VPX3216BPQ [TDK]

Consumer Circuit, PQCC44, PLASTIC, LCC-44;
VPX3216BPQ
型号: VPX3216BPQ
厂家: TDK ELECTRONICS    TDK ELECTRONICS
描述:

Consumer Circuit, PQCC44, PLASTIC, LCC-44

商用集成电路
文件: 总80页 (文件大小:748K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY DATA SHEET  
VPX 3220 A,  
VPX 3216 B,  
VPX 3214 C  
Video Pixel Decoders  
MICRONAS  
Edition July 1, 1996  
6251-368-2PD  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Contents  
Page  
Section  
Title  
5
5
5
5
1.  
Introduction  
1.1.  
1.2.  
1.3.  
Difference between VPX 3220 A and VPX 3216 B  
Difference between VPX 3216 B and VPX 3214 C  
System Architecture  
6
2.  
Functional Description  
Analog Front-End  
6
2.1.  
6
2.1.1.  
2.1.2.  
2.1.3.  
2.1.4.  
2.1.5.  
2.2.  
Input Selector  
6
Clamping  
6
Automatic Gain Control  
Digitally Controlled Clock Oscillator  
Analog-to-Digital Converters  
Color Decoder  
7
7
7
7
2.2.1.  
2.2.2.  
2.2.3.  
2.2.4.  
2.2.5.  
2.2.6.  
2.2.7.  
2.2.8.  
2.2.9.  
2.3.  
IF-Compensation  
7
Demodulator  
8
Chrominance Filter  
8
Frequency Demodulator  
Burst Detection  
8
9
Color Killer Operation  
Delay Line/Comb Filter  
Luminance Notch Filter  
YCbCr Color Space  
Component Processing  
Horizontal Resizer  
9
10  
11  
11  
12  
13  
13  
13  
14  
14  
15  
15  
15  
15  
16  
16  
16  
2.3.1.  
2.3.2.  
2.3.3.  
2.3.4.  
2.4.  
Skew Correction  
Contrast, Brightness, and Noise Shaping  
C C Upsampler  
b
r
Color Space Stage  
2.4.1.  
2.4.2.  
2.4.3.  
2.4.4.  
2.4.4.1.  
2.5.  
Color Space Selection  
Compression 24 8 Bits  
Inverse Gamma Correction  
Alpha Key  
Alpha Key as Static Control Signal  
Output Pixel Format  
Output Ports  
2.5.1.  
2.5.2.  
Output Port Formats  
2
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
18  
18  
18  
18  
18  
18  
18  
18  
20  
20  
23  
24  
24  
26  
3.  
Video Timing  
3.1.  
Video Reference Signals HREF and VREF  
HREF  
3.1.1.  
3.1.2.  
3.1.3.  
3.2.  
VREF  
Odd/Even  
Operational Modes  
Open Mode  
3.2.1.  
3.2.2.  
3.2.3.  
3.2.4.  
3.3.  
Forced Mode  
Scan Mode  
Transition Behavior  
Windowing the Video Field  
Video Data Transfer  
Synchronous Output  
Asynchronous Output  
3.4.  
3.4.1.  
3.4.2.  
27  
27  
27  
27  
27  
28  
29  
29  
35  
41  
4.  
Serial Interface A  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
Overview  
2
I C-Bus Interface  
Reset and IC Address Selection  
Protocol Description  
FP Control and Status Registers  
2
I C Initialization  
2
I C Control and Status Registers  
FP Control and Status Registers  
Initial Values on Reset  
43  
43  
43  
43  
43  
43  
44  
44  
44  
44  
44  
44  
44  
44  
45  
45  
45  
45  
5.  
JTAG Boundary-Scan, Test Access Port (TAP)  
General Description  
5.1.  
5.2.  
TAP Architecture  
5.2.1.  
5.2.2.  
5.2.3.  
5.2.4.  
5.2.5.  
5.2.6.  
5.3.  
TAP Controller  
Instruction Register  
Boundary Scan Register  
Bypass Register  
Device Identification Register  
Master Mode Data Register  
Exception to IEEE 1149.1  
IEEE 1149.1–1990 Spec Adherence  
Instruction Register  
5.4.  
5.4.1.  
5.4.2.  
5.4.3.  
5.4.4.  
5.4.5.  
5.4.6.  
5.4.7.  
Public Instructions  
Self-test Operation  
Test Data Registers  
Boundary-Scan Register  
Device Identification Register  
Performance  
MICRONAS INTERMETALL  
3
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Contents, continued  
Page  
Section  
Title  
49  
49  
50  
53  
54  
55  
57  
57  
59  
59  
60  
60  
60  
60  
61  
62  
63  
64  
65  
66  
68  
69  
70  
71  
73  
74  
74  
75  
6.  
Specifications  
6.1.  
Outline Dimensions  
6.2.  
Pin Connections and Short Descriptions  
Pin Descriptions  
6.3.  
6.4.  
Pin Configuration  
6.5.  
Pin Circuits  
6.6.  
Electrical Characteristics  
6.6.1.  
6.6.2.  
6.6.3.  
6.6.4.  
6.6.5.  
6.6.6.  
6.6.7.  
6.6.8.  
6.6.9.  
6.6.10.  
6.6.10.1.  
6.6.11.  
6.6.12.  
6.6.12.1.  
6.6.12.2.  
6.6.12.3.  
6.6.12.4.  
6.6.13.  
6.6.13.1.  
6.6.13.2.  
6.6.14.  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Power Consumption  
Characteristics, Reset  
Input Characteristics of RES and OE  
Recommended Crystal Characteristics  
XTAL Input Characteristics  
Characteristics, Analog Video Inputs  
Characteristics, Analog Front-End and ADCs  
Characteristics of the JTAG Interface  
Timing of the Test Access Port TAP  
2
Characteristics, I C-Bus Interface  
Digital Video Interface  
Characteristics, Synchronous Mode, 13.5 MHz Data Rate, “Single Clock”  
Characteristics, Synchronous Mode, 20.25 MHz Data Rate, “Single Clock”  
Characteristics, Synchronous Mode, 13.5 MHz Data Rate, “Double Clock”  
Characteristics, Asynchronous Mode  
Characteristics, TTL Output Driver  
TTL Output Driver Type A  
TTL Output Driver Type B  
Characteristics, Enable/Disable of Output Signals  
77  
77  
79  
80  
1.  
2.  
3.  
4.  
Introduction for Addendum  
New Output Timing – NewVACT  
Low Power Mode  
Data Sheet History  
4
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Video Pixel Decoder Family  
– VBI bypass mode for Teletext, Closed Caption, and  
Intercast  
Release Notes: Revision bars indicate significant  
changes to the previous edition.  
– 44-pin plastic package (PLCC, TQFP)  
– total power consumption under 1 W  
2
– I C serial control, selectable power-up default state  
1. Introduction  
– on-chip clock generation  
TheVideoPixelDecoder(VPX)isafull-featurevideoac-  
quisition IC for consumer video and multimedia applica-  
tions. All of the processing necessary to convert an ana-  
log video signal into a digital component stream has  
been integrated onto a single 44-pin IC. Its notable fea-  
tures include:  
– IEEE 1149.1 (JTAG) boundary scan interface  
VPX 3220 A, VPX 3216 B, and VPX 3214 C are pin and  
software compatible, but differ slightly in the feature set.  
1.1. Difference between VPX 3220 A and VPX 3216 B  
– single chip multistandard color decoding NTSC/PAL/  
SECAM/S-VHS, NTSC with chroma comb filter.  
VPX 3220 A performs low-pass filtering before resam-  
pling the data, whereas VPX 3216 B does not. For more  
info, see Fig. 1–1 and refer to section 2.3.  
– two 8-bit video A/D converters with clamping and au-  
tomatic gain control (AGC)  
– four analog inputs with integrated selector for  
3 composite video sources (CVBS), or  
2 YC sources (SVHS), or  
1.2. Difference between VPX 3216 B and VPX 3214 C  
2 composite video sources and one YC source.  
The VPX 3214 C is based on the VPX 3216 B but without  
color space conversion. VPX 3214 C supports only  
– automatic standard detection  
YC C 4:2:2.  
b
r
– horizontalandverticalsyncdetectionforallstandards  
– hue, brightness, contrast, and saturation control  
– horizontal resizing between 32 and 1056 pixel/line  
– vertical resizing by line dropping  
1.3. System Architecture  
The block diagram in Fig. 1–1 illustrates the signal flow  
through the VPX. A sampling stage performs 8-bit A/D  
conversion, clamping, andAGC. Thecolordecodersep-  
arates the luma and chroma signals, demodulates the  
chroma, and filters the luminance. A sync slicer detects  
the sync edge and computes the skew relative to the  
sample clock. The component processing stage resizes  
the YCbCr samples, adjusts the contrast and bright-  
ness, and interpolates the chroma. The color space  
– high quality anti-aliasing filter (VPX 3220 A only)  
– ITU-R601 level compatible  
– YC C (4:4:4, 4:2:2, or 4:1:1) or  
b
r
γ-corrected RGB 4:4:4 (15, 16, or 24 bits)  
compressed Video (DPCM 8 bit)  
(VPX 3214 C supports only YCrCb 4:2:2)  
–1  
stage contains a dematrix, a γ correction, a DPCM-like  
– alpha key generation  
encoder, and an alpha key generator. The format stage  
arranges the samples into the selected byte format and  
(in the case of asynchronous output) buffers the data for  
output.  
(only VPX 3220 A, and VPX 3216 B)  
– 8-bit or 16-bit synchronous output mode  
– asynchronous output mode via FIFO with status flags  
H/V  
Sync  
Sync  
Skew  
CVBS/Y  
YCbCr/  
A
Y
RGB  
Luma  
Filter  
YCbCr  
Chroma  
Demod.  
Alpha  
Key  
B
C C  
b
r
Chroma  
Line Store  
Clock  
Component  
Processing  
Output  
MUX  
Sampling  
Color Decoder  
Color Space  
Fig. 1–1: Block diagram of the VPX  
MICRONAS INTERMETALL  
5
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
CVBS Luma Chroma  
2. Functional Description  
2.1. Analog Front-End  
CVBS S-VHS  
VIN1  
VIN2  
VIN3  
CIN  
n
n
n
n
n
n
n
This block provides the analog interfaces to all video in-  
puts and mainly carries out analog-to digital conversion  
for the following digital video processing. A block dia-  
gram is given in Fig. 2–2.  
3
2
0
0
1
2
n
Most of the functional blocks in the front-end are digitally  
controlled (clamping, AGC, and clock-DCO). The con-  
trol loops are closed by the Fast Processor (‘FP’) em-  
bedded in the decoder.  
Fig. 2–1: Combinations and types of input signals  
2.1.2. Clamping  
2.1.1. Input Selector  
ThecompositevideoinputsignalsareAC-coupledtothe  
IC. The clamping voltage is stored on the coupling ca-  
pacitors and is generated by digitally controlled current  
sources. The clamping level is the back porch of the vid-  
eo signal. S-VHS chroma is also AC-coupled. The input  
pin is internally biased to the center of the ADC input  
range.  
Uptofouranaloginputscanbeconnected. Theyallmust  
be AC-coupled. Two of them (VIN2 and VIN3) are for in-  
put of composite video or S-VHS luma signal. These in-  
puts are clamped to the sync back porch and are ampli-  
fied by a variable gain amplifier. One input (CIN) is for  
connection of S-VHS carrier-chrominance signal. This  
input is internally biased and has a fixed gain amplifier.  
The fourth one (VIN1) can be used for both functions  
(see Fig. 2–2). For possible combinations and types of  
input signals, see Fig. 2–1.  
2.1.3. Automatic Gain Control  
A digitally working automatic gain control adjusts the  
magnitude of the selected baseband by +6/–4.5 dB in  
64 logarithmic steps to the optimal range of the ADC.  
reference  
generation  
VIN3  
CVBS/Y  
AGC  
+6/–4.5 dB  
digital  
CVBS  
or Y  
VIN2  
VIN1  
CIN  
8
clamp  
level  
ADC  
CVBS/Y  
DAC  
gain  
to  
color  
decoder  
CVBS/  
Y/C  
digital  
chroma  
8
bias/  
C
ADC  
clamp  
select  
level  
system  
clocks  
frequ.  
DVCO  
±150  
ppm  
DAC  
freq.  
doubler  
frequ.  
divider  
20.25 MHz  
Fig. 2–2: Analog front-end  
6
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.1.4. Digitally Controlled Clock Oscillator  
2.2.1. IF-Compensation  
With off-air or mistuned reception, any attenuation at  
The clock generation is also a part of the analog front-  
end. The crystal oscillator is controlled digitally by the  
control processor; the clock frequency can be adjusted  
within ±150 ppm if the recommended crystal is used.  
higher frequencies or asymmetry around the color sub-  
carrier is compensated. Three different settings of the  
IF-compensation are possible:  
– flat (no compensation)  
– 6 dB/octave  
2.1.5. Analog-to-Digital Converters  
– 12 dB/octave  
Two ADCs are provided to digitize the input signals.  
Each converter runs with 20.25 MHz and has 8-bit reso-  
lution. An integrated bandgap circuit generates the re-  
quired reference voltages for the converters. The two  
ADCs are of a 2-stage subranging type.  
2.2. Color Decoder  
In this block, the entire luma/chroma separation and  
multistandardcolordemodulationiscarriedout. Thecol-  
or demodulation uses an asynchronous clock, thus al-  
lowing a unified architecture for all color standards.  
Fig. 2–3: Frequency response of chroma IF-com-  
pensation  
Both luma and chroma are processed to an orthogonal  
sampling raster. Luma and chroma delays are matched.  
The total delay of the decoder is adjustable by a FIFO  
memory. Therefore, even when the display processing  
delay is included, a processing delay of exactly 64 µsec  
can be achieved.  
2.2.2. Demodulator  
The entire signal (which might still contain luma) is now  
quadrature-mixed to the baseband. The mixing frequen-  
cy is equal to the subcarrier for PAL and NTSC, thus  
achieving the chroma demodulation. For SECAM, the  
mixing frequency is 4.286 MHz giving the quadrature  
baseband components of the FM modulated chroma.  
After the mixer, a lowpass filter selects the chroma com-  
ponents; a downsampling stage converts the color dif-  
ference signals to a multiplexed half-rate data stream.  
The color decoder output is YC C in a 4:2:2 format.  
r
b
The subcarrier frequency in the demodulator is gener-  
ated by direct digital synthesis; therefore, substandards  
such as PAL 3.58 or NTSC 4.43 can also be demodu-  
lated.  
MICRONAS INTERMETALL  
7
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.2.3. Chrominance Filter  
2.2.4. Frequency Demodulator  
The demodulation is followed by a lowpass filter for the  
color difference signals for PAL/NTSC. SECAM requires  
a modified lowpass function with a bell-filter characteris-  
tic. Attheoutputofthelowpassfilter, alllumainformation  
is eliminated.  
The frequency demodulator for demodulating the  
SECAM signal is implemented as a CORDIC-structure.  
It calculates the phase and magnitude of the quadrature  
components by coordinate rotation.  
The phase output of the CORDIC processor is differen-  
tiated to obtain the demodulated frequency. After a pro-  
grammable deemphasis filter, the Dr and Db signals are  
The lowpass filters are calculated in time multiplex for  
the two color signals. Three bandwidth settings (narrow,  
normal, broad) are available for each standard. The filter  
passband can be shaped with an extra peaking term at  
1.25 MHz.  
scaled to standard C C amplitudes and fed to the cross-  
r
b
over-switch.  
dB  
0
dB  
0
–1  
–2  
PAL/  
NTSC  
–10  
–3  
–4  
–5  
–20  
broad  
–6  
normal  
–7  
–30  
narrow  
–8  
–9  
–40  
–10  
–11  
MHz  
0.01  
0.1  
1.0  
–50  
MHz  
0
1
2
3
4
5
Fig. 2–5: Frequency response of SECAM  
deemphasis  
dB  
0
–10  
–20  
SECAM  
2.2.5. Burst Detection  
–30  
–40  
–50  
In the PAL/NTSC-system, the burst is the reference for-  
the color signal. The phase and magnitude outputs of  
the CORDIC are gated with the color key and used for  
controlling the phase-lock-loop (APC) of the demodula-  
tor and the automatic color control (ACC) in PAL/NTSC.  
MHz  
0
1
2
3
4
5
Fig. 2–4: Frequency response of chroma filters  
The ACC has a control range of +30...–6 dB.  
ForSECAMdecoding, thefrequencyoftheburstismea-  
sured. Thus, the current chroma carrier frequency can  
be identified and is used to control the SECAM proces-  
sing. The burst measurements also control the color kill-  
er operation.  
8
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
CVBS  
Luma  
2.2.6. Color Killer Operation  
Y
Notch  
filter  
Y
Chroma  
Chroma  
Process.  
Chroma  
Process.  
The color killer uses the burst-phase, -frequency mea-  
surement to identify a PAL/NTSC or SECAM color sig-  
nal. For PAL/NTSC, the color is switched off (killed) as  
long as the color subcarrier PLL is not locked. For  
SECAM, the killer is controlled by the toggle of the burst  
frequency. The burst amplitude measurement is used to  
switch-off the color if the burst amplitude is below a pro-  
grammable threshold. Thus, color will be killed for very  
noisy signals. The color amplitude killer has a program-  
mable hysteresis.  
C C  
r
C C  
r
b
b
a) conventional  
b) S-VHS  
CVBS  
Notch  
filter  
Y
1 H  
Chroma  
C C  
Delay  
Process.  
r
b
c) compensated  
2.2.7. Delay Line/Comb Filter  
The color decoder uses one fully integrated delay line.  
Only active video is stored.  
Notch  
filter  
Y
CVBS  
1 H  
Delay  
The delay line application depends on the color stan-  
dard:  
– NTSC:  
– PAL:  
combfilter or color compensation  
Chroma  
Process.  
C C  
r
b
color compensation  
d) Comb Filter  
– SECAM: crossover-switch  
Fig. 2–6: NTSCcolor decoding options  
In the NTSC compensated mode, Fig. 2–6 c), the color  
signal is averaged for two adjacent lines. Therefore,  
cross-color distortion and chroma noise is reduced. In  
the NTSC combfilter mode, Fig. 2–6 d), the delay line is  
in the composite signal path, thus allowing reduction of  
cross-color components, as well as cross-luminance.  
The loss of vertical resolution in the luminance channel  
is compensated by adding the vertical detail signal with  
removed color information.  
CVBS  
Y
Notch  
filter  
8
1 H  
Chroma  
Process.  
C C  
r
Delay  
b
a) conventional  
Luma  
Y
Chroma  
1 H  
Chroma  
Process.  
C C  
r
Delay  
b
b) S-VHS  
Fig. 2–7: PAL color decoding options  
CVBS  
Notch  
filter  
Y
MUX  
1 H  
Delay  
Chroma  
Process.  
C C  
r
b
Fig. 2–8: SECAM color decoding  
MICRONAS INTERMETALL  
9
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.2.8. Luminance Notch Filter  
subcarrier frequency for PAL/NTSC. For SECAM, the  
notch is directly controlled by the chroma carrier fre-  
quency. This considerably reduces the cross-lumi-  
nance. The frequency responses and the delay charac-  
teristics of all three systems are shown below.  
If a composite video signal is applied, the color informa-  
tion is suppressed by a programmable notch filter. The  
position of the filter center frequency depends on the  
dB  
10  
nsec  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
MHz  
MHz  
MHz  
0
MHz  
MHz  
MHz  
0
2
4
6
6
6
8
8
8
10  
10  
10  
0
2
2
2
4
4
4
6
6
6
8
8
8
10  
10  
10  
PAL notch filter  
dB  
10  
nsec  
100  
90  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
0
2
4
0
SECAM notch filter  
dB  
10  
nsec  
100  
90  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
–30  
–40  
0
2
4
0
NTSC notch filter  
Fig. 2–9: Frequency responses and time delay characteristics for PAL, SECAM, and NTSC  
10  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.2.9. YCbCr Color Space  
2.3. Component Processing  
The color decoder outputs luminance and two chromi-  
nance signals at a sample clock of 20.25 MHz. Active  
video samples are flagged by a separate reference sig-  
nal. The number of active samples is 1056 for all stan-  
dards (525 lines and 625 lines). The representation of  
the chroma signals is the ITUR-601 digital studio stan-  
dard.  
Recovery of the YCbCr components by the decoder is  
followed by horizontal resizing and skew compensation.  
Contrast enhancement with noise shaping can also be  
applied to the luminance signal. The CbCr samples are  
interpolated to create a 4:4:4 format.  
Fig. 2–10 illustrates the signal flow through the compo-  
nent processing stage. The YCbCr 4:2:2 samples are  
separated into a luminance path and a chrominance  
path. TheLuma Filtering andChromaFiltering blocks  
apply FIR lowpass filters with selectable cutoff frequen-  
cies. These filters are available only in VPX 3220 A. The  
Resize and Skew blocks alter the effective sampling  
rate and compensate for horizontal line skew. The  
YCbCr samples are buffered in a FIFO for continuous  
read out at a fixed clock rate. In the luminance path, the  
contrastandbrightnesscanbevariedandnoiseshaping  
applied. In the chrominance path, interpolation is used  
to generate a 24-bit/pixel output stream (4:4:4 format).  
In the following equations, the RGB signals are already  
gamma-weighted.  
– Y  
=
0.299*R + 0.587*G + 0.114*B  
– (R–Y) = 0.701*R – 0.587*G – 0.114*B  
– (B–Y) = –0.299*R – 0.587*G + 0.886*B  
In the color decoder, the weighting for both color differ-  
ence signals is adjusted individually. The default format  
will have the following specification:  
– Y = 224*Y + 16 (pure binary),  
– C = 224*(0.713*(R–Y)) + 128 (offset binary),  
r
– C = 224*(0.564*(B–Y)) + 128 (offset binary).  
b
VPX 3220 A only  
Resize  
Contrast &  
Brightness  
Y
in  
Y
out  
Skew  
Luma Filter  
Luma  
Phase Shift  
F
I
F
O
Active Video  
Reference  
Sequence  
Control  
Latch  
Chroma  
Phase Shift  
Cb  
Cr  
out  
16 bit  
C C  
Upsampler  
b
r
Resize  
CbCr  
out  
in  
Skew  
Chroma Filter  
Fig. 2–10: Component processing stage  
MICRONAS INTERMETALL  
11  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.3.1. Horizontal Resizer  
The horizontal resizer alters the sampling raster of the  
video signal, thereby varying the number of pixels in the  
active portion of the video line. The number of pixels per  
line is selectable within the range from 1056 to 32 in in-  
crements of 2 pixels. In the digital domain, this is done  
by lowpass filtering (VPX 3220 A only), followed by a  
programmable phase shift with an allpass filter.  
The VPX 3220 A is equipped with a battery of 32 FIR fil-  
ters to cover the four octave operating range of the resiz-  
er. Fig. 2–13 shows the magnitude response of the en-  
tire filter set. All filters exhibit a minimum stop band  
attenuation of at least 35 dB. Figures 2–11 and 2–12  
illustrate the performance of the filters in detail.  
Fig. 2–11: Resizer filters for the upper octave  
Filter selection is performed by an internal processor  
based on the selected resizing factor. This automated  
selection is optimized for best visual performance but  
can be fine tuned to satisfy different needs. It is also pos-  
sible to override the internal selection completely. In that  
2
case, filters are selected over I C bus.  
The Resize and Skew block performs programmable  
phase shifting with subpixel accuracy. In the luminance  
path, a linear interpolation filter provides a phase shift  
between 0 and 31/32 in steps of 1/32. This corresponds  
to an accuracy of 1.6 ns. The chrominance signal can be  
shifted between 0 and 3/4 in steps of 1/4. Figs. 2–14  
through 2–17 show the the transfer function of the two  
skew filters.  
Fig. 2–12: Resizer filters for the lower three octaves  
Fig. 2–13: Magnitude response of resizer filter bank (VPX 3220 A only)  
12  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
dB  
2
clocks  
2.5  
parameter: α, 32 steps  
parameter: α, 32 steps  
2.3  
1
2.1  
0
0, 1.0  
1.0  
–1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.9  
0.1  
0.8  
0.2  
0.1, 0.9  
0.7  
0.3  
–2  
–3  
–4  
0.6  
0.4  
0.5  
0.2, 0.8  
0.3, 0.7  
0.5  
0.4, 0.6  
–5  
–6  
–7  
–8  
0
MHz  
MHz  
0
2
4
6
8
10  
0
2
4
6
8
10  
Fig. 2–14: Luminance skew filter magnitude  
Fig. 2–15: Luminance skew filter group delay  
frequency response  
characteristics  
clocks  
dB  
2
5.0  
parameter: α, 4 steps  
parameter: α, 4 steps  
4.6  
1
4.2  
4.0  
3.8  
0
0, 1.0  
1.0  
–1  
0.8  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
3.4  
3.0  
2.6  
0.5  
0.2  
2.2  
2.0  
1.8  
0
0.25  
0.5  
1.4  
1
MHz  
MHz  
0
1
2
3
4
5
0
1
2
3
4
5
Fig. 2–16: Chrominance skew filter magnitude  
Fig. 2–17: Chrominance skew filter group delay  
frequency response  
characteristics  
2.3.2. Skew Correction  
niques: simple rounding, 1-bit error diffusion, or 2-bit er-  
ror diffusion.  
The VPX delivers orthogonal pixels with a fixed clock  
even in the case of non-broadcast signals with substan-  
tial horizontal jitter (VCRs, laser disks, certain portions  
of the 6 o’clock news...).  
Rounding  
1 bit  
This is achieved by highly accurate sync slicing com-  
bined with post correction. Immediately after the analog  
input is sampled, a horizontal sync slicer tracks the posi-  
tion of sync. This slicer evaluates, to within 1.6 ns., the  
skew between the sync edge and the edge of the pixel-  
clock. This value is passed as a skew on to the phase  
shift filter in the resizer. The skew is then treated as a  
fixed initial offset during the resizing operation.  
Err. Diff.  
2 bit  
Err. Diff.  
2
Contrast  
Select  
Brightness  
I C Registers  
Fig. 2–18: Contrast and brightness adjustment  
2.3.3. Contrast, Brightness, and Noise Shaping  
I
= c * I + b  
c = 0...63/32 in 64 steps  
b = –127...128 in 256 steps  
out  
in  
2.3.4. C C Upsampler  
b r  
A selectable gain and offset can be applied to the lumi-  
nance samples. Both the gain and offset factors can be  
set externally via I C serial control. Fig. 2–18 gives a  
functional description of this circuit. First, a gain is ap-  
plied, yielding a 10-bit luminance value. The conversion  
back to 8-bit is done using one of three selectable tech-  
Simple interpolation is used to convert the 4:2:2 video  
samples up to the 4:4:4 format. The CbCr samples are  
upsampled and then band limited with the linear phase  
FIR kernel. The passband of this filter covers the entire  
chroma spectrum present in analog composite and  
S-VHS signals.  
2
MICRONAS INTERMETALL  
13  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.4. Color Space Stage  
2.4.1. Color Space Selection  
Thecolorspacestage(Fig. 2–19)oftheVPX3220Aand  
VPX 3216 B optionally performs a series of conversions  
in the color space and component format. Generation of  
an alpha key signal, compression using quantized differ-  
ential coding, and inverse gamma correction are pro-  
grammable options.  
0
ȡ1  
1.403ȣ  
ȡY ȣ  
 
