up to 95 %.  
Portable Digital Music Player  
MAS 35x9F  
optional  
line in  
Audio  
baseband  
features  
D/A  
A/D  
DSP Core  
MP3  
AAC  
G.729  
Microphone  
amplifier  
Headphone  
Headphone  
amplifier  
Volume  
Optional  
Software  
optional  
digital in  
Downloads  
digital out  
S/PDIF or serial  
S/PDIF  
or  
serial  
Crystal  
Osc./PLL  
Battery  
Voltage  
Monitor  
I2C  
DC/DC1  
DC/DC2  
System clock  
e.g. 2.5 V e.g. 3.0 V  
e.g. 1.0 V  
I2C  
Display  
µC  
Keyboard  
PC Connector  
Fig. 1–1: Example application for the MAS 35x9F in a portable audio player device  
Micronas  
7
MAS 35X9F  
ADVANCE INFORMATION  
2. Functional Description of the MAS 35x9F  
2.1. Overview  
and appropriate interfaces. A hardware overview of the  
IC is shown in Fig. 21.  
The MAS 35x9F is intended for use in portable con-  
sumer audio applications. It receives S/PDIF, parallel  
or serial data streams and decodes MPEG Layer 2  
and 3 (including the low sampling frequency exten-  
sions) and MPEG 2 AAC. In addition, special down-  
loadable software expands the function to a low-bitrate  
CELP codec for speech recording. Other download  
options (SDMI, other audio encoders/decoders) are  
available on request. Compressed speech data may  
be stored in an external memory via the parallel port.  
2.3. DSP Core  
The internal processor is a dedicated DSP for  
advanced audio applications.  
2.3.1. RAM and Registers  
The DSP core has access to two RAM banks denoted  
D0 and D1. All RAM addresses can be accessed in a  
20-bit or a 16-bit mode via I2C bus. For fast access of  
internal DSP states the processor core has an address  
space of 256 data registers which can be accessed by  
I2C bus. For more details please refer to Section 3.3.  
on page 25.  
2.2. Architecture of the MAS 35x9F  
The hardware of the MAS 35x9F consists of a high-  
performance RISC Digital Signal Processor (DSP),  
Mic. Input  
(incl. Bias)  
Audio Codec  
1
2
2
Audio  
2
Output  
Audio  
Proc.  
Line Input  
A/D  
MIX  
D/A  
DSP Core  
Serial  
Audio  
S/PDIF Input 1  
ALU  
MAC  
2
S/PDIF Input 2  
Serial Audio  
(I S, SDO)  
Accumulators  
ROM  
S/PDIF  
Output  
2
(I S, SDI)  
Serial Audio  
(stream, SDIB)  
Control  
VBAT  
Volt.  
Mon.  
I2C  
DCCF  
DCFR  
DSP  
I2C  
Interface  
D0  
D1  
control  
Codec  
Registers  
V1  
V2  
Div.  
Parallel  
I/O Bus  
(PIO)  
Div.  
CLKO  
Xtal  
18.432 MHz  
PLL  
Synth.  
Osc.  
Scaler  
÷2  
Synthesizer  
Clock  
Fig. 21: The MAS 35x9F architecture  
8
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
2.3.2. Firmware and Software  
2.4. Audio Codec  
2.3.2.1. Internal Program ROM and Firmware,  
MPEG-Decoding  
A sophisticated set of audio converters and sound fea-  
tures has been implemented to comply with various  
kinds of operating environments that range up to high-  
end equipment (see Fig. 22 on page 10).  
The firmware implemented in the program ROM of the  
MAS 35x9F provides MPEG 1/2 Layer 2, MPEG 1/2  
Layer 3 and MPEG 2 AAC-decoding as well as a  
G.729 encoder and decoder.  
2.4.1. A/D Converter and Microphone Amplifier  
The DSP operating system starts the firmware in the  
Application Selection Mode. By setting the appropri-  
ate bit in the Application Select memory cell (see  
Table 36 on page 33) the MPEG audio decoder or  
the G.729 Codec can be activated.  
A pair of A/D converters is provided for recording or  
loop-through purposes. In addition, a microphone  
amplifier including voltage supply function for an elec-  
tret type microphone has been integrated.  
The MPEG decoder provides an automatic standard  
detection mode. If all MPEG audio decoders are  
selected, the Layer 2, Layer 3 or AAC bitstream is rec-  
ognized and decoded automatically.  
2.4.2. Baseband Processing  
The several baseband functions are applied to the dig-  
ital audio signal immediately before D/A conversion.  
To add/remove MPEG layers while running in MPEG  
decoding mode (e.g. Layer 2, Layer 3 (0x0c) to  
Layer 2, Layer 3, AAC (0x1c)), the application selec-  
tion has to be reset before writing the new value.  
2.4.2.1. Bass, Treble, and Loudness  
Standard baseband functions such as bass, treble,  
and loudness are provided.  
For general control purposes, the operation system  
provides a set of I2C instructions that give access to  
internal DSP registers and memory areas.  
2.4.2.2. Micronas Dynamic Bass (MDB)  
An auxiliary digital volume control and mixer matrix is  
applied to the digital stereo audio data. This matrix is  
capable of performing the balance control and a simple  
kind of stereo basewidth enhancement. All four factors  
LL, LR, RL, and RR are adjustable, please refer to Fig.  
33 on page 42.  
The Micronas Dynamic Bass system (MDB) was  
developed to extend the frequency range of loud-  
speakers or headphones below the cutoff frequency of  
the speakers. In addition to dynamically amplifying the  
low frequency bass signals, the MDB exploits the psy-  
choacoustic phenomenon of the missing fundamen-  
tal. Adding harmonics of the frequency components  
below the cutoff frequency gives the impression of  
actually hearing the low frequency fundamental, while  
at the same time retaining the loudness of the original  
signal. Due to the parametric implementation of the  
MDB, it can be customized to create different bass  
effects and adapted to various loudspeaker character-  
istics.  
2.3.2.2. Program Download Feature  
The standard functions of the MAS 35x9F can be  
extended or substituted by downloading up to  
4 kWords (1 Word = 20 bits) of program code and  
additionally up to 4 kWords of coefficients into the  
internal RAM .  
Micronas  
9
MAS 35X9F  
ADVANCE INFORMATION  
Mic-In  
output level  
dBr  
Mic-Amplifier incl. Bias  
Mono  
A
9  
D
D
Line-In  
A
15  
21  
Mixer  
Q-peak  
Mono/Stereo  
AVC  
Q-peak  
30  
24  
18  
12  
6  
0
+6  
input level  
dBr  
Bass/Treble  
Audio  
Codec  
Loudness  
MDB  
Fig. 23: Simplified AVC characteristics  
Right invert  
D
2.4.2.4. Balance and volume  
A
Volume  
Balance  
Output  
D
To minimize quantization noise, the main volume con-  
trol is automatically split into a digital and an analog  
part. The volume range is 114...+12 dB with an addi-  
tional mute position. A balance function is provided.  
A
Fig. 22: Signal flow block diagram of Audio Codec  
2.4.3. D/A Converters  
2.4.2.3. Automatic Volume Control (AVC)  
A pair of Micronasunique multibit sigma-delta D/A  
converters is used to convert the audio data with high  
linearity and a superior S/N. In order to attenuate high-  
frequency noise caused by noise-shaping, internal  
low-pass filters are included. They require additional  
external capacitors between pins FILTx and OUTx.  
In a collection of tracks from different sources fairly  
often the average volume level varies. Especially in a  
noisy listening environment the user must adjust the  
volume to achieve a comfortable listening enjoyment.  
The Automatic Volume Correction (AVC) solves this  
problem by equalizing the volume level.  
To prevent clipping, the AVCs gain decreases quickly  
in dynamic boost conditions. To suppress oscillation  
effects, the gain increases rather slowly for low level  
inputs. The decay time is programmable by means of  
the AVC register (see Table 313 on page 45).  
2.4.4. Output Amplifiers  
The integrated output amplifiers are capable of directly  
driving stereo headphones or loudspeakers of  
16...32 impedance via 22-series resistors. If more  
output power is required, the right output signal can be  
inverted and a single loudspeaker can be connected  
as a bridge between pins OUTL and OUTR. In this  
case for optimized power the source should be set to  
mono.  
For input levels of -18 dBr to 0 dBr, the AVC maintains  
a fixed output level of -9 dBr. Fig. 23 shows the AVC  
output level versus its input level. For volume and  
baseband registers set to 0 dB, a level of 0 dBr corre-  
sponds to full scale input/output.  
MASF  
DAC  
OUTL  
DAC  
OUTR  
R 32 Ω  
Fig. 24: Bridge operation mode  
10  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
2.5. Clock Management  
2.6. Power Supply Concept  
The MAS 35x9F is driven by a single crystal-controlled  
clock with a frequency of 18.432 MHz. It is possible to  
drive the MAS 35x9F with other reference clocks. In  
this case, the nominal crystal frequency must be writ-  
ten into memory location D0:348. The crystal clock  
acts as a reference for the embedded synthesizer that  
generates the internal clock.  
The MAS 35x9F has been designed for minimal power  
dissipation. In order to optimize the battery manage-  
ment in portable players, two DC/DC converters have  
been implemented to supply the complete portable  
audio player with regulated voltages.  
2.6.1. Power Supply Regions  
For compressed audio data reception, the MAS 35x9F  
may act either as the clock master (Demand Mode) or  
as a slave (Broadcast Mode) as defined by bit 1 in  
IOControlMain memory cell (see Table 37 on  
page 34). In both modes, the output of the clock syn-  
thesizer depends on the sample rate of the decoded  
data stream as shown in Table 21.  
The MAS 35x9F has five power supply regions.  
The VDD/VSS pin pair supplies all digital parts includ-  
ing the DSP core, the XVDD/XVSS pin pair is con-  
nected to the digital signal pin output buffers, the  
AVDD0/AVSS0 supply is for the analog output amplifi-  
ers, AVDD1/AVSS1 for all other analog circuits like  
clock oscillator, PLL circuits, system clock synthesizer  
and A/D and D/A converters. The I2C interface has an  
own supply region via pin I2CVDD. Connecting this to  
the microcontroller supply assures that the I2C bus  
always works as long as the microcontroller is alive so  
that the operating modes can be selected.  
In the BROADCAST MODE (PLL on), the incoming  
audio data controls the clock synthesizer via a PLL.  
In the DEMAND MODE (PLL off) the MAS 35x9F acts  
as the system master clock. The data transfer is trig-  
gered by a demand signal at pin EOD.  
Beside these regions, the DC/DC converters have  
start-up circuits of their own which get their power via  
pin VSENSx.  
2.5.1. DSP Clock  
The DSP clock has separate divider. For power con-  
servation it is set to the lowest acceptable rate of the  
synthesizer clock which is capable to allow the proces-  
sor core to perform all tasks.  
Table 21: Settings of bits 8 and 17 in OutClkConfig  
and resulting CLKO output frequencies  
Output Frequency at CLKO/MHz  
2.5.2. Clock Output At CLKO  
Synth.  
Scaler On  
Scaler Plus  
Clock bit 8=0, bit 17=0 Extra Division  
fs/kHz  
If the DSP or audio codec functions are enabled (bits  
11 or 10 in the Control Register at I2C subaddress  
6ahex), the reference clock at pin CLKO is derived from  
the synthesizer clock.  
bit 8=1  
24.576  
bit 8=0, bit 17=1  
48  
24.576  
12.288  
512 fs  
256 fs  
44.1  
32  
22.5792  
22.5792  
11.2896  
Dependent on the sample rate of the decoded signal a  
scaler is applied which automatically divides the clock-  
out by 1, 2, or 4, as shown in Table 21. An additional  
division by 2 may be selected by setting bit 17 of the  
OutClkConfig memory cell (see Table 37 on  
page 34). The scaler can be disabled by setting bit 8 of  
this cell.  
768 fs 24.576 384 fs 12.288  
24.576  
24  
12.288  
6.144  
512 fs  
256 fs  
22.05 22.5792  
16  
11.2896  
5.6448  
768 fs 12.288 384 fs 6.144  
24.576  
12  
6.144  
3.072  
The controlling at OutClkConfig is only possible as  
long as the DSP is operational (bit 10 of the Control  
Register). Settings remain valid if the DSP is disabled  
by clearing bit 10.  
512 fs  
256 fs  
11.025 22.5792  
5.6448  
2.8224  
8
24.576 768 fs 6.144  
384 fs 3.072  
Micronas  
11  
MAS 35X9F  
ADVANCE INFORMATION  
2.6.2. DC/DC Converters  
If both DC/DC-converters are off, a high signal may be  
applied at pin DCEN. This will start the converters in  
their default mode (PWM with 3.0 V output voltage).  
The PUP signal will change from low to high when both  
converters have reached their nominal output voltage  
and will return to low when both converters output volt-  
ages have dropped 200 mV below their programmed  
output voltage. The signal at pin PUP can be used to  
control the reset of an external microcontroller (see  
Section 2.10.2. on page 16 for details on start up pro-  
cedure).  
The MAS 35x9F has two embedded high-performance  
step-up DC/DC converters with synchronous rectifiers  
to supply both the DSP core itself and external circuitry  
such as a controller or flash memory at two different  
voltage levels. An overview is given in Fig. 29 on  
page 14.  
The DC/DC converters are designed to generate an  
output voltage between 2.0 V and 3.5 V which can be  
programmed separately for each converter via the I2C  
interface (see table 3.3). Both converters are of boot-  
strapped type allowing to start up from a voltage down  
to 0.9 V for use with a single battery or NiCd/NiMH cell.  
The default output voltages are 3.0 V. Both converters  
are enabled with a high level at pin DCEN and  
enabled/disabled by the I2C interface.  
If only DC/DC-converter 1 is used, the output of the  
unused converter 2 (VSENS2) must be connected to  
the output of converter 1 (VSENS1) to make the PUP  
signal work properly. Also, if a DC/DC-converter is not  
used (no inductor connected), the pin DCSO must be  
left vacant.  
The MAS 35x9F DC/DC converters feature a constant-  
frequency, low noise pulse width modulation (PWM)  
mode and a low quiescent current, pulse frequency  
modulation (PFM) mode for improved efficiencies at  
low current loads. Both modes PWM or PFM can  
be selected independently for each converter via I2C  
interface. The default mode is PWM.  
2.6.3. Power Supply Configurations  
One of the following supply configurations may be  
used:  
Power-optimized solution (recommended opera-  
tion). DC/DC 1 (e.g. 2.5 V) drives the MAS 35x9F  
DSP and the audio circuitry, DC/DC 2 (e.g. 2.7 V)  
supplies controller and flash (see Fig. 25 on  
page 13)  
In PWM mode the switching frequency of the power-  
MOSFET-switches is derived from the crystal oscilla-  
tor. Switching harmonics generated by constant fre-  
quency operation are consistent and predictable.  
When the audio codec is enabled the switching fre-  
quency of the converters is synchronised to the audio  
codec clock to avoid interferences into the audio band.  
The actual switching frequency can be selected via the  
I2C-interface between 300 kHz and 580 kHz (for  
details see DCFR Register in Table 33 on page 21).  
Volume-optimized solution. DC/DC 1 (e.g. 2.7 V)  
supplies controller, flash and MAS 35x9F audio  
parts, DC/DC 2 generates e.g. 2.5 V for the  
MAS 35x9F DSP (see Fig. 26 on page 13).  
Minimized external components. DC/DC 1 operates  
on e.g. 2.7 V and feeds all components, DC/DC 2  
remains off (see Fig. 27 on page 13).  
In PFM operation mode the switching frequency is  
controlled by the converters themself, it will be just  
high enough to service the output load thus resulting in  
the best possible efficiency at low current loads. PFM  
mode does not need a clock signal from the crystal  
oscillator. If both converters do not use the PWM-  
mode, the crystal clock will be shut down as long it is  
not needed from other internal blocks.  
External power supply. All components are powered  
by an external source, no DC/DC converter is used  
(see Fig. 28 on page 13).  
If DC/DC converter 1 is used, it must supply the analog  
circuits (pins AVDD0, AVDD1) of the MAS 35x9F.  
If only one DC/DC converter is required, DC/DC1 must  
be used. Pin DCSO2 must be left vacant, pin VSENS2  
should be connected to pin VSENS1.  
The synchronous rectifier bypasses the external  
