ADS9110IRGET [TI]

具有增强型串行外设接口 (SPI) 的 18 位、2MSPS、单通道 SAR ADC | RGE | 24 | -40 to 85;
ADS9110IRGET
型号: ADS9110IRGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有增强型串行外设接口 (SPI) 的 18 位、2MSPS、单通道 SAR ADC | RGE | 24 | -40 to 85

文件: 总64页 (文件大小:2805K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
ADS9110 18 位、2MSPS15mW SAR ADC,具有 multiSPI™ 接口  
1 特性  
3 说明  
1
采样率:2MSPS  
无延迟输出  
ADS9110 是一款 18 位、2MSPS、逐次逼近寄存器  
(SAR) 模数转换器 (ADC),在典型工作条件下具有  
±0.5 LSB INL 100dB SNR 规范值。 高吞吐量使得  
开发者能够对输入信号进行过采样,从而提高测量的动  
态范围和精度。  
出色的直流和交流性能:  
积分非线性 (INL)±0.5 最低有效位 (LSB)(典  
型值),±1.5 LSB(最大值)  
微分非线性 (DNL)±0.75 LSB(最大值),18  
位无丢码 (NMC)  
该器件支持单极全差分模拟输入信号,并采用 2.5V 至  
5V 的外部基准电压,能够提供宽输入选择范围,无需  
额外进行输入调节。  
信噪比 (SNR)100dB  
总谐波失真 (THD)-118dB  
该器件以 2MSPS 全吞吐量运行时的功耗仅为  
15mW。 吞吐量较低时,可灵活使用低功耗模式  
NAP PD)来降低功耗。  
宽输入范围:  
单极差分输入范围:±VREF  
VREF 输入范围:2.5V 5V,  
AVDD 无关  
集成的 multiSPI 串行接口向后兼容传统 SPI™ 协议。  
此外,该器件的可配置功能还能够简化电路板布局、时  
序和固件,并且以低时钟速度运行时能够获得高吞吐  
量,因此可轻松连接各种微控制器、数字信号处理器  
(DSP) 以及现场可编程门阵列 (FPGA)。  
低功耗:  
2MSPS 时为 9mW(仅限 AVDD)  
2MSPS 时为 15mW(总功耗)  
灵活的低功耗模式,可根据吞吐量调节功率  
multiSPI:增强型串行接口  
该器件采用节省空间的 4mm × 4mm VQFN 封装,支  
持符合 JESD8-7A 标准的 I/O 和标准工业温度范围。  
符合 JESD8-7A 标准的数字 I/O1.8V DVDD 时)  
-40°C +85°C 的工业温度范围内完全额定运  
器件信息  
小型封装:4mm × 4mm 超薄四方扁平无引线  
(VQFN) 封装  
部件号  
ADS9110  
封装  
VQFN (24)  
封装尺寸(标称值)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
测试和测量  
医疗成像  
高精度、高速工业领域  
典型应用图以及积分非线性度与代码间的关系图  
DVDD  
AVDD  
REFP  
REFM  
ADS9110  
CONVST  
CS  
multiSPITM  
Serial  
AIN_P  
VIN+  
SCLK  
+
SPI  
Mode  
multiSPITM  
Mode  
OPA625  
Interface  
SDI  
18-Bit SAR ADC,  
2 MSPS  
VBIAS  
SDO œ 0  
SDO œ 1  
SDO œ 2  
SDO œ 3  
RVS  
4X  
DDR  
OPA625  
SDO  
+
VIN-  
AIN_M  
AGND  
DGND  
RST  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS629  
 
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 17  
7.2 Functional Block Diagram ....................................... 17  
7.3 Feature Description................................................. 18  
7.4 Device Functional Modes........................................ 22  
7.5 Programming........................................................... 24  
7.6 Register Maps......................................................... 44  
Application and Implementation ........................ 47  
8.1 Application Information............................................ 47  
8.2 Typical Application .................................................. 50  
Power-Supply Recommendations...................... 52  
9.1 Power-Supply Decoupling....................................... 52  
9.2 Power Saving.......................................................... 52  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements: Conversion Cycle.................. 7  
8
9
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Example .................................................... 55  
11 器件和文档支持 ..................................................... 56  
11.1 文档支持................................................................ 56  
11.2 社区资源................................................................ 56  
11.3 ....................................................................... 56  
11.4 静电放电警告......................................................... 56  
11.5 Glossary................................................................ 56  
12 机械封装和可订购信息 .......................................... 56  
6.7 Timing Requirements: Asynchronous Reset, NAP,  
and PD....................................................................... 7  
6.8 Timing Requirements: SPI-Compatible Serial  
Interface ..................................................................... 7  
6.9 Timing Requirements: Source-Synchronous Serial  
Interface (External Clock) .......................................... 8  
6.10 Timing Requirements: Source-Synchronous Serial  
Interface (Internal Clock)............................................ 8  
6.11 Typical Characteristics.......................................... 12  
7
Detailed Description ............................................ 17  
4 修订历史记录  
Changes from Original (October 2015) to Revision A  
Page  
已发布为量产数................................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
5 Pin Configuration and Functions  
RGE Package  
VQFN-24  
Top View  
1
18  
17  
16  
15  
14  
13  
CONVST  
SDO-2  
SDO-3  
DVDD  
GND  
2
RST  
3
NC  
Thermal  
Pad  
4
REFM  
5
REFP  
AVDD  
AVDD  
6
NC  
Pin Functions  
PIN  
NAME  
AINM  
NO.  
10  
FUNCTION  
Analog input  
Analog input  
Power supply  
DESCRIPTION  
Negative analog input  
AINP  
9
Positive analog input  
AVDD  
13, 14  
Analog power supply for the device  
Conversion start input pin for the device.  
A CONVST rising edge brings the device from ACQ state to CNV state.  
CONVST  
1
Digital input  
Chip-select input pin for the device; active low  
The device takes control of the data bus when CS is low.  
The SDO-x pins go to tri-state when CS is high.  
CS  
24  
Digital input  
DVDD  
GND  
NC  
16  
11, 15  
3, 6, 12  
4, 8  
Power supply  
Power supply  
No connection  
Analog input  
Analog input  
Interface supply  
Ground  
These pins must be left floating with no external connection  
Reference ground potential  
Reference voltage input  
REFM  
REFP  
5, 7  
Asynchronous reset input pin for the device.  
A low pulse on the RST pin resets the device and all register bits return to their default state.  
RST  
2
Digital input  
Multi-function output pin for the device.  
RVS  
21  
Digital output  
With CS held high, RVS reflects the status of the internal ADCST signal.  
With CS low, the status of RVS depends on the output protocol selection.  
Clock input pin for the serial interface.  
All system-synchronous data transfer protocols are timed with respect to the SCLK signal.  
SCLK  
SDI  
23  
22  
Digital input  
Digital input  
Serial data input pin for the device.  
This pin is used to feed the data or command into the device.  
SDO-0  
20  
19  
18  
17  
Digital output  
Digital output  
Digital output  
Digital output  
Supply  
Serial communication: data output 0  
SDO-1  
Serial communication: data output 1  
SDO-2  
Serial communication: data output 2  
SDO-3  
Serial communication: data output 3  
Thermal pad  
Exposed thermal pad; connecting this pin to GND is recommended  
Copyright © 2015, Texas Instruments Incorporated  
3
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.1  
–0.3  
–0.3  
–0.3  
–40  
MAX  
2.1  
UNIT  
V
AVDD to GND  
DVDD to GND  
2.1  
V
REFP to REFM  
5.5  
V
REFM to GND  
0.1  
V
Analog (AINP, AINM) to GND  
Digital input (RST, CONVST, CS, SCLK, SDI) to GND  
Digital output (RVS, SDO-0, SDO-1, SDO-2, SDO-3) to GND  
Operating temperature, TA  
Storage temperature, Tstg  
REFP + 0.3  
DVDD + 0.3  
DVDD + 0.3  
85  
V
V
V
°C  
°C  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
1.8  
1.8  
5
MAX  
UNIT  
AVDD  
DVDD  
REFP  
Analog supply voltage  
Digital supply voltage  
Positive reference  
V
V
V
6.4 Thermal Information  
ADS9110  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
31.9  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
29.9  
8.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
8.9  
RθJC(bot)  
2.0  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
6.5 Electrical Characteristics  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C.  
PARAMETER  
ANALOG INPUT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Full-scale input range  
(AINP – AINM)(1)  
FSR  
VIN  
–VREF  
–0.1  
VREF  
V
V
V
Absolute input voltage  
(AINP and AINM to REFGND)  
VREF + 0.1  
Common-mode voltage range  
(AINP + AINM) / 2  
VCM  
(VREF / 2) – 0.1 VREF / 2 (VREF / 2) + 0.1  
In sample mode  
60  
4
CIN  
IIL  
Input capacitance  
pF  
µA  
In hold mode  
Input leakage current  
±1  
VOLTAGE REFERENCE INPUT  
VREF Reference input voltage range  
2.5  
5
V
Average current, VREF = 5 V,  
2-kHz, full-scale input,  
throughput = 2 MSPS  
IREF  
Reference input current  
1.25  
18  
mA  
DC ACCURACY  
Resolution  
Bits  
Bits  
1.5 LSB(3)  
5.7 ppm  
0.75 LSB(3)  
NMC  
No missing codes  
18  
–1.5  
–5.7  
–0.75  
–1  
In LSBs  
In ppm  
±0.5(2)  
±2  
±0.4(2)  
±0.05(2)  
1
INL  
Integral nonlinearity  
DNL  
E(IO)  
Differential nonlinearity  
Input offset error  
1
mV  
μV/°C  
%FS  
dVOS/dT Input offset thermal drift  
GE  
Gain error  
–0.01 ±0.005(2)  
0.01  
GE/dT  
Gain error thermal drift  
Transition noise  
0.25  
0.9  
80  
ppm/°C  
LSB(3)  
dB  
CMRR  
Common-mode rejection ratio  
At dc to 20 kHz  
AC ACCURACY(4)  
fIN = 2 kHz  
98  
99.9  
95.4  
89  
SINAD  
SNR  
Signal-to-noise + distortion  
fIN = 100 kHz  
fIN = 500 kHz  
fIN = 2 kHz  
dB  
dB  
dB  
dB  
98.1  
100  
Signal-to-noise ratio  
fIN = 100 kHz  
fIN = 500 kHz  
fIN = 2 kHz  
95.5  
89.3  
–118  
–111  
–101  
123  
THD  
Total harmonic distortion(5)  
Spurious-free dynamic range  
fIN = 100 kHz  
fIN = 500 kHz  
fIN = 2 kHz  
SFDR  
fIN = 100 kHz  
fIN = 500 kHz  
116  
106  
(1) Ideal input span, does not include gain or offset errors.  
(2) See Figure 9, Figure 10, Figure 25, and Figure 26 for statistical distribution data for INL, DNL, offset, and gain error parameters.  
(3) LSB = least-significant bit. 1 LSB at 18 bits is approximately 3.8 ppm.  
(4) All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.1 dB below full-scale,  
unless otherwise specified.  
(5) Calculated on the first nine harmonics of the input frequency.  
Copyright © 2015, Texas Instruments Incorporated  
5
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C.  
PARAMETER  
DIGITAL INPUTS(6)  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
High-level input voltage  
0.65 DVDD  
–0.3  
DVDD + 0.3  
0.35 DVDD  
V
V
VIL  
Low-level input voltage  
DIGITAL OUTPUTS(6)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
IOH = 2-mA source  
DVDD – 0.45  
V
V
IOH = 2-mA sink  
0.45  
POWER SUPPLY  
AVDD  
DVDD  
Analog supply voltage  
1.65  
1.65  
1.8  
1.8  
5
1.95  
1.95  
6.25  
V
V
Digital supply voltage  
Active, fastest throughput  
Static, ACQ state  
mA  
µA  
3.7  
500  
1
AVDD supply current  
(AVDD = 1.8 V)  
IDD  
PD  
Low-power, NAP mode  
Power-down, PD state  
Active, fastest throughput  
Static, ACQ state  
9
11.25  
mW  
µW  
6.6  
900  
1.8  
AVDD power dissipation  
(AVDD = 1.8 V)  
Low-power, NAP mode  
Power-down, PD state  
TEMPERATURE RANGE  
TA Operating free-air temperature  
(6) As per the JESD8-7A standard. Specified by design; not production tested.  
–40  
85  
°C  
6
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
6.6 Timing Requirements: Conversion Cycle  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C. See Figure 1.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fcycle  
Sampling frequency  
2
MHz  
ns  
tcycle  
ADC cycle time period  
Pulse duration: CONVST high  
Pulse duration: CONVST low  
Acquisition time  
Quiet acquisition time(1)  
Quiet aperture time(1)  
500  
30  
twh_CONVST  
twl_CONVST  
tacq  
ns  
30  
ns  
150  
25  
ns  
tqt_acq  
ns  
td_cnvcap  
10  
ns  
TIMING SPECIFICATIONS  
tconv  
Conversion time  
300  
340  
ns  
(1) See Figure 48.  
6.7 Timing Requirements: Asynchronous Reset, NAP, and PD  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C. See Figure 2 and  
Figure 3.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
twl_RST  
Pulse duration: RST low  
100  
ns  
TIMING SPECIFICATIONS  
td_rst  
Delay time: RST rising to RVS rising  
1250  
300  
µs  
ns  
µs  
tnap_wkup  
tPWRUP  
Wake-up time: NAP mode  
Power-up time: PD mode  
250  
6.8 Timing Requirements: SPI-Compatible Serial Interface  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C. See Figure 4.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fCLK  
Serial clock frequency  
75  
MHz  
ns  
tCLK  
Serial clock time period  
13.33  
0.45  
0.45  
5
tph_CK  
tpl_CK  
SCLK high time  
0.55  
0.55  
tCLK  
tCLK  
ns  
SCLK low time  
tsu_CSCK  
tsu_CKDI  
tht_CKDI  
tht_CKCS  
Setup time: CS falling to the first SCLK capture edge  
Setup time: SDI data valid to the SCLK capture edge  
Hold time: SCLK capture edge to (previous) data valid on SDI  
Delay time: last SCLK falling to CS rising  
1.2  
ns  
0.65  
5
ns  
ns  
TIMING SPECIFICATIONS  
tden_CSDO  
tdz_CSDO  
td_CKDO  
Delay time: CS falling to data enable  
4.5  
10  
6.5  
5
ns  
ns  
ns  
ns  
Delay time: CS rising to SDO going to 3-state  
Delay time: SCLK launch edge to (next) data valid on SDO  
Delay time: CS falling to RVS falling  
td_CSRDY_f  
After NOP operation  
10  
70  
Delay time:  
CS rising to RVS rising  
td_CSRDY_r  
ns  
After WR or RD operation  
Copyright © 2015, Texas Instruments Incorporated  
7
 