ȡRȣ  
G
+
B
Ȣ Ȥ  
ȧ1 *0.344 *0.714ȧ ȧ ȧ ȧ ȧ  
Cb  
1
Ȣ
1.773  
0
Cr  
Ȣ Ȥ  
Ȥ
An optional dematrix stage converts the YCbCr 4:4:4  
dataintoRGBusingthematrixequationsspecifiedinthe  
ITUR 601 recommendation (shown above). The satura-  
tion control in the color decoder is first selected to pro-  
Beginning with the 24-bit/pixel YCbCr input signal, two  
other component formats (4:2:2 and 4:1:1) can be gen-  
erated by simple downsampling of the chroma. Alterna-  
tively, the 24-bit YCbCr can be dematrixed to produce  
24-bit RGB. The RGB components can either be output  
directly or further quantized to yield other quantization  
formats such as 16-bit (R:5 G:6 B:5) or 15-bit (R:5 G:5  
B:5) The table below summarizes the supported output  
signal formats.  
duce C and C , the ITUR studio chrominance norm. In  
b
r
the dematrix computation, the full 8-bit resolution is  
maintained.  
Compo-  
nents  
Sampling  
Format  
Quantization  
Format  
Bits/  
Pixel  
YCbCr  
4:4:4  
4:2:2  
4:1:1  
4:4:4  
8 8 8  
8 8 8  
8 8 8  
8 8 8  
24  
16  
12  
8
(compressed)  
RGB  
4:4:4  
4:4:4  
4:4:4  
8 8 8  
5 6 5  
5 5 5  
24  
16  
15  
YCbCr  
24 bit / pixel  
4:4:4 !4:2:2  
YCbCr  
16 bit / pixel  
4:4:4 !4:1:1  
YCbCr  
12 bit / pixel  
S
e
Downsampling  
l
e
c
t
YCbCr  
Compression  
8 bit / pixel  
RGB  
Dematrix  
24 bit / pixel  
−1  
γ
RGB  
16 bit / pixel  
888 !565  
RGB  
888 !555  
15 bit / pixel  
Quantization  
Alpha Key  
Fig. 2–19: The color space stage  
14  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.4.2. Compression 24 ! 8 bits  
2.4.3. Inverse Gamma Correction  
Today, most broadcast video sources anticipate the dis-  
play on conventional CRTs by predistorting the RGB sig-  
nals with a gamma function (shown below)  
A variant of the time-honored DPCM coding technique  
is available to compress the 24-bit YCbCr 4:4:4 signal to  
an 8-bit per pixel signal. The technique combines differ-  
ential coding, companding, and adaptive subsampling  
of the chrominance. For the most natural image materi-  
al, the resulting bandwidth savings are purchased at a  
modest loss of amplitude resolution, which appears  
mostly as high frequency noise. Signals encoded in this  
form are readable by decoders, which are embedded in  
commercially available ICs (RAMDACs, back-end ana-  
log encoders, etc...).  
I’ = cIγ + I0 γ 2.2  
c, I = constants  
0
I Ů{R, G, B}...linear intensity  
However, for video processing in a computer, linear  
space (no gamma distortion) is often the representation  
of choice. The VPX provides two options for gamma re-  
moval. Both conform to the basic formula:  
/γ)  
(1  
I = I’  
Differenttechniquesareusedtocodetheluminanceand  
the two chroma signals. For the luma, the difference be-  
tween 8-bit luma value and a computed reference is  
companded to a 5-bit value for transmission. The com-  
puted reference is simply the 8-bit value of the nearest  
horizontal neighbor as it appears at the decoder. Each  
decoded luminance sample is therefore used as a pre-  
diction for the next pixel. This, in turn, requires that the  
encoder contains almost a complete decoder as a sub-  
set.  
These two γ–1 functions are realized as fixed entries in  
ROM. The first table compensates for a γ = 1.4. The se-  
cond table compensates for a γ = 2.2.  
2.4.4. Alpha Key  
A 1-bit threshold select signal can be generated for ev-  
ery pixel in the YCbCr 4:4:4 signal. Using six registers,  
an upper and a lower threshold is separately defined for  
each of the Y, C , and C components. These six register  
b
r
The chrominance samples are encoded in a similar  
fashion. The samples of each chrominance component  
are ordered into non-overlapping groups of four. For  
each group, one of the four samples is selected as a rep-  
resentative value. For each representative pixel, the rel-  
ative position and companded differential amplitude are  
computed for transmission. The position data is relative  
to the beginning of the group and is encoded as a 2-bit  
word. The difference between the 8-bit value of the sam-  
ple and the decoded reference value of the previous  
group is companded to a 5-bit word.  
values define a cube in YC C space. Equality is always  
b
r
included in comparison. For each pixel, an alpha bit is  
generated, which signals whether the pixel lies inside or  
outside this cube. A 3-point horizontal median filter is  
available to mitigate the effects of impulse noise.The al-  
pha signal is fed out through the alpha pin, which is in  
turn multiplexed with JTAG TDO function (see chapter  
5, sections 5.1. and 5.3.). When there is no JTAG activ-  
ity, the TDO pin is used for the alpha signal. Polarity of  
this signal (high active or low active) can be pro-  
2
grammed using I C.  
2.4.4.1. Alpha Key as Static Control Signal  
The alpha pin can also be used as a static control signal.  
When doing so, all comparators have to be set to their  
respective maximal or minimal values.  
YMIN = 00  
YMAX = FF  
UMIN = 80  
UMAX = 7F  
VMIN = 80  
VMAX = 7F  
In this case, the alpha signal will always be correct and  
theoutputstate(highorlow)canbeselectedthroughthe  
polarity bit (keyinv bit in FORMAT register).  
MICRONAS INTERMETALL  
15  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2.5. Output Pixel Format  
2.5.1. Output Ports  
The two 8-bit ports produce TTL level signals coded in  
binary offset. The ports can be tristated either via the  
output enable pin (OE) or via I C commands.  
The output formatting stage (Fig. 2–20) receives the vid-  
eo samples from the color component stage, performs  
the necessary bit packing, buffers the data for transmis-  
sion, and channels the output via one or both 8-bit ports.  
Data transfer can be either synchronous to an internally  
generated pixel clock or asynchronous with FIFO and  
status signals.  
2
2.5.2. Output Port Formats  
The format of output data depends on three parameters:  
the selected signal format, the number of active ports,  
and the output clock rate. For a given clock rate and  
number of active ports, a subset of these output formats  
is supported. Figures 2–21 and 2–22 illustrate this de-  
pendency. All single port transfers use port A only.  
Format section controls:  
– byte formats (bit order)  
– number of ports (A only or both A and B)  
– clock speed (single or double).  
The video samples (and alpha key) arrive from the color  
component stage at one of two pixel transport rates:  
13.5 MHz or 20.25 MHz. This clock rate is selectable via  
2
I C command. However, the use of the 13.5 MHz clock  
assumes that the resizer is reducing the number of ac-  
tive samples per line to a maximum of 768 pixels.  
1
Alpha Key  
1
1
Alpha  
Key  
8
8
8
8
Port 1  
OE  
24  
24  
24  
Video  
Samples  
Port 2  
Clock  
Generation  
2
PIXCLK  
I C reg  
Syncr / Asyncr  
FE  
HF  
Fig. 2–20: Output formatting stage  
16  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Single Clock  
(Port A only)  
Double Clock  
(Port A only)  
7
0
Y 7 ...... Y 0  
T Φ  
a
a
1
1
Y 4 ..... Y 0  
a
a
0, U 1, U 0  
a
a
T1  
T2  
T3  
U 7 ...... U 0  
Φ
a
a
YCbCr  
4:2:2  
(Mode 1)  
2
Y 4 ..... Y 0  
b
b
T
Φ
Φ
U 4, U 3, U 2  
YCbCr 4:1:1  
Compressed  
2
1
2
a
a
a
Y 7 ...... Y 0  
b b  
V 7 ...... V 0  
0, V 1 V 0  
Y 4 ..... Y 0  
a
a
a
a
c
c
Y 4 ..... Y 0  
V 4, V 3, V 2  
T4  
d
d
a
a
a
T Φ  
1
U 7 ...... U 0  
a
a
1
Y 7 ...... Y 0  
Φ
Φ
a
a
2
YCbCr  
4:2:2  
(Mode 2)  
V 7 ...... V 0  
T
2
a
a
1
Y 7 ...... Y 0  
b
b
Φ
2
Note: All single port transfers  
use Port A only  
α
Φ
Φ
R ..... R  
G , G  
7 6  
7
3
1
2
RGB  
5 5 5 + α  
G ... G  
B .... B  
7
5
3
3
Note: U, V ³ C , C  
b
r
R ..... R  
G ... G  
Φ
Φ
7
3
7
5
1
2
RGB  
5 6 5  
G ... G  
B .... B  
7 3  
4
2
Fig. 2–21: Byte formats for single port transfers  
Port A  
Port B  
Y 7 ...... Y 0  
U 7 U 6 V 7 V 6  
0...0  
a
a
a
a
a
a
1
2
T
T
T
T
Y 7 ...... Y 0  
U 5 U 4 V 5 V 4  
0...0  
0...0  
0...0  
b
b
a
a
a
a
YCbCr 4:1:1  
YCbCr 4:2:2  
Y 7 ...... Y 0  
U 3 U 2 V 3 V 2  
c
c
a
a
a
a
3
4
Y 7 ...... Y 0  
U 1 U 0 V 1 V 0  
d
d
a
a
a
a
Y 7 ...... Y 0  
U 7 ...... U 0  
a a  
a
a
1
2
T
T
Y 7 ...... Y 0  
V 7 ...... V 0  
b
b
a
a
α
R ....R  
G , G  
7
G ... G  
B .... B  
RGB 5 5 5 + α  
7
3
6
5
3
7
3
Single Clock  
R ....R  
G ... G  
G ... G  
B .... B  
7 3  
RGB 5 6 5  
7
3
7
5
4
2
Y 7 ...... Y 0  
U 7 ...... U 0  
a a  
a
a
Φ1  
Φ2  
YCbCr 4:4:4  
RGB 8 8 8  
V 7 ...... V 0  
U 7 ...... U 0  
a
a
a
a
G
G
.....  
.....  
G
G
R
.....  
.....  
R
B
7
0
Φ1  
Φ2  
7
0
B
7
0
7
0
Double Clock  
Fig. 2–22: Byte formats for double port transfers  
MICRONAS INTERMETALL  
17  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
3. Video Timing  
3.1.3. Odd/Even  
Information on whether the current field is odd or even,  
is supplied through the relationship between the edge  
(either leading or trailing) of VREF and level of HREF.  
This relationship is fixed and shown in Figs. 3–2 and  
3–3. The same information can be supplied to the  
FIELD/PREF pin. The polarity of the signal is program-  
mable.  
3.1. Video Reference Signals HREF and VREF  
The VPX generates two video reference signals; a hori-  
zontal reference (HREF) and a vertical reference  
(VREF). These two signals are generated by program-  
mable hardware and can be either free running or syn-  
chronous to the analog input video. The video line stan-  
dard (625/50 or 525/60) can be either inferred from the  
2
analog input video or forced via I C command from the  
3.2. Operational Modes  
external controller. The polarity of the two signals is indi-  
vidually selectable.  
The relationship between the video timing signals  
(HREF and VREF) and the analog input video is deter-  
mined by the selected operational mode. Three such  
modes are available: the Open Mode, the Forced  
Mode, and the Scan Mode. These modes are selected  
The circuitry which produces the VREF and HREF sig-  
nals has been designed to provide a stable, robust set  
of timing signals, even in the presence of erratic behav-  
ior at the analog video input. Depending on the selected  
operating mode, the period of the HREF and VREF sig-  
nals are guaranteed to remain within a fixed range.  
These video reference signals can therefore be used to  
synchronizetheexternalcomponentsofavideosubsys-  
tem (for example the neighboring ICs of a PC add-in  
card).  
2
via I C commands from the external controller.  
3.2.1. Open Mode  
In the Open Mode, both the HREF and the VREF signal  
track the analog video input. In the case of a change in  
the line standard (i.e. switching between the video input  
ports), HREF and VREF automatically synchronize to  
thenewinput. Whennovideoispresent, bothHREFand  
VREF float to the idling frequency of their respective  
PLLs. During changes in the video input (drop-out,  
switching between inputs), the performance of the  
HREF and VREF signals is not guaranteed.  
3.1.1. HREF  
Fig. 3–1 illustrates the timing of the HREF signal relative  
to the analog input. The active period of HREF is fixed  
and is always equal to the length of the active portion of  
a video signal. Therefore, regardless of the video line  
standard, HREF is active for 1056 periods of the 20.25  
MHz system clock. The total period of the HREF signal  
3.2.2. Forced Mode  
is expressed as Φ  
and depends on the video line  
nominal  
standard.  
In the Forced Mode, VREF and HREF follow the input  
video signal within certain tolerances. Dedicated hard-  
ware is used to monitor the frequency of the analog tim-  
ing. At the moment when the video signal exceeds the  
allowed timing tolerances, generation of the timing sig-  
nals is taken over by free running hardware. If the input  
video is still present, the VPX continually attempts to re-  
synchronize to it.  
Analog  
Video  
Input  
VPX  
Delay  
For each of the two video line standards (625/50 and  
525/60), there exist normative values for the period of  
both the HREF and VREF signals. Many analog input  
signalsdeviatesignificantlyfromthesenorms(example,  
consumer VCRs in their shuttle modes). In the Forced  
Mode, monitoring hardware is used to impose an upper  
boundary on the deviation. The maximum allowed hori-  
zontaldeviationis$24µs. Theupperboundaryforverti-  
cal deviation is $11% of the number of lines in the se-  
lected line standard (625/50: $35 lines, 525/60: $30  
lines)  
HREF  
52 µs  
Φ
nominal  
Fig. 3–1: HREF relative to Input Video  
3.1.2. VREF  
During the free-running operation, video output data is  
suppressed. If the VPX successfully resynchronizes,  
video output resumes. The specific method used to sup-  
press the output video depends on the transfer mode  
(synchronous or asynchronous).  
Figs. 3–2and33illustratethetimingoftheVREFsignal  
relative to field boundaries of the two TV standards. The  
length of the VREF pulse is programmable in the range  
between 2 and 9 video lines.  
18  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
625  
1
2
3
4
5
8
6
7
Input CVBS  
(50 Hz)  
3
4
5
6
7
9
10  
Input CVBS  
(60 Hz)  
HREF  
VREF  
541 t  
CLK20  
541 t  
CLK20  
2 .. 9 H  
> 1 t  
CLK20  
ODD/EVEN  
Fig. 3–2: VREF timing for ODD fields  
312  
265  
313  
266  
314  
315  
316  
269  
317  
270  
318  
319  
272  
320  
Input CVBS  
(50 Hz)  
267  
268  
271  
273  
Input CVBS  
(60 Hz)  
HREF  
VREF  
69 t  
CLK20  
69 t  
CLK20  
2 .. 9 H  
> 1 t  
CLK20  
ODD/EVEN  
Fig. 3–3: VREF timing for EVEN fields  
MICRONAS INTERMETALL  
19  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
3.2.3. Scan Mode  
free running sync generation. In such a case, it is likely  
that the internal sync generators are out of phase with  
the time base of the analog input. Maintaining a stable  
sync signal requires that the transition between time  
bases occur over several field periods.  
In the Scan Mode, the HREF and VREF signals are al-  
ways generated by free running hardware. They are  
therefore completely decoupled from the analog input.  
The output video data is always suppressed.  
The purpose of the Scan Mode is to allow the external  
controller to freely switch between the analog inputs  
while searching for the presence of a video signal. In-  
formation regarding the video (standard, source, etc...)  
Fig. 3–5 illustrates the transition between an internal  
free running vertical sync and a vertical sync of the ana-  
log input. The top two lines in this figure show the vertical  
time base of the analog input signal relative to that of the  
VREF generated from the free running clock. Both the  
analog input and free running syncs conform to the  
same line standard, but the field polarities are out of  
phase and the offset between field syncs (given by  
2
can be queried via I C read.  
In the Scan Mode, the video line standard of the VREF  
2
and HREF signals can be changed via I C command.  
The transition always occurs at the first frame boundary  
Φ
) is greater than the allowed 20 lines.  
2
error  
after the I C command is received. Fig. 3–4, below,  
demonstrates the behavior of the VREF signal during  
the transition from the 525/60 system to the 625/50 sys-  
tem (the width of the vertical reference pulse is exagger-  
ated for illustration).  
In the Forced Mode, vertical resynchronization takes  
place on field boundaries (as opposed to frame bound-  
aries) and begins immediately after the appearance of  
the analog input. In the first field after the appearance of  
this analog video, the period between VREF pulse is  
3.2.4. Transition Behavior  
shortened by 20 lines (Φ  
and the field polarity of the  
rec–)  
VREF is repeated. For each subsequent field, the phase  
During normal operation, the timing characteristics of  
the input video can change in response to a number of  
phenomena: power up/reset, unplugging of the video  
jack, switching between selected video inputs, etc... The  
effect of these changes on the video timing signals is de-  
pendent on the current operational mode. Table 3–1  
summarizes this dependency.  
error is reduced by Φ  
until the two signals are again  
rec–  
in phase.  
Because the resynchronization occurs on field bound-  
aries and because the internally generated sync can be  
either lengthened or shortened, the maximum value of  
Φ
is 313/2[157 lines. With a maximum correction  
error  
In the Forced Mode, it can often occur that the VPX must  
resynchronize to an analog input signal after a period in  
of 20 lines per field, field locking requires a maximum of  
8 fields.  
2
I C Command to  
Selected timing standard  
becomes active  
switch video timing standard  
time  
VREF  