Schottky diode to reduce losses caused by the diode  
forward voltage providing up to 5% efficiency improve-  
ment. By default, the P-channel synchronous rectifier  
switch is turned on when the voltage at pin(s) DCSOn  
exceeds the converters output voltage at pin(s)  
VSENSn and turns off when the inductor current drops  
below a threshold. If one or both converters are dis-  
abled, the corresponding P-channel switch will be  
turned on, connecting the battery voltage to the DC/  
DC converters output voltage at pin VSENSn. How-  
ever, it is possible to individually disable both synchro-  
nous rectifier switches by setting the corresponding  
bits (bit 8 and 0 in DCCF-register).  
If the DC/DC converters are not used, pin DCEN must  
be connected to VSS, DCSOx must be left vacant.  
12  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
VSENS1  
VSENS1  
Flash  
DC/DC 1  
Flash  
DC/DC1  
on  
on  
e.g. 2.7 V  
2
2
I CVDD  
I CVDD  
I2C  
I2C  
µC  
µC  
XVDD  
VDD  
XVDD  
VDD  
DSP  
DSP  
VSENS2  
VSENS2  
DC/DC 2  
DC/DC2  
on  
off  
AVDD0/1  
AVDD0/1  
Analog  
Parts  
Analog  
Parts  
e.g. 2.7 V  
e.g. 2.5 V  
Fig. 25: Solution 1: Power-optimized  
Fig. 27: Solution 3: Minimized components  
VSENS1  
VSENS1  
Flash  
DC/DC1  
Flash  
DC/DC1  
on  
off  
2
2
I CVDD  
I CVDD  
I2C  
I2C  
µC  
µC  
XVDD  
VDD  
VDD  
DSP  
DSP  
XVDD  
VSENS2  
VSENS2  
DC/DC2  
DC/DC2  
on  
off  
External  
Supply  
AVDD0/1  
AVDD0/1  
Analog  
Parts  
Analog  
Parts  
e.g. 2.7 V  
e.g. 2.7 V  
e.g. 2.5 V  
Fig. 26: Solution 2: Volume-optimized  
Fig. 28: Solution 4: External power supply  
Micronas  
13  
MAS 35X9F  
ADVANCE INFORMATION  
battery  
voltage  
monitor  
VBAT  
supply  
I2CVDD  
to I2C interface  
DCCF (76hex  
output 1  
)
L1  
DCSO2  
DCSG2  
15  
8
22 µH  
DC/DC  
converter 2  
D1  
VSENS2  
+
C1  
330 µF  
set voltage  
voltage  
monitor  
PUP2  
Start  
DCEN  
PUP  
S
V
in  
+
frequency  
divider  
R
+
system  
or crystal  
clock  
factor  
voltage  
monitor  
3
0
DCFR (77hex  
)
DC/DC  
converter 1  
DCCF (76hex  
)
7
0
VSS  
Fig. 29: DC/DC converter overview. The DCEN input must be connected to pin I2CVDD via the start-up push  
button.  
2.7. Battery Voltage Supervision  
A battery voltage supervision circuit (at pin VBAT) is  
provided which is independent of the DC/DC convert-  
ers. It can be programmed to supervise one or two bat-  
tery cells. The voltage is measured by subsequently  
setting a series of voltage thresholds and checking the  
respective comparison result in register 77hex  
.
14  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
2.8. Interfaces  
In case of the Demand Mode (see Section 2.5.), the  
signal clock coming from the data source must be  
higher than the nominal data transmission rate (e.g.  
128 kbit/s). Pin EOD is used to interrupt the data flow  
whenever the input buffer of the MAS 35x9F is filled.  
The MAS 35x9F uses an I2C control interface, a serial  
input interface for MPEG bit streams, and a digital  
audio output interface for the decoded audio data (I2S  
or similar). Alternatively, SPDIF input and output inter-  
faces can be used. A parallel I/O interface (PIO) may  
be used for fast data exchange.  
For controlling details please refer to Table 37 on  
page 34.  
2.8.1. I2C Control Interface  
2.8.5. Multiline Serial Output (SDO)  
For controlling and program download purposes, a  
standard I2C slave interface is implemented. A detailed  
description of all functions can be found in Section 3.  
The serial audio output interface of the MAS 35x9F is  
a standard I2S-like interface consisting of the data  
lines SOD, the word strobe SOI and the clock signal  
SOC. It is possible to choose between two standard  
interface configurations (16-bit data words with word  
strobe time offset or 32-bit data words with inverted  
SOI-signal).  
2.8.2. SPDIF Input Interface  
The SPDIF interface receives a one-wire serial bus  
signal. In addition to the signal input pin SPDI1/SPDI2,  
a reference pin SPDIR is provided to support balanced  
signal sources or twisted pair transmission lines.  
If the serial output generates 32 bits per audio sample,  
only the first 20 bits will carry valid audio data. The  
12 trailing bits are set to zero by default.  
The synchronization time on the input signal is  
< 50 ms.  
2.8.6. Parallel Input/Output Interface (PIO)  
The SPDIF input signal can also be switched to the  
SPDO pin. In this case the analog input circuit of the  
SPDIF inputs (see Fig. 419 on page 64) restores the  
SPDIF input signal to a full swing signal at SPDO.  
The parallel interface of the MAS 35x9F consists of the  
8 data lines PI12...PI19 (MSB) and the control lines  
PCS, PR, PRTR, PRTW, and EOD. It can be used for  
data exchange with an external memory, for fast pro-  
gram download and for other special purposes as  
defined by the DSP software.  
For controlling details please refer to Table 37 on  
page 34.  
For MPEG-data input, the PIO interface is activated by  
setting bits 9,8 in D0:346 to 01. For the handshake  
protocol please refer to Section 4.6.3.6. on page 78  
2.8.3. S/PDIF Output  
In the next version of the IC the S/PDIF output of the  
baseband audio signals will be provided at pin SPDO.  
2.8.4. Multiline Serial Audio Input (SDI, SDIB)  
There are two multiline serial audio input interfaces  
(SDI, SDIB) each consisting of the three pins SI(B)C,  
SI(B)I, and SI(B)D. The standard firmware only sup-  
ports SDIB for bitstream signals.  
The interfaces can be configured as continuous bit  
stream or word-oriented inputs. For the MPEG bit-  
streams the word strobe pin SIBI must always be con-  
nected to VSS, bits must be sent MSB first as created  
by the encoder.  
If the optional downloadable software uses the inputs  
for PCM data, the interface acts as a I2S-type with  
SI(B)I as a word strobe.  
Micronas  
15  
MAS 35X9F  
ADVANCE INFORMATION  
2.9. MPEG Synchronization Output  
2.10.Default Operation  
The signal at pin SYNC is set to 1after the internal  
decoding for the MPEG header has been finished for  
one frame. The rising edge of this signal can be used  
as an interrupt input for the controller that triggers the  
read out of the control information and ancillary data.  
As soon as the MAS 35x9F has received the SYNC  
reset command (see Section 3.3.1.12. on page 30),  
the SYNC signal is cleared. If the controller does not  
issue a reset command, the SYNC signal returns to 0’  
as soon as the decoding of the next MPEG frame is  
started. MPEG status and ancillary data become  
invalid until the frame is completely decoded and the  
signal at pin SYNC rises again. The controller must  
have finished reading all MPEG information before it  
becomes invalid. The MPEG Layer 2/3 frame lengths  
are given in Table 22. AAC has no fixed frame length.  
This sections refers to the standard operation mode  
power-optimized solution(see Section 2.6.3.).  
2.10.1.Stand-by Functions  
After applying the battery voltage, the system will  
remain stand-by, as long as the DCEN pin level is kept  
low. Due to the low stand-by current of CMOS circuits,  
the battery may remain connected to DCSOn/VSENSn  
at all times.  
2.10.2.Power-Up of the DC/DC Converters and  
Reset  
The battery voltage must be applied to pin DCSOn via  
the 22-µH inductor and, furthermore, to the sense pin  
VSENSn via a Schottky diode (see Fig. 29 on  
page 14).  
tframe = 24...72 ms  
For start-up, the pin DCEN must be connected via an  
external startpush button to the I2CVDD supply,  
which is equivalent to the battery supply voltage  
(> 0.9 V) at start-up.  
V
V
h
tread  
l
Fig. 210: Schematic timing of the signal at pin SYNC.  
The signal is cleared at tread when the controller has  
issued a Clear SYNC Signal command (see Section  
3.3.1.12. on page 30). If no command is issued, the  
signal returns to 0just before the decoding of the next  
MPEG frame.  
The supply at DCEN must be applied until the DC/DC  
converters have started up (signal at pin PUP) and  
then removed for normal operation.  
As soon as the output voltage at VSENSn reaches the  
default voltage monitor reset level of 3.0 V, the respec-  
tive internal PUPn bit will be set. When both PUPn bits  
are set, the signal at pin PUP will go high and can be  
used to start and reset the microcontroller.  
Table 22: Frame length in MPEG Layer 2/3  
fs/kHz  
Frame Length  
Layer 2  
Frame Length  
Layer 3  
Before transmitting any I2C commands, the controller  
must issue a power-on reset to pin POR. The separate  
supply pin I2CVDD assures that the I2C interface  
works indepentently of the DSP or the audio codec.  
Now the desired supply voltage can be programmed at  
48  
24 ms  
24 ms  
44.1  
32  
26.12 ms  
36 ms  
26.12 ms  
36 ms  
I2C subaddress 76hex  
.
The signal at pin PUP will return to low only when both  
PUPn flags (I2C subaddress 76hex) have returned to  
zero. Care must be taken when changing both DC/DC  
output voltages to higher values. In this case, both out-  
put voltages are momentarily insufficient to keep the  
PUPn flags up; the resulting dip in the signal at the  
PUP pin may in turn reset the microcontroller. To avoid  
this condition, only one DC/DC output voltage should  
be changed at a time. Before modifying the second  
voltage, the microcontroller must wait for the PUPn flag  
of the first voltage to be set again.  
24  
24 ms  
24 ms  
22.05  
16  
26.12 ms  
36 ms  
26.12 ms  
36 ms  
12  
not available  
not available  
not available  
48 ms  
11.025  
8
52.24 ms  
72 ms  
The operating mode (pulse width modulation or pulse  
frequency modulation, synchronized rectifier for higher  
efficiency) are controlled at I2C subaddress 76hex, the  
operating frequency at I2C subaddress 77hex  
.
16  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
2.10.3.Control of the Signal Processing  
2.10.5.Power-Down  
Before starting the DSP, the controller should check for  
a sufficient voltage supply (respective flag PUPn at I2C  
subaddress 76hex). The DSP is enabled by setting the  
appropriate bit in the Control register (I2C subaddress  
6ahex). The nominal frequency of the crystal oscillator  
must be written into D0:348. After an initialization  
phase of 5 ms, the DSP data registers can be  
accessed via I2C.  
All analog outputs should be muted and the A/D and  
the D/A converters must be switched off (register  
00 10hex and 00 00hex at I2C subaddress 6chex). The  
DSP and the audio codec must be disabled (clear  
DSP_EN and CODEC_EN bits in the Control register,  
I2C subaddress 6ahex). By clearing both DC/DC  
enable flags in the Control register (I2C subaddress  
6ahex), the microcontroller can power down the com-  
plete system.  
Input and output control is performed via memory loca-  
tion D0:346 and D0:347. The serial input interface  
SDIB is the default. The decoded audio can be routed  
to either the SPDIF, the SDO and the analog outputs.  
The output clock signal at pin CLKO is defined in  
D0:349.  
All changes in the D0-memory cells become effective  
synchronously upon setting the LSB of Main I/O Con-  
trol (see Table 37 on page 34). Therefore, this cell  
should always be written at last.  
The digital volume control (see Table 37 on page 34)  
is applied to the output signal of the DSP. The  
decoded audio data will be available at the SPDO out-  
put interface in the next version.  
The DSP does not have to be started if its functions  
are not needed, e.g. for routing audio via the A/D and  
the D/A converters through the codec part of the IC.  
2.10.4.Start-up of the Audio Codec  
Before enabling the audio codec, the controller should  
check for a sufficient voltage supply (respective flag  
PUPn at I2C subaddress 76hex).  
The audio codec is enabled by setting the appropriate  
bit at the Control register (I2C subaddress 6ahex). After  
an initialization phase of 5 ms, the DSP data registers  
can be accessed via I2C.The A/D and the D/A convert-  
ers must be switched on explicitly (00 00hex at I2C sub-  
address 6chex). The D/A converters may either accept  
data from the A/D converters or the output of the DSP,  
or a mix of both1) (register 00 06hex and 00 07hex at I2C  
subaddress 6chex). Finally, an appropriate output vol-  
ume (00 10hex at I2C subaddress 6chex) must be  
selected.  
1) mixer available in version A2 and later; in version A1  
please use selector 00 0fhex  
.
Micronas  
17  
MAS 35X9F  
ADVANCE INFORMATION  
3. I2C Interface  
Table 32: I2C subaddresses  
3.1. General  
Sub-  
address Register  
(hex) Name  
I2C-  
Function  
3.1.1. Device Address  
Controlling the MAS 35x9F is done via an I2C slave  
interface. The device addresses are 3C/3Ehex (device  
write) and 3D/3Fhex (device read) as shown in  
Table 31. The device address pair 3C/3Dhex applies if  
the DVS pin is connected to VSS, the device address  
pair 3E/3Fhex applies if the DVS pin is connected to  
VDD.  
Direct Configuration  
6A  
CON-  
TROL  
Controller writes to  
MAS 35x9F control register  
76  
DCCF  
Controller writes to first  
DC/DC configuration regis-  
ter  
Table 31: I2C device address  
77  
DCFR  
Controller writes to  
second DC/DC config reg.  
A7  
0
A6  
0
A5  
1
A4  
1
A3  
1
A2  
1
A1  
W/R  
DSP Core Access  
DVS 0/1  
68  
DATA  
(WRITE)  
Controller writes to  
MAS 35x9F DSP  
I2C clock synchronization is used to slow down the  
interface if required.  
69  
DATA  
(READ)  
Controller reads from  
MAS 35x9F DSP  
3.1.2. I2C Registers and Subaddresses  
Codec Access  
6C  
CODEC  
(WRITE)  
Controller writes to  
MAS 35x9F codec register  
The interface uses one level of subaddresses. The  
MAS 35x9F interface has 7 subaddresses allocated for  
the corresponding I2C registers. The registers can be  
divided into three categories as shown in Table 32.  
6D  
CODEC  
(READ)  
Controller reads from  
MAS 35x9F codec register  
The address 6Ahex is used for basic control, i.e. reset  
and task select. The other addresses are used for data  
transfer from/to the MAS 35x9F.  
The I2C registers of the MAS 35x9F are 16 bits wide,  
the MSB is denoted as bit[15]. Transmissions via I2C  
bus have to take place in 16-bit words (two byte trans-  
fers, MSB sent first); thus, for each register access,  
two 8-bit data words must be sent/received via I2C  
bus.  
18  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.1.3. Naming Convention  
codec_read 6Dhex  
Bus signals  
The description of the various controller commands  
uses the following formalism:  
S
P
A
N
Start  
Stop  
Abbreviations used in the following descriptions:  
ACK = Acknowledge  
NAK = Not acknowledge  
a
d
n
o
r
address  
data value  
count value  
offset value  
register number  
dont care  
W Wait = I2C Clockline is held low,  
while the MAS 35x9F is processing the  
I2C protocoll  
Symbols in the telegram examples  
x
<
>
Start Condition  
Stop  
A data value is split into 4-bit nibbles which are num-  
bered beginning with 0 for the least significant nib-  
ble.  
dd  
xx  
data bytes  
ignore  
All telegram numbers are hexadecimal, data origi-  
nating from the MAS 35x9F are greyed.  
Example:  
Data values in nibbles are always shown in hexa-  
decimal notation.  
<DW 68 dd dd>  
<DW 69 <DR dd dd> read data from DSP  
write data to DSP  
A hexadecimal 20-bit number d is written, e.g. as  
d = 17C63hex, its five nibbles are  
and stop with NAK  
d0 = 3hex, d1 = 6hex, d2 = Chex, d3 = 7hex, and  
d4 = 1hex  
.
Fig. 31 shows I2C bus protocols for write and read  
operations of the interface; the read operations require  
an extra start condition and repetition of the chip  
address with the device read command (DR). Fields  
with signals/data originating from the MAS 35x9F are  