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.9 Timing Requirements: Source-Synchronous Serial Interface (External Clock)  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C. See Figure 5.  
MIN  
TYP  
MAX  
UNIT  
TIMING REQUIREMENTS  
fCLK Serial clock frequency  
tCLK Serial clock time period  
TIMING SPECIFICATIONS(1)  
100  
MHz  
ns  
10  
td_CKSTR_r  
td_CKSTR_f  
toff_STRDO_f  
toff_STRDO_r  
Delay time: SCLK launch edge to RVS rising  
8.5  
8.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
Delay time: SCLK launch edge to RVS falling  
Time offset: RVS rising to (next) data valid on SDO  
Time offset: RVS falling to (next) data valid on SDO  
–0.5  
–0.5  
(1) Other parameters are the same as the Timing Requirements: SPI-Compatible Serial Interface table.  
6.10 Timing Requirements: Source-Synchronous Serial Interface (Internal Clock)  
All specifications are for AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fDATA = 2 MSPS, unless otherwise noted.  
All minimum and maximum specifications are for TA = –40°C to +85°C. All typical values are at TA = 25°C. See Figure 6.  
MIN  
TYP  
MAX  
UNIT  
TIMING SPECIFICATIONS(1)  
td_CSSTR  
Delay time: CS falling to RVS rising  
12  
–0.5  
–0.5  
9.9  
40  
0.5  
ns  
ns  
ns  
toff_STRDO_f  
toff_STRDO_r  
Time offset: RVS rising to (next) data valid on SDO  
Time offset: RVS falling to (next) data valid on SDO  
INTCLK option  
0.5  
11.1  
22.2  
44.4  
0.55  
0.55  
tSTR  
Strobe output time period  
INTCLK / 2 option  
INTCLK / 4 option  
19.8  
39.6  
0.45  
0.45  
ns  
tph_STR  
tpl_STR  
Strobe output high time  
Strobe output low time  
tSTR  
tSTR  
(1) Other parameters are the same as the Timing Requirements: SPI-Compatible Serial Interface table.  
8
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Sample  
S
Sample  
S+1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (C)  
ACQ (C+1)  
CS  
RVS  
Figure 1. Conversion Cycle Timing Diagram  
trst  
twl_RST  
RST  
CONVST  
CS  
td_rst  
SCLK  
RVS  
SDO-x  
Figure 2. Asynchronous Reset Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
9
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Sample  
S
Sample  
S+1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tnap  
tconv  
tnap_wkup  
tacq  
tconv_max  
tconv_min  
ADCST  
(Internal)  
CNV C  
NAP + ACQ C+1  
ACQ C+1  
CS  
RVS  
t = 0  
Figure 3. NAP Mode Timing Diagram  
tCLK  
tph_CK  
tpl_CK  
CS  
SCLK(1)  
SDO-x  
SCLK(1)  
tsu_CKDI  
tht_CKDI  
tsu_CSCK  
tht_CKCS  
SDI  
tden_CSDO  
tdz_CSDO  
td_CKDO  
SDO-x  
(1) The SCLK polarity, launch edge, and capture edge depend on the SPI protocol selected.  
Figure 4. SPI-Compatible Serial Interface Timing Diagram  
10  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
tCLK  
tph_CK  
tpl_CK  
CS  
SCLK  
td_CKSTR_f  
tsu_CSCK  
tht_CKCS  
td_CKSTR_r  
SCLK  
RVS  
tden_CSDO  
tdz_CSDO  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
SDO-x  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
SDO-x  
(SDR)  
RVS  
Figure 5. Source-Synchronous Serial Interface Timing Diagram (External Clock)  
CS  
SDO-x  
RVS  
CS  
tSTR  
tden_CSDO  
tdz_CSDO  
tph_STR  
tpl_STR  
td_CSSTR  
RVS  
td_CSRDY_f  
td_CSRDY_r  
toff_STRDO_r  
toff_STRDO_f  
SDO-x  
(DDR)  
toff_STRDO_r  
SDO-x  
(SDR)  
Figure 6. Source-Synchronous Serial Interface Timing Diagram (Internal Clock)  
Copyright © 2015, Texas Instruments Incorporated  
11  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
6.11 Typical Characteristics  
At TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2 MSPS, unless otherwise noted.  
1.5  
1
0.75  
0.5  
0.5  
0
0.25  
0
-0.5  
-1  
-0.25  
-0.5  
-0.75  
-1.5  
131071  
C002  
-131072  
131071  
œ131072  
C001  
ADC Output Code  
ADC Output Code  
Typical INL = ±0.5 LSB  
Typical DNL = ±0.4 LSB  
Figure 7. Typical INL  
Figure 8. Typical DNL  
600  
480  
360  
240  
120  
0
600  
480  
360  
240  
120  
0
Max  
Min  
Min  
Max  
-1.5 -1.2 -0.9 -0.6 -0.3  
0
0.3 0.6 0.9 1.2 1.5  
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
C009  
C009  
Integral Nonlinearity (LSB)  
Differential Nonlinearity (LSB)  
600 devices  
600 devices  
Figure 9. Typical INL Distribution  
Figure 10. Typical DNL Distribution  
1.5  
1
0.75  
0.5  
Maximum  
Maximum  
0.5  
0
0.25  
0
-0.5  
-1  
-0.25  
-0.5  
-0.75  
Minimum  
Minimum  
-1.5  
-40  
-15  
10  
35  
60  
85  
10  
35  
60  
85  
œ40  
œ15  
C004  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C003  
VREF = 5 V  
VREF = 5 V  
Figure 11. INL vs Temperature  
Figure 12. DNL vs Temperature  
12  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2 MSPS, unless otherwise noted.  
1.5  
0.75  
Maximum  
1
0.5  
Maximum  
Minimum  
0.5  
0
0.25  
0
-0.5  
-1  
-0.25  
-0.5  
-0.75  
Minimum  
-1.5  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
C006  
C005  
Reference Voltage (V)  
Reference Voltage (V)  
TA = 25°C  
TA = 25°C  
Figure 13. INL vs Reference Voltage  
Figure 14. DNL vs Reference Voltage  
32768  
24576  
16384  
8192  
0
32768  
24576  
16384  
8192  
0
131069 131070 131071 131072 131073 131074 131075  
131069 131070 131071 131072 131073 131074  
C009  
C010  
ADC Output Code  
ADC Output Code  
Standard deviation = 0.9 LSB  
Standard deviation = 0.9 LSB  
Figure 15. DC Input Histogram, Code Ceter  
Figure 16. DC Input Histogram, Code Transition  
0
œ40  
0
œ40  
œ80  
œ80  
œ120  
œ160  
œ200  
œ120  
œ160  
œ200  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
C011  
C012  
fIN, Input Frequency ( kHz)  
fIN, Input Frequency ( kHz)  
fIN = 2 kHz, SNR = 100 dB, THD = –120 dB  
fIN = 100 kHz, SNR = 97.5 dB, THD = –113 dB  
Figure 17. Typical FFT  
Figure 18. Typical FFT  
Copyright © 2015, Texas Instruments Incorporated  
13  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2 MSPS, unless otherwise noted.  
œ114  
126  
125  
124  
123  
122  
121  
120  
119  
102  
101  
100  
99  
16.6  
16.5  
16.4  
16.3  
16.2  
œ115  
œ116  
œ117  
œ118  
œ119  
œ120  
œ121  
œ122  
SFDR  
SNR  
SINAD  
THD  
ENOB  
118  
85  
98  
-40  
-15  
10  
35  
60  
10  
35  
60  
85  
œ40  
œ15  
C014  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
C013  
fIN = 2 kHz, VREF = 5 V  
Figure 20. Distortion Performance vs Temperature  
fIN = 2 kHz, VREF = 5 V  
Figure 19. Noise Performance vs Temperature  
101  
100  
99  
18  
œ113  
124  
123  
122  
121  
120  
119  
118  
117  
œ114  
œ115  
œ116  
œ117  
œ118  
œ119  
œ120  
17.5  
17  
THD  
SINAD  
98  
16.5  
SNR  
97  
16  
ENOB  
SFDR  
96  
15.5  
95  
15  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
C016  
C015  
Reference Voltage (V)  
Reference Voltage (V)  
fIN = 2 kHz, TA = 25°C  
fIN = 2 kHz, TA = 25°C  
Figure 22. Distortion Performance vs Reference Voltage  
Figure 21. Noise Performance vs Reference Voltage  
100  
98  
96  
94  
92  
90  
88  
17  
œ100  
œ104  
œ108  
œ112  
œ116  
œ120  
œ124  
124  
120  
116  
112  
108  
104  
100  
16.5  
16  
THD  
SINAD  
SFDR  
SNR  
15.5  
15  
ENOB  
14.5  
14  
0
100  
200  
300  
400  
500  
C017  
0
100  
200  
300  
400  
500  
C018  
fIN, Input Frequency (kHz)  
fIN, Input Frequency (kHz)  
VREF = 5 V, TA = 25°C  
Figure 23. Noise Performance vs Input Frequency  
VREF = 5 V, TA = 25°C  
Figure 24. Distortion Performance vs Input Frequency  
14  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2 MSPS, unless otherwise noted.  
600  
480  
360  
240  
120  
0
500  
400  
300  
200  
100  
0
-1 -0.8 -0.6 -0.4 -0.2  
0
0.2 0.4 0.6 0.8  
1
C009  
-0.01  
-0.006  
-0.002  
0.002  
0.006  
0.01  
C009  
Offset (mV)  
Gain Error (%FS)  
600 devices  
Figure 25. Offset Typical Distribution  
600 devices  
Figure 26. Gain Error Typical Distribution  
1
0.5  
0
0.01  
0.005  
0
-0.5  
-1  
-0.005  
-0.01  
10  
35  
60  
85  
C019  
-40  
-15  
10  
35  
60  
85  
C020  
œ40  
œ15  
Free-Air Temperature (oC)  
Free-Air Temperature (oC)  
VREF = 5 V  
VREF = 5 V  
Figure 27. Offset vs Temperature  
Figure 28. Gain Error vs Temperature  
1
0.5  
0
0.01  
0.005  
0
-0.5  
-1  
-0.005  
-0.01  
2.5  
3
3.5  
4
4.5  
5
C021  
2.5  
3
3.5  
4
4.5  
5
C022  
Reference Voltage (V)  
Reference Voltage (V)  
TA = 25°C  
TA = 25°C  
Figure 29. Offset vs Reference Voltage  
Figure 30. Gain Error vs Reference Voltage  
Copyright © 2015, Texas Instruments Incorporated  
15  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, AVDD = 1.8 V, DVDD = 1.8 V, VREF = 5 V, and fSAMPLE = 2 MSPS, unless otherwise noted.  
10  
8
6
4
2
0
8
Without  
NAP  
6
4
2
With  
NAP  
0
-40  
-15  
10  
35  
60  
85  
C026  
2000  
1600  
1200  
800  
400  
0
C027  
Free-Air Temperature (oC)  
fS, Throughput (kSPS)  
2 MSPS  
TA = 25°C  
Figure 31. Supply Current vs Temperature  
Figure 32. Supply Current vs Throughput  
2
1.5  
1
2
1.5  
1
0.5  
0
0.5  
0
-40  
-15  
10  
35  
60  
85  
2000  
1600  
1200  
800  
400  
0
C028  
Free-Air Temperature (oC)  
fS, Throughput (kSPS)  
C02  
2 MSPS  
TA = 25°C  
Figure 33. Reference Current vs Temperature  
Figure 34. Reference Current vs Throughput  
œ86  
œ87  
œ88  
œ89  
œ90  
œ91  
œ92  
œ93  
0
150  
300  
fIN, Input Frequency (kHz)  
450  
600  
C025  
Figure 35. CMRR vs Input Frequency  
16  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7 Detailed Description  
7.1 Overview  
The ADS9110 is a high-speed, successive approximation register (SAR), analog-to-digital converter (ADC) based  
on the charge redistribution architecture. This compact device features high performance at a high throughput  
rate and at low power consumption.  
The ADS9110 supports unipolar, fully-differential analog input signals and operates with a 2.5-V to 5-V external  
reference, offering a wide selection of input ranges without additional input scaling.  
When a conversion is initiated, the differential input between the AINP and AINM pins is sampled on the internal  
capacitor array. The ADS9110 uses an internal clock to perform conversions. During the conversion process,  
both analog inputs are disconnected from the internal circuit. At the end of conversion process, the device  
reconnects the sampling capacitors to the AINP and AINM pins and enters acquisition phase.  
The device consumes only 15 mW of power when operating at the full 2-MSPS throughput. Power consumption  
at lower throughputs can be reduced by using the flexible low-power modes (NAP and PD).  
The new multiSPI interface simplifies board layout, timing, and firmware, and achieves high throughput at lower  
clock speeds, thus allowing easy interface to a variety of microprocessors, digital signal processors (DSPs), and  
field-programmable gate arrays (FPGAs).  
7.2 Functional Block Diagram  
From a functional perspective, the device comprises of two modules: the converter module and the interface  
module, as shown in Figure 36.  
The converter module samples and converts the analog input into an equivalent digital output code whereas the  
interface module facilitates communication and data transfer with the host controller.  
REFP AVDD  
DVDD  
RST  
CONVST  
CS  
SCLK  
SDI  
AINP  
AINM  
Interface Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Converter Module  
REFM  
GND  
Figure 36. Functional Block Diagram  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Converter Module  
As shown in Figure 37, the converter module samples the analog input signal (provided between the AINP and  
AINM pins), compares this signal with the reference voltage (provided between the pair of REFP and REFM  
pins), and generates an equivalent digital output code.  
The converter module receives RST and CONVST inputs from the interface module and outputs the ADCST  
signal and the conversion result back to the interface module.  
REFP  
DVDD  
AVDD  
RST  
CONVST  
CS  
SCLK  
SDI  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
OSC  
RST  
CONVST  
ADCST  
AINP  
AINM  
Sample-  
and-Hold  
Circuit  
Interface  
Module  
ADC  
Conversion  
Result  
AGND  
Converter Module  
DGND  
REFM  
GND  
Figure 37. Converter Module  
7.3.1.1 Sample-and-Hold Circuit  
The device supports unipolar, fully-differential analog input signals. Figure 38 shows a small-signal equivalent  
circuit of the sample-and-hold circuit. Each sampling switch is represented by a resistance (Rs1 and Rs2, typically  
30 Ω) in series with an ideal switch (sw1 and sw2). The sampling capacitors, Cs1 and Cs2, are typically 60 pF.  
Rs1  
Device in Hold Mode  
4 pF  
sw1  
AINP  
AINN  
Cs1  
REFP  
4 pF  
GND  
Cs2  
GND  
sw2  
Figure 38. Input Sampling Stage Equivalent Circuit  
Rs2  
During the acquisition process (in ACQ state), both positive and negative inputs are individually sampled on Cs1  
and Cs2, respectively. During the conversion process (in CNV state), the device converts for the voltage  
difference between the two sampled values: VAINP – VAINM  
.
Each analog input pin has electrostatic discharge (ESD) protection diodes to REFP and GND. Keep the analog  
inputs within the specified range to avoid turning the diodes on.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Feature Description (continued)  
Equation 1 and Equation 2 show the full-scale voltage range (FSR) and common-mode voltage range (VCM  
)
supported at the analog inputs for any external reference voltage (VREF).  
FSR = êVREF  
(1)  
V
REF  
VCM  
=
ê 0.1 V  
«
÷
2
(2)  
7.3.1.2 External Reference Source  
The input range for the device is set by the external voltage applied at the two REFP pins. The REFM pins  
function as the reference ground and must be connected to each reference capacitor.  
The device takes very little static current from the reference pins in the RST and ACQ states. During the  
conversion process (in CNV state), binary-weighted capacitors are switched onto the reference pins. The  
switching frequency is proportional to the conversion clock frequency, but the dynamic charge requirements are  
a function of the absolute values of the input voltage and the reference voltage. Reference capacitors decouple  
the dynamic reference loads and a low-impedance reference driver is required to keep the voltage regulated to  
within 1 LSB.  
Most reference sources have very high broadband noise. TI recommends filtering the voltage reference source  
with a 160-Hz filter before being connected to the reference driver, as shown in Figure 39. See the ADC  
Reference Driver section for reference capacitor and driver selection. Also, the reference inputs are sensitive to  
board layout; thus, the layout guidelines described in the Layout section must be followed.  
4
5
6
REFM  
REFP  
Device  
CREF  
10 µF  
RREF_FLT  
1 kW  
Voltage  
Reference  
Buffer  
CREF_FLT  
1 µF  
CREF  
10 µF  
CREF  
10 µF  
Figure 39. Reference Driver Schematic  
7.3.1.3 Internal Oscillator  
The device features an internal oscillator (OSC) that provides the conversion clock; see Figure 37. Conversion  
duration can vary but is bounded by the minimum and maximum value of tconv, as specified in the Timing  
Requirements: Conversion Cycle table.  
The interface module can use this internal clock (OSC) or an external clock (provided by the host controller on  
the SCLK pin) or a combination of the internal and external clocks for executing the data transfer operations  
between the device and host controller; see the Interface Module section for more details.  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Feature Description (continued)  
7.3.1.4 ADC Transfer Function  
The ADS9110 supports unipolar, fully-differential analog inputs. The device output is in twos compliment format.  
Figure 40 and Table 1 show the ideal transfer characteristics for the device.  
The LSB for the ADC is given by Equation 3:  
FSR  
218  
VREF  
218  
1 LSB =  
= 2ì  
(3)  
1FFFF  
00000  
3FFFF  
20001  
20000  
VIN  
VREF  
œ 1 LSB  
œVREF  
+ 1 LSB  
œ1 LSB  
0
Differential Analog Input  
(AINP - AINN)  
Figure 40. Differential Transfer Characteristics  
Table 1. Transfer Characteristics  
DIFFERENTIAL ANALOG INPUT VOLTAGE  
(AINP – AINM)  
OUTPUT CODE  
(Hex)  
< –VREF  
–VREF + 1 LSB  
–1 LSB  
20000  
20001  
3FFFF  
00000  
00001  
1FFFF  
0
1 LSB  
> VREF – 1 LSB  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7.3.2 Interface Module  
The interface module facilitates the communication and data transfer between the device and the host controller.  
As shown in Figure 41, the module comprises of shift registers (both input and output), configuration registers,  
and a protocol unit.  
Interface Module  
Shift Registers  
RST  
Output Shift Register (OSR)  
CONVST  
D19  
B19  
D18  
D1  
D0  
CS  
20 Bits  
20 Bits  
SCLK  
SDI  
B18  
B1  
B0  
Converter Module  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Input Shift Register (ISR)  
Command Processor  
Configuration Registers  
SCLK  
Counter  
Figure 41. Interface Module  
The Pin Configuration and Functions section provides descriptions of the interface pins; the Data Transfer Frame  
section details the functions of shift registers, the SCLK counter, and the command processor; the Data Transfer  
Protocols section details supported protocols; and the Register Maps section explains the configuration registers  
and bit settings.  
Copyright © 2015, Texas Instruments Incorporated  
21  
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.4 Device Functional Modes  
As shown in Figure 42, the device supports three functional states: RST, ACQ, and CNV. The device state is  
determined by the status of the CONVST and RST control signals provided by the host controller.  
Power Up  
ACQ  
CONVST Rising Edge  
RST Rising Edge  
End of Conversion  
CNV  
RST  
RST Falling Edge  
Figure 42. Device Functional States  
7.4.1 RST State  
In the ADS9110, the RST pin is an asynchronous digital input. To enter RST state, the host controller must pull  
the RST pin low and keep it low for the twl_RST duration (as specified in the Timing Requirements: Asynchronous  
Reset, NAP, and PD table).  
In RST state, all configuration registers (see the Register Maps section) are reset to their default values, the RVS  
pins remain low, and the SDO-x pins are tri-stated.  
To exit RST state, the host controller must pull the RST pin high with CONVST and SCLK held low and CS held  
high, as shown in Figure 43. After a delay of td_rst, the device enters ACQ state and the RVS pin goes high.  
trst  
twl_RST  
RST  
td_rst  
CONVST  
CS  
SCLK  
RVS  
SDO-x  
Figure 43. Asynchronous Reset  
To operate the device in any of the other two states (ACQ or CNV), RST must be held high. With RST held high,  
transitions on the CONVST pin determine the functional state of the device.  
22  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Device Functional Modes (continued)  
Figure 44 shows a typical conversion process. An internal signal, ADCST, goes low during conversion and goes  
high at the end of conversion. With CS held high, RVS reflects the status of ADCST.  
Sample  
S
Sample  
S+1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tconv_max  
tconv  
tconv_min  
tacq  
ADCST (Internal)  
CNV (C)  
ACQ (C+1)  
CS  
RVS  
Figure 44. Typical Conversion Process  
7.4.2 ACQ State  
In ACQ state, the device acquires the analog input signal. The device enters ACQ state on power-up, after any  
asynchronous reset, or after end of every conversion.  
An RST falling edge takes the device from an ACQ state to a RST state. A CONVST rising edge takes the  
device from an ACQ state to a CNV state.  
The device offers a low-power NAP mode to reduce power consumption in the ACQ state; see the NAP Mode  
section for more details on NAP mode.  
7.4.3 CNV State  
The device moves from ACQ state to CNV state on a rising edge of the CONVST pin. The conversion process  
uses an internal clock and the device ignores any further transitions on the CONVST signal until the ongoing  
conversion is complete (that is, during the time interval of tconv).  
At the end of conversion, the device enters ACQ state. The cycle time for the device is given by Equation 4:  
tcycle-min = tconv + tacq-min  
(4)  
NOTE  
The conversion time, tconv, can vary within the specified limits of tconv_min and tconv_max (as  
specified in the Timing Requirements: Conversion Cycle table). After initiating a  
conversion, the host controller must monitor for a low-to-high transition on the RVS pin or  
wait for the tconv_max duration to elapse before initiating a new operation (data transfer or  
conversion). If RVS is not monitored, substitute tconv in Equation 4 with tconv_max  
.
Copyright © 2015, Texas Instruments Incorporated  
23  
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.5 Programming  
The device features four configuration registers (as described in the Register Maps section) and supports two  
types of data transfer operations: data write (the host configures the device), and data read (the host reads data  
from the device).  
To access the internal configuration registers, the device supports the commands listed in Table 2.  
Table 2. Supported Commands  
OPCODE B[19:0]  
COMMAND ACRONYM  
COMMAND DESCRIPTION  
0000_0000_0000_0000_0000  
1001_<8-bit address>_0000_0000  
1010_<8-bit address>_<8-bit data>  
1111_1111_1111_1111_1111  
NOP  
RD_REG  
WR_REG  
NOP  
No operation  
Read contents from the <8-bit address>  
Write <8-bit data> to the <8-bit address>  
No operation  
These commands are reserved and treated by the  
device as no operation  
Remaining combinations  
Reserved  
In the ADS9110, any data write to the device is always synchronous to the external clock provided on the SCLK  
pin. The data read from the device can be synchronized to the same external clock or to an internal clock of the  
device by programming the configuration registers (see the Data Transfer Protocols section for details).  
In any data transfer frame, the contents of an internal, 20-bit, output data word are shifted out on the SDO pins.  
The D[19:2] bits of the 20-bit output data word for any frame (F+1), are determined by the:  
Settings of the DATA_PATN[2:0] bits applicable to frame F+1 (see the DATA_CNTL register) and  
Command issued in frame F  
If a valid RD_REG command is executed in frame F, then the D[19:12] bits in frame F+1 reflect the contents of  
the selected register and the D[11:0] bits are 0s.  
If the DATA_PATN[2:0] bits for frame F+1 are set to 1xxb, then the D[19:2] bits in frame F+1 are the fixed data  
pattern shown in Figure 45.  
For all other combinations, the D[19:2] bits for frame F+1 are the latest conversion result.  
Output  
Data Word  
D[19:0]  
A valid RG_READ command is  
received in the previous frame.  
D19  
D18  
Register Data  
RR000h  
000  
001  
Conversion  
Result  
D[19:2]  
010  
011  
100  
00000h  
3FFFFh  
15555h  
03333h  
101  
110  
111  
D3  
D2  
D1  
D0  
Parity Computation Unit  
DATA_PATN [2:0]  
Figure 45. Output Data Word (D[19:0])  
24  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Figure 46 shows further details of the parity computation unit illustrated in Figure 45.  
Output Data Word  
D[19:0]  
Parity Computation Unit  
D19  
D18  
XOR  
D17  
D16  
XOR  
D15  
D14  
XOR  
D13  
D12  
XOR  
D11  
D10  
XOR  
D9  
D8  
XOR  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
XOR  
FLPAR  
FTPAR  
XOR  
)
)
11  
10  
01  
00  
16 MSBs  
12 MSBs  
8 MSBs  
4 MSBs  
MUX  
PAR_EN  
FPAR_LOC[1:0]  
Figure 46. Parity Bits Computation  
With the PAR_EN bit set to 0, the D[1] and D[0] bits of the output data word are set to 0 (default configuration).  
When the PAR_EN bit is set to 1, the device calculates the parity bits (FLPAR and FTPAR) and appends them  
as bits D[1] and D[0].  
FLPAR is the even parity calculated on bits D[19:2].  
FTPAR is the even parity calculated on the bits defined by FPAR_LOC[1:0].  
See the DATA_CNTL register for more details on the FPAR_LOC[1:0] bit settings.  
Copyright © 2015, Texas Instruments Incorporated  
25  
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.5.1 Data Transfer Frame  
A data transfer frame between the device and the host controller is bounded between a CS falling edge and the  
subsequent CS rising edge. The host controller can initiate a data transfer frame (as shown in Figure 47) at any  
time irrespective of the status of the CONVST signal; however, the data read during such a data transfer frame is  
a function of relative timing between the CONVST and CS signals.  
Frame F  
CONVST  
CS  
RVS  
As per output protocol selection.  
td_RVS  
SCLK  
N SCLKs  
Valid Command  
SDI  
SDO-x  
OSR Contents  
SCLK Counter  
SCLK Counter  
0
b
Output Data Word  
Input Shift Register (ISR)  
D19  
D0  
B19  
B0  
D19  
D0  
D19  
D0  
Output Shift Register (OSR)  
Command Processor  
Figure 47. Data Transfer Frame  
For this discussion, assume that the CONVST signal remains low.  
For a typical data transfer frame F:  
1. The host controller pulls CS low to initiate a data transfer frame. On the CS falling edge:  
RVS goes low, indicating the beginning of the data transfer frame.  
The SCLK counter is reset to 0.  
The device takes control of the data bus. As shown in Figure 47, the 20-bit contents of the output data  
word (see Figure 45) are loaded in to the 20-bit OSR (see Figure 41).  
The 20-bit ISR (see Figure 41) is reset to 00000h, corresponding to a NOP command.  
26  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
2. During the frame, the host controller provides clocks on the SCLK pin:  
On each SCLK capture edge, the SCLK counter is incremented and the data bit received on the SDI pin  
is shifted in to the ISR.  
On each launch edge of the output clock (SCLK in this case), OSR data are shifted out on the selected  
SDO-x pins.  
The status of the RVS pin depends on the output protocol selection (see the Protocols for Reading From  
the Device section).  
3. The host controller pulls CS high to end the data transfer frame. On the CS rising edge:  
The SDO-x pins go to tri-state.  
RVS goes high (after a delay of td_RVS).  
As illustrated in Figure 47, the 20-bit contents of the ISR are transferred to the command processor (see  
Figure 41) for decoding and further action.  
After pulling CS high, the host controller must monitor for a low-to-high transition on the RVS pin or wait for the  
td_RVS time (see the Timing Requirements: SPI-Compatible Serial Interface table) to elapse before initiating a new  
operation (data transfer or conversion). The delay, td_RVS, for any data transfer frame F varies based on the data  
transfer operation executed in the frame F.  
At the end of the data transfer frame F:  
If the SCLK counter is < 20, then the device treats the frame F as a short data transfer frame. The output  
data bits transferred during such a short data transfer frame are still valid data; however, the device ignores  
the data received over the SDI pin (similar to a no operation command). The host controller can use these  
short data transfer frames to read only the required number of MSB bits from the 20-bit output data word.  
If the SCLK counter = 20, then the device treats the frame F as a optimal data transfer frame. At the end of  
an optimal data transfer frame, the command processor treats the 20-bit contents of the ISR as a valid  
command word.  
If the SCLK counter > 20, then the device treats the frame F as a long data transfer frame. At the end of a  
long data transfer frame, the command processor treats the 20-bit contents of the ISR as a valid command  
word. There is no restriction on the maximum number of clocks that can be provided within any data transfer  
frame F. However, when the host controller provides a long data transfer frame, the last 20 bits shifted into  
the device prior to the CS rising edge must constitute the desired command.  
NOTE  
This example shows a data transfer synchronous to the external clock provided on the  
SCLK pin. The device also supports data transfer operations that are synchronous to the  
internal clock; see the Protocols for Reading From the Device section for more details.  
Copyright © 2015, Texas Instruments Incorporated  
27  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.5.2 Interleaving Conversion Cycles and Data Transfer Frames  
The host controller can operate the ADS9110 at the desired throughput by interleaving the conversion cycles and  
the data transfer frames.  
The cycle time of the device, tcycle, is the time difference between two consecutive CONVST rising edges  
provided by the host controller. The response time of the device, tresp, is the time difference between the host  
controller initiating a conversion C and the host controller receiving the complete result for conversion C.  
Figure 48 shows three conversion cycles, C, C+1, and C+2. Conversion C is initiated by a CONVST rising edge  
at the t = 0 time and the conversion result becomes available for data transfer at the tconv time. However, this  
result is loaded into the OSR only on the subsequent CS falling edge. This CS falling edge must be provided  
before the completion of the conversion C+1 (that is, before the tcycle + tconv time).  
To achieve the rated performance specifications, the host controller must ensure that no digital signals toggle  
during the quiet acquisition time (tqt_acq) and quiet aperture time (td_cnvcap). Any noise during td_cnvcap can  
negatively affect the result of the ongoing conversion whereas any noise during tqt_acq can negatively affect the  
result of the subsequent conversion.  
Sample  
S
Sample  
S+1  
Sample  
S+2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone1  
Zone2  
Conversion  
C
Conversion  
C+1  
Conversion  
C+2  
t = 0  
Figure 48. Data Transfer Zones  
This architecture allows for two distinct time zones (zone1 and zone2) to transfer data for each conversion.  
Zone1 and zone2 for conversion C are defined in Table 3.  
Table 3. Data Transfer Zones Timing  
ZONE  
STARTING TIME  
ENDING TIME  
tcycle - tqt_acq  
tconv  
Zone1 for conversion C  
tcycle + td_cnvcap  
tcycle + tcycle - tqt_acq  
Zone2 for conversion C  
The response time includes the conversion time and the data transfer time, and is thus a function of the data  
transfer zone selected.  
28  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Figure 49 and Figure 50 illustrate interleaving of three conversion cycles (C, C+1, and C+2) with three data  
transfer frames (F, F+1, and F+2) in zone1 and in zone2, respectively.  
Sample  
S
Sample  
S+1  
Sample  
S+2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone1  
C
Zone1  
C+1  
Zone1  
C+2  
Conversion  
C
Conversion  
C+1  
Conversion  
C+2  
Frame  
F
Frame  
F+1  
Frame  
F+2  
CS  
SDO  
tread-Z1  
tresp-Z1  
C
C+1  
C+2  
SCLK  
t = 0  
Figure 49. Zone1 Data Transfer  
Sample  
S
Sample  
S+1  
Sample  
S+2  
tcycle  
td_cnvcap  
tqt_acq  
tconv  
tacq  
CONVST  
ADCST  
(Internal)  
Zone2  
C
Zone2  
C+1  
Zone2  
C+2  
Conversion  
Conversion  
C+1  
Conversion  
C+2  
C
Frame  
F
Frame  
F+1  
Frame  
F+2  
CS  
SDO  
tread-Z2  
tresp-Z2  
C-1  
C
C+1  
SCLK  
t = 0  
Figure 50. Zone2 Data Transfer  
Copyright © 2015, Texas Instruments Incorporated  
29  
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
To achieve cycle time, tcycle, the read time in zone1 is given by Equation 5:  
tread-Z1 Ç tcycle - tconv - tqt_acq  
(5)  
For an optimal data transfer frame, Equation 5 results in an SCLK frequency given by Equation 6:  
20  
fSCLK  
í
tread-Z1  
(6)  
(7)  
Then, the zone1 data transfer achieves a response time defined by Equation 7:  
tresp-Z1-min = tconv + tread-Z1  
As an example, while operating the ADS9110 at its full throughput of 2 MSPS, the host controller can achieve a  
response time of 1 µs provided that the data transfer in zone1 is completed within 135 ns. However, to achieve  
this response time, the SCLK frequency must be greater than 148 MHz.  
Note that the device does not support such high SCLK speeds. At lower SCLK speeds, tread-Z1 increases,  
resulting in slower response times and higher cycle times.  
To achieve the same cycle time, tcycle, the read time in zone2 is given by Equation 8:  
tread-Z2 Ç tcycle - td_cnvcap - tqt_acq  
(8)  
For an optimal data transfer frame, Equation 8 results in an SCLK frequency given by Equation 9:  
20  
fSCLK  
í
tread_Z2  
(9)  
Then, the zone2 data transfer achieves a response time defined by Equation 10:  
tresp-Z2-min = tcycle + td_cnvcap + tread-Z2  
(10)  
As an example, the host controller can operate the ADS9110 at its full throughput of 2 MSPS using zone2 data  
transfer with a 43 MHz SCLK (and a read time of 465 ns). However, zone2 data transfer will result in response  
time of nearly 2 µs.  
Any increase in tread-Z2 increases response time and can increase cycle time.  
For a given cycle time, the zone1 data transfer clearly achieves faster response time but also requires a higher  
SCLK speed (as evident from Equation 5, Equation 6, and Equation 7), whereas the zone2 data transfer clearly  
requires a lower SCLK speed but supports slower response time (as evident from Equation 8, Equation 9, and  
Equation 10).  
NOTE  
In zone2, the data transfer is active when the device is converting for the next analog  
sample. This digital activity can interfere with the ongoing conversion and cause some  
degradation in SNR performance.  
Additionally, a data transfer frame can begin in zone1 and then extend into zone2;  
however, the host controller must ensure that no digital transitions occur during the tqt_acq  
and td_cnvcap time intervals.  
30  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7.5.3 Data Transfer Protocols  
The device features a multiSPI interface that allows the host controller to operate at slower SCLK speeds and  
still achieve the required cycle time with a faster response time. The multiSPI interface module offers two options  
to reduce the SCLK speed required for data transfer:  
1. An option to increase the width of the output data bus  
2. An option to enable double data rate (DDR) transfer  
These two options can be combined to achieve further reduction in SCLK speed.  
Figure 51 shows the delays between the host controller and the device in a typical serial communication.  
Digital Isolator  
Device  
Host Controller  
(Optional)  
tpcb_CK  
SCLK  
SCLK  
td_ckdo  
td_ISO  
tsu_h  
SDI  
SDO-0  
td_ISO  
tpcb_SDO  
Figure 51. Delays in Serial Communication  
The total delay in the path is given by Equation 11:  
td_total_serial = tpcb_CK + td_iso + td_ckdo + td_iso + tpcb_SDO + tsu_h  
(11)  
In a standard SPI protocol, the host controller and the device launch and capture data bits on alternate SCLK  
edges. Therefore, the td_total_serial delay must be kept less than half of the SCLK duration. Equation 12 shows the  
fastest clock allowed by the SPI protocol.  
1
fclk-SPI  
Ç
2ìtd_total-serial  
(12)  
Larger values of the td_total_serial delay restrict the maximum SCLK speed for the SPI protocol, resulting in higher  
read and response times, and can increase cycle times. To remove this restriction on the SCLK speed, the  
multiSPI interface module supports an ADC-master or source-synchronous mode of operation.  
Digital Isolator  
(Optional)  
Device  
Host Controller  
tpcb_CK  
SCLK  
SCLK  
td_ISO  
td_ckdo  
SDO-0  
td_ckstr  
SDI  
tsu_h  
td_ISO  
toff_strdo  
tpcb_SDO  
RVS  
td_ISO  
tpcb_RVS  
Figure 52. Delays in Source-Synchronous Communication  
Copyright © 2015, Texas Instruments Incorporated  
31  
 
 
 
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
As illustrated in Figure 52, in ADC-master or source-synchronous mode, the device provides a synchronous  
output clock (on the RVS pin) along with the output data (on the SDO-x pins).  
For a source-synchronous data transfer, the total delay in the path is given by Equation 13:  
td_total_srcsync = tpcb_RVS -tpcb_SDO + tsu_h  
(13)  
As illustrated in Equation 11 and Equation 13, the ADC-master or source-synchronous mode completely  
eliminates the affect of isolator delays and the clock-to-data delays, which are typically the largest contributors in  
the overall delay computation.  
Furthermore, the actual values of tpcb_RVS and tpcb_SDO do not matter. In most cases, the td_total_srcsync delay can be  
kept at a minimum by routing the RVS and SDO lines together on the PCB. Therefore, the ADC-master or  
source-synchronous mode allows the host controller and device to operate at much higher SCLK speeds.  
7.5.3.1 Protocols for Configuring the Device  
As shown in Table 4, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S,  
SPI-01-S, SPI-10-S, or SPI-11-S) to write data in to the device.  
Table 4. SPI Protocols for Configuring the Device  
SCLK POLARITY  
(At CS Falling Edge)  
SCLK PHASE  
(Capture Edge)  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
Figure 53  
Figure 54  
Figure 55  
Figure 56  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations.  
To select a different SPI-compatible protocol, program the SDI_MODE[1:0] bits in the SDI_CNTL register. This  
first write operation must adhere to the SPI-00-S protocol. Any subsequent data transfer frames must adhere to  
the newly selected protocol.  
Figure 53, Figure 54, Figure 55, and Figure 56 detail the four protocols using an optimal, 20-SCLK frame; see  
the Timing Requirements: SPI-Compatible Serial Interface section for associated timing parameters.  
NOTE  
As explained in the Data Transfer Frame section, a valid write operation to the device  
requires a minimum of 20 SCLKs to be provided within a data transfer frame.  
32  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
CS  
SCLK  
SDI  
CS  
SCLK  
SDI  
B19  
B18  
B1  
B0  
B19  
B18  
B17  
B1  
B0  
RVS  
RVS  
Figure 54. SPI-01-S Protocol, 20 SCLKs  
Figure 53. SPI-00-S Protocol, 20 SCLKs  
CS  
SCLK  
SDI  
CS  
SCLK  
SDI  
B19  
B18  
B17  
B1  
B0  
B19  
B18  
B2  
B1  
B0  
RVS  
RVS  
Figure 55. SPI-10-S Protocol, 20 SCLKs  
Figure 56. SPI-11-S Protocol, 20 SCLKs  
7.5.3.2 Protocols for Reading From the Device  
The protocols for the data read operation can be broadly classified into three categories:  
1. Legacy, SPI-compatible (SPI-xy-S) protocols,  
2. SPI-compatible protocols with bus width options (SPI-xy-D and SPI-xy-Q), and  
3. Source-synchronous (SRC) protocols  
7.5.3.2.1 Legacy, SPI-Compatible (SYS-xy-S) Protocols  
As shown in Table 5, the host controller can use any of the four legacy, SPI-compatible protocols (SPI-00-S, SPI-  
01-S, SPI-10-S, or SPI-11-S) to read data from the device.  
Table 5. SPI Protocols for Reading From the Device  
SCLK POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SPI-00-S  
SPI-01-S  
SPI-10-S  
SPI-11-S  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
CS falling  
1st SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
00h  
00h  
00h  
Figure 57  
Figure 58  
Figure 59  
Figure 60  
1st SCLK falling  
On power-up or after coming out of any asynchronous reset, the device supports the SPI-00-S protocol for data  
read and data write operations. To select a different SPI-compatible protocol for both the data transfer  
operations:  
1. Program the SDI_MODE[1:0] bits in the SDI_CNTL register. This first write operation must adhere to the SPI-  
00-S protocol. Any subsequent data transfer frames must adhere to the newly selected protocol.  
2. Set the SDO_MODE[1:0] bits = 00b in the SDO_CNTL register.  
When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame;  
see the Timing Requirements: SPI-Compatible Serial Interface table for associated timing parameters.  
Copyright © 2015, Texas Instruments Incorporated  
33  
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Figure 57, Figure 58, Figure 59, and Figure 60 explain the details of the four protocols using an optimal, 20-  
SCLK frame. As explained in the Data Transfer Frame section, the host controller can use a short data transfer  
frame to read only the required number of MSB bits from the 20-bit output data word.  
With SDO_CNTL[7:0] = 00h, if the host controller uses a long data transfer frame, the device exhibits daisy-chain  
operation (see the Multiple Devices: Daisy-Chain Topology section).  
D19  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D19  
D18  
D1  
D0  
D18  
D17  
D1  
D0  
D19  
D18  
D17  
D0  
D19  
D19  
D18  
D18  
D17  
D1  
D0  
D1  
D0  
0
D19  
D18  
D1  
D0  
Figure 57. SPI-00-S Protocol, 20 SCLKs  
Figure 58. SPI-01-S Protocol, 20 SCLKs  
D19  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D19  
D18  
D17  
D1  
D0  
D19  
D18  
D17  
D1  
D0  
D19  
D19  
D18  
D18  
D2  
D1  
D0  
D18  
D17  
D1  
D0  
0
D2  
D1  
D0  
D19  
D18  
D1  
D0  
Figure 60. SPI-11-S Protocol, 20 SCLKs  
Figure 59. SPI-10-S Protocol, 20 SCLKs  
7.5.3.2.2 SPI-Compatible Protocols with Bus Width Options  
The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual  
SDO) or to four bits (quad SDO) when operating with any of the four legacy, SPI-compatible protocols.  
Set the SDO_WIDTH[1:0] bits in the SDO_CNTL register to select the SDO bus width.  
In dual SDO mode (SDO_WIDTH[1:0] = 10b), two bits of data are launched on the two SDO pins (SDO-0 and  
SDO-1) on every SCLK launch edge.  
In quad SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0,  
SDO-1, SDO-2, and SDO-3) on every SCLK launch edge.  
The SCLK launch edge depends upon the SPI protocol selection (as shown in Table 6).  
Table 6. SPI-Compatible Protocols with Bus Width Options  
SCLK POLARITY  
(At CS Falling  
Edge)  
SCLK PHASE  
(Capture Edge)  
MSB BIT  
LAUNCH EDGE  
PROTOCOL  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SPI-00-D  
SPI-01-D  
SPI-10-D  
SPI-11-D  
SPI-00-Q  
SPI-01-Q  
SPI-10-Q  
SPI-11-Q  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Rising  
Falling  
Falling  
Rising  
Rising  
Falling  
Falling  
Rising  
CS falling  
First SCLK rising  
CS falling  
00h  
01h  
02h  
03h  
00h  
01h  
02h  
03h  
08h  
08h  
08h  
08h  
0Ch  
0Ch  
0Ch  
0Ch  
Figure 61  
Figure 62  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Figure 67  
Figure 68  
First SCLK falling  
CS falling  
First SCLK rising  
CS falling  
First SCLK falling  
34  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
When using any of the SPI-compatible protocols, the RVS output remains low throughout the data transfer frame.  
Figure 61 to Figure 68 illustrate how the wider data bus allows the host controller to read all 20 bits of the output  
data word using short data transfer frames; see the Timing Requirements: SPI-Compatible Serial Interface table  
for associated timing parameters.  
NOTE  
With SDO_CNTL[7:0] 00h, a long data transfer frame does not result in daisy-chain  
operation.  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
0
0
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
Figure 61. SPI-00-D Protocol  
Figure 62. SPI-01-D Protocol  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D3  
D2  
D1  
D0  
0
0
D19  
D18  
D17  
D16  
D5  
D4  
D3  
D1  
D0  
D2  
Figure 64. SPI-11-D Protocol  
Figure 63. SPI-10-D Protocol  
CS  
SCLK  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D3  
D2  
D1  
D0  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
0
0
0
0
D19  
D18  
D17  
D16  
D15 D7  
D14 D6  
D13 D5  
D12 D4  
D3  
D2  
D1  
D0  
Figure 65. SPI-00-Q Protocol  
Figure 66. SPI-01-Q Protocol  
Copyright © 2015, Texas Instruments Incorporated  
35  
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
CS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D1  
D0  
D1  
D0  
0
0
0
0
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 68. SPI-11-Q Protocol  
Figure 67. SPI-10-Q Protocol  
7.5.3.2.3 Source-Synchronous (SRC) Protocols  
As described in the Data Transfer Protocols section, the multiSPI interface supports an ADC-master or source-  
synchronous mode of data transfer between the device and host controller. In this mode, the device provides an  
output clock that is synchronous with the output data. Furthermore, the host controller can also select the output  
clock source, data bus width, and data transfer rate.  
7.5.3.2.3.1 Output Clock Source Options with SRC Protocols  
In all SRC protocols, the RVS pin provides the output clock. The device allows this output clock to be  
synchronous to either the external clock provided on the SCLK pin or to the internal clock of the device.  
Furthermore, this internal clock can be divided by a factor of two or four to lower the data rates.  
As shown in Figure 69, set the SSYNC_CLK_SEL[1:0] bits in the SDO_CNTL register to select the output clock  
source.  
SCLK  
OSC  
00  
INTCLK  
01  
Output Clock  
RVS  
INTCLK / 2  
INTCLK / 4  
10  
11  
/ 2  
/ 4  
SSYNC_CLK_SEL [1:0]  
Figure 69. Output Clock Source options with SRC Protocols  
36  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7.5.3.2.3.2 Bus Width Options with SRC Protocols  
The device provides an option to increase the SDO bus width from one bit (default, single SDO) to two bits (dual  
SDO) or to four bits (quad SDO) when operating with any of the SRC protocols. Set the SDO_WIDTH[1:0] bits in  
the SDO_CNTL register to select the SDO bus width.  
In dual SDO mode (SDO_WIDTH[1:0] = 10b), two bits of data are launched on the two SDO pins (SDO-0 and  
SDO-1) on every SCLK rising edge.  
In quad SDO mode (SDO_WIDTH[1:0] = 11b), four bits of data are launched on the four SDO pins (SDO-0,  
SDO-1, SDO-2, and SDO-3) on every SCLK rising edge.  
7.5.3.2.3.3 Output Data Rate Options with SRC Protocols  
The device provides an option to transfer the data to the host controller at single data rate (default, SDR) or at  
double data rate (DDR). Set the DATA_RATE bit in the SDO_CNTL register to select the data transfer rate.  
In SDR mode (DATA_RATE = 0b), the RVS pin toggles from low to high and the output data bits are launched  
on the SDO pins on the output clock rising edge.  
In DDR mode (DTA_RATE = 1b), the RVS pin toggles and the output data bits are launched on the SDO pins on  
every output clock edge, starting with the first rising edge.  
The device supports all 24 combinations of output clock source, bus width, and output data rate, as shown in  
Table 7.  
Table 7. SRC Protocol Combinations  
OUTPUT CLOCK  
SOURCE  
OUTPUT DATA  
RATE  
PROTOCOL  
BUS WIDTH  
SDI_CNTL  
SDO_CNTL  
DIAGRAM  
SRC-EXT-SS  
SRC-INT-SS  
SRC-IB2-SS  
SRC-IB4-SS  
SRC-EXT-DS  
SRC-INT-DS  
SRC-IB2-DS  
SRC-IB4-DS  
SRC-EXT-QS  
SRC-INT-QS  
SRC-IB2-QS  
SRC-IB4-QS  
SRC-EXT-SD  
SRC-INT-SD  
SRC-IB2-SD  
SRC-IB4-SD  
SRC-EXT-DD  
SRC-INT-DD  
SRC-IB2-DD  
SRC-IB4-DD  
SRC-EXT-QD  
SRC-INT-QD  
SRC-IB2-QD  
SRC-IB4-QD  
SCLK  
INTCLK  
Single  
Single  
Single  
Single  
Dual  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
SDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
03h  
43h  
83h  
C3h  
0Bh  
4Bh  
8Bh  
CBh  
0Fh  
4Fh  
8Fh  
CFh  
13h  
53h  
93h  
D3h  
1Bh  
5Bh  
9Bh  
DBh  
1Fh  
5Fh  
9Fh  
DFh  
Figure 70  
INTCLK / 2  
INTCLK / 4  
SCLK  
Figure 71  
Figure 74  
Figure 75  
Figure 78  
Figure 79  
Figure 72  
Figure 73  
Figure 76  
Figure 77  
Figure 80  
Figure 81  
INTCLK  
Dual  
INTCLK / 2  
INTCLK / 4  
SCLK  
Dual  
Dual  
Quad  
Quad  
Quad  
Quad  
Single  
Single  
Single  
Single  
Dual  
INTCLK  
INTCLK / 2  
INTCLK / 4  
SCLK  
00h, 01h,  
02h, or 03h  
INTCLK  
INTCLK / 2  
INTCLK / 4  
SCLK  
INTCLK  
Dual  
INTCLK / 2  
INTCLK / 4  
SCLK  
Dual  
Dual  
Quad  
Quad  
Quad  
Quad  
INTCLK  
INTCLK / 2  
INTCLK / 4  
Copyright © 2015, Texas Instruments Incorporated  
37  
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
CS  
CS  
SCLK  
SDO-0  
RVS  
SCLK  
D19  
D18  
D17  
D1  
D0  
D19  
D18  
D2  
D1  
D0  
D19  
D18  
D2  
D1  
D0  
SDO-0  
RVS  
Figure 70. SRC-EXT-SS: SRC, SCLK, Single SDO, SDR  
Figure 71. SRC-INT-SS: SRC, INTCLK, Single SDO, SDR  
CS  
SCLK  
SDO-0  
RVS  
CS  
SCLK  
SDO-0  
RVS  
D18  
D2  
D0  
D19  
D17  
D19 D18  
D1  
D3  
D2  
D1  
D0  
D19 D18  
D3  
D2  
D1  
D0  
Figure 72. SRC-EXT-SD: SRC, SCLK, Single SDO, DDR  
Figure 73. SRC-INT-SD: SRC, INTCLK, Single SDO, DDR  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D5  
D4  
D3  
D2  
D1  
D0  
D19  
D18  
D17  
D16  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 75. SRC-INT-DS: SRC, INTCLK, Dual SDO, SDR  
Figure 74. SRC-EXT-DS: SRC, SCLK, Dual SDO, SDR  
38  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
CS  
CS  
SCLK  
SDO-1  
SDO-0  
RVS  
SCLK  
SDO-1  
SDO-0  
RVS  
D19 D17  
D18 D16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D19 D17  
D18 D16  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 76. SRC-EXT-DD: SRC, SCLK, Dual SDO, DDR  
Figure 77. SRC-INT-DD: SRC, INTCLK, Dual SDO, DDR  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D8  
D8  
Figure 78. SRC-EXT-QS: SRC, SCLK, Quad SDO, SDR  
Figure 79. SRC-INT-QS: SRC, INTCLK, Quad SDO, SDR  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
CS  
SCLK  
SDO-3  
SDO-2  
SDO-1  
SDO-0  
RVS  
D19 D15 D11 D7  
D18 D14 D10 D6  
D3  
D2  
D1  
D0  
D19 D15 D11 D7  
D18 D14 D10 D6  
D3  
D2  
D1  
D0  
D17 D13 D9  
D16 D12 D8  
D5  
D4  
D17 D13 D9  
D16 D12 D8  
D5  
D4  
Figure 80. SRC-EXT-QD: SRC, SCLK, Quad SDO, DDR  
Figure 81. SRC-INT-QD: SRC, INTCLK, Quad SDO, DDR  
Copyright © 2015, Texas Instruments Incorporated  
39  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.5.4 Device Setup  
The multiSPI interface and the device configuration registers offer multiple operation modes. This section  
describes how to select the hardware connection topology to meet different system requirements.  
7.5.4.1 Single Device: All multiSPI Options  
Figure 82 shows the connections between a host controller and a stand-alone device to exercise all options  
provided by the multiSPI interface.  
DVDD  
Isolation  
(Optional)  
RST  
CONVST  
CS  
SCLK  
SDI  
Host  
Controller  
Device  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
Figure 82. MultiSPI Interface, All Pins  
7.5.4.2 Single Device: Minimum Pins for a Standard SPI Interface  
Figure 83 shows the minimum-pin interface for applications using a standard SPI protocol.  
DVDD  
Isolation  
(Optional)  
(Optional)  
RST  
(Optional)  
CONVST  
CS  
SCLK  
SDI  
Host  
Controller  
Device  
SDO-0  
SDO-1  
SDO-2  
SDO-3  
RVS  
(Optional)  
Figure 83. SPI Interface, Minimum Pins  
The CS, SCLK, SDI, and SDO-0 pins constitute a standard SPI port of the host controller. The CONVST pin can  
be tied to CS, or can be controlled independently for additional timing flexibility. The RST pin can be tied to  
DVDD. The RVS pin can be monitored for timing benefits. The SDO-1, SDO-2, and SDO-3 pins have no external  
connections.  
40  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7.5.4.3 Multiple Devices: Daisy-Chain Topology  
A typical connection diagram showing multiple devices in a daisy-chain topology is shown in Figure 84.  
Host Controller  
CS SCLK  
CONVST  
SDO  
SDI  
c
c
c
c
c
c
Device-1  
Device-2  
Device-N  
Figure 84. Daisy-Chain Connection Schematic  
The CONVST, CS, and SCLK inputs of all devices are connected together and controlled by a single CONVST,  
CS, and SCLK pin of the host controller, respectively. The SDI input pin of the first device in the chain (Device-1)  
is connected to the SDO pin of the host controller, the SDO-0 output pin of Device-1 is connected to the SDI  
input pin of Device-2, and so forth. The SDO-0 output pin of the last device in the chain (Device-N) is connected  
to the SDI pin of the host controller.  
To operate multiple devices in a daisy-chain topology, the host controller must program the configuration  
registers in each device with identical values and must operate with any of the legacy, SPI-compatible protocols  
for data read and data write operations (SDO_CNT[7:0] = 00h). With these configurations settings, the 20-bit  
OSR and 20-bit ISR registers collapse to form a single, 20-bit unified shift register (USR), as shown in Figure 85.  
CS  
20 Bits  
SDI  
Host Controller  
DB19  
DB18  
DB1  
DB0  
Unified Shift Register  
Interface Module  
SCLK  
SDO-0  
Figure 85. Unified Shift Register Schematic  
Copyright © 2015, Texas Instruments Incorporated  
41  
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
All devices in the daisy-chain topology sample their analog input signals on the CONVST rising edge. The data  
transfer frame starts with a CS falling edge. On each SCLK launch edge, every device in the chain shifts out the  
MSB of its USR on to its SDO-0 pin. On every SCLK capture edge, each device in the chain shifts in data  
received on its SDI pin as the LSB bit of its USR. Therefore, in a daisy-chain configuration, the host controller  
receives the data of Device-N, followed by the data of Device-N-1, and so forth (in MSB-first fashion). On the CS  
rising edge, each device decodes the contents in its USR and takes appropriate action.  
A typical timing diagram for three devices connected in daisy-chain topology and using the SPI-00-S protocol is  
shown in Figure 86.  
CS  
1
2
19  
20  
21  
22  
39  
40  
41  
42  
Configuration Data Device -1  
B18 B1  
Configuration Data Device -2  
B38 B21  
Configuration Data Device -3  
B58 B41  
Output Data œ Device 1  
{D18}1 {D1}1  
59  
60  
SCLK  
{SDO}HOST  
{SDI}1  
B59  
B58  
B41  
B40  
B39  
B38  
B21  
B20  
B19  
B0  
{SDO-0}1  
{SDI}2  
{D19}1  
{D19}2  
{D19}3  
{D18}1  
{D18}2  
{D1}1  
{D1}2  
{D0}1  
{D0}2  
{D0}3  
B59  
B58  
B41  
B40  
{D0}1  
{D0}2  
B39  
B59  
B20  
B40  
{SDO-0}2  
{SDI}3  
{D19}1  
{D19}2  
{D18}1  
{D1}1  
Output Data œ Device 3  
{D18}3 {D1}3  
Output Data œ Device 2  
{D18}2 {D1}2  
{SDO-0}3  
{SDI}HOST  
{D19}1  
{D0}1  
Figure 86. Three Devices in Daisy-Chain Mode Timing Diagram  
For N devices connected in daisy-chain topology, an optimal data transfer frame must contain 20 × N SCLK  
capture edges. For a longer data transfer frame, the host controller must appropriately align the configuration  
data for each device before bringing CS high. A shorter data transfer frame can result in an erroneous device  
configuration, and must be avoided.  
Note that the overall throughput of the system is proportionally reduced with the number of devices connected in  
a daisy-chain topology.  
42  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7.5.4.4 Multiple Devices: Star Topology  
A typical connection diagram showing multiple devices in the star topology is shown in Figure 87. The CONVST,  
SDI, and SCLK inputs of all devices are connected together and are controlled by a single CONVST, SDO, and  
SCLK pin of the host controller, respectively. Similarly, the SDO output pin of all devices are tied together and  
connected to the a single SDI input pin of the host controller. The CS input pin of each device is individually  
controlled by separate CS control lines from the host controller.  
Host Controller  
Device N  
Device 2  
Device 1  
Figure 87. Star Topology Connection Schematic  
The timing diagram for N devices connected in the star topology is shown in Figure 88. In order to avoid any  
conflict related to multiple devices driving the SDO line at the same time, ensure that the host controller pulls  
down the CS signal for only one device at any particular time.  
1
2
19  
20  
21  
22  
39  
40  
41  
42  
59  
60  
SCLK  
{CS}1  
{CS}2  
{CS}3  
Configuration Data Device -1  
{B18}1 {B1}1  
Output Data œ Device 1  
{D18}1 {D1}1  
Configuration Data Device -2  
{B18}2 {B1}2  
Output Data œ Device 2  
{D18}2 {D1}2  
Configuration Data Device -3  
{B18}3 {B1}3  
Output Data œ Device 3  
{D18}3 {D1}3  
{SDO}HOST  
{SDI}1,2,3  
{B19}1  
{D19}1  
{B0}1  
{B19}2  
{B0}2  
{B19}3  
{B0}3  
{SDO-0}1,2,3  
{SDI}HOST  
{D0}1  
{D19}2  
{D0}2  
{D19}3  
{D0}3  
Figure 88. Three Devices Connected in Star Connection Timing Diagram  
Copyright © 2015, Texas Instruments Incorporated  
43  
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Device Configuration and Register Maps  
The device features four configuration registers, mapped as described in Table 8.  
Table 8. Configuration Registers Mapping  
REGISTER  
NAME  
ADDRESS  
REGISTER FUNCTION  
SECTION  
010h  
014h  
018h  
01Ch  
PD_CNTL  
SDI_CNTL  
SDO_CNTL  
DATA_CNTL  
Low-power modes control register  
SDI input protocol selection register  
SDO output protocol selection register  
Output data word configuration register  
PD Control  
SDI Control  
SDO Control  
DATA Control  
7.6.1.1 PD_CNTL Register (address = 010h)  
This register controls the low-power modes offered by the device and is protected using a key.  
Any writes to the PD_CNTL register must be preceded by a write operation with the register address set to 011h  
and the register data set to 69h.  
Figure 89. PD_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
NAP_EN  
R/W-0b  
PDWN  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. PD_CNTL Register Field Descriptions  
Bit  
7-2  
1
Field  
0
Type  
R
Reset  
000000b  
0b  
Description  
Reserved bits. Reads return 000000b.  
NAP_EN  
R/W  
This bit enables NAP mode for the device.  
0b = NAP mode is disabled  
1b = NAP mode is enabled  
0
PDWN  
R/W  
0b  
This bit outputs the device in power-down mode.  
0b = Device is powered up  
1b = Device is powered down  
7.6.1.2 SDI_CNTL Register (address = 014h)  
This register configures the protocol used for writing data into the device.  
Figure 90. SDI_CNTL Register  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
SDI_MODE[1:0]  
R/W-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. SDI_CNTL Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R
Reset  
Description  
0
000000b Reserved bits. Reads return 000000b.  
SDI_MODE[1:0]  
R/W  
00b  
These bits select the protocol for writing data into the device.  
00b = Standard SPI with CPOL = 0 and CPHASE = 0  
01b = Standard SPI with CPOL = 0 and CPHASE = 1  
10b = Standard SPI with CPOL = 1 and CPHASE = 0  
11b = Standard SPI with CPOL = 1 and CPHASE = 1  
44  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
7.6.1.3 SDO_CNTL Register (address = 018h)  
This register configures the protocol for reading data from the device.  
Figure 91. SDO_CNTL Register  
7
6
5
0
4
3
2
1
0
SSYNC_CLK_SEL[1:0]  
R/W-00b  
DATA_RATE  
R/W-0b  
SDO_WIDTH[1:0]  
R/W-00b  
SDO_MODE[1:0]  
R/W-00b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. SDO_CNTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SSYNC_CLK_SEL[1:0]  
R/W  
00b  
These bits select the source and frequency of the clock for the source-  
synchronous data transmission and are valid only if SDO_MODE[1:0] =  
11b.  
00b = External SCLK echo  
01b = Internal clock (INTCLK)  
10b = Internal clock / 2 (INTCLK / 2)  
11b = Internal clock / 4 (INTCLK / 4)  
5
4
0
R
0b  
0b  
This bit must be always set to 0.  
DATA_RATE  
R/W  
This bit is ignored if SDO_MODE[1:0] = 00b. When SDO_MODE[1:0] =  
11b:  
0b = SDOs are updated at single data rate (SDR) with respect to the  
output clock  
1b = SDOs are updated at double data rate (DDR) with respect to the  
output clock  
3-2  
1-0  
SDO_WIDTH[1:0]  
SDO_MODE[1:0]  
R/W  
R/W  
00b  
00b  
These bits set the width of the output bus.  
0xb = Data are output only on SDO-0  
10b = Data are output only on SDO-0 and SDO-1  
11b = Data are output on SDO-0, SDO-1, SDO-2, and SDO-3  
These bits select the protocol for reading data from the device.  
00b = SDO follows the same SPI protocol as SDI; see the SDI_CNTL  
register  
01b = Invalid configuration, not supported by the device  
10b = Invalid configuration, not supported by the device  
11b = SDO follows the source-synchronous protocol  
Copyright © 2015, Texas Instruments Incorporated  
45  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
7.6.1.4 DATA_CNTL Register (address = 01Ch)  
This register configures the contents of the 20-bit output data word (D[19:0]).  
Figure 92. DATA_CNTL Register  
7
0
6
0
5
4
3
2
1
0
FPAR_LOC 0  
R/W-00b  
PAR_EN  
R/W-0b  
DATA_PATN[2:0]  
R/W-000b  
R-0b  
R-0b  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. DATA_CNTL Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
R
Reset  
00b  
Description  
0
Reserved bits. Reads return 00b.  
FPAR_LOC[1:0]  
R/W  
00b  
These bits control the data span for calculating the FTPAR bit (bit D[0] in  
the output data word).  
00b = D[0] reflects even parity calculated for 4 MSB bits  
01b = D[0] reflects even parity calculated for 8 MSB bits  
10b = D[0] reflects even parity calculated for 12 MSB bits  
11b = D[0] reflects even parity calculated for 16 MSB bits  
3
PAR_EN  
R/W  
R/W  
0b  
0b = Output data does not contain any parity information  
spaceD[1] = 0  
spaceD[0] = 0  
1b = Parity information is appended to the LSB of the output data  
spaceD[1] = Even parity calculated on bits D[19:2]  
spaceD[0] = Even parity computed on the selected number of MSB bits of  
D[19:2] as per the FPAR_LOC[1:0] setting  
See Figure 46 for further details of parity computation.  
2-0  
DATA_PATN[2:0]  
000b  
These bits control bits D[19:2] of the output data word.  
0xxb = 18-bit conversion output  
100b = All 0s  
101b = All 1s  
110b = Alternating 0s and 1s (that is, 15555h)  
111b = Alternating 00s and 11s (that is, 03333h)  
See Figure 47 for more details.  
46  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The two primary circuits required to maximize the performance of a high-precision, successive approximation  
register (SAR), analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This  
section details some general principles for designing these circuits, followed by an application circuit designed  
using the ADS9110.  
8.1.1 ADC Input Driver  
The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and a fly-wheel  
RC filter. The amplifier is used for signal conditioning of the input signal and its low output impedance provides a  
buffer between the signal source and the switched capacitor inputs of the ADC. The RC filter helps attenuate the  
sampling charge injection from the switched-capacitor input stage of the ADC and functions as an antialiasing  
filter to band-limit the wideband noise contributed by the front-end circuit. Careful design of the front-end circuit is  
critical to meet the linearity and noise performance of the ADS9110.  
8.1.2 Input Amplifier Selection  
Selection criteria for the input amplifiers is highly dependent on the input signal type as well as the performance  
goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate  
amplifier to drive the inputs of the ADC are:  
Small-signal bandwidth. Select the small-signal bandwidth of the input amplifiers to be as high as possible  
after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance  
of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter (see the  
Antialiasing Filter section) at the inputs of the ADC. Higher bandwidth also minimizes the harmonic distortion  
at higher input frequencies. In order to maintain the overall stability of the input driver circuit, select the  
amplifier with Unity Gain Bandwidth (UGB) as described in Equation 14:  
1
÷
÷
UGB í 4 ì  
2p  
ì RFLT ìCFLT  
«
(14)  
Noise. Noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in  
SNR performance of the system. Generally, to ensure that the noise performance of the data acquisition  
system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be  
kept below 20% of the input-referred noise of the ADC. Noise from the input driver circuit is band-limited by  
designing a low cutoff frequency RC filter, as explained in Equation 15.  
2
SNR  
(
dB  
)
÷
V
÷
-
1
_ AMP_PP  
p
2
1
5
VREF  
2
20  
+ en2_RMS  
ì
ì f-3dB  
Ç
ì
ì10  
f
«
NG ì 2 ì  
÷
÷
6.6  
«
where:  
V1 / f_AMP_PP is the peak-to-peak flicker noise in µV,  
en_RMS is the amplifier broadband noise density in nV/Hz,  
f–3dB is the 3-dB bandwidth of the RC filter, and  
NG is the noise gain of the front-end circuit that is equal to 1 in a buffer configuration.  
(15)  
Distortion. Both the ADC and the input driver introduce distortion in a data acquisition block. To ensure that  
the distortion performance of the data acquisition system is not limited by the front-end circuit, the distortion of  
the input driver must be at least 10 dB lower than the distortion of the ADC, as shown in Equation 16.  
THDAMP Ç THDADC - 10  
(
dB  
)
(16)  
47  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Application Information (continued)  
Settling Time. For dc signals with fast transients that are common in a multiplexed application, the input signal  
must settle within an 18-bit accuracy at the device inputs during the acquisition time window. This condition is  
critical to maintain the overall linearity performance of the ADC. Typically, the amplifier data sheets specify  
the output settling performance only up to 0.1% to 0.001%, which may not be sufficient for the desired 18-bit  
accuracy. Therefore, always verify the settling behavior of the input driver by TINA™-SPICE simulations  
before selecting the amplifier.  
8.1.3 Antialiasing Filter  
Converting analog-to-digital signals requires sampling an input signal at a constant rate. Any higher-frequency  
content in the input signal beyond half the sampling frequency is digitized and folded back into the low-frequency  
spectrum. This process is called aliasing. Therefore, an analog, antialiasing filter must be used to remove the  
harmonic content from the input signal before being sampled by the ADC. An antialiasing filter is designed as a  
low-pass, RC filter, where the 3-dB bandwidth is optimized based on specific application requirements. For dc  
signals with fast transients (including multiplexed input signals), a high-bandwidth filter is designed to allow  
accurately settling the signal at the inputs of the ADC during the small acquisition time window. For ac signals,  
keep the filter bandwidth low to band-limit the noise fed into the input of the ADC, thereby increasing the signal-  
to-noise ratio (SNR) of the system.  
Besides filtering the noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling  
charge injection from the switched-capacitor input stage of the ADC. A filter capacitor, CFLT, is connected from  
each input pin of the ADC to the ground (as shown in Figure 93). This capacitor helps reduce the sampling  
charge injection and provides a charge bucket to quickly charge the internal sample-and-hold capacitors during  
the acquisition process. Generally, the value of this capacitor must be at least 15 times the specified value of the  
ADC sampling capacitance. For the ADS9110, the input sampling capacitance is equal to 60 pF, thus it is  
recommeded to keep CFLT greater than 900 pF. The capacitor must be a COG- or NPO-type because these  
capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying  
voltages, frequency, and time.  
RFLT 10  
AINP  
CFLT 900 pF  
1
f-3dB  
=
Device  
2
p
ì RFLT ì CFLT  
AINM  
CFLT 900 pF  
RFLT 10 ꢀ  
GND  
Figure 93. Antialiasing Filter Configuration  
Note that driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier  
marginally unstable. To avoid amplifier stability issues, series isolation resistors (RFLT) are used at the output of  
the amplifiers. A higher value of RFLT is helpful from the amplifier stability perspective, but adds distortion as a  
result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance,  
input signal frequency, and input signal amplitude. Therefore, the selection of RFLT requires balancing the stability  
and distortion of the design. For the ADS9110, limiting the value of RFLT to a maximum of 10-Ω is recommended  
in order to avoid any significant degradation in linearity performance. The tolerance of the selected resistors must  
be kept less than 1% to keep the inputs balanced.  
The driver amplifier must be selected such that its closed-loop output impedance is at least 5X lesser than the  
RFLT  
.
48  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Application Information (continued)  
8.1.4 ADC Reference Driver  
The external reference source to the ADS9110 must provide low-drift and very accurate voltage for the ADC  
reference input and support the dynamic charge requirements without affecting the noise and linearity  
performance of the device. The output broadband noise of most references can be in the order of a few hundred  
μVRMS. Therefore, to prevent any degradation in the noise performance of the ADC, the output of the voltage  
reference must be appropriately filtered by using a low-pass filter with a cutoff frequency of a few hundred hertz.  
After band-limiting the noise of the reference circuit, the next important step is to design a reference buffer that  
can drive the dynamic load posed by the reference input of the ADC. The reference buffer must regulate the  
voltage at the reference pin such that the value of VREF stays within the 1-LSB error at the start of each  
conversion. This condition necessitates the use of a large capacitor, CBUF_FLT (see Figure 39), between each  
pair of REFP and REFM pins for regulating the voltage at the reference input of the ADC. The effective  
capacitance of any large capacitor reduces with the applied voltage based on the voltage rating and type. Using  
X7R-type capacitors is strongly recommended.  
The amplifier selected as the reference driver must have an extremely low offset and temperature drift with a low  
output impedance to drive the capacitor at the ADC reference pins without any stability issues.  
Copyright © 2015, Texas Instruments Incorporated  
49  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
8.2 Typical Application  
30 k  
Reference Drive Circuit  
10 pF  
0.1 µF  
499 ꢀ  
1 kꢀ  
-
4.7 ꢀ  
OPA+  
-
OPA625  
+
2.49 kꢀ  
4.99 kꢀ  
+
OPA378  
+
1 kꢀ  
REF5045  
+
220 nF  
OPA+  
(See Reference Datasheet  
for Detailed Pin Configuration)  
OPA+  
0.1 µF  
1 µF  
1 nF  
10 µF  
1 kꢀ  
10 µF  
10 µF  
1 kꢀ  
1.18 VDC  
1 µF  
-
10 nF  
-VDIFF/2  
REFM REFP REFP REFM  
OPA625  
2.2 ꢀ  
AINP  
+
CONVST  
VINCM = 0 V  
Device  
CONVST  
AINM  
+
2.2 ꢀ  
OPA625  
GND  
AVDD  
DVDD  
10 nF  
+VDIFF/2  
-
1 kꢀ  
AVDD DVDD  
GND  
1 kꢀ  
Input Driver  
SAR ADC  
1 nF  
Figure 94. Differential Input DAQ Circuit for Lowest Distortion and Noise at 2 MSPS  
8.2.1 Design Requirements  
Design an application circuit optimized for using the ADS9110 to achieve:  
> 98.5-dB SNR, < –118-dB THD,  
±1-LSB linearity, and  
Maximum-specified throughput of 2 MSPS  
50  
Copyright © 2015, Texas Instruments Incorporated  
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Typical Application (continued)  
8.2.2 Detailed Design Procedure  
The application circuits are illustrated in Figure 94. For simplicity, power-supply decoupling capacitors are not  
shown in these circuit diagrams; see the Power-Supply Recommendations section for suggested guidelines.  
The input signal is processed through the OPA625 (a high-bandwidth, low-distortion, high-precision amplifier in  
an inverting gain configuration) and a low-pass RC filter before being fed into the ADC. Generally, the distortion  
from the input driver must be at least 10 dB less than the ADC distortion. The distortion resulting from variation in  
the common-mode signal is eliminated by using the OPA625 in an inverting gain configuration. The low-power  
OPA625 as an input driver provides exceptional ac performance because of its extremely low-distortion and high-  
bandwidth specifications. To exercise the complete dynamic range of the ADS9110, the common-mode voltage  
at the ADS9110 inputs is established at a value of 2.25 V (4.5 V / 2) by using the noninverting pins of the  
OPA625 amplifiers.  
In addition, the components of the antialiasing filter are such that the noise from the front-end circuit is kept low  
without adding distortion to the input signal.  
The reference driver circuit, illustrated in Figure 94, generates a voltage of 4.5 VDC using a single 5-V supply.  
This circuit is suitable to drive the reference of the ADS9110 at higher sampling rates up to 2 MSPS. The  
reference voltage of 4.5 V in this design is generated by the high-precision, low-noise REF5045 circuit. The  
output broadband noise of the reference is heavily filtered by a low-pass filter with a 3-dB cutoff frequency of 160  
Hz.  
The reference buffer is designed with the OPA625 and OPA378 in a composite architecture to achieve superior  
dc and ac performance at a reduced power consumption, compared to using a single high-performance amplifier.  
The OPA625 is a high-bandwidth amplifier with a very low open-loop output impedance of 1 Ω up to a frequency  
of 1 MHz. The low open-loop output impedance makes the OPA625 a good choice for driving a high capacitive  
load to regulate the voltage at the reference input of the ADC. The relatively higher offset and drift specifications  
of the OPA625 are corrected by using a dc-correcting amplifier (the OPA378) inside the feedback loop. The  
composite scheme inherits the extremely low offset and temperature drift specifications of the OPA378.  
8.2.3 Application Curves  
1
0.75  
0.5  
0
œ40  
0.25  
0
œ80  
œ120  
œ160  
œ200  
-0.25  
-0.5  
-0.75  
-1  
0
200  
400  
600  
800  
1000  
œ131072  
C031  
C030  
fIN, Input Frequency (kHz)  
ADC Output Code  
Typical INL of ±0.5 LSB  
fIN = 2 kHz, SNR = 99 dB, THD = –120 dB  
Figure 96. Typical INL  
Figure 95. FFT with a 2-kHz Input Signal  
Copyright © 2015, Texas Instruments Incorporated  
51  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
9 Power-Supply Recommendations  
The device has two separate power supplies: AVDD and DVDD. The internal circuits of the device operate on  
AVDD; DVDD is used for the digital interface. AVDD and DVDD can be independently set to any value within the  
permissible range.  
9.1 Power-Supply Decoupling  
The AVDD and DVDD supply pins cannot share the same decoupling capacitor. As shown in Figure 97, separate  
1-μF ceramic capacitors are recommended. These capacitors avoid digital and analog supply crosstalk resulting  
from dynamic currents during conversion and data transfer.  
Digital  
Supply  
16  
DVDD  
15  
GND  
AVDD  
AVDD  
1 µF  
1 µF  
14  
13  
Analog  
Supply  
Figure 97. Supply Decoupling  
9.2 Power Saving  
In normal mode of operation, the device does not power down between conversions, and therefore achieves a  
high throughput of 2 MSPS. However, the device offers two programmable low-power modes (NAP and PD) to  
reduce power consumption when the device is operated at lower throughput rates. Figure 98 shows comparative  
power consumption between the different modes of the device.  
tconv  
CNV  
tacq  
tnap  
tpd  
Device Phase  
ACQ  
NAP  
PD  
~1.5X  
~10X  
~5000X  
IAVDD  
~1800X  
IREF  
Figure 98. Power Consumption in Different Operating Modes  
52  
Copyright © 2015, Texas Instruments Incorporated  
 
 
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
Power Saving (continued)  
9.2.1 NAP Mode  
In NAP mode, some of the internal blocks of the device power down to reduce power consumption in the ACQ  
state.  
To enable NAP mode, set the NAP_EN bit in the PD_CNTL register. To exercise NAP mode, keep the CONVST  
pin high at the end of conversion process. The device then enters NAP mode at the end of conversion and  
continues in NAP mode until the CONVST pin is held high.  
A CONVST falling edge brings the device out of NAP mode; however, the host controller can initiate a new  
conversion (CONVST rising edge) only after the tnap_wkup time has elapsed.  
Figure 99 shows a typical conversion cycle with NAP mode enabled (NAP_EN = 1b).  
Sample  
S
Sample  
S+1  
twh_CONVST  
twl_CONVST  
CONVST  
tcycle  
tnap  
tconv  
tnap_wkup  
tacq  
tconv_max  
tconv_min  
ADCST  
(Internal)  
CNV C  
NAP + ACQ C+1  
ACQ C+1  
CS  
RVS  
t = 0  
Figure 99. NAP Enabled Conversion Cycle  
The cycle time is given by Equation 17.  
tcycle = tconv + tnap + tnap_wkup  
(17)  
At lower throughputs, cycle time (tcycle) increases but the conversion time (tconv) remains constant, and therefore  
the device spends more time in NAP mode, thus giving power scaling with throughput as shown in Figure 100.  
8
6
Without  
NAP  
4
2
With  
NAP  
0
2000  
1600  
1200  
800  
400  
0
C027  
fS, Throughput (kSPS)  
Figure 100. Power Scaling with Throughput with NAP Mode  
Copyright © 2015, Texas Instruments Incorporated  
53  
 
 
 
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
Power Saving (continued)  
9.2.2 PD Mode  
The device also features a deep power-down mode (PD) to reduce the power consumption at very low  
throughput rates.  
To enter PD mode:  
1. Write 069h to address 011h to unlock the PD_CNTL register.  
2. Set the PDWN bit in the PD_CNTL register. The device enters PD mode on the CS rising edge.  
In PD mode, all analog blocks within the device are powered down; however, the interface remains active and  
the register contents are also retained. The RVS pin is high, indicating that the device is ready to receive the  
next command.  
To exit PD mode:  
1. Reset the PDWN bit in the PD_CNTL register.  
2. The RVS pin goes high, indicating that the device has started coming out of PD mode. However, the host  
controller must wait for the tPWRUP time to elapse before initiating a new conversion.  
10 Layout  
10.1 Layout Guidelines  
This section provides some recommended layout guidelines for achieving optimum performance with the  
ADS9110 device.  
10.1.1 Signal Path  
As illustrated in Figure 101, the analog input and reference signals are routed in opposite directions to the digital  
connections. This arrangement prevents noise generated by digital switching activity from coupling to sensitive  
analog signals.  
10.1.2 Grounding and PCB Stack-Up  
Low inductance grounding is critical for achieving optimum performance. Grounding inductance is kept below 1  
nH with 15-mil grounding vias and a printed circuit board (PCB) layout design that has at least four layers. Place  
all critical components of the signal chain on the top layer with a solid analog ground from subsequent inner  
layers to minimize via length to ground.  
Pins 11 and 15 of the ADS9110 can be easily grounded with very low inductance by placing at least four 8-mil  
grounding vias at the ADS9110 thermal pad. Afterwards, pins 11 and 15 can be connected directly to the  
grounded thermal path.  
10.1.3 Decoupling of Power Supplies  
Place the AVDD and DVDD supply decoupling capacitors within 20 mil from the supply pins and use a 15-mil via  
to ground from each capacitor. Avoid placing vias between any supply pin and its decoupling capacitor.  
10.1.4 Reference Decoupling  
Dynamic currents are also present at the REFP and REFM pins during the conversion phase and excellent  
decoupling is required to achieve optimum performance. Three 10-μF, X7R-grade, ceramic capacitors with 10-V  
rating are recommended, placed as illustrated in Figure 101. Select 0603- or 0805-size capacitors to keep ESL  
low. The REFM pin of each pair must be connected to the decoupling capacitor before a ground via.  
10.1.5 Differential Input Decoupling  
Dynamic currents are also present at the differential analog inputs of the ADS9110. C0G- or NPO-type  
capacitors are required to decouple these inputs because their capacitance stays almost constant over the full  
input voltage range. Lower quality capacitors (such as X5R and X7R) have large capacitance changes over the  
full input voltage range that can cause degradation in the performance of the ADS9110.  
54  
Copyright © 2015, Texas Instruments Incorporated  
ADS9110  
www.ti.com.cn  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
10.2 Layout Example  
GND  
10 mF  
Digital Inputs  
and Outputs  
REFP  
REFM  
Reset  
Convert Start  
5 4  
1
7
8
Chip Select  
Serial Clock  
Data In  
REFM  
REFM  
GND  
GND  
AINP  
Multi Function  
Data Out 0  
Data Out 1  
GND  
AINN  
Data Out 2  
Data Out 3  
+
AVDD  
Differential  
Analog Input  
DVDD  
-
GND  
GND  
GND  
Figure 101. Recommended Layout  
版权 © 2015, Texas Instruments Incorporated  
55  
ADS9110  
ZHCSE95A OCTOBER 2015REVISED OCTOBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
OPA378 数据表》,SBOS417  
OPA625 数据表》,SBOS688  
REF5045 数据表》(文献编号 SBOS410)  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
multiSPI, TINA, E2E are trademarks of Texas Instruments.  
SPI is a trademark of Motorola Mobility LLC.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
56  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ADS9110IRGER  
ADS9110IRGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
ADS9110  
ADS9110  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ADS9120

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC
TI

ADS9120IRGER

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC | RGE | 24 | -40 to 125
TI

ADS9120IRGET

具有增强型 SPI 接口的 16 位、2.5MSPS、单通道 SAR ADC | RGE | 24 | -40 to 125
TI

ADS9218

具有全差分 ADC 输入驱动器的双通道、同步采样、18 位、10MSPS SAR ADC
TI

ADS9224R

具有内部基准电压和增强型 SPI 的 16 位、3MSPS、双通道、同步采样 SAR ADC
TI

ADS9224RIRHBR

具有内部基准电压和增强型 SPI 的 16 位、3MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9224RIRHBT

具有内部基准电压和增强型 SPI 的 16 位、3MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9226

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC
TI

ADS9226IRHBR

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9226IRHBT

具有增强型 SPI 的 16 位、2.048MSPS、双通道、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI

ADS9234R

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC
TI

ADS9234RIRHBR

具有内部基准电压和增强型 SPI 的 14 位、3.5MSPS、双路、同步采样 SAR ADC | RHB | 32 | -40 to 125
TI