f
f
f
f
f
odd  
odd  
even  
odd  
even  
20.0 ms  
16.683 ms  
40.0 ms  
33.367 ms  
(525/60)  
(625/50)  
Fig. 3–4: Transition between timing standards  
20  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Feven  
Fodd  
Input Signal :  
Vertical Timing  
Φfield  
Fodd  
Φerror  
Feven  
Fodd  
Free running  
vertical sync  
Φfield  
Fodd  
Fodd 1  
Feven 1 ...  
First frame after  
switch to tracking mode  
Φrec–  
2Φrec–  
Φfield − Φrec–  
Φerror Φrec–  
Feven 1  
Fodd 2  
Feven 2  
Φerror (3Φrec–  
)
2Φrec–  
Second frame after  
switch to tracking mode  
Φfield − Φrec–  
Fig. 3–5: Synchronization to analog input  
MICRONAS INTERMETALL  
21  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Table 3–1: Transition Behavior as a Function of Operating Mode  
Transition Behavior as a Function of Operating Mode  
Transition  
Mode  
Forced  
Behavior  
Power up / Reset  
VREF, HREF: comes up free running  
(video timing standard read from internal initialization tables)  
Output ports: suppressed  
Open,  
Scan  
not applicable  
video no video  
Open  
Forced  
Scan  
VREF, HREF: floats to steady state frequency of internal PLL  
Output ports: still enabled but with undefined data.  
VREF, HREF: switches immediately to free running  
Output ports: suppressed until video restored.  
no visible effect on any data or control signals  
– timing signals continue unchanged in free running mode,  
– data ports remain suppressed  
no video video  
Open  
VREF, HREF: track the input signal  
Forced  
No change in timing standard:  
VREF, HREF: slowly resynchronize. When resynchronization is complete,  
the timing control switches back from free running to monitored tracking  
Output ports: re-enabled.  
Change in the timing standard:  
– no visible effect on any data or control signals  
Scan  
VREF, HREF: no change, continues in free running mode  
Output ports: remain suppressed.  
video video  
(same timing standard)  
Open  
Forced  
VREF, HREF: track the input video immediately  
Output Ports: Data available immediately after color decoder locks to input.  
VREF, HREF: brief period in free running mode while the timing is  
resynchronized  
Output Ports: suppressed during resynchronization.  
Scan  
no outwardly visible effect on any data or control signals.  
– timing signals continue unchanged in free running mode,  
– data ports remain disabled.  
video video  
(different timing standard)  
Open  
Forced  
Scan  
same as above  
VREF, HREF: switches immediately to free running  
Output ports: suppressed  
same as the case no video video  
22  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
3.3. Windowing the Video Field  
from field #2. For example: On an interlace monitor, line  
#23 from field #1 is displayed directly above line #23  
For each input video field, two non-overlapping windows  
can be defined. The dimensions of these two windows  
are supplied via I C commands. The presence of two  
windows allows separate processing parameters such  
as filter responses and the number of pixels per line to  
be selected.  
from field #2. There are a few restrictions to the vertical  
definition of the windows. Windows must not overlap  
vertically, but can be adjacent. Windows must begin af-  
ter line #6 (i.e. line #7 is the first one allowed) of their re-  
spective fields. The number of lines out cannot be great-  
er than the number of lines in (no vertical zooming). The  
combined height of the two windows cannot exceed the  
number of lines in the input field.  
2
External control over the dimensions of the windows is  
2
performed by I C writes to a window definition table  
1
2
1
2
1
2
264  
265  
(WinDefTab). For each window, a corresponding Win-  
2
DefTab is defined in a table of I C registers. Data written  
D
D
D
D
D
D
to these tables does not become active until the the cor-  
respondinglatchbitissetinacontrolregister. A2-bitflag  
specifies the field polarity over which the window is ac-  
tive.  
5
6
5
6
5
6
268  
269  
7
8
7
8
7
8
270  
271  
D
D
D
D
D
D
Vertically, ascanbeseeninFig. 3–6, eachwindowisde-  
fined by a beginning line, a number of lines to be read-in,  
and a number of lines to be output. Each of these values  
is specified in units of video lines.  
15  
16  
17  
15  
16  
17  
15  
16  
17  
278  
279  
280  
18  
18  
18  
281  
D
D
D
The option, to separately specify the number of input  
lines and the number of output lines, enables vertical  
compression. In the VPX, vertical compression is per-  
formed via simple line dropping. A nearest neighbor al-  
gorithm selects the subset of the lines for output. The  
presence of a valid line is signaled by a reference signal.  
The specific signal which is used for the blanking de-  
pends on the transfer mode (synchronous/asynchro-  
nous).  
D
D
D
257  
257  
257  
520  
521  
522  
258  
259  
260  
258  
259  
260  
258  
259  
260  
523  
524  
525  
261  
262  
261  
262  
261  
262  
263  
263  
The numbering of the lines in a field of interlace video is  
dependent on the line standard. Figs. 3–7 and 3–8 illus-  
trate the mapping of the window dimensions to the actu-  
al video lines. The indices on the left are the line num-  
bers relative to the beginning of the frame. The indices  
on the right show the numbering used by the VPX. As  
seen here, the vertical boundaries of windows are de-  
fined relative to the field boundary. Spatially, the lines  
from field #1 are displayed above identically numbered  
Field 1  
Field 2  
Fig. 3–7: Mapping for 525/60 line systems  
1
1
2
1
2
314  
315  
2
D
D
D
D
D
D
5
6
5
6
5
6
318  
319  
7
8
7
8
7
8
320  
321  
Line 1  
D
D
D
D
D
D
begin  
22  
23  
24  
25  
22  
23  
24  
25  
22  
23  
24  
25  
335  
336  
337  
# lines in,  
# lines out  
Window 1  
begin  
338  
D
D
D
D
D
D
308  
309  
308  
308  
309  
310  
311  
621  
622  
623  
624  
625  
309  
310  
311  
310  
311  
312  
# lines in,  
# lines out  
Window 2  
312  
313  
312  
313  
Field 1  
Field 2  
Fig. 3–6: Vertical dimensions of windows  
Fig. 3–8: Mapping for 625/50 line systems  
MICRONAS INTERMETALL  
23  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Horizontally, the windows are defined by a starting point  
and a length. The starting point and the length are both  
givenrelativetothenumberofpixelsintheactiveportion  
of the line (Fig. 3–9).  
In both modes, data arrives at the output FIFO in an  
uninterruptedburstwithafixedtransportrate. Thetrans-  
portrateisselectedbytheexternalcontrollertobeeither  
13.5 MHz or 20.25 MHz. The duration of the burst is  
measured in clock periods of the transport clock and is  
equal to the number of pixels per output line.  
There are some restrictions in the horizontal window  
definition. The total number of active pixels (NPixel)  
mustbeanevennumber. ThemaximumvalueforNPixel  
depends on the selected transport clock. For a  
20.25 MHz transport clock, the maximum value for  
NPixelis1056. Fora13.5MHztransportclock, themaxi-  
mumvalueis800. HLengthshouldalsobeanevennum-  
ber. Obviously, the sum of HBegin and HLength may not  
be greater than NPixel.  
Thecontrolsignalsonthethreepins:PIXCLK, FE/VACT,  
and HF/FSY, LLC regulate the data transfer. Their func-  
tion is dependent on the transfer mode (sync., or  
async.). For the synchronous mode, the signals at these  
pins are PIXCLK (internal), VACT, and LLC (respective-  
ly). For the asynchronous mode, the signals at these  
pins are PIXCLK (external), FE, and HF.  
Window boundaries are defined by writing the dimen-  
sions into the associated WinDefTab and then setting  
the corresponding latch bit in the control word. Window  
definition data is latched at the beginning of the next vid-  
eo frame. Once the WinDefTab data has been latched,  
the latch bit in the control word is reset. By polling the  
info-word, the external controller can know when the  
window boundary data has been read. Multiple window  
definitions within a single frame time are ignored and  
can lead to error.  
3.4.1. Synchronous Output  
In the synchronous transfer mode, data is transferred  
synchronous to an internally generated PIXCLK. The  
frequency of the PIXCLK is equal to the selected trans-  
port rate. In the single clock mode, data can be latched  
onto the falling edge of PIXCLK. In double clock mode,  
output data must be latched onto both clock edges. The  
double clock mode is supported for the 13.5 MHz trans-  
port rate only. The available transfer bandwidths at the  
ports are therefore 13.5 MHz, 20.25 MHz (single clock),  
and 27.0 MHz (double clock).  
52.15 µsec  
64 µsec  
The video data is output in a continuous stream. The  
PIXCLK is free running. The VACT signal flags the pres-  
ence of valid output data. Fig. 3–10 illustrates the rela-  
tionship between the video port data, VACT, and  
PIXCLK. Whenever a line of video data should be sup-  
pressed (line dropping, switching between analog in-  
puts), it is done by suppression of the VACT signal.  
Window  
H Begin  
H Length  
N Pixel  
Fig. 3–11 illustrates the temporal relationship between  
the VACT and the HREF signals as a function of the  
number of pixels per output line and the horizontal di-  
mensions of the window. The duration of the active peri-  
od of the HREF (Fig. 3–11, points B, D) is fixed. Table  
3–2 lists the positions of the VACT edges (points A, C)  
relative to those of HREF.  
Fig. 3–9: Horizontal Dimensions of Sampling Window  
3.4. Video Data Transfer  
The LLC signal is provided as an additional support for  
the 13.5 MHz single clock mode. The LLC provides a 2x  
PIXCLKsignal (27 MHz) for interface to external compo-  
nents which rely on the Philips transfer protocols. In the  
single clock 13.5 MHz mode, the pixel data can be  
latched onto alternate rising edges of the LLC.  
The VPX supports two methods of transfer for the  
sampled video data: a synchronous mode and an  
asynchronous mode. Both modes support all the byte  
formats shown in Figs. 2–21 and 2–22, as well as both  
alternative transport rates.  
24  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Table 3–2: Relationship of the HREF to the VACT in synchronous transfer mode  
Resizing  
Windowing  
Timing of rising edges  
Timing of falling edges  
20.25 MHz Transport Rate  
npix/line = 1056  
npix/line < 1056  
A = B  
A > B  
A > B  
C = D  
C = D  
none  
npix/line v 1056  
Window begin > 0  
Window end < 1055  
C < D  
13.5 MHz Transport Rate  
npix/line = 704  
A = B  
A = B  
A > B  
A > B  
C = D  
C > D  
C = D  
704 < npix/line v768  
npix/line < 704  
none  
npix/line v 704  
Window begin > 0  
Window end < 1055  
C < D  
Port  
D
D
D
D
D
D
n
1
2
n–3  
n–2  
n–1  
Data  
VACT  
3
2
1
0
3
2
1
0
PIXCLK  
(single clock)  
PIXCLK  
(double clock)  
Fig. 3–10: Timing for synchronous output  
Port  
D
D
D
D
D
D
n
1
2
n–3  
n–2  
n–1  
Data  
PIXCLK  
(single edge.)  
VACT  
HREF  
A
B
C
D
Fig. 3–11: Relation between HREF and VACT signals  
MICRONAS INTERMETALL  
25  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
3.4.2. Asynchronous Output  
Intheasynchronousmode, dataisstrobedfromtheVPX  
by an external clock supplied to the PIXCLK pin. A  
32-pixel FIFO buffers the video samples for transfer.  
Two FIFO status signals (HF and FE) arbitrate the trans-  
fer. The ‘half full’ signal (HF) indicates that the number  
of samples present in the FIFO has exceeded some pro-  
grammable threshold (defined over the range of 0³31).  
The FE signal indicates that the FIFO is empty.  
Some implementations of the asynchronous mode re-  
quire a more detailed understanding of the rates at  
which the data is written to and read from the 32 pixel  
output FIFO. On the input side of the FIFO, sampled vid-  
eo data from the VPX-core arrives as a continuous burst  
with a pixel rate equal to that of the transport clock  
(20 MHz or 13 MHz burst rate).  
On the output side, the rate at which the FIFO is emptied  
is dependent on the speed of the PIXCLK and the se-  
lected clocking mode. In the asynchronous mode, the  
PIXCLK is always a single-edge clock.  
FIFO  
7
8
7
7
6
6
5
2
1
1
0
1
2
3
2
2
1
1
0
fullness level  
PIXCLK=2*internal  
transfer rate  
HF  
if full-level is 8  
FE  
Port Data  
Fig. 3–12: Timing for Asynchronous Output  
26  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
4. Serial Interface A  
4.1. Overview  
SCL and SDA float. External pull-up devices must be  
adapted to fulfill the required rise time for the fast-mode.  
For bus loads up to 200 pF, the pull-up device could be  
a resistor; for bus loads between 200 pF and 400 pF, the  
pull-up device can be a current source (3 mA max.) or  
Communication between the VPX and the external con-  
troller is performed serially via the I C-bus (pins SCL  
a switched resistor circuit.  
2
and SDA).  
4.3. Reset and IC Address Selection  
There are basically two classes of registers in the VPX.  
The first class of registers are the directly addressable  
I C registers. These are registers embedded directly in  
the hardware. Data written to these registers is inter-  
preted combinatorially directly by the hardware (as in  
any register driven state machine). These registers are  
all a maximum of 8 bits wide.  
The VPX can respond to one of two possible chip ad-  
dresses. The address selection is made at reset by an  
externally supplied level on the PREF pin. This level is  
latched onto the inactive going edge of RES.  
2
4.4. Protocol Description  
The second class of registers are the ‘FP RAM regis-  
ters’: the RAM memory of the on-board microcontroller  
(INTERMETALL’s Fast Processor). Data written into this  
class of registers is read and interpreted by the FP’s mi-  
cro-code. Internally, these registers are 12 bits wide.  
Once the reset is complete, the IC is selected by assert-  
ing a the device address in the address part of a I C  
2
transmission. A device address pair is defined as a write  
address (86 hex or 8e hex) and a read address (87 hex  
or8fhex). Writingisdonebysendingthedevicewritead-  
dress first, followed by the subaddress byte and one or  
two data bytes. For reading, the read address has to be  
transmitted first by sending the device write address (86  
hex or 8e hex), followed by the subaddress, a second  
start condition with the device read address (87 hex or  
8f hex) and reading one or two bytes of data.  
2
Communications with these registers requires I C pack-  
ets with 16-bit data payloads.  
2
Communication with both classes of registers (I C and  
2
2
FP RAM) is performed via I C. But the format of the I C  
telegram depends on which type of register is being ad-  
dressed.  
2
The I C-bus device addresses are  
2
4.2. I C-Bus Interface  
A6  
1
A5  
0
A4  
0
A3  
0
A2  
0
A1  
1
A0  
1
R/W  
1/0  
hex  
2
2
The VPX has an I C-bus slave interface and uses I C  
clock synchronization to slow down the interface if re-  
86/87  
8e/8f  
2
quired. The I C-bus interface uses one level of subad-  
1
0
0
0
1
1
1
1/0  
dressing. First, the bus address selects the IC, then a  
subaddress selects one of the internal registers.  
The registers of the VPX have 8 or 16-bit data size;  
16-bit registers are accessed by reading/writing two  
8-bit data bytes with the high byte first. The order of the  
bits in a data/address/subaddress byte is always MSB  
first.  
2
2
The I C interface of the VPX conforms to the I C-bus  
specification for the fast-mode. It incorporates slope  
control for the falling edges of the SDA and SCL signals.  
If the power supply of the VPX is switched off, both pins  
Write to Hardware Control Registers  
S
1 0 0 0 0 1 1 0  
ACK  
sub-addr  
ACK  
send data-byte  
ACK  
NAK  
P
P
Read from Hardware Control Registers  
S
1 0 0 0 0 1 1 0  
ACK  
sub-addr  
ACK  
S
1 0 0 0 0 1 1 1  
ACK  
receive data-byte  
2
Note: S =  
I C-Bus Start Condition  
2
P =  
I C-Bus Stop Condition  
ACK = Acknowledge-Bit (active low on SDA from receiving device)  
NAK = No Acknowledge-Bit (inactive high on SDA from receiving device)  
Before accessing the address or data registers for the FP interface (FPRD, FPWR, FPDAT), make sure that the busy  
bit of FP is cleared (FPSTA).  
MICRONAS INTERMETALL  
27  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
Figure 4–1 shows I C bus protocols for read and write  
operations of the interface. The read operation requires  
an extra start condition after the subaddress and repeti-  
tion of the read chip address, followed by the read data  
bytes. The following protocol examples use device ad-  
dress hex 86/87.  
1
0
SDA  
S
P
SCL  
2
Fig. 4–1: I C bus protocol  
(MSB first)  
2
FP  
I C  
