74AVCH20T245GRG4 [TI]

20-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS; 可配置电压转换和三态输出的20位双电源总线收发器
74AVCH20T245GRG4
型号: 74AVCH20T245GRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

20-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
可配置电压转换和三态输出的20位双电源总线收发器

总线收发器 输出元件
文件: 总21页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
DGG OR DGV PACKAGE  
(TOP VIEW)  
D
D
Control Inputs V /V Levels are  
IH IL  
Referenced to V  
Voltage  
CCA  
V
Isolation Feature − If Either V  
Input  
CC  
CC  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1DIR  
1OE  
1A1  
1A2  
GND  
1A3  
1A4  
Is at GND, Both Ports Are in the  
High-Impedance State  
2
1B1  
1B2  
3
D
D
Overvoltage-Tolerant Inputs/Outputs Allow  
Mixed-Voltage-Mode Data Communications  
4
GND  
1B3  
5
Fully Configurable Dual-Rail Design Allows  
Each Port to Operate Over the Full 1.2-V to  
3.6-V Power-Supply Range  
6
1B4  
7
V
V
CCB  
1B5  
CCA  
8
1A5  
1A6  
1A7  
GND  
1A8  
1A9  
1A10  
2A1  
2A2  
2A3  
GND  
2A4  
2A5  
2A6  
9
1B6  
1B7  
GND  
1B8  
1B9  
1B10  
2B1  
2B2  
2B3  
GND  
2B4  
2B5  
2B6  
D
I
Supports Partial-Power-Down Mode  
off  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Operation  
D
I/Os Are 4.6-V Tolerant  
D
Bus Hold on Data Inputs Eliminates the  
Need for External Pullup/Pulldown  
Resistors  
D
Max Data Rates  
− 380 Mbps (1.8-V to 3.3-V Translation)  
− 260 Mbps (< 1.8-V to 3.3-V Translation)  
− 260 Mbps (Translate to 2.5 V)  
− 210 Mbps (Translate to 1.8 V)  
− 120 Mbps (Translate to 1.5 V)  
− 100 Mbps (Translate to 1.2 V)  
V
V
CCB  
2B7  
CCA  
D
D
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
2A7  
2A8  
GND  
2A9  
2A10  
2OE  
2B8  
GND  
2B9  
2B10  
2DIR  
ESD Protection Exceeds JESD 22  
− 8000-V Human-Body Model (A114-A)  
− 200-V Machine Model (A115-A)  
− 1000-V Charged-Device Model (C101)  
description/ordering information  
This 20-bit noninverting bus transceiver uses two separate configurable power-supply rails. The  
SN74AVCH20T245 is optimized to operate with V  
as low as 1.2 V. The A port is designed to track V  
/V  
set at 1.4 V to 3.6 V. It is operational with V  
accepts any supply voltage from 1.2 V to 3.6 V. The  
/V  
CCA CCB  
CCA CCB  
. V  
CCA CCA  
B port is designed to track V  
. V  
accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal  
CCB CCB  
low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
PACKAGE  
T
A
TSSOP − DGG  
TVSOP − DGV  
VFBGA − GQL  
Tape and reel SN74AVCH20T245GR  
Tape and reel SN74AVCH20T245VR  
AVCH20T245  
WK245  
−40°C to 85°C  
SN74AVCH20T245KR  
Tape and reel  
WK245  
VFBGA − ZQL (Pb-free)  
74AVCH20T245ZQLR  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available  
at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢊꢦ  
Copyright 2005, Texas Instruments Incorporated  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢊ ꢈ ꢃ ꢋ  
ꢈꢉ ꢌꢍꢎ ꢊ ꢏ ꢐ ꢄꢑ ꢌꢀꢐ ꢒꢒ ꢑꢓ ꢍꢐ ꢀ ꢊꢔ ꢄꢁ ꢀꢆ ꢕꢎ ꢅ ꢕꢔ  
ꢖꢎ ꢊ ꢇ ꢆ ꢗꢁ ꢘꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅ ꢗꢑꢊꢄꢙ ꢕ ꢊꢔ ꢄꢁ ꢀꢑ ꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐꢊ ꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
description/ordering information (continued)  