marked by a gray background. Note that in some  
cases the data reading process must be concluded by  
a NAK condition.  
Variables used in the following descriptions:  
I2C address:  
DW  
DR  
DSP core:  
data_write 68hex  
data_read 69hex  
Codec:  
3C/3Ehex  
3D/3Fhex  
codec_write 6Chex  
Example: I2C write access  
S
DW  
A
subaddress  
subaddress  
A
A
high data word  
A
low data word  
A
P
Example: I2C read access  
DW  
S
A
S
DR  
A
high data word  
low data word  
A
N
P
SDA  
SCL  
1
0
A
= 0 (ACK)  
= 1 (NAK)  
N
S
P
P
S
=
Start  
Stop  
=
Fig. 31: Example of an I2C bus protocol for the MAS 35x9F (MSB first; data must be stable while clock is high)  
Micronas  
19  
MAS 35X9F  
ADVANCE INFORMATION  
3.2. Direct Configuration Registers  
The task selection of the DSP and the DC/DC converters are controlled in the direct configuration registers Control,  
DCCF, and DCFR.  
3.2.1. Write Direct Configuration Registers  
S
A
A
A
A
P
DW  
subaddress  
d3,d2  
d1,d0  
The write protocol for the direct configuration registers only consists of device address, subaddress and one 16-bit  
data word.  
3.2.2. Read Direct Configuration Register  
1) send subaddress  
S
A
A
A
P
S
DW  
subaddress  
subaddress  
2) get register value  
A
A
S
DW  
DR  
A
N
P
d3,d2  
d1,d0  
To check the PUP1 and PUP2 power-up flags, it is necessary to read back the content of the direct configuration reg-  
isters.  
20  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 33: Direct Configuration Registers  
I2C Sub-  
address  
(hex)  
Function  
Name  
6A  
Control Register (reset value = 3000hex  
)
CONTROL  
bit[15:14]  
Analog Supply Voltage Range  
Code  
00  
01  
10  
11  
AGNDC  
1.1 V  
1.3 V  
1.6 V  
reserved  
recommended for voltage range of AVDD  
2.0 ... 2.4 V (reset)  
2.4 ... 3.0 V  
3.0 ... 3.6 V  
reserved  
Higher voltage ranges permit higher output levels and thus a better signal-to-  
noise ratio.  
bit[13]  
bit[12]  
enable DC/DC 2 (reset=1)  
enable DC/DC 1 (reset=1)  
Both DC/DC converters are switched on by default.  
bit[11]  
bit[10]  
enable and reset audio codec  
enable and reset DSP core  
For normal operation (MPEG-decoding and D/A conversion), both, the DSP  
core and the audio codec have to be enabled after the power-up procedure.  
The DSP can be left off if an audio signal is routed from the analog inputs to  
the analog outputs (set bit[15] in codec register 00 0Fhex). The audio codec  
can be left off if the DSP uses digital inputs and outputs only.  
bit[9]  
bit[8]  
reset codec  
reset DSP core  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
disable task 7 of DSP core  
disable task 6 of DSP core  
disable task 5 of DSP core  
disable task 4 of DSP core  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
set task 3 of DSP core  
set task 2 of DSP core  
set task 1 of DSP core  
set task 0 of DSP core  
bit[7] 1)  
enable XTAL input clock divider  
(extended crystal range up to 28 MHz)  
reserved, must be set to zero  
bit[6:0] 1)  
bit[15:8]  
6B 1)  
reserved, must be set to zero  
DSP_TASK  
bit[7]  
bit[6]  
bit[5]  
bit[4]  
disable task 7 of DSP core  
disable task 6 of DSP core  
disable task 5 of DSP core  
disable task 4 of DSP core  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
set task 3 of DSP core  
set task 2 of DSP core  
set task 1 of DSP core  
set task 0 of DSP core  
Unless downloaded optional software is used, the bits 7...0 must be set to  
zero.  
1) available in the next version  
Micronas  
21  
MAS 35X9F  
ADVANCE INFORMATION  
Table 33: Direct Configuration Registers  
I2C Sub-  
address  
(hex)  
Function  
Name  
76  
DCCF Register (reset = 5050hex  
)
DCCF  
DC/DC Converter 2  
bit[15]  
PUP2: Voltage monitor 2 flag (readback)  
Voltage between VSENS2 and DCSG2  
bit[14:11]  
Code  
Nominal  
output volt. of PUP2  
set level  
reset level  
of PUP2  
3.3 V  
3.2 V  
3.1 V  
3.0 V  
2.9 V  
2.8 V (reset)  
2.7 V  
2.6 V  
2.5 V  
2.4 V  
2.3 V  
2.2 V  
2.1 V  
2.0 V  
1111  
1110  
3.5 V  
3.4 V  
3.3 V  
3.2 V  
3.1 V  
3.0 V  
2.9 V  
2.8 V  
2.7 V  
2.6 V  
2.5 V  
2.4 V  
2.3 V  
2.2 V  
3.4 V  
3.3 V  
3.2 V  
3.1 V  
3.0 V  
2.9 V  
2.8 V  
2.7 V  
2.6 V  
2.5 V  
2.4 V  
2.3 V  
2.2 V  
2.1 V  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
01001)  
00111)  
00101)  
bit[10]  
Mode  
1
0
Pulse frequency modulation (PFM)  
Pulse width modulation (PWM) (reset)  
bit[9]  
bit[8]  
reserved, must be set to zero  
Disable synchronized rectifier  
1
0
disable synchronized recitifier  
enable synchronized recitifier (reset)  
The DC/DC converters are up-converters only. Thus, if the battery voltage is  
higher than the selected nominal voltage, the output voltage will exceed the  
nominal voltage.  
1) refer to Section 4.6.2. on page 66  
22  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 33: Direct Configuration Registers  
I2C Sub-  
address  
(hex)  
Function  
Name  
76  
DC/DC Converter 1  
(continued)  
bit[7]  
PUP1: Voltage monitor 1 flag (readback)  
bit[6:3]  
bit[2]  
Voltage between VSENS1 and DCSG1 (see table above)  
Mode  
1
0
Pulse frequency modulation (PFM)  
Pulse width modulation (PWM) (reset)  
bit[1]  
bit[0]  
reserved, must be set to zero  
Disable synchronized rectifier  
1
0
disable synchronized recitifier  
enable synchronized recitifier (reset)  
Note, that the reference voltage for DC/DC converter 1 is derived from the  
main reference source supplied via pin AVDD1. Therefore, if this DC/DC con-  
verter is used, its output must be connected to the analog supply.  
The DC/DC converters are up-converters only. Thus, if the battery voltage is  
higher than the selected nominal voltage, the output voltage will exceed the  
nominal voltage.  
Micronas  
23  
MAS 35X9F  
ADVANCE INFORMATION  
Table 33: Direct Configuration Registers  
I2C Sub-  
address  
(hex)  
Function  
Name  
77  
DCFR Register (reset = 00hex  
)
DCFR  
Battery Voltage Monitor  
bit[15]  
Comparison result (readback)  
1
0
input voltage at pin VBAT above defined threshold  
input voltage at pin VBAT below defined threshold  
bit[14]  
Number of battery cells  
0
1
1 cell (range 0.8...1.5 V) (reset)  
2 cells (range 1.6...3.0 V)  
bit[13:10]  
Voltage threshold level  
1 cell  
2 cells  
3.0 V  
2.9 V  
1111  
1110  
...  
1.5  
1.45  
0010  
0001  
0000  
0.85  
0.8  
1.7 V  
1.6 V  
Battery voltage supervision off (reset)  
bit[9:8]  
Reserved, must be set to 0  
The result is stable after 1 ms after enabling. The setup time for switching  
between two thresholds is negligibly small.  
For power management reasons, the battery voltage monitor should be  
switched off by setting bit[13:10] to zero when the measurement is completed.  
DC/DC Converter Frequency Control (PWM)  
bit[7:4]  
bit[3:0]  
Reserved, must be set to 0  
Frequency of DC/DC converter  
Reference: 24.576 22.5792 18.432 MHz  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
315.1  
323.4  
332.1  
341.3  
351.1  
361.4  
372.4  
384.0  
396.4  
409.6  
423.7  
438.9  
455.1  
472.6  
491.5  
512.0  
289.5  
297.1  
305.1  
313.6  
322.6  
332.0  
342.1  
352.8  
364.2  
376.3  
389.3  
403.2  
418.1  
434.2  
451.6  
470.4  
297.3 kHz  
307.2 kHz  
317.8 kHz  
329.1 kHz  
341.3 kHz  
354.5 kHz  
368.6 kHz  
384.0 kHz (reset)  
400.7 kHz  
418.9 kHz  
438.9 kHz  
460.8 kHz  
485.1 kHz  
512.0 kHz  
542.1 kHz  
576.0 kHz  
If the audio codec is not enabled (bit 11 of the Control register at I2C-subad-  
dress 6Ahex is zero), the clock for the DC/DC converters is directly derived  
from the crystal frequency (nominal 18.432 MHz). Otherwise, the synthesizer  
clock is used as the reference (please refer to the respective column in  
Table 21 on page 11).  
24  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.3. DSP Core  
also provides a download option for alternative soft-  
ware modules.  
The DSP Core of the MAS 35x9F has two RAM banks  
denoted D0 and D1. The word size is 20 bits. All RAM  
addresses can be accessed in a 20-bit or a 16-bit  
mode via I2C bus. For fast access of internal DSP  
states, the processor core also has an address space  
of 256 data registers. All register and RAM addresses  
are given in hexadecimal notation.  
The MAS 35x9F firmware scans the I2C interface peri-  
odically and checks for pending or new commands.  
However, due to some time critical firmware parts, a  
certain latency time for the response has to be  
expected. The theoretical worst case response time  
does not exceed 4 ms. However, the typical response  
time is less than 0.5 ms.  
3.3.1. Access Protocol  
Table 34 gives an overview over the different com-  
mands which the DSP Core receives via the I2C data  
register. The Codeis always the first data nibble  
transmitted after the data_writesubaddress byte. A  
second auxiliary code nibble is used for the short  
memory (16-bit) access commands.  
The access of the DSP Core in the MAS 35x9F uses a  
special command syntax. The commands are exe-  
cuted by the DSP during its normal operation without  
any loss or interruption of the incoming data or outgo-  
ing audio data stream. These I2C commands allow the  
controller accessing the internal DSP registers and  
RAM cells and thus, monitoring internal states and set-  
ting the parameters for the DSP firmware. This access  
Due to the 16-bit width of the I2C data register, all  
actions transmit telegrams with multiples of 16 data  
bits.  
S
W
A
W
A
A
A
DW  
$68  
code , ...  
... , ...  
... , ...  
Fig. 32: General core access protocol  
Table 34: Basic controller command codes  
Code Command  
(hex)  
Function  
0...3  
Run  
Start execution of an internal program. Run with start address 0 means  
freeze the operating system.  
5
Read Ancillary Data  
Fast Program Download  
Read from Register  
Write to Register  
The controller reads a block of MPEG Ancillary Data from the MAS 35x9F  
The controller downloads custom software via the PIO interface  
The controller reads an internal register of the MAS 35x9F  
The controller writes an internal register of the MAS 35x9F  
The controller reads a block of the DSP memory  
6
A
B
C
D
E
F
Read D0 Memory  
Read D1 Memory  
Write D0 Memory  
Write D1 Memory  
The controller reads a block of the DSP memory  
The controller writes a block of the DSP memory  
The controller writes a block of the DSP memory  
Micronas  
25  
MAS 35X9F  
ADVANCE INFORMATION  
3.3.1.1. Run and Freeze  
S
W
A
W
A
A
W
A
P
DW  
$68  
a3,a2  
a1,a0  
The Run command causes the start of a program part at address a = (a3,a2,a1,a0). Since nibble a3 is also the com-  
mand code (see Table 34), it is restricted to values between 0 and 3.  
If the start address is 1000hex a < 3FFFhex and the respective RAM area has been configured as program RAM  
(see Table 35 on page 32), the MAS 35x9F continues execution with a custom program already downloaded to this  
area.  
Example 1: Start program execution at address 345hex  
:
<DW 68 03 45>  
Example 2: Start execution of a downloaded code at address 3000hex  
:
<DW 68 30 00>  
Freeze is a special run command with start address 0. It suspends all normal program execution. The operating sys-  
tem will enter an idle loop so that all registers and memory cells can be watched. This state is useful for operations  
like downloading code or contents of memory cells because the internal program cannot overwrite these values.  
This freezing will be required if alternative software is downloaded into the internal RAM of the MAS 35x9F.  
Freeze has the following I2C protocol:  
<DW 68 00 00>  
3.3.1.2. Read Register (Code Ahex  
)
1) send command  
S
W
A
W
A
A
A
W
A
A
P
DW  
$68  
a,r1  
r0,0  
2) get register value  
S
W
A
W
A
A
S
W
A
DW  
$68  
x,x  
DR  
W
W
N
P
x,d4  
d3,d2  
d1,d0  
Some registers (r = r1,r0 in the figure above) are direct control inputs for various hardware blocks, others control the  
internal program flow. In contrast to memory cells, registers cannot be accessed as a block but must always be  
addressed individually.  
Example:  
Read the content of the PIO data register (C8hex):  
<DW 68 ac 80>  
<DW 69 <DR xx xd dd dd>  
define register  
and read  
26  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.3.1.3. Write Register (Code Bhex  
)
S
W
A
W
A
A
A
W
W
A
A
DW  
$68  
b,r1  
r0,d4  
d1,d0  
P
d3,d2  
The controller writes the 20-bit value (d = d4,d3,d2, d1,d0) into the MAS 35x9F register (r = r1,r0).  
Example: Writing the value 81234hex into the register  
with the number AAhex  
:
<DW 68 ba a8 12 34>  
In Table 35 on page 32 the registers of interest with respect to the firmware are described in detail.  
3.3.1.4. Read D0 Memory (Code Chex  
)
The MAS 35x9F has 2 memory areas of 2048 words called D0 and D1 memory. Both memory areas have different  
read and write commands. All D0/D1 memory addresses are given in hexadecimal notation.  
1) send command  
S
W
A
W
A
A
A
A
W
W
W
A
A
A
DW  
$68  
c,0  
0,0  
n3,n2  
a3,a2  
n1,n0  
a1,a0  
P
2) get memory value  
S
W
A
W
A
A
S
W
A
DW  
$69  
x,x  
DR  
W
A
A
A
A
W
W
A
N
x,d4  
d3,d2  
d1,d0  
d1,d0  
...repeat for n data values...  
A
W
P
x,x  
x,d4  
d3,d2  
The Read D0 Memory command gives the controller access to all 20 bits of D0 memory cells of the MAS 35x9F.  
The telegram to read 3 words starting at location D0:100 is  
<DW 68 c0 00 00 03 01 00>  
<DW 69 <DR xx xd dd dd  
xx xd dd dd xx xd dd dd>  
Micronas  
27  
MAS 35X9F  
ADVANCE INFORMATION  
3.3.1.5. Short Read D0 Memory (Code C4hex  
)
Because most cells in the user interface are only 16 bits wide, it is faster and more convenient to access the memory  
locations with a special 16 bit mode for reading:  
1) send command  
S
W
A
W
A
A
A
A
W
W
W
A
A
A
DW  
$68  
$69  
c,4  
0,0  
n3,n2  
a3,a2  
n1,n0  
a1,a0  
P
2) get memory value  
S
W
A
W
A
S
W
A
DW  
DR  
A
W
A
N
d3,d2  
d1,d0  
...repeat for n data values...  
A
W
P
d3,d2  
d1,d0  
This command is similar to the normal 20 bit read command and uses the same command code Chex, however it is  
followed by a 4hex rather than a 0hex  
.
3.3.1.6. Read D1 Memory (Code Dhex  
)
1) send command  
S
W
A
W
A
A
A
A
W
W
W
A
A
A
DW  
$68  
d,0  
0,0  
n3,n2  
a3,a2  
n1,n0  
a1,a0  
P
2) get memory value  
S
W
A
W
A
A
S
W
A
DW  
$69  
x,x  
DR  
W
A
A
A
A
W
W
A
N
x,d4  
d3,d2  
d1,d0  
d1,d0  
...repeat for n data values...  
A
W
P
x,x  
x,d4  
d3,d2  
The Read D1 Memory command is provided to get information from D1 memory cells of the MAS 35x9F.  
28  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.3.1.7. Short Read D1 Memory (Code D4hex  
)
1) send command  
S
W
A
W
A
A
W
W
W
A
A
A
DW  
$68  
d,4  
0,0  
A
A
n3,n2  
a3,a2  
n1,n0  
a1,a0  
P
2) get memory value  
S
W
A
W
A
S
W
A
DW  
$69  
DR  
A
W
A
N
d3,d2  
d1,d0  
...repeat for n data values...  
A
W
P
d3,d2  
d1,d0  
The Short Read D1 Memory command works similar to the Read D1 Memory command but with the code Dhex fol-  
lowed by a 4hex  
.
Example: Read 16 bits of D1:123 has the following I2C protocol:  
<DW 68 d4 00  
00 01  
read 16 bits from D1  
1 word to be read  
start address  
01 23  
<DW 69 DR dd dd>  
start reading  
3.3.1.8. Write D0 Memory (Code Ehex  
)
S
W
A
W
A
A
A
A
A
A
W
W
W
W
W
A
A
A
A
A
DW  
$68  
e,0  
0,0  
n3,n2  
a3,a2  
0,0  
n1,n0  
a1,a0  
0,d4  
d3,d2  
d1,d0  
...repeat for n data values...  
A
A
W
W
A
A
0,0  
0,d4  
P
d3,d2  
d1,d0  
With the Write D0 Memory command n 20-bit memory cells in D0 can be initialized with new data.  
Example: Write 80234hex to D0:456 has the following I2C protocol:  
<DW 68 e0 00  
00 01  
write D1 memory  
1 word to write  
start address  
04 56  
00 08  
value = 80234hex  
02 34>  
Micronas  
29  
MAS 35X9F  
ADVANCE INFORMATION  
3.3.1.9. Short Write D0 Memory (Code E4hex  
)
S
W
A
W
A
A
W
W
W
W
A
A
A
A
DW  
$68  
e,4  
0,0  
A
A
A
n3,n2  
a3,a2  
d3,d2  
n1,n0  
a1,a0  
d1,d0  