4.5. FP Control and Status Registers  
subaddress  
space  
subaddress  
space  
2
In addition to the I C subaddress space, a second class  
0
0
of address space is defined for direct communication  
with the on-board µ−controller. These registers are ac-  
2
cessed via indirect addressing through I C registers  
(see Fig. 4–2).  
Read Address  
Write Address  
FP  
Data  
Due to the internal architecture of the VPX 3220 A, the  
IC cannot react immediately to all I C requests which in-  
µ controller  
2
Status  
teract with the embedded processor (FP). The maxi-  
mum response timing is approx. 20 ms (one TV field) for  
the FP processor if TV standard switching is active. If the  
addressed processor is not ready for further transmis-  
2
sions on the I C bus, the clock line SCL is pulled low.  
ff  
ff  
This puts the current transmission into a wait state. After  
a certain period of time, the VPX releases the clock and  
the interrupted transmission is carried on.  
Fig. 4–2: FP register addressing  
Write to FP  
S
S
1 0 0 0 0 1 1 0  
1 0 0 0 0 1 1 0  
ACK  
ACK  
FPWR  
FPDAT  
ACK send FP-address- ACK send FP-address- ACK  
P
P
byte high  
byte low  
ACK  
send data-byte  
high  
ACK  
send data-byte  
low  
ACK  
Read from FP  
S
S
1 0 0 0 0 1 1 0  
ACK  
ACK  
FPRD  
ACK send FP-address- ACK send FP-address- ACK  
byte high byte low  
P
1 0 0 0 0 1 1 0  
FPDAT  
ACK  
S
1 0 0 0 0 1 1 1  
ACK receive data-byte ACK receive data-byte NAK  
high low  
P
28  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
2
4.6. I C Initialization  
4.7. I C Control and Status Registers  
The following tables give definitions for the VPX control  
In order to completely specify the operational mode of  
the VPX, appropriate values must be loaded into both  
the I C and FP registers. For both the I C and FP regis-  
ters, this data is loaded from internal ROM. The length  
of this set-up procedure is approximately 200 µsec after  
the leading edge of RES#.  
and status registers. The number of bits indicated for  
each register in the table is the number of bits imple-  
mented in the hardware, i.e. a 9-bit register must always  
be accessed using two data bytes, but the 7 MSB will be  
don’t care on write operations and 0 on read operations.  
Write registers that can be read back are indicated in the  
following table.  
2
2
Initialization is basically a two step procedure: first, the  
2
I C registers are initialized, and afterwards, the FP runs  
A hardware reset initializes all control registers to 0. The  
automatic chip initialization loads a selected set of val-  
ues from one of four internal ROM tables.  
its own initialization routine. There are two different set-  
ups for the I C initialization available. The selection is  
made with the pin signal PIXCLK. On the active inac-  
tive edge of the RES# signal, the state of the PIXCLK pin  
is latched and used as an index to the selected ROM  
table.  
2
The mnemonics used in the Intermetall VPX demo soft-  
ware are given in the last column.  
2
I C-Register Table  
2
I C Reg.  
Number  
of Bits  
Mode  
Function  
Name  
Address  
Chip Identification  
00  
8
r
r
Manufacture ID in accordance with  
I2C_ID0  
JEDEC Solid State Products Engineering Council, Washington DC  
INTERMETALL Code EC  
hex  
01 / 02  
8 / 8  
16-bit Part number (01: LSBs, 02: MSBs)  
I2C_ID1,  
I2C_ID2  
VPX 3220 A  
VPX 3216 B  
VPX 3214 C  
4680  
4260  
4280  
hex  
hex  
hex  
Fast Processor (FP)  
26  
12 / 16  
wd  
wd  
FP read address  
FPRD  
addr  
bit [7:0] :  
address  
bit [15:8] :  
reserved (must be set to zero)  
27  
12 / 16  
FP write address  
FPWR  
addr  
bit [7:0] :  
address  
reserved (must be set to zero)  
bit [15:8] :  
Registers 26  
and 27  
use the same hardware by subaddressing.  
hex  
hex  
28  
12 / 16  
w
FP data  
bit [11:0] :  
bit [15:12] :  
FP status  
bit [0] :  
FPDAT  
data  
data  
reserved (must be set to zero)  
29  
3 / 8  
r
FPSTA  
write request  
read request  
busy  
bit [1] :  
bit [2] :  
bit [7:3] :  
reserved (return ones)  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
29  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
I C-Register Table  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Analog Front-end  
33  
8
w
Input Selector Luma ADC:  
bit [1:0] 00 VIN3  
01 VIN2  
AFEND  
vis  
10 VIN1  
11  
reserved (no luma input selected)  
Input Selector Chroma ADC:  
cs  
bit [2]  
0/1 select VIN1/CIN  
Clamping Modes:  
dclc  
bit [3]  
0/1 clamp on/off for chroma ADC  
bit [5:4] reserved (must be set to zero)  
bit [6]  
bit [7]  
1
1
stand-by luma ADC  
stand-by chroma ADC  
Href, Vref  
D8  
8
w
HREF and VREF control  
REFSIG  
bit [0] : reserved (must be set to zero)  
bit [1] : HREF Polarity  
hpol  
0
1
active high  
active low  
bit [2] : VREF Polarity  
vpol  
0
1
active high  
active low  
bit [5:3] : VREF Pulse width. binary value + 2  
vlen  
0 0 0  
1 1 1  
pulse width = 2  
pulse width = 9  
bit [6] : PREF select  
prefsel  
prefpol  
0
1
Odd/Even flag  
PIntr (programmable interrupt signal)  
bit [7] : PREF polarity  
0
1
polarity unchanged  
invert polarity  
Chroma Processing  
20  
2 / 8  
w
IF compensation:  
IFC  
bit [1:0] 00 12 dB  
01 reserved  
10  
11  
6 dB/oct  
0 dB/oct  
bit [7:2]  
reserved (must be set to zero)  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
30  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
I C-Register Table  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Color Space Converter  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
8
8
8
8
8
8
8
8
w
w
w
w
w
w
w
w
Alpha Keyer: Y  
(VPX 3220 A and VPX 3216 B)  
(VPX 3220 A and VPX 3216 B)  
(VPX 3220 A and VPX 3216 B)  
(VPX 3220 A and VPX 3216 B)  
(VPX 3220 A and VPX 3216 B)  
(VPX 3220 A and VPX 3216 B)  
YMAX  
ymax  
max  
bit [7:0] : Y  
(Integer)  
max  
Alpha Keyer: Y  
YMIN  
min  
bit [7:0] : Y  
(Integer)  
ymin  
min  
Alpha Keyer: C  
UMAX  
umax  
b max  
bit [7:0] : C  
(2’s complement)  
b max  
Alpha Keyer: C  
UMIN  
b min  
bit [7:0] : C  
(2’s complement)  
umin  
b min  
Alpha Keyer: C  
VMAX  
vmax  
r max  
bit [7:0] : C  
(2’s complement)  
r max  
Alpha Keyer: C  
VMIN  
r min  
bit [7:0] : C  
(2’s complement)  
vmin  
r min  
Contrast Brightness 1  
CBM_BRI  
brightness  
CBM_CON  
contrast  
bit [7:0] : Brightness Level (binary offset)  
Contrast Brightness 2  
bit [5:0] : Contrast Level .... linear scale factor for luminance  
[5]  
[4:0]  
integer part  
fractional part  
default = 1.0  
bit [7:6] : Noise Shaping .... Control for 10 bit to 8 bit conversion  
noise  
0 0 :  
0 1 :  
1 0 :  
1 1 :  
9-bit to 8-bit via1-bit rounding  
9-bit to 8-bit via truncation  
9-bit to 8-bit via 1-bit error diffusion  
10-bit to 8-bit via 2-bit error diffusion  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
31  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
I C-Register Table  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Color Space Converter  
E8  
8
w
Format Selection, Alpha Keyer and Contrast Brightness  
bit [7, 5, 2:0] : unused in VPX 3214 C  
FORMAT  
format  
bit [2:0] : Format Selector:  
000 YUV 4:2:2, YUV 4:2:2 ITUR  
001 YUV 4:4:4,  
010 YUV 4:1:1  
011 YUV 4:1:1 DPCM  
100 RGB 888 – 24 bit  
101 RGB 888 (Invers Gamma) – 24 bit  
110 RGB 565 (Invers Gamma) – 16 bit  
111 RGB 555 (Invers Gamma) + Alpha Key – 15+1 bit  
bit [3] : Select data format of C C video output data stream  
twosq  
clamp  
b,  
r
0
1
2’s complement (–128 ... 127)  
binary offset (0 ... 255)  
bit [4] : Contrast Brightness: Clamping Level  
0
1
clamping level = 32,  
clamping level = 16  
bit [5] : Gamma: Round Dither Enable (=1)  
bit [6] : Alpha Key Polarity  
dither  
keyinv  
0
1
active high  
active low  
bit [6] : Programmable output pin in VPX 3214 C, connected to TDO  
bit [7] : Alpha Key Median Filter  
median  
0
1
Median Filter is disable  
Median Filter is enable  
EA  
8
w
Diverse settings  
bit [2:0] :  
reserved (must be set to zero).  
connect LLC2 to ALPHA/TDO pin  
LLC2 polarity  
bit [3] :  
bit [4] :  
bit [5] :  
0
1
Output FIFO Pointer Reset with posedge of VACT  
Output FIFO Pointer Reset with VRF=0.  
FFRES  
intern  
bit [7:6] :  
reserved (must be set to zero)  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
32  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
I C-Register Table  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Output Multiplexer  
F0  
8
w
Output FIFO  
OFIFO  
FIFO Control: (only available in Asynchronous Mode)  
bit [4:0] : FIFO Flag – Half Full Level (interface signal HF)  
hfull  
shuf  
bit [7:5] : Bus Shuffler  
000 Out[23:0] = In[23:0]  
001,  
010 Out[23:0] = In[7:0, 23:8]  
011 Out[23:0] = In[15:0, 23:16]  
100 Out[23:0] = In[15:8, 23:16, 7:0]  
101,  
110 Out[23:0] = In[7:0, 15:8, 23:16]  
111 Out[23:0] = In[23:16, 7:0, 15:8]  
Meaning:  
In[23:0] : Data from Color Space Stage  
Out[23:0] : Data to Output FIFO  
F1  
8
w
Output Multiplexer  
OMUX  
mode  
vact  
bit [1:0]: Port Mode  
00 parallel_out, ’single clock’ Port A = FifoOut[23:16]  
Port B = FifoOut[15:8];  
01 ’double clock’ (only available with a transport rate of 13.5 MHz)  
Port A = FifoOut[23:16] / FifoOut[15:8],  
Port B = FifoOut[7:0];  
10,11 reserved  
vact  
bit [2] :  
ASYNCHRONOUS MODE: Clock Slope (if Clock Source = external)  
slope  
1
0
negative edge triggered  
positive edge triggered.  
SYNCHRONOUS MODE: Data Reset  
set output ports to 0 during VACT(/FE#) = 0.  
1
vact  
bit [3] :  
Clock Source  
clkio  
1
0
Internal Source (Synchronous Mode) – PIXCLK is output  
External Mode (Asynchronous Mode) – PIXCLK is input  
direct  
bit [5:4] : delay signal ’active video’ (signal FE) with respect to video output data.  
Only available in Synchronous Mode.  
00 no delay (default)  
delay  
01 one clock cycle  
10 two clock cycles  
11  
three clock cycles  
direct  
bit [6] :  
bit [7] :  
1
disable FIFO-Empty FE low pass filter  
Only available in Asynchronous Mode.  
1
enable HLEN counter  
hlen  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
33  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
I C-Register Table  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Output Multiplexer  
F2  
8
w
Output Enable  
OENA  
aen  
direct  
bit [0] :  
bit [1] :  
1
0
Enable Video Port A  
Disable / High Impedance Mode  
direct  
1
0
Enable Video Port B  
Disable / High Impedance Mode  
ben  
direct  
direct  
bit [2] : reserved (must be set to zero)  
bit [3] :  
bit [4] :  
bit [5] :  
1
0
Enable Controls (HREF, VREF, PREF, HF#, FE#, ALPHA)  
Disable / High Impedance Mode  
zen  
direct  
direct  
1
1
Enable LLC-Clock to HF-Pad  
(if transport rate is 13 MHz and internal clock source is used)  
llcen  
Enable FSY-Data to HF-Pad  
(if transport rate is 20 MHz and internal clock source is used)  
fsyen  
hvsynbyq  
direct  
direct  
w
bit [6] :  
bit [7] :  
1
1
Synchronize HREF, VREF with PIXCLK  
disable OEQ pin function  
F8  
6 / 8  
Pad Driver Strength – TTL Output Pads Typ A  
DRIVER_A  
stra1  
bit [2:0] :  
bit [5:3] :  
bit [7:6] :  
Driver strength of Port A[7:0]  
Driver strength of PIXCLK, HF# and FE#  
stra2  
additional PIXCLK driver strength  
strength = bit [5:3] | {bit [7:6], 0}  
F9  
6 / 8  
w
Pad Driver Strength – TTL Output Pads Typ B  
DRIVER_B  
strb1  
bit [2:0] :  
bit [5:3] :  
bit [7:6] :  
Driver strength of Port B[7:0] and C[7:0]  
Driver strength of HREF, VREF, PREF and ALPHA  
reserved (must be set to zero)  
strb2  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
34  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
4.8. FP Control and Status Registers  
Warning: The FP subaddress space accesses the RAM  
of the fast processor. It is therefore very sensitive to  
unintended access. In particular, the user must be sure  
not to overwrite reserved areas.  
The tables below list the registers which are currently  
defined. Electrically, all of the registers in the FP subad-  
dress space are both readable and writeable. Function-  
ally, they are intended for either read or write (as shown  
in the ‘mode’ column)  
FP-Register Table  
FP Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
WinLoadTab1  
Load Table for Window #1  
88  
12  
w
A
Vertical Begin  
bit [8:0] :  
Vertical Begin (field line number)  
vbeg1  
minimum line number ³ 7  
maximum line number ³ determined by current TV line standard  
bit [11:9]  
sharpness control .... regulates the subjective sharpness  
by selecting filters to admitting horizontal alias / blurring  
1 1 1  
1 1 0  
1 0 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
maximum blurring  
.....  
more blurring  
default filter setting  
more aliasing  
.....  
maximum aliasing  
1 0 0  
set filters for pass-thru  
89  
12  
w
Vertical Lines In  
bit [8:0] :  
Number of input lines  
vlinei1  
bit [9]  
reserved (must be set to zero)  
field flag  
bit [11:10] :  
1 1 Window disabled  
1 0 Window enabled in ODD fields only  
0 1 Window enabled in EVEN fields only  
0 0 Window enabled in both fields  
8A  
8B  
8C  
8D  
12  
12  
12  
12  
w
w
w
w
Vertical Lines Out  
bit [8:0] :  
Number of output lines  
vlineo1  
hbeg1  
hlen1  
bit [11:9]  
reserved (must be set to zero)  
Horizontal Begin  
bit [10:0] :  
bit [11]  
Horizontal start of window  
reserved (must be set to zero)  
Horizontal Length  
bit [10:0] :  
bit [11]  
Horizontal length of window  
reserved (must be set to zero)  
Number of Pixels  
bit [10:0] :  
bit [11]  
Number of active pixels per line  
reserved (must be set to zero)  
npix1  
The control register modes are  
– w: write/read register  
– r: read-only register  
– A: register or register field has function only in VPX 3220 A  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
35  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
FP-Register Table  
FP Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
WinLoadTab2  
Load Table for Window #2  
8E  
12  
w
A
Vertical Begin  
bit [8:0] :  
Vertical Begin (field line number)  
vbeg2  
minimum line number ³ 7  
maximum line number ³ determined by current TV line standard  
bit [11:9]  
sharpness control ...regulates the subjective sharpness  
by selecting filters to admitting horizontal alias / blurring  
1 1 1  
1 1 0  
1 0 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
maximum blurring  
.....  
more blurring  
default filter setting  
more aliasing  
.....  
maximum aliasing  
1 0 0  
set filters for pass-thru  
8F  
12  
w
Vertical Lines In  
bit [8:0] :  
Number of input lines  
vlinei2  
bit [9]  
reserved (must be set to zero)  
field flag  
bit [11:10] :  
1 1 Window disabled  
1 0 Window enabled in ODD fields only  
0 1 Window enabled in EVEN fields only  
0 0 Window enabled in both fields  
90  
91  
92  
93  
12  
12  
12  
12  
w
w
w
w
Vertical Lines Out  
bit [8:0] :  
Number of output lines  
vlineo2  
hbeg2  
hlen2  
bit [11:9]  
reserved (must be set to zero)  
Horizontal Begin  
bit [10:0] :  
bit [11]  
Horizontal start of window  
reserved (must be set to zero)  
Horizontal Length  
bit [10:0] :  
bit [11]  
Horizontal length of window  
reserved (must be set to zero)  
Number of Pixels  
bit [10:0] :  
bit [11]  
Number of active pixels per line  
reserved (must be set to zero)  
npix2  
The control register modes are  
– w: write/read register  
– r: read-only register  
– A: register or register field has function only in VPX 3220 A  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
36  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
FP-Register Table  
FP Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Control Word  
F0  
12  
w r  
w
Register for control and latching  
CMDWD  
settr  
bit [0] :  
Transport Rate  
0
1
20.25 MHz.  
13.5 MHz.  
w
w
bit [1] :  
Latch Transport Rate  
lattr  
1
latch (reset automatically)  
bit [3:2] :  
Sync timing mode  
settm  
0 0  
0 1  
1 x  
Open  
Forced  
Scan  
w
w
bit [4] :  
bit [5] :  
bit [6] :  
bit[8] :  
Latch Timing Mode  
lattm  
1
latch (reset automatically)  
Latch Window #1  
latwin1  
latwin2  
disoef  
1
latch (reset automatically)  
w
Latch Window #2  
1
latch (reset automatically)  
wr  
Odd/Even mode  
0
1
toggles always  
follows odd/even property of input video signal  
bit [11:9]  
reserved (must be set to zero)  
InfoWord  
Info Word  
F1  
12  
r
Internal status register do not overwrite  
bit [2:0] :  
bit [5:3] :  
reserved  
Current active TV standard  
acttv  
actls  
x x x  
see table of 3-bit code of TV standards  
bit [6] :  
Line Standard of currently active TV standard  
0
1
525 / 60  
625 / 50  
bit [11:7]  
reserved  
The control register modes are  
– w: write/read register  
– r: read-only register  
– A: register or register field has function only in VPX 3220 A  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
37  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
The FP RAM locations which manage the TV coding  
standard (selection/recognition) all use a 3-bit code for  
the eight supported standards. This code (shown below)  
is assumed in the register descriptions which follow.  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
PAL B,G,H,I  
NTSC M  
SECAM  
NTSC 44  
PAL M  
PAL N  
PAL 60  
NTSC Comb  
(625/50)  
(525/60)  
(625/50)  
(525/60)  
(525/60)  
(625/50)  
(525/60)  
(525/60)  
FP-Register Table  
FP Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
TVstndWr  
TV Standard – Write  
F2  
12  
w
writeable control register for managing the TV coding standard  
bit [0] :  
Manual / Automatic Select  
mansel  
0
1
Automatic  
Manual  
bit [3:1] :  
bit [4] :  
bit [5] :  
TV standard for manual selection  
x x x see table above  
settv  
Latch the TV standard manually  
lattv  
1
latch (reset automatically)  
Composite / S-VHS select  
svhssel  
0
1
Composite  
S-VHS  
bit [9:6] :  
Threshold for standard search results  
score  
1 1 1 1  
0 0 0 0  
perfect score (maximum score)  
’no video’ (minimum score)  
1 1 1 1  
default  
bit [11:10] reserved (must be set to zero)  
The control register modes are  
– w: write/read register  
– r: read-only register  
– A: register or register field has function only in VPX 3220 A  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
38  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
FP-Register Table  
FP Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
TVstndRd  
TV Standard – Read  
F3  
12  
r
Readable control register for managing the TV coding standard  
bit [0] :  
VACT suppress  
0
1
enabled  
suppressed  
bit [1] :  
Status of recognition routine  
0
1
idle  
running  
bit [4:2] :  
bit [5] :  
TV standard detected (by recognition routines)  
x x x  
see table above  
’No video’ flag  
0
1
TV standard shown in bit [4:2] present  
no video at selected input  
bit [9:6] :  
bit [10] :  
bit [11] :  
High score from video recognition routine (confidence level)  
1 1 1 1 maximum confidence  
0 0 0 0 minimum confidence  
TV line standard (for TV standard from bit [4:2] above)  
0
1
525/60  
625/50  
reserved  
Vertical Standard  
E7  
12  
w
Writeable control register for vertical locking  
vsdt  
bit [0]:  
vertical standard lock enable  
0
1
disabled  
enabled  
bit [11:1]  
expected number of lines per field  
Color Processing  
1C  
A0  
NTSC tint angle, $512 = $π/4  
tint  
ACC reference; also used to control color saturation  
ACCref  
ACCref = 0:  
ACCref = 1:  
ACC turned off  
minimal color saturation ie. color switched off  
A3  
A4  
A8  
ACC multiplier value for SECAM Dr chroma component to adjust C level  
ACCr  
ACCb  
kilvl  
r
ACC multiplier value for SECAM Db chroma component to adjust C level  
b
amplitude color killer level  
kilvl = 0:  
killer disabled  
The control register modes are  
– w: write/read register  
– r: read-only register  
– A: register or register field has function only in VPX 3220 A  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
39  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
FP-Register Table  
FP Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
Automatic Gain Control  
B2  
12  
w
sync amplitude reference  
AGCref  
AGCref = 0:  
AGC disabled  
Write 0 to FP register B5 after writing 0 to AGCref to disable the AGC  
start value for AGC gain while vertical lock or AGC is inactive  
AGC gain value  
BE  
20  
12  
12  
w
r
sgain  
gain  
DVCO  
58  
12  
12  
w
r
crystal oscillator center frequency adjust, –2048..2047  
dvco  
59  
crystal oscillator center frequency adjustment value for line lock mode.  
true adjust value is DVCO – ADJUST.  
adjust  
For factory crystal alignment:  
set DVCO=0, set lock mode, read crystal offset from ADJUST register and use  
negative value for initial center frequency adjustment via DVCO.  
26  
12  
w
line locked mode lock command/status  
xlg  
write:  
read:  
100  
0
enable lock  
disable lock  
4095/0  
locked / unlocked  
Horizontal PLL  
4B  
12  
w
gain of the horizontal PLL  
bit [4:0]  
bit [9:5]  
gain for the integrating part of PLL control  
gain for the proportional part of PLL control  
if1  
if2  
bit [11:10] reserved  
The control register modes are  
– w: write/read register  
– r: read-only register  
– A: register or register field has function only in VPX 3220 A  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
40  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
4.9. Initial Values on Reset  
PIXCLK LOW on Reset  
Table of Initial Values  
Type  
Name  
OFIFO  
AFEND  
IFC  
Address  
F0  
Data  
0A  
0D  
03  
Description  
2
I C  
Half full level to 0A  
(10 ), bus shuffler off  
hex dec  
2
I C  
33  
Video input 2, chroma ADC from Chroma input, clamp off for chroma ADC  
IF compensation 0 dB/oct  
2
I C  
20  
2
I C  
YMAX  
E0  
FF  
00  
Open up all comparators, so that Alpha Key is always true (set)  
2
I C  
YMIN  
E1  
2
I C  
UMAX  
E2  
7F  
80  
2
I C  
UMIN  
E3  
2
I C  
VMAX  
E4  
7F  
80  
2
I C  
VMIN  
E5  
2
I C  
CBM_BRI  
CBM_CON  
FORMAT  
E6  
00  
Brightness to 0  
2
I C  
E7  
20  
Contrast to 1.0, noise shaping 9 to 8 bit via 1 bit rounding  
2
I C  
E8  
F8  
YUV 422, C ,C in binary offset, con/bri clamp to 16 , Gamma dither enabled, Alpha  
r b dec  
active low, Alpha median filter enabled  
2
I C  
OMUX  
DRIVER_A  
DRIVER_B  
OENA  
F1  
F8  
F9  
F2  
00  
12  
24  
00  
single clock, PIXCLK input, posedge triggered, HLEN counter disabled  
Port A, PIXCLK, HF# and FE# strength to 2  
Port B, HREF, VREF, PREF and ALPHA strength to 4  
All outputs disabled  
2
I C  
2
I C  
2
I C  
PIXCLK HIGH on Reset  
2
I C  
OFIFO  
AFEND  
IFC  
F0  
33  
20  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
0B  
0D  
03  
FF  
00  
7F  
80  
7F  
80  
00  
20  
F8  
Half full level to 0B  
(11 ), bus shuffler off  
hex dec  
2
I C  
Video input 2, chroma ADC from Chroma input, clamp off for chroma ADC  
IF compensation 0 dB/oct  
2
I C  
2
I C  
YMAX  
Open up all comparators, so that Alpha Key is always true (set)  
2
I C  
YMIN  
2
I C  
UMAX  
2
I C  
UMIN  
2
I C  
VMAX  
2
I C  
VMIN  
2
I C  
CBM_BRI  
CBM_CON  
FORMAT  
Brightness to 0  
2
I C  
Contrast to 1.0, noise shaping 9- to 8-bit via 1-bit rounding  
2
I C  
YUV 422, C ,C in binary offset, con/bri clamp to 16 , Gamma dither enabled, Alpha  
r b dec  
active low, Alpha median filter enabled  
2
I C  
OMUX  
DRIVER_A  
DRIVER_B  
OENA  
F1  
F8  
F9  
F2  
08  
12  
24  
5F  
single clock, PIXCLK output, HLEN counter disabled  
Port A, PIXCLK, HF# and FE# strength to 2  
2
I C  
2
I C  
Port B, HREF, VREF, PREF and ALPHA strength to 4  
All outputs enabled: synchronize HREF, VREF with PIXCLK  
2
I C  
MICRONAS INTERMETALL  
41  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
PIXCLK LOW or HIGH on Reset  
Table of Initial Values  
Type  
Name  
Address  
hex  
Data  
dec  
Description  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
FP  
TINT  
1C  
4B  
58  
59  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
A0  
A8  
B2  
BE  
E7  
F0  
0
664  
0
Neutral tint  
HPLL: if1 = 24  
if2 = 20  
DVCO  
ADJUST  
0
WinLoadTab1  
12  
1
1
0
704  
704  
17  
WinLoadTab2  
500  
500  
0
704  
704  
2070  
30  
ACCREF  
KILVL  
AGCREF  
SGAIN  
768  
27  
VSDT  
523  
114  
CMDWD  
Transport rate 20.25 MHz, sync timing mode Open, both windows latched, VACT en-  
abled  
FP  
TVstndWr  
F2  
979  
Manual TV standard select, composite signal  
42  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
5. JTAG Boundary-Scan, Test Access Port (TAP)  
5.2.2. Instruction Register  
The instruction register chooses which one of the data  
registers is placed between the TDI and TDO pins when  
the select data register state is entered in the TAP con-  
troller. When the select instruction register state is ac-  
tive, the instruction register is placed between the TDI  
and TDO.  
The design of the Test Access Port, which is used for  
Boundary-Scan Test conforms to standard IEEE  
1149.1-1990, with one exception. Also included is a list  
of the mandatory instructions supported, as well as the  
optional instructions. This is only a brief overview of  
some of the basics, as well as any optional features  
which are incorporated. The IEEE 1149.1 document  
may be necessary for a more concise description. Final-  
ly, an adherence section goes through a checklist of top-  
ics and describes how the design conforms to the stan-  
dard.  
Instructions  
The following instructions are incorporated:  
– bypass  
– sample/preload  
– extest  
The implementation of the instructions HIGHZ and  
CLAMP conforms to the supplement P1149.1/D11 (Oc-  
tober 1992) to the standard 1149.1-1990.  
– master mode  
– ID code  
5.1. General Description  
– HIGHZ  
– CLAMP  
The TAP in the VPX is incorporated using the four signal  
interface. The interface includes TCK, TMS, TDI, and  
TDO. The optional TRESET signal is not used. This is  
not needed because the chip has an internal power-on-  
reset which will automatically steer the chip into the  
TEST-LOGIC-RESET state. The goal of the interface is  
to provide a means to test the boundary of the chip.  
There is no support for internal or BIST(built-in self test).  
The one exception to IEEE 1149.1 is that the TDO output  
is shared with the ALPHA signal. This was done be-  
cause of I/O restrictions on the chip (see section 5.3.  
“Exceptions to IEEE 1149.1” for more information).  
5.2.3. Boundary Scan Register  
The boundary-scan register (BSR) consists of bound-  
ary-scan cells (BSCs) which are distributed throughout  
the chip. These cells are located at or near the I/O pad.  
It allows sampling of inputs, controlling of outputs, and  
shifting between each cell in a serial fashion to form the  
BSR. This register is used to verify board interconnect.  
Input Cell  
The input cell is constructed to achieve capture only.  
This is the minimal cell necessary since Internal Test  
(INTEST) is not supported. The cell captures either the  
system input in the CAPTURE-DR State or the previous  
cells output in the SHIFT-DR State. The captured data  
is then available to the next cell. No action is taken in the  
UPDATE-DR State. See Figure 10–11 of IEEE 1149.1  
for reference.  
5.2. TAP Architecture  
The TAP function consists of the following blocks: TAP-  
controller, instruction register, boundary-scan register,  
bypass register, optional device identification register,  
and master mode register.  
5.2.1. TAP Controller  
Output Cell  
The TAP Controller is responsible for responding to the  
TCK and TMS signals. It controls the transition between  
states of this machine. These states control selection of  
the data or instruction registers and the actions which  
occur in these registers. These include capture, shifting,  
and update. See Fig. 5–1 of IEEE 1149.1 for TAP state  
diagram.  
The output cell will allow both capture and update. The  
capture flop will obtain system information in the CAP-  
TURE-DR State or previous cells information in the  
SHIFT-DR state. The captured data is available to the  
next cell. The captured or shifted data is downloaded to  
the update flop during the UPDATE-DR state. The data  
from the update flop is then multiplexed to the system  
outputpinwhentheEXTESTinstructionisactive. Other-  
wise, the normal system path exists where the signal  
fromthesystemlogicflowstothesystemoutputpin. See  
Fig. 10–12 of IEEE 1149.1 for reference.  
MICRONAS INTERMETALL  
43  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Tristate Cell  
this chip at the end of the chain or bring the VPX TDO out  
separately and not have it feed another chip in a chain.  
Eachgroup of output signals which are tristatable is con-  
trolled by a boundary scan cell (output cell type). This al-  
lows either the normal system signal or the scanned sig-  
nal to control the tristate control. In the VPX, there are  
four such tristate control cells which control groups of  
output signals (see section “Output Driver Tristate Con-  
trol” for further information).  
5.4. IEEE 1149.1-1990 Spec Adherence  
This section defines the details of the IEEE1149.1 de-  
sign for the VPX. It describes the function as outlined by  
IEEE1149.1, section 12.3.1. The section of that docu-  
ment is referenced in the description of each function.  
Bidirect Cell  
5.4.1. Instruction Register  
The bidirect cell is comprised of an input cell and a tris-  
tate cell as described in the IEEE standard. The signal  
PIXCLK is a bidirectional signal.  
(section 12.3.1.b.i of IEEE 1149.1-1990)  
The instruction register is three bits long. No parity bit is  
included. The pattern loaded in the instruction register  
during CAPTURE-IR is binary “101” (MSB to LSB). The  
two LSBs are defined by the spec to be “01” (bit 1 and  
bit 0) while the MSB (bit 2) is set to “1”.  
5.2.4. Bypass Register  
This register provides a minimal path between TDI and  
TDO. This is required for complicated boards where  
many chips may be connected in serial.  
5.4.2. Public Instructions  
5.2.5. Device Identification Register  
(Section 12.3.1.b.ii of IEEE 1149.1-1990)  
A list of the public instructions is as follows:  
This is an optional 32-bit register which contains the-  
INTERMETALL identification code (JEDEC controlled),  
part and revision number. This is useful in providing the  
tester with assurance that the correct part and revision  
are inserted into a PCB.  
Instruction  
EXTEST  
Code (MSB to LSB)  
000  
SAMPLE/PRELOAD  
ID CODE  
001  
5.2.6. Master Mode Data Register  
010  
This is an optional register used to control an 8-bit test  
register in the chip. This register supports shift and up-  
date. No capture is supported. This was done so the last  
word can be shifted out for verification.  
MASTER MODE  
HIGHZ  
011  
100  
CLAMP  
110  
5.3. Exception to IEEE 1149.1  
BYPASS  
100 – 111  
There is one exception to IEEE 1149.1. The exception  
is to paragraphs 3.1.1.c., 3.5.1.b, and 5.2.1.d (TEST-  
LOGIC-RESET state). Because of pin limitations on the  
chip, a pin is shared for two functions. When the circuit  
is in the TEST-LOGIC-RESET state, the ALPHA signal  
is driven out the TDO/ALPHA pin. When the circuit  
leaves the TEST-LOGIC-RESET state, the TDO signal  
is driven on this line. As long as the circuit is not in the  
TEST-LOGIC-RESET state, all the rules for application  
of the TDO signal adhere to the IEEE1149.1 spec.  
The EXTEST and SAMPLE/PRELOAD instructions  
both apply the boundary scan chain to the serial path.  
The ID CODE instruction applies the ID register to the  
serial chain. The BYPASS, the HIGHZ, and the CLAMP  
instructions apply the bypass register to the serial chain.  
TheMASTERMODEinstructionisatestdatainstruction  
for public use. It provides the ability to control an 8-bit  
test register in the chip.  
Since the VPX uses the JTAG function as a boundary-  
scan tool, the VPX does not sacrifice test of this pin since  
it is verified by exercising JTAG function. The designer  
of the PCB must make careful note of this fact, since he  
will not be able to scan into chips receiving the ALPHA  
signal via the VPX. The PCB designer may want to put  
5.4.3. Self-test Operation  
(Section 12.3.1.b.iii of IEEE 1149.1-1990). There is no  
self-test operation included in the VPX design which is  
accessible via the TAP.  
44  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
5.4.4. Test Data Registers  
5.4.5. Boundary-Scan Register  
(Section 12.3.1.b.v of IEEE 1149.1-1990)  
(Section 12.3.1.b.iv of IEEE 1149.1-1990).  
The boundary-scan chain has a length of 38 shift regis-  
ters. The scan chain order is specified in the section “Pin  
Connections”.  
The VPX includes the use of four test data registers.  
They are the required bypass and boundary scan regis-  
ters, the optional ID code register and the master mode  
register.  
5.4.6. Device Identification Register  
The bypass register is, as defined, a 1-bit register ac-  
cessed by codes 100 through 111, inclusive. Since the  
design includes the ID code register, the bypass register  
is not placed in the serial path upon power-up or Test-  
Logic-Reset.  
(Section 12.3.1.b.vi of IEEE 1149.1-1990)  
The manufacturer’s identification code for-INTER-  
METALL is “6C”  
. The general implementation  
(hex)  
scheme uses only the 7 LSBs and excludes the MSB,  
which is the parity bit. The part number is “4680”  
.
(hex)  
The master mode is an 8-bit test register which is used  
to force the VPX into special test modes. This is reset  
upon power-on-reset. This register supports shift and  
update only. It is not recommended to access this regis-  
ter. The loading of that register can drive the IC into an  
undefined state.  
The version code starts from “1”  
and changes with  
(hex)  
every revision. The version number relates to changes  
of the chip interface only.  
5.4.7. Performance  
(Section 12.3.1.b.vii of IEEE 1149.1-1990)  
See section “Specification” for further information.  
The Device Identification Register  
Version  
Part Number  
7F  
Manufacturer ID  
0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1  
31  
28 27  
12 11  
8
7
1
0
2
4
6
8
0
0
d
9
MICRONAS INTERMETALL  
45  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
TAP State Transitions  
TDO could be used as Alpha keyer or LLC2 clock signal (see Pin  
Description).  
$F  
1
0
Test-Logic-Reset  
0
$C  
$7  
$4  
1
1
1
Run / Idle  
Select Data Reg  
Select Instr. Reg  
0
0
$6  
$E  
$A  
1
1
Capture DR  
Capture IR  
0
0
$2  
0
1
0
1
Shift DR  
Shift IR  
1
1
$1  
$3  
$9  
$B  
Exit1 DR  
Exit1 IR  
0
0
0
0
0
Pause DR  
Pause IR  
1
1
$0  
$5  
$8  
Exit2 DR  
Exit2 IR  
1
1
$D  
State Code  
Update DR  
Update IR  
TDO inactive  
TDO active  
TMS=1  
TMS=0  
TMS=1  
TMS=0  
State transitions are dependend on the value of TMS, synchronized by TCK.  
46  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
––*************************************************************  
––  
–– This is the BSDL for the 44-Pin Version of the VPXA design.  
––  
––*************************************************************  
Library IEEE;  
Use work.STD_1149_1_1990.ALL;  
Entity VPXA_44 is  
Generic (Physical_Pin_Map:string := ”UNDEFINED”);  
Port(  
––define ports  
TDI,TCK,TMS:  
TDO,HREF,VREF,PREF:  
A:  
PVDD,PVSS:  
PIXCLK:  
in bit;  
out bit;  
out bit_vector(7 downto 0);  
linkage bit;  
inout bit;  
OEQ:  
in bit;  
HFQ,FEQ:  
out bit;  
B:  
out bit_vector(7 downto 0);  
inout bit;  
SDA,SCL:  
VSS,XTAL2,XTAL1,VDD:  
RESQ:  
linkage bit;  
in bit;  
AVDD,AVSS,VRT,ISGND:  
CIN,VIN1,VIN2,VIN3:  
linkage bit;  
in bit  
);  
Attribute Pin_Map of VPXA_44 : Entity is Physical_Pin_Map;  
constant Package_44 : Pin_Map_String :=  
––map pins to signals  
”TDI  
: 1 ” &  
”TCK  
”TDO  
”HREF  
”VREF  
”PREF  
”A  
: 2 ” &  
: 3 ” &  
: 4 ” &  
: 5 ” &  
: 6 ” &  
: (7,8,9,10,14,15,16,17)” &  
”PVDD : 11 ” &  
”PIXCLK : 12 ” &  
”PVSS  
”OEQ  
”HFQ  
”FEQ  
”B  
: 13 ” &  
: 18 ” &  
: 19 ” &  
: 20 ” &  
: (21,22,23,24,25,26,27,28),” &  
”SDA  
”SCL  
”VSS  
: 29 ” &  
: 30 ” &  
: 31 ” &  
”XTAL2 : 32 ” &  
”XTAL1 : 33 ” &  
”VDD  
”RESQ  
: 34 ” &  
: 35 ” &  
AVDD : 36 ” &  
”CIN  
: 37 ” &  
: 38 ” &  
: 39 ” &  
: 40 ” &  
: 41 ” &  
: 42 ” &  
AVSS  
”VIN1  
”VIN2  
”VRT  
”VIN3  
”ISGND : 43 ” &  
”TMS : 44 ” ;  
Attribute Tap_Scan_In  
of TDI  
: signal is true;  
––define JTAG Controls  
Attribute Tap_Scan_Mode of TMS : signal is true;  
Attribute Tap_Scan_Out of TDO : signal is true;  
Attribute Tap_Scan_Clock of TCK  
: signal is (10.0e6,Both);  
––max frequency and levels TCK can be stopped at.  
––define instr. length  
Attribute Instruction_Length  
of VPXA_44: entity is 3;  
Attribute Instruction_Opcode  
”EXTEST  
of VPXA_44: entity is  
(000),” &  
––External Test  
MICRONAS INTERMETALL  
47  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
”SAMPLE  
”IDCODE  
(001),” &  
(010),” &  
––Sample/Preload  
––ID Code  
”MASTERMODE  
”HIGHZ  
(011),” &  
(100),” &  
––Master Mode (internal Test)  
–– Highz  
”CLAMP”  
”BYPASS  
(110),” &  
(100,101,110,111),”;  
–– Clamp  
––Bypass  
Attribute Register_Access  
”BOUNDARY  
of VPXA_44: entity is  
(EXTEST,SAMPLE),” &  
(BYPASS, HIGHZ, CLAMP),” &  
(IDCODE),” &  
––instr. vs register  
––control  
”BYPASS  
”IDCODE[32]  
”MASTERMODE[8]  
(MASTERMODE) ”;  
Attribute INSTRUCTION_Capture of VPXA_44: entity is ”101”;  
––captured instr.  
Attribute IDCODE_Register  
Attribute Boundary_Cells  
of VPXA_44: entity is  
”0001” &  
”0100011010000000” &  
”0000” &  
”1101100” &  
”1”;  
––initial rev  
––part numb. 4680  
––7F Count  
––INTERMETALL Code–Parity  
––Mandatory LSB  
of VPXA_44: entity is ”BC_1,BC_4”;  
–-BC_1 for output cell  
––BC_4 for input cell  
Attribute Boundary_Length  
Attribute Boundary_Register  
of VPXA_44: entity is 38;  
of VPXA_44: entity is  
––Boundary scan length  
––Boundary scan defin.  
––  
num  
” 37  
” 36  
” 35  
” 34  
” 33  
” 32  
” 31  
” 30  
” 29  
” 28  
” 27  
” 26  
” 25  
” 24  
” 23  
” 22  
” 21  
” 20  
” 19  
” 18  
” 17  
” 16  
” 15  
” 14  
” 13  
” 12  
” 11  
” 10  
cell port  
function safe  
ccel  
disval rslt  
(BC_4, VIN3, input,  
(BC_4, VIN2, input,  
(BC_4, VIN1, input,  
(BC_4, CIN,  
(BC_4, RESQ, input,  
X
X
X
X
X
),” &  
),” &  
),” &  
),” &  
),” &  
input,  
(BC_1, *,  
internal, X  
input,  
output3, X,  
input,  
),” & ––clock health  
),” &  
),” & ––open collector  
),” &  
),” & ––open collector  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” & ––control  
),” &  
),” &  
),” & ––control  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
(BC_4, SCL,  
(BC_1, SCL,  
(BC_4, SDA,  
(BC_1, SDA,  
(BC_1, B(0),  
(BC_1, B(1),  
(BC_1, B(2),  
(BC_1, B(3),  
(BC_1, B(4),  
(BC_1, B(5),  
(BC_1, B(6),  
(BC_1, B(7),  
(BC_1, *,  
(BC_1, FEQ,  
(BC_1, HFQ,  
(BC_1, *,  
(BC_4, OEQ,  
(BC_1, A(0),  
(BC_1, A(1),  
(BC_1, A(2),  
(BC_1, A(3),  
X
30,  
1,  
Z
X
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
control, X  
output3, X,  
output3, X,  
control, X  
28,  
19,  
19,  
19,  
19,  
19,  
19,  
19,  
19,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
Z
Z
Z
Z
Z
Z
Z
Z
Z
16,  
16,  
1,  
1,  
Z
Z
input,  
X
output3, X,  
output3, X,  
output3, X,  
output3, X,  
7,  
7,  
7,  
7,  
1,  
1,  
1,  
1,  
Z
Z
Z
Z
(BC_1, CLKIO, control, X  
(BC_4, PIXCLK,input,  
(BC_1, PIXCLK,output3, X,  
9
8
7
6
5
4
3
2
1
0
X
10,  
1,  
Z
),” & ––bidirect  
),” & ––control  
(BC_1, *,  
control, X  
output3, X,  
output3, X,  
output3, X,  
output3, X,  
(BC_1, A(4),  
(BC_1, A(5),  
(BC_1, A(6),  
(BC_1, A(7),  
(BC_1, PREF, output3, X,  
(BC_1, VREF, output3, X,  
(BC_1, HREF, output3, X,  
7,  
7,  
7,  
7,  
16,  
16,  
16,  
1,  
1,  
1,  
1,  
1,  
1,  
1,  
Z
Z
Z
Z
Z
Z
Z
),” &  
),” &  
),” &  
),” &  
),” &  
),” &  
),”;  
End VPXA_44;  
48  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6. Specification  
6.1. Outline Dimensions  
2.35  
± 0.1  
10 x 1.27 = 12.7  
+0.2  
±0.1  
1.27  
1.2 x 45°  
1
x 45 °  
6
1
40  
7
39  
1.6  
6
2
2
8.6  
5
17  
29  
1.9 1.5  
4.05  
18  
28  
+0.25  
± 0.1  
16.5  
17.4  
0.1  
±0.15  
4.75  
Fig. 6–1:  
44-Pin Plastic Leaded Chip Carrier Package  
(PLCC44)  
Weight approximately 2.5 g  
Dimensions in mm  
±0.1  
10 x 0.8 = 8  
±0.05  
0.8  
44  
34  
1
33  
23  
11  
12  
22  
±0.05  
1.4  
±0.25  
±0.1  
10  
12  
0.1  
max. 1.6  
Fig. 6–2: 44-Pin Plastic Thin-Quad-Flat-Pack  
(PTQFP44F)  
SPGS1234/1  
Weight approximately 0.35 g  
Dimensions in mm  
MICRONAS INTERMETALL  
49  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.2. Pin Connections and Short Descriptions  
NC = not connected; leave vacant  
LV = if not used, leave vacant  
S.T.B. = shorted to BAGNDI if not used  
DVSS = if not used, connect to DVSS  
X = obligatory; connect as described in circuit diagram  
AHVSS = connect to AHVSS  
Pin No.  
Connection  
(if not used)  
Pin Name  
Type  
Short Description  
PLCC  
PTQFP  
44-pin  
44-pin  
1
2
39  
40  
NC  
NC  
TDI  
IN  
Boundary-Scan-Test Data Input  
TCK  
IN (+Pull-  
up)  
Boundary-Scan-Test Clock Input  
3
41  
NC  
TDO  
OUT  
OUT  
OUT  
Boundary-Scan-Test Data Output if TAP is  
active (see remarks on Boundary-Scan  
Test)  
ALPHA  
LLC2  
If Test Access Port (TAP) is in Test-Logic-  
2
Reset State: Alpha Key Signal (I C Reg.  
EA  
bit[3] = 0)  
hex  
If Test Access Port (TAP) is in Test-Logic-  
Reset State: LLC/2 = 13 MHz clock signal  
2
(I C Reg. EA  
bit[3] = 1)  
hex  
4
5
6
42  
43  
44  
NC  
NC  
NC  
HREF  
VREF  
OUT  
OUT  
Horizontal Reference  
Vertical Reference  
PREF  
OUT  
OUT  
IN  
Programmable Interrupt  
ODD/EVEN  
ODD/EVEN Frame Identifier  
2
2
I C-ADDR  
I C-Initialization Control by positive edge of  
RES:  
2
PREF = 0 : I C device address 0  
PREF = 1 : I C device address 1  
(for more information see I C description)  
2
2
7
1
2
3
4
5
6
NC  
NC  
NC  
NC  
A7  
OUT  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Supply Voltage Pad Circuits  
8
A6  
OUT  
9
A5  
OUT  
10  
11  
12  
A4  
OUT  
PVDD  
PIXCLK  
SUPPLY  
NC  
OUT  
IN  
Pixel Clock I/O Synchronous mode  
Asynchronous mode  
2
2
I C-INIT  
IN  
I C-Initialization Control by positive edge of  
RES:  
2
PIXCLK = 0 : I C ROM table 0  
PIXCLK = 1 : I C ROM table 1  
(for more information see I C description)  
2
2
13  
7
PVSS  
SUPPLY  
Supply Voltage Pad Circuits  
50  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Pin Connections and Short Descriptions, continued  
Pin No.  
Connection  
(if not used)  
Pin Name  
Type  
Short Description  
PLCC  
PTQFP  
44-pin  
44-pin  
14  
8
NC  
NC  
NC  
NC  
VSS  
NC  
A3  
A2  
A1  
A0  
OE  
OUT  
OUT  
OUT  
OUT  
IN  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Port 1 – Video Data Output  
Output Ports Enable  
15  
9
16  
10  
11  
12  
13  
17  
18  
19  
HF  
OUT  
OUT  
OUT  
Asynchronous Mode: FIFO half full, active  
low  
FSY  
LLC  
Synchronous Mode (20.25 MHz): Front  
Sync  
Synchronous Mode (13.5 MHz):  
2 x PIXCLK = 27 MHz  
20  
14  
NC  
FE  
OUT  
OUT  
Asynchronous Mode: FIFO empty, active  
low  
VACT  
Synchronous Mode: active video  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
Port 2 – Video Data Output  
21  
22  
23  
24  
25  
26  
27  
28  
29  
15  
16  
17  
18  
19  
20  
21  
22  
23  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SDA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
OUT (Pull-  
down/IN)  
I C Data  
2
30  
24  
NC  
SCL  
OUT (Pull-  
down/IN)  
I C Clock  
31  
32  
33  
34  
35  
36  
37  
38  
25  
26  
27  
28  
29  
30  
31  
32  
RES  
IN  
Reset input  
VSS  
SUPPLY  
SUPPLY  
OSC OUT  
OSC IN  
SUPPLY  
AIN  
Supply Voltage for digital circuitry  
Supply Voltage for digital circuitry  
Crystal  
VDD  
XTAL2  
XTAL1  
AVDD  
CIN  
Crystal  
Supply Voltage for analog circuitry  
Chroma Input (SVHS)  
Supply Voltage for analog circuitry  
NC  
AVSS  
SUPPLY  
MICRONAS INTERMETALL  
51  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Pin No.  
Connection  
(if not used)  
Pin Name  
Type  
Short Description  
PLCC  
PTQFP  
44-pin  
44-pin  
39  
33  
34  
35  
36  
37  
38  
NC  
NC  
VIN1  
VIN2  
VRT  
AIN  
Video 1 or Luminance (SVHS) Input  
Video 2 Input  
40  
AIN  
41  
Reference  
AIN  
Reference Voltage Top (ADC)  
Video 3 Input  
42  
NC  
NC  
VIN3  
ISGND  
TMS  
43  
SUPPLY  
IN (Pull-up)  
Signal Ground  
44  
Boundary-Scan-Test Mode Select  
52  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.3. Pin Descriptions (Pin Numbers for PLCC44)  
Pins 21 to 28 – Video Port B (Fig. 6–8)  
The output characteristics of these pins belong to the  
characteristics of TTL output driver type B.  
Pins 44, 1 – JTAG Input Pins TMS, TDI (Fig. 6–6)  
Mode Select and Data Input signal for the JTAG Test Ac-  
cess Port (TAP). These inputs have small pull-ups and  
input stages with Schmitt trigger characteristics.  
2
Pin 29 – I C Data SDA (Fig. 6–7)  
2
This pin connects to the I C-bus data line.  
2
Pin 2 – JTAG Input Pin TCK (Fig. 6–5)  
Clock input pin for JTAG Test Access Port (TAP). This in-  
put has an input stage with Schmitt trigger characteris-  
tics and no pull-up.  
Pin 30 – I C Clock SCL (Fig. 6–7)  
2
This pin connects to the I C-bus clock line.  
Pin 31 – Reset Input RES (Fig. 6–5)  
A low level on this pin resets the circuit.  
Pin 3 – JTAG Output Pin TDO (Fig. 6–8)  
DataoutputforJTAGTestAccessPort(TAP), andoutput  
pin for the ALPHA key signal, if the TAP is in Test-Logic-  
Reset state. The output circuit belongs to the character-  
istics of TTL output driver type B.  
Pin 32 – Ground, Digital Circuitry VSS  
Pin 33 – Supply Voltage, Digital Circuitry VDD  
Pins 34, 35 – XTAL1 Crystal Input and XTAL2 Crystal  
Output (Fig. 6–11)  
Pins 4 to 6 – Reference Signals HREF, VREF, and PREF  
(Fig. 6–8)  
Thesepinsareconnectedtoa20.25MHzcrystaloscilla-  
tor which is digitally tuned by integrated shunt capaci-  
tances. An external clock can be fed into XTAL1. In this  
case clock frequency adjustment must be switched off.  
These signals are internally generated sync signals.  
Their output characteristics belong to the output driver  
type B.  
Pins 7 to 10, 14 to 17 – Video Port A (Fig. 6–8)  
The output characteristics of these pins belong to the  
characteristics of output driver type A.  
Pin 36 – Supply Voltage, Analog Circuitry AVDD  
Pin 37 – Chroma Input CIN (Fig. 6–10, Fig. 6–14)  
This pin is connected to the S-VHS chroma signal. A re-  
sistive divider is used to bias the input signal to the  
middle of the converter input range. CIN can only be  
connected to the chroma (Video 2) AD converter. The  
signal must be AC-coupled.  
Pin 11 – Supply Voltage, Pad Circuitry PVDD  
Pin 12 – Pixel Clock PIXCLK (Fig. 6–9)  
This signal is either input or output depending on the se-  
lected mode. In synchronous mode it has the character-  
istics of TTL output driver type A. In asynchronous mode  
it has TTL Schmitt trigger input characteristics. PIXCLK  
is the reference clock for the video data transmission  
ports A[7:0] and B[7:0]. Moreover, the state of the  
PIXCLK signal at the inactive going edge of RES deter-  
Pin 38 – Ground, Analog Front-end AVSS  
Pins 39, 40, 42 – Video Input 1–3 VIN1,VIN2,VIN3  
(Fig. 6–12)  
2
mines which I C_INIT table will be loaded (see section  
These are the analog video inputs. A CVBS, S-VHS  
luma signal is converted using the luma (Video 1) AD  
converter. The VIN1 input can also be switched to the  
chroma (Video 2) ADC. The input signal must be AC-  
coupled.  
4.9.)  
Pin 13 – Ground, Pad Circuitry PVSS  
Pin 18 – Output Enable Input Signal (Fig. 6–5)  
The output enable input signal has TTL Schmitt trigger  
input characteristics. It controls the tristate condition of  
both video ports.  
Pin 41 – Reference Voltage Top VRT (Fig. 6–13)  
Via this pin, the reference voltage for the AD converters  
is decoupled. The pin is connected with 10 µF/47 nF to  
the Signal Ground Pin.  
Pins 19, 20 – HF, FE, (Fig. 6–8)  
These pins have different functionality depending on  
which video data output mode is selected. The output  
circuits belong to the characteristics of TTL output driver  
type A.  
Pin 43 – Signal Ground for Analog Input ISGND  
This is the high-quality ground reference for the video  
input signals.  
MICRONAS INTERMETALL  
53  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.4. Pin Configuration  
TDI  
TCK  
TDO (ALPHA, LLC2)  
HREF  
VREF  
PREF (ODD/EVEN)  
TMS  
ISGND  
VIN3  
VRT  
VIN2  
6
5
4
3
2
1 44 43 42 41 40  
A7  
A6  
A5  
A4  
7
VIN1  
AVSS  
CIN  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
8
9
VPX 3220 A,  
VPX 3216 B  
10  
11  
12  
13  
14  
15  
16  
17  
AVDD  
XTAL1  
XTAL2  
VDD  
VSS  
RES  
SCL  
SDA  
PVDD  
PIXCLK  
PVSS  
A3  
Top View  
A2  
A1  
A0  
18 19 20 21 22 23 24 25 26 27 28  
OE  
HF (FSY, LLC)  
FE (VACT)  
B7  
B0  
B1  
B2  
B3  
B6  
B4  
Fig. 6–3: 44-pin PLCC package.  
B5  
TDI  
TCK  
TMS  
TDO (ALPHA, LLC2)  
HREF  
ISGND  
VIN3  
VREF  
PREF (ODD/EVEN)  
VRT  
VIN2  
44 43 42 41 40 39 38 37 36 35 34  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
A7  
A6  
A5  
VIN1  
AVSS  
CIN  
AVDD  
XTAL1  
XTAL2  
VDD  
VSS  
2
3
VPX 3220 A,  
VPX 3216 B  
4
A4  
PVDD  
PIXCLK  
PVSS  
A3  
5
6
7
Top View  
8
9
A2  
A1  
A0  
RES  
SCL  
SDA  
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
OE  
B0  
B1  
B2  
B3  
B4  
HF (FSY, LLC)  
FE (VACT)  
B7  
B6  
Fig. 6–4: 44-pin PTQFP package.  
B5  
54  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.5. Pin Circuits  
PVDD  
P
OUT  
IN  
N
PVSS  
Fig. 6–5: TCK, OE, RES  
Fig. 6–8: A[7:0], B[7:0], HREF, VREF, PREF, HF,  
FE, TDO  
P
on  
PVDD  
P
PVDD  
P
IN / OUT  
Fig. 6–6: JTAG Inputs TMS, TDI  
N
PVSS  
Fig. 6–9: Input/Output PIXCLK  
Pin  
VRT  
VIN1,  
VIN2,  
VIN3,  
off  
2
Fig. 6–7: I C Interface SDA, SCL  
CIN  
ThecharacteristicsoftheSchmittTriggersaredependentofthesupply  
of VDD/VSS.  
Fig. 6–10: Unselected Video Inputs  
MICRONAS INTERMETALL  
55  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
AVDD  
AVDD  
XTAL2  
XTAL1  
P
N
VIN1  
CIN  
N
N
N
N
0.5M  
f
ECLK  
To ADC2  
AVSS  
AVSS  
bias  
Fig. 6–11: Crystal Oscillator  
AVDD  
VIN1  
CIN  
To ADC2  
AVDD  
VIN1  
VIN2  
VIN3  
N
N
N
AVSS  
clamping  
To ADC1  
AVSS  
2
clamping or bias is selectable via I C reg. 33  
bit[3]  
hex  
Fig. 6–14: Video Inputs ADC2  
clamping  
Fig. 6–12: Video Inputs ADC1  
AVDD  
P
BIAS  
+
Pin  
ADC Reference  
AVSS  
Fig. 6–13: Reference Voltage VRT  
56  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6. Electrical Characteristics  
6.6.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin  
Min.  
Max.  
Unit  
Name  
T
Ambient Temperature  
Storage Temperature  
Junction Temperature  
Supply Voltage, all Supply Inputs  
Input Voltage of PIXCLK, TMS, TDI  
Input Voltage  
0
65  
°C  
°C  
°C  
V
A
T
T
–40  
125  
S
J
0
125  
V
–0.3  
6
SUB  
1)  
1)  
PVSS – 0.5  
PVSS – 0.5  
VSS – 0.5  
PVDD + 0.5  
V
TCK  
6
6
V
Input Voltage  
SDA,  
SCL  
V
Signal Swing  
A[7:0],  
B[7:0],  
PIXCLK,  
HREF,  
VREF,  
PREF,  
HF, FE,  
TDO  
PVSS – 0.5  
PVDD + 0.5  
V
Maximum | VDD – AVDD |  
0.5  
0.1  
V
V
Maximum | VSS – PVSS |  
Maximum | VSS – AVSS |  
Maximum | PVSS – AVSS |  
1)  
Note: external voltage exceeding PVDD+0.5V should not be applied to these pins even when they are three-stated.  
Stresses beyond those listed in the “Absolute Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only. Functional operation of the device at these or any other conditions beyond those indicated in the  
“Recommended Operating Conditions/Characteristics” of this specification is not implied. Exposure to absolute maxi-  
mum ratings conditions for extended periods may affect device reliability.  
MICRONAS INTERMETALL  
57  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Limitations due to Package Characteristics (test conditions at T = 65 °C and T = 125 °C)  
A
j
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
R
R
Thermal Resistance Junction-Case of  
PTQFP44  
5
K/W  
thJC  
Thermal Resistance Ambient of PTQFP44  
68  
K/W  
mW  
still air  
thA  
P
max  
Maximum Power Radiation of PTQFP44  
due to the thermal resistance of the pack-  
age  
890  
still air, no cooling  
R
R
Thermal Resistance Junction-Case of  
PLCC44 without internal heat sink  
11  
55  
K/W  
K/W  
mW  
thJC  
thA  
Thermal Resistance Ambient (still air) of  
PLCC44 without internal heat sink  
P
max  
Maximum Power Radiation of PLCC44  
without internal heat sink due to the ther-  
mal resistance of the package  
1089  
still air, no cooling  
R
R
Thermal Resistance Junction-Case of  
PLCC44 with internal heat sink  
8
K/W  
K/W  
mW  
thJC  
thA  
Thermal Resistance Ambient (still air) of  
PLCC44 with internal heat sink  
44  
P
max  
Maximum Power Radiation of PLCC44 with  
internal heat sink due to the thermal resis-  
tance of the package  
1370  
still air, no cooling  
58  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.2. Recommended Operating Conditions  
Symbol  
Parameter  
Pin  
Min.  
Typ.  
Max.  
Unit  
Name  
ASUP  
DSUP  
PSUP  
Analog Supply Voltage  
Digital Supply Voltage  
Pad Supply Voltage  
Clock Frequency  
AVDD  
VDD  
4.75  
4.75  
3.0  
5.0  
5.25  
5.25  
3.6  
V
5.0  
V
PVDD  
3.3  
V
f
XTAL1,  
XTAL2  
20.25  
MHz  
OSC  
6.6.3. Power Consumption  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
I
supply current VPX 3220 A  
between VDD and VSS  
between AVDD and AVSS  
between PVDD and PVSS  
DD  
115  
35  
135  
44  
155  
53  
mA  
mA  
mA  
application dependent  
I
supply current VPX 3216 B  
between VDD and VSS  
between AVDD and AVSS  
between PVDD and PVSS  
DD  
86  
mA  
mA  
mA  
35  
44  
53  
application dependent  
The diagrams below illustrate some of the possible output modes and their impact on the power consumption. These  
values are worst case numbers in terms of number of active output drivers. Only the video data interface A[7:0] and  
B[7:0], and the clock signals PIXCLK have to be considered. As a first order approximation, the remaining signals have  
no impact on the power consumption.  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
1370 mW: PLCC + heatsink  
1089 mW: PLCC  
VPX 3220 A  
VPX 3216 B  
890 mW: TQFP  
1089 mW: PLCC  
27MHz  
20MHz  
27MHz  
20MHz  
13MHz  
27MHz  
20MHz  
13MHz  
13MHz  
27MHz  
20MHz  
13MHz  
10  
20  
30  
40  
50  
60  
70  
80  
10  
20  
30  
40  
50  
60  
70  
80  
Cload [pF]  
Cload [pF]  
Based on a worst case scenario of 18 active output pins, no static loads, and a typical power consumption.  
MICRONAS INTERMETALL  
59  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.4. Characteristics, Reset  
at T = 0 to 65 °C, V  
= 4.75 to 5.25 V, f = 20.25 MHz for min./max. values  
A
SUP  
at T = 60 °C, V  
= 5 V, f = 20.25 MHz for typical values  
C
SUP  
Symbol  
Parameter  
Min.  
50  
Typ.  
Max.  
Unit  
Test Conditions  
t
t
t
External Reset Hold Time  
Internal Reset Hold Time  
ns  
µs  
µs  
RES EXT  
RES INT  
RES INT2  
3.2  
xtal osc. is working  
2
Internal Register Setup after Reset (I C Ini-  
tialization)  
200  
6.6.5. Input Characteristics of RES and OE  
Symbol  
Parameter  
Min.  
–0.5  
2.0  
Typ.  
Max.  
0.8  
6
Unit  
V
Test Conditions  
V
V
V
V
Input Voltage LOW  
IL  
Input Voltage HIGH  
V
IH  
Trigger Level at Transition High to Low  
Trigger Level at Transition Low to High  
1.2  
1.6  
V
TRHL  
TRLH  
V
6.6.6. Recommended Crystal Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
65  
Unit  
°C  
Test Conditions  
T
A
Operating Ambient Temperature  
Resonance Frequency  
0
f
P
20.250  
MHz  
C = 13 pF,  
L
T
A
= 25 °C  
f /f  
Accuracy of Adjustment  
±20  
±30  
ppm  
ppm  
T
A
= 25 °C  
P
P
f /f  
Frequency Temperature Drift  
over operating temperature  
range with respect to fre-  
quency at 25 °C  
P
P
C
C
R
Shunt Capacitance  
Motional Capacitance  
Series Resistance  
3
7
pF  
fF  
0
1
r
18  
30  
6.6.7. XTAL Input Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
V
I
Clock Input Voltage, XTAL1  
1.3  
V
PP  
capacitive coupling of  
XTAL1, XTAL2 open  
60  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.8. Characteristics, Analog Video Inputs  
Symbol  
Parameter  
Pin  
Name  
Min.  
Typ.  
Max.  
2.5  
Unit  
V
Test Conditions  
V
VIN  
Analog Input Voltage  
Input Capacitance  
VIN1  
VIN2  
VIN3  
CIN  
0
C
C
C
13  
pF  
nF  
nF  
V
IN  
= 1.5 V  
IN  
Input Coupling Capacitor  
Video Inputs  
VIN1–3  
CIN  
680  
1
CP  
CP  
Input Coupling Capacitor  
Chroma Input  
MICRONAS INTERMETALL  
61  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.9. Characteristics, Analog Front-End and ADCs  
Symbol  
Parameter  
Pin Name  
Min.  
1.8  
Typ.  
2.0  
Max.  
2.2  
Unit  
Test Conditions  
min. AGC Gain  
max. AGC Gain  
V
V
V
Full Scale Input Voltage, Video 1  
Full Scale Input Voltage, Video 1  
VIN1,  
VIN2,  
VIN3  
V
PP  
V
PP  
V
VIN  
0.5  
0.6  
0.7  
VIN  
Video 1 Input Clamping Level,  
CVBS  
1.0  
Binary Level = 68 LSB  
min. AGC Gain  
VINCL  
V
V
Full Scale Input Voltage, Chroma  
CIN,  
VIN1  
1.08  
1.2  
1.2  
1.32  
V
V
CIN  
PP  
Video 2 Input Clamping Level,  
CVBS  
Binary Level = 68 LSB  
VINCL  
V
Video 2 Input Bias Level,  
SVHS Chroma  
1.5  
2
V
CINB  
R
Video 2 Input Resistance  
SVHS Chroma  
1.4  
2.6  
kΩ  
CIN  
Binary Code for Open  
Chroma Input  
VIN1  
CIN  
128  
Q
Input Clamping Current  
Resolution  
VIN1–3,  
CIN  
–16  
15  
steps  
CL  
I
Input Clamping Current per step  
Reference Voltage Top  
Video 1 Bandwidth  
0.7  
2.5  
1
1.3  
2.8  
µA  
CL  
V
VRT  
2.6  
10  
V
10 µF/10 nF, 1 GProbe  
–3 dB for full-scale signal  
–3 dB for full-scale signal  
at 1 MHz  
VRT  
BW  
MHz  
MHz  
dB  
BW  
Video 2 Bandwidth  
10  
XTALK  
THD  
SNDR  
Crosstalk, any Two Video Inputs  
Distortion  
–56  
–50  
45  
–42  
dB  
at 1 MHz, 5th harmonics  
at 1 MHz, only one output  
Video Signal to Noise  
and Distortion Ratio  
VIN1–3,  
CIN  
41  
dB  
INL  
Video Integral Non-Linearity,  
static  
±1  
LSB  
Code Density  
Code Density  
DNL  
DG  
DP  
Video Differential Non-Linearity  
Video Differential Gain  
±0.5  
±0.8  
±3  
3
LSB  
%
300 mV , 4.4 MHz on ramp  
PP  
Video Differential Phase  
deg  
300 mV , 4.4 MHz on ramp  
PP  
Dependency between SNR and Power Supply  
45  
44  
43  
42  
41  
40  
39  
38  
Both ADCs are working and routed to A[7:0], and B[7:0].  
All Interfaces are working with maximum driver strength  
Bandwidth measurement is performed up to 5 MHz.  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
PVDD [V]  
62  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.10. Characteristics of the JTAG Interface  
TCK  
800 Ω  
800 Ω  
TDO  
Clock signal of the Test-Access Port. It is used to syn-  
chronize all JTAG functions. When JTAG operations are  
not being performed, this pin should be driven to VSS.  
The input stage of the TCK uses a TTL Schmitt Trigger.  
I = 4 mA  
50 pF  
TMS, TDI  
Test Mode Selection and Test Data Input. Both signals  
are inputs with a TTL compatible input specification. To  
comply with JTAG specification they use pull-ups at their  
input stage. The input stage of the TMS and TDI uses a  
TTL Schmitt Trigger.  
Fig. 6–15: TDO Test Circuit  
TDO  
Test Data Output. This signal is multiplexed with the  
function ALPHA. The output specification conforms to  
the specification of the TTL output driver type B.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
0.6  
Unit  
V
Test Conditions  
V
V
Output Voltage LOW  
Output Voltage HIGH  
OL  
2.4  
PVDD  
V
OH  
A special VDD, VSS supply is used only to support the digital output pins. This means inherently that in case of tristate conditions, external  
sources should not drive these signals above the voltage PVDD which supplies the output pins.  
V
Input Voltage LOW  
–0.5  
2.0  
0.8  
6
V
V
IL  
V
IH  
Input Voltage HIGH  
for input pin TCK  
V
IH  
Input Voltage HIGH  
for input pin TDI, TMS  
2.0  
PVDD  
+ 0.3  
V
Φ
Φ
Φ
C
JTAG Cycle Time  
TCK High Time  
TCK Low Time  
100  
50  
ns  
ns  
ns  
CYCL  
H
L
I
50  
Input Capacitance  
of Pins TCK  
pF  
pF  
of Pins TDI and TMS  
C
Output Capacitance (Pin TDO)  
pF  
O
I
I
I
Input Pull-up Current (Pins TDI and TMS)  
Input Leakage Current (Pin TCK)  
Output Leakage Current (Pin TDO)  
mA  
µA  
µA  
V = V  
I SS  
IH  
V
SS  
V V  
I DD  
I
TAP controller is in TEST-  
RESET state  
O
Schmitt Trigger Hysteresis  
This specification defines the Schmitt Trigger Hysteresis of the inputs TCK, TMS, and TDI.  
V
Trigger Level at Transition High to Low  
Trigger Level at Transition Low to High  
1.2  
1.6  
V
V
TRHL  
TRLH  
V
MICRONAS INTERMETALL  
63  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.10.1. Timing of the Test Access Port TAP  
Φ
CYCL  
Φ
Φ
H
L
TCK  
t
S
t
H
TDI, TMS  
TDO  
t
D
t
t
OFF  
ON  
Fig. 6–16: Timing of Test Access Port TAP  
Symbol  
Parameter  
Min.  
Typ.  
3
Max.  
Unit  
Test Conditions  
t
S
t
H
t
D
TMS, TDI Setup Time  
TMS, TDI Hold Time  
ns  
ns  
ns  
3
4
4
TCK to TDO Propagation Delay for Valid  
Data  
35  
40  
45  
t
t
TDO Turn-on Delay  
TDO Turn-off Delay  
35  
35  
40  
40  
45  
45  
ns  
ns  
ON  
OFF  
64  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
2
6.6.11. Characteristics, I C Bus Interface  
Symbol  
Parameter  
Pin  
Name  
Min.  
1.5  
Typ.  
Max.  
2.0  
3.0  
Unit  
V
Test Conditions  
V
V
Input Trigger Level  
High to Low  
SDA,  
SCL  
0.3*VDD  
0.6*VDD  
ITF  
Input Trigger Level  
Low to High  
2.5  
V
ITR  
V
V
Input Trigger Hysteresis  
Output Low Voltage  
0.5  
V
ITH  
0.4  
0.6  
V
V
I = 3 mA  
l
I = 6 mA  
l
OL  
V
Input Capacitance  
20  
pF  
µA  
ns  
IH  
I
t
t
f
t
t
Input Leakage Current  
Signal Fall Time  
–1  
1
V vV vV  
ss i dd  
l
300  
1000  
400  
C =400 pF  
L
F
Signal Rise Time  
ns  
R
Clock Frequency  
SCL  
0
kHz  
ns  
SCL  
s
Setup Time PREF to RES  
Hold Time PREF to RES  
PREF  
10  
10  
ns  
h
The state of PREF and PIXCLK pins are sampled at the  
high (inactive) going edge of RES in order to determine  
two power-on parameters (see Fig. 6–17).  
V
V
V
V
IOH  
IOL  
IOH  
IOL  
RES  
2
PREF determines the I C address:  
PREF  
PREF=0: Address ³1000 011  
bin  
bin  
PREF=1: Address ³1000 111  
t
t
t
t
s
h
PIXLCK determines the internal ROM table which is  
2
used to initialize some of I C and FP registers (see sec-  
+0:0  
tion 4.9.)  
V
V
IOH  
PIXCLK  
IOL  
s
h
2
Fig. 6–17: I C Selection:  
Slave Address (PREF) and  
Init Table (PIXCLK)  
MICRONAS INTERMETALL  
65  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.12. Digital Video Interface  
The following timing specifications refer to the timing diagrams of sections 6.6.12.1., 6.6.12.2., 6.6.12.3., and 6.6.12.4.  
For pin driver specific values (driver types A and B) see 6.6.13.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
OE: see 6.6.5.  
PIXCLK: Synchronous Mode  
t
Cycle Time at 13.5 MHz internal Data Rate  
74  
ns  
ns  
CLK13  
CLK20  
t
Cycle Time at 20.25 MHz internal Data  
Rate  
49.4  
k
Duty Cycle Φ / (Φ  
Φ )  
H
50  
%
PIXCLK  
H
L +  
t
t
Output Signal Hold Time for  
H2  
A [7:0]  
B [7:0]  
ALPHA  
15  
16  
16  
16  
17  
17  
18  
19  
19  
ns  
ns  
ns  
Output Signal Hold Time of VACT  
3
4
6
ns  
H3  
LLC (is only available in synchronous output mode at a transport rate of 13.5 MHz.)  
t
Cycle Time  
37  
18  
10  
ns  
ns  
ns  
LLC  
Φ
Pulse width ’HIGH’  
12  
7
24  
12  
H
t
H1  
Output Signal Hold Time for PIXCLK  
66  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
PIXCLK: Asynchronous Mode  
V
V
Input Voltage LOW  
–0.5  
2.0  
0.8  
V
V
IL  
Input Voltage HIGH  
for input pin PIXCLK  
PVDD +  
0.3  
IH  
V
V
Trigger Level at Transition High to Low  
Trigger Level at Transition Low to High  
Cycle Time  
1.2  
1.6  
V
TRHL  
V
TRLH  
Φ
Φ
Φ
35  
ns  
ns  
ns  
CYCL  
Minimum Pulse width ’HIGH’  
Minimum Pulse width ’LOW’  
H
L
t
D
Delay PIXCLK(input) to  
A [7:0]  
11  
ns  
ns  
ns  
ns  
ns  
B [7:0]  
20  
20  
tbd  
20  
neg. edge of FE  
pos. edge of HF  
ALPHA  
A special PVDD, PVSS supply is used only to support the digital output pins. This means, inherently, that in case of  
tristate conditions, external sources should not drive these signals above the voltage PVDD which supplies the output  
pins.  
All timing specifications are based on the following assumptions:  
– the load capacitance of the fast pins (output driver type A) is C = 30 pF,  
A
– the load capacitance of the remaining pins (output driver type B) is C = 50 pF;  
B
– no static currents are assumed;  
– the driving capability of the pads is STR = 4, which means that 5 of 8 output drivers are enabled.  
The typical case specification relates to:  
– the ambient temperature is T = 25 °C, which relates to a junction temperature of T = 70 °C;  
A
J
– the power supply of the pad circuits is PVDD = 3.3 V, and the power supply of the digital parts is VDD = 5.0 V.  
The best case specification relates to:  
– a junction temperature of T = 0 °C;  
J
– the power supply of the pad circuits is PVDD = 3.6 V, and the power supply of the digital parts is VDD = 5.25 V.  
The worst case specification relates to:  
– a junction temperature of T = 125 °C;  
J
– the power supply of the pad circuits is PVDD = 3.0 V, and the power supply of the digital parts is VDD = 4.75 V.  
Rise times are specified as a transition between 0.6 V to 2.4 V. Fall times are defined as a transition between 2.4 V to  
0.6 V.  
MICRONAS INTERMETALL  
67  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.12.1. Characteristics, Synchronous Mode, 13.5 MHz Data Rate, “Single Clock”  
LLC  
PIXCLK  
A[7:0],  
B[7:0],  
ALPHA  
VACT  
Data and VACT valid!  
Detailed Timing  
t
LLC  
2.4 V  
1.5 V  
0.6 V  
LLC  
t
RA  
t
H1  
t
FA  
t
FA  
2.4 V  
1.5 V  
0.6 V  
PIXCLK  
A[7:0]  
t
/t  
RA FA  
t
RA  
t
H2  
2.4 V  
1.5 V  
0.6 V  
t
/t  
RB FB  
2.4 V  
1.5 V  
0.6 V  
B[7:0],  
ALPHA  
t
t
H3  
t
FA  
RA  
2.4 V  
1.5 V  
0.6 V  
VACT  
0 ns  
18.5 ns  
37 ns  
55.5 ns  
74 ns  
92.5 ns  
111 ns  
68  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.12.2. Characteristics, Synchronous Mode, 20.25 MHz Data Rate, “Single Clock”  
PIXCLK  
A[7:0],  
B[7:0],  
ALPHA  
VACT  
Detailed Timing  
t
CLK20  
t
FA  
t
RA  
2.4 V  
1.5 V  
0.6 V  
PIXCLK  
A[7:0]  
t
H2  
t
/t  
RA FA  
2.4 V  
1.5 V  
0.6 V  
t
/t  
RB FB  
2.4 V  
1.5 V  
0.6 V  
B[7:0],  
ALPHA  
t
t
H3  
t
FA  
RA  
2.4 V  
1.5 V  
0.6 V  
VACT  
0 ns  
25 ns  
50 ns  
75 ns  
100 ns  
MICRONAS INTERMETALL  
69  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.12.3. Characteristics, Synchronous Mode, 13.5 MHz Data Rate, “Double Clock”  
PIXCLK  
Byte 1 Byte 2 Byte 1 Byte 2 Byte 1 Byte 2 Byte 1 Byte 2  
A[7:0]  
ALPHA  
VACT  
Detailed Timing  
t
CLK13  
t
FA  
t
RA  
2.4 V  
1.5 V  
0.6 V  
PIXCLK  
A[7:0]  
t
H2  
t
/t  
t
H2  
RA FA  
2.4 V  
1.5 V  
0.6 V  
t
/t  
RB FB  
2.4 V  
1.5 V  
0.6 V  
ALPHA  
B[7:0]  
t
t
H3  
t
FA  
RA  
2.4 V  
1.5 V  
0.6 V  
VACT  
0 ns  
18.5 ns  
37 ns  
55.5 ns  
74 ns  
92.5 ns  
111 ns  
70  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.12.4. Characteristics, Asynchronous Mode  
negative slope of PIXCLK, depending on the setting of  
2
the I C reg. F1  
bit[2]. In asynchronous mode, the  
hex  
PIXCLK is always a single edge clock. If luma and chro-  
ma data should be transferred via A-port (double clock  
mode), then each data requires a complete clock cycle  
of PIXCLK. A complete pixel (luma and chroma) needs  
two complete clock cycles.  
If the digital video interface is in asynchronous mode,  
then the data transfer is controlled by an external clock  
signal. Therefore, theinterfacesignalPIXCLKisusedas  
an input signal. The video data refers to the positive or  
PIXCLK (in)  
pos. edge triggered  
PIXCLK (in)  
neg. edge triggered  
A[7:0],  
B[7:0],  
ALPHA  
FE  
Detailed Timing  
Φ
CYCL  
Φ
Φ
Φ
H
L
2.4 V  
1.5 V  
0.6 V  
PIXCLK (in)  
pos. edge triggered  
Φ
L
H
2.4 V  
1.5 V  
0.6 V  
PIXCLK (in)  
neg. edge triggered  
t
/t  
t
D
RA FA  
2.4 V  
1.5 V  
0.6 V  
A[7:0]  
t
/t  
RB FB  
2.4 V  
1.5 V  
0.6 V  
B[7:0],  
ALPHA  
t
t
D*  
t
FA  
RA  
2.4 V  
1.5 V  
0.6 V  
FE  
0 ns  
25 ns  
50 ns  
75 ns  
100 ns  
MICRONAS INTERMETALL  
71  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Start and End of an Asynchronous Transfer Mode  
internal clock  
VACT  
video data  
input pointer  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
output pointer  
0
if half full level  
2
(I C Reg. F0  
is 15  
hex)  
FE  
HF  
PIXCLK  
Note: The positive slope of FE and the negative slope of HF is determined by internal timing!  
There is no relation to any pin signal.  
input pointer  
n
output pointer  
n–15 n–14 n–13 n–12 n–11 n–10 n–9 n–8 n–7 n–6 n–5 n–4 n–3 n–2 n–1  
n
PIXCLK (input)  
Video Data A[7:0], B[7:0]  
if half full level  
2
(I C Reg. F0  
is 15  
hex)  
HF  
FE  
72  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
strength = 7  
6.6.13. Characteristics, TTL Output Driver  
Thedriversoftheoutputpadsareimplementedasapar-  
allelconnectionof8tristatebuffersofthesamesize. The  
buffers are enabled depending on the desired driver  
strength. This opportunity offers the advantage of adapt-  
ing the driver strength to on-chip and off-chip  
constraints, e.g. to minimize the noise resulting from  
steep signal transitions.  
strength w 6  
strength w 5  
strength w 4  
strength w 3  
strength w 2  
strength w 1  
strength w 0  
The driving capability/strength is controlled by the state  
2
of the two I C registers F8  
and F9  
.
hex  
hex  
F8  
Pad Driver Strength – TTL Output Pads Type A  
bit [2:0] : Driver strength of Port A[7:0]  
bit [5:3] : Driver strength of PIXCLK, HF and FE  
bit [7:6] : additional PIXCLK driver strength  
strength = bit [5:3] | {bit[7:6], 0}  
F9  
Pad Driver Strength – TTL Output Pads Type B  
bit [2:0] : Driver strength of Port B[7:0]  
bit [5:3] : Driver strength of HREF, VREF, PREF and  
ALPHA/TDO  
Fig. 6–18: Block diagram of the output stages  
MICRONAS INTERMETALL  
73  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.13.1. TTL Output Driver Type A  
Symbol  
Parameter  
Min.  
65  
Typ.  
RT  
Max.  
0
Unit  
Test Conditions  
Ambient Temperature  
Supply  
T
A
°C  
VDD,  
4.75  
5.0  
5.25  
V
AVDD  
PVDD  
3.0  
2
3.3  
5
3.6  
10  
V
Pad Supply  
t
t
I
I
I
I
Rise time  
ns  
C = 30 pF, strength = 5  
l
RA  
FA  
Fall time  
2
5
10  
ns  
C = 30 pF, strength = 5  
l
(0)  
Output High Current (strength = 0)  
Output Low Current (strength = 0)  
Output High Current (strength = 7)  
Output Low Current (strength = 7)  
High-Impedance Output Capacitance  
–1.37  
1.75  
–11  
14  
–2.25  
3.5  
–18  
28  
5
–2.87  
4.5  
–25  
36  
mA  
mA  
mA  
mA  
pF  
V
OH  
V
OH  
V
OH  
V
OH  
= 0.6 V  
= 2.4 V  
= 0.6 V  
= 2.4 V  
OH  
(0)  
OL  
(7)  
OH  
(7)  
OL  
C
8
O
6.6.13.2. TTL Output Driver Type B  
Symbol  
Parameter  
Min.  
65  
Typ.  
RT  
Max.  
0
Unit  
°C  
Test Conditions  
Ambient Temperature  
Supply  
T
A
VDD,  
4.75  
5.0  
5.25  
V
AVDD  
PVDD  
3.0  
6
3.3  
12  
3.6  
25  
V
Pad Supply  
t
t
I
I
I
I
Rise time  
ns  
C = 50 pF, strength = 5  
l
RB  
FB  
OH  
Fall time  
6
12  
25  
ns  
C =50 pF, strength = 5  
l
(0)  
(0)  
Output High Current (strength = 0)  
Output Low Current (strength = 0)  
Output High Current (strength = 7)  
Output Low Current (strength = 7)  
High-Impedance Output Capacitance  
–0.63  
0.81  
–5  
–1.13  
1.81  
–9  
–1.38  
2.38  
–12  
19  
mA  
mA  
mA  
mA  
pF  
V
OH  
V
OH  
V
OH  
V
OH  
= 2.4 V  
= 0.6 V  
= 2.4 V  
= 0.6 V  
OL  
(7)  
OH  
(7)  
6.5  
14.5  
5
OL  
C
8
O
74  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
6.6.14. Characteristics, Enable/Disable of Output  
Signals  
RESET State:  
IftheTAP-controllerisnotintheEXTESTmode, thenthe  
RESET-state defines the state of all digital outputs. The  
only exception is made for the data output of the bound-  
ary scan interface TDO. If the circuit is in reset condition  
(RES = 0), then all output interfaces are in tristate mode.  
In order to enable the output pins of the VPX to achieve  
thehighimpedance/tristatemode, variouscontrolshave  
been implemented. The following paragraphs give an  
overview of the different tristate modes of the output sig-  
nals. It is valid for all output pins, except the XTAL2  
(which is the oscillator output) and the VRT pin (which is  
an analog reference voltage).  
2
I C Control:  
The tristate condition of groups of signals can also be  
2
controlled by setting the I C-Register F2 . If the circuit  
hex  
is neither in EXTEST mode nor RESET state, then the  
BS (Boundary-Scan) Mode:  
2
I C-Register F2  
tate condition or not. The I C-Register #F1 uses differ-  
ent bits for different groups of outputs (see “I C-Register  
defines whether the output is in tris-  
hex  
2
The tristate control by the test access port TAP for  
boundary-scan has the highest priority. Even if the TAP-  
controller is in the EXTEST or CLAMP mode, the tristate  
behavior is only defined by the state of the different  
boundary scan registers for enable control. If the TAP  
controller is in HIGHZ mode, then all output pins are in  
tristate mode independently of the state of the different  
boundary scan registers for enable control.  
2
Table”).  
Output Enable Input OE:  
The output enable signal OE only effects the video out-  
put ports. If the previous three conditions do not cause  
the output drivers to go into high impedance mode, then  
the OE signal defines the driving conditions of the video  
data ports.  
2
EXTEST  
RESET  
I C  
OE#  
Driver Stages  
active  
Output driver stages are defined by the state of the different  
boundary-scan enable registers.  
inactive  
inactive  
inactive  
inactive  
active  
Output drivers are in high impedance mode.  
inactive  
inactive  
inactive  
= 0  
= 1  
= 1  
Output drivers are in high impedance mode. PIXCLK is working.  
Output drivers HREF, VREF, PREF, FE, HF are working.  
= 1  
Output drivers of ALPHA, A[7:0], B[7:0], and C[7:0] are in high impedance  
mode.  
inactive  
inactive  
= 1  
= 0  
Outputs ALPHA, A[7:0], B[7:0], and C[7:0] are working  
Remark: EXTEST mode is an instruction conforming to the standard for Boundary-Scan Test IEEE 1149.1 – 1990  
MICRONAS INTERMETALL  
75  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Output Enable by Pin OE  
OE  
t
t
ON  
OFF  
Signals  
A[7:0], B[7:0],  
ALPHA  
Symbol  
Parameter  
Min.  
–0.5  
2.0  
Typ.  
Max.  
0.8  
6
Unit  
Test Conditions  
V
IL  
Input Voltage LOW  
V
V
V
IH  
Input Voltage HIGH  
for Input pins OE, RES  
V
V
Trigger Level at Transition High to Low  
Trigger Level at Transition Low to High  
Output Enable OE of A[7:0], B[7:0], ALPHA  
1.2  
1.6  
6
V
TRHL  
V
TRLH  
t
ns  
ns  
ON  
OFF  
t
Output Disable OE of A[7:0], B[7:0], AL-  
PHA  
8
76  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Video Pixel Decoder Family Addendum  
1. Introduction for Addendum  
tems require that the inactive period of HREF also has  
a fixed length: they use the inactive going edge of HREF  
to reset their counters, count afterwards a certain  
amount of clocks and then strobe the preprogrammed  
number of data almost regardless of the state of VACT  
signal. That’s why this new timing mode was introduced.  
VPX 3214C has two additional features compared to the  
VPX 3220A and VPX 3216B:  
– another output timing mode called NewVACT and  
– low power mode.  
In this mode signal at VACT pin has an unpredictable be-  
havior and NewVACT signal is available at the HREF pin  
carrying all the information. It goes inactive, stays inac-  
tive for the programmable number of transport rate  
clocks. This inactive phase is at least 8 clocks long and  
can be extended in clock units to the maximum length of  
2. New Output Timing – NewVACT  
The VPX family operates with a system and sampling  
clock of 20.25 MHz. When the oscillator is not locked to  
the line frequency of the processed video signal, the  
numberofsamplespervideoscanlinecanvaryfromline  
to line. The HREF signal marks the active video line and  
has a fixed width of 1056 clocks. The inactive part of the  
HREF can therefore vary in length. The same principle  
applies to the VACT signal, the difference being that the  
activelengthofVACTequalsthenumberofoutputpixels  
times transport rate of either 20.25 or 13.5 MHz. This be-  
havior of HREF and VACT signals is well suited for the  
systems using state machines to handle these signals  
and data delivered from VPX. On the other hand this be-  
havior causes problems in case the system uses plain  
counters to decide when to strobe the data. These sys-  
2
23 by writing the field [3:0] of the OFIFO register (I C ad-  
dress 0xF0). After that NewVACT goes active exactly  
before the first valid video data, so it still can be used as  
qualifier for the start of data. It stays active for the rest  
of the line regardless of the number of valid video data,  
soitcannotbeusedastheend-qualifier. Thesystemus-  
ing the data has to count properly and strobe only the  
valid data.  
After reset, the VPX operates in its usual output timing  
mode. Therearetworegisterscontrollingthenewmode.  
2
The FP register is used to switch it on and off and I C  
registerisusedtocontrolthelengthoftheHREFinactive  
period.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Test Conditions  
t
t
t
Hold Time of inactive going NewVACT after  
PIXCLK  
20  
ns  
HNVL  
HNVH  
HV  
Hold Time of active going NewVACT after  
PIXCLK  
15  
10  
ns  
ns  
Hold Time of VREF change after PIXCLK  
NewVACT–Timing (13.5/20.25MHz)  
PIXCLK  
HREF  
oddfield changes  
1. data  
2. data  
evenfield changes  
VREF  
DATA  
......  
MICRONAS INTERMETALL  
77  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
Detailed Timing – inactive going NewVACT and  
both VREF edges in Even Field  
2.4 V  
1.5 V  
0.6 V  
PIXCLK  
t
HNVL  
2.4 V  
1.5 V  
0.6 V  
NewVACT  
(on HREF pin)  
t
HV  
2.4 V  
1.5 V  
0.6 V  
VREF  
Detailed Timing – active going NewVACT and  
both VREF edges in Odd Field  
2.4 V  
1.5 V  
0.6 V  
PIXCLK  
t
HNVH  
2.4 V  
1.5 V  
0.6 V  
NewVACT  
(on HREF pin)  
t
HV  
2.4 V  
1.5 V  
0.6 V  
VREF  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
F0  
8
w
Output FIFO  
OFIFO  
hfull  
FIFO Control: (only available in Asynchronous Mode)  
bit [4:0] : FIFO Flag – Half Full Level (interface signal HF)  
NewVACT Control: (only available in Synchronous Mode)  
bit [3:0] : Additional length of NewVACT inactive period.  
Total length in clocks equals 8 + bit[3:0]  
bit [4] : reserved (must be set to zero)  
bit [7:5] : Bus Shuffler  
shuf  
000 Out[23:0] = In[23:0]  
001,  
010 Out[23:0] = In[7:0, 23:8]  
011 Out[23:0] = In[15:0, 23:16]  
100 Out[23:0] = In[15:8, 23:16, 7:0]  
101,  
110 Out[23:0] = In[7:0, 15:8, 23:16]  
111 Out[23:0] = In[23:16, 7:0, 15:8]  
Meaning:  
In[23:0] : Data from Color Space Stage  
Out[23:0] : Data to Output FIFO  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
78  
MICRONAS INTERMETALL  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
3. Low power mode  
scan line in which VPX is switched into low power mode.  
During the low power mode all the I C and FP registers  
2
Inordertoaccommodatepowerconsumptioncriticalap-  
plications, low power mode is introduced. It can be  
turned on and off through the I C register 0xAA. There  
are three levels of low power. When any of them is  
turned on, VPX waits for at least one complete video  
scan line in order to complete all internal tasks and then  
goes into three-state mode. The exact moment is not  
precisely defined, so care should be taken to deactivate  
the system using VPX data before the end of the video  
are preserved, so that VPX restores its normal operation  
as soon as low power mode is turned off without need for  
2
2
any reinitialization. On the other hand all the I C and FP  
registers can be read / written as usual. The only excep-  
2
tion is the third level (value of 3 in I C register 0xAA) of  
2
low power. In that mode, I C speeds above 100 kbit/sec  
2
are not allowed. In modes 1 and 2, I C can be used up  
to the full speed of 400 kbit/sec.  
2
I C Reg.  
Address  
Number  
of Bits  
Mode  
Function  
Name  
AA  
8
w
Low power  
bit [1:0] : Low power  
lowpow  
00 active mode  
01 outputs three–stated; clock divided by 2; I C full speed  
10 outputs three–stated; clock divided by 4; I C full speed  
2
2
2
11  
outputs three–stated; clock divided by 8; I C only up to 100 kbit/sec  
The control register modes are  
– w: write/read register  
– d: register is double latched  
– r: read-only register  
– v: register is latched with vsync  
– A: register is available only in VPX 3220 A; VPX 3216 B returns valid ACK, although no internal action is performed  
The mnemonics used in the Intermetall VPX demo software are given in the last column.  
MICRONAS INTERMETALL  
79  
VPX 3220 A, VPX 3216 B, VPX 3214 C  
PRELIMINARY DATA SHEET  
4. Data Sheet History  
1. Data sheet “VPX 3220 A, VPX 3216 B Video Pixel  
Decoder”, Aug. 25, 1995, 6251-368-1PD: First prelimi-  
nary release of the data sheet.  
2. Data sheet “VPX 3220 A, VPX 3216 B, VPX 3214 C  
Video Pixel Decoders”, July 1, 1996, 6251-368-2PD:  
Second preliminary release of the data sheet. Major  
changes:  
– VPX 3214 C has been included  
– Fig. 6–1: package dimensions changed  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet are with-  
out any commitment, are not to be considered as an offer for  
conclusion of a contract nor shall they be construed as to  
create any liability. Any new issue of this data sheet invalidates  
previous issues. Product availability and delivery dates are ex-  
clusively subject to our respective order confirmation form; the  
same applies to orders based on development samples deliv-  
ered. By this publication, MICRONAS INTERMETALL GmbH  
does not assume responsibility for patent infringements or  
other rights of third parties which may result from its use.  
Reprinting is generally permitted, indicating the source. How-  
ever, our prior consent must be obtained in all cases.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
Order No. 6251-368-2PD  
80  
MICRONAS INTERMETALL  

相关型号:

VPX3216BQG

Consumer Circuit, PQFP44, PLASTIC, QFP-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

VPX3220A

Video Pixel Decoders

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VPX3220A(PLCC44)

Color Decoder Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VPX3220A(QFP44)

Color Decoder Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VPX3220APQ

Consumer Circuit, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

VPX3224D

Video Pixel Decoders

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VPX3224D-B2

Color Signal Decoder, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

VPX3224D-C3

Microprocessor

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

VPX3224E

Video Pixel Decoders

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICRONAS

VPX3224E

Consumer IC,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

VPX3224EPQ

Consumer Circuit, PQCC44, PLASTIC, LCC-44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TDK

VPX3225D

Video Pixel Decoders

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC