ADS54J64IRMPT [TI]

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85;
ADS54J64IRMPT
型号: ADS54J64IRMPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

四通道 14 位 1GSPS 2 倍过采样模数转换器 (ADC) | RMP | 72 | -40 to 85

转换器 模数转换器
文件: 总81页 (文件大小:8667K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
ADS54J64 四通道、14 位、1GSPS2 倍过采样模数转换器  
1 特性  
3 说明  
1
四通道、14 位分辨率  
最大采样率:1GSPS  
ADS54J64 器件是四通道、14 位、  
1GSPS 模数转换器 (ADC),提供宽带宽、2倍过采样  
和高 SNRADS54J64 支持 JESD204B 串行接口,每  
个通道上具有 1 条信道,数据速率高达 10Gbps。经缓  
冲的模拟输入可在较宽频率范围内提供一致的阻抗,并  
最大程度降低采样保持干扰能量。ADS54J64 以超低  
功耗在较大输入频率范围内提供出色的无杂散动态范围  
(SFDR)。数字信号处理块包含复频混频器,后接低通  
滤波器,低通滤波器具有 2 倍抽取率和 4 倍抽取率两  
个选项,支持高达 200MHz 的接收带宽。ADS54J64  
还支持 DDC 旁路模式的 14 位、500MSPS 输出。  
最大输出采样率:500MSPS  
高阻抗模拟输入缓冲器  
模拟输入带宽 (–3 dB)1GHz  
输出选项:  
使用 16 NCO 的数字下变频器  
全速率输出高达 500MSPS DDC 旁路  
差分满量程输入:1.1VPP  
JESD204B 接口:  
支持子类 1  
每个 ADC 一条信道,速率高达 10Gsps  
专用于通道对的 SYNC 引脚  
四通道 JESD204B 接口简化了连接,可实现高系统集  
成密度。内部锁相环 (PLL) 会将传入的 ADC 采样时钟  
加倍,以获得串行输出各通道的 14 位数据时所使用的  
位时钟。  
支持多芯片同步  
频谱性能:  
fIN = 190-MHz IF–1dBFS 时):  
器件信息(1)  
信噪比 (SNR)69dBFS  
器件型号  
ADS54J64  
封装  
封装尺寸(标称值)  
噪声频谱密度 (NSD)-153dBFS/Hz  
VQFN (72)  
10.00mm x 10.00mm  
无杂散动态范围  
(SFDR)86dBcHD2HD3),  
95dBFS(非 HD2HD3)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
空白  
空白  
fIN = 370-MHz IF–3dBFS 时):  
SNR68.5dBFS  
NSD–152.5dBFS/Hz  
简化框图  
SFDR80dBcHD2HD3),  
86dBFS(非 HD2HD3)  
DDC  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
INAP, INAM  
INBP. INAM  
DAP, DAM  
ADC  
2
72 引脚 VQFN 封装 (10mm × 10mm)  
功耗:625 mW/通道,共 2.5W  
电源:1.15V1.15V1.9V  
Averaging  
DDC  
JESD204B  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
DBP, DBM  
TRIGAB  
ADC  
2
TRIGCD  
TRDYAB  
TRDYCD  
2 应用  
SYSREFP, SYSREFM  
CLKINP, CLKINM  
CLK  
DIV  
/2, /4  
多载波多模式 GSM 蜂窝基础设施基站  
PLL  
x10/x20  
SYNCbAB  
SYNCbCD  
电信接收器  
DDC  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
INCP, INCM  
INDP, INDM  
DCP, DCM  
DDP, DDM  
雷达和天线阵列  
ADC  
2
Averaging  
DDC  
JESD204B  
电缆 CMTSDOCSIS 3.1 接收器  
通信测试设备  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
ADC  
2
Configuration  
Registers  
微波接收器  
软件定义无线电 (SDR)  
数字转换器  
Copyright © 2017, Texas Instruments Incorporated  
医疗成像和诊断功能  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS841  
 