The SN74AVCH20T245 is designed for asynchronous communication between data buses. The device  
transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the  
direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so that the buses  
are effectively isolated.  
The SN74AVCH20T245 is designed so that the control (1DIR, 2DIR, 1OE, and 2OE) inputs are supplied by  
V
.
CCA  
This device is fully specified for partial-power-down applications using I . The I circuitry disables the outputs,  
off  
off  
preventing damaging current backflow through the device when it is powered down.  
The V isolation feature ensures that if either V input is at GND, both outputs are in the high-impedance  
CC  
CC  
state. The bus-hold circuitry on the powered-up side always stays active.  
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors  
with the bus-hold circuitry is not recommended.  
To ensure the high-impedance state during power up or power down, OE should be tied to V  
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.  
through a pullup  
CC  
GQL OR ZQL PACKAGE  
(TOP VIEW)  
terminal assignments  
1
2
3
4
5
6
1
2
3
4
5
6
A
B
C
D
E
F
1B1  
1B3  
1B5  
1B7  
1B9  
2B1  
2B3  
2B5  
2B7  
2B9  
1B2  
1B4  
1B6  
1B8  
1B10  
2B2  
2B4  
2B6  
2B8  
2B10  
1DIR  
GND  
1OE  
GND  
1A2  
1A4  
1A6  
1A8  
1A10  
2A2  
2A4  
2A6  
2A8  
2A10  
1A1  
1A3  
1A5  
1A7  
1A9  
2A1  
2A3  
2A5  
2A7  
2A9  
A
B
C
D
V
CCB  
GND  
V
CCA  
GND  
E
F
G
H
J
GND  
GND  
G
H
J
V
CCB  
GND  
V
CCA  
GND  
K
2DIR  
2OE  
K
FUNCTION TABLE  
(each 10-bit section)  
INPUTS  
OPERATION  
B data to A bus  
OE  
L
DIR  
L
L
H
A data to B bus  
Isolation  
H
X
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
ꢖ ꢎ ꢊꢇ ꢆꢗ ꢁꢘ ꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅꢗ ꢑꢊꢄꢙ ꢕ ꢊ ꢔꢄꢁꢀ ꢑꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐ ꢊꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
logic diagram (positive logic)  
28  
42  
1
2DIR  
2A1  
1DIR  
56  
29  
1OE  
1B1  
2OE  
55  
1A1  
15  
2
2B1  
To Nine Other Channels  
To Nine Other Channels  
Pin numbers shown are for the DGG and DGV packages.  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
and V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
CCA  
CCB  
Input voltage range, V (see Note 1): I/O ports (A port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
I
I/O ports (B port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Voltage range applied to any output in the high-impedance or power-off state, V  
O
(see Note 1): (A port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
(B port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V  
Voltage range applied to any output in the high or low state, V  
O
(see Notes 1 and 2): (A port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
(B port) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
+ 0.5 V  
CCA  
CCB  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
IK  
OK  
I
Output clamp current, I  
(V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA  
O
Continuous output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Continuous current through each V  
O
, V  
, and GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
CCA CCB  