...repeat for n data values...  
A
W
A
P
d3,d2  
d1,d0  
For faster access only the lower 16 bits of each memory cell are accessed. The 4 MSBs of the cell are cleared.  
3.3.1.10. Write D1 Memory (Code Fhex  
)
S
W
A
W
A
A
A
A
A
A
W
W
W
W
W
A
A
A
A
A
DW  
$68  
f,0  
0,0  
n3,n2  
a3,a2  
0,0  
n1,n0  
a1,a0  
0,d4  
d3,d2  
d1,d0  
...repeat for n data values...  
A
A
W
W
A
A
0,0  
0,d4  
P
d3,d2  
d1,d0  
For further details, see the Write D0 Memory command.  
3.3.1.11. Short Write D1 Memory (Code F4hex  
)
S
W
A
W
A
A
A
A
A
W
W
W
W
A
A
A
A
DW  
$68  
f,4  
0,0  
n3,n2  
a3,a2  
d3,d2  
n1,n0  
a1,a0  
d1,d0  
...repeat for n data values...  
A
W
A
P
d3,d2  
d1,d0  
Only the 16 lower bits of each memory cell are written, the upper 4 bits are cleared.  
3.3.1.12. Clear SYNC Signal (Code 5hex  
)
S
W
A
W
A
A
W
A
P
DW  
$68  
5,0  
0,0  
After the successful decoding of an MPEG frame the signal at pin SYNC rises and thus generates an interrupt event  
for the microcontroller. Issuing this command lets the signal at pin SYNC return to 0.  
30  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.3.1.13. Default Read  
The Default Read command is the fastest way to get information from the MAS 35x9F. Executing the Default Read in  
a polling loop can be used to detect a special state during decoding.  
S
W
A
W
A
S
W
A
A
DW  
$69  
DR  
W
N
P
d3,d2  
d1,d0  
The Default Read command immediately returns the lower 16 bit content of a specific RAM location as defined by  
the pointer D0:ffb. The pointer must be loaded before the first Default Read action occurs. If the MSB of the pointer  
is set, the pointer refers to a memory location in D1 rather than to one in D0.  
Example: For watching D1:123 the pointer D0:ffb must be loaded with 8123hex  
:
<DW 68 e0 00  
00 01  
write to D0 memory  
1 word to write  
start address ffb  
value = 8...  
0f fb  
00 08  
01 23>  
...0123hex  
Now Default Read commands can be issued as often as desired:  
<DW 69 <DR  
Default Read command  
dd dd> 16 bit content of the  
address as defined by the  
pointer  
<DW 69 <DR dd dd> ... and do it again  
3.3.1.14. Serial Program Download  
Program downloads may be performed via the I2C interface by using the Write D0/1 Memory commands.  
The download must be initiated in the following sequence:  
Issue Freeze command  
Stop all DMA transfers  
Write D0/1 Memory commands to perform download  
Switch appropriate memory area to act as program RAM (register 6Bhex  
)
Issue Run command to start program execution at entry point of downloaded code  
Micronas  
31  
MAS 35X9F  
ADVANCE INFORMATION  
3.3.2. List of DSP Registers  
Table 35 lists the registers used in the standard  
Layer 2/3 and AAC firmware (MPEG) and for the  
download option (Download).  
Note: Registers not given in the tables must not be  
written.  
Table 35: DSP Register Table  
Address  
(hex)  
R/W Function  
Mode  
Default  
(hex)  
Name  
6B  
R/W Configuration of Variable RAM Areas  
Download 0000  
PSelect_Shadow  
Affected RAM area  
bit[19]  
bit[18]  
bit[17]  
bit[16]  
D0:800 ... D0:BFF  
D0:C00 ... D0:FFF  
D1:800 ... D1:BFF  
D1:C00 ... D1:FFF  
This register is used to switch four RAM areas from data  
to program usage and thus enabling the DSPs program  
counter to access downloaded program code stored at  
these locations. For normal operation (firmware in ROM)  
this register must be kept to zero.  
For details of program code download please refer to  
Section 3.3.1.14.  
aa  
W
Soft Mute  
MPEG  
0000  
SoftMute  
%0 (reset) mute off  
%1  
mute on  
Note: The location of the SoftMute register is to be  
changed.  
3.3.3. List of DSP Memory Cells  
The meaning of the bits in both cells is given in Table  
36.  
Among the user interface control memory cells there  
are some which have a global meaning and some  
which control application specific parts of the DSP  
core. In the tables below this is reflected by the key-  
words All, MPEG, and G.729  
3.3.3.2. Application Specific Control  
The configuration of the MPEG Layer 2/3, AAC decod-  
ing and the G.729 codec firmware is done via the con-  
trol memory cells described in Table 37. The changes  
applied to any of the control memory cells have to be  
validated by setting bit[0] of memory cell Main I/O Con-  
trol. This bit will be reset automatically after the  
changes have been taken over by the DSP.  
3.3.3.1. Application Select and Running  
The AppSelect cell is a global user interface configura-  
tion cell, which has to be written in order to start a spe-  
cific application.  
The status memory cells are used to read the decoder  
status and to get additional MPEG bitstream informa-  
tion.  
The AppRunning cell is a global user interface status  
cell, which indicates, which application loop is actually  
running.  
Note: Memory cells not given in the tables must not be  
written.  
32  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 36: Application Control and Status  
Memory  
Address  
(hex)  
Function  
Name  
D0:34b  
Application Selection  
All AppSelect  
AppSelect is used for selecting an application. This is done by setting the  
appropriate bit to one. It is principally allowed to set more than one bit to one,  
e.g. setting AppSelect to 0x1c will select all MPEG audio decoders. The auto-  
detection feature will automatically detect the Layer 2, Layer 3, or AAC data.  
Setting bit[0] or bit[1] will make the DSP loop in the OS loop or the Top Level  
loop respectively.  
To add/remove MPEG layers while running in MPEG decoding mode (e.g.  
Layer 2, Layer 3 (0x0c) to Layer 2, Layer 3, AAC (0x1c)), the application  
selection has to be reset before writing the new value.  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
G.729 Codec  
MPEG AAC Decoder  
MPEG Layer 3 Decoder  
MPEG Layer 2 Decoder  
Top Level  
Operating System  
D0:34c  
Application Running  
All AppRunning  
The AppRunning cell is a global user interface status cell, that indicates which  
application loop is actually running. Prior to writing any of the configuration  
registers or memory cells (except AppSelect), it has to be checked whether  
the appropriate bit(s) in the AppRunning cell is set.  
bit[5]  
bit[4]  
bit[3]  
bit[2]  
bit[1]  
bit[0]  
G.729 Codec  
MPEG AAC Decoder  
MPEG Layer 3 Decoder  
MPEG Layer 2 Decoder  
Top Level  
Operating System  
Micronas  
33  
MAS 35X9F  
ADVANCE INFORMATION  
Table 37: D0 Control Memory Cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:346  
Main I/O Control (reset = 24hex  
)
MPEG  
IOControlMain  
IOControlMain is used for selecting/deselecting the appropriate data input  
interface and for setting up the serial data output interface. In serial input  
mode the coded audio data (Layer 2, Layer 3, AAC) is expected at the serial  
input interface SDIB (default). In the 8-bit-parallel input mode the PIO pins  
PI[19:12] are used.  
bit[15]  
bit[14]  
Reserved, must be set to zero  
Invert serial output clock (SOC)  
0 (reset)  
1
do not invert SOC  
invert SOC  
bit[13:12]  
bit[11]  
Reserved, must be set to zero  
Serial data output delay  
0 (reset)  
1
no additional delay (reset)  
additional delay of data related to word strobe  
bit[10]  
Reserved, must be set to zero  
bit[9:8]  
Input Select Main  
00 (reset) serial input at interface B  
01  
10  
11  
parallel input at PIO pins PI[19...12]  
S/PDIF input (not yet supported)  
no main input  
In the standard firmware the serial input interface A (SDI) cannot be selected.  
bit[7:6]  
bit[5]  
Reserved, must be set to zero  
SDO Word Strobe Invert  
0
do not invert  
1 (reset)  
invert outgoing word strobe signal  
bit[4]  
Bits per Sample at SDO  
0 (reset)  
1
32 bits/sample  
16 bits/sample  
bit[3]  
bit[2]  
Reserved, must be set to zero  
Serial data input interface B clock invert (pin SIBC)  
0
not inverted (data latched at rising clock edge)  
incoming clock signal is inverted (data latched at  
falling clock edge)  
1 (reset)  
bit[1]  
bit[0]  
0 (reset)  
1
DEMAND MODE (PLL off, MAS 35x9F is clock  
master)  
BROADCAST MODE (PLL on, clock of MAS 35x9F  
locks on data stream)  
Validate  
0 (reset)  
1
changes in control memory cell will be ignored  
changes in control memory will become effective  
Bit[0] is reset after the DSP has recognized the changes. The controller  
should set this bit after the other D0 control memory cells have been initialized  
with the desired values.  
34  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 37: D0 Control Memory Cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:347  
Interface Status Control (reset = 04hex  
)
MPEG  
InterfaceControl  
This control cell allows to enable/disable the data I/O interfaces. In addition,  
the clock of the output data interface interfaces, S/PDIF and SDO, can be set  
to a low-impedance mode.  
bit[6]  
S/PDIF input selection (not yet supported)  
0 (reset)  
1
select S/PDIF input 1  
select S/PDIF input 2  
bit[5]  
Enable/disable S/PDIF output  
(will be supported in the next version )  
0 (reset)  
1
enable S/PDIF output  
S/PDIF output off (tristate)  
bit[4]  
bit[3]  
Reserved, must be set to zero  
Enable/disable serial data output SDO  
0
SDO on  
SDO off  
1 (reset)  
bit[2]  
Output clock characteristic (SDO and S/PDIF outputs)  
0
low impedance  
high impedance  
1 (reset)  
bit [1:0]  
reserved, must be set to zero  
Both digital outputs, S/PDIF and I2S, and the D/A converters may use the  
decoded audio independent of each other.  
Changes at this memory address must be validated by setting bit [0] of  
D0:346.  
D0:348  
Oscillator Frequency (reset = 18432dec  
bit[19:0] oscillator frequency in kHz  
)
All  
OfreqControl  
In order to achieve a correct internal operating frequency of the DSP, the nom-  
inal crystal frequency has to be deposited into this memory cell.  
Changes at this memory address must be validated by setting bit 0 of D0:346.  
Micronas  
35  
MAS 35X9F  
ADVANCE INFORMATION  
Table 37: D0 Control Memory Cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:349  
Output Clock Configuration (pin CLKO) (reset = 80000hex  
)
All  
OutClkConfig  
bit[19]  
CLKO configuration  
0
output clock signal at CLKO  
CLKO is tristate  
1 (reset)  
The CLKO output pin of the MAS 35x9F can be disabled via bit [19].  
bit[18]  
bit[17]  
Reserved, must be set to zero  
Additional division by 2 if scaler is on (bit[8] cleared)  
0 (reset)  
1
oversampling factor 512/768  
oversampling factor 256/384  
bit[16:9]  
bit[8]  
Reserved, must be set to zero  
Output clock scaler  
0 (reset)  
set output clock according to audio sample rate  
(see Table 21)  
1
output clock fixed at 24.576 or 22.5792 MHz  
For a list of output frequencies at pin CLKO please refer to Table 21.  
bit[7:0] reserved, must be set to zero  
Changes at this memory address must be validated by setting bit[0] of  
D0:346.  
36  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 37: D0 Control Memory Cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:34d  
Operation Mode Selection (reset = 0hex  
)
G.729  
UserControl  
The register is used to switch between basic G.729 operation modes.  
bit[19:7]  
bit[6]  
Reserved, set to 0  
Page headers  
0
1
enable  
disable  
If the page headers bit is 0, a header frame is transfered before each page of  
50 data frames. If the header bit is 1, all the frames are G.729 data frames.  
Please refer to Section 3.3.6. on page 43.  
bit[5:4]  
Decoding speed  
00  
01  
10  
11  
8 kHz (normal)  
6 kHz (slow)  
12 kHz (fast)  
not allowed  
The recording (encoding) is always done with a sampling rate of 8 kHz. During  
decoding this control can be used to speed up or slow down the playback.  
bit[3]  
bit[2]  
Reserved, set to 0  
Pause encoder/decoder  
0
1
normal operation  
pause  
If the pause bit is set, the processing continues until the current page is fin-  
ished and then en-/decoding is paused. The pause mode lasts until the pause  
bit is cleared again or the mode is set to 0.  
bit[1:0]  
Mode  
00  
idle  
01  
10  
11  
decode  
not allowed  
encode  
To switch to encoder operation mode, UserControl has to be set to 3hex. Then  
50 frames are encoded and sent via the PIO interface. This is repeated until  
the UserControl register is changed. If the transmission of headers is enabled,  
each page of 50 frames is preceeded by a header frame as shown in Fig. 35.  
To switch to decoder operation mode, UserControl has to be set to 1hex. For  
decoding with slow speed, UserControl must be 11hex, for decoding with fast  
speed it must be 21hex. Then the decoder is requesting several frames via the  
PIO interface to fill its internal buffer. If enough data is available, 50 frames are  
decoded. This is repeated until the UserControl register is changed. If the  
transmission of headers is enabled, a header frame (as shown in Fig. 35)  
has to be sent before each page of 50 frames.  
To switch off the encoder or decoder, UserControl has to be set to 0hex. Then  
the encoding/decoding and sending/receiving of frames continues until the  
end of the current page and the operation mode is set to stop.  
Micronas  
37  
MAS 35X9F  
ADVANCE INFORMATION  
Table 37: D0 Control Memory Cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:34e  
The G.729 encoder is not working with the internal ADC and both, input  
and output wordstrobe inverted (reset configuration). Therefore this  
memory cell must be set to 0 to work with the integrated ADC.  
SDISDOConfig  
I2S Audio Input/Output Interface (reset = 60hex  
)
G.729  
bit[19:15]  
bit[14]  
Reserved, set to 0  
Output clock signal  
0
1
standard signal  
inverted signal  
bit[13]  
bit[12]  
Reserved, set to 0  
Additional delay of input data related to  
word strobe  
0
1
no delay  
1 bit delay  
bit[11]  
Additional delay of output data related to  
word strobe  
0
1
no delay  
1 bit delay  
bit[10:7]  
bit[6]  
Reserveded, set to 0  
Input word strobe signal  
0
1
standard signal  
inverted signal  
bit[5]  
bit[4]  
Output word strobe signal  
0
1
standard signal  
inverted signal  
Wordlength  
0
1
32 bits/sample  
16 bits/sample  
This setting affects the wordlength on the SDI and SDO interfaces.  
bit[3]  
Input clock signal  
0
1
standard signal  
inverted signal  
bit[2:0]  
Reserved, set to 0  
Changes become effective when the codec is started or the mode is changed  
by writing to the UserControl memory cell.  
D0:34f  
Interface Status Control (reset = 25hex  
)
G.729  
g729_InterfaceCont  
rol  
This control cell is used to enable/disable interfaces in G.729 mode. It con-  
tains the same settings as memory cell D0:347 (InterfaceControl), but is ini-  
tialized to a different default setting.  
D0:352  
D0:353  
D0:354  
D0:355  
Volume input control: left gain  
Volume input control: right gain  
(reset=80000hex  
(reset=0hex  
)
G.729  
G.729  
All  
in_L  
)
in_R  
Volume output control: left left gain (reset=80000hex  
Volume output control: left right gain (reset=0hex  
)
out_LL  
out_LR  
)
All  
38  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 37: D0 Control Memory Cells  
Memory  
Address  
(hex)  
Function  
Name  
D0:356  
D0:357  
Volume output control: right left gain(reset=0hex  
)
All  
All  
out_RL  
out_RR  
Volume control: right right gain (reset=80000hex  
)
Table 38: D0 Status Memory Cells  
Memory  
Address  
Function  
Name  
D0:FD0  
MPEG Frame Counter  
MPEGFrameCount  
bit[19:0]  
number of MPEG frames after synchronization  
The counter will be incremented with every new frame that is decoded. With  
an invalid MPEG bit stream at its input (e.g. an invalid header is detected), the  
MAS 35x9F resets the MPEGFrameCount to 0.  
D0:FD1  
MPEG Header and Status Information  
MPEGStatus1  
bit[15]  
reserved, must be set to zero  
bit[14:13]  
MPEG ID, Bits 12, 11 of the MPEG header  
00  
01  
10  
11  
MPEG 2.5  
reserved  
MPEG 2  
MPEG 1  
not valid in case of AAC decoding (bit[12:11] = 00)  
bit[12:11]  
bit[10]  
Bits 14 and 13 of the MPEG header  
00  
01  
10  
11  
AAC  
Layer 3  
Layer 2  
Layer 1  
CRC Protection  
0
1
bitstream protected by CRC  
bitstream not protected by CRC  
bit[9:2]  
bit[1]  
Reserved  
CRC error  
0
1
no CRC error  
CRC error  
bit[0]  
Invalid frame  
0
1
no invalid frame´  
invalid frame  
This location contains bits 15...11 of the original MPEG header and other sta-  
tus bits. It will be set each frame directly after the header has been decoded  
from the bit stream.  
Micronas  
39  
MAS 35X9F  
ADVANCE INFORMATION  
Table 38: D0 Status Memory Cells  
Memory  
Address  
Function  
Name  
D0:FD2  
MPEG Header Information  
MPEGStatus2  
bit[15:12]  
MPEG Layer 2/3 Bitrate  
MPEG1, L2  
MPEG1, L3  
MPEG2+2.5, L2/3  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
free  
32  
48  
56  
64  
free  
32  
40  
48  
56  
64  
80  
96  
112  
128  
160  
192  
224  
256  
320  
forbidden  
free  
8
16  
24  
32  
40  
48  
56  
64  
80  
96  
112  
128  
160  
192  
224  
256  
320  
384  
forbidden  
80  
96  
112  
128  
144  
160  
forbidden  
bit[13:10]  
Sampling frequency for MPEG2-AAC in Hz  
0000..0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
reserved  
48000  
44100  
32000  
24000  
22050  
16000  
12000  
11025  
8000  
1011  
1100..1111  
reserved  
...  
40  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 38: D0 Status Memory Cells  
Memory  
Address  
Function  
Name  
D0:FD2  
MPEG Header Information, continued  
MPEGStatus2  
(continued)  
bit[11:10]  
Sampling frequencies in Hz  
MPEG1  
MPEG2  
MPEG2.5  
00  
01  
10  
11  
44100  
48000  
32000  
reserved  
22050  
24000  
16000  
reserved  
11025  
12000  
8000  
reserved  
bit[9]  
Padding Bit  
reserved  
bit[8]  
bit[7:6]  
Mode  
00  
stereo  
01  
10  
joint_stereo (intensity stereo / m/s stereo)  
dual channel  
11  
single channel  
bit[5:4]  
Mode extension (applies to joint stereo only)  
intensity stereo  
m/s stereo  
00  
01  
10  
11  
off  
on  
off  
on  
off  
off  
on  
on  
bit[3]  
Copyright Protect Bit  
0/1 not copyright protected/copyright protected  
bit[2]  
Copy/Original Bit  
0/1  
bitstream is a copy/bitstream is an original  
bit[1:0]  
Emphasis, indicates the type of emphasis  
00  
01  
10  
11  
none  
50/15 µs  
reserved  
CCITT J.17  
This memory cell contains the 16 LSBs of the MPEG header. It will be set  
directly after synchronizing to the bit stream.  
Note that for AAC four bits are needed to define the sampling frequency while  
for Layer2/Layer3 two bits are sufficient. This leads to an inconsistency in the  
format of bits 13...10.  
D0:FD3  
D0:FD4  
MPEG CRC Error Counter  
CRCErrorCount  
The counter will be increased by each CRC error detected in the MPEG bis-  
stream. It will not be reset when losing the synchronization.  
Number of Bits in Ancillary Data  
NumberOfAncillary-  
Bits  
Number of valid ancillary bits in the current MPEG frame.  
D0:FD5  
...  
D0:FF1  
Ancillary Data  
AncillaryData  
Section 3.3.4. on page 42.  
Micronas  
41  
MAS 35X9F  
ADVANCE INFORMATION  
3.3.4. Ancillary Data  
left audio  
+
1  
1  
1  
1  
LL  
The memory fields D0:FD5...D0:ff1 contain the ancil-  
lary data. It is organized in 28 words of 16 bit each.  
The last ancillary bit of a frame is placed at bit 0 in  
D0:FD5. The position of the first ancillary data bit  
received can be located via the content of NumberO-  
fAncillaryBits because  
LR  
RL  
int[(NumberOfAncillaryBits-1)/16] + 1  
of memory words are used.  
Example:  
First get the content of NumberOfAncillaryBits’  
+
RR  
<DW 68 c4 00 00 01 0f d4>  
<DW 69 <DR dd dd>  
right audio  
Assume that the MAS 35x9F has received 19 ancillary  
data bits. Therefore, it is necessary to read two 16-bit  
words:  
Fig. 33: Digital volume matrix  
<DW 68 c4 00  
Short Read from D0  
00 02 0f d5> read 2 words starting at D0:fd5  
<DW 69 <DR dd dd  
Table 39: Settings for the digital volume matrix  
dd dd>  
Memory  
Name  
D0:354 D0:355 D0:356 D0:357  
receive the 2 16-bit words  
LL  
LR  
RL  
RR  
The first bit received from the MPEG source is at posi-  
tion 2 of D0:FD6; the last bit received is at the LSB of  
D0:fd5.  
Stereo  
(default)  
1.0  
0
0
1.0  
Mono left  
1.0  
1.0  
0
0
3.3.5. DSP Volume Control  
Mono right  
0
0
1.0  
1.0  
The digital baseband volume matrix is used for control-  
ling the digital gain as shown in Fig. 33. This volume  
control is effective on both, the digital audio output and  
the data stream to the D/A converters. The values are  
in 20-bit 2s complement notation.  
If channels are mixed, care must be taken to prevent  
clipping at high amplitudes. Therefore the sum of the  
absolute values of coefficients for one output channel  
should be less than 1.0.  
Table 39 shows the proposed settings for the 4 vol-  
ume matrix coefficients for stereo, left and right mono.  
The gain factors are given in fixed point notation  
(1.0×219 = 80000hex).  
For normal operating conditions it is recommended to  
use the main volume control of the audio codec  
instead (register 00 10hex of the audio codec).  
Table 310: Content of D0:fd5 after reception of 19 ancillary bits.  
D0:fd5  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
Ancillary  
Data  
4th  
bit  
5th  
bit  
6th  
bit  
...  
...  
...  
...  
...  
...  
...  
...  
...  
...  
17th  
bit  
18th  
bit  
last  
bit  
Table 311: Content of D0:fd6 after reception of 19 ancillary bits.  
D0:fd6  
MSB 14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
LSB  
Ancillary  
Data  
x
x
x
x
x
x
x
x
x
x
x
x
x
first  
bit  
2nd  
bit  
3rd  
bit  
42  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.3.6. Explanation of the G.729 Data Format  
Table 312: Content of Page Header  
Byte  
The codec is working on a page basis where the  
encoding and decoding is performed in blocks of 50  
G.729 frames, whereas each frame consists of  
10 bytes in byteswapped order (see Fig. 35 on  
page 52). Therefore most changes to the UserControl  
register become effective when processing of the cur-  
rent page is finished. The pages are optionally pre-  
ceeded by 10 byte header frames (see Table 312).  
1
2
3
4
5
6
7
8
9
10  
Value 64 6d 72 31 64 61 74 61 F4 01  
(hex)  
Switching directly from encoding to decoding mode or  
vice versa is not allowed. Instead the controller has to  
send a stop request to the MAS 35x9F (writing 0hex to  
UserControl) and must keep on sending data in decod-  
ing mode or receive data in encoding mode until the  
current page of 50 frames is finished. After this run out  
time, the encoding or decoding can be started again.  
page frame frame frame  
header  
frame frame page frame frame  
49 49 header 51 52  
frame frame page frame frame  
...  
...  
...  
1
2
3
99  
100 header 101  
102  
10 ms  
10 ms  
...  
...  
byte byte byte byte byte byte byte byte byte byte  
10  
64 6D 72 31 64 61 74 61 F4 01  
2
1
4
3
6
5
8
7
9
Fig. 34: Schematic timing of the data transmission with preceeding header  
Micronas  
43  
MAS 35X9F  
ADVANCE INFORMATION  
3.4. Audio Codec Access Protocol  
The MAS 35x9F has 16-bit wide registers for the control of the audio codec. These registers are accessed via the  
I2C subaddresses codec_write (6Chex) and codec_read (6Dhex).  
3.4.1. Write Codec Register  
S
W
A
A
A
A
A
A
DW  
$6C  
r3,r2  
r1,r0  
P
d3,d2  
d1,d0  
The controller writes the 16-bit value (d = d3,d2,d1,d0) into the MAS 35x9F codec register (r = r3,r2,r1,r0). A list of  
registers is given in Table 313.  
Example: Writing the value 1234hex into the codec register with the number 00 1Bhex  
:
<DW 6c 00 1b 12 34>  
3.4.2. Read Codec Register  
1) send command  
S
W
A
A
A
A
A
A
N
P
P
DW  
$6C  
$6D  
r3,r2  
r1,r0  
2) get register value  
S
W
A
S
W
A
DW  
DR  
d3,d2  
d1,d0  
Reading the codec registers also needs a set-up for the register address and an additional start condition during the  
actual read cycle. A list of registers is given in Table 314.  
44  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
3.4.3. Codec Registers  
Table 313: Codec control registers on I2C subaddress 6chex  
Register  
Address  
(hex)  
Function  
Name  
CONVERTER CONFIGURATION  
00 00 Audio Codec Configuration  
Please refer to Section 4.6.4. on page 80.  
CONV_CONF  
bit[15:12]  
bit[11:8]  
A/D converter left amplifier gain = n*1.53 [dB]  
A/D converter right amplifier gain = n*1.53 [dB]  
1111  
1110  
...  
+19.5 dB  
+18.0 dB  
...  
0011  
0010  
0001  
0000  
+1.5 dB  
0.0 dB  
1.5 dB  
3.0 dB  
bit[7:4]  
bit[3]  
Microphone amplifier gain = n*1.5+21 [dB]  
1111  
1110  
...  
+43.5 dB  
+42.0 dB  
...  
0001  
0000  
+22.5 dB  
+21.0 dB  
Input selection for left A/D converter channel  
0
1
line-in  
microphone  
bit[2]  
bit[1]  
bit[0]  
Enable left A/D converter1)  
Enable right A/D converter1)  
Enable D/A converter1)  
1) The generation of the internal DC reference voltage for the D/A converter is  
also controlled with this bit. In order to avoid click noise, the reference voltage  
at pin AGNDC should have reached a near ground potential before repower-  
ing the D/A converter after a short down phase.  
Alternatively at least one of the A/D converters (bits [2] or [1]) should remain  
set during short power-down phases of the D/A. Then the DC reference volt-  
age generation for the D/A converter will not be interrupted.  
INPUT MODE SELECT  
00 08  
Input Mode Setting  
ADC_IN_MODE  
bit[15]  
Mono switch  
0
1
stereo input mode  
left channel is copied into the right channel  
bit[14:2]  
bit[1:0]  
Reserved, must be set to 0  
Deemphasis select  
0
1
2
deemphasis off  
deemphasis 50 µs  
deemphasis 75 µs  
Micronas  
45  
MAS 35X9F  
ADVANCE INFORMATION  
Table 313: Codec control registers on I2C subaddress 6chex  
Register  
Address  
(hex)  
Function  
Name  
OUTPUT MODE SELECT  
00 0F 1)  
D/A Converter Source  
DAC_IN_SEL  
bit[15]  
D/A converter source select  
0
1
DSP Core output  
A/D converter output  
bit[14:0]  
reserved, must be set to 0  
D/A Converter Source Mixer  
MIX ADC scale  
00 062)  
00 072)  
DAC_IN_ADC  
DAC_IN_DSP  
MIX DSP scale  
bit[15:8]  
Linear scaling factor (hex)  
0
off  
20  
40  
7f  
50 % (6 dB gain)  
100 % (0 dB gain)  
200 % (+6 dB gain)  
In the sum of both mixing inputs exceeds 100 %, clipping may occur in the  
successive audio processing.  
00 0E  
D/A Converter Output Mode  
DAC_OUT_MODE  
bit[15]  
bit[14]  
bit[1:0]  
Mono switch  
0
1
stereo through  
mono matrix applied  
Invert right channel  
0
1
through  
right channel is inverted  
Reserved, must be set to 0  
In order to achieve more output power a single loudspeaker can be connected  
as a bridge between pins OUTL and OUTR. In this mode bit[15] and bit[14]  
must be set.  
1) Version A1 only  
2) since version A2  
46  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 313: Codec control registers on I2C subaddress 6chex  
Register  
Address  
(hex)  
Function  
Name  
BASEBAND FEATURES  
00 14  
Bass  
BASS  
bit[15:8]  
Bass range  
60hex  
58hex  
...  
+12 dB  
+11 dB  
08hex  
00hex  
F8hex  
...  
+1 dB  
0 dB  
1 dB  
A8hex  
A0hex  
11 dB  
12 dB  
Higher resolution is possible, one LSB step results in a gain step of about  
1/8 dB.  
With positive bass settings clipping of the output signal may occur. Therefore,  
it is not recommended to set bass to a value that, in conjunction with volume,  
would result in an overall positive gain.  
The settings require: max (bass, treble) + loudness + volume 0 dB  
bit[7:0]  
Not used, must be set to 0  
00 15  
Treble  
TREBLE  
bit[15:8]  
Treble range  
60hex  
58hex  
...  
+12 dB  
+11 dB  
08hex  
00hex  
F8hex  
...  
+1 dB  
0 dB  
1 dB  
A8hex  
A0hex  
11 dB  
12 dB  
Higher resolution is possible, one LSB step results in a gain step of about  
1/8 dB.  
With positive treble settings, clipping of the output signal may occur. There-  
fore, it is not recommended to set treble to a value that, in conjunction with  
loudness and volume, would result in an overall positive gain.  
The settings require: max (bass, treble) + loudness + volume 0 dB  
bit[7:0]  
Not used, must be set to 0  
Micronas  
47  
MAS 35X9F  
ADVANCE INFORMATION  
Table 313: Codec control registers on I2C subaddress 6chex  
Register  
Address  
(hex)  
Function  
Name  
00 1E  
Loudness  
LDNESS  
bit[15:8] Loudness Gain  
44hex  
40hex  
...  
+17 dB  
+16 dB  
04hex  
00hex  
+1 dB  
0 dB  
bit[7:0]  
Loudness Mode  
00hex  
04hex  
normal (constant volume at 1 kHz)  
Super Bass (constant volume at 2 kHz)  
Higher resolution of Loudness Gain is possible: An LSB step results in a gain  
step of about 1/4 dB.  
Loudness increases the volume of low- and high-frequency signals, while  
keeping the amplitude of the 1-kHz reference frequency constant. The  
intended loudness has to be set according to the actual volume setting.  
Because loudness introduces gain, it is not recommended to set loudness to a  
value that, in conjunction with volume, would result in an overall positive gain.  
The settings should be: max (bass, treble) + loudness + volume 0 dB  
The corner frequency for bass amplification can be set to two different values.  
In Super Bass mode, the corner frequency is shifted up. The point of constant  
volume is shifted from 1 kHz to 2 kHz.  
48  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 313: Codec control registers on I2C subaddress 6chex  
Register  
Address  
(hex)  
Function  
Name  
Micronas Dynamic Bass (MDB)  
00 22  
MDB Effect Strength  
MDB_STR  
bit[15:8]  
00hex  
7Fhex  
MDB off (default)  
maximum MDB  
The MDB effect strength can be adjusted in 1dB steps. A value of 40hex will  
yield a medium MDB effect.  
00 23  
MDB Harmonics  
MDB_HAR  
bit[15:8]  
00hex  
64hex  
7Fhex  
no harmonics are added (default)  
50% fundamentals + 50% harmonics  
100% harmonics  
The MDB exploits the psychoacoustic phenomenon of the missing fundamen-  
tal by creating harmonics of the frequencies below the center frequency of the  
bandpass filter (MDB_FC). This enables a loudspeaker to display frequencies  
that are below its cutoff frequency. The Variable MDB_HAR describes the ratio  
of the harmonics towards the original signal.  
00 24  
MDB Center Frequency  
MDB_FC  
bit[15:8]  
2
3
20 Hz  
30 Hz  
...  
30  
300 Hz  
The MDB Center Frequency defines the center frequency of the MDB band-  
pass filter (see Fig. 35 on page 52). The center frequency should approxi-  
mately match the cutoff frequency of the loudspeakers. For high end  
loudspeakers, this frequency is around 50 Hz, for low end speakers around  
90 Hz  
00 21  
MDB Shape  
MDB_SHAPE  
bit[15:8]  
5...30  
corner frequency in 10-Hz steps  
(range: 50...300 Hz)  
With a second lowpass filter the steepness of the falling slope of the MDB  
bandpass can be increased (see Fig. 35 on page 52). Choosing the corner  
frequency of this filter close to the center frequency of the bandpass filter  
(MDB_FC) results in a narrow MDB frequency range. The smaller this range,  
the harder the bass sounds. The recommended value is around  
1.5 × MDB_FC  
MDB Switch  
MDB_SWITCH  
bit[7:2]  
bit[1]  
reserved, must be set to zero  
MDB switch  
MDB off  
MDB on  
0
1
bit [0]  
reserved,must be set to zero  
Micronas  
49  
MAS 35X9F  
ADVANCE INFORMATION  
Table 313: Codec control registers on I2C subaddress 6chex  
Register  
Address  
(hex)  
Function  
Name  
VOLUME  
00 12  
Automatic Volume Correction (AVC) Loudspeaker Channel  
AVC  
bit[15:12] 0hex  
8hex  
AVC off (and reset internal variables)  
AVC on  
bit[11:8] 8hex  
8 s decay time  
4 s decay time  
2 s decay time  
20 ms decay time (intended for quick adaptation to the  
average volume level after track or source change)  
4hex  
2hex  
1hex  
Note: To reset the internal variables, the AVC should be switched off and then  
on again during any track or source change. For standard applications, the  
recommended decay time is 4 s.  
00 11  
Balance  
BALANCE  
bit[15:8] Balance range  
7Fhex  
7Ehex  
...  
left 127 dB, right 0 dB  
left 126 dB, right 0 dB  
01hex  
00hex  
FFhex  
...  
left 1 dB, right 0 dB  
left 0 dB, right 0 dB  
left 0 dB, right 1 dB  
81hex  
80hex  
left 0 dB, right 127 dB  
left 0 dB, right 128 dB  
Positive balance settings reduce the left channel without affecting the right  
channel; negative settings reduce the right channel leaving the left channel  
unaffected.  
00 10  
Volume Control  
VOLUME  
bit[15:8] Volume table with 1 dB step size  
7Fhex  
7Ehex  
...  
+12 dB (maximum volume)  
+11 dB  
74hex  
73hex  
72hex  
...  
+1 dB  
0 dB  
1 dB  
02hex  
01hex  
00hex  
113 dB  
114 dB  
mute (reset)  
bit[7:0]  
Not used, must be set to 0  
This main volume control is applied to the analog outputs only. It is split  
between a digital and an analog function. In order to avoid noise due to large  
changes of the setting, the actual setting is internally low-pass filtered.  
With large scale input signals, positive volume settings may lead to signal clip-  
ping.  
50  
Micronas  
ADVANCE INFORMATION  
MAS 35X9F  
Table 314: Codec status registers on I2C subaddress 6dhex  
Register  
Address  
(hex)  
Function  
Name  
INPUT QUASI-PEAK  
00 0A  
A/D Converter Quasi-Peak Detector Readout Left  
QPEAK_L  
bit[14:0]  
positive 15-bit value, linear scale  
0 %  
25 % (12 dBFS)  
50 % (6 dBFS)  
100 % (0 dBFS)  
0000  
2000  
4000  
7FFF  
00 0B  
A/D Converter Quasi-Peak Detector Readout Right  
QPEAK_R  
bit[14:0]  
positive 15-bit value, linear scale  
0 %  
25 % (12 dBFS)  
50 % (6 dBFS)  
100 % (0 dBFS)  
0000  
2000  
4000  
7FFF  
OUTPUT QUASI-PEAK  
00 0C  
Audio Processing Input Quasi-Peak Detector Readout Left  
bit[14..0] positive 15-bit value, linear scale  
Audio Processing Input Quasi-Peak Detector Readout Right  
bit[14..0] positive 15-bit value, linear scale  
DQPEAK_L  
DQPEAK_R  
00 0D  
Micronas  
51  
MAS 35X9F  
ADVANCE INFORMATION  
3.4.4. Basic MDB Configuration  
(which results in a softer/harder bass sound), turn  
on/off the MDB  
With the parameters described in Table 313, the Mic-  
ronas Dynamic Bass system (MDB) can be custom-  
ized to create different bass effects as well as to fit the  
MDB to various loudspeaker characteristics. The easi-  
est way to find a good set of parameter is by selecting  
one of the settings below, listening to music with strong  
bass content and adjusting the MDB parameters:  
MDB_STR: Increase/decrease the strength of the  
MDB effect  
MDB_HAR: Increase/decrease the content of low  
Frequency  
MDB_FC MDB_SHAPE  
frequency harmonics  
MDB_FC: Shift the MDB effect to lower/higher fre-  
quencies  
Fig. 35: Micronas Dynamic Bass (MDB): Bass boost  
in relation to input signal leve  
MDB_SHAPE: Widen/narrow MDB frequency range  
Table 315: suggested MDB settings  
Function  
MDB_STR  
(22hex  
MDB_HAR  
(23hex  
MDB_FC  
(24hex  
MDB_SHAPE  
(21hex  
)
)
)
)
MDB off  
xxxxhex  
5000hex  
xxxxhex  
3000hex  
xxxxhex  
0600hex  
xx00hex  
0902hex  
Low end headphones, medium  
effect  
52  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4. Specifications  
4.1. Outline Dimensions  
± 0.1  
15 x 0.5 = 7.5  
0.5  
± 0.055  
0.145  
48  
33  
49  
64  
32  
17  
1
16  
± 0.05  
1.4  
1.75  
± 0.1  
± 0.2  
10  
12  
0.1  
± 0.1  
1.5  
D0025/3E  
Fig. 41:  
64-Pin Plastic Low-Profile Quad Flat Pack  
(PLQFP64)  
Weight approximately 0.35 g  
Dimensions in mm  
Fig. 42:  
64-Pin Plastic Metric Quad Flat Pack  
(PMQFP64)  
Weight approximately 0,4 g  
Dimensions in mm  
(available 2H-2001)  
Micronas  
53  
MAS 35x9F  
ADVANCE INFORMATION  
1.4  
A1 Ball Pad Corner  
Laser marked pin 1  
0.36  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
0.8  
8 x 0.8 = 6.4  
9
SPGS708000-1(P81)/1E  
Fig. 43:  
Plastic Ball Grid Array 81-Pin  
(LFBGA81)  
Weight approximately 0.19 g  
Dimensions in mm  
54  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.2. Pin Connections and Short Descriptions  
NC not connected, leave vacant  
VDD connect to positive supply  
VSS connect to ground  
LV  
X
If not used, leave vacant  
obligatory, pin must be connected as described  
in application information  
(see Fig. 433 on page 87)  
Pin  
No.  
Pin  
No.  
Pin Name  
Type  
Default  
Connection  
(if not used)  
Short Description  
PLQFP LFBG  
64  
A 81  
H2  
J2  
1
AGNDC  
MICIN  
MICBI  
INL  
X
Analog reference voltage  
Input for internal microphone amplifier  
Bias for internal microphone  
Left A/D input  
2
IN  
LV  
LV  
LV  
LV  
X
3
J3  
IN  
4
H3  
H4  
G4  
J4  
IN  
5
INR  
IN  
Right A/D input  
6
TE  
IN  
Test enable  
7
XTI  
IN  
X
Crystal oscillator (ext. clock) input  
Crystal oscillator output  
Power on reset, active low  
DSP supply ground  
8
J5  
XTO  
OUT  
LV  
X
9
G5  
H5  
J6  
POR  
IN  
10  
11  
12  
13  
14  
15  
16  
VSS  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
IN/OUT  
X
XVSS  
VDD  
X
Digital output supply ground  
DSP supply  
J7  
X
H6  
H7  
G6  
J8  
XVDD  
I2CVDD  
DVS  
X
Digital output supply  
I2C supply  
X
X
I2C device address selector  
VSENS1  
VDD  
Sense input and power output  
of DC/DC 1 converter  
17  
18  
19  
20  
21  
J9  
DCSO1  
DCSG1  
DCSG2  
DCSO2  
VSENS2  
SUPPLY  
SUPPLY  
SUPPLY  
SUPPLY  
IN/OUT  
LV  
DC/DC 1 switch output  
DC/DC 1 switch ground  
DC/DC 2 switch ground  
DC/DC 2 switch output  
H8  
H9  
G8  
G9  
VSS  
VSS  
LV  
VDD  
Sense input and power output  
of DC/DC 2 converter  
22  
23  
24  
25  
F8  
F9  
E8  
E9  
DCEN  
CLKO  
I2CC  
IN  
VSS  
LV  
X
DC/DC enable (both converters)  
Clock output  
OUT  
IN/OUT  
IN/OUT  
I2C clock  
I2CD  
X
I2C data  
Micronas  
55  
MAS 35x9F  
ADVANCE INFORMATION  
Pin  
No.  
Pin  
No.  
Pin Name  
Type  
Default  
Connection  
(if not used)  
Short Description  
PLQFP LFBG  
64  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
A 81  
E7  
D9  
D8  
C9  
C8  
B9  
B8  
A9  
A8  
B7  
A7  
B6  
A6  
C6  
A5  
B5  
C5  
A4  
B4  
B3  
A3  
SYNC  
VBAT  
PUP  
EOD  
PRTR  
PRTW  
PR  
OUT  
LV  
Sync output  
IN  
LV  
Battery voltage monitor input  
DC Converter Power-Up Signal  
PIO end of DMA, active low  
PIO ready to read, active low  
PIO ready to write, active low  
PIO DMA request, active high  
PIO chip select, active low  
PIO data bit 7 (MSB)  
PIO data bit 6  
OUT  
LV  
OUT  
LV  
OUT  
LV  
OUT  
LV  
IN  
VDD  
VSS  
LV  
PCS  
PI19  
PI18  
PI17  
PI16  
PI15  
PI14  
PI13  
PI12  
SOD  
SOI  
IN  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
OUT  
LV  
LV  
PIO data bit 5  
LV  
PIO data bit 4  
LV  
PIO data bit 3  
LV  
PIO data bit 2  
LV  
PIO data bit 1  
LV  
PIO data bit 0 (LSB)  
Serial output data  
LV  
OUT  
LV  
Serial output frame identification  
Serial output clock  
SOC  
SID  
OUT  
LV  
IN  
VSS  
VSS  
Serial input data, interface A  
SII  
IN  
Serial input frame identification, inter-  
face A  
47  
48  
49  
50  
51  
C4  
E3  
A1  
A2  
B2  
SIC  
IN  
VSS  
LV  
Serial input clock, interface A  
S/PDIF output interface  
SPDO  
SIBD  
SIBC  
SIBI  
OUT  
IN  
VSS  
VSS  
VSS  
Serial input data, interface B  
Serial input clock, interface B  
IN  
IN  
Serial input frame identification, inter-  
face B  
52  
53  
54  
B1  
C2  
D2  
SPDI2  
SPDI1  
SPDIR  
IN  
IN  
IN  
LV  
LV  
LV  
Active differential S/PDIF input 2  
Active differential S/PDIF input 1  
Reference differential S/PDIF input 1  
and 2  
56  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
Pin  
No.  
Pin  
No.  
Pin Name  
Type  
Default  
Connection  
(if not used)  
Short Description  
PLQFP LFBG  
64  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
A 81  
C1  
E2  
D1  
E1  
F2  
FILTL  
IN  
X
Feedback input for left amplifier  
Analog supply for output amplifiers  
Left analog output  
AVDD0  
OUTL  
OUTR  
AVSS0  
FILTR  
AVSS1  
VREF  
PVDD  
AVDD1  
SUB  
SUPPLY  
OUT  
X
LV  
LV  
X
OUT  
Right analog output  
SUPPLY  
IN  
Analog ground for output amplifiers  
Feedback for right output amplifier  
Analog ground  
F1  
X
G2  
G1  
H1  
J1  
SUPPLY  
X
X
Analog reference ground  
Internal power supply  
SUPPLY  
SUPPLY  
X
X
Analog Supply  
VSS  
Substrate connection  
In the 81-pin LFBGA housing, the pins C3, C7, D3, D4, D5, D6, D7, E4, E5, E6, F3, F4, F5, F6, F7, G3 and G7 are  
common substrate contacts.  
Micronas  
57  
MAS 35x9F  
ADVANCE INFORMATION  
4.3. Pin Descriptions  
4.3.3. DC/DC Converters and Battery Voltage  
Supervision  
4.3.1. Power Supply Pins  
DCSG1/DCSG2  
SUPPLY  
The use of all power supply pins is mandatory to  
achieve correct function of the MAS 35x9F.  
DC/DC converters switch ground. Connect using sep-  
arate wide trace to negative pole of battery cell. Con-  
nect also to AVSS0/1 and VSS/XVSS.  
VDD, VSS  
Digital supply pins.  
SUPPLY  
SUPPLY  
SUPPLY  
DCSO1/DCSO2  
SUPPLY  
DC/DC converter switch connection. If the respective  
DC/DC converter is not used, this pin must be left  
vacant.  
XVDD, XVSS  
Supply for digital output pins.  
I2CVDD  
VSENS1/VSENS2  
IN  
Supply for I2C interface circuitry. This net uses VSS or  
XVSS as the ground return line.  
Sense input and power output of DC/DC converters. If  
the respective DC/DC converter is not used, this pin  
should be connected to a supply.  
PVDD  
SUPPLY  
Auxiliary pin for analog circuitry. This pin has to be  
connected via a 3-nF capacitor to AVDD1. Extra care  
should be taken to achieve a low inductance PCB line.  
DCEN  
IN  
Enable signal for both DC/DC converters. If none of  
the DC/DC converters is used, this pin must be con-  
nected to VSS.  
AVDD0/AVSS0  
SUPPLY  
Supply for analog output amplifier.  
PUP  
OUT  
Power-up. This signal is set when the required volt-  
ages are available at both DC/DC converter output  
pins VSENS1 and VSENS2. The signal is cleared  
when both voltages have dropped below the reset  
level in the DCCF Register.  
AVDD1/AVSS1  
Supply for internal analog circuits (A/D, D/A convert-  
ers, clock, PLL, S/PDIF input).  
SUPPLY  
AVDD0/AVSS0 and AVDD1/AVSS1 should receive the  
same supply voltages.  
VBAT  
IN  
Analog input for battery voltage supervision.  
4.3.2. Analog Reference Pins  
4.3.4. Oscillator Pins and Clocking  
AGNDC  
Internal analog reference voltage. This pin serves as  
the internal ground connection for the analog circuitry.  
XTI  
XTO  
IN  
OUT  
The XTI pin is connected to the input of the internal  
crystal oscillator, the XTO pin to its output. Each pin  
should be directly connected to the crystal and to a  
ground-connected capacitor (see application diagram,  
Fig. 433 on page 87).  
VREF  
Analog reference ground. All analog inputs and out-  
puts should drive their return currents using separate  
traces to a ground starpoint close to this pin. Connect  
to AVSS1. This reference pin should be as noise free  
as possible.  
CLKO  
OUT  
The CLKO can drive an output clock line.  
4.3.5. Control Lines  
I2CC  
I2CD  
SCL  
SDA  
IN/OUT  
IN/OUT  
Standard I2C control lines.  
DVS  
IN  
I2C device address selector. Connect this pin either to  
VDD (I2C device address: 3E/3Fhex) or VSS (I2C  
device address: 3C/3Dhex) to select a proper I2C  
device address (see also Table 31 on page 18).  
58  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.3.6. Parallel Interface Lines  
PI12..PI19  
The PIO input pins PI12..PI19 are used as 8-bit I/O  
interface to a microcontroller in order to transfer com-  
pressed and uncompressed data. PI12 is the LSB,  
PI19 the MSB.  
4.3.10. S/PDIF Input Interface  
IN/OUT  
SPDI1  
SPDI2  
SPDIR  
IN  
IN  
IN  
SPDIF1 and SPDIF2 are alternative input pins for  
S/PDIF sources according to the IEC 958 consumer  
specification. A switch at D0:ff6 selects one of these  
pins at a time. The SPDIR pin is a common reference  
for both input lines (see Fig. 434 on page 88).  
4.3.6.1. PIO Handshake Lines  
PCS  
IN  
The PIO chip select PCS must be set to 0to activate  
the PIO in operation mode.  
4.3.11. S/PDIF Output Interface  
PR  
IN  
SPDO  
OUT  
Pin PR must be set to 1to validate data output from  
MAS 35x9F PIO pins.  
The SPDO pin provides an digital output with standard  
CMOS level that is compliant to the IEC 958 consumer  
specification.  
PRTR  
OUT  
Ready to read. This signal indicates that the  
MAS 35x9F is able to receive data in PIO input mode.  
4.3.12. Analog Input Interfaces  
PRTW  
OUT  
In the standard MPEG-decoding DSP firmware the  
analog inputs are not used. However, they can be  
selected as a source for the D/A converters (set  
bit [15] in audio codec register 00 0Fhex).  
Ready to write. This pin indicates that MAS 35x9F has  
data available for PIO output mode.  
EOD  
OUT  
EOD indicates the end of an DMA cycle in the ICs PIO  
input mode. In serialinput mode it is used as Demand  
signal, that indicates that new input data are required.  
MICIN  
MICBI  
IN  
IN  
The MICIN input may be directly used as electret  
microphone input, which should be connected as  
described in application information. The MICBI signal  
provides the supply voltage for these microphones.  
4.3.7. Serial Input Interface (SDI)  
SID  
SII  
SIC  
DATA  
WORD STROBE  
CLOCK  
IN  
IN  
IN  
INL  
INR  
IN  
IN  
INL and INR are analog line-in input lines. They are  
connected to the embedded stereo A/D converter of  
the MAS 35x9F. The sources should be AC coupled.  
The reference ground for these analog input pins is the  
VREF pin.  
I2S compatible serial interface A for digital audio data.  
In the standard firmware this interface is not used.  
4.3.8. Serial Input Interface B (SDIB)  
SIBD  
SIBI  
SIBC  
DATA  
WORD STROBE  
CLOCK  
IN  
IN  
IN  
4.3.13. Analog Output Interfaces  
OUTL  
OUTR  
OUT  
OUT  
The serial interface B is primarily used as bitstream  
input interface. The SIBI line must be connected to  
VSS in the standard application.  
OUTL and OUTR are left and right analog outputs, that  
may be directly connected to the headphones as  
described in the application information (see Fig. 434  
on page 88).  
4.3.9. Serial Output Interface (SDO)  
FILTL  
FILTR  
IN  
IN  
SOD  
SOI  
SOC  
DATA  
WORD STROBE  
CLOCK  
OUT  
OUT  
IN/OUT  
Connection to input terminal of output amplifier.Can be  
used to connect a capacitance from OUTL respectively  
OUTR to FILTL respectively FILTR in parallel to feed-  
back resistor and thus implement a low pass filter to  
reduce the out-of-band noise of the DAC.  
Data, Frame Indication, and Clock line of the serial  
output interface. The SOI is reconfigurable and can be  
adapted to several I2S compliant modes.  
Micronas  
59  
MAS 35x9F  
ADVANCE INFORMATION  
4.3.14. Miscellaneous  
SYNC  
OUT  
The SYNC signal indicates the detection of a frame  
start in the input data of MAS 35x9F. Usually this sig-  
nal generates an interrupt in the controller.  
POR  
IN  
The Power-On Reset pin is used to reset the whole  
MAS 35x9F, except for the DC/DC converter circuitry.  
POR is an active-low signal.  
TE  
IN  
The TE pin is for production test only and must be con-  
nected with VSS in all applications.  
SUB (LFBGA-81 ONLY)  
Chip substrate connection. Must be connected to VSS  
in all applications.  
60  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.4. Pin Configurations  
PI12  
PI13  
PI14  
PI15  
PI16  
PI17  
PI18  
PI19  
SOD  
SOI  
SOC  
SID  
SII  
SIC  
SPDO  
PCS  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
SIBD 49  
SIBC 50  
32 PR  
31 PRTW  
30 PRTR  
29 EOD  
SIBI 51  
SPDI2 52  
SPDI1 53  
SPDIR 54  
FILTL 55  
AVDD0 56  
OUTL 57  
OUTR 58  
AVSS0 59  
FILTR 60  
AVSS1 61  
VREF 62  
PVDD 63  
AVDD1 64  
28 PUP  
27 VBAT  
26 SYNC  
25 I2CD  
MAS 35x9F  
24 I2CC  
23 CLKO  
22 DCEN  
21 VSENS2  
20 DCSO2  
19 DCSG2  
18 DCSG1  
17 DCSO1  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
AGNDC  
VSENS1  
MICIN  
MICBI  
DVS  
I2CVDD  
XVDD  
VDD  
XVSS  
VSS  
POR  
INL  
INR  
TE  
XTI  
XTO  
Fig. 44: PLQFP64 package  
Micronas  
61  
MAS 35x9F  
ADVANCE INFORMATION  
9
8
7
6
5
4
3
2
1
MAS 35x9F  
PCS  
PI19  
PR  
PI17  
PI18  
PI15  
PI16  
PI14  
SUB  
SUB  
SUB  
DVS  
XVDD  
XVSS  
PI13  
PI12  
SOD  
SUB  
SUB  
SUB  
POR  
VSS  
XTO  
SOI  
SOC  
SIC  
SII  
SIBC  
SIBI  
SIBD  
SPDI2  
FILTL  
OUTL  
OUTR  
FILTR  
VREF  
PVDD  
AVDD1  
A
A
PRTW  
SID  
SUB  
SUB  
SPDO  
SUB  
SUB  
INL  
B
B
C
D
E
F
EOD  
PRTR  
PUP  
SUB  
SPDI1  
SPDIR  
AVDD0  
AVSS0  
AVSS1  
AGNDC  
MICIN  
C
VBAT  
SUB  
SUB  
SUB  
SUB  
TE  
D
I2CD  
I2CC  
SYNC  
SUB  
E
CLKO  
DCEN  
DCSO2  
DCSG1  
F
VSENS2  
SUB  
G
G
H
J
DCSG2  
I2CVDD  
VDD  
INR  
XTI  
H
DCSO1  
VSENS1  
MICBI  
J
9
8
7
6
5
4
3
2
1
Fig. 45: LFBGA81 package  
62  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.5. Internal Pin Circuits  
TTLIN  
VDD  
N
Fig. 46: Input pins PCS, PR  
VSS  
Fig. 411: Input/output pins I2CC, I2CD  
Fig. 47: Input pin TE, DVS, POR  
VSENS  
P
DCSO  
N
DCSG  
Fig. 412: Input/output pins DCSO1/2, DCSG1/2,  
VSENS1/2  
Fig. 48: Input pin DCEN  
XVDD  
P
XVDD  
P
N
N
XVSS  
XVSS  
Fig. 49: Input/output pins SOC, SOI, SOD,  
PI12...PI19, SPDO  
Fig. 413: Output pins PRTW, EOD, PRTR, CLKO,  
SYNC, PUP  
XVDD  
P
AVDD  
P
XTI  
P
N
XVSS  
P
N
XTO  
N
Fig. 410: Input pins SI(B)C, SI(B)I, SI(B)D  
Enable  
N
AVSS  
Fig. 414: Clock oscillator XTI, XTO  
Micronas  
63  
MAS 35x9F  
ADVANCE INFORMATION  
MICIN  
INL  
INR  
XVDD  
A
+
SPDI1,  
SPDI2  
D
+
SPDIR  
AGNDC  
XVDD  
Fig. 415: Analog input pins MICIN, INL, INR  
Bias  
Fig. 419: S/PDIF inputs  
+
AGNDC  
MICBI  
VBAT  
+
VREF  
programmable  
=
Fig. 416: Microphone bias pin (MICBI)  
VSS  
VSS  
Fig. 420: Battery voltage monitor VBAT  
FILTL(R)  
D
I
+
A
OUTL(R)  
AGNDC  
Fig. 417: Analog outputs OUTL(R) and connections  
for filter capacitors FILTL(R)  
+
AGNDC  
1.25 V  
VREF  
Fig. 418: Analog ground generation with pin to  
connect external capacitor  
64  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.6. Electrical Characteristics  
4.6.1. Absolute Maximum Ratings  
Symbol  
TA  
Parameter  
Pin Name  
Min.  
40  
40  
Max.  
Unit  
°C  
Ambient operating temperature  
Storage Temperature  
Power dissipation  
85  
TS  
125  
650  
°C  
PTOT  
VDD, XVDD,  
AVDD0/1,  
I2CVDD  
mW  
VSUPA  
VSUP  
Analog supply voltages1)  
Digital supply voltage  
AVDD0/1  
0.3  
0.3  
6
6
V
V
VDD, XVDD,  
I2CVDD  
VIdig  
IIdig  
VIana  
IIana  
IOaudio  
IOdig  
Input voltage, all digital inputs  
Input current, all digital inputs  
Input voltage, all analog inputs  
Input current, all analog inputs  
Output current, audio output2)  
Output current, all digital outputs3)  
Output current DCDC converter 1  
Output current DCDC converter 2  
0.3  
20  
0.3  
5  
VSUP +0.3  
+20  
V
mA  
V
VSUP + 0.3  
+5  
mA  
A
OUTL/R  
0.2  
50  
0.2  
+50  
mA  
A
IOdcdc1  
DCSO1  
DCSO2  
1.5  
IOdcdc2  
1.5  
A
1)  
Both AVDD0 and AVDD1 have to be connected together!  
These pins are not short-circuit proof!  
Total chip power dissipation must not exceed absolute maximum rating  
2)  
3)  
Stresses beyond those listed in the Absolute Maximum Ratingsmay cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in  
the Recommended Operating Conditions/Characteristicsof this specification is not implied. Exposure to absolute  
maximum ratings conditions for extended periods may affect device reliability.  
Micronas  
65  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.2. Recommended Operating Conditions  
Symbol  
VSUPD1  
VSUPD2  
Parameter  
Pin Name  
Min.  
2.5  
Typ.  
2.7  
Max.  
3.6  
Unit  
Digital supply voltage (decoder)  
VDD, XVDD  
V
Digital supply voltage  
(G.729 A encoder)  
2.7  
2.9  
3.6  
I2C bus supply voltage  
I2CVDD  
VSUPDn  
at VDD  
3.9  
V
1)  
VSUPI2C  
VSUPA  
Analog audio supply voltage  
AVDD0/1  
2.2  
2.7  
3.6  
1.6  
V
Analog audio supply voltage in  
relation to the digital supply volt-  
age  
0.62  
VSUPD  
VSUPx  
PIN supply voltage in relation to  
digital supply voltage  
XVDD  
0.62  
1.6  
VSUPD  
1) n = 1,2  
Table 41: Reference Frequency Generation and Crystal Recommendation  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
External Clock Input Recommendations  
fCLK  
Clock frequency  
XTI, XTO  
13.00  
0.7  
18.432  
20.00  
1.05  
MHz  
VPP  
VCLKI  
Clockamplitude of external clock XTI  
fed into XTI at VAVDD = 2.2 V  
Clockamplitude of external clock  
fed into XTI at VAVDD = 2.7 V  
0.55  
0.45  
1.25  
0.75  
0.55  
45  
1.5  
1.75  
2.2  
2.7  
3.3  
55  
Clockamplitude of external clock  
fed into XTI at VAVDD = 3.3 V  
Clockamplitude of external clock XTO  
fed into XTO at VAVDD = 2.2 V  
Clockamplitude of external clock  
fed into XTO at VAVDD = 2.7 V  
Clockamplitude of external clock  
fed into XTO at VAVDD = 3.3 V  
Duty cycle  
XTI, XTO  
50  
%
66  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
Table 41: Reference Frequency Generation and Crystal Recommendation  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Crystal Recommendations  
fP  
Load resonance frequency at  
CI = 20 pF  
XTI, XTO  
18.432  
MHz  
ppm  
ppm  
f/fS  
f/fS  
Accuracy of frequency adjust-  
ment  
50  
50  
50  
50  
Frequency variation vs. temper-  
ature  
REQ  
C0  
Equivalent series resistance  
Shunt (parallel) capacitance  
12  
3
30  
5
pF  
Table 42: Input Levels  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
IIL  
Input low voltage  
at VDD = 2.5...3.6 V  
I2CC,  
I2CD  
0.3  
V
IIH  
IIL  
IIH  
Input high voltage  
at VDD = 2.5...3.6 V  
1.4  
V
V
V
Input low voltage  
at VDD = 2.5...3.6 V  
POR,  
DCEN  
0.2  
0.3  
Input high voltage  
at VDD = 2.5...3.6 V  
0.9  
IILD  
IIHD  
Input low voltage  
Input high voltage  
PI<I>,  
SI(B)I,  
SI(B)C,  
SI(B)D, PR,  
PCS,  
V
V
VSUP  
0.5  
TE, DVS  
Micronas  
67  
MAS 35x9F  
ADVANCE INFORMATION  
Table 43: Analog Input and Output Recommendations  
Symbol  
Parameter  
Pin Name  
AGNDC  
PVDD  
Min.  
1.0  
3
Typ.  
Max.  
Unit  
Analog Reference  
CAGNDC1  
CAGNDC2  
CPVDD  
Analog filter capacitor  
3.3  
10  
µF  
nF  
nF  
Ceramic capacitor in parallel  
Capacitor for analog circuitry  
Analog Audio Inputs  
CinAD DC-decoupling capacitor at A/D- INL/R  
390  
390  
nF  
nF  
nF  
converter inputs  
CinMI  
DC-decoupling capacitor at  
microphone-input  
MICIN  
CLMICBI  
Minimum-Capacitance at micro- MICBI  
phone bias  
3.3  
Analog Audio Filter Outputs  
CFILT Filter capacitor for headphone  
FILTL/R  
OUTL/R  
20 %  
470  
+20 %  
pF  
amplifier  
high-Q type,  
NP0 or C0G material  
Analog Audio Output  
ZAOL_HP Analog output load with stereo  
OUTL/R  
16  
headphones  
100  
pF  
DC/DC-Converter External Circuitry (please refer to application example)  
C1  
VTH  
L
VSENS blocking  
(<100 mESR)  
VSENS1/2  
330  
0.35  
22  
µF  
V
Schottky diode threshold voltage DCSO1/2  
VSENS1/2  
Ferrite ring core coil inductance  
DCSO1/2  
µH  
S/PDIF Interface Analog Input  
CSPI S/PDIF coupling capacitor  
SPDI1/2  
SPDIR  
100  
nF  
68  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.6.3. Digital Characteristics  
at TA = TA, VSUPD, VSUPA = 2.5 ... 3.6 V, fCrystal = 18.432 MHz, Typ. values for TA = 25 °C  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max. Unit  
Test Conditions  
Digital Supply Voltage  
ISUPD  
ISUPD  
ISUPD  
Current consumption  
VDD,  
XVDD,  
I2CVDD  
39  
24  
15  
mA  
mA  
mA  
2.5 V, sampling fre-  
quency 32 kHz  
Current consumption  
Current consumption  
2.5 V, sampling fre-  
quency 24 kHz  
2.5 V, sampling fre-  
quency  
12 kHz  
Digital Outputs and Inputs  
ODigL  
ODigH  
Output low voltage  
Output low voltage  
PI<I>,  
SOI,  
SOC,  
SOD,  
0.3  
V
V
Iload = 2 mA  
VSUPD  
0.3  
Iload = 2 mA  
EOD,  
PRTR,  
PRTW,  
CLKO,  
SYNC, PUP,  
SPDO  
ZDigI  
Input impedance  
ALLDIGITAL  
INPUTS  
7
1
pF  
µA  
IDLeak  
Digital input leakage cur-  
rent  
1  
0 V < Vpin < VSUPD  
ISTANDBY  
Total current at stand-by  
10  
µA  
DSP off, Codec off,  
DC/DC off, AD and  
DAC off, no I2C access  
Micronas  
69  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.3.1. I2C Characteristics  
at TA = 25°C, VSUPI2C = 2.5...3.6 V  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I2C Input Specifications  
fI2C  
Upper limit I2C bus frequency I2CC  
operation  
400  
300  
300  
kHz  
ns  
tI2C1  
I2C START condition setup  
time  
I2CC,  
I2CD  
tI2C2  
I2C STOP condition setup  
time  
I2CC,  
I2CD  
ns  
tI2C3  
tI2C4  
tI2C5  
I2C clock low pulse time  
I2C clock high pulse time  
I2CC  
I2CC  
I2CC  
1250  
1250  
80  
ns  
ns  
ns  
I2C data setup time before  
rising edge of clock  
tI2C6  
I2C data hold time after falling I2CC  
edge of clock  
80  
ns  
V
VI2COL  
II2COH  
tI2COL1  
tI2COL2  
VI2CIL  
VI2CIH  
tW  
I2C output low voltage  
I2CC,  
I2CD  
0.4  
1
Iload = 3 mA  
I2C output high leakage  
current  
I2CC,  
I2CD  
µA  
ns  
ns  
I2C data output hold time after I2CC,  
20  
falling edge of clock  
I2CD  
I2C data output setup time  
before rising edge of clock  
I2CC,  
I2CD  
250  
fI2C = 400 kHz  
I2C input low voltage  
I2C input high voltage  
Wait time  
I2CC;  
I2CD  
0.3  
4
VSUPI2C  
VSUPI2C  
ms  
I2CC,  
I2CD  
0.6  
0
I2CC,  
I2CD  
0.5  
70  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
1/fI2C  
tI2C4  
tI2C3  
H
I2CC  
L
tI2C1  
tI2C5  
tI2C6  
tI2C2  
H
I2CD as input  
L
tIC2OL1  
tI2COL2  
H
I2CD as output  
L
Fig. 421: I2C timing diagram  
Micronas  
71  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.3.2. Serial (I2S) Input Interface Characteristics (SDI, SDIB)  
at TA = TA, VSUPD, VSUPA = 2.5 ... 3.6 V, fCrystal = 18.432 MHz, Typ. values for TA = 25 °C  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
tSICLK  
I2S clock input clock period  
SI(B)C  
325  
ns  
fS = 48 kHz Stereo,  
32 bits per sample  
(for demand mode see  
Table 44)  
tSIDS  
I2S data setup time before  
rising edge of clock (for  
continuous data stream:  
falling edge)  
SI(B)C,  
SI(B)D  
50  
ns  
tSIDH  
tSIIS  
I2S data hold time  
SI(B)D  
50  
50  
ns  
ns  
I2S ident setup time before  
rising edge of clock (for  
continuous data stream:  
falling edge)  
SI(B)C,  
SI(B)I  
tSIIH  
tbw  
I2S ident hold time  
Burst wait time  
SI(B)I  
50  
ns  
SI(B)C,  
SI(B)D  
480  
Table 44: Maximum demand clock frequency  
fSample (kHz)  
48, 32  
44.1  
fC (MHz)  
6.144  
5.6448  
3.072  
24, 16  
22.05  
2.8224  
1.536  
12, 8  
11.025  
1.4112  
72  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
TSICLK  
H
SI(B)C  
L
H
SI(B)I  
L
SI(B)D H  
L
TSIDH  
TSIDS  
Fig. 422: Continuous data stream at serial input A or B. In this mode, the word strobe SI(B)I is not used and the  
data are read at the falling edge of the clock (bit 2 in D0:346 is set).  
TSICLK  
H
SI(B)C  
L
H
SI(B)I  
L
TSIIS  
TSIIH  
H
L
SI(B)D  
TSIDH  
TSIDS  
Fig. 423: Serial input of I2S signal  
Micronas  
73  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.3.3. Serial Output Interface Characteristics (SDO)  
at TA = TA, VSUPD, VSUPA = 2.5 ... 3.6 V, fCrystal = 18.432 MHz, Typ. values for TA = 25 °C  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
tSOCLK  
I2S clock output frequency  
SOC  
325  
ns  
fS=48 kHz Stereo  
32 bits per sample  
tSOISS  
I2S word strobe delay time  
after falling edge of clock  
SOC,  
SOI  
0
0
tSOCLK ns  
/4  
C
load = t.b.d.  
Rload = t.b.d.  
tSOODC  
I2S data delay time after  
falling edge of clock  
SOC,  
SOD  
tSOCLK ns  
/4  
Cload = t.b.d.  
Rload = t.b.d.  
TSOCLK  
H
SOC  
L
H
L
SOI  
TSOISS  
TSOISS  
H
L
SOD  
TSOODC  
Fig. 424: Serial output interface timing.  
V
V
h
l
SOC  
V
V
h
l
7
6 5 4 3 2 1 0  
15 14 13 12 11 10  
14  
15  
13 12 11 10  
8
9
9
8
7 6 5 4 3 2 1 0  
SOD  
SOI  
V
V
h
l
right 16-bit audio sample  
left 16-bit audio sample  
Fig. 425: Sample timing of the SDO interface in 16 bit/sample mode. D0:346 settings are: Bit 14 = 0 (SOC not  
inverted), bit 11 = 1 (SOI delay), bit 5 = 0 (word strobe not inverted), bit 4 = 1 (16 bits/sample).  
74  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
V
V
h
...  
...  
SOC  
l
V
V
h
SOD  
SOI  
...  
31  
30 29 28 27 26 25 ...  
0
31 30 29 28 27 26 25  
7
6
5
4
3
2
1
7 6 5 4 3 2 1 0  
l
V
V
h
right 32-bit audio sample  
left 32-bit audio sample  
l
Fig. 426: Sample timing of the SDO interface in 32 bit/sample mode. D0:346 settings are: Bit 14 = 0 (SOC not  
inverted), bit 11 = 0 (no SOI delay), bit 5 = 1 (word strobe inverted), bit 4 = 0 (32 bits/sample).  
Micronas  
75  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.3.4. S/PDIF Input Characteristics  
at TA = TA, VSUPD, VSUPA = 2.5 ... 3.6 V, fCrystal = 18.432 MHz, Typ. values for TA = 25 °C.  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
VS  
Signal amplitude  
SPDI1, SPDI2, 200  
SPDIR  
500  
1000  
mVpp  
fs1  
fs2  
fs3  
tP  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase period  
Rise time  
SPDI1, SPDI2,  
SPDIR  
2.048  
2.822  
3.072  
326  
MHz  
MHz  
MHz  
ns  
±1000 ppm, fs = 48 kHz  
SPDI1, SPDI2,  
SPDIR  
±1000 ppm,  
fs = 44.1 kHz  
SPDI1, SPDI2,  
SPDIR  
±1000 ppm, fs = 32 kHz  
SPDI1, SPDI2,  
SPDIR  
at fs = 48 kHz, (highest  
sampling rate)  
tR  
SPDI1, SPDI2,  
SPDIR  
0
65  
ns  
at fs = 48 kHz, (highest  
sampling rate)  
tF  
Fall time  
SPDI1, SPDI2,  
SPDIR  
0
65  
ns  
at fs = 48 kHz, (highest  
sampling rate)  
Duty cycle  
SPDI  
40  
81  
50  
60  
%
at bit value=1 and  
fs = 48 kHz  
tH1,L1  
SPDI  
163  
ns  
minimum/maximum pulse  
duration with a level above  
90 % or below 10 % and  
at fs = 48 kHz  
tH0,L0  
SPDI  
163  
244  
ns  
minimum/maximum pulse  
duration with a level above  
90 % or below 10 % and  
at fs = 48 kHz  
tR  
tF  
tH1  
tL1  
Bit value = 1  
Bit value = 0  
tH0  
tL0  
tP  
Fig. 427: Timing of the S/PDIF input  
76  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.6.3.5. S/PDIF Output Characteristics  
at TA = TA, VSUPD, VSUPA = 2.5 ... 3.6 V, fCrystal = 18.432 MHz, Typ. values for TA = 25 °C.  
Symbol  
Parameter  
Pin Name  
SPDO  
Min.  
Typ.  
Max.  
Unit  
MHz  
MHz  
MHz  
ns  
Test Conditions  
fs = 48 kHz  
fs1  
fs2  
fs3  
tP  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase frequency  
Bi-phase period  
3.072  
2.822  
2.048  
326  
SPDO  
fs = 44.1 kHz  
fs = 32 kHz  
SPDO  
SPDO  
at fs = 48 kHz, (highest  
sampling rate)  
tR  
Rise time  
Fall time  
SPDO  
SPDO  
0
0
2
2
ns  
ns  
Cload = 10 pF  
Rload = t.b.d.  
tF  
Cload = 10 pF  
Rload = t.b.d.  
Duty cycle  
SPDO  
SPDO  
50  
%
tH1,L1  
tH0,L0  
VS  
163  
ns  
minimum/maximum pulse  
duration with a level above  
90 % or below 10 % and  
at fs = 48 kHz  
SPDO  
SPDO  
326  
ns  
minimum/maximum pulse  
duration with a level above  
90 % or below 10 % and  
at fs = 48 kHz  
Signal amplitude  
VSUPD  
tR  
tF  
tH1  
tL1  
Bit value = 1  
Bit value = 0  
tH0  
tL0  
tP  
Fig. 428: Timing of the S/PDIF output  
Micronas  
77  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.3.6. PIO as Parallel Input Interface: DMA Mode  
Symbol Pin  
Name  
Min.  
Max.  
Unit  
In decoding mode, the data transfer can be started  
after the EOD pin of the MAS 35x9F is set to high.  
After verifying this, the controller signalizes the send-  
ing of data by activating the PR line. The MAS 35x9F  
responds by setting the RTR line to the lowlevel. The  
MAS 35x9F reads the data PI[19:12] and sets RTR to  
low after rising edge of PR. After RTR is set to high,  
the mC sets PR to low. The next data word write oper-  
ation will be initialized again by setting the PR line via  
the controller. Please refer to Figure 429 for the exact  
timing  
tst  
tr  
PR, EOD  
PR, RTR  
0.010  
40  
2000  
160  
µs  
ns  
ns  
tpd  
PR,  
120  
480  
PI[19:12]  
tset  
th  
trtrq  
tpr  
PI[19:12]  
PI[19:12]  
RTR  
160  
160  
200  
480  
160  
40  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
30000  
The procedure above will be repeated until the  
MAS 35x9F sets the EOD signal to 0which indicates  
that the transfer of one data block has been executed.  
Subsequently, the controller should set PR to 0, wait  
until EOD rises again and then repeat the procedure to  
send the next block of data. The DMA buffer is  
15 bytes long.  
PR  
trpr  
teod  
teodq  
PR, RTR  
PR, EOD  
EOD  
160  
500  
2.5  
The buffer size is subject to change in the next version.  
.
teod  
trpr  
teodq  
tst  
tr trtrq  
tpd  
high  
low  
EOD  
PR  
high  
tpr  
low  
high  
low  
RTR  
tset  
th  
high  
low  
PI[19:12]  
Byte 1  
Byte 15  
MAS 35x9F latches the PIO DATA  
Fig. 429: Handshake protocol for writing MPEG data to the PIO-DMA  
78  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.6.3.7. PIO as Parallel Output Interface  
Some downloadable software may use the PIO inter-  
face (lines PI19...PI12) as output. The data transfer  
rate and conditions are defines by the software func-  
tion.  
7DEOHꢀꢁ±ꢂꢃ PIO output mode timing  
Symbol Pin  
Min.  
RTW, PCS 0.010  
PCS 0.330  
PCS, RTW 0.010  
Max.  
Unit  
µs  
Handshaking for PIO output mode is accomplished  
through the RTW, PCS, and PI12..PI19 signal lines  
(see Fig. 430). The PR line has to be set to high level.  
t0  
t1  
t2  
t3  
t4  
t5  
1800  
µs  
RTW will go low as soon as a byte is available in the  
output buffer and will stay low until a byte has been  
read. Reading of a byte is performed with a PCS  
pulse. Data is latched out from the MAS on the falling  
edge of PCS and removed from the bus on the rising  
edge of PCS.  
µs  
RTW  
PI  
0.330  
0.330  
0.081  
10000  
µs  
µs  
PI  
µs  
t0  
t1 t2  
t3  
RTW  
PIxx  
PCS  
t4  
t5  
Fig. 430: Output Timing  
Micronas  
79  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.4. Analog Characteristics  
at TA = TA, VSUPD = 2.5...3.6 V, VSUPA = 2.2 ... 3.6 V, fCrystal = 13...20 MHz,  
typical values at TA = 25 °C and fCRYSTAL = 18.432 MHz  
Symbol  
Analog Supply  
IAVDD Current consumption analog  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
AVDD0/1  
AVDD0/1  
5
mA  
VSUPA = 2.2 V, Mute  
audio  
IQOSC  
Current consumption crystal  
oscillator  
200  
µA  
Codec = off  
DSP = off  
DC/DC = on  
ISTANDBY  
10  
Codec = off  
DSP = off  
DC/DC = off  
Crystal Oscillator  
VDCCLK  
VACLK  
DC voltage at oscillator pins  
XTI, XTO  
0.5  
VSUPA  
Clock amplitude  
0.5  
VSUPA VPP  
if crystal is used  
VSUPA = 2.2 V  
0.5  
CIN  
Input capacitance  
Output resistance  
3
pF  
ROUT  
XTO  
220  
125  
94  
V
V
SUPA = 2.7 V  
SUPA = 3.3 V  
Analog Audio  
VAI  
Analog line input clipping  
level (at minimum analog  
input gain,i.e. 3 dB)  
INL/R  
Vpp  
VSUPA  
Bits 15, 14  
in Reg. 6Ahex  
2.2  
2.6  
3.2  
>2.2 V  
>2.4 V  
>3.0 V  
VSUPA  
00  
01  
10  
VMI  
Microphone input clipping  
level (at minimum analog  
input gain, i.e. +21 dB)  
MICIN  
mVpp  
Bits 15,14  
in Reg. 6Ahex  
141  
167  
282  
>2.2 V  
>2.4 V  
>3.0 V  
00  
01  
10  
80  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
VAO1  
Analog Output Voltage AC  
OUTL/R  
RL1 kΩ  
Input=0 dBFS digital  
VSUPA  
Bits 15, 14  
in Reg 6Ahex  
at 0 dB output gain  
at +3 dB output gain  
1.56  
1.84  
2.27  
2.20  
2.60  
3.20  
Vpp  
Vpp  
mV  
>2.2 V  
>2.4 V  
>3.0 V  
>2.2 V  
>2.6 V  
>3.2 V  
00  
01  
10  
00  
01  
10  
dVAO1  
Deviation of DC-Level at  
Analog Output for AGNDC-  
Voltage  
OUTL/R  
OUTL/R  
20  
20  
VAO2  
Analog Output Voltage AC  
RLis 16 Headphone and  
22 seriesresistor  
Input=0 dBFS digital  
(see Fig. 434 on  
page 88)  
VSUPA  
Bits 15, 14  
in Reg 6Ahex  
at 0 dB output gain  
1.56  
1.84  
2.27  
2.00  
2.40  
3.00  
97  
Vpp  
Vpp  
kΩ  
>2.2 V  
>2.4 V  
>3.0 V  
>2.2 V  
>2.6 V  
>3.2 V  
00  
01  
10  
00  
01  
10  
at +3 dB output gain  
Analog line input resistance  
RinAI  
INL/R  
at minimum analog input  
gain, i.e. 3 dB  
20  
at maximum analog input  
gain, i.e. +19.5 dB  
67  
94  
not selected  
RinMI  
Microphone input resistance  
MICIN  
kΩ  
at minimum analog input  
gain, i.e. 21 dB  
8
at maximum analog input  
gain, i.e. +43.5 dB  
94  
not selected  
RinAO  
Analog output resistance  
OUTL/R  
INL/R  
6
analog gain=+3 dB,  
Input=0 dBFS digital  
SNRAI  
Signal-to-noise ratio of line  
input  
74  
dB(A) BW = 20 Hz...20 kHz,  
analog gain=0 dB, input  
1 kHz at VAI20 dB  
Micronas  
81  
MAS 35x9F  
ADVANCE INFORMATION  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
SNRMI  
Signal-to-noise ratio of  
microphone input  
MICIN  
73  
dB(A) BW = 20 Hz...20 kHz,  
analog gain=+21 dB, input  
1 kHz at VMI20 dB  
THDAI  
Total harmonic distortion of  
analog inputs  
INL/R  
MICIN  
0,01  
0.02  
%
BW = 20 Hz...20 kHz,  
analog gain = 0 dB,  
resp. 24 dB,  
input 1 kHz at  
3 dBFS=VAI6 dB  
resp. VMI-6 dB  
XTALKAI  
PSRRAI  
Crosstalk attenuation  
left/right channel  
INL/R  
MICIN  
80  
dB  
f = 1 kHz, sine wave,  
analog gain = 0 dB,  
input = 3 dBFS  
(analog inputs)  
Power supply rejection ratio  
for analog audio inputs  
AVDD0/1,  
INL/R  
MICIN  
45  
20  
dB  
dB  
1 kHz sine at 100 mVrms  
100 kHz sine at  
100 mVrms  
Audio Output  
SNRAO  
Signal-to-noise ratio of analog OUTL/R  
output  
94  
dB(A) RL16 Ω  
BW = 20 Hz...20 kHz,  
analog gain = 0 dB  
input = -20 dBFS  
THDAO  
Total harmonic distortion  
(headphone)  
OUTL/R  
for RL16plus 22series  
resistor  
0.03  
0.05  
%
(see Fig. 434 on page 88)  
for RL1kΩ  
0.003 0.01  
%
LevMuteAO  
Mute level  
OUTL/R  
113  
dBV  
A-weighted  
BW=20 Hz...22kHz , no  
digital input signal,  
analog gain=mute  
XTALKAO  
Crosstalk attenuation left/right OUTLR  
channel (headphone)  
80  
dB  
f=1 kHz, sine wave,  
OUTL/R: RL16 Ω  
(see Fig. 434 on  
page 88)  
analog gain=0 dB  
input=-3 dBFS  
PSRRAO  
Power supply rejection ratio  
for analog audio outputs  
AVDD0/1  
OUTL/R  
70  
35  
dB  
dB  
1 kHz sine at 100 mVrms  
100 kHz sine at  
100mVrms  
VAGNDC  
Analog Reference Voltage  
AGNDC  
V
RL >> 10 MΩ,  
referred to VREF  
VSUPA  
Bits 15, 14 in  
Reg. 6Ahex  
1.1  
1.3  
1.6  
>2.2 V  
>2.4 V  
>3.0 V  
00  
01  
10  
82  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
VMICBI  
Bias voltage for microphone  
MICBI  
VSUPA  
Bits 15, 14 in  
Reg. 6Ahex  
1.8  
>2.2 V  
>2.4 V  
>3.0 V  
00  
01  
10  
2.13  
2.62  
180  
RMICBI  
IMAX  
Source resistance  
MICBI  
Maximum current microphone MICBI  
bias  
µA  
VSUPA  
>2.2 V  
Bits 15, 14 in  
Reg. 6Ahex  
300  
00  
Micronas  
83  
MAS 35x9F  
ADVANCE INFORMATION  
4.6.5. DC/DC Converter Characteristics  
at TA = TA, Vin = 1.2 V (unless otherwise noted), Voutn = 3.0 V, fclk = 18.432 MHz, fsw = 384 kHz,  
Typ. values for TA = 25 °C  
Symbol  
Parameter  
Pin Name  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
VIN  
Minimum start-up input  
voltage  
*
0.9  
V
I
LOAD 1 mA,  
DCCF = 5050hex (reset)  
VIN  
Minimum operating input  
voltage  
DC1*  
DC2*  
0.7  
0.8  
V
V
V
I
LOAD = 50 mA,  
DCCF = 5050hex (reset)  
DC1*  
DC2*  
1.1  
1.2  
ILOAD = 200 mA,  
DCCF = 5050hex (reset)  
VOUT  
Programmable output voltage VSENSN  
range  
2.0  
3.5  
Voltage settings in DCCF  
register (I2C subaddress  
76hex  
)
VOTOL  
ILOAD1  
ILOAD2  
Output voltage tolerance  
VSENSN  
VSENSN  
2.88  
3.12  
200  
600  
V
ILOAD = 20 mA  
TA = 25 °C  
Output current  
1 battery cell  
mA  
mA  
%/V  
VIN = 0.9...1.5 V, 330 µF  
Output current  
2 battery cells  
VIN = 1.8...3.0 V, 330 µF  
dVOUT  
/
Line regulation  
VSENSN  
0.8  
dVIN/VOUT  
dVOUT  
VOUT  
/
Load regulation  
DC1  
VSENS1  
VSENS2  
1.7  
1.8  
%
ILOAD = 20...200 mA,  
DC2  
hmax  
Maximum efficiency  
Switching frequency  
95  
%
VIN = 2.4 V, VOUT = 3.5 V  
fswitch  
DCSOn  
297  
384  
250  
576  
kHz  
(see Table 21 on  
page 11)  
fstartup  
Switching frequency during  
start-up  
DCSOn  
kHz  
µA  
VSENSn < 1.9 V  
1)  
IsupPFM1  
IsupPFM2  
IsupPWM1  
IsupPWM2  
Ilnmax  
Supply current in PFM mode  
VSENS1  
VSENS2  
75  
135  
265  
325  
1
Supply current in PWM mode VSENS1  
VSENS2  
µA  
VSENSn  
1)  
2)  
NMOS switch current limit  
(low side switch)  
DCSOn,  
DCSGn  
A
Ilptoff  
PMOS switch turnoff current  
(rectifier switch)  
DCSOn,  
VSENSn  
70  
mA  
µA  
ILEAK  
leakage current  
DCSOn,  
DCSGn  
0.1  
Tj = 25 °C, converter off,  
ILOAD = 0 µA  
1) Current into VSENSn. VIN > VOUT+V; (V0.4 V); no DC/DC-Converter regulation switching action present  
2) Add. current of oscillator at PIN AVDD0/1, (see Section 4.6.4. on page 80)  
84  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
4.6.6. Typical Performance Characteristics  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
DCDC1 (VOUT = 3.5 V)  
DCDC2 (VOUT = 3.5 V)  
100  
100  
80  
60  
40  
20  
0
3.0 V  
3.0 V  
80  
1.8 V  
1.8 V  
60  
VIN:  
3.0 V  
2.4 V  
VIN:  
3.0 V  
2.4 V  
1.8 V  
40  
1.8 V  
PFM  
PWM  
PFM  
PWM  
20  
0
104  
1
104  
1
103  
102  
101  
103  
102  
101  
Load Current (A)  
Load Current (A)  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
DCDC1 (VOUT = 3.0 V)  
DCDC2 (VOUT = 3.0 V)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
2.4 V  
2.4 V  
0.9 V  
0.9 V  
VIN:  
VIN:  
2.4 V  
1.5 V  
1.2 V  
0.9 V  
2.4 V  
1.5 V  
1.2 V  
0.9 V  
PFM  
PFM  
PWM  
PWM  
104  
1
104  
1
103  
102  
101  
103  
102  
101  
Load Current (A)  
Load Current (A)  
Fig. 431: Efficiency vs. Load Current  
Micronas  
85  
MAS 35x9F  
ADVANCE INFORMATION  
Efficiency vs. Load Current  
Efficiency vs. Load Current  
DCDC1 (VOUT = 2.2 V)  
DCDC2 (VOUT = 2.2 V)  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
1.5 V  
1.5 V  
0.9 V  
0.9 V  
VIN:  
VIN:  
1.5 V  
1.2 V  
0.9 V  
1.5 V  
1.2 V  
0.9 V  
PFM  
PFM  
PWM  
PWM  
104  
1
104  
1
103  
102  
101  
103  
102  
101  
Load Current (A)  
Load Current (A)  
Maximum Load Current  
vs. Input Voltage  
Maximum Load Current  
vs. Input Voltage  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
DCDC1  
DCDC2  
Vout  
:
Vout:  
2.2 V  
3.0 V  
3.5 V  
2.2 V  
3.0 V  
3.5 V  
PFM  
PFM  
PWM  
PWM  
0.2  
0
0.2  
0
0.0  
0.0  
1.0  
2.0  
3.0  
1.0  
2.0  
3.0  
Input Voltage (V)  
Input Voltage (V)  
Fig. 432: Maximum Load Current vs. Input Voltage  
Note: Efficiency is measured as VSENSn × ILOAD / (Vin × Iin).  
IAVDD is not included (Oscillator current)  
86  
Micronas  
VDC2  
VDC2  
Portable radio  
telephone  
Serial memory device  
e.g. SDI-Card  
Parallel memory device  
e.g. SmartMediaCard  
3
D
3
MPEG, SC4  
D
DigiAmp  
MD-recorder  
MPEG, CELP, SC4  
8
IEC 60958  
Reference  
clock  
VDC2  
2
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
SIBD 49  
SIBC 50  
SIBI 51  
32 PR  
5
D
10k  
31 PRTWQ  
30 PRTRQ  
29 EODQ  
28 PUP  
PIO-control  
100n  
100n  
75  
75  
DAB-receiver  
DVD-player  
SPDI2 52  
SPDI1 53  
MPEG (IEC 61937)  
ADR-receiver  
SPDIR 54  
FILTL 55  
AVDD0 56  
OUTL 57  
OUTR 58  
AVSS0 59  
FILTR 60  
AVSS1 61  
VREF 62  
PVDD 63  
AVDD1 64  
27 VBAT  
26 SYNC  
25 I2CD  
100n  
470p  
22  
220u  
220u  
MAS 35x9F  
24 I2CC  
23 CLKO  
22 DCEN  
21 VSENS2  
20 DCSO2  
19 DCSG2  
18 DCSG1  
17 DCSO1  
22  
4k7  
L
R
4k7  
100  
VDC2  
100  
470p  
3n  
µC  
Headphone  
> 16  
1.5k  
1.5k  
6.8n  
6.8n  
22u  
10n  
A
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
See figure caption  
3u3  
10n  
Place all cermic capacitors  
as close as possible to IC pins  
220p  
VDC1  
1n  
1n  
A
470p capacitorss should be  
high-Q (NP0 or C0G)  
1.5u  
18p  
1.5u  
18p  
Option for  
I2C-address  
D
A
D
4u7  
390 n  
connect to  
VSS or I2CVDD  
A
D
390n  
Star point  
ground connection  
very close to pins  
DCSG1 and DCSG2  
VDC2  
18.432 MHz  
390n  
VDC1  
10k  
3.6...5.6 k  
MIC  
3.3 n  
390p  
390p  
Place VDD / XVDD -filter  
capacitors above ground plane  
A
separate trace  
Tape recorder  
FM radio  
MAS 35x9F  
ADVANCE INFORMATION  
4.8. Recommended DC/DC Converter Application Circuit  
(Power optimized szenario, (see Fig. 25 on page 13))  
VBAT  
L1 = 22 µH  
DCSO1  
D1, Schottky  
+
AVDD0/1  
VSENS1  
C3 = 330 µF  
V
(Input Voltage)  
in  
(0.9..1.5 V)  
VDC1  
e.g. 2.2 V  
C1 = 330 µF  
(low ESR)  
+
DCSG1  
VSS, XVSS  
D
DCEN  
Power-On Push Button  
L2 = 22 µH  
DCSO2  
D2, Schottky  
VSENS2  
VDC2  
e.g. 3.0 V  
for µC,  
Storage Media  
C2 = 330 µF  
(low ESR)  
+
Star Point  
Ground Connection  
very close to Pins  
DCSG2  
DCSG1 and DCSG2  
V
REF  
D
AVSS0/1  
A
A
Fig. 434: External circuitry for the DC/DC converters  
88  
Micronas  
ADVANCE INFORMATION  
MAS 35x9F  
Micronas  
89  
MAS 35X9F  
ADVANCE INFORMATION  
5. Data Sheet History  
1. Advance Information: MAS 3509F,  
MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A  
Codec, August 04, 2000, 6251-505-1AI.  
First release of the advance information.  
2. Advance Information: MAS 35x9F,  
MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A  
Codec, October 31, 2000, 6251-505-2AI.  
Second release of the advance information.  
Major changes:  
This data sheet applies to MAS 35x9F version A2.  
3. Advance Information: MAS 35x9F,  
MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A  
Codec, April xx, 2001, 6251-505-3AI.  
Third release of the advance information.  
Major changes:  
New supply voltages  
All information and data contained in this data sheet are without any  
commitment, are not to be considered as an offer for conclusion of a  
contract, nor shall they be construed as to create any liability. Any new  
issue of this data sheet invalidates previous issues. Product availability  
and delivery are exclusively subject to our respective order confirmation  
form; the same applies to orders based on development samples deliv-  
ered. By this publication, Micronas GmbH does not assume responsibil-  
ity for patent infringements or other rights of third parties which may  
result from its use.  
Further, Micronas GmbH reserves the right to revise this publication and  
to make changes to its content, at any time, without obligation to notify  
any person or entity of such revisions or changes.  
No part of this publication may be reproduced, photocopied, stored on a  
retrieval system, or transmitted without the express written consent of  
Micronas GmbH.  
Micronas GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
E-mail: docservice@micronas.com  
Internet: www.micronas.com  
Printed in Germany  
Order No. 6251-505-3AI  
90  
Micronas  

相关型号:

MAS3529FFH

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-64
TDK

MAS3529HPR

Consumer Circuit, PQCC44, 16.60 X 16.60 MM, 4.15 MM HEIGHT, PLASTIC, LCC-44
TDK

MAS3530HPR

Consumer Circuit, PQCC44, 16.60 X 16.60 MM, 4.15 MM HEIGHT, PLASTIC, LCC-44
TDK

MAS3530HQA

Consumer Circuit, PQFP80, 14 X 20 MM, 2.70 MM HEIGHT, PLASTIC, MQFP-80
TDK

MAS3539F

MAS 35x9F MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec
MICRONAS

MAS3539FBF

Consumer Circuit, PBGA81, PLASTIC, BGA-81
TDK

MAS3549F

MAS 35x9F MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec
MICRONAS

MAS3549F-FH-A3

Consumer Circuit, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, LQFP-64
TDK

MAS3549FBF

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK

MAS3549FBL

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK

MAS3559F

MAS 35x9F MPEG Layer 2/3, AAC Audio Decoder, G.729 Annex A Codec
MICRONAS

MAS3559FBF

Consumer Circuit, PBGA81, PLASTIC, LFBGA-81
TDK