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 21  
7.3 Feature Description................................................. 22  
7.4 Device Functional Modes........................................ 23  
7.5 Programming........................................................... 31  
7.6 Register Maps ........................................................ 38  
Application and Implementation ........................ 64  
8.1 Application Information............................................ 64  
8.2 Typical Application .................................................. 71  
Power Supply Recommendations...................... 72  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 AC Performance........................................................ 8  
6.7 Digital Characteristics ............................................. 10  
6.8 Timing Characteristics............................................. 11  
6.9 Typical Characteristics: DDC Bypass Mode ........... 12  
6.10 Typical Characteristics: Mode 2............................ 18  
6.11 Typical Characteristics: Mode 0............................ 19  
6.12 Typical Characteristics: Dual ADC Mode.............. 20  
Detailed Description ............................................ 21  
7.1 Overview ................................................................. 21  
8
9
10 Layout................................................................... 73  
10.1 Layout Guidelines ................................................. 73  
10.2 Layout Example .................................................... 73  
11 器件和文档支持 ..................................................... 74  
11.1 接收文档更新通知 ................................................. 74  
11.2 社区资源................................................................ 74  
11.3 ....................................................................... 74  
11.4 静电放电警告......................................................... 74  
11.5 Glossary................................................................ 74  
12 机械、封装和可订购信息....................................... 74  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 10 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
5 Pin Configuration and Functions  
RMP Package  
72-Pin VQFN  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
INPUT, REFERENCE  
INAM  
NO.  
41  
42  
37  
36  
18  
19  
14  
13  
I
I
I
I
Differential analog input pin for channel A, internal bias via a 2-kΩ resistor to VCM  
Differential analog input pin for channel B, internal bias via a 2-kΩ resistor to VCM  
Differential analog input pin for channel C, internal bias via a 2-kΩ resistor to VCM  
Differential analog input pin for channel D, internal bias via a 2-kΩ resistor to VCM  
INAP  
INBM  
INBP  
INCM  
INCP  
INDM  
INDP  
CLOCK, SYNC  
CLKINM  
CLKINP  
SYSREFM  
SYSREFP  
28  
27  
34  
33  
I
I
Differential clock input pin for the ADC with internal 100-Ω differential termination; requires external ac coupling  
External SYSREF input; requires dc coupling and external termination  
Copyright © 2017, Texas Instruments Incorporated  
3
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CONTROL, SERIAL  
1, 2, 22, 23, 53,  
54  
NC  
No connection  
Power down. This pin can be configured via an SPI register setting. This pin has an internal 10-kΩ pulldown  
resistor.  
PDN  
50  
I/O  
RES  
49  
48  
6
I
Reserved pin, connect to GND  
RESET  
SCLK  
SDIN  
Hardware reset; active high. This pin has an internal 10-kΩ pulldown resistor.  
Serial interface clock input. This pin has an internal 10-kΩ pulldown resistor.  
Serial interface data input. This pin has an internal 10-kΩ pulldown resistor.  
1.8-V logic serial interface data output  
I
5
I
SDOUT  
SEN  
11  
7
O
I
Serial interface enable. This pin has an internal 10-kΩ pullup resistor to DVDD.  
DATA INTERFACE  
DAM  
59  
58  
62  
61  
65  
66  
68  
69  
56  
55  
71  
72  
O
O
O
O
I
JESD204B serial data output pin for channel A  
JESD204B serial data output pin for channel B  
JESD204B serial data output pin for channel C  
JESD204B serial data output pin for channel D  
DAP  
DBM  
DBP  
DCM  
DCP  
DDM  
DDP  
SYNCbABM  
SYNCbABP  
SYNCbCDM  
SYNCbCDP  
POWER SUPPLY  
AGND  
Synchronization input pin for JESD204B port channels A and B. This pin can be configured via SPI to a SYNCb  
signal for all four channels. This pin has an internal differential termination of 100 Ω.  
Synchronization input pin for JESD204B port channels C and D. This pin can be configured via SPI to a SYNCb  
signal for all four channels. This pin has an internal differential termination of 100 Ω.  
I
21, 26, 29, 32  
I
I
Analog ground  
9, 12, 15, 17, 20,  
25, 30, 35, 38,  
40, 43, 44, 46  
AVDD  
Analog 1.15-V power supply  
10, 16, 24, 31,  
39, 45  
AVDD19  
DGND  
I
I
Analog 1.9-V supply for analog buffer  
Digital ground  
3, 52, 60, 63, 67  
4, 8, 47,51, 57,  
64, 70  
DVDD  
I
Digital 1.15-V power supply  
Connect to GND  
Thermal pad  
Pad  
4
Copyright © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
AVDD19  
2.1  
1.4  
Supply voltage  
AVDD  
DVDD  
1.4  
Voltage between AGND and DGND  
INAP, INBP, INAM, INBM, INCP, INDP, INCM, INDM  
0.3  
V
2.1  
CLKINP, CLKINM  
AVDD + 0.3  
1.9  
SYSREFP, SYSREFM  
Voltage applied to input pins  
V
SCLK, SEN, SDIN, RESET, SYNCbABP,  
SYNCbABM, SYNCbCDP, SYNCbCDM, PDN,  
TRIGAB, TRIGCD  
–0.2  
–65  
AVDD19 + 0.3  
150  
Storage temperature, Tstg  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
1.1  
1.1  
NOM  
1.9  
MAX  
2
UNIT  
AVDD19  
Supply voltage range AVDD  
1.15  
1.15  
1.1  
1.2  
1.2  
V
DVDD  
Differential input voltage range  
Input common-mode voltage (VCM)  
Input clock frequency, device clock frequency  
VPP  
V
Analog inputs  
Clock inputs  
1.3  
400  
1000  
MHz  
Sine wave, ac-coupled  
1.5  
1.6  
Input clock amplitude differential  
(VCLKP – VCLKM  
LVPECL, ac-coupled  
LVDS, ac-coupled  
VPP  
)
0.7  
Input device clock duty cycle, default after reset  
Operating free-air, TA  
45%  
–40  
50%  
55%  
100(1)  
105(2)  
Operating junction, TJ  
Temperature  
ºC  
Specified maximum, measured at the device footprint thermal  
pad on the printed circuit board, TP-MAX  
104.5(3)  
(1) Assumes system thermal design meets the TJ specification.  
(2) Prolonged use above this junction temperature can increase the device failure-in-time (FIT) rate.  
(3) The recommended maximum temperature at the PCB footprint thermal pad assumes the junction-to-package bottom thermal resistance,  
θJC(bot) = 0.2°C/W, the thermal resistance of the device thermal pad connection to the PCB footprint is negligible, and the device power  
R
consumption is 2.5 W.  
Copyright © 2017, Texas Instruments Incorporated  
5
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
6.4 Thermal Information  
ADS54J64  
THERMAL METRIC(1)  
RMP (VQFNP)  
UNIT  
72 PINS  
22.3  
5.1  
(2)  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
(3)  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
(3)  
Junction-to-board thermal resistance  
2.4  
(4)  
ψJT  
Junction-to-top characterization parameter  
0.1  
(5)  
(6)  
ψJB  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.3  
RθJC(bot)  
0.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
6
Copyright © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
6.5 Electrical Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, input clock frequency = 1 GHz,  
50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input,  
and fIN = 190 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GENERAL  
ADC sampling rate  
Resolution  
1
GSPS  
Bits  
14  
POWER SUPPLY  
AVDD19 1.9-V analog supply  
1.85  
1.1  
1.9  
1.15  
1.15  
618  
415  
1.95  
1.2  
V
V
AVDD  
DVDD  
IAVDD19  
IAVDD  
1.15-V analog supply  
1.15-V digital supply  
1.1  
1.2  
V
1.9-V analog supply current  
1.15-V analog supply current  
100-MHz, full-scale input on all four channels  
100-MHz, full-scale input on all four channels  
mA  
mA  
DDC bypass mode (mode 8), 100-MHz, full-scale  
input on all four channels  
629  
730  
674  
703  
2.37  
2.49  
2.42  
2.46  
120  
Mode 3, 100-MHz, full-scale input on all four  
channels  
IDVDD  
1.15-V digital supply current  
mA  
Mode 0 and 2, 100-MHz, full-scale input on all four  
channels  
Mode 1, 4, 6, and 7, 100-MHz, full-scale input on  
all four channels  
DDC bypass mode (mode 8), 100-MHz, full-scale  
input on all four channels  
Mode 3, 100-MHz, full-scale input on all four  
channels  
PDIS  
Total power dissipation  
W
Mode 0 and 2, 100-MHz, full-scale input on all four  
channels  
Mode 1, 4, 6, and 7, 100-MHz, full-scale input on  
all four channels  
Global power-down power  
dissipation  
Full-scale input on all four channels  
mW  
VPP  
ANALOG INPUTS  
Differential input full-scale  
1.1  
voltage  
Input common-mode voltage  
Differential input resistance  
Differential input capacitance  
Analog input bandwidth (3 dB)  
1.3  
4
V
kΩ  
At fIN = dc  
2.5  
pF  
1000  
MHz  
ISOLATION  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 270 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
fIN = 10 MHz  
fIN = 100 MHz  
fIN = 170 MHz  
fIN = 270 MHz  
fIN = 370 MHz  
fIN = 470 MHz  
75  
75  
Crosstalk(1) isolation between  
near channels  
(channels A and B are near to  
each other, channels C and D  
are near to each other)  
74  
dBFS  
dBFS  
72  
71  
70  
110  
110  
110  
110  
110  
110  
Crosstalk(1) isolation between  
far channels  
(channels A and B are far from  
channels C and D)  
(1) Crosstalk is measured with a –1-dBFS input signal on the aggressor channel and no input on the victim channel.  
Copyright © 2017, Texas Instruments Incorporated  
7
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, input clock frequency = 1 GHz,  
50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input,  
and fIN = 190 MHz (unless otherwise noted)  
PARAMETER  
CLOCK INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CLKINP and CLKINM pins are connected to the  
internal biasing voltage through a 5-kΩ resistor  
Internal clock biasing  
0.7  
V
6.6 AC Performance  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, input clock frequency = 1 GHz,  
50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input,  
and fIN = 190 MHz (unless otherwise noted)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
DECIMATE-BY-4  
(DDC Mode 2)  
DDC BYPASS MODE  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
fIN = 370 MHz, AIN = –3 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
fIN = 370 MHz, AIN = –3 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
69.9  
69.6  
69.2  
72.2  
71.8  
71.8  
SNR  
Signal-to-noise ratio  
66.5  
69.6  
69.3  
71  
dBFS  
71.7  
68.7  
71.3  
68.4  
69.8  
–153.9  
–153.6  
–153.2  
–153.2  
–152.8  
–152.7  
–153.2  
–152.7  
–152.2  
–151  
83  
NSD  
Noise spectral density  
–150.5 –153.6  
dBFS/Hz  
–152.8  
–152.5  
–151.5  
83  
81  
100  
87  
100  
Spurious-free dynamic  
range  
78  
88  
79  
98  
SFDR(1)  
dBc  
98  
fIN = 370 MHz, AIN = –3 dBFS,  
input clock frequency = 983.04 MHz  
82  
70  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
fIN = 370 MHz, AIN = –3 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
78  
68.5  
68.5  
68.2  
68.5  
68.9  
68  
76  
70.6  
70.6  
72.2  
73  
Signal-to-noise and  
distortion ratio  
SINAD  
dBFS  
72.3  
68.2  
69  
68  
(1) Harmonic distortion performance can be significantly improved by using the frequency planning explained in the Frequency Planning  
section.  
8
Copyright © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
AC Performance (continued)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, input clock frequency = 1 GHz,  
50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input,  
and fIN = 190 MHz (unless otherwise noted)  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
PARAMETER  
TEST CONDITIONS  
UNIT  
DECIMATE-BY-4  
(DDC Mode 2)  
DDC BYPASS MODE  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
–83  
–82  
–85  
–90  
–100  
–98  
Second-order harmonic  
distortion  
–78  
–86  
–82  
–100  
–100  
HD2(1)  
dBc  
fIN = 370 MHz, AIN = –3 dBFS  
input clock frequency = 983.04 MHz  
–82  
–69  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
fIN = 370 MHz, AIN = –3 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
fIN = 370 MHz, AIN = –3 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
fIN = 10 MHz, AIN = –1 dBFS  
fIN = 70 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –1 dBFS  
fIN = 190 MHz, AIN = –3 dBFS  
fIN = 300 MHz, AIN = –3 dBFS  
fIN = 370 MHz, AIN = –3 dBFS  
fIN = 470 MHz, AIN = –3 dBFS  
–100  
–83  
–81  
–92  
–92  
–90  
–90  
–80  
95  
–94  
–85  
–100  
–100  
–100  
–100  
–100  
–79  
Third-order harmonic  
distortion  
HD3(1)  
–78  
dBc  
–100  
–92  
95  
95  
–100  
–98  
Spurious-free dynamic  
range (excluding HD2,  
HD3)  
Non  
HD2, HD3  
87  
95  
dBFS  
95  
–100  
–100  
–100  
–83  
95  
93  
–81  
–79  
–83  
–85  
–81  
–76  
–82  
–100  
–100  
–100  
–100  
–68  
THD(1)  
Total harmonic distortion  
dBc  
–80  
f1 = 185 MHz, f2 = 190 MHz,  
AIN = –10 dBFS  
–90  
–90  
–85  
–87  
–94  
–85  
Two-tone, third-order  
intermodulation distortion  
f1 = 365 MHz, f2 = 370 MHz,  
AIN = –10 dBFS  
IMD3  
dBFS  
f1 = 465 MHz, f2 = 470 MHz,  
AIN = –10 dBFS  
Copyright © 2017, Texas Instruments Incorporated  
9
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
6.7 Digital Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, input clock frequency = 1 GHz,  
50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input,  
and fIN = 190 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUTS (RESET, SCLK, SEN, SDIN, PDN, TRIGAB, TRIGCD)(1)  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
All digital inputs support 1.2-V and 1.8-V logic levels  
All digital inputs support 1.2-V and 1.8-V logic levels  
SEN  
0.8  
V
V
0.4  
0
50  
50  
0
IIH  
High-level input current  
µA  
RESET, SCLK, SDIN, PDN, TRIGAB, TRIGCD  
SEN  
IIL  
Low-level input current  
Input capacitance  
µA  
pF  
RESET, SCLK, SDIN, PDN, TRIGAB, TRIGCD  
4
DIGITAL INPUTS  
SYSREFP, SYSREFM  
0.35  
0.35  
0.9  
0.45  
0.45  
1.2  
0.55  
0.8  
VD  
Differential input voltage  
V
V
SYNCbABM, SYNCbABP, SYNCbCDM,  
SYNCbCDP  
SYSREFP, SYSREFM  
1.4  
V(CM_DIG)  
Common-mode voltage for SYSREF  
SYNCbABM, SYNCbABP, SYNCbCDM,  
SYNCbCDP  
0.9  
1.2  
1.4  
DIGITAL OUTPUTS (SDOUT, TRDYAB, TRDYCD)  
VOH  
High-level output voltage  
100-µA current  
100-µA current  
AVDD19 – 0.2  
V
V
VOL  
Low-level output voltage  
0.2  
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(2)  
VOD  
VOC  
Output differential voltage  
With default swing setting  
700  
450  
mVPP  
mV  
Output common-mode voltage  
Transmitter pins shorted to any voltage between  
–0.25 V and 1.45 V  
Transmitter short-circuit current  
Single-ended output impedance  
Output capacitance  
–100  
100  
mA  
Ω
zos  
50  
2
Output capacitance inside the device,  
from either output to ground  
pF  
(1) The RESET, SCLK, SDIN, and PDN pins have a 10-kΩ (typical) internal pulldown resistor to ground, and the SEN pin has a 10-kΩ  
(typical) pullup resistor to DVDD.  
(2) 50-Ω, single-ended external termination to DVDD.  
10  
Copyright © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
6.8 Timing Characteristics  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, input clock frequency = 1 GHz,  
50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input,  
and fIN = 190 MHz (unless otherwise noted)  
MIN  
TYP  
MAX  
UNITS  
SAMPLE TIMING CHARACTERISTICS  
Aperture delay  
0.55  
0.92  
ns  
ps  
Aperture delay matching between two channels on the same device  
±100  
±100  
Aperture delay matching between two devices at the same temperature and supply  
voltage  
ps  
Aperture jitter  
100  
10  
fS rms  
ms  
Global power-down  
Wake-up time  
Pin power-down (fast power-down)  
5
µs  
Data latency: ADC  
sample to digital  
output  
DDC bypass mode  
DDC mode 0  
116  
Input clock  
cycles  
204  
tSU_SYSREF Setup time for SYSREF, referenced to input clock rising edge  
tH_SYSREF Hold time for SYSREF, referenced to input clock rising edge  
JESD OUTPUT INTERFACE TIMING CHARACTERISTICS  
Unit interval  
350  
100  
900  
10  
ps  
ps  
100  
ps  
Gbps  
ps  
Serial output data rate  
Total jitter for BER of 1E-15 and lane rate = 10 Gbps  
Random jitter for BER of 1E-15 and lane rate = 10 Gbps  
Deterministic jitter for BER of 1E-15 and lane rate = 10 Gbps  
24  
0.95  
8.8  
ps rms  
ps, pk-pk  
Data rise time, data fall time: rise and fall times measured from 20% to 80%,  
differential output waveform, 2.5 Gbps bit rate 10 Gbps  
tR, tF  
35  
ps  
N+1  
N+2  
N
Sample  
tPD  
Data Latency: 116 Clock Cycles  
CLKINP  
CLKINM  
DAP, DAM  
DBP, DBM  
DCP, DCM  
DDP, DDM  
D20  
D1  
D20  
Sample N-1  
Sample N  
Sample N+1  
1. Latency Timing Diagram in DDC Bypass Mode  
版权 © 2017, Texas Instruments Incorporated  
11  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
6.9 Typical Characteristics: DDC Bypass Mode  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS  
differential input, and fIN = 190 MHz (unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D001  
D002  
fIN = 100 MHz, AIN = –1 dBFS, SNR = 69.57 dBFS,  
SFDR = 85.23 dBc, SFDR = 102.09 dBc (non 23)  
fIN = 190 MHz, AIN = –1 dBFS, SNR = 69.23 dBFS,  
SFDR = 86.83 dBc, SFDR = 91.23 dBc (non 23)  
2. FFT for 100-MHz Input Signal  
3. FFT for 190-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D003  
D004  
fIN = 190 MHz, AIN = –3 dBFS, SNR = 69.60 dBFS,  
SFDR = 88.45 dBc, SFDR = 99.78 dBc (non 23)  
fIN = 190 MHz, AIN = –10 dBFS, SNR = 70.05 dBFS,  
SFDR = 93.27 dBc, SFDR = 97.26 dBc (non 23)  
4. FFT for 190-MHz Input Signal  
5. FFT for 190-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (dBFS)  
D005  
D006  
fIN = 190 MHz, AIN = –20 dBFS, SNR = 70.23 dBFS,  
SFDR = 81.71 dBc, SFDR = 81.71 dBc (non 23)  
fIN = 230 MHz, AIN = –1 dBFS, SNR = 69.17 dBFS,  
SFDR = 85.29 dBc, SFDR = 89.30 dBc (non 23)  
6. FFT for 190-MHz Input Signal  
7. FFT for 230-MHz Input Signal  
12  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
Typical Characteristics: DDC Bypass Mode (接下页)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS  
differential input, and fIN = 190 MHz (unless otherwise noted)  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D007  
D008  
fIN = 270 MHz, AIN = –3 dBFS, SNR = 69.27 dBFS,  
SFDR = 82.98 dBc, SFDR = 95.4 dBc (non 23)  
fIN = 370 MHz, AIN = –3 dBFS, SNR = 68.36 dBFS,  
SFDR = 81.37 dBc, SFDR = 97.28 dBc (non 23)  
8. FFT for 270-MHz Input Signal  
9. FFT for 370-MHz Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D009  
D010  
fIN = 470 MHz, AIN = –3 dBFS, SNR = 68.21 dBFS,  
SFDR = 79.85 dBc, SFDR = 99.12 dBc (non 23)  
fIN1 = 160 MHz, fIN2 = 170 MHz, IMD = 102.68 dBFS,  
each tone at –7 dBFS  
10. FFT for 470-MHz Input Signal  
11. FFT for Two-Tone Input Signal  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (MHz)  
D011  
D012  
fIN1 = 160 MHz, fIN2 = 170 MHz, IMD = 103.44 dBFS,  
each tone at –10 dBFS  
fIN1 = 340 MHz, fIN2 = 350 MHz, IMD = 84.34 dBFS,  
each tone at –7 dBFS  
12. FFT for Two-Tone Input Signal  
13. FFT for Two-Tone Input Signal  
版权 © 2017, Texas Instruments Incorporated  
13  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics: DDC Bypass Mode (接下页)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS  
differential input, and fIN = 190 MHz (unless otherwise noted)  
70.5  
0
AIN = -3 dBFS  
AIN = -1 dBFS  
70  
-20  
69.5  
69  
-40  
-60  
68.5  
68  
-80  
-100  
-120  
-140  
67.5  
67  
0
50  
100  
150  
200  
250  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D014  
D013  
fIN1 = 340 MHz, fIN2 = 350 MHz, IMD = 95.08 dBFS,  
each tone at –10 dBFS  
14. FFT for Two-Tone Input Signal  
15. SNR vs Input Frequency  
102  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
AIN = -3 dBFS  
AIN = -1 dBFS  
96  
90  
84  
78  
72  
AIN = -3 dBFS  
AIN = -1 dBFS  
0
50 100 150 200 250 300 350 400 450 500  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D015  
D016  
16. HD3 vs Input Frequency  
17. HD2 vs Input Frequency  
106  
100  
94  
71  
70.5  
70  
Temperature = -40 èC  
Temperature = 25 èC  
Temperature = 105 èC  
Temperature = -40 èC  
Temperature = 25 èC  
Temperature = 105 èC  
69.5  
69  
88  
68.5  
68  
82  
67.5  
76  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
D017  
D018  
18. SNR vs Input Frequency and Temperature  
19. HD3 vs Input Frequency and Temperature  
14  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
Typical Characteristics: DDC Bypass Mode (接下页)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS  
differential input, and fIN = 190 MHz (unless otherwise noted)  
110  
102  
94  
70.5  
Temperature = -40 èC  
Temperature = 25 èC  
Temperature = 105 èC  
AVDD19 = 1.8 V  
AVDD19 = 1.9 V  
AVDD19 = 2 V  
70  
69.5  
69  
86  
78  
68.5  
68  
70  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
D019  
D020  
20. HD2 vs Input Frequency and Temperature  
21. SNR vs Input Frequency and AVDD19 Supply  
100  
95  
90  
85  
80  
75  
70.5  
AVDD19 = 1.8 V  
AVDD19 = 1.9 V  
AVDD19 = 2 V  
AVDD = 1.1 V  
AVDD = 1.15 V  
AVDD = 1.2 V  
70  
69.5  
69  
68.5  
68  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
D021  
D022  
22. HD3 vs Input Frequency and AVDD19 Supply  
23. SNR vs Input Frequency and AVDD Supply  
105  
70.2  
AVDD = 1.1 V  
AVDD = 1.15 V  
AVDD = 1.2 V  
DVDD = 1.1 V  
DVDD = 1.15 V  
DVDD = 1.2 V  
70  
69.8  
69.6  
69.4  
69.2  
69  
99  
93  
87  
81  
75  
68.8  
68.6  
68.4  
68.2  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
D023  
D024  
24. HD3 vs Input Frequency and AVDD Supply  
25. SNR vs Input Frequency and DVDD Supply  
版权 © 2017, Texas Instruments Incorporated  
15  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics: DDC Bypass Mode (接下页)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS  
differential input, and fIN = 190 MHz (unless otherwise noted)  
100  
95  
90  
85  
80  
75  
71.5  
150  
120  
90  
60  
30  
0
DVDD = 1.1 V  
DVDD = 1.15 V  
DVDD = 1.2 V  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
71  
70.5  
70  
69.5  
69  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
Amplitude (dBFS)  
D025  
D026  
fIN = 190 MHz  
26. HD3 vs Input Frequency and DVDD Supply  
27. Performance vs Input Signal Amplitude  
-80  
-88  
72.5  
71.5  
70.5  
69.5  
68.5  
67.5  
150  
SNR (dBFS)  
SFDR (dBc)  
SFDR (dBFS)  
120  
-96  
90  
60  
30  
0
-104  
-112  
-120  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Amplitude (dBFS)  
Each Tone Amplitude (dBFS)  
D027  
D028  
fIN = 370 MHz  
fIN1 = 160 MHz, fIN2 = 170 MHz  
29. IMD vs Input Amplitude  
28. Performance vs Input Signal Amplitude  
-80  
-88  
0
-20  
-40  
-96  
-60  
-80  
-104  
-112  
-120  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
-35  
-31  
-27  
-23  
-19  
-15  
-11  
-7  
Each Tone Amplitude (dBFS)  
Input Frequency (MHz)  
D029  
D030  
fIN1 = 340 MHz, fIN2 = 350 MHz  
fIN = 190 MHz, AIN = –1 dBFS, fNoise = 5 MHz,  
ANoise = 50 mVPP, SFDR = 73.5 dBFS  
31. Power-Supply Rejection Ratio FFT  
30. IMD vs Input Amplitude  
for 50-mV Noise on AVDD Supply  
16  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
Typical Characteristics: DDC Bypass Mode (接下页)  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, output sample rate = 500 MSPS, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS  
differential input, and fIN = 190 MHz (unless otherwise noted)  
-10  
-20  
-30  
-40  
-50  
-60  
0
PSRR with 50-mVPP Signal on AVDD  
PSRR with 50-mVPP Signal on AVDD19  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
10  
20  
30  
40  
50  
60  
Frequency of Signal on Supply (MHz)  
Input Frequency (MHz)  
D031  
D032  
fIN = 190 MHz, AIN = –1 dBFS, fNoise = 5 MHz, ANoise = 50 mVPP  
fIN = 190 MHz, AIN = –1 dBFS, fNoise = 5 MHz,  
ANoise = 50 mVPP, SFDR = 63.12 dBFS  
33. Common-Mode Rejection Ratio FFT  
32. PSRR vs Power-Supply Noise Frequency  
-15  
4
3.2  
2.4  
1.6  
0.8  
0
AVDD19_Power (W)  
AVDD_Power (W)  
DVDD_Power (W)  
Total Power (W)  
-25  
-35  
-45  
-55  
-65  
0
20  
40  
60  
80  
100  
250  
300  
350  
400  
450  
500  
Frequency of Input Common-Mode Signal (MHz)  
Sampling Speed (MSPS)  
D033  
D034  
fIN = 190 MHz, AIN = –1 dBFS, fNoise = 5 MHz, ANoise = 50 mVPP  
34. CMRR vs Common-Mode Noise Frequency  
35. Power Consumption vs Sampling Speed  
版权 © 2017, Texas Instruments Incorporated  
17  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
6.10 Typical Characteristics: Mode 2  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input, and fIN = 190 MHz  
(unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D036  
D035  
fIN = 190 MHz, AIN= –1 dBFS, SNR = 72.37 dBFS,  
SFDR = 99.95 dBc, SFDR = 100.76 dBc (non 23)  
fIN = 150 MHz, AIN= –1 dBFS, SNR = 72.85 dBFS,  
SFDR = 84.41 dBc, SFDR = 100.99 dBc (non 23)  
37. FFT for 190-MHz Input Signal  
36. FFT for 150-MHz Input Signal  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D037  
D038  
fIN = 300 MHz, AIN= –3 dBFS, SNR = 72.3 dBFS,  
SFDR = 100.31 dBc, SFDR = 100.75 dBc (non 23)  
fIN = 350 MHz, AIN= –3 dBFS, SNR = 72.02 dBFS,  
SFDR = 79.23 dBc, SFDR = 96.42 dBc (non 23)  
38. FFT for 300-MHz Input Signal  
39. FFT for 350-MHz Input Signal  
18  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
6.11 Typical Characteristics: Mode 0  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input, and fIN = 190 MHz  
(unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
-125  
-75  
-25  
25  
75  
125  
-125  
-75  
-25  
25  
75  
125  
Input Frequency (MHz)  
Input Frequency (MHz)  
D039  
D040  
fIN = 100 MHz, AIN= –1 dBFS, SNR = 70.16 dBFS,  
SFDR = 84.95 dBc, SFDR = 95.41 dBc (non 23)  
fIN = 170 MHz, AIN= –1 dBFS, SNR = 69.35 dBFS,  
SFDR = 86.46 dBc, SFDR = 89.27 dBc (non 23)  
40. FFT for 100-MHz Input Signal  
41. FFT for 170-MHz Input Signal  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-125  
-75  
-25  
25  
75  
125  
Input Frequency (MHz)  
D041  
fIN = 220 MHz, AIN= –1 dBFS, SNR = 69.27 dBFS,  
SFDR = 87.66 dBc, SFDR = 91.04 dBc (non 23)  
42. FFT for 220-MHz Input Signal  
版权 © 2017, Texas Instruments Incorporated  
19  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
6.12 Typical Characteristics: Dual ADC Mode  
typical values are at TA = 25°C, full temperature range is from TMIN = –40°C to TMAX = +100°C, device sampling frequency =  
1 GSPS, 50% clock duty cycle, AVDD19 = 1.9 V, AVDD = DVDD = 1.15 V, –1-dBFS differential input, and fIN = 190 MHz  
(unless otherwise noted)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
Input Frequency (MHz)  
Input Frequency (MHz)  
D046  
D047  
fIN = 230 MHz, AIN= –1 dBFS, SNR = 68.11 dBFS,  
fIN = 470 MHz, AIN= –1 dBFS, SNR = 66.56 dBFS,  
SFDR = 77.01 dBc, interleaving spur = –42.85 dBFS  
SFDR = 72.32 dBc, interleaving spur = –36.96 dBFS  
43. FFT for 230-MHz Input Signal  
44. FFT for 470-MHz Input Signal  
-25  
AIN = -3 dBFS  
AIN = -1 dBFS  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
0
50 100 150 200 250 300 350 400 450 500  
Input Frequency (MHz)  
D048  
45. Interleaving Spur vs Input Frequency  
20  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7 Detailed Description  
7.1 Overview  
The ADS54J64 is a quad-channel device with a complex digital down-converter (DDC) and digital decimation to  
allow flexible signal processing to suit different usage cases. Each channel is composed of two interleaved  
analog-to-digital converters (ADCs) sampling at half the input clock rate. The 2x interleaved data are decimated  
by 2 to provide a processing gain of 3 dB. The decimation filter has a programmable option to be configured as  
low pass (default) or high pass. In default mode, the device operates in DDC mode 0, where the input is mixed  
with a constant frequency of –fS / 4 and transmitted as complex IQ. In DDC bypass mode (mode 8), the DDC is  
bypassed and the 2x decimated data are available on the JESD output. The different operational modes of the  
ADS54J64 are listed in 1.  
The ADS54J64 can also be operated in a dual-channel interleaved mode (dual mode), in which two channels are  
averaged and the 2x interleaved and averaged data are available directly at the JESD output.  
7.2 Functional Block Diagram  
DDC  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
INAP, INAM  
INBP. INAM  
DAP, DAM  
ADC  
2
Averaging  
DDC  
JESD204B  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
DBP, DBM  
TRIGAB  
ADC  
2
TRIGCD  
TRDYAB  
TRDYCD  
SYSREFP, SYSREFM  
CLKINP, CLKINM  
CLK  
DIV  
/2, /4  
PLL  
x10/x20  
SYNCbAB  
SYNCbCD  
DDC  
2x Decimation  
High Pass/  
Low Pass  
14-bit  
INCP, INCM  
INDP, INDM  
DCP, DCM  
DDP, DDM  
ADC  
2
Averaging  
DDC  
JESD204B  
2x Decimation  
High Pass/  
Low Pass  
ADC  
14-bit  
2
Configuration  
Registers  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2017, Texas Instruments Incorporated  
21  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Inputs  
The ADS54J64 analog signal inputs are designed to be driven differentially. The analog input pins have internal  
analog buffers that drive the sampling circuit. As a result of the analog buffer, the input pins present a high-  
impedance input across a very wide frequency range to the external driving source that enables great flexibility in  
the external analog filter design as well as excellent 50-Ω matching for RF applications. The buffer also helps  
isolate the external driving circuit from the internal switching currents of the sampling circuit, resulting in a more  
constant SFDR performance across input frequencies. The common-mode voltage of the signal inputs is  
internally biased to 1.3 V using 2-kΩ resistors to allow for ac-coupling of the input drive network. Each input pin  
(INP, INM) must swing symmetrically between (VCM + 0.275 V) and (VCM – 0.275 V), resulting in a 1.1-VPP  
(default) differential input swing. The input sampling circuit has a 3-dB bandwidth that extends up to 1000 MHz.  
7.3.2 Recommended Input Circuit  
In order to achieve optimum ac performance, the following circuitry (shown in 46) is recommended at the  
analog inputs.  
T1  
T2  
0.1 mF  
10 W  
INxP  
0.1 mF  
25 W  
25 W  
0.1 mF  
RIN  
CIN  
INxM  
1:1  
10 W  
1:1  
0.1 mF  
TI Device  
Copyright © 2017, Texas Instruments Incorporated  
46. Analog Input Driving Circuit  
7.3.3 Clock Input  
The clock inputs of the ADS54J64 supports LVDS and LVPECL standards. The CLKP, CLKM inputs have an  
internal termination of 100 Ω. The clock inputs must be ac-coupled, as shown in 47 and 48, because the  
input pins are self-biased to a common-mode voltage of 0.7 V.  
0.1 mF  
0.1 mF  
ADS54J64  
ADS54J64  
Z0  
CLKP  
Z0  
CLKP  
150 Ω  
Internal termination  
of 100  
Internal termination  
of 100  
Typical LVDS  
Clock Input  
Typical LVPECL  
Clock Input  
Z0  
Z0  
CLKM  
0.1 mF  
150 Ω  
CLKM  
0.1 mF  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
47. LVPECL Clock Driving Circuit  
48. LVDS Clock Driving Circuit  
22  
版权 © 2017, Texas Instruments Incorporated  
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.4 Device Functional Modes  
7.4.1 Digital Functions  
49 shows the various operational modes available in the ADS54J64. In quad mode, the maximum output rate  
is half the sampling rate. The 2x interleaved data are filtered using a half-band filter (HBF) that can be configured  
as a low-pass or high-pass filter using register writes. In dual mode, the device can be operated at a full  
sampling rate with 2x interleaving and averaging of two channels.  
Quad mode supports a maximum complex and a real bandwidth of 200 MHz. The HBF output can be brought  
directly on the JESD lines at half rate. The complex data are obtained through a digital down-converter (DDC)  
that is comprised of a 16-bit numerically controlled oscillator (NCO) and a 100-MHz or 200-MHz filter. The DDC  
also has a real output mode where the data are decimated by 2 and mixed to fOUT / 4 to support a bandwidth of  
100 MHz. In addition to the DDC modes, the HBF output can be decimated by 2 to obtain an overall decimation  
by 4 on the 2x interleaved data.  
Dual mode supports a maximum sampling rate of 1 GSPS. The 2x interleaved data from channel A and channel  
B (and likewise channels C and D) can be averaged and given on the JESD lanes.  
1 lists all modes of operation with the maximum bandwidth provided at a sample rate of 491.52 MSPS and  
368.64 MSPS.  
fOUT / 4  
DDC Block  
16-Bit  
NCO  
1 GSPS  
Interleaved  
Filter  
2
Filter  
2
IQ 500  
MSPS  
500 MSPS  
Mode 0, 1, 3, 4, 6, 7  
ADC  
Filter  
2
JESD204B  
Block  
Mode 2 (Decimate by 4)  
Mode 8 (Decimate by 2)  
1 GSPS Interleaved  
(Channel A)  
Dual ADC Mode1  
Averaging  
(A +B)/2  
1 GSPS Interleaved  
(Channel B)  
Copyright © 2017, Texas Instruments Incorporated  
(1) 1-GSPS data are transmitted using two JESD lanes.  
49. ADS54J64 Channel Operating Modes  
版权 © 2017, Texas Instruments Incorporated  
23  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
1. ADS54J64 Operating Modes  
BANDWIDTH  
AT 368.64  
MSPS  
MAX  
OUTPUT  
RATE  
OPERATING  
MODE  
1ST-STAGE  
DECIMATION  
DIGITAL  
MIXER  
2ND-STAGE  
DECIMATION  
BANDWIDTH AT  
491.52 MSPS  
OUTPUT  
MIXER  
OUTPUT  
FORMAT  
DESCRIPTION  
0
1
2
2
±fS / 4  
2
2
200 MHz  
200 MHz  
150 MHz  
150 MHz  
Complex  
Complex  
250 MSPS  
250 MSPS  
16-bit NCO  
100 MHz (LP, LP or HP, HP),  
75 MHz (HP, LP or LP, HP)  
75 MHz,  
56.25 MHz  
2
2
2
Real  
250 MSPS  
3
4
5
6
2
16-bit NCO  
16-bit NCO  
Reserved  
Bypass  
200 MHz  
100 MHz  
Reserved  
100 MHz  
150 MHz  
75 MHz  
fOUT / 4  
fOUT / 4  
Reserved  
Real  
Real  
500 MSPS  
250 MSPS  
Reserved  
125 MSPS  
Decimation  
2
Reserved  
2
2
Reserved  
4
Reserved  
75 MHz  
Reserved  
Complex  
16-bit NCO  
Real with zero  
insertion  
7
2
16-bit NCO  
2
100 MHz  
75 MHz  
fOUT / 4  
500 MSPS  
DDC bypass  
mode  
8
8
2
223 MHz  
167 MHz  
Real  
500 MSPS  
Dual ADC mode  
1000 MSPS  
7.4.1.1 Numerically Controlled Oscillators (NCOs) and Mixers  
The ADS54J64 is equipped with a complex numerically-controlled oscillator. The oscillator generates a complex  
exponential sequence: x[n] = ejωn. The frequency (ω) is specified by the 16-bit register setting. The complex  
exponential sequence is multiplied by the real input from the ADC to mix the desired carrier down to 0 Hz.  
The NCO frequency setting is set by the 16-bit register value, NCO_FREQ[n]:  
NCO Frequency [n]ì fS  
fNCO  
=
216  
(1)  
7.4.1.2 Decimation Filter  
The ADS54J64 has two decimation filters (decimate-by-2) in the data path. The first stage of the decimation filter  
is non-programmable and is used in all functional modes. The second stage of decimation, available in DDC  
mode 2 and 6, can be used to obtain noise and linearity improvement for low bandwidth applications.  
7.4.1.2.1 Stage-1 Filter  
The first-stage filter is used for decimation of the 2x interleaved data from fCLK to fCLK / 2. 50 and 51 show  
the frequency response and pass-band ripple of the first-stage decimation filter, respectively.  
0
-5  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
0
50 100 150 200 250 300 350 400 450 500 550  
Frequency (MHz)  
0
50 100 150 200 250 300 350 400 450 500 550  
Frequency (MHz)  
D042  
D043  
Input clock rate = 1 GHz  
Input clock rate = 1 GHz  
51. Decimation Filter Pass-Band Ripple vs Frequency  
50. Decimation Filter Response vs Frequency  
24  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.4.1.2.2 Stage-2 Filter  
The second-stage filter is used for decimating the data from a sample rate of fCLK / 2 to fCLK / 4. 52 and 53  
show the frequency response and pass-band ripple of the second-stage filter, respectively.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
0
25 50 75 100 125 150 175 200 225 250 275  
Frequency (MHz)  
0
25 50 75 100 125 150 175 200 225 250 275  
Frequency (MHz)  
D044  
D045  
Input clock rate (fCLK) = 1 GHz  
Input clock rate (fCLK) = 1 GHz  
53. Decimation Filter Pass-Band Ripple vs Frequency  
52. Decimation Filter Response vs Frequency  
7.4.1.3 Mode 0: Decimate-by-4 With IQ Outputs and fS / 4 Mixer  
In mode 0, the DDC block includes a fixed frequency ±fS / 4 complex digital mixer preceding the second-stage  
decimation filters. 54 shows that the IQ pass band is approximately ±100 MHz centered at fS / 8 or 3fS / 8.  
± fS / 4  
Filter  
2
Filter  
2
IQ 250 MSPS  
fS = 1 GSPS  
500 MSPS  
IQ 500 MSPS  
JESD204B  
Block  
ADC  
40 dBc  
90 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
-fS / 4 -fS / 8  
fS / 8 fS / 4  
40 dBc  
-fS / 8  
fS / 8  
fS / 2  
500 MHz  
0
fS / 4  
54. Operating Mode 0  
版权 © 2017, Texas Instruments Incorporated  
25  
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.4.1.4 Mode 1: Decimate-by-4 With IQ Outputs and 16-Bit NCO  
In mode 1, the DDC block includes a 16-bit frequency resolution complex digital mixer, as shown in 55,  
preceding the second-stage decimation filters.  
16-Bit  
NCO  
Filter  
2
Filter  
2
IQ 250 MSPS  
fS = 1 GSPS  
500 MSPS  
IQ 500 MSPS  
JESD204B  
Block  
ADC  
40 dBc  
90 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
-fS / 4 -fS / 8  
fS / 8 fS / 4  
40 dBc  
-fS / 8  
fS / 8  
fS / 2  
500 MHz  
0
fS / 4  
55. Operating Mode 1  
7.4.1.5 Mode 2: Decimate-by-4 With Real Output  
In mode 2, the DDC block cascades two decimate-by-2 filters. Each filter can be configured as low pass (LP) or  
high pass (HP), as shown in 2, to allow down conversion of different frequency ranges. 56 shows that the  
LP, HP and HP, LP output spectra are inverted.  
Filter  
2
Filter  
2
Real 250 MSPS  
fS = 1 GSPS  
500 MSPS  
JESD204B  
Block  
ADC  
40 dBc  
90 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
-fS / 4 -fS / 8  
fS / 8 fS / 4  
56. Operating in Mode 2  
2. ADS54J64 Operating Mode 2, Down-Converted Frequency Ranges  
BANDWIDTH WITH  
CLOCK RATE OF  
737.28 MHz  
1ST-STAGE  
FILTER  
2ND-STAGE  
FILTER  
FREQUENCY RANGE WITH  
CLOCK RATE OF 983.04 MHz  
BANDWIDTH WITH CLOCK  
RATE OF 983.04 MHz  
FREQUENCY RANGE WITH  
CLOCK RATE OF 737.28 MHz  
LP  
LP  
HP  
HP  
LP  
HP  
LP  
HP  
0 MHz–100 MHz  
150 MHz–223 MHz  
100 MHz  
73 MHz  
73 MHz  
100 MHz  
0 MHz–75 MHz  
75 MHz  
54.75 MHz  
54.75 MHz  
75 MHz  
112.5 MHz–167.25 MHz  
201.39 MHz–256.14 MHz  
293.64 MHz–368.64 MHz  
268.52 MHz–341.52 MHz  
391.52 MHz–491.52 MHz  
26  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.4.1.6 Mode 3: Decimate-by-2 Real Output With Frequency Shift  
In mode 3, the DDC block includes a 16-bit complex NCO digital mixer followed by a fS / 4 mixer with a real  
output to center the band at fS / 4. As shown in 57, the NCO must be set to a value different from ±fS / 4, or  
else the samples are zeroed.  
16-Bit  
fOUT / 4  
NCO  
Filter  
fS = 1 GSPS  
500 MSPS  
IQ 500 MSPS  
Real Output  
JESD204B  
Block  
ADC  
2
Filter  
40 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
57. Operating Mode 3  
7.4.1.7 Mode 4: Decimate-by-4 With Real Output  
In mode 4, the DDC block includes a 16-bit complex NCO digital mixer preceding the second-stage decimation  
filter. As shown in 58, the signal is then mixed with fOUT / 4 to generate a real output. The bandwidth available  
in this mode is 100 MHz.  
16-Bit  
fOUT / 4  
NCO  
Filter  
2
Filter  
2
fS = 1 GSPS  
500 MSPS  
IQ 500 MSPS  
IQ 250 MSPS  
Real Output  
JESD204B  
Block  
ADC  
40 dBc  
90 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
-fS / 4 -fS / 8  
fS / 8 fS / 4  
58. Operating Mode 4  
版权 © 2017, Texas Instruments Incorporated  
27  
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.4.1.8 Mode 6: Decimate-by-4 With IQ Outputs for Up to 110 MHz of IQ Bandwidth  
In mode 6, the DDC block shown in 59 includes a 16-bit complex NCO digital mixer preceding a second-stage  
filter with a decimate-by-4 complex, generating a complex output at fS / 8.  
16-Bit  
NCO  
Filter  
2
Filter  
2
Filter  
2
IQ 125 MSPS  
fS = 1 GSPS  
500 MSPS  
IQ 500 MSPS  
IQ 250 MSPS  
JESD204B  
Block  
ADC  
40 dBc  
90 dBc  
90 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
-fS / 4 -fS / 8  
-fS / 4 -fS / 8  
fS / 8 fS / 4  
fS / 8 fS / 4  
40 dBc  
-fS / 8  
fS / 8  
fS / 16  
fS / 2  
0
-fS / 16  
fS / 4  
500 MHz  
59. Operating Mode 6  
7.4.1.9 Mode 7: Decimate-by-4 With Real Output and Zero Stuffing  
In mode 7, the DDC block includes a 16-bit complex NCO digital mixer preceding the second-stage decimation  
filter. The signal is then mixed with fOUT / 4, as shown in 60, to generate a real output that is then doubled in  
sample rate by zero-stuffing every other sample. The bandwidth available in this mode is 100 MHz.  
16-Bit  
fOUT / 4  
NCO  
Filter  
2
Zero Stuff  
2
Filter  
2
fS = 1 GSPS  
500 MSPS  
IQ 500 MSPS  
IQ 250 MSPS  
500 MSPS  
250 MSPS  
JESD204B  
Block  
ADC  
40 dBc  
90 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
-fS / 4 -fS / 8  
fS / 8 fS / 4  
60. Operating Mode 7  
28  
版权 © 2017, Texas Instruments Incorporated  
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.4.1.10 Mode 8: DDC Bypass Mode  
In mode 8, the DDC block is bypassed as shown in 61 and the 2x decimated data are available on the JESD  
output. The decimation filter can be configured to be high pass or low pass using an SPI register bit. The stop-  
band attenuation is approximately 40 dB and the available bandwidth is 225 MHz. The decimation filter response  
is illustrated in 50 and 51.  
Filter  
fS = 1 GSPS  
500 MSPS  
JESD204B  
Block  
ADC  
2
40 dBc  
-fS / 2 -fS / 4  
fS / 4 fS / 2  
Copyright © 2017, Texas Instruments Incorporated  
61. Operating Mode 8  
7.4.1.11 Averaging Mode  
In dual ADC mode, two channels (channels A, B and C, D) are averaged and given out as a single output. As a  
result, the device operates in a dual-channel mode with 2x interleaved sample rate. For a 1-GSPS input clock,  
the averaged output at 1 GSPS is available on two JESD lanes, each operating at 10 Gbps. 62 shows the  
device supporting an averaging of channels A and B. An identical averaging path is available for channels C and  
D. Configure the device in mode 8 before enabling dual ADC mode through SPI register writes.  
1 GSPS Interleaved  
Lane A  
A
1 GSPS Averaged Interleaved  
Averaging  
(A +B)/2  
JESD204B  
Block  
Lane B  
1 GSPS Interleaved  
B
Copyright © 2017, Texas Instruments Incorporated  
62. Averaging Mode for Channels A and B (C and D Averaging is Identical)  
版权 © 2017, Texas Instruments Incorporated  
29  
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.4.1.12 Overrange Indication  
The ADS54J64 provides a fast overrange indication that can be presented in the digital output data stream via  
SPI configuration. When the FOVR indication is embedded in the output data stream as shown in 63, this  
indication replaces the LSB (D0) of the 16 bits going to the 8b, 10b encode.  
14-bit data output  
D0/  
OVR  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
16-bit data going into 8b/10b encoder  
63. FOVR Timing Diagram  
The fast overrange feature of the ADS54J64 is configured using an upper (FOVR Hi) and a lower (FOVR Lo) 8-  
bit threshold that are compared against the partial ADC output of the initial pipeline stages. 64 shows the  
FOVR high and FOVR low thresholds.  
The two thresholds are configured via the SPI register where a setting of 136 maps to the maximum ADC code  
for a high FOVR, and a setting of 8 maps to the minimum ADC code for a low FOVR.  
18000  
16000  
FOVR Hi  
14000  
12000  
10000  
8000  
6000  
FOVR Lo  
4000  
2000  
0
64. FOVR High and FOVR Low Thresholds  
公式 2 calculates the FOVR threshold from a full-scale input based on the ADC code:  
FOVR High or FOVR Low - 72  
FOVR (dBFS) = 20log  
64  
(2)  
Therefore, a threshold of –0.5 dBFS from full-scale can be set with:  
FOVR high = 132 (27h, 84h)  
FOVR low = 12 (28h, 0Ch)  
30  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.5 Programming  
7.5.1 JESD204B Interface  
The ADS54J64 supports device subclass 1 with a maximum output data rate of 10 Gbps for each serial  
transmitter.  
65 shows that an external SYSREF signal is used to align all internal clock phases and the local multi-frame  
clock to a specific sampling clock edge. A common SYSREF signal allows synchronization of multiple devices in  
a system and minimizes timing and alignment uncertainty. The ADS54J64 supports single (for all four JESD  
links) or dual (for channels A, B and C, D) SYNCb inputs and can be configured via the SPI.  
SYSREF  
SYNCbAB  
JESD  
204B  
JESD204B  
DA  
INA  
INB  
INC  
IND  
JESD  
204B  
JESD204B  
DB  
JESD  
204B  
JESD204B  
DC  
JESD  
204B  
JESD204B  
DD  
Sample Clock  
SYNCbCD  
65. JESD204B Transmitter Block  
Depending on the ADC sampling rate, the JESD204B output interface can be operated with one lane per  
channel. The JESD204B setup and configuration of the frame assembly parameters is handled via the SPI  
interface.  
The JESD204B transmitter block shown in 66 consists of the transport layer, the data scrambler, and the link  
layer. The transport layer maps the ADC output data into the selected JESD204B frame data format and  
manages if the ADC output data or test patterns are being transmitted. The link layer performs the 8b, 10b data  
encoding as well as the synchronization and initial lane alignment using the SYNC input signal. Optionally, data  
from the transport layer can be scrambled.  
JESD204B Block  
Transport Layer  
Link Layer  
Frame Data  
Mapping  
8b, 10b  
Encoding  
Scrambler  
1+x14+x15  
DX  
Comma Characters  
Initial Lane Alignment  
Test Patterns  
SYNCb  
66. JESD Interface Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
31  
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Programming (接下页)  
7.5.2 JESD204B Initial Lane Alignment (ILA)  
The initial lane alignment process is started by the receiving device by deasserting the SYNCb signal. When a  
logic low is detected on the SYNC input pins, as shown in 67, the ADS54J64 starts transmitting comma  
(K28.5) characters to establish code group synchronization.  
When synchronization is complete, the receiving device reasserts the SYNCb signal and the ADS54J64 starts  
the initial lane alignment sequence with the next local multi-frame clock boundary. The ADS54J64 transmits four  
multi-frames, each containing K frames (K is SPI programmable). Each of the multi-frames contains the frame  
start and end symbols and the second multi-frame also contains the JESD204 link configuration data.  
SYSREF  
LMFC Clock  
LMFC Boundary  
Multi  
Frame  
SYNCb  
Transmit Data  
xxx  
K28.5  
K28.5  
ILA  
ILA  
DATA  
DATA  
Code Group  
Synchronization  
Initial Lane Alignment  
Data Transmission  
67. ILA Sequence  
32  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
Programming (接下页)  
7.5.3 JESD204B Frame Assembly  
The JESD204B standard defines the following parameters:  
L is the number of lanes per link  
M is the number of converters per device  
F is the number of octets per frame clock period  
S is the number of samples per frame  
3 lists the available JESD204B formats and valid ranges for the ADS54J64. The ranges are limited by the  
SerDes line rate and the maximum ADC sample frequency.  
3. Available JESD204B Formats and Valid Ranges for the ADS54J64  
MAX ADC  
OUTPUT  
RATE (MSPS)  
MAX fSerDes  
(Gbps)  
OPERATING  
MODE  
JESD PLL REGISTER  
CONFIGURATION  
L
M
F
S
DIGITAL MODE  
OUTPUT FORMAT  
4
4
8
4
4
2
1
1
0, 1  
2, 4  
2x decimation  
2x decimation  
Complex  
Real  
250  
250  
10.0  
5.0  
CTRL_SER_MODE = 1,  
SerDes_MODE = 1  
2
4
4
8
4
4
1
1
2, 4  
6
2x decimation  
4x decimation  
Real  
250  
125  
10.0  
5.0  
Complex  
CTRL_SER_MODE = 1,  
SerDes_MODE = 3  
2
8
8
1
6
4x decimation  
Complex  
125  
10.0  
2x decimation with  
0-pad  
4
4
4
4
4
2
2
2
1
1
1
1
7
3, 8  
8
Real  
Real  
Real  
500  
500  
10.0  
10.0  
10.0  
DDC bypass  
DDC bypass dual  
ADC  
1000  
4, 5, and 6 show the detailed frame assembly for various LMFS settings.  
4. Detailed Frame Assembly for Four-Lane Modes (Modes 0, 1, 3, 6, 7, and 8)  
OUTPUT  
LANE  
LMFS = 4841  
LMFS = 4421  
LMFS = 4421  
DA  
DB  
DC  
DD  
AI0[15:8]  
BI0[15:8]  
CI0[15:8]  
DI0[15:8]  
AI0[7:0]  
AQ0[15:8]  
BQ0[15:8]  
CQ0[15:8]  
DQ0[15:8]  
AQ0[7:0]  
BQ0[7:0]  
CQ0[7:0]  
DQ0[7:0]  
A0[15:8]  
B0[15:8]  
C0[15:8]  
D0[15:8]  
A0[7:0]  
A1[15:8]  
B1[15:8]  
C1[15:8]  
D1[15:8]  
A1[7:0]  
B1[7:0]  
C1[7:0]  
D1[7:0]  
A0[15:8]  
B0[15:8]  
C0[15:8]  
D0[15:8]  
A0[7:0]  
B0[7:0]  
C0[7:0]  
D0[7:0]  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
BI0[7:0]  
CI0[7:0]  
DI0[7:0]  
B0[7:0]  
C0[7:0]  
D0[7:0]  
5. Detailed Frame Assembly for Two-Lane Modes (Modes 2 and 4)  
OUTPUT  
LANE  
LMFS = 2441  
LMFS = 2881  
DB  
DC  
A0[15:8]  
C0[15:8]  
A0[7:0]  
C0[7:0]  
B0[15:8]  
D0[15:8]  
B0[7:0]  
D0[7:0]  
AI0[15:8]  
CI0[15:8]  
AI0[7:0]  
CI0[7:0]  
AQ0[15:8]  
CQ0[15:8]  
AQ0[7:0]  
CQ0[7:0]  
BI0[15:8]  
DI0[15:8]  
BI0[7:0]  
DI0[7:0]  
BQ0[15:8]  
DQ0[15:8]  
BQ0[7:0]  
DQ0[7:0]  
6. Detailed Frame Assembly for Four-Lane Mode (2x Interleaved Dual ADC)  
OUTPUT LANE  
LMFS = 4211  
DA  
DB  
DC  
DD  
AB(1)0[15:8]  
AB0[7:0]  
AB1[15:8]  
AB1[7:0]  
CD1[15:8]  
CD1[7:0]  
AB2[15:8]  
AB2[7:0]  
CD2[15:8]  
CD2[7:0]  
AB3[15:8]  
AB3[7:0]  
CD3[15:8]  
CD3[7:0]  
CD(2)0[15:8]  
CD0[7:0]  
(1) AB corresponds to the average output of channel A and channel B.  
(2) CD corresponds to the average output of channel C and channel D.  
版权 © 2017, Texas Instruments Incorporated  
33  
 
 
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.5.4 JESD Output Switch  
To ease layout constraints, the ADS54J64 provides a digital cross-point switch in the JESD204B block (as shown  
in 68) that allows internal routing of any output of the two ADCs within one channel pair to any of the two  
JESD204B serial transmitters. The cross-point switch routing is configured via the SPI (address 41h in the  
SERDES_XX digital page).  
JESD Switch  
DAP,  
DAM  
ADCA  
DBP,  
DBM  
ADCB  
JESD Switch  
DCP,  
DCM  
ADCC  
DDP,  
DDM  
ADCD  
68. Switching the Output Lanes  
7.5.4.1 SerDes Transmitter Interface  
As shown in 69, each 10-Gbps SerDes transmitter output requires ac-coupling between the transmitter and  
receiver. Terminate the differential pair with 100 Ω as close to the receiving device as possible to avoid unwanted  
reflections and signal degradation.  
0.1 mF  
DAP, DAB,  
DAC, DAP  
Rt = ZO  
Transmission Line,  
VCM  
Receiver  
Zo  
Rt = ZO  
DAM, DAB,  
DAC, DAM  
0.1 mF  
69. SerDes Transmitter Connection to Receiver  
7.5.4.2 SYNCb Interface  
The ADS54J64 supports single SYNCb control (where the SYNCb input controls all four JESD204B links) or dual  
SYNCb control (where one SYNCb input controls two JESD204B lanes: DA, DB and DC, DD). When using the  
single SYNCb control, connect the unused input to a differential logic high (SYNCbxxP = DVDD, SYNCbxxM =  
0 V).  
34  
版权 © 2017, Texas Instruments Incorporated  
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.5.4.3 Eye Diagram  
70 to 73 show the serial output eye diagrams of the ADS54J64 at 7.5 Gbps and 10 Gbps with default and  
increased output voltage swing against the JESD204B mask.  
71. Eye at 7.5-Gbps Bit Rate With  
70. Eye at 10-Gbps Bit Rate With  
Default Output Swing  
Default Output Swing  
72. Eye at 10-Gbps Bit Rate With  
73. Eye at 7.5-Gbps Bit Rate With  
Increased Output Swing  
Increased Output Swing  
7.5.5 Device Configuration  
The ADS54J64 can be configured using a serial programming interface, as described in the Register Maps  
section. In addition, the device has one dedicated parallel pin (PDN) for controlling the power-down modes. The  
ADS54J64 supports a 24-bit (16-bit address, 8-bit data) SPI operation and uses paging to access all register bits.  
7.5.5.1 Details of the Serial Interface  
The ADC has a set of internal registers that can be accessed by the serial interface formed by the SEN (serial  
interface enable), SCLK (serial interface clock), SDIN (serial data input data), and SDOUT (serial data output)  
pins. Serially shifting bits into the device is enabled when SEN is low. SDIN serial data are latched at every  
SCLK rising edge when SEN is active (low). Data can be loaded in multiples of 24-bit words within a single active  
SEN pulse. The first 16 bits form the register address and the remaining eight bits are the register data. The  
interface can work with SCLK frequencies from 10 MHz down to very low speeds (of a few hertz) and also with a  
non-50% SCLK duty cycle.  
7.5.5.1.1 Register Initialization  
After power-up, the internal registers must be initialized to the default values. This initialization can be  
accomplished in one hardware reset by applying a high pulse on the RESET pin.  
版权 © 2017, Texas Instruments Incorporated  
35  
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.5.5.2 Serial Register Write  
The internal registers of the ADS54J64 can be programmed (as shown in 74) by:  
1. Driving the SEN pin low  
2. Setting the R/W bit = 0  
3. Initiating a serial interface cycle specifying the address of the register (A[14:0]) whose content must be  
written  
4. Writing the 8-bit data that is latched in on the SCLK rising edge  
The ADS54J64 has several different register pages (page selection in address 11h, 12h). Specify the register  
page before writing to the desired address. The register page only must be set one time for continuous writes to  
the same page.  
During the write operation, the SDOUT pin is in a high-impedance mode and must float.  
Register Address (14:0)  
Register Data (7:0)  
SDIN  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
tDH  
D0  
tSCLK  
tDSU  
SCLK  
SEN  
tSLOADS  
tSLOADH  
RESET  
74. Serial Interface Write Timing Diagram  
36  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.5.5.3 Serial Read  
75 shows a typical 4-wire serial register readout. In the default 4-pin configuration, the SDIN pin is the data  
output from the ADS54J64 during the data transfer cycle when SDOUT is in a high-impedance state. The internal  
registers of the ADS54J64 can be read out by:  
1. Driving the SEN pin low  
2. Setting the R/W bit to 1 to enable read back  
3. Specifying the address of the register (A[14:0]) whose content must be read back  
4. The device outputs the contents (D[7:0]) of the selected register on the SDOUT pin (pin 51)  
5. The external controller can latch the contents at the SCLK rising edge  
Read contents of register 11h containing 04h.  
Register Address (15:0) = 11h  
Register Data (7:0) = XX (don‘t care)  
1
SDIN  
SCLK  
R/W  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN  
SDOUT functions as a serial readout (R/W = 1).  
0
0
0
0
0
1
0
0
SDOUT  
75. Serial Interface 4-Wire Read Timing Diagram  
版权 © 2017, Texas Instruments Incorporated  
37  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Register Map  
The ADS54J64 registers are organized on different pages depending on their internal functions. The pages are  
accessed by selecting the page in the master pages 11h–13h. The page selection must only be written one time  
for a continuous update of registers for that page.  
There are six different SPI banks (see 76 and 7) that group together different functions:  
GLOBAL: contains controls for accessing other SPI banks  
DIGTOP: top-level digital functions  
ANALOG: registers controlling power-down and analog functions  
SERDES_XX: registers controlling JESD204B functions  
CHX: registers controlling channel-specific functions, including DDC  
ADCXX: register page for one of the eight interleaved ADCs  
Global SPI Interface  
SPI_ADC_  
A1, A2, B1, B2  
SPI_DIGTOP  
SPI_ANALOG  
SPI_ADC_  
C1, C2, D1, D2  
SPI_CH_A, B  
Channel A  
SPI_SERDES_AB  
SPI_SERDES_CD  
SPI_CH_C, D  
Channel C  
A1  
A2  
C1  
C2  
Top Digital  
and  
Analog Functions  
SERDES AB  
SERDES CD  
A3  
A4  
D1  
D2  
Channel D  
Channel B  
76. SPI Register Block Diagram  
38  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7. Serial Interface Register Map  
ADDRESS (Hex)  
GLOBAL PAGE  
00h  
7
6
5
4
3
2
1
0
WRITE_1  
0
0
0
0
0
0
SW_RESET  
04h  
11h  
12h  
13h  
VERSION_ID  
SPI_D2  
SPI_D1  
SPI_C2  
SPI_C1  
SPI_CHD  
0
SPI_B2  
SPI_CHC  
0
SPI_B1  
SPI_CHB  
0
SPI_A2  
SPI_CHA  
0
SPI_A1  
0
0
SPI_SERDES_CD  
0
SPI_SERDES_AB  
0
SPI_DIGTOP  
SPI_ANALOG  
DIGTOP PAGE  
64h  
8Dh  
8Eh  
8Fh  
90h  
91h  
A5h  
A6h  
ABh  
ACh  
ADh  
AEh  
B7h  
8Ch  
0
0
0
0
0
0
FS_375_500  
0
CUSTOMPATTERN1[7:0]  
CUSTOMPATTERN1[15:8]  
CUSTOMPATTERN2[7:0]  
CUSTOMPATTERN2[15:8]  
TESTPATTERNSELECT  
TESTPATTERNENCHD  
TESTPATTERNENCHC  
TESTPATTERNENCHB  
CH_CD_AVG_EN  
0
TESTPATTERNENCHA  
CH_AB_AVG_EN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AVG_ENABLE  
OVR_ON_LSB  
GAIN_WORD_ENABLE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
INTERLEAVE_A  
INTERLEAVE_C  
SPECIALMODE0  
SPECIALMODE1  
DDCMODEAB  
DDCMODECD  
0
0
0
0
0
LOAD_TRIMS  
0
ENABLE_LOAD_TRIMS  
ANALOG PAGE  
6Ah  
0
0
0
0
0
0
0
0
0
0
0
DIS_SYSREF  
0
0
0
6Fh  
JESD_SWING  
71h  
EMP_LANE_B[5:4]  
EMP_LANE_A  
72h  
0
0
EMP_LANE_B[3:0]  
93h  
EMP_LANE_D[5:4]  
EMP_LANE_C  
94h  
0
0
0
0
0
0
0
0
0
0
EMP_LANE_D[3:0]  
9Bh  
0
SYSREF_PDN  
0
0
0
0
9Dh  
PDN_CHA  
PDN_CHB  
0
PDN_CHD  
PDN_CHC  
0
0
9Eh  
0
0
0
0
0
0
PDN_SYNCAB  
0
0
0
0
0
0
0
PDN_GLOBAL  
FAST_PDN  
0
9Fh  
0
0
PIN_PDN_MODE  
PDN_SYNCCD  
AFh  
SERDES_XX PAGE  
20h  
21h  
22h  
23h  
25h  
26h  
CTRL_K  
CTRL_SER_MODE  
OPT_SYNC_REQ  
0
TRANS_TEST_EN  
0
0
LANE_ALIGN  
FRAME_ALIGN  
0
TX_ILA_DIS  
SYNC_REQ  
SYNCB_SEL_AB_CD  
0
0
0
SERDES_MODE  
LINK_LAYER_TESTMODE_SEL  
RPAT_SET_DISP  
LMFC_CNT_INIT  
0
LMFC_MASK_RESET  
0
0
FORCE_LMFC_COUNT  
RELEASE_ILANE_REQ  
SCR_EN  
0
0
0
0
0
0
0
0
K_NO_OF_FRAMES_PER_MULTIFRAME  
版权 © 2017, Texas Instruments Incorporated  
39  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7. Serial Interface Register Map (接下页)  
ADDRESS (Hex)  
7
6
5
4
3
2
1
0
28h  
0
0
0
0
CTRL_LID  
0
0
0
2Dh  
LID1  
LID2  
36h  
PRBS_MODE  
0
0
0
0
0
0
0
0
41h  
LANE_BONA  
LANE_AONB  
42h  
0
0
0
0
INVERT_AC  
INVERT_BD  
GAINWORD  
CHX PAGE  
26h  
0
0
0
0
0
0
0
0
0
0
27h  
OVR_ENABLE  
OVR_FAST_SEL  
OVR_LSB1  
0
0
OVR_LSB0  
0
0
2Dh  
0
0
0
0
0
0
NYQUIST_SELECT  
NYQ_SEL_MODE02  
78h  
FS4_SIGN  
NYQ_SEL  
7Ah  
NCO_WORD[15:8]  
NCO_WORD[7:0]  
7Bh  
7Eh  
0
0
0
0
0
MODE467_GAIN  
MODE0_GAIN  
MODE13_GAIN  
ADCXX PAGE  
07h  
FAST_OVR_THRESHOLD_HIGH  
FAST_OVR_THRESHOLD_LOW  
08h  
D5h  
0
0
0
0
0
0
0
0
CAL_EN  
0
0
0
0
0
0
0
2Ah  
0
0
ADC_TRIM1  
0
CFh  
ADC_TRIM2  
40  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1 Register Description  
8 lists the access codes for the ADS54J64 registers.  
8. ADS54J64 Access Type Codes  
Access Type  
Code  
R
Description  
Read  
R
R/W  
W
R-W  
W
Read or Write  
Write  
-n  
Value after reset or the default  
value  
7.6.1.1.1 GLOBAL Page Register Description  
7.6.1.1.1.1 Register 00h (address = 00h) [reset = 0h], GLOBAL Page  
77. Register 0h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
WRITE_1  
R/W-0h  
SW_RESET  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
9. Register 00h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
0h  
Description  
WRITE_1  
0
Always write 1  
6-1  
0
0h  
Must read or write 0  
This bit rests the device.  
SW_RESET  
0h  
7.6.1.1.1.2 Register 04h (address = 04h) [reset = 0h], GLOBAL Page  
78. Register 4h  
7
6
5
4
3
2
1
0
VERSION_ID  
R-0h  
10. Register 04h Field Descriptions  
Bit  
Field  
VERSION_ID  
Type  
Reset  
Description  
7-0  
R
0h  
These bits set the version ID of the device.  
16 : PG 1.0  
32 : PG 2.0  
48 : PG 3.0  
版权 © 2017, Texas Instruments Incorporated  
41  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.1.3 Register 11h (address = 11h) [reset = 0h], GLOBAL Page  
79. Register 11h  
7
6
5
4
3
2
1
0
SPI_D2  
R/W-0h  
SPI_D1  
R/W-0h  
SPI_C2  
R/W-0h  
SPI_C1  
R/W-0h  
SPI_B2  
R/W-0h  
SPI_B1  
R/W-0h  
SPI_A2  
R/W-0h  
SPI_A1  
R/W-0h  
11. Register 11h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SPI_D2  
R/W  
0h  
This bit selects the ADC D2 SPI.  
0 : ADC D2 SPI is disabled  
1 : ADC D2 SPI is enabled  
6
5
4
3
2
1
0
SPI_D1  
SPI_C2  
SPI_C1  
SPI_B2  
SPI_B1  
SPI_A2  
SPI_A1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
This bit selects the ADC D1 SPI.  
0 : ADC D1 SPI is disabled  
1 : ADC D1 SPI is enabled  
This bit selects the ADC C2 SPI  
0 : ADC C2 SPI is disabled  
1 : ADC C2 SPI is enabled  
This bit selects the ADC C1 SPI.  
0 : ADC C1 SPI is disabled  
1 : ADC C1 SPI is enabled  
This bit selects the ADC B2 SPI.  
0 : ADC B2 SPI is disabled  
1 : ADC B2 SPI is enabled  
This bit selects the ADC B1 SPI.  
0 : ADC B1 SPI is disabled  
1 : ADC B1 SPI is enabled  
This bit selects the ADC A2 SPI.  
0 : ADC A2 SPI is disabled  
1 : ADC A2 SPI is enabled  
This bit selects the ADC A1 SPI.  
0 : ADC A1 SPI is disabled  
1 : ADC A1 SPI is enabled  
42  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.1.4 Register 12h (address = 12h) [reset = 0h], GLOBAL Page  
80. Register 12h  
7
0
6
5
4
3
2
1
0
SPI_SERDES_CD  
R/W-0h  
SPI_SERDES_AB  
R/W-0h  
SPI_CHD  
R/W-0h  
SPI_CHC  
R/W-0h  
SPI_CHB  
R/W-0h  
SPI_CHA  
R/W-0h  
SPI_DIGTOP  
R/W-0h  
R/W-0h  
12. Register 12h Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
6
SPI_SERDES_CD  
0h  
This bit selects the channel CD SerDes SPI.  
0 : Channel CD SerDes SPI is disabled  
1 : Channel CD SerDes SPI is enabled  
5
4
3
2
1
0
SPI_SERDES_AB  
SPI_CHD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
This bit selects the channel AB SerDes SPI.  
0 : Channel AB SerDes is disabled  
1 : Channel AB SerDes is enabled  
This bit selects the channel D SPI.  
0 : Channel D SPI is disabled  
1 : Channel D SPI is enabled  
SPI_CHC  
This bit selects the channel C SPI.  
0 : Channel C SPI is disabled  
1 : Channel C SPI is enabled  
SPI_CHB  
This bit selects the channel B SPI.  
0 : Channel B SPI is disabled  
1 : Channel B SPI is enabled  
SPI_CHA  
This bit selects the channel A SPI.  
0 : Channel A SPI is disabled  
1 : Channel A SPI is enabled  
SPI_DIGTOP  
This bit selects the DIGTOP SPI.  
0 : DIGTOP SPI is disabled  
1 : DIGTOP SPI is enabled  
7.6.1.1.1.5 Register 13h (address = 13h) [reset = 0h], GLOBAL Page  
81. Register 13h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
SPI_ANALOG  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
13. Register 13h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
SPI_ANALOG  
0h  
This bit selects the analog SPI.  
0 : Analog SPI is disabled  
1 : Analog SPI is enabled  
版权 © 2017, Texas Instruments Incorporated  
43  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.2 DIGTOP Page Register Description  
7.6.1.1.2.1 Register 64h (address = 64h) [reset = 0h], DIGTOP Page  
82. Register 64h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
FS_375_500  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
14. Register 64h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
FS_375_500  
0h  
This bit selects the clock rate for loading trims.  
0 : 375 MSPS  
1 : 500 MSPS  
0
0
R/W  
0h  
Must read or write 0  
7.6.1.1.2.2 Register 8Dh (address = 8Dh) [reset = 0h], DIGTOP Page  
83. Register 8Dh  
7
6
5
4
3
2
1
0
CUSTOMPATTERN1[7:0]  
R/W-0h  
15. Register 8Dh Field Descriptions  
Bit  
Field  
CUSTOMPATTERN1[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the custom pattern 1 that is used when the test  
pattern is enabled and set to a single or dual test pattern.  
7.6.1.1.2.3 Register 8Eh (address = 8Eh) [reset = 0h], DIGTOP Page  
84. Register 8Eh  
7
6
5
4
3
2
1
0
CUSTOMPATTERN1[15:8]  
R/W-0h  
16. Register 8Eh Field Descriptions  
Bit  
Field  
CUSTOMPATTERN1[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the custom pattern 1 that is used when the test  
pattern is enabled and set to a single or dual test pattern.  
44  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.2.4 Register 8Fh (address = 8Fh) [reset = 0h], DIGTOP Page  
85. Register 8Fh  
7
6
5
4
3
2
1
0
CUSTOMPATTERN2[7:0]  
R/W-0h  
17. Register 8Fh Field Descriptions  
Bit  
Field  
CUSTOMPATTERN2[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the custom pattern 2 that is used when the test  
pattern select is set to dual pattern mode.  
7.6.1.1.2.5 Register 90h (address = 90h) [reset = 0h], DIGTOP Page  
86. Register 90h  
7
6
5
4
3
2
1
0
CUSTOMPATTERN2[15:8]  
R/W-0h  
18. Register 90h Field Descriptions  
Bit  
Field  
CUSTOMPATTERN2[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the custom pattern 2 that is used when the test  
pattern select is set to dual pattern mode.  
7.6.1.1.2.6 Register 91h (address = 91h) [reset = 0h], DIGTOP Page  
87. Register 91h  
7
6
5
4
3
2
1
0
TESTPATTERNSELECT  
R/W-0h  
TESTPATTERNENCHD TESTPATTERNENCHC TESTPATTERNENCHB TESTPATTERNENCHA  
R/W-0h R/W-0h R/W-0h R/W-0h  
19. Register 91h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TESTPATTERNSELECT  
R/W  
0h  
These bits select the test pattern on the output when the test  
pattern is enabled for a suitable channel.  
0 : Default  
1 : All zeros  
2 : All ones  
3 : Toggle pattern  
4 : Ramp pattern  
6 : Custom pattern 1  
7 : Toggle between custom pattern 1 and custom pattern 2  
8 : Deskew pattern (0xAAAA)  
3
2
1
0
TESTPATTERNENCHD  
TESTPATTERNENCHC  
TESTPATTERNENCHB  
TESTPATTERNENCHA  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
This bit enables the channel D test pattern.  
0 : Default data on channel D  
1 : Enable test pattern on channel D  
This bit enables the channel C test pattern.  
0 : Default data on channel C  
1 : Enable test pattern on channel C  
This bit enables the channel B test pattern.  
0 : Default data on channel B  
1 : Enable test pattern on channel B  
This bit enables the channel A test pattern.  
0 : Default data on channel A  
1 : Enable test pattern on channel A  
版权 © 2017, Texas Instruments Incorporated  
45  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.2.7 Register A5h (address = A5h) [reset = 0h], DIGTOP Page  
88. Register A5h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
CH_CD_AVG_EN  
R/W-0h  
CH_AB_AVG_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
20. Register A5h Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
CH_CD_AVG_EN  
0h  
0: Averaging is disabled for channels C, D  
1: Averaging is enabled for channels C, D; set AVG_ENABLE in  
Register A6h (address = A6h) [reset = 0h], DIGTOP Page to 1 if  
using this option  
0
CH_AB_AVG_EN  
R/W  
0h  
0: Averaging is disabled for channels A, B  
1: Averaging is enabled for channels A, B; set AVG_ENABLE in  
Register A6h (address = A6h) [reset = 0h], DIGTOP Page to 1 if  
using this option  
7.6.1.1.2.8 Register A6h (address = A6h) [reset = 0h], DIGTOP Page  
89. Register A6h  
7
0
6
0
5
4
3
2
0
1
0
0
0
OVR_ON_  
LSB  
GAIN_WORD_  
ENABLE  
AVG_ENABLE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
21. Register A6h Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
0: Default operation  
AVG_ENABLE  
0h  
1: Enable averaging option for the AB and CD channel pairs  
4
OVR_ON_LSB  
R/W  
0h  
This bit enables the overrange indicator (OVR) on the LSB1 and  
LSB0 bits. OVR_LSB1 and OVR_LSB0 must be configured in  
register 27h of the CHX page.  
0 : Default data  
1 : OVR on LSB1 and LSB0 bits  
3
GAIN_WORD_ENABLE  
R/W  
R/W  
0h  
0h  
This bit enables the digital gain. Gain can be programmed using  
the GAINWORD bits in register 26h of the CHX page.  
0 : Disable digital gain  
1 : Enable digital gain  
2-0  
0
Must read or write 0  
46  
版权 © 2017, Texas Instruments Incorporated  
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.2.9 Register ABh (address = ABh) [reset = 0h], DIGTOP Page  
90. Register ABh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
INTERLEAVE_A  
R/W-0h  
SPECIALMODE0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
22. Register ABh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
0: Default operation  
INTERLEAVE_A  
0h  
1: 2x interleaved data enable; this bit is used in dual ADC mode  
to bring the average data of channels A and B on the JESD  
outputs; averaging mode is enabled by setting CH_AB_AVG_EN  
to 1 (see register A5h)  
0
SPECIALMODE0  
R/W  
0h  
Always write 1  
7.6.1.1.2.10 Register ACh (address = ACh) [reset = 0h], DIGTOP Page  
91. Register ACh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
INTERLEAVE_C  
R/W-0h  
SPECIALMODE1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
23. Register ACh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
0: Default operation  
INTERLEAVE_C  
0h  
1: 2x interleaved data enable; this bit is used in dual ADC mode  
to bring the average data of channels C and D on the JESD  
outputs; averaging mode is enabled by setting  
CH_CD_AVG_EN to 1 (see register A5h)  
0
SPECIALMODE1  
R/W  
0h  
Always write 1  
7.6.1.1.2.11 Register ADh (address = ADh) [reset = 0h], DIGTOP Page  
92. Register ADh  
7
0
6
0
5
0
4
0
3
2
1
0
DDCMODEAB  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
24. Register ADh Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
DDCMODEAB  
0h  
These bits select the DDC mode for the AB channel pair.  
0 : Mode 0  
1 : Mode 1  
2 : Mode 2  
3 : Mode 3  
4 : Mode 4  
6 : Mode 6  
7 : Mode 7  
8 : Mode 8  
版权 © 2017, Texas Instruments Incorporated  
47  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.2.12 Register AEh (address = AEh) [reset = 0h], DIGTOP Page  
93. Register AEh  
7
0
6
0
5
0
4
0
3
2
1
0
DDCMODECD  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
25. Register AEh Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
DDCMODECD  
0h  
These bits select the DDC mode for the CD channel pair.  
0 : Mode 0  
1 : Mode 1  
2 : Mode 2  
3 : Mode 3  
4 : Mode 4  
6 : Mode 6  
7 : Mode 7  
8 : Mode 8  
7.6.1.1.2.13 Register B7h (address = B7h) [reset = 0h], DIGTOP Page  
94. Register B7h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
LOAD_TRIMS  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
26. Register B7h Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
This bit load trims the device.  
LOAD_TRIMS  
0h  
7.6.1.1.2.14 Register 8Ch (address = 8Ch) [reset = 0h], DIGTOP Page  
95. Register 8Ch  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ENABLE_LOAD_TRIMS  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
27. Register 8Ch Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
ENABLE_LOAD_TRIMS  
0h  
0: Trim loading is disabled  
1: Trim loading is enabled (recommended)  
0
0
R/W  
0h  
Must read or write 0  
48  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.3 ANALOG Page Register Description  
7.6.1.1.3.1 Register 6Ah (address = 6Ah) [reset = 0h], ANALOG Page  
96. Register 6Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
DIS_SYSREF  
R/W-0h  
0
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
28. Register 6Ah Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
DIS_SYSREF  
0h  
This bit masks the SYSREF input.  
0 : SYSREF input is not masked  
1 : SYSREF input is masked  
0
0
R/W  
0h  
Must read or write 0  
7.6.1.1.3.2 Register 6Fh (address = 6Fh) [reset = 0h], ANALOG Page  
97. Register 6Fh  
7
0
6
5
4
3
0
2
0
1
0
0
0
JESD_SWING  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
29. Register 6Fh Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
6-4  
JESD_SWING  
0h  
These bits control the JESD swing.  
0 : 860 mVPP  
1 : 810 mVPP  
2 : 770 mVPP  
3 : 745 mVPP  
4 : 960 mVPP  
5 : 930 mVPP  
6 : 905 mVPP  
7 : 880 mVPP  
3-0  
0
R/W  
0h  
Must read or write 0  
版权 © 2017, Texas Instruments Incorporated  
49  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.3.3 Register 71h (address = 71h) [reset = 0h], ANALOG Page  
98. Register 71h  
7
6
5
4
3
2
1
0
EMP_LANE_B[5:4]  
R/W-0h  
EMP_LANE_A  
R/W-0h  
30. Register 71h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
EMP_LANE_B[5:4]  
R/W  
0h  
These bits along with bits 3-0 of register 72h set the de-  
emphasis for lane B.  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in decibels (dB) is  
measured as the ratio between the peak value after the signal  
transitions to the settled value of the voltage in one bit period.  
0 : 0 dB  
1 : –1 dB  
3 : –2 dB  
7 : –4.1 dB  
15 : –6.2 dB  
31 : –8.2 dB  
63 : –11.5 dB  
Others: Do not use  
5-0  
EMP_LANE_A  
R/W  
0h  
These bits set the de-emphasis for lane A.  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transitions to  
the settled value of the voltage in one bit period.  
0 : 0 dB  
1 : –1 dB  
3 : –2 dB  
7 : –4.1 dB  
15 : –6.2 dB  
31 : –8.2 dB  
63 : –11.5 dB  
Others: Do not use  
7.6.1.1.3.4 Register 72h (address = 72h) [reset = 0h], ANALOG Page  
99. Register 72h  
7
0
6
0
5
0
4
0
3
2
1
0
EMP_LANE_B[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
31. Register 72h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
EMP_LANE_B[3:0]  
0h  
These bits along with bits 7-6 of register 71h set the de-  
emphasis for lane B.  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transitions to  
the settled value of the voltage in one bit period.  
0 : 0 dB  
1 : –1 dB  
3 : –2 dB  
7 : –4.1 dB  
15 : –6.2 dB  
31 : –8.2 dB  
63 : –11.5 dB  
Others: Do not use  
50  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.3.5 Register 93h (address = 93h) [reset = 0h], ANALOG Page  
100. Register 93h  
7
6
5
4
3
2
1
0
EMP_LANE_D[5:4]  
R/W-0h  
EMP_LANE_C  
R/W-0h  
32. Register 93h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
EMP_LANE_D[5:4]  
R/W  
0h  
These bits along with bits 3-0 of register 94h set the de-  
emphasis for lane D.  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transitions to  
the settled value of the voltage in one bit period.  
0 : 0 dB  
1 : –1 dB  
3 : –2 dB  
7 : –4.1 dB  
15 : –6.2 dB  
31 : –8.2 dB  
63 : –11.5 dB  
Others: Do not use  
5-0  
EMP_LANE_C  
R/W  
0h  
These bits set the de-emphasis for lane C.  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transitions to  
the settled value of the voltage in one bit period.  
0 : 0 dB  
1 : –1 dB  
3 : –2 dB  
7 : –4.1 dB  
15 : –6.2 dB  
31 : –8.2 dB  
63 : –11.5 dB  
Others: Do not use  
7.6.1.1.3.6 Register 94h (address = 94h) [reset = 0h], ANALOG Page  
101. Register 94h  
7
0
6
0
5
0
4
0
3
2
1
0
EMP_LANE_D[3:0]  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
33. Register 94h Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
EMP_LANE_D[3:0]  
0h  
These bits along with bits 7-4 of register 93h set the de-  
emphasis for lane D.  
These bits select the amount of de-emphasis for the JESD  
output transmitter. The de-emphasis value in dB is measured as  
the ratio between the peak value after the signal transitions to  
the settled value of the voltage in one bit period.  
0 : 0 dB  
1 : –1 dB  
3 : –2 dB  
7 : –4.1 dB  
15 : –6.2 dB  
31 : –8.2 dB  
63 : –11.5 dB  
Others: Do not use  
版权 © 2017, Texas Instruments Incorporated  
51  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.3.7 Register 9Bh (address = 9Bh) [reset = 0h], ANALOG Page  
102. Register 9Bh  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
0
SYSREF_PDN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
34. Register 9Bh Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
SYSREF_PDN  
0h  
This bit powers down the SYSREF buffer.  
0 : SYSREF buffer is powered up  
1 : SYSREF buffer is powered down  
3-0  
0
R/W  
0h  
Must read or write 0  
7.6.1.1.3.8 Register 9Dh (address = 9Dh) [reset = 0h], ANALOG Page  
103. Register 9Dh  
7
6
5
0
4
0
3
2
1
0
0
0
PDN_CHA  
R/W-0h  
PDN_CHB  
R/W-0h  
PDN_CHD  
R/W-0h  
PDN_CHC  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
35. Register 9Dh Field Descriptions  
Bit  
Field  
PDN_CHA  
Type  
Reset  
Description  
7
R/W  
0h  
This bit powers down channel A.  
0 : Normal operation  
1 : Channel A is powered down  
6
PDN_CHB  
R/W  
0h  
This bit powers down channel B.  
0 : Normal operation  
1 : Channel B is powered down  
5-4  
3
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
PDN_CHD  
This bit powers down channel D.  
0 : Normal operation  
1 : Channel D is powered down  
2
PDN_CHC  
0
R/W  
R/W  
0h  
0h  
This bit powers down channel C.  
0 : Normal operation  
1 : Channel C is powered down  
1-0  
Must read or write 0  
52  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.3.9 Register 9Eh (address = 9Eh) [reset = 0h], ANALOG Page  
104. Register 9Eh  
7
0
6
0
5
0
4
3
0
2
0
1
0
0
PDN_SYNCAB  
R/W-0h  
PDN_GLOBAL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
36. Register 9Eh Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
PDN_SYNCAB  
0h  
This bit controls the STNCAB buffer power-down.  
0 : SYNCAB buffer is powered up  
1 : SYNCAB buffer is powered down  
3-1  
0
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
PDN_GLOBAL  
This bit controls the global power-down.  
0 : Global power-up  
1 : Global power-down  
7.6.1.1.3.10 Register 9Fh (address = 9Fh) [reset = 0h], ANALOG Page  
105. Register 9Fh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
PIN_PDN_MODE  
R/W-0h  
FAST_PDN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
37. Register 9Fh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
PIN_PDN_MODE  
0h  
This bit selects the pin power-down mode.  
0 : PDN pin is configured to fast power-down  
1 : PDN pin is configured to global power-down  
0
FAST_PDN  
R/W  
0h  
This bit controls the fast power-down.  
0 : Device powered up  
1 : Fast power down  
7.6.1.1.3.11 Register AFh (address = AFh) [reset = 0h], ANALOG Page  
106. Register AFh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
PDN_SYNCCD  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
38. Register AFh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
PDN_SYNCCD  
0h  
This bit controls the SYNCCD buffer power-down.  
0 : SYNCCD buffer is powered up  
1 : SYNCCD buffer is powered down  
0
0
R/W  
0h  
Must read or write 0  
版权 © 2017, Texas Instruments Incorporated  
53  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.4 SERDES_XX Page Register Description  
7.6.1.1.4.1 Register 20h (address = 20h) [reset = 0h], SERDES_XX Page  
107. Register 20h  
7
6
5
0
4
3
0
2
1
0
CTRL_SER_  
MODE  
TRANS_TEST_  
EN  
CTRL_K  
R/W-0h  
LANE_ALIGN FRAME_ALIGN  
R/W-0h R/W-0h  
TX_ILA_DIS  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
39. Register 20h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CTRL_K  
R/W  
0h  
This bit is the enable bit for programming the number of frames  
per multi-frame.  
0 : Five frames per multi-frame (default)  
1 : Frames per multi-frame can be programmed using register  
26h  
6
CTRL_SER_MODE  
R/W  
0h  
This bit allows the SERDES_MODE setting in register 21h (bits  
1-0) to be changed.  
0 : Disabled  
1 : Enables SERDES_MODE setting  
5
4
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
TRANS_TEST_EN  
This bit generates the long transport layer test pattern mode, as  
per section 5.1.6.3 of the JESD204B specification.  
0 : Test mode is disabled  
1 : Test mode is enabled  
3
2
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
LANE_ALIGN  
This bit inserts the lane-alignment character (K28.3) for the  
receiver to align to the lane boundary, as per section 5.3.3.5 of  
the JESD204B specification.  
0 : Normal operation  
1 : Inserts lane-alignment characters  
1
0
FRAME_ALIGN  
TX_ILA_DIS  
R/W  
R/W  
0h  
0h  
This bit inserts the frame-alignment character (K28.7) for the  
receiver to align to the lane boundary, as per section 5.3.3.5 of  
the JESD204B specification.  
0 : Normal operation  
1 : Inserts frame-alignment characters  
This bit disables sending the initial link alignment (ILA) sequence  
when SYNC is deasserted.  
0 = Normal operation  
1 = Disables ILA  
54  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.4.2 Register 21h (address = 21h) [reset = 0h], SERDES_XX Page  
108. Register 21h  
7
6
5
4
0
3
0
2
0
1
0
SYNC_REQ  
R/W-0h  
OPT_SYNC_REQ  
R/W-0h  
SYNCB_SEL_AB_CD  
R/W-0h  
SERDES_MODE  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
40. Register 21h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SYNC_REQ  
R/W  
0h  
This bit controls the SYNC register (bit 6 must be enabled).  
0 : Normal operation  
1 : ADC output data are replaced with K28.5 characters  
6
5
OPT_SYNC_REQ  
SYNCB_SEL_AB_CD  
R/W  
R/W  
0h  
0h  
This bit enables SYNC operation.  
0 : Normal operation  
1 : Enables SYNC from the SYNC_REQ register bit  
This bit selects which SYNCb input controls the JESD interface.  
0 : Use the SYNCbAB, SYNCbCD pins  
1 : When set in the SerDes AB SPI, SYNCbCD is used for the  
SerDes AB and CD; when set in the SerDes CD SPI, SYNCbAB  
is used for the SerDes AB and CD  
4-2  
1-0  
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
SerDes_MODE  
These bits set the JESD output parameters. The  
CTRL_SER_MODE bit (register 20h, bit 6) must also be set to  
control these bits. These bits are auto configured for modes 0, 1,  
3, and 7, but must be configured for modes 2, 4, and 6.  
7.6.1.1.4.3 Register 22h (address = 22h) [reset = 0h], SERDES_XX Page  
109. Register 22h  
7
6
5
4
3
2
0
1
0
0
0
LINK_LAYER_TESTMODE_SEL  
R/W-0h  
RPAT_SET_DISP  
R/W-0h  
LMFC_MASK_RESET  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
41. Register 22h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
LINK_LAYER_TESTMODE_SEL  
R/W  
0h  
These bits generate a pattern as per section 5.3.3.8.2 of the  
JESD204B document.  
0 : Normal ADC data  
1 : D21.5 (high-frequency jitter pattern)  
2 : K28.5 (mixed-frequency jitter pattern)  
3 : Repeat the initial lane alignment (generates a K28.5  
character and continuously repeats lane alignment sequences)  
4 : 12-octet RPAT jitter pattern  
6 : PRBS pattern (PRBS7, 15, 23, 31); use PRBS_MODE  
(register 36h, bits 7-6) to select the PRBS pattern  
4
RPAT_SET_DISP  
R/W  
0h  
This bit changes the running disparity in the modified RPAT  
pattern test mode (only when the link layer test mode = 100).  
0 : Normal operation  
1 : Changes disparity  
3
LMFC_MASK_RESET  
0
R/W  
R/W  
0h  
0h  
0 : Default  
1 : Resets the LMFC mask  
2-0  
Must read or write 0  
版权 © 2017, Texas Instruments Incorporated  
55  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.4.4 Register 23h (address = 23h) [reset = 0h], SERDES_XX Page  
110. Register 23h  
7
6
5
4
3
2
1
0
FORCE_LMFC_COUNT  
R/W-0h  
LMFC_CNT_INIT  
R/W-0h  
RELEASE_ILANE_REQ  
R/W-0h  
42. Register 23h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORCE_LMFC_COUNT  
R/W  
0h  
This bit forces an LMFC count.  
0 : Normal operation  
1 : Enables using a different starting value for the LMFC counter  
6-2  
1-0  
LMFC_CNT_INIT  
R/W  
R/W  
0h  
0h  
These bits set the initial value to which the LMFC count resets.  
The FORCE_LMFC_COUNT register bit must be enabled.  
RELEASE_ILANE_REQ  
These bits delay the generation of the lane alignment sequence  
by 0, 1, 2, or 3 multi-frames after the code group  
synchronization.  
0 : 0 multi-frames  
1 : 1 multi-frame  
2 : 2 multi-frames  
3 : 3 multi-frames  
7.6.1.1.4.5 Register 25h (address = 25h) [reset = 0h], SERDES_XX Page  
111. Register 25h  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
0
SCR_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
43. Register 25h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SCR_EN  
R/W  
0h  
This bit is the scramble enable bit in the JESD204B interface.  
0 : Scrambling is disabled  
1 : Scrambling is enabled  
6-0  
0
R/W  
0h  
Must read or write 0  
7.6.1.1.4.6 Register 26h (address = 26h) [reset = 0h], SERDES_XX Page  
112. Register 26h  
7
0
6
0
5
0
4
3
2
1
0
K_NO_OF_FRAMES_PER_MULTIFRAME  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
44. Register 26h Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
7-5  
4-0  
0
Must read or write 0  
K_NO_OF_FRAMES_PER_MULTIFRAME  
0h  
These bits set the number of frames per multi-frame.  
The K value used is set value + 1 (for example, if the set  
value is 0xF, then K = 16).  
56  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.4.7 Register 28h (address = 28h) [reset = 0h], SERDES_XX Page  
113. Register 28h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
CTRL_LID  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
45. Register 28h Field Descriptions  
Bit  
7-4  
3
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
CTRL_LID  
0h  
This bit is the enable bit to program the lane ID (LID).  
0 : Default LID  
1 : Enable LID programming  
2-0  
0
R/W  
0h  
Must read or write 0  
7.6.1.1.4.8 Register 2Dh (address = 2Dh) [reset = 0h], SERDES_XX Page  
114. Register 2Dh  
7
6
5
4
3
2
1
0
LID1  
LID2  
R/W-0h  
R/W-0h  
46. Register 2Dh Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LID1  
R/W  
0h  
Lane ID for channels A, C. Select SerDes AB for channel A and  
SerDes CD for channel C.  
Valid only when CTRL_LID = 1.  
3-0  
LID2  
R/W  
0h  
Lane ID for channels B, D. Select SerDes AB for channel B and  
SerDes CD for channel D.  
7.6.1.1.4.9 Register 36h (address = 36h) [reset = 0h], SERDES_XX Page  
115. Register 36h  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
PRBS_MODE  
R-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
47. Register 36h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PRBS_MODE  
R
0h  
These bits select the PRBS polynomial in the PRBS pattern  
mode.  
0 : PRBS7  
1 : PRBS15  
2 : PRBS23  
3 : PRBS31  
5-0  
0
R/W  
0h  
Must read or write 0  
版权 © 2017, Texas Instruments Incorporated  
57  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.4.10 Register 41h (address = 41h) [reset = 0h], SERDES_XX Page  
116. Register 41h  
7
6
5
4
3
2
1
0
LANE_BONA  
R/W-0h  
LANE_AONB  
R/W-0h  
48. Register 41h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LANE_BONA  
R/W  
0h  
These bits enable lane swap.  
0 : Default  
10 : For SerDes AB, channel B on lane A; for SerDes CD,  
channel D on lane C  
Others: Do not use  
3-0  
LANE_AONB  
R/W  
0h  
These bits enable lane swap.  
0 : Default  
10 : For SerDes AB, channel A on lane B; for SerDes CD,  
channel C on lane D  
Others: Do not use  
7.6.1.1.4.11 Register 42h (address = 42h) [reset = 0h], SERDES_XX Page  
117. Register 42h  
7
0
6
0
5
0
4
0
3
2
1
0
INVERT_AC  
R/W-0h  
INVERT_BD  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
49. Register 42h Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
INVERT_AC  
0h  
These bits invert lanes A and C.  
0 : No inversion  
3 : Data inversion on lane A, C  
Others: Do not use  
1-0  
INVERT_BD  
R/W  
0h  
These bits invert lanes B and D.  
0 : No inversion  
3 : Data inversion on lane B, D  
Others: Do not use  
58  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.5 CHX Page Register Description  
7.6.1.1.5.1 Register 26h (address = 26h) [reset = 0h], CHX Page  
118. Register 26h  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
GAINWORD  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
50. Register 26h Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
GAINWORD  
0h  
These bits control the channel A gain word.  
0 : 0 dB  
1 : 1 dB  
2 : 2 dB  
3 : 3 dB  
7.6.1.1.5.2 Register 27h (address = 27h) [reset = 0h], CHX Page  
119. Register 27h  
7
6
5
0
4
3
2
0
1
0
0
OVR_ENABLE  
R/W-0h  
OVR_FAST_SEL  
R/W-0h  
0
OVR_LSB1  
R/W-0h  
OVR_LSB0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
51. Register 27h Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OVR_ENABLE  
R/W  
0h  
This bit enables or disables the OVR on the JESD lanes.  
0 : Disables OVR  
1 : Enables OVR  
6
OVR_FAST_SEL  
R/W  
0h  
This bit selects the fast or delay-matched OVR.  
0 : Delay-matched OVR  
1 : Fast OVR  
5-4  
3
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
OVR_LSB1  
This bit selects either data or OVR on LSB1.  
0 : Data selected  
1 : OVR or FOVR selected  
2
1
0
R/W  
R/W  
0h  
0h  
Must read or write 0  
OVR_LSB0  
This bit selects either data or OVR on LSB0.  
0 : Data selected  
1 : OVR or FOVR selected  
0
0
R/W  
0h  
Must read or write 0  
版权 © 2017, Texas Instruments Incorporated  
59  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.5.3 Register 2Dh (address = 2Dh) [reset = 0h], CHX Page  
120. Register 2Dh  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
NYQUIST_SELECT  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
52. Register 2Dh Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
NYQUIST_SELECT  
0h  
This bit selects the Nyquist zone of operation for trim loading.  
0 : Nyquist 1  
1 : Nyquist 2  
0
0
R/W  
0h  
Must read or write 0  
7.6.1.1.5.4 Register 78h (address = 78h) [reset = 0h], CHX Page  
121. Register 78h  
7
0
6
0
5
0
4
0
3
2
1
0
0
FS4_SIGN  
R/W-0h  
NYQ_SEL_MODE02  
R/W-0h  
NYQ_SEL  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
53. Register 78h Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
FS4_SIGN  
0h  
This bit controls the sign of mixing in mode 0.  
0 : Centered at –fS / 4  
1 : Centered at fS / 4  
1
0
NYQ_SEL_MODE02  
NYQ_SEL  
R/W  
R/W  
0h  
0h  
This bit selects the pass band of the decimation filter in mode 2.  
0 : Low pass  
1 : High pass  
This bit selects the pass band of the filter before the DDC.  
0 : LPF (0 – fS / 2)  
1 : HPF (0 – fS / 2)  
60  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.5.5 Register 7Ah (address = 7Ah) [reset = 0h], CHX Page  
122. Register 7Ah  
7
6
5
4
3
2
1
0
NCO_WORD[15:8]  
R/W-0h  
54. Register 7Ah Field Descriptions  
Bit  
Field  
NCO_WORD[15:8]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the NCO frequency word.  
0 : 0 × fS / 216  
1 : 1 × fS / 216  
2 : 2 × fS / 216  
3 : 3 × fS / 216  
5 : 5 × fS / 216  
6 : 6 × fS / 216  
65535 : 65535 × fS / 216  
7.6.1.1.5.6 Register 7Bh (address = 7Bh) [reset = 0h], CHX Page  
123. Register 7Bh  
7
6
5
4
3
2
1
0
NCO_WORD[7:0]  
R/W-0h  
55. Register 7Bh Field Descriptions  
Bit  
Field  
NCO_WORD[7:0]  
Type  
Reset  
Description  
7-0  
R/W  
0h  
These bits set the NCO frequency word.  
0 : 0 × fS / 216  
1 : 1 × fS / 216  
2 : 2 × fS / 216  
3 : 3 × fS / 216  
5 : 5 × fS / 216  
6 : 6 × fS / 216  
65535 : 65535 × fS / 216  
版权 © 2017, Texas Instruments Incorporated  
61  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
7.6.1.1.5.7 Register 7Eh (address = 7Eh) [reset = 3h], CHX Page  
124. Register 7Eh  
7
0
6
0
5
0
4
0
3
2
1
0
0
MODE467_GAIN  
R/W-0h  
MODE0_GAIN  
R/W-1h  
MODE13_GAIN  
R/W-1h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
56. Register 7Eh Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
MODE467_GAIN  
MODE0_GAIN  
MODE13_GAIN  
0h  
This bit sets the mixer loss compensation for modes 4, 6, and 7.  
0 : No gain  
1 : 6-dB gain  
1
0
R/W  
R/W  
1h  
1h  
This bit sets the mixer loss compensation for mode 0.  
0 : No gain  
1 : 6-dB gain  
This bit sets the mixer loss compensation for modes 1 and 3.  
0 : No gain  
1 : 6-dB gain  
7.6.1.1.6 ADCXX Page Register Description  
7.6.1.1.6.1 Register 07h (address = 07h) [reset = FFh], ADCXX Page  
125. Register 7h  
7
6
5
4
3
2
1
0
FAST_OVR_THRESHOLD_HIGH  
R/W-FFh  
57. Register 07h Field Descriptions  
Bit  
Field  
FAST_OVR_THRESHOLD_HIGH  
Type  
Reset  
Description  
7-0  
R/W  
FFh  
Fast OVR threshold high; see the Overrange Indication section  
for programming.  
7.6.1.1.6.2 Register 08h (address = 08h) [reset = 0h], ADCXX Page  
126. Register 8h  
7
6
5
4
3
2
1
0
FAST_OVR_THRESHOLD_LOW  
R/W-0h  
58. Register 08h Field Descriptions  
Bit  
Field  
FAST_OVR_THRESHOLD_LOW  
Type  
Reset  
Description  
7-0  
R/W  
0h  
Fast OVR threshold low; see the Overrange Indication section  
for programming.  
62  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
7.6.1.1.6.3 Register D5h (address = D5h) [reset = 0h], ADCXX Page  
127. Register D5h  
7
0
6
0
5
0
4
0
3
2
0
1
0
0
0
CAL_EN  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
59. Register D5h Field Descriptions  
Bit  
7-4  
3
Field  
0
Type  
R/W  
R/W  
Reset  
0h  
Description  
Must read or write 0  
CAL_EN  
0h  
This bit is the enable calibration bit. This bit must be toggled  
during the startup sequence.  
0 : Disables calibration  
1 : Enables calibration  
2-0  
0
R/W  
0h  
Must read or write 0  
7.6.1.1.6.4 Register 2Ah (address = 2Ah) [reset = 0h], ADCXX Page  
128. Register 2Ah  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
ADC_TRIM1  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
60. Register 2Ah Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
0
Must read or write 0  
Always write 0  
ADC Trim1  
1h  
7.6.1.1.6.5 Register CFh (address = CFh) [reset = 0h], ADCXX Page  
129. Register CFh  
7
6
5
4
3
0
2
0
1
0
0
0
ADC_TRIM2  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
61. Register CFh Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
0h  
Description  
ADC_TRIM2  
0
Always write 5  
Must read or write 0  
0h  
版权 © 2017, Texas Instruments Incorporated  
63  
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Start-Up Sequence  
62 lists the recommended start-up sequence for a 500-MSPS, Nyquist 2 operation with DDC mode 8 enabled.  
62. Recommended Start-Up Sequence for 500-MSPS, Nyquist 2, DDC Bypass Mode (Mode 8)  
Operation  
REGISTER  
ADDRESS  
REGISTER  
DATA  
STEP  
DESCRIPTION  
Provide a 1.15-V power supply (AVDD, DVDD)  
Provide a 1.9-V power supply (AVDD19)  
COMMENT  
1
2
A 1.15-V supply must be supplied first for  
proper operation.  
Provide a clock to CLKINM, CLKINP and a SYSREF signal to  
SYSREFM, SYSREFP  
SYSREF must be established before SPI  
programming.  
3
Pulse a reset (low to high to low) via a hardware reset (pin  
48), wait 100 µs  
4
5
Hardware reset loads all trim register settings.  
Issue a software reset to initialize the registers  
00h  
11h  
12h  
13h  
ABh  
ACh  
81h  
00h  
01h  
00h  
01h  
01h  
Select the DIGTOP page.  
Set the high SNR mode for channels A and B.  
Set the high SNR mode for channels C and D.  
Set the high SNR mode for channel pairs AB and CD, select  
trims for 500-MSPS operation  
6
Select DDC bypass mode (mode 8) for  
channels A and B.  
ADh  
AEh  
08h  
08h  
Select DDC bypass mode (mode 8) for  
channels C and D.  
64h  
11h  
12h  
13h  
26h  
20h  
11h  
12h  
13h  
D5h  
02h  
00h  
60h  
00h  
0Fh  
80h  
FFh  
00h  
00h  
08h  
Select trims for 500-MSPS operation.  
Select the SerDes_AB and SerDes_CD  
pages.  
7
Set up the SerDes configuration  
Set the K value to 16 frames per multi-frame.  
Enable the K value from register 26h.  
Select the ADC_A1, ADC_A2, ADC_B1,  
ADC_B2, ADC_C1, ADC_C2, ADC_D1, and  
ADC_D2 pages.  
Enable ADC calibration.  
ADC calibration time.  
Disable ADC calibration.  
8
ADC calibration  
Wait 2 ms  
D5h  
2Ah  
CFh  
11h  
12h  
13h  
2Dh  
00h  
00h  
50h  
00h  
1Eh  
00h  
02h  
Internal trims.  
Select the channel A, channel B, channel C,  
and channel D pages.  
9
Select trims for the second Nyquist  
Select trims for the second Nyquist.  
64  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
Application Information (接下页)  
62. Recommended Start-Up Sequence for 500-MSPS, Nyquist 2, DDC Bypass Mode (Mode 8) Operation  
(接下页)  
REGISTER  
ADDRESS  
REGISTER  
DATA  
STEP  
DESCRIPTION  
COMMENT  
11h  
12h  
13h  
8Ch  
B7h  
B7h  
11h  
12h  
13h  
6Ah  
00h  
01h  
00h  
02h  
01h  
00h  
00h  
00h  
01h  
02h  
Select the DIGTOP page.  
10  
Load linearity trims  
Load linearity trims.  
Select the ANALOG page.  
Disable SYSREF.  
11  
Disable SYSREF  
63 lists the recommended start-up sequence for a 500-MSPS, Nyquist 2, 2x interleaved dual ADC operation.  
63. Recommended Start-Up Sequence for 500-MSPS, Nyquist 2, 2x Interleaved Dual ADC Operation  
REGISTER  
ADDRESS  
REGISTER  
DATA  
STEP  
DESCRIPTION  
Provide a 1.15-V power supply (AVDD, DVDD)  
Provide a 1.9-V power supply (AVDD19)  
COMMENT  
1
2
A 1.15-V supply must be supplied first for  
proper operation.  
Provide a clock to CLKINM, CLKINP and a SYSREF signal to  
SYSREFM, SYSREFP  
SYSREF must be established before SPI  
programming.  
3
Pulse a reset (low to high to low) via a hardware reset (pin  
48), wait 100 µs  
4
5
Hardware reset loads all trim register settings.  
Issue a software reset to initialize the registers  
00h  
11h  
12h  
13h  
81h  
00h  
01h  
00h  
Select the DIGTOP page.  
Enable averaging on the AB and CD channel  
pair.  
A5h  
A6h  
ABh  
03h  
20h  
03h  
Enable the averaging option.  
Set the high SNR and interleave mode for  
channels A and B.  
Set the high SNR mode for channel pairs AB and CD, select  
trims for 500-MSPS operation  
6
Set the high SNR and interleave mode for  
channels C and D.  
ACh  
ADh  
AEh  
03h  
08h  
08h  
Select DDC bypass mode (mode 8) for  
channels A and B.  
Select DDC bypass mode (mode 8) for  
channels C and D.  
64h  
11h  
12h  
13h  
26h  
20h  
02h  
00h  
60h  
00h  
0Fh  
80h  
Select trims for 500-MSPS operation.  
Select the SERDES_AB and SERDES_CD  
pages.  
7
Set up the SerDes configuration  
Set the K value to 16 frames per multi-frame.  
Enable the K value from register 26h.  
版权 © 2017, Texas Instruments Incorporated  
65  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
63. Recommended Start-Up Sequence for 500-MSPS, Nyquist 2, 2x Interleaved Dual ADC Operation (接  
下页)  
REGISTER  
ADDRESS  
REGISTER  
DATA  
STEP  
DESCRIPTION  
COMMENT  
11h  
12h  
13h  
D5h  
FFh  
00h  
00h  
08h  
Select the ADC_A1, ADC_A2, ADC_B1,  
ADC_B2, ADC_C1, ADC_C2, ADC_D1, and  
ADC_D2 pages.  
Enable ADC calibration.  
ADC calibration time.  
Disable ADC calibration.  
8
ADC calibration  
Wait 2 ms  
D5h  
2Ah  
CFh  
11h  
12h  
13h  
2Dh  
11h  
12h  
13h  
8Ch  
B7h  
B7h  
11h  
12h  
13h  
6Ah  
00h  
00h  
50h  
00h  
1Eh  
00h  
02h  
00h  
01h  
00h  
02h  
01h  
00h  
00h  
00h  
01h  
02h  
Internal trims.  
Select the channel A, channel B, channel C,  
and channel D pages.  
9
Select trims for the second Nyquist  
Select trims for the second Nyquist.  
Select the DIGTOP page.  
10  
11  
Load linearity trims  
Load linearity trims.  
Select the ANALOG page.  
Disable SYSREF.  
Disable SYSREF  
66  
版权 © 2017, Texas Instruments Incorporated  
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
8.1.2 Hardware Reset  
130 shows the timing information for the hardware reset.  
Power Supplies  
t1  
RESET  
t2  
t3  
SEN  
130. Hardware Reset Timing Diagram  
64. Timing Requirements for 130  
MIN  
1
TYP MAX  
UNIT  
ms  
ns  
t1  
t2  
t3  
Power-on delay from power-up to an active high RESET pulse  
Reset pulse duration: active high RESET pulse duration  
Register write delay from RESET disable to SEN active  
10  
100  
µs  
8.1.3 Frequency Planning  
The ADS54J64 uses an architecture where the ADCs are 2x interleaved followed by a digital decimation by 2.  
The 2x interleaved and decimation architecture comes with a unique advantage of improved linearity resulting  
from frequency planning. Frequency planning refers to choosing the clock frequency and signal band  
appropriately such that the harmonic distortion components, resulting from the analog front-end (LNA, PGA), can  
be made to fall outside the decimation filter pass band. In absence of the 2x interleave and decimation  
architecture, these components alias back in band and limit the performance of the signal chain. For example, for  
fCLK = 983.04 MHz and fIN = 184.32 MHz:  
Second-order harmonic distortion (HD2) = 2 × 184.32 = 368.64 MHz  
Pass band of the 2x decimation filter = 0 MHz to 245.76 MHz (0 to fCLK / 4)  
The second-order harmonic performance improves by the stop-band attenuation of the filter (approximately  
40 dBc) because the second-order harmonic frequency is outside the pass band of the decimation filter.  
版权 © 2017, Texas Instruments Incorporated  
67  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
131 shows the harmonic components (HD2–HD5) that fall in the decimation pass band for the input clock rate  
(fCLK) of the 983.04-MHz and 100-MHz signal band around the center frequency of 184.32 MHz.  
275  
225  
175  
125  
1
2
3
4
5
6
Signal Harmonic  
D046  
NOTE: fCLK = 983.04 MHz, signal band = 134.32 MHz to 234.32 MHz.  
131. In-Band Harmonics for a Frequency Planned System  
As shown in 131, both HD2 and HD3 are completely out of band. HD4 and HD5 fall in the decimation pass  
band for some frequencies of the input signal band.  
Through proper frequency planning, the specifications of the ADC antialias filter can be relaxed.  
8.1.4 SNR and Clock Jitter  
The signal-to-noise ratio of the ADC is limited by three different factors (as shown in 公式 3): the quantization  
noise is typically not noticeable in pipeline converters and is 84 dB for a 14-bit ADC. The thermal noise limits the  
SNR at low input frequencies and the clock jitter sets the SNR for higher input frequencies.  
(3)  
公式 4 calculates the SNR limitation resulting from sample clock jitter:  
(4)  
The total clock jitter (TJitter) has two components: the internal aperture jitter (100 fS for the ADS54J64) that is set  
by the noise of the clock input buffer and the external clock jitter. 公式 5 calculates TJitter  
:
(5)  
External clock jitter can be minimized by using high-quality clock sources and jitter cleaners as well as band-pass  
filters at the clock input; a faster clock slew rate also improves the ADC aperture jitter.  
The ADS54J64 has a thermal noise of approximately 70 dBFS and an internal aperture jitter of 100 fS.  
68  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
8.1.5 ADC Test Pattern  
The ADS54J64 provides several different options to output test patterns instead of the actual output data of the  
ADC in order to simplify debugging of the JESD204B digital interface link. 132 shows the output data path.  
ADC Section  
Transport Layer  
Link Layer  
PHY Layer  
DDC  
Data Mapping  
Frame  
Construction  
ADC  
8b/10b  
Interleaving  
Correction  
Encoding  
Scrambler  
1+x14+x15  
Serializer  
JESD204B Long  
Transport Layer  
Test Pattern  
ADC Test  
Pattern  
JESD204B  
Link Layer  
Test Pattern  
Copyright © 2017, Texas Instruments Incorporated  
132. ADC Test Pattern  
8.1.5.1 ADC Section  
The ADC test pattern replaces the actual output data of the ADC. These test patterns can be programmed using  
register 91h of the DIGTOP page. 65 lists the supported test patterns.  
65. ADC Test Pattern Settings  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
These bits select the test pattern on the output when the test  
pattern is enabled for a suitable channel.  
0 : Default  
1 : All zeros  
2 : All ones  
3 : Toggle pattern  
7-4  
TESTPATTERNSELECT  
0000  
4 : Ramp pattern  
6 : Custom pattern 1  
7 : Toggles between custom pattern 1 and custom pattern 2  
8 : Deskew pattern (AAAAh)  
8.1.5.2 Transport Layer Pattern  
The transport layer maps the ADC output data into 8-bit octets and constructs the JESD204B frames using the  
LMFS parameters. Tail bits or 0s are added when needed. Alternatively, as shown in 66, the JESD204B long  
transport layer test pattern can be substituted by programming register 20h.  
66. Transport Layer Test Mode  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
This bit generates the long transport layer test pattern mode  
according to clause 5.1.6.3 of the JESD204B specification.  
0 = Test mode disabled  
4
TRANS_TEST_EN  
0
1 = Test mode enabled  
版权 © 2017, Texas Instruments Incorporated  
69  
 
 
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
8.1.5.3 Link Layer Pattern  
The link layer contains the scrambler and the 8b, 10b encoding of any data passed on from the transport layer.  
Additionally, the link layer also handles the initial lane alignment sequence that can be manually restarted. The  
link layer test patterns are intended for testing the quality of the link (jitter testing and so forth). The test patterns  
do not pass through the 8b, 10b encoder. These test patterns can be used by programming register 22h of the  
SERDES_XX page. 67 shows the supported programming options.  
67. Link Layer Test Mode  
BIT  
NAME  
DEFAULT  
DESCRIPTION  
These bits generate a pattern according to clause 5.3.3.8.2 of the  
JESD204B document.  
0 : Normal ADC data  
1 : D21.5 (high-frequency jitter pattern)  
2 : K28.5 (mixed-frequency jitter pattern)  
3 : Repeats initial lane alignment (generates a K28.5 character and  
continuously repeats lane alignment sequences)  
4 : 12-octet RPAT jitter pattern  
7-5  
LINK_LAYER_TESTMODE_SEL  
000  
6 : PRBS pattern (PRBS7,15,23,31); use PRBS mode (register 36h)  
to select the PRBS pattern  
70  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
8.2 Typical Application  
The ADS54J64 is designed for wideband receiver applications demanding excellent dynamic range over a large  
input frequency range. 133 shows a typical schematic for an ac-coupled dual receiver [dual field-  
programmable gate array (FPGA) with a dual SYNC].  
DVDD  
5 ꢀ  
10 kꢀ  
25 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
0.1 uF  
0.1 uF  
GND  
Driver  
SPI Master  
25 ꢀ  
5 ꢀ  
GND  
DVDD  
0.1 uF  
GND  
0.1 uF  
GND  
0.1 uF  
AVDD  
0.1 uF  
DVDD  
AVDD19  
AVDD  
5 ꢀ  
AVDD19  
25 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
25 ꢀ  
0.1 uF  
0.1 uF  
100 Differential  
Driver  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
5 ꢀ  
GND  
INCP  
SYNCbCDP  
SYNCbCDM  
19  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
50 ꢀ  
50 ꢀ  
Vterm=1.2 V  
AVDD  
AGND  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
AVDD  
0.1 uF  
GND  
FPGA  
DVDD  
10 nF  
GND  
DVDD  
DDP  
10 nF  
NC  
NC  
DDM  
GND  
0.1 uF  
AVDD19  
AVDD  
DGND  
DCP  
AVDD19  
10 nF  
GND  
AVDD  
0.1 uF  
DCM  
AGND  
GND  
10 nF  
DVDD  
0.1 uF  
GND  
DVDD  
DGND  
DBM  
CLKINP  
CLKINM  
AGND  
100 ꢀ  
ADS54J64  
GND PAD (backside)  
GND  
0.1 uF  
AVDD  
DBP  
Low Jitter  
Clock  
Generator  
AVDD  
DGND  
DAM  
AVDD19  
AGND  
10 nF  
AVDD19  
0.1 uF  
GND  
GND  
DAP  
SYSREFP  
100 ꢀ  
DVDD  
10 nF  
GND  
Vterm=1.2 V  
DVDD  
SYNCbABM  
SYNCbABP  
SYSREFM  
AVDD  
10 nF  
AVDD  
50 ꢀ  
50 ꢀ  
5 ꢀ  
FPGA  
INBP  
25 ꢀ  
25 ꢀ  
25 ꢀ  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
0.1 uF  
0.1 uF  
GND  
100 Differential  
3.3 pF  
Driver  
25 ꢀ  
5 ꢀ  
AVDD19  
DVDD  
0.1 uF  
AVDD  
AVDD  
AVDD19  
0.1 uF  
GND  
GND  
0.1 uF  
GND  
DVDD  
GND  
5 ꢀ  
25 ꢀ  
25 ꢀ  
3.3 pF  
25 ꢀ  
0.1 uF  
0.1 uF  
GND  
Driver  
25 ꢀ  
5 ꢀ  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: GND = AGND and DGND are connected in the PCB layout.  
133. Application Diagram for the ADS54J64  
8.2.1 Design Requirements  
By using the simple drive circuit of 133 (when the amplifier drives the ADC) or 46 (when transformers drive  
the ADC), uniform performance can be obtained over a wide frequency range. The buffers present at the analog  
inputs of the device help isolate the external drive source from the switching currents of the sampling circuit.  
8.2.2 Detailed Design Procedure  
For optimum performance, the analog inputs must be driven differentially. This architecture improves the  
common-mode noise immunity and even-order harmonic rejection. A small resistor (5 Ω to 10 Ω) in series with  
each input pin, as shown in 133, is recommended to damp out ringing caused by package parasitics.  
版权 © 2017, Texas Instruments Incorporated  
71  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
Typical Application (接下页)  
8.2.3 Application Curves  
134 and 135 show the typical performance at 190 MHz and 230 MHz, respectively.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Input Frequency (MHz)  
Input Frequency (dBFS)  
D002  
D006  
fIN = 190 MHz, AIN = –1 dBFS,  
fIN = 230 MHz, AIN = –1 dBFS,  
SNR = 69.4 dBFS, SFDR = 88 dBc, SFDR = 96 dBc (non 23)  
SNR = 69.4 dBFS, SFDR = 85 dBc, SFDR = 96 dBc (non 23)  
134. FFT for 190-MHz Input Signal  
135. FFT for 230-MHz Input Signal  
9 Power Supply Recommendations  
The device requires a 1.15-V nominal supply for DVDD, a 1.15-V nominal supply for AVDD, and a 1.9-V nominal  
supply for AVDD19. AVDD and DVDD are recommended to be powered up the before the AVDD19 supply for  
reliable loading of factory trims.  
72  
版权 © 2017, Texas Instruments Incorporated  
 
ADS54J64  
www.ti.com.cn  
ZHCSGX5 OCTOBER 2017  
10 Layout  
10.1 Layout Guidelines  
The device evaluation module (EVM) layout can be used as a reference layout to obtain the best performance.  
136 shows a layout diagram of the EVM top layer. A complete layout of the EVM is available at the ADS54J64  
EVM folder. Some important points to remember during board layout are:  
Analog inputs are located on opposite sides of the device pinout to ensure minimum crosstalk on the package  
level. To minimize crosstalk onboard, the analog inputs must exit the pinout in opposite directions, as shown  
in the reference layout of 136 as much as possible.  
In the device pinout, the sampling clock is located on a side perpendicular to the analog inputs in order to  
minimize coupling between them. This configuration is also maintained on the reference layout of 136 as  
much as possible.  
Keep digital outputs away from the analog inputs. When these digital outputs exit the pinout, the digital output  
traces must not be kept parallel to the analog input traces because this configuration can result in coupling  
from the digital outputs to the analog inputs and degrade performance. All digital output traces to the receiver  
[such as an FPGA or an application-specific integrated circuit (ASIC)] must be matched in length to avoid  
skew among outputs.  
At each power-supply pin (AVDD, DVDD, or AVDD19), keep a 0.1-µF decoupling capacitor close to the  
device. A separate decoupling capacitor group consisting of a parallel combination of 10-µF, 1-µF, and 0.1-µF  
capacitors can be kept close to the supply source.  
10.2 Layout Example  
Sampling Clock  
Routing  
Analog Input  
Routing  
GND  
(Thermal Pad)  
ADS54J6x  
SERDES output  
Routing  
136. ADS54J64EVM Layout  
版权 © 2017, Texas Instruments Incorporated  
73  
 
ADS54J64  
ZHCSGX5 OCTOBER 2017  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
74  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS54J64IRMP  
ADS54J64IRMPT  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RMP  
RMP  
72  
72  
168  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
AZ54J64  
AZ54J64  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
ADS54J64IRMP  
RMP  
VQFNP  
72  
168  
8 X 21  
150  
315 135.9 7620 14.65  
11  
11.95  
Pack Materials-Page 1  
PACKAGE OUTLINE  
RMP0072A  
VQFN - 0.9 mm max height  
SCALE 1.700  
VQFN  
10.1  
9.9  
A
B
PIN 1 ID  
10.1  
9.9  
0.9 MAX  
0.05  
0.00  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
19  
36  
18  
37  
SYMM  
4X  
8.5  
8.5 0.1  
PIN 1 ID  
(R0.2)  
1
54  
0.30  
0.18  
72X  
72  
55  
68X 0.5  
SYMM  
0.5  
0.3  
0.1  
C B  
A
72X  
0.05  
C
4221047/B 02/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(
8.5)  
SYMM  
72X (0.6)  
SEE DETAILS  
55  
72  
1
54  
72X (0.24)  
(0.25) TYP  
SYMM  
(9.8)  
(1.315) TYP  
68X (0.5)  
(
0.2) TYP  
VIA  
37  
18  
19  
36  
(1.315) TYP  
(9.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221047/B 02/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see QFN/SON PCB application report  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMP0072A  
VQFN - 0.9 mm max height  
VQFN  
(9.8)  
72X (0.6)  
(1.315) TYP  
72  
55  
1
54  
72X (0.24)  
(1.315)  
TYP  
(0.25) TYP  
SYMM  
(9.8)  
(1.315)  
TYP  
68X (0.5)  
METAL  
TYP  
37  
18  
(
0.2) TYP  
VIA  
19  
36  
36X ( 1.115)  
(1.315) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
62% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
4221047/B 02/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ADS54J66

四通道、14 位、500MSPS 模数转换器 (ADC)
TI

ADS54J66IRMP

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J66IRMPT

四通道、14 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J69

双通道、16 位、500MSPS 模数转换器 (ADC)
TI

ADS54J69IRMP

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54J69IRMPT

双通道、16 位、500MSPS 模数转换器 (ADC) | RMP | 72 | -40 to 85
TI

ADS54RF63

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI

ADS54RF63IPFP

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI

ADS54RF63IPFPR

12-Bit, 500-/550-MSPS Analog-to-Digital Converters
TI

ADS54T01

Dual Channel 12-Bit 500Msps Receiver and Feedback IC
TI

ADS54T01IZAY

Single 12-Bit 750Msps Receiver and Feedback IC
TI

ADS54T01IZAYR

Single 12-Bit 750Msps Receiver and Feedback IC
TI