Package thermal impedance, θ (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W  
JA  
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48°C/W  
GQL/ZQL package . . . . . . . . . . . . . . . . . . . . . . . . . . . 42°C/W  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Storage temperature range, T  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.  
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢊ ꢈ ꢃ ꢋ  
ꢈꢉ ꢌꢍꢎ ꢊ ꢏ ꢐ ꢄꢑ ꢌꢀꢐ ꢒꢒ ꢑꢓ ꢍꢐ ꢀ ꢊꢔ ꢄꢁ ꢀꢆ ꢕꢎ ꢅ ꢕꢔ  
ꢖꢎ ꢊ ꢇ ꢆ ꢗꢁ ꢘꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅ ꢗꢑꢊꢄꢙ ꢕ ꢊꢔ ꢄꢁ ꢀꢑ ꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐꢊ ꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
recommended operating conditions (see Notes 4 through 8)  
V
CCI  
V
CCO  
MIN  
1.2  
MAX  
3.6  
UNIT  
V
V
V
Supply voltage  
Supply voltage  
CCA  
1.2  
3.6  
V
CCB  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
V
× 0.65  
CCI  
High-level input  
voltage  
Data inputs  
(see Note 7)  
1.6  
2
V
IH  
V
IL  
V
IH  
V
IL  
V
V
V
V
V
CCI  
× 0.35  
Low-level input  
voltage  
Data inputs  
(see Note 7)  
0.7  
0.8  
V
CCA  
×0.65  
DIR  
High-level input  
voltage  
1.6  
2
(referenced to V  
)
)
CCA  
(see Note 8)  
V
CCA  
×0.35  
0.7  
DIR  
Low-level input  
voltage  
(referenced to V  
CCA  
(see Note 8)  
0.8  
V
V
Input voltage  
0
0
0
3.6  
V
V
I
Active state  
3-state  
V
CCO  
Output voltage  
O
3.6  
−3  
−6  
−8  
−9  
−12  
3
1.2 V  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
I
High-level output current  
Low-level output current  
mA  
mA  
OH  
1.2 V  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
6
8
I
OL  
9
12  
5
t/v  
Input transition rise or fall rate  
Operating free-air temperature  
ns/V  
T
A
−40  
85  
°C  
NOTES: 4. V  
is the V  
associated with the data input port.  
associated with the output port.  
CCI  
CC  
5.  
V
is the V  
CC  
CCO  
6. All unused data inputs of the device must be held at V or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
CCI  
7. For V  
8. For V  
values not specified in the data sheet, V  
values not specified in the data sheet, V  
= V  
= V  
x 0.7 V, V  
= V  
= V  
CCA  
x 0.3 V.  
x 0.3 V.  
CCI  
CCI  
IH(min)  
IH(min)  
CCI  
IL(max)  
CCI  
x 0.7 V, V  
IL(max)  
CCA  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
ꢖ ꢎ ꢊꢇ ꢆꢗ ꢁꢘ ꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅꢗ ꢑꢊꢄꢙ ꢕ ꢊ ꢔꢄꢁꢀ ꢑꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐ ꢊꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (see Note 9)  
T
A
= 25°C  
−40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
V
CCA  
V
CCB  
MIN  
TYP  
MAX  
MIN  
MAX  
I
I
I
I
I
I
I
I
I
I
I
I
= −100 µA  
= −3 mA  
= −6 mA  
= −8 mA  
= −9 mA  
= −12 mA  
= 100 µA  
= 3 mA  
1.2 V to 3.6 V  
1.2 V  
1.2 V to 3.6 V  
1.2 V  
V
CCO  
− 0.2 V  
OH  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
0.95  
1.4 V  
1.4 V  
1.05  
1.2  
V
V = V  
IH  
V
OH  
I
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.75  
2.3  
3 V  
3 V  
1.2 V to 3.6 V  
1.2 V  
1.2 V to 3.6 V  
1.2 V  
0.2  
0.15  
= 6 mA  
1.4 V  
1.4 V  
0.35  
0.45  
0.55  
0.7  
V
OL  
V = V  
I IL  
V
= 8 mA  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
= 9 mA  
= 12 mA  
3 V  
3 V  
Control  
inputs  
I
I
V = V  
CCA  
or GND  
1.2 V to 3.6 V  
1.2 V to 3.6 V  
0.025  
25  
0.25  
1
µA  
µA  
I
I
V = 0.42 V  
I
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3.3 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
1.2 V  
1.6 V  
1.95 V  
2.7 V  
3.6 V  
V = 0.49 V  
I
15  
25  
V = 0.58 V  
I
BHL  
V = 0.7 V  
I
45  
V = 0.8 V  
I
100  
V = 0.78 V  
I
−25  
V = 0.91 V  
I
−15  
−25  
V = 1.07 V  
I
I
I
I
µA  
µA  
µA  
BHH  
V = 1.6 V  
I
−45  
V = 2 V  
I
−100  
50  
125  
200  
300  
500  
§
V = 0 to V  
CC  
BHLO  
I
−50  
−125  
−200  
−300  
−500  
V = 0 to V  
CC  
BHHO  
I
The bus-hold circuit can sink at least the minimum low sustaining current at V max. I  
IL BHL  
should be measured after lowering V to GND and  
IN  
then raising it to V max.  
IL  
The bus-hold circuit can source at least the minimum high sustaining current at V min. I  
should be measured after raising V to V and  
IN CC  
IH  
BHH  
then lowering it to V min.  
IH  
§
An external driver must source at least I  
to switch this node from low to high.  
BHLO  
to switch this node from high to low.  
An external driver must sink at least I  
BHHO  
associated with the output port.  
NOTE 9:  
V
CCO  
is the V  
CC  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢊ ꢈ ꢃ ꢋ  
ꢈꢉ ꢌꢍꢎ ꢊ ꢏ ꢐ ꢄꢑ ꢌꢀꢐ ꢒꢒ ꢑꢓ ꢍꢐ ꢀ ꢊꢔ ꢄꢁ ꢀꢆ ꢕꢎ ꢅ ꢕꢔ  
ꢖꢎ ꢊ ꢇ ꢆ ꢗꢁ ꢘꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅ ꢗꢑꢊꢄꢙ ꢕ ꢊꢔ ꢄꢁ ꢀꢑ ꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐꢊ ꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted) (see Notes 10 and 11) (continued)  
T
A
= 25°C  
TYP  
0.1  
−40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
UNIT  
V
V
CCB  
CCA  
MIN  
MAX  
MIN  
MAX  
A port  
0 V  
0 to 3.6 V  
0 V  
1
1
5
5
I
V or V = 0 to 3.6 V  
µA  
off  
I
O
B port  
0 to 3.6 V  
0.1  
A or B  
ports  
OE = V  
OE =  
3.6 V  
3.6 V  
0.5  
2.5  
5
IH  
V
GND,  
V = V  
I
= V or  
CCO  
O
µA  
I
OZ  
0 V  
3.6 V  
0 V  
5
5
B port  
A port  
or GND  
CCI  
don’t care  
3.6 V  
1.2 V to 3.6 V 1.2 V to 3.6 V  
35  
−5  
35  
35  
35  
−5  
65  
0 V  
3.6 V  
0 V  
I
V = V  
or GND,  
I
= 0  
µA  
µA  
CCA  
I
CCI  
O
3.6 V  
1.2 V to 3.6 V 1.2 V to 3.6 V  
0 V  
3.6 V  
0 V  
I
I
V = V  
or GND,  
or GND,  
I
I
= 0  
= 0  
CCB  
I
CCI  
O
3.6 V  
) I  
V = V  
1.2 V to 3.6 V 1.2 V to 3.6 V  
µA  
CCA  
CCB  
I
CCI  
O
Control  
inputs  
C
C
V = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.5  
7
pF  
i
I
A or B  
ports  
V
O
= 3.3 V or GND  
pF  
io  
For I/O ports, the parameter I  
includes the input leakage current.  
associated with the output port.  
OZ  
NOTES: 10. V  
is the V  
CC  
CCO  
V
11.  
is the V associated with the input port.  
CCI  
CC  
switching characteristics over recommended operating free-air temperature range,  
= 1.2 V (see Figure 1)  
V
CCA  
V
= 1.2 V  
V
= 1.5 V  
V
= 1.8 V  
V
= 2.5 V  
V = 3.3 V  
CCB  
FROM  
(INPUT)  
TO  
(OUTPUT)  
CCB  
TYP  
3.8  
CCB  
TYP  
3.1  
CCB  
TYP  
2.8  
CCB  
TYP  
2.7  
PARAMETER  
UNIT  
ns  
TYP  
3.3  
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
A
B
3.8  
4.1  
4.1  
6.5  
6.5  
5.6  
5.6  
6.4  
6.4  
5.7  
5.7  
3.1  
3.8  
3.8  
6.5  
6.5  
4.4  
4.4  
6.4  
6.4  
4.6  
4.6  
2.8  
3.6  
3.6  
6.5  
6.5  
3.8  
3.8  
6.4  
6.4  
4.7  
4.7  
2.7  
3.5  
3.5  
6.5  
6.5  
3.3  
3.3  
6.4  
6.4  
4.1  
4.1  
3.3  
3.4  
3.4  
6.5  
6.5  
3.2  
3.2  
6.4  
6.4  
5.4  
5.4  
B
A
A
B
A
B
ns  
ns  
OE  
OE  
OE  
OE  
ns  
ns  
ns  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
ꢖ ꢎ ꢊꢇ ꢆꢗ ꢁꢘ ꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅꢗ ꢑꢊꢄꢙ ꢕ ꢊ ꢔꢄꢁꢀ ꢑꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐ ꢊꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
switching characteristics over recommended operating free-air temperature range,  
= 1.5 V 0.1 V (see Figure 1)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
3.8  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1
MAX  
6.4  
6.4  
6.4  
6.4  
10.3  
10.3  
10.3  
10.3  
9
MIN  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
1
MAX  
5.4  
5.4  
6.1  
6.1  
10.3  
10.3  
8.4  
8.4  
9
MIN  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
0.5  
0.5  
2
MAX  
4.3  
4.3  
5.8  
5.8  
10.2  
10.2  
6.1  
6.1  
9
MIN  
0.5  
0.5  
0.5  
0.5  
1.5  
1.5  
0.5  
0.5  
2
MAX  
3.9  
3.9  
5.7  
5.7  
10.2  
10.2  
5.3  
5.3  
9
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
3.8  
3.1  
3.1  
4.3  
4.3  
5.2  
5.2  
4.5  
4.5  
5.1  
5.1  
B
OE  
OE  
OE  
OE  
1
1
2
2
2
9
2
9
2
9
2
9
1.5  
1.5  
9
1.5  
1.5  
7.8  
7.8  
1
6.4  
6.4  
1
5.9  
5.9  
9
1
1
switching characteristics over recommended operating free-air temperature range,  
= 1.8 V 0.15 V (see Figure 1)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
3.6  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
1
MAX  
6.1  
6.1  
5.4  
5.4  
8.1  
8.1  
10  
MIN  
0.5  
0.5  
0.5  
0.5  
1
MAX  
5
MIN  
0.5  
0.5  
0.5  
0.5  
1
MAX  
3.9  
3.9  
4.7  
4.7  
7.9  
7.9  
5.7  
5.7  
7.4  
7.4  
5.8  
5.8  
MIN  
0.5  
0.5  
0.5  
0.5  
1
MAX  
3.5  
3.5  
4.6  
4.6  
7.9  
7.9  
4.8  
4.8  
7.4  
7.4  
5.1  
5.1  
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
3.6  
2.8  
2.8  
3.4  
3.4  
5
5
5
B
5
7.9  
7.9  
7.9  
7.9  
7.4  
7.4  
7.4  
7.4  
OE  
OE  
OE  
OE  
1
1
1
1
0.5  
0.5  
2
0.5  
0.5  
2
0.5  
0.5  
2
0.5  
0.5  
2
5
10  
4.1  
4.1  
4.9  
4.9  
7.4  
7.4  
8.7  
8.7  
2
2
2
2
1.5  
1.5  
1.5  
1.5  
1
1
1
1
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢊ ꢈ ꢃ ꢋ  
ꢈꢉ ꢌꢍꢎ ꢊ ꢏ ꢐ ꢄꢑ ꢌꢀꢐ ꢒꢒ ꢑꢓ ꢍꢐ ꢀ ꢊꢔ ꢄꢁ ꢀꢆ ꢕꢎ ꢅ ꢕꢔ  
ꢖꢎ ꢊ ꢇ ꢆ ꢗꢁ ꢘꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅ ꢗꢑꢊꢄꢙ ꢕ ꢊꢔ ꢄꢁ ꢀꢑ ꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐꢊ ꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
switching characteristics over recommended operating free-air temperature range,  
= 2.5 V 0.2 V (see Figure 1)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
3.5  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.1  
1.1  
1.2  
1.2  
MAX  
5.8  
5.8  
4.3  
4.3  
5.4  
5.4  
9.6  
9.6  
5.2  
5.2  
8.2  
8.2  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.1  
1.1  
1.2  
1.2  
MAX  
4.7  
4.7  
3.9  
3.9  
5.3  
5.3  
7.6  
7.6  
5.2  
5.2  
6.9  
6.9  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.1  
1.1  
1
MAX  
3.5  
3.5  
3.5  
3.5  
5.2  
5.2  
5.3  
5.3  
5.2  
5.2  
5.3  
5.3  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1.1  
1.1  
1
MAX  
3
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
3.5  
2.7  
2.7  
2.5  
2.5  
4.8  
4.8  
3
3
3.4  
3.4  
5.2  
5.2  
4.3  
4.3  
5.2  
5.2  
5
B
OE  
OE  
OE  
OE  
3
4.7  
4.7  
1
1
5
switching characteristics over recommended operating free-air temperature range,  
= 3.3 V 0.3 V (see Figure 1)  
V
CCA  
V
= 1.5 V  
0.1 V  
V
= 1.8 V  
0.15 V  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CCB  
CCB  
CCB  
CCB  
V
= 1.2 V  
CCB  
TYP  
3.4  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
MAX  
5.7  
5.7  
3.9  
3.9  
4.4  
4.4  
9.6  
9.6  
5
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1.2  
1.2  
MAX  
4.6  
4.6  
3.5  
3.5  
4.3  
4.3  
7.5  
7.5  
5
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
1
MAX  
3.4  
3.4  
3
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.8  
0.8  
MAX  
2.9  
2.9  
2.9  
2.9  
4.1  
4.1  
4.1  
4.1  
5
t
t
t
t
t
t
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PZH  
PZL  
PZH  
PZL  
PHZ  
PLZ  
PHZ  
PLZ  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
3.4  
3.3  
3.3  
2.2  
2.2  
4.7  
4.7  
3.4  
3.4  
4.6  
4.6  
B
3
4.2  
4.2  
5.1  
5.1  
5
OE  
OE  
OE  
OE  
1
0.8  
0.8  
1.2  
1.2  
5
5
5
5
8.1  
8.1  
6.7  
6.7  
5.1  
5.1  
5
1
5
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
ꢙꢐ  
ꢊ ꢔꢄꢁꢀ ꢑꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐ ꢊꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
operating characteristics, T = 25°C  
A
V
=
V
=
V
=
V
=
V
=
CCA  
CCA  
CCA  
CCA  
CCA  
TEST  
CONDITIONS  
V
= 1.2 V  
V
= 1.5 V  
V
= 1.8 V  
V
= 2.5 V  
V
= 3.3 V  
PARAMETER  
CCB  
CCB  
CCB  
CCB  
CCB  
UNIT  
TYP  
TYP  
TYP  
TYP  
TYP  
Outputs  
Enabled  
1
1
1
1
1
1
1
1
2
1
A to B  
B to A  
A to B  
B to A  
Outputs  
Disabled  
C
= 0,  
L
pdA  
C
f = 10 MHz,  
t = t =1 ns  
pF  
Outputs  
Enabled  
r
f
12  
1
13  
1
14  
1
15  
1
16  
1
Outputs  
Disabled  
Outputs  
Enabled  
13  
1
13  
1
14  
1
15  
1
16  
1
Outputs  
Disabled  
C
= 0,  
L
pdB  
C
pF  
f = 10 MHz,  
t = t =1 ns  
Outputs  
Enabled  
1
1
1
2
2
r
f
Outputs  
Disabled  
1
1
1
1
1
Power-dissipation capacitance per transceiver  
typical total static power consumption (I  
+ I  
)
CCB  
CCA  
TABLE 1  
V
CCA  
V
UNIT  
CCB  
0 V  
0
1.2 V  
< 0.5  
< 1  
< 1  
< 1  
1
1.5 V  
< 0.5  
< 1  
1.8 V  
< 0.5  
< 1  
2.5 V  
< 0.5  
< 1  
3.3 V  
< 0.5  
1
0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
< 0.5  
< 0.5  
< 0.5  
< 0.5  
< 0.5  
< 1  
< 1  
< 1  
1
µA  
< 1  
< 1  
< 1  
< 1  
< 1  
< 1  
< 1  
< 1  
< 1  
1
< 1  
< 1  
< 1  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢊ ꢈ ꢃ ꢋ  
ꢈꢉ ꢌꢍꢎ ꢊ ꢏ ꢐ ꢄꢑ ꢌꢀꢐ ꢒꢒ ꢑꢓ ꢍꢐ ꢀ ꢊꢔ ꢄꢁ ꢀꢆ ꢕꢎ ꢅ ꢕꢔ  
ꢖꢎ ꢊ ꢇ ꢆ ꢗꢁ ꢘꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅ ꢗꢑꢊꢄꢙ ꢕ ꢊꢔ ꢄꢁ ꢀꢑ ꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐꢊ ꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
TYPICAL CHARACTERISTICS  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
T = 25°C, V = 1.2 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
− pF  
40  
50  
60  
0
C
− pF  
L
C
L
Figure 1  
Figure 2  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
T = 25°C, V = 1.5 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
− pF  
40  
50  
60  
0
C
− pF  
L
C
L
Figure 3  
Figure 4  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
ꢖ ꢎ ꢊꢇ ꢆꢗ ꢁꢘ ꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅꢗ ꢑꢊꢄꢙ ꢕ ꢊ ꢔꢄꢁꢀ ꢑꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐ ꢊꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
T = 25°C, V = 1.8 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
V
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
V
V
V
V
= 2.5 V  
= 3.3 V  
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
CCB  
CCB  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
− pF  
40  
50  
60  
0
C
− pF  
L
C
L
Figure 5  
Figure 6  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
T = 25°C, V = 2.5 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
− pF  
40  
50  
60  
0
C
− pF  
L
C
L
Figure 7  
Figure 8  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢄꢅꢆ ꢇ ꢈ ꢉꢊ ꢈ ꢃ ꢋ  
ꢈꢉ ꢌꢍꢎ ꢊ ꢏ ꢐ ꢄꢑ ꢌꢀꢐ ꢒꢒ ꢑꢓ ꢍꢐ ꢀ ꢊꢔ ꢄꢁ ꢀꢆ ꢕꢎ ꢅ ꢕꢔ  
ꢖꢎ ꢊ ꢇ ꢆ ꢗꢁ ꢘꢎ ꢙꢐ ꢔ ꢄꢍꢑ ꢕ ꢅ ꢗꢑꢊꢄꢙ ꢕ ꢊꢔ ꢄꢁ ꢀꢑ ꢄꢊ ꢎꢗ ꢁ ꢄꢁꢏ ꢚ ꢌꢀꢊꢄꢊ ꢕ ꢗ ꢐꢊ ꢒꢐꢊ ꢀ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
TYPICAL PROPAGATION DELAY (A to B) vs LOAD CAPACITANCE  
T = 25°C, V = 3.3 V  
A
CCA  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
CCB  
CCB  
CCB  
V
V
V
V
= 2.5 V  
= 3.3 V  
CCB  
CCB  
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
− pF  
40  
50  
60  
0
C
− pF  
L
C
L
Figure 9  
Figure 10  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ ꢈꢃ ꢋ  
ꢈ ꢉ ꢌꢍꢎ ꢊ ꢏꢐꢄ ꢑꢌꢀ ꢐꢒꢒꢑꢓ ꢍꢐꢀ ꢊ ꢔꢄꢁꢀ ꢆꢕ ꢎ ꢅꢕ ꢔ  
ꢙꢐ  
ꢑꢄꢊ  
SCES567F − MAY 2004 − REVISED APRIL 2005  
PARAMETER MEASUREMENT INFORMATION  
2 × V  
CCO  
TEST  
S1  
S1  
R
Open  
GND  
t
Open  
L
pd  
/t  
From Output  
Under Test  
t
2 × V  
CCO  
GND  
PLZ PZL  
/t  
PHZ PZH  
t
C
L
R
L
(see Note A)  
t
LOAD CIRCUIT  
w
V
CCI  
V /2  
CCI  
V /2  
CCI  
Input  
V
TP  
C
R
V
CCO  
L
L
0 V  
1.2 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
0.1 V  
0.1 V  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
VOLTAGE WAVEFORMS  
PULSE DURATION  
1.5 V 0.1 V  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
0.15 V  
0.15 V  
0.3 V  
V
CCA  
Output  
Control  
(low-level  
enabling)  
V
CCA  
/2  
V
CCA  
/2  
0 V  
t
t
PLZ  
PZL  
V
V
CCO  
Output  
Waveform 1  
V
CCI  
V
CCO  
/2  
/2  
Input  
V /2  
CCI  
V /2  
CCI  
V
OL  
+ V  
TP  
S1 at 2 × V  
CCO  
OL  
0 V  
(see Note B)  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
OH  
V
OH  
− V  
TP  
V
CCO  
Output  
V
CCO  
/2  
V
/2  
CCO  
(see Note B)  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
NOTES: A.  
C
includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, Z = 50 , dv/dt 1 V/ns.  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
V
V
and t  
and t  
and t  
PHL  
are the same as t  
.
dis  
PLZ  
PZL  
PLH  
PHZ  
PZH  
are the same as t  
are the same as t .  
pd  
.
en  
is the V associated with the input port.  
CCI  
CC  
is the V  
CC  
associated with the output port.  
CCO  
Figure 11. Load Circuit and Voltage Waveforms  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Oct-2009  
PACKAGING INFORMATION  
Orderable Device  
74AVCH20T245GRE4  
74AVCH20T245GRG4  
74AVCH20T245VRE4  
74AVCH20T245VRG4  
74AVCH20T245ZQLR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DGG  
56  
56  
56  
56  
56  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TVSOP  
TVSOP  
DGG  
DGV  
DGV  
ZQL  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
BGA MI  
CROSTA  
R JUNI  
OR  
1000 Green (RoHS &  
no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
SN74AVCH20T245GR  
SN74AVCH20T245KR  
ACTIVE  
ACTIVE  
TSSOP  
DGG  
GQL  
56  
56  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
BGA MI  
CROSTA  
R JUNI  
OR  
1000  
TBD  
SNPB  
Level-1-240C-UNLIM  
SN74AVCH20T245VR  
ACTIVE  
TVSOP  
DGV  
56  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
74AVCH20T245ZQLR BGA MI  
ZQL  
56  
1000  
330.0  
16.4  
4.8  
7.3  
1.45  
8.0  
16.0  
Q1  
CROSTA  
R JUNI  
OR  
SN74AVCH20T245GR  
TSSOP  
DGG  
GQL  
56  
56  
2000  
1000  
330.0  
330.0  
24.4  
16.4  
8.6  
4.8  
15.6  
7.3  
1.8  
12.0  
8.0  
24.0  
16.0  
Q1  
Q1  
SN74AVCH20T245KR BGA MI  
1.45  
CROSTA  
R JUNI  
OR  
SN74AVCH20T245VR  
TVSOP  
DGV  
56  
2000  
330.0  
24.4  
6.8  
11.7  
1.6  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Mar-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
74AVCH20T245ZQLR BGA MICROSTAR  
JUNIOR  
ZQL  
56  
1000  
346.0  
346.0  
33.0  
SN74AVCH20T245GR  
TSSOP  
DGG  
GQL  
56  
56  
2000  
1000  
346.0  
346.0  
346.0  
346.0  
41.0  
33.0  
SN74AVCH20T245KR BGA MICROSTAR  
JUNIOR  
SN74AVCH20T245VR  
TVSOP  
DGV  
56  
2000  
346.0  
346.0  
41.0  
Pack Materials-Page 2  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000  
DGV (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE  
24 PINS SHOWN  
0,23  
0,13  
M
0,07  
0,40  
24  
13  
0,16 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
0°ā8°  
0,75  
1
12  
0,50  
A
Seating Plane  
0,08  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
38  
48  
56  
DIM  
A MAX  
A MIN  
3,70  
3,50  
3,70  
3,50  
5,10  
4,90  
5,10  
4,90  
7,90  
7,70  
9,80  
9,60  
11,40  
11,20  
4073251/E 08/00  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.  
D. Falls within JEDEC: 24/48 Pins – MO-153  
14/16/20/56 Pins – MO-194  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

74AVCH20T245VRE4

20 BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI

74AVCH20T245VRG4

20-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

74AVCH20T245ZQLR

20 BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI

74AVCH24T245GRGR

24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

74AVCH24T245ZRGR

24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

74AVCH2T45

Dual-bit, dual-supply voltage level translator/transceiver; 3-state
NXP

74AVCH2T45

2-Bit Dual-Supply Voltage Level Transceiver with 3-State Outputs
SGMICRO

74AVCH2T45DC

Dual-bit, dual-supply voltage level translator/transceiver; 3-state
NXP

74AVCH2T45DC

Dual-bit, dual-supply voltage level translator/transceiver; 3-stateProduction
NEXPERIA

74AVCH2T45DC-Q100

Dual-bit, dual-supply voltage level translator/transceiver; 3-stateProduction
NEXPERIA

74AVCH2T45DCTRE4

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

74AVCH2T45DCTRG4

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI