BQ25601DRTWT [TI]

具有电源路径、USB 检测和 OTG 的 I2C 单节 3A 降压电池充电器 | RTW | 24 | -40 to 85;
BQ25601DRTWT
型号: BQ25601DRTWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源路径、USB 检测和 OTG 的 I2C 单节 3A 降压电池充电器 | RTW | 24 | -40 to 85

电池
文件: 总66页 (文件大小:3280K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
BQ25601D USB 充电器检测功能、用于高输入电压和窄电压直(NVDC)  
电源路径管理I2C 控制3A 单节电池充电器  
1 特性  
3 说明  
• 高1.5MHz 同步开关模式降压充电器  
BQ25601D 器件是一款适用于单节锂离子和锂聚合物  
电池的高度集成型 3A 开关模式电池充电管理和系统电  
源路径管理器件。低阻抗电源路径对开关模式运行效率  
进行了优化、缩短了电池充电时间并延长了放电阶段的  
电池使用寿命。具有充电和系统设置的 I2C 串行接口使  
得此器件成为一种真正灵活的解决方案。  
2A 电流5V 输入下具92% 的充电效率  
– 针USB 电压输(5V) 进行了优化  
– 用于轻负载运行的可选低功耗脉冲频率调制  
(PFM) 模式  
• 支USB On-The-Go (OTG)  
器件信息(1)  
– 具有高1.2A 输出的升压转换器  
1A 输出下具92% 的升压效率  
– 精确的恒定电(CC) 限制  
封装尺寸标称值)  
器件型号  
BQ25601D  
封装  
WQFN (24)  
4.00mm × 4.00mm  
– 高500µF 容性负载的软启动  
– 输出短路保护  
– 用于轻负载运行的可选低功PFM 模式  
• 单个输入USB 输入和高电压适配器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VBUS  
D+/D-  
SW  
– 支3.9V 13.5V 输入电压范围绝对最大输  
入电压额定值22V  
– 可编程输入电流限制100mA 3.2A分辨率  
100mA),USB 2.0USB 3.0 标准和  
高电压适配(IINDPM)  
– 通过高5.4V 的输入电压限(VINDPM) 进行  
最大功率跟踪  
VINDPM 阈值自动跟踪电池电压  
– 自动检USB BC1.2SDPCDPDCP 以及  
非标准适配器  
USB  
Host  
BTST  
SYS  
USB Detection  
I2C Bus  
BAT  
ICHG  
+
REGN  
Host Control  
/QON  
TS  
Optional  
• 高电池放电效率电池放MOSFET 19.5mΩ  
VDC (NVDC) 电源路径管理  
简化版应用  
– 无需电池或深度放电的电池即可瞬时启动  
– 电池充电模式下实现理想的二极管运行  
BATFET 控制支持运输模式、唤醒和完全系统复  
• 灵活的自主I2C 模式可实现出色的系统性能  
• 高集成度包括所MOSFET、电流感测和环路补偿  
17µA 低电池泄漏电流  
• 高精度  
±0.5% 充电电压调节  
±5% 1.5A 充电电流调节  
±10% 0.9A 输入电流调节  
• 安全相关认证:  
TUV IEC 62368 认证  
2 应用  
• 智能手机  
• 便携式互联网设备和附件  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDA2  
 
 
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................17  
9.3 Feature Description...................................................18  
9.4 Device Functional Modes..........................................25  
9.5 Protections................................................................29  
9.6 Programming............................................................ 31  
9.7 Register Maps...........................................................34  
10 Layout...........................................................................54  
10.1 Layout Guidelines................................................... 54  
10.2 Layout Example...................................................... 54  
11 Device and Documentation Support..........................56  
11.1 Device Support........................................................56  
11.2 Documentation Support.......................................... 56  
11.3 接收文档更新通知................................................... 56  
11.4 支持资源..................................................................56  
11.5 Trademarks............................................................. 56  
11.6 Electrostatic Discharge Caution..............................56  
11.7 术语表..................................................................... 56  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings........................................ 7  
8.2 ESD Ratings............................................................... 7  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal information....................................................8  
8.5 Electrical Characteristics.............................................8  
8.6 Timing Requirements................................................13  
8.7 Typical Characteristics..............................................14  
9 Detailed Description......................................................16  
9.1 Overview...................................................................16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (December 2020) to Revision B (February 2022)  
Page  
Deleted MAX values for VREGN in 8.5 ........................................................................................................... 8  
Changes from Revision * (July 2018) to Revision A (December 2020)  
Page  
• 添加了安全相关认证特性.................................................................................................................................... 1  
• 删除了整个数据表中WEBENCH.................................................................................................................... 1  
Deleted OVPFET_DIS-1 from IBAT and IVBUS_HIZ test conditions....................................................................... 8  
Added text to the end of last paragraph in Converter Power-Up......................................................................19  
Added text to the end of third paragraph in JEITA Guideline Compliance During Charging Mode.................. 23  
Added TS Resistor Network figure in JEITA Guideline Compliance During Charging Mode............................23  
Changed fault to timer in fourth paragraph in Charging Safety Timer.............................................................. 25  
Changed 0111 to 0010 in PN[3:0] in REG0B Field Descriptions...................................................................... 45  
Changed >20μF to 20μF in last paragraph in Output Capacitor................................................................ 48  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 说明)  
BQ25601D 是一款适用于单节锂离子和锂聚合物电池的高度集成3.0A 开关模式电池充电管理和系统电源路径管  
理器件可以为各类智能手机、平板电脑和便携式设备提供快速充电功能并支持高输入电压。其低阻抗电源路径  
对开关模式运行效率进行了优化、缩短了电池充电时间并延长了放电阶段的电池使用寿命。其输入电压和电流调  
节可以为电池提供最大的充电功率。该解决方案在系统和电池之间高度集成输入反向阻FETRBFETQ1、  
高侧开关 FETHSFETQ2、低侧开关 FETLSFETQ3以及电池 FETBATFETQ4。它还集成了自  
举二极管以进行高侧栅极驱动从而简化系统设计。具有充电和系统设置的 I2C 串行接口使得此器件成为一种真  
正灵活的解决方案。  
该器件支持多种输入源包括标准 USB 主机端口、USB 充电端口以及兼USB 的高电压适配器。该器件根据内  
USB 接口设置默认输入电流限值。 为了设置默认输入电流限值器件使用内置 USB 接口或者从系统检测电路  
USB PHY 器件中获取结果。该器件符合 USB 2.0 USB 3.0 电源规范具有输入电流和电压调节功能。  
该器件还具有高1.2A 的恒定电流限制能力能够VBUS 5.15V 的电压USB On-the-Go (OTG) 运  
行功率额定值规范。  
电源路径管理将系统电压调节至稍高于电池电压的水平但是不会下降至 3.5V 最小系统电压可编程以下。借  
助于这个特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电流限值或电压限  
值时电源路径管理技术自动将充电电流减少0。随着系统负载持续增加电源路径将使电池放电直到满足系  
统电源需求。该补充模式可防止输入源过载。  
此器件在无需软件控制情况下启动并完成一个充电周期。它感应电池电压并通过三个阶段为电池充电预充电、  
恒定电流和恒定电压。在充电周期的末尾当充电电流低于预设限值并且电池电压高于再充电阈值时充电器自  
动终止。如果已完全充电的电池降至再充电阈值以下则充电器自动启动另一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监视、充电安全性计  
时器以及过压和过流保护。当结温超过 110°C可编程热调节会使充电电流减小。STAT 输出报告充电状态  
和任何故障状况。其他安全特性包括针对充电和升压模式的电池温度感应、热调节和热关断以及输入 UVLO 和过  
压保护。VBUS_GD 位指示电源是否正常。当发生故障时INT 输出会立即通知主机。  
该器件还提供用BATFET 使能和复位控制QON 引脚以退出低功耗运输模式或完全系统复位功能。  
该器件采24 4mm × 4mm x 0.75mm WQFN 封装。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Device Comparison Table  
BQ25600(D)  
BQ25601(D)  
BQ25606  
Number of Series Cells  
Cell Chemistry  
1
1
1
Li-Ion/Li-Polymer  
3.9 - 13.5  
22  
Li-Ion/Li-Polymer  
Li-Ion/Li-Polymer  
Operation Input Voltage Range (V)  
Absolute Max Rating, VBUS (V)  
Charge Voltage (V)  
3.9 - 13.5  
3.9 - 13.5  
22  
22  
3.85 - 4.62  
3.85 - 4.62  
4.2/4.35/4.4  
3
Charge Current ICHG (A)  
Power Path  
3
Yes  
3
Yes  
Yes  
Discharge Current Rating (A)  
I2C / Standalone (I2C Address)  
6
6
6
I2C (6BH)  
I2C (6BH)  
Standalone  
D+/D-  
USB Detection  
BAT Remote Sense  
Termination Current (A)  
Precharge Current (A)  
Package  
BQ25600: PSEL; BQ25600D: D+/D- BQ25601: PSEL; BQ25601D: D+/D-  
Yes  
60 - 780  
No  
No  
60 - 780  
5% of ICHG  
5% of ICHG  
QFN24 - 4x4  
60 -780  
60 -780  
WCSP30 - 2x2.4  
QFN24 - 4x4  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Pin Configuration and Functions  
VBUS  
D+  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
GND  
SYS  
SYS  
BAT  
BAT  
D-  
Thermal  
Pad  
STAT  
SCL  
SDA  
7
8
9
10 11 12  
(Not to scale)  
7-1. RTW Package 24-Pin WQFN Top View  
7-1. Pin Functions  
Pin  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
13  
Battery connection point to the positive terminal of the battery pack. The internal BATFET and current sensing is  
connected between SYS and BAT. Connect a 10 µF close to the BAT pin.  
BAT  
P
14  
PWM high side driver positive supply. Internally, the BTST pin is connected to the cathode of the boost-strap diode.  
Connect the 0.047-μF bootstrap capacitor from SW to BTST.  
BTST  
CE  
21  
P
9
DI  
Charge enable pin. When this pin is driven low, battery charging is enabled.  
17  
18  
GND  
INT  
NC  
Ground pins.  
Open-drain interrupt Output. Connect the INT to a logic rail through 10-kΩresistor. The INT pin sends an active low,  
256-µs pulse to host to report charger device status and fault.  
7
DO  
8
No Connect. Keep the pins float.  
10  
Negative line of the USB data line pair. D+/Dbased USB host/charging port detection. The detection includes  
data contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard adaptors  
3
23  
2
AIO  
DO  
AIO  
D–  
PMID  
D+  
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Put 10 μF ceramic  
capacitor on PMID to GND.  
Positive line of the USB data line pair. D+/Dbased USB host/charging port detection. The detection includes data  
contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard adaptors  
BATFET enable/reset control input. When BATFET is in ship mode, a logic low of tSHIPMODE duration turns on  
BATFET to exit shipping mode. When VBUS is not pluggeDin, a logic low of tQON_RST (minimum 8 s) duration  
resets SYS (system power) by turning BATFET off for tBATFET_RST (minimum 250 ms) and then re-enable BATFET to  
provide full system power reset. The pin contains an internal pull-up to maintain default high logic.  
QON  
12  
22  
DI  
P
LSFET driver and internal supply output. Internally, REGN is connected to the anode of the boost-strap diode.  
Connect a 4.7-μF (10-V rating) ceramic capacitor from REGN to GND. The capacitor should be placed close to the  
REGN  
IC.  
I2C interface clock. Connect SCL to the logic rail through a 10-kΩresistor.  
I2C interface data. Connect SDA to the logic rail through a 10-kΩresistor.  
SCL  
SDA  
5
6
DI  
DIO  
Open-drain charge status output. Connect the STAT pin to a logic rail via 10-kresistor. The STAT pin indicates  
charger status. Collect a current limit resister and a LED from a rail to this pin.  
Charge in progress: LOW  
STAT  
4
DO  
Charge complete or charger in SLEEP mode: HIGH  
Charge suspend (fault response): 1-Hz, 50% duty cycle Pulses  
This pin can be disabled via EN_ICHG_MON[1:0] register bits.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
7-1. Pin Functions (continued)  
Pin  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
19  
SW  
P
P
Switching node output. Connected to output inductor. Connect the 0.047-μF bootstrap capacitor from SW to BTST.  
20  
15  
Converter output connection point. The internal current sensing network is connected between SYS and BAT.  
Connect a 20 µF capacitor close to the SYS pin.  
SYS  
TS  
16  
Temperature qualification voltage input to support JEITA profile. Connect a negative temperature coefficient  
thermistor. Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends when  
TS pin is out of range. When TS pin is not used, connect a 10-kΩresistor from REGN to TS and connect a 10-kΩ  
resistor from TS to GND. It is recommended to use a 103AT-2 thermistor.  
11  
AI  
VAC  
24  
1
AI  
P
Charge input voltage sense. This pin must be connected to VBUS pin.  
Charger input. The internal n-channel reverse block MOSFET (RBFET) is connected between VBUS and PMID  
pins. Place a 1-uF ceramic capacitor from VBUS to GND close to device.  
VBUS  
Thermal pad and ground reference. This pad is ground reference for the device and it is also the thermal pad used  
Thermal Pad  
P
to conduct heat from the device. This pad should be tied externally to a ground plane through PCB vias under the  
pad.  
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Voltage Range (with respect to  
VAC, VBUS (converter not switching)(2)  
GND)  
22  
V
2  
Voltage Range (with respect to  
BTST, PMID (converter not switching)(2)  
GND)  
22  
V
0.3  
Voltage Range (with respect to  
GND)  
SW  
16  
7
V
V
2  
Voltage Range (with respect to  
GND)  
BTST to SW  
0.3  
Voltage Range (with respect to  
GND)  
7
7
V
V
D+, D–  
0.3  
0.3  
Voltage Range (with respect to  
GND)  
REGN, TS, CE, BAT, SYS (converter not switching)  
Output Sink Current  
STAT  
6
7
mA  
V
Voltage Range (with respect to  
GND)  
SDA, SCL, INT, /QON, STAT  
0.3  
0.3  
Voltage Range (with respect to  
GND)  
PGND to GND (QFN package only)  
INT  
0.3  
V
Output Sink Current  
6
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
40  
65  
°C  
(1) Stresses beyond those listed under Absolute maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability. All voltage values are with respect to the network ground terminal unless otherwise noted.  
(2) VBUS is specified up to 22 V for a maximum of one hour at room temperature  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
MIN  
NOM  
MAX UNIT  
VBUS  
Iin  
Input voltage  
3.9  
13.5 (1)  
V
A
Input current (VBUS)  
Output current (SW)  
Battery voltage  
3.25  
3.25  
4.615  
3.0  
ISWOP  
VBATOP  
IBATOP  
IBATOP  
TA  
A
V
Fast charging current  
Discharging current (continuous)  
Operating ambient temperature  
A
6
A
85  
°C  
40  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum voltage rating on either the BTST or SW pins. A  
tight layout minimizes switching noise.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25601D  
 
 
 
 
 
 
 
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.4 Thermal information  
BQ25601D  
THERMAL METRIC(1)  
RTW (WQFN)  
UNIT  
24 PinS  
35.6  
22.7  
11.9  
0.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
12  
ΨJB  
RθJC(bot)  
2.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
8.5 Electrical Characteristics  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENTS  
VBAT = 4.5 V, VBUS < VAC-UVLOZ  
leakage between BAT and VBUS,  
TJ< 85°C  
,
Battery discharge current (BAT,  
SW, SYS) in buck mode  
IBAT  
5
µA  
µA  
VBAT = 4.5 V, HIZ Mode and No  
VBUS, I2C disabled, BATFET  
Disabled. TJ < 85°C  
Battery discharge current (BAT)  
in buck mode  
IBAT  
17  
33  
VBAT = 4.5 V, HIZ Mode and No  
VBUS, I2C Disabled, BATFET  
Enabled. TJ < 85°C  
Battery discharge current (BAT,  
SW, SYS)  
IBAT  
58  
37  
85  
55  
µA  
µA  
IVBUS_HIZ  
Input supply current (VBUS) in  
buck mode  
VVBUS = 5 V, High-Z Mode, No  
battery  
Input supply current (VBUS) in  
buck mode  
VVBUS = 12 V, High-Z Mode, No  
battery  
IVBUS_HIZ  
IVBUS  
68  
93  
3
µA  
Input supply current (VBUS) in  
buck mode  
VVBUS = 12 V, VVBUS > VVBAT  
converter not switching  
,
1.5  
mA  
VVBUS > VUVLO, VVBUS > VVBAT  
converter switching, VBAT = 3.8V,  
ISYS = 0A  
,
Input supply current (VBUS) in  
buck mode  
IVBUS  
3
3
mA  
mA  
Battery Discharge Current in  
boost mode  
VBAT = 4.2 V, boost mode, IVBUS = 0  
A, converter switching  
IBOOST  
VBUS, VAC AND BAT PIN POWER-UP  
VBUS_OP  
VBUS operating range  
VVBUS rising  
VVAC rising  
3.9  
13.5  
3.6  
V
V
VBUS for active I2C, no battery  
Sense VAC pin voltage  
VVAC_UVLOZ  
3.3  
VVAC_UVLOZ_HYS  
VVAC_PRESENT  
VVAC_PRESENT_HYS  
VSLEEP  
I2C active hysteresis  
VAC falling from above VVAC_UVLOZ  
VVAC rising  
300  
mV  
V
One of the conditions to turn on  
REGN  
3.65  
3.9  
One of the conditions to turn on  
REGN  
mV  
VVAC falling  
500  
60  
(VVACVVBAT ), VBUSMIN_FALL  
BAT VREG, VAC falling  
Sleep mode falling threshold  
Sleep mode rising threshold  
15  
131  
340  
mV  
mV  
V
(VVACVVBAT ), VBUSMIN_FALL  
BAT VREG, VAC rising  
VSLEEPZ  
115  
220  
V
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VAC 6.5-V Overvoltage rising  
threshold  
VVAC_OV_RISE  
VVAC_OV_RISE  
VVAC_OV_RISE  
VVAC_OV_HYS  
VVAC_OV_HYS  
VAC rising; OVP (REG06[7:6]) = '01'  
6.1  
6.4  
6.7  
V
VAC 10.5-V Overvoltage rising  
threshold  
VAC rising, OVP (REG06[7:6]) = '10'  
VAC rising, OVP (REG06[7:6]) = '11'  
VAC falling, OVP (REG06[7:6]) = '01'  
VAC falling, OVP (REG06[7:6]) = '10'  
10.35  
13.5  
10.9  
14.2  
320  
11.5  
V
V
VAC 14-V Overvoltage rising  
threshold  
14.85  
VAC 6.5-V Overvoltage  
hysteresis  
mV  
mV  
VAC 10.5-V Overvoltage  
hysteresis  
250  
300  
VVAC_OV_HYS  
VBAT_UVLOZ  
VBAT_DPL_FALL  
VBAT_DPL_RISE  
VAC 14-V Overvoltage hysteresis VAC falling, OVP (REG06[7:6]) = '11'  
mV  
V
BAT for active I2C, no adapter  
Battery Depletion Threshold  
Battery Depletion Threshold  
VBAT rising  
VBAT falling  
VBAT rising  
2.5  
2.2  
2.6  
V
2.34  
2.86  
V
Battery Depletion rising  
hysteresis  
VBAT_DPL_HYST  
VBAT rising  
VBUS falling  
180  
mV  
Bad adapter detection falling  
threshold  
VBUSMIN_FALL  
VBUSMIN_HYST  
IBADSRC  
3.75  
3.9  
80  
30  
4.0  
V
Bad adapter detection hysteresis  
mV  
mA  
Bad adapter detection current  
source  
Sink current from VBUS to GND  
POWER-PATH  
VSYS_MIN  
VVBAT < SYS_MIN[2:0] = 101,  
BATFET Disabled (REG07[5] = 1)  
System regulation voltage  
System Regulation Voltage  
3.5  
4.4  
3.68  
V
V
ISYS = 0 A, VVBAT > VSYSMIN, VVBAT  
4.400 V, BATFET disabled  
(REG07[5] = 1)  
=
VBAT + 50  
mV  
VSYS  
Maximum DC system voltage  
output  
ISYS = 0 A, , Q4 off, VVBAT4.400 V,  
VVBAT > VSYSMIN = 3.5V  
VSYS_MAX  
4.45  
45  
4.48  
V
Top reverse blocking MOSFET  
on-resistance between VBUS and  
PMID - Q1  
RON(RBFET)  
-40°CTA 125°C  
mΩ  
Top switching MOSFET on-  
resistance between PMID and  
SW - Q2  
RON(HSFET)  
62  
71  
VREGN = 5 V , -40°CTA 125°C  
VREGN = 5 V , -40°CTA 125°C  
mΩ  
mΩ  
Bottom switching MOSFET on-  
resistance between SW and GND  
- Q3  
RON(LSFET)  
BATFET forward voltage in  
supplement mode  
VFWD  
30  
mV  
QFN package, Measured from BAT  
to SYS, VBAT = 4.2V, TJ = 25°C  
RON(BAT-SYS)  
SYS-BAT MOSFET on-resistance  
19.5  
24  
30  
mΩ  
QFN package, Measured from BAT  
to SYS, VBAT = 4.2V, TJ = 40 -  
125°C  
RON(BAT-SYS)  
SYS-BAT MOSFET on-resistance  
19.5  
mΩ  
BATTERY CHARGER  
VBATREG_RANGE Charge voltage program range  
VBATREG_STEP Charge voltage step  
3.847  
4.615  
V
32  
mV  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VREG (REG04[7:3]) = 4.20 V  
(01011), V, 40 TJ 85°C  
4.178  
4.200  
4.220  
VREG (REG04[7:3]) = 4.343 V  
(01111), V, 40 TJ 85°C  
VBATREG  
Charge voltage setting  
4.321  
4.343  
4.391  
4.365  
V
V
VREG (REG04[7:3]) = 4.391 V  
(10001), V, 40 TJ 85°C  
4.373  
0
4.407  
3000  
ICHG_REG_RANGE  
ICHG_REG_STEP  
Charge current regulation range  
Charge current regulation step  
mA  
mA  
60  
ICHG = 240 mA, VVBAT = 3.1V or  
VVBAT = 3.8 V  
ICHG_REG  
Charge current regulation setting  
0.216  
0.24  
0.264  
A
Charge current regulation  
accuracy  
ICHG = 240 mA, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
ICHG_REG_ACC  
ICHG_REG  
10%  
10%  
Charge current regulation setting ICHG = 720 mA, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
0.685  
0.720  
1.380  
0.761  
A
Charge current regulation  
accuracy  
ICHG_REG = 720 mA, VBAT = 3.1 V or  
VBAT = 3.8 V  
ICHG_REG  
-5%  
1.311  
5%  
6%  
1.449  
5%  
ICHG = 1.38 A, VVBAT = 3.1 V or  
VVBAT = 3.8 V  
ICHG_REG  
Charge current regulation setting  
A
Charge current regulation  
accuracy  
ICHG = 720 mA or ICHG = 1.38 A,  
VVBAT = 3.1 V or VVBAT = 3.8 V  
ICHG_REG_ACC  
VBATLOWV_FALL  
VBATLOWV_RISE  
IPRECHG  
Battery LOWV falling threshold  
Battery LOWV rising threshold  
Precharge current regulation  
ICHG = 240 mA  
2.7  
3.0  
2.8  
3.12  
171  
2.9  
3.24  
189  
V
V
Pre-charge to fast charge  
IPRECHG[3:0] = '0010' = 180 mA  
153  
mA  
Precharge current regulation  
accuracy  
IPRECHG_ACC  
ITERM  
IPRECHG[3:0] = '0010' = 180 mA  
5%  
15%  
Termination current regulation  
ICHG > 780 mA, ITERM[3:0] = '0010'  
= 180 mA, VVBAT = 4.208 V  
150  
180  
216  
mA  
mA  
mA  
Termination current regulation  
accuracy  
ICHG > 780 mA, , ITERM[3:0] = '0010'  
= 180 mA, VVBAT = 4.208 V  
ITERM_ACC  
ITERM  
ITERM_ACC  
ITERM  
-16.7%  
162  
20%  
192  
I
CHG 780 mA, , ITERM[3:0] =  
Termination current regulation  
180  
60  
'0010' = 180 mA  
Termination current regulation  
accuracy  
I
CHG 780 mA, , ITERM[3:0] =  
-10%  
45  
10%  
85  
'0010' = 180 mA  
Termination current regulation  
ICHG = 600 mA, ITERM[3:0] = '0000'  
= 60 mA, VVBAT = 4.208 V  
Termination current regulation  
accuracy  
ICHG = 600 mA, ITERM[3:0] = '0000'  
= 60 mA, VVBAT = 4.208 V  
ITERM_ACC  
-25%  
42%  
VSHORT  
VSHORTZ  
ISHORT  
Battery short voltage  
Battery short voltage  
Battery short current  
VVBAT falling  
1.85  
2.15  
70  
2
2.25  
90  
2.15  
2.35  
110  
V
V
VVBAT rising  
VVBAT < VSHORTZ  
mA  
Recharge Threshold below  
VBAT_REG  
VRECHG  
VBAT falling, REG04[0] = 0  
90  
120  
150  
265  
mV  
Recharge Threshold below  
VBAT_REG  
VRECHG  
VBAT falling, REG04[0] = 1  
VSYS = 4.2 V  
200  
230  
30  
mV  
mA  
ISYSLOAD  
System discharge load current  
INPUT VOLTAGE AND CURRENT REGULATION  
VINDPM  
Input voltage regulation limit  
Input voltage regulation accuracy  
Input voltage regulation limit  
VINDPM (REG06[3:0] = 0000) = 3.9 V  
VINDPM (REG06[3:0] = 0110) = 4.4 V  
3.78  
3%  
4.268  
3.95  
4.4  
4.1  
5%  
V
V
VINDPM_ACC  
VINDPM  
4.532  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
3%  
4.171  
TYP  
MAX  
3%  
UNIT  
VINDPM_ACC  
VDPM_VBAT  
Input voltage regulation accuracy  
Input voltage regulation limit  
tracking VBAT  
VINDPM = 3.9V,  
VDPM_VBAT_TRACK = 300mV,  
VBAT = 4.0V  
4.3  
4.43  
V
VDPM_VBAT_ACC  
Input voltage regulation accuracy  
tracking VBAT  
3%  
500  
900  
1.5  
3%  
VVBUS = 5 V, current pulled from SW,  
IINDPM (REG[4:0] = 00100) = 500  
mA, 40 TJ 85°C  
450  
mA  
mA  
VVBUS = 5 V, current pulled from SW,  
IINDPM (REG[4:0] = 01000) = 900  
mA, 40 TJ 85°C  
IINDPM  
USB input current regulation limit  
750  
1.3  
VVBUS = 5 V, current pulled from SW,  
IINDPM (REG[4:0] = 01110) = 1.5 A,  
40 TJ 85°C  
A
Input current limit during system  
start-up sequence  
IIN_START  
200  
mA  
BAT PIN OVERVOLTAGE PROTECTION  
VBATOVP_RISE Battery overvoltage threshold  
VBATOVP_FALL Battery overvoltage threshold  
THERMAL REGULATION AND THERMAL SHUTDOWN  
VBAT rising, as percentage of  
VBAT_REG  
103%  
101%  
104%  
102%  
105%  
103%  
VBAT falling, as percentage of  
VBAT_REG  
Temperature Increasing, TREG  
(REG05[1] = 1) = 110℃  
Junction Temperature Regulation  
Threshold  
TJUNCTION_REG  
TJUNCTION_REG  
110  
90  
°C  
°C  
Junction Temperature Regulation Temperature Increasing, TREG  
Threshold  
(REG05[1] = 0) = 90℃  
Thermal Shutdown Rising  
Temperature  
TSHUT  
Temperature Increasing  
160  
30  
°C  
°C  
TSHUT_HYST  
Thermal Shutdown Hysteresis  
JEITA Thermistor Comparator (BUCK MODE)  
T1 (0°C) threshold, Charge  
suspended T1 below this  
temperature.  
Charger suspends charge. As  
Percentage to VREGN  
VT1  
VT1  
VT2  
VT2  
VT3  
VT3  
VT5  
VT5  
72.4%  
69%  
73.3%  
71.5%  
68%  
74.2%  
74%  
Falling  
As Percentage to VREGN  
As percentage of VREGN  
As Percentage to VREGN  
T2 (10°C) threshold, Charge back  
to ICHG/2 and 4.2 V below this  
temperature  
67.2%  
66%  
69%  
Falling  
66.8%  
44.7%  
45.7%  
34.2%  
35.3%  
67.7%  
45.8%  
46.3%  
35.1%  
36.3%  
T3 (45°C) threshold, charge back  
to ICHG and 4.05V above this  
temperature.  
Charger suspends charge. As  
Percentage to VREGN  
43.8%  
45.1%  
33.7%  
34.5%  
Falling  
As Percentage to VREGN  
As Percentage to VREGN  
As Percentage to VREGN  
T5 (60°C) threshold, charge  
suspended above this  
temperature.  
Falling  
COLD OR HOT THERMISTER COMPARATOR (BOOST MODE)  
As Percentage to VREGN (Approx.  
-20°C w/ 103AT), TJ = 20°C -  
125°C  
Cold Temperature Threshold, TS  
pin Voltage Rising Threshold  
VBCOLD  
79.5%  
80%  
80.5%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.5 Electrical Characteristics (continued)  
VVAC_UVLOZ < VVAC < VVAC_OV and VVAC > VBAT + VSLEEP, TJ = 40°C to 125°C and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TJ = 20°C - 125°C  
MIN  
TYP  
MAX  
UNIT  
VBCOLD  
VBHOT  
VBHOT  
Falling  
78.3%  
79%  
79.7%  
As Percentage to VREGN (Approx.  
60°C w/ 103AT), TJ = 20°C -  
125°C  
Hot Temperature Threshold, TS  
pin Voltage falling Threshold  
30.2%  
33.8%  
31.2%  
34.4%  
32.2%  
34.9%  
Rising  
TJ = 20°C - 125°C  
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)  
HSFET cycle-by-cycle over-  
IHSFET_OCP  
5.2  
6.0  
8.0  
A
A
current threshold  
IBATFET_OCP  
System over load threshold  
PWM  
Oscillator frequency, buck mode  
Oscillator frequency, boost mode  
1320  
1150  
1500  
1412  
97%  
1680  
1660  
kHz  
kHz  
fSW  
PWM switching frequency  
DMAX  
Maximum PWM duty cycle(1)  
BOOST MODE OPERATION  
VVBAT = 3.8 V, I(PMID) = 0 A,  
BOOSTV[1:0] = '10' = 5.15 V  
VOTG_REG  
Boost mode regulation voltage  
4.97  
-3%  
5.126  
5.280  
3%  
V
Boost mode regulation voltage  
accuracy  
VVBAT = 3.8 V, I(PMID) = 0 A,  
BOOSTV[1:0] = '10' = 5.15 V  
VOTG_REG_ACC  
VVBAT falling, MIN_VBAT_SEL  
(REG01[0]) = 0  
2.6  
2.9  
2.8  
3.0  
2.93  
3.15  
V
V
VVBAT rising, MIN_VBAT_SEL  
(REG01[0]) = 0  
Battery voltage exiting boost  
mode  
VBATLOWV_OTG  
VVBAT falling, MIN_VBAT_SEL  
(REG01[0]) = 1  
2.38  
2.7  
2.5  
2.8  
1.4  
2.6  
V
V
VVBAT rising, MIN_VBAT_SEL  
(REG01[0]) = 1  
2.93  
IOTG  
OTG mode output current  
BOOST_LIM (REG02[7]) = 1  
BOOST_LIM = 0.5 A (REG02[7] = 0)  
Rising threshold  
1.2  
0.5  
1.6  
0.722  
6.15  
A
A
V
Boost mode RBFET over-current  
protection accuracy  
IOTG_OCP_ACC  
VOTG_OVP  
REGN LDO  
VREGN  
OTG overvoltage threshold  
5.55  
5.8  
REGN LDO output voltage  
REGN LDO output voltage  
VVBUS = 9V, IREGN = 40mA  
VVBUS = 5V, IREGN = 20mA  
5.6  
4.6  
6
V
V
VREGN  
4.7  
LOGIC I/O PIN CHARACTERISTICS ( CE, INT, STAT)  
VILO  
VIH  
Input low threshold  
0.4  
1
V
V
Input high threshold  
High-level leakage current  
1.3  
1.3  
IBIAS  
Pull up rail 1.8 V  
µA  
I2C Interface (SCL, SDA)  
VIH  
VIL  
Input high threshold level  
Pull up rail 1.8 V  
Pull up rail 1.8 V  
Sink current = 5 mA,  
V
V
V
Input t low threshold level  
Output low threshold level  
0.4  
0.4  
VOL  
(1) Specified by design. Not production tested.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
VBUS/BAT POWER UP  
VAC rising above ACOV threshold to  
turn off Q2  
tACOV  
VAC OVP reaction time  
200  
30  
ns  
tBADSRC  
Bad adapter detection duration  
ms  
BATTERY CHARGER  
tTERM_DGL  
Deglitch time for charge termination  
250  
250  
ms  
ms  
tRECHG_DGL  
Deglitch time for recharge  
System over-current deglitch time to  
turn off Q4  
tSYSOVLD_DGL  
100  
1
µs  
µs  
Battery over-voltage deglitch time to  
disable charge  
tBATOVP  
tSAFETY  
Typical Charge Safety Timer Range  
Typical Top-Off Timer Range  
CHG_TIMER = 1  
8
10  
30  
12  
36  
hr  
tTOP_OFF  
TOP_OFF_TIMER[1:0] = 10 (30 min)  
24  
min  
QON TIMING  
/QON low time to turn on BATFET and  
exit ship mode  
tSHIPMODE  
tQON_RST_2  
tBATFET_RST  
tSM_DLY  
0.9  
8
1.3  
12  
s
s
10TJ 60℃  
10TJ 60℃  
10TJ 60℃  
10TJ 60℃  
QON low time to reset BATFET  
BATFET off time during full system  
reset  
250  
10  
400  
15  
ms  
s
Enter ship mode delay  
DIGITAL CLOCK AND WATCHDOG TIMER  
tWDT  
fLPDIG  
fDIG  
REG05[4]=1  
REGN LDO disabled  
REGN LDO disabled  
REGN LDO enabled  
40  
30  
s
Digital Low Power Clock  
Digital Clock  
kHz  
kHz  
kHz  
500  
fSCL  
SCL clock frequency  
400  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.7 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
VBUS Voltage  
5 V  
VBAT = 3.2 V  
VBAT = 3.8 V  
VBAT = 4.1 V  
9 V  
12 V  
0
0.5  
1
1.5  
Charge Current (A)  
2
2.5  
3
0.2  
0.4  
0.6  
0.8  
OTG Current (A)  
1
1.2  
1.4  
D001  
D001  
fSW = 1.5 MHz  
VBAT=3.8V  
VOTG = 5.15 V  
8-2. Efficiency vs. OTG Current  
inductor DCR = 18 mΩ  
inductor DCR = 18 mΩ  
8-1. Charge Efficiency vs. Charge Current  
6
5
4
3
2
1
0
6
4
2
0
-2  
-4  
-6  
-8  
0
0.2  
0.4  
0.6  
Output Current (A)  
0.8  
1
1.2  
1.4  
1.6  
0.5 0.75  
1
1.25 1.5 1.75 2  
Charge Current (A)  
2.25 2.5 2.75  
3
D001  
D001  
8-4. Charge Current Accuracy  
IOTG = 1.2 A  
VOTG = 5.15 V  
VVBAT = 3.8 V  
8-3. OTG Output Voltage vs. Output Current  
3.85  
4.5  
4.4  
4.3  
4.2  
4.1  
4
VBATREG = 4.208 V  
VBATREG = 4.352 V  
3.8  
3.75  
3.7  
3.65  
3.6  
3.55  
3.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D001  
D001  
8-5. SYSMIN Voltage vs. Junction Temperature  
8-6. BATREG Charge Voltage vs. Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.7 Typical Characteristics (continued)  
2.5  
2
1.8  
1.6  
1.4  
1.2  
1
IINDPM = 0.5 A  
IINDPM = 0.9 A  
IINDPM = 1.5 A  
ICHG = 0.24 A  
ICHG = 0.72 A  
ICHG = 1.38 A  
2.25  
2
1.75  
1.5  
1.25  
1
0.8  
0.6  
0.4  
0.2  
0
0.75  
0.5  
0.25  
0
-40  
-25  
-10  
5
20  
35  
50  
Junction Temperature (°C)  
65  
80  
95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (°C)  
D001  
D001  
8-7. Input Current Limit vs. Junction Temperature  
8-8. Charge Current vs. Junction Temperature  
2.25  
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
110 °C  
90 °C  
0.25  
0
55  
65  
75  
85  
95  
105  
Junction Temperature (°C)  
115  
125  
135  
D001  
8-9. Charge Current vs. Junction Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The BQ25601D device is a highly integrated 3.0-A switch-mode battery charger for single cell Li-Ion and Li-  
polymer battery. It includes the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate  
drive.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
VBUS  
PMID  
VVVAC_PRESENT  
RBFET (Q1)  
+
UVLO  
SLEEP  
ACOV  
VVAC  
Q1 Gate  
Control  
œ
IIN  
VBAT + VSLEEP  
+
REGN  
BTST  
EN_REGN  
EN_HIZ  
VVAC  
REGN  
LDO  
œ
VVAC  
+
VVAC_OV  
œ
FBO  
VVBUS  
VBUS_OVP_BOOST  
+
VAC  
VAC  
VOTG_OVP  
œ
IQ2  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
+
VOTG_HSZCP  
VVBUS  
œ
œ
+
+
œ
+
œ
œ
+
HSFET (Q2)  
LSFET (Q3)  
IQ3  
VINDPM  
SW  
+
VOTG_BAT  
IIN  
CONVERTER  
Control  
œ
REGN  
BAT  
IINDPM  
+
BATOVP  
UCP  
104% × V BAT_REG  
IC TJ  
TREG  
PGND  
œ
ILSFET_UCP  
BATSNS  
IQ2  
Q2_OCP  
+
œ
+
œ
+
+
IHSFET_OCP  
IQ3  
SYS  
VBAT_REG  
œ
œ
VSYSMIN  
VBTST - VSW  
ICHG  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
+
REFRESH  
VBTST_REFRESH  
ICHG_REG  
œ
SYS  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
BAT  
IBADSRC  
IDC  
BAD_SRC  
+
REF  
DAC  
Converter  
Control State  
Machine  
œ
IC TJ  
TSHUT  
+
TSHUT  
œ
BATSNS  
VBATGD  
BAT_GD  
+
D+  
VQON  
Input  
Source  
Detection  
œ
USB  
Adapter  
DÅ  
VREG -VRECHG  
BATSNS  
ICHG  
+
RECHRG  
QON  
œ
INT  
+
TERMINATION  
BATLOWV  
ITERM  
œ
CHARGE  
CONTROL  
STATE  
VBATLOWV  
STAT  
+
BATSNS  
VSHORT  
MACHINE  
œ
BQ25601D  
+
BATSHORT  
SUSPEND  
BATSNS  
I2C  
Interface  
œ
Battery  
Temperature  
Sensing  
TS  
SCL SDA CE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Power-On-Reset (POR)  
The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VBUS rises above  
VVBUS_UVLOZ or BAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
9.3.2 Device Power Up from Battery without Input Source  
If only battery is present and the voltage is above depletion threshold (VBAT _DPL_RISE), the BATFET turns on and  
connects battery to system. The REGN stays off to minimize the quiescent current. The low RDSON of BATFET  
and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through BATFET (Supplement Mode). When the system is  
overloaded or shorted (IBAT > IBATFET_OCP), the device turns off BATFET immediately and set BATFET_DIS bit to  
indicate BATFET is disabled until the input source plugs in again or one of the methods described in BATFET  
Enable (Exit Shipping Mode) is applied to re-enable BATFET.  
9.3.3 Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all  
the bias circuits. It detects and sets the input current limit before the buck converter is started. The power up  
sequence from input source is as listed:  
1. Power Up REGN LDO  
2. Poor Source Qualification  
3. Input Source Type Detection is based on D+/Dto set default input current limit (IINDPM) register or input  
source type.  
4. Input Voltage Limit Threshold Setting (VINDPM threshold)  
5. Converter Power-up  
9.3.3.1 Power Up REGN Regulation  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. The REGN also  
provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid:  
VVAC above VVAC_PRESENT  
VVAC above VBAT + VSLEEPZ in buck mode or VBUS below VBAT + VSLEEP in boost mode  
After 220-ms delay is completed  
If any one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off.  
The device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when  
the device is in HIZ.  
9.3.3.2 Poor Source Qualification  
After REGN LDO powers up, the device confirms the current capability of the input source. The input source  
must meet both of the following requirements in order to start the buck converter.  
VBUS voltage below VVAC_OV  
VBUS voltage above VVBUSMIN when pulling IBADSRC (typical 30 mA)  
Once the input source passes all the conditions above, the status register bit VBUS_GD is set high and the INT  
pin is pulsed to signal to the host. If the device fails the poor source detection, it repeats poor source  
qualification every 2 seconds.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.3.3.3 Input Source Type Detection  
After the VBUS_GD bit is set and REGN LDO is powered, the device runs input source detection through  
D+/Dlines. The BQ25601D follows the USB Battery Charging Specification 1.2 (BC1.2) to detect input source  
(SDP/ DCP) and non-standard adapter through USB D+/Dlines.  
After input source type detection is completed, an INT pulse is asserted to the host. in addition, the following  
registers and pin are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. PG_STAT bit is set  
3. VBUS_STAT bit is updated to indicate USB or other input source  
The host can over-write IINDPM register to change the input current limit if needed. The charger input current is  
always limited by the IINDPM register.  
9.3.3.3.1 D+/DDetection Sets Input Current Limit in BQ25601D  
The BQ25601D contains a D+/Dbased input source detection to set the input current limit at VBUS plug-in.  
The D+/Ddetection includes standard USB BC1.2 and non-standard adapter. When input source is plugged  
in, the device starts standard USB BC1.2 detections. The USB BC1.2 is capable to identify Standard  
Downstream Port (SDP) and Dedicated Charging Port (DCP). When the Data Contact Detection (DCD) timer  
expires, the non-standard adapter detection is applied to set the input current limit. The non-standard detection  
is used to distinguish vendor specific adapters (Apple and Samsung) based on their unique dividers on the  
D+/Dpins. If an adapter is detected as DCP, the input current limit is set at 2.4 A. If an adapter is detected as  
unknown, the input current limit is set at 0.5 A.  
9-1. Non-Standard Adapter Detection  
NON-STANDARD  
D+ THRESHOLD  
INPUT CURRENT LIMIT (A)  
DTHRESHOLD  
ADAPTER  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within V2P7_VTH  
VD+ within V1P2_VTH  
VD+ within V2P0_VTH  
VD+ within V2P7_VTH  
VDwithin V2P0_VTH  
VDwithin V1P2_VTH  
VDwithin V2P7_VTH  
VDwithin V2P7_VTH  
2.1  
2
1
2.4  
9-2. Input Current Limit Setting from D+/DDetection  
INPUT CURRENT LIMIT (IINLIM)  
D+/DDETECTION  
USB SDP (USB500)  
USB DCP  
500 mA  
2.4 A  
1 A  
Divider 3  
Divider 1  
2.1 A  
2.4 A  
2 A  
Divider 4  
Divider 2  
Unknown 5-V Adapter  
9.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device supports wide range of input voltage limit (3.9 V 5.4V) for USBThe device's VINDPM is set at  
4.5V. The device supports dynamic VINDPM trackingsettings which tracks the battery voltage. This function can  
be enabled via the VDPM_BAT_TRACK[1:0] register bits. When enabled, the actual input voltage limit will be the  
higher of the VINDPM register and VBAT + VDPM_BAT_TRACK offset.  
9.3.3.5 Converter Power-Up  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. If battery  
charging is disabled, BATFET turns off. Otherwise, BATFET stays on to charge the battery.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
The device provides soft-start when system rail is ramped up. When the system rail is below 2.2 V, the input  
current is limited to is to the lower of 200 mA or IINDPM register setting. After the system rises above 2.2 V, the  
device limits input current to the value set by IINDPM register.  
As a battery charger, the device deploys a highly efficient 1.5 MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature, simplifying output filter design.  
The device switches to PFM control at light load or when battery is below minimum system voltage setting or  
charging is disabled. The PFM_DIS bit can be used to prevent PFM operation in either buck or boost  
configuration. The PFM mod is only enabled when IINDPM is set 500 mA. When IINDPM is set 400 mA, the  
PFM mode is disabled.  
9.3.4 Boost Mode Operation From Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through USB port. The boost mode output current rating meets the USB On-The-Go 500 mA output requirement.  
The maximum output current is up to 1.2 A. The boost operation can be enabled if the conditions are valid:  
1. BAT above VOTG_BAT  
2. VBUS less than BAT+VSLEEP (in sleep mode)  
3. Boost mode operation is enabled (OTG_CONFIG bit = 1)  
4. Voltage at TS (thermistor) pin is within acceptable range (VBHOT < VTS < VBCOLD  
)
5. After 30-ms delay from boost mode enable  
During boost mode, the status register VBUS_STAT bits is set to 111, the VBUS output is 5.15 V and the output  
current can reach up to 1.2 A , selected through I2C (BOOST_LIM bit). The boost output is maintained when  
BAT is above VOTG_BAT threshold.  
When OTG is enabled, the device starts up with PFM and later transits to PWM to minimize the overshoot. The  
PFM_DIS bit can be used to prevent PFM operation in either buck or boost configuration.  
9.3.5 Host Mode and Standalone Power Management  
9.3.5.1 Host Mode and Default Mode in BQ25601D  
The BQ25601D is a host controlled charger, but it can operate in default mode without host management. in  
default mode, the device can be used as an autonomous charger with no host or while host is in sleep mode.  
When the charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host mode,  
WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
in default mode, the device keeps charging the battery with default 10-hour fast charging safety timer. At the end  
of the 10-hour, the charging is stopped and the buck converter continues to operate to supply system load.  
Writing a 1 to the WD_RST bit transitions the charger from default mode to host mode. All the device parameters  
can be programmed by the host. To keep the device in host mode, the host has to reset the watchdog timer by  
writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT bit is set), or disable watchdog  
timer by setting WATCHDOG bits = 00.  
When the watchdog timer expires (WATCHDOG_FAULT bit = 1), the device returns to default mode and all  
registers are reset to default values except IINDPM, VINDPM, BATFET_RST_EN, BATFET_DLY, and  
BATFET_DIS bits.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
N
WD_RST bit = 1?  
N
N
Y
Y
I2C Write?  
Watchdog Timer  
Expired?  
9-1. Watchdog Timer Flow Chart  
9.3.6 Power Path Management  
The device accommodates a wide range of input sources from USB, wall adapter, to car charger. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
9.3.7 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 3.0-A charge current for high capacity tablet battery. The 19.5-  
mΩBATFET improves charging efficiency and minimize the voltage drop during discharging.  
9.3.7.1 Autonomous Charging Cycle  
With battery charging is enabled (CHG_CONFIG bit = 1 and CE pin is LOW), the device autonomously  
completes a charging cycle without host involvement. The device default charging parameters are listed in 表  
9-3. The host can always control the charging operations and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
9-3. Charging Parameter Default Setting  
DEFAULT MODE  
Charging voltage  
Charging current  
Pre-charge current  
Termination current  
Temperature profile  
Safety timer  
BQ25601D  
4.208V  
2.048 A  
180 mA  
180 mA  
JEITA  
10 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled (CHG_CONFIG bit = 1 and ICHG register is not 0 mA and CE is low)  
No thermistor fault on TS  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
The charger device automatically terminates the charging cycle when the charging current is below termination  
threshold, battery voltage is above recharge threshold, and device not is in DPM mode or thermal regulation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
When a fully charged battery is discharged below recharge threshold (selectable through VRECHG bit), the  
device automatically starts a new charging cycle. After the charge is done, toggle CE pin or CHG_CONFIG bit  
can initiate a new charging cycle.  
The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or  
charging fault (Blinking). The STAT output can be disabled by setting EN_ICHG_MON bits = 11. in addition, the  
status register (CHRG_STAT) indicates the different charging phases: 00-charging disable, 01-precharge, 10-  
fast charge (constant current) and constant voltage mode, 11-charging done. Once a charging cycle is  
completed, an INT is asserted to notify the host.  
9.3.7.2 Battery Charging Profile  
The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage  
and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage  
and regulates current and voltage accordingly.  
9-4. Charging Current Setting  
REGISTER DEFAULT  
VBAT  
CHARGING CURRENT  
CHRG_STAT  
SETTING  
100 mA  
180 mA  
2.048 A  
< 2.2 V  
2.2 V to 3 V  
> 3 V  
ISHORT  
IPRECHG  
ICHG  
01  
01  
10  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. in this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate.  
Regulation Voltage  
VREG[7:3]  
Battery Voltage  
Charge Current  
ICHG[5:0]  
Charge Current  
VBATLOWV (3 V)  
VSHORTZ (2.2 V)  
IPRECHG[7:4]  
ITERM[3:0]  
ISHORT  
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Top-off Timer  
(optional)  
Safety Timer  
Expiration  
9-2. Battery Charging Profile  
9.3.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
When termination occurs, the status register CHRG_STAT is set to 11, and an INT pulse is asserted to the host.  
Termination is temporarily disabled when the charger device is in input current, voltage or thermal regulation.  
Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
At low termination currents (25 mA-50 mA), due to the comparator offset, the actual termination current may be  
10 mA-20 mA higher than the termination target. in order to compensate for comparator offset, a programmable  
top-off timer can be applied after termination is detected. The termination timer will follow safety timer  
constraints, such that if safety timer is suspended, so will the termination timer. Similarly, if safety timer is  
doubled, so will the termination timer. TOPOFF_ACTIVE bit reports whether the top off timer is active or not. The  
host can read CHRG_STAT and TOPOFF_ACTIVE to find out the termination status.  
Top off timer gets reset at one of the following conditions:  
1. Charge disable to enable  
2. Termination status low to high  
3. REG_RST register bit is set  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value after termination will have no effect unless a recharge cycle is initiated. An INT is asserted to the host  
when entering top-off timer segment as well as when top-off timer expires.  
9.3.7.4 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitor.  
9.3.7.5 JEITA Guideline Compliance During Charging Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds  
the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range.  
At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge current  
or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1 V charge termination is  
disabled for cool and warm conditions.  
The charger provides flexible voltage/current settings beyond the JEITA requirement. The voltage setting at  
warm temperature (T3-T5) can be VREG or 4.1V (configured by JEITA_VSET). The current setting at cool  
temperature (T1-T2) can be further reduced to 20% of fast charge current (JEITA_ISET).  
100  
90  
VBATREG  
4.1V  
JEITA_VSET = 1  
JEITA_VSET = 0  
80  
70  
60  
JEITA_ISET= 0  
JEITA_ISET= 1  
50  
40  
30  
20  
10  
0
0
T1  
0
T2  
T3  
T5  
55  
60 65  
5
10 15 20  
25  
30 35  
40  
45 50  
œ5  
T1  
0
T2  
10 15 20  
T3  
T5  
Battery Thermistor Temperature (°C)  
5
25  
30 35  
40  
45 50  
55  
60 65  
70  
œ5  
9-4. JEITA Profile: Charging Voltage  
Battery Thermistor Temperature (°C)  
9-3. JEITA Profile: Charging Current  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
REGN  
RT1  
RT2  
TS  
RTH  
103AT  
9-5. TS Resistor Network  
方程1 through 方程2 describe updates to the resistor bias network.  
1
1
æ
ö
VREGN ´ RTHCOLD ´ RTHHOT  
´
-
VT1 VT5  
ç
÷
è
ø
RT2 =  
V
V
æ
æ
ö
ö
REGN  
REGN  
RTHHOT  
´
- 1 - RTHCOLD  
´
ç
- 1  
ç
÷
÷
VT5  
VT1  
è
ø
è
ø
(1)  
(2)  
æ
ö
V
æ
REGN ö  
- 1  
ç
è
÷
ç
÷
VT1  
è
ø
ø
RT1=  
æ
ö
÷
1
1
æ
ö
+
ç
ç
÷
RT2  
RTHCOLD ø  
è
ø
è
Select 0°C to 60°C range for Li-ion or Li-polymer battery:  
RTHCOLD = 27.28 KΩ  
RTHHOT = 3.02 KΩ  
RT1 = 5.23 KΩ  
RT2 = 30.9 KΩ  
9.3.7.6 Boost Mode Thermistor Monitor During Battery Discharge Mode  
For battery protection during boost mode, the device monitors the battery temperature to be within the VBCOLD  
to VBHOTthresholds. When temperature is outside of the temperature thresholds, the boost mode is suspended.  
In additional, VBUS_STAT bits are set to 000 and NTC_FAULT is reported. Once temperature returns within  
thresholds, the boost mode is recovered and NTC_FAULT is cleared.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Temperature Range to Boost  
100%  
Boost Disabled  
V
BCOLD  
(œ10°C)  
Boost Enabled  
Boost Disabled  
V
BHOT  
(65°C)  
0%  
9-6. TS Pin Thermistor Sense Threshold in Boost Mode  
9.3.7.7 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions. The  
safety timer is 2 hours when the battery is below VBATLOWV threshold and 10 hours when the battery is higher  
than VBATLOWV threshold.  
The user can program fast charge safety timer through I2C (CHG_TIMER bits). When safety timer expires, the  
fault register CHRG_FAULT bits are set to 11 and an INT is asserted to the host. The safety timer feature can be  
disabled through I2C by setting EN_TIMER bit  
During input voltage, current, JEITA cool or thermal regulation, the safety timer counts at half clock rate as the  
actual charge current is likely to be below the register setting. For example, if the charger is in input current  
regulation (IDPM_STAT = 1) throughout the whole charging cycle, and the safety time is set to 5 hours, the  
safety timer will expire in 10 hours. This half clock rate feature can be disabled by writing 0 to TMR2X_EN bit.  
During the fault, timer is suspended. Once the fault goes away, timer resumes. If user stops the current charging  
cycle, and start again, timer gets reset (toggle CE pin or CHRG_CONFIG bit).  
9.4 Device Functional Modes  
9.4.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_Min bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage.  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage rises  
above the minimum system voltage, BATFET is fully on and the voltage difference between the system and  
battery is the VDS of BATFET.  
When the battery charging is disabled and above minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 50mV above battery voltage. The status register VSYS_STAT bit goes  
high when the system is in minimum system voltage regulation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25601D  
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
Charge Disabled  
Charge Enabled  
Minimum System Voltage  
3.1  
2.7  
2.9  
3.1  
3.3  
3.5  
BAT (V)  
3.7  
3.9  
4.1  
4.3  
D002  
Plot1  
9-7. System Voltage vs Battery Voltage  
9.4.2 Dynamic Power Management  
To meet maximum current limit in USB spec and avoid over loading the adapter, the device features Dynamic  
Power management (DPM), which continuously monitors the input current and input voltage. When input source  
is over-loaded, either the current exceeds the input current limit (IIDPM) or the voltage falls below the input  
voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input  
current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement  
mode where the BATFET turns on and battery starts discharging so that the system is supported from both the  
input source and battery.  
During DPM mode, the status register bits VDPM_STAT (VINDPM) or IDPM_STAT (IINDPM) goes high. 9-8  
shows the DPM response with 9-V/1.2-A adapter, 3.2-V battery, 2.8-A charge current and 3.5-V minimum system  
voltage setting.  
Voltage  
VBUS  
9V  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
Current  
4A  
ICHG  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
IIN  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
9-8. DPM Response  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.4.3 Supplement Mode  
When the system voltage falls 180 mV (VBAT > VSYSMin) or 45 mV (VBAT < VSYSMin) below the battery  
voltage, the BATFET turns on and the BATFET gate is regulated the gate drive of BATFET so that the minimum  
BATFET VDS stays at 30 mV when the current is low. This prevents oscillation from entering and exiting the  
supplement mode.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until  
the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge  
current. 9-9 shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit  
supplement mode when the battery is below battery depletion threshold.  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT-SYS) (mV)  
D001  
Plot1  
9-9. BAFET V-I Curve  
9.4.4 Shipping Mode and QON Pin  
9.4.4.1 BATFET Disable Mode (Shipping Mode)  
To extend battery life and minimize power when system is powered off during system idle, shipping, or storage,  
the device can turn off BATFET so that the system voltage is zero to minimize the battery leakage current. When  
the host set BATFET_DIS bit, the charger can turn off BATFET immediately or delay by tSM_DLY as configured by  
BATFET_DLY bit.  
9.4.4.2 BATFET Enable (Exit Shipping Mode)  
When the BATFET is disabled (in shipping mode) and indicated by setting BATFET_DIS, one of the following  
events can enable BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
4. A logic high to low transition on QON pin with tSHIPMODE deglitch time to enable BATFET to exit shipping  
mode  
9.4.4.3 BATFET Full System Reset  
The BATFET functions as a load switch between battery and system when input source is not pluggeDin. By  
changing the state of BATFET from on to off, systems connected to SYS can be effectively forced to have a  
power-on-reset. The QON pin supports push-button interface to reset system power without host by changing  
the state of BATFET.  
When the QON pin is driven to logic low for tQON_RST while input source is not plugged in and BATFET is  
enabled (BATFET_DIS = 0), the BATFET is turned off for tBATFET_RST and then it is re-enabled to reset system  
power. This function can be disabled by setting BATFET_RST_EN bit to 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.4.4.4 QON Pin Operations  
The QON pin incorporates two functions to control BATFET.  
1. BATFET Enable: A QON logic transition from high to low with longer than tSHIPMODE deglitch turns on  
BATFET and exit shipping mode. When exiting shipping mode, HIZ is enabled (EN_HIZ = 1) as well. HIZ can  
be disabled (EN_HIZ = 0) by the host after exiting shipping mode. OTG cannot be enabled (OTG_CONFIG =  
1) until HIZ is disabled.  
2. BATFET Reset: When QON is driven to logic low by at least tQON_RST while adapter is not plugged in (and  
BATFET_DIS = 0), the BATFET is turned off for tBATFET_RST. The BATFET is re-enabled after tBATFET_RST  
duration. This function allows systems connected to SYS to have power-on-reset. This function can be  
disabled by setting BATFET_RST_EN bit to 0.  
9-10 shows the sample external configurations for each.  
QON  
Press  
push button  
Press  
push button  
t
QON_RST  
t
SHIPMODE  
t
BATFET_RST  
Q4 Status  
2
Q4  
off  
Q4 off due to I C or  
system overload  
Q4 on  
Q4 on  
Turn on Q4 FET  
when BATFET_DIS = 1 or SLEEPZ = 1  
Reset Q4 FET  
When BATFET_DIS = 0 and SLEEPZ = 0  
9-10. QON Timing  
SYS  
Q4  
Control  
BAT  
VPULL-UP  
+
QON  
9-11. QON Circuit  
9.4.5 Status Outputs ( PG, STAT, INT)  
9.4.5.1 Power Good Indicator ( PGPin PG_STAT Bit)  
The PG_STAT bit goes HIGH to indicate a good input source when:  
VBUS above VVBUS_UVLO  
VBUS above battery (not in sleep)  
VBUS below VVAC_OV threshold  
VBUS above VVBUSMin (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Completed input Source Type Detection  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.4.5.2 Charging Status indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED. The STAT pin  
function can be disabled by setting the EN_ICHG_MON bits = 11.  
9-5. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging complete  
HIGH  
Sleep mode, charge disable  
HIGH  
Charge suspend (input overvoltage, TS fault, timer fault or system overvoltage)  
Boost Mode suspend (due to TS fault)  
Blinking at 1 Hz  
9.4.5.3 Interrupt to Host ( INT)  
In some applications, the host does not always monitor the charger operation. The INT pulse notifies the system  
on the device operation. The following events will generate 256-μs INT pulse.  
USB/adapter source identified (through DPDM detection)  
Good input source detected  
VBUS above battery (not in sleep)  
VBUS below VVAC_OV threshold  
VBUS above VVBUSMin (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
input removed  
Charge Complete  
Any FAULT event in REG09  
VINDPM / IINDPM event detected (maskable)  
When a fault occurs, the charger device sends out INT and keeps the fault state in REG09 until the host reads  
the fault register. Before the host reads REG09 and all the faults are cleared, the charger device would not send  
any INT upon new faults. To read the current fault status, the host has to read REG09 two times consecutively.  
The first read reports the pre-existing fault register status and the second read reports the current fault register  
status.  
9.5 Protections  
9.5.1 Voltage and Current Monitoring in Converter Operation  
The device closely monitors the input and system voltage, as well as internal FET currents for safe buck and  
boost mode operation.  
9.5.1.1 Voltage and Current Monitoring in Buck Mode  
9.5.1.1.1 Input Overvoltage (ACOV)  
If VBUS voltage exceeds VVAC_OV (programmable via OVP[2:0] bits), the device stops switching immediately.  
During input overvoltage event (ACOV), the fault register CHRG_FAULT bits are set to 01. An INT pulse is  
asserted to the host. The device will automatically resume normal operation once the input voltage drops back  
below the OVP threshold.  
9.5.1.1.2 System Overvoltage Protection (SYSOVP)  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. SYSOVP threshold is 350 mV above minimum system regulation  
voltage when the system is regulate at VSYSMIN. Upon SYSOVP, converter stops switching immediately to clamp  
the overshoot. The charger provides 30 mA discharge current to bring down the system voltage.  
9.5.2 Voltage and Current Monitoring in Boost Mode  
The device closely monitors the VBUS voltage, as well as RBFET and LSFET current to ensure safe boost mode  
operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.5.2.1 VBUS Soft Start  
When the boost function is enabled, the device soft-starts boost mode to avoid inrush current.  
9.5.2.2 VBUS Output Protection  
The device monitors boost output voltage and other conditions to provide output short circuit and overvoltage  
protection. The Boost build in accurate constant current regulation to allow OTG to adaptive to various types of  
load. If short circuit is detected on VBUS, the Boost turns off and retry 7 times. If retries are not successful, OTG  
is disabled with OTG_CONFIG bit cleared. In addition, the BOOST_FAULT bit is set and INT pulse is generated.  
The BOOST_FAULT bit can be cleared by host by re-enabling boost mode.  
9.5.2.3 Boost Mode Overvoltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters overvoltage  
protection which stops switching, clears OTG_CONFIG bit and exits boost mode. At Boost overvoltage duration,  
the fault register bit (BOOST_FAULT) is set high to indicate fault in boost operation. An INT is also asserted to  
the host.  
9.5.3 Thermal Regulation and Thermal Shutdown  
9.5.3.1 Thermal Protection in Buck Mode  
The BQ25601D monitors the internal junction temperature TJ to avoid overheat the chip and limits the IC surface  
temperature in buck mode. When the internal junction temperature exceeds thermal regulation limit (110°C), the  
device lowers down the charge current. During thermal regulation, the actual charging current is usually below  
the programmed battery charging current. Therefore, termination is disabled, the safety timer runs at half the  
clock rate, and the status register THERM_STAT bit goes high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface  
temperature exceeds TSHUT(160°C). The fault register CHRG_FAULT is set to 1 and an INT is asserted to the  
host. The BATFET and converter is enabled to recover when IC temperature is TSHUT_HYS (30°C) below  
TSHUT(160°C).  
9.5.3.2 Thermal Protection in Boost Mode  
The device monitors the internal junction temperature to provide thermal shutdown during boost mode. When IC  
junction temperature exceeds TSHUT (160°C), the boost mode is disabled by setting OTG_CONFIG bit low and  
BATFET is turned off. When IC junction temperature is below TSHUT(160°C) - TSHUT_HYS (30°C), the BATFET is  
enabled automatically to allow system to restore and the host can re-enable OTG_CONFIG bit to recover.  
9.5.4 Battery Protection  
9.5.4.1 Battery Overvoltage Protection (BATOVP)  
The battery overvoltage limit is clamped at 4% above the battery regulation voltage. When battery over voltage  
occurs, the charger device immediately disables charging. The fault register BAT_FAULT bit goes high and an  
INT is asserted to the host.  
9.5.4.2 Battery Over-Discharge Protection  
When battery is discharged below VBAT_DPL_FALL, the BATFET is turned off to protect battery from over  
discharge. To recover from over-discharge latch-off, an input source plug-in is required at VBUS. The battery is  
charged with ISHORT (typically 100 mA) current when the VBAT < VSHORT, or precharge current as set in  
IPRECHG register when the battery voltage is between VSHORTZ and VBAT_LOWV  
.
9.5.4.3 System Over-Current Protection  
When the system is shorted or significantly overloaded (IBAT > IBATOP) and the current exceeds BATFET  
overcurrent limit, the BATFET latches off. Section BATFET Enable (Exit Shipping Mode) can reset the latch-off  
condition and turn on BATFET.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.6 Programming  
9.6.1 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2CTM is a bi-directional 2-wire serial interface developed by Philips Semiconductor (now NXP  
Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Devices  
can be considered as masters or slaves when performing data transfers. A master is the device which initiates a  
data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device  
addressed is considered a slave.  
The device operates as a slave device with address 6BH, receiving control inputs from the master device like  
micro controller or a digital signal processor through REG00-REG0B. Register read beyond REG0B (0x0B)  
returns 0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits).  
connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines  
are HIGH. The SDA and SCL pins are open drain.  
9.6.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
9-12. Bit Transfer on the I2C Bus  
9.6.1.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCl is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The  
bus is considered busy after the START condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
START (S)  
STOP (P)  
9-13. TS START and STOP Conditions  
9.6.1.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the mAster into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Acknowledgement  
signal from slave  
Acknowledgement  
signal from receiver  
MSB  
SDA  
1
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
SCL  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
ACK  
ACK  
9-14. Data Transfer on the I2C Bus  
9.6.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge ninth clock pulse, are generated by the master. The transmitter releases the SDA line during the  
acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH  
period of this clock pulse.  
When SDA remains HIGH during the ninth clock pulse, this is the Not Acknowledge signal. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
9.6.1.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
1 - 7  
8
9
1-7  
8
9
1-7  
8
9
S
P
SCL  
START  
ADDRESS  
R / W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
9-15. Complete Data Transfer  
9.6.1.6 Single Read and Write  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
1
7
1
0
1
8
1
8
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
9-16. Single Write  
1
7
1
1
8
1
1
7
1
1
S
Slave Address  
0
ACK  
Reg Addr  
ACK  
S
Slave Addr  
1
ACK  
8
1
1
Data  
NCK  
P
9-17. Single Read  
9.6.1.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG0B.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
1
7
1
0
1
8
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
8
1
8
1
8
1
1
Data to Addr  
ACK  
Data to Addr + N  
ACK  
Data to Addr + N  
ACK  
P
9-18. Multi-Write  
1
7
1
1
8
1
1
7
1
1
1
S
Slave Address  
0
ACK  
Reg Addr  
ACK  
S
Slave Address  
ACK  
8
1
8
1
8
1
1
Data @ Addr  
ACK  
Data @ Addr + 1  
ACK  
Data @ Addr + N NCK  
P
9-19. Multi-Read  
REG09 is a fault register. It keeps all the fault information from last read until the host issues a new read. For  
example, if Charge Safety Timer Expiration fault occurs but recovers later, the fault register REG09 reports the  
fault when it is read the first time, but returns to normal when it is read the second time. in order to get the fault  
information at present, the host has to read REG09 for the second time. The only exception is NTC_FAULT  
which always reports the actual condition on the TS pin. in addition, REG09 does not support multi-read and  
multi-write.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7 Register Maps  
I2C Slave Address: 6BH  
9.7.1 REG00 (address = 00) [reset = 00010111]  
9-20. REG00 Register  
7
6
5
4
3
2
1
0
EN_HIZ  
EN_ICHG_MO EN_ICHG_MO  
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
IINDPM[0]  
N[1]  
N[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9-6. REG00 Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
Comment  
7
Enable HIZ Mode  
0 Disable (default)  
1 Enable  
by REG_RST  
by Watchdog  
EN_HIZ  
0
0
R/W  
0 Disable, 1 Enable  
6
5
EN_ICHG_MON[1]  
EN_ICHG_MON[0]  
R/W  
R/W  
by REG_RST 00 - Enable STAT pin function  
(default)  
01 - Reserved  
10 - Reserved  
11 - Disable STAT pin function  
(float pin)  
0
by REG_RST  
4
3
2
1
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
1
0
1
1
R/W  
R/W  
R/W  
R/W  
by REG_RST 1600 mA  
by REG_RST 800 mA  
by REG_RST 400 mA  
by REG_RST 200 mA  
Input Current Limit  
Offset: 100 mA  
Range: 100 mA (000000) 3.2 A  
(11111)  
Default:2400 mA (10111),  
maximum input current limit, not  
typical.  
IINDPM bits are changed  
automatically after input source  
detection is completed  
Host can over-write IINDPM  
register bits after input source  
detection is completed.  
0
IINDPM[0]  
1
R/W  
by REG_RST 100 mA  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.2 REG01 (address = 01) [reset = 00011010]  
9-21. REG01 Register  
7
6
5
4
3
2
1
0
PFM _DIS  
R/W  
WD_RST  
R/W  
OTG_CONFIG CHG_CONFIG  
R/W R/W  
SYS_Min[2]  
R/W  
SYS_Min[1]  
R/W  
SYS_Min[0]  
R/W  
Min_VBAT_SEL  
R/W  
9-7. REG01 Field Descriptions  
Bit  
Field  
PFM _DIS  
POR Type(1)  
Reset  
Description  
Comment  
Default: 0 - Enable  
R/W  
0
0 Enable PFM  
1 Disable PFM  
7
6
by REG_RST  
by REG_RST I2C Watchdog Timer Reset 0 –  
by Watchdog  
Default: Normal (0) Back to 0 after  
watchdog timer reset  
R/W  
0
WD_RST  
Normal ; 1 Reset  
R/W  
Default: OTG disable (0)  
Note:  
1. OTG_CONFIG would over-ride  
Charge Enable Function in  
CHG_CONFIG  
by REG_RST 0 OTG Disable  
by Watchdog  
5
4
OTG_CONFIG  
CHG_CONFIG  
0
1 OTG Enable  
R/W  
Default: Charge Battery (1)  
Note:  
1. Charge is enabled when both  
CE pin is pulled low AND  
CHG_CONFIG bit is 1.  
by REG_RST 0 - Charge Disable  
by Watchdog 1- Charge Enable  
1
3
2
SYS_Min[2]  
SYS_Min[1]  
1
0
R/W  
R/W  
R/W  
by REG_RST  
by REG_RST  
000: 2.6 V  
001: 2.8 V  
010: 3 V  
011: 3.2 V  
100: 3.4 V  
101: 3.5 V  
110: 3.6 V  
111: 3.7 V  
System Minimum Voltage  
1
0
SYS_Min[0]  
1
0
by REG_RST  
by REG_RST  
Default: 3.5 V (101)  
R/W  
Minimum battery voltage for OTG  
mode. Default falling 2.8 V (0);  
Rising threshold 3.0 V (0)  
0 2.8 V BAT falling,  
1 2.5 V BAT falling  
Min_VBAT_SEL  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.3 REG02 (address = 02) [reset = 10100 010]  
9-22. REG02 Register  
7
6
5
4
3
2
1
0
BOOST_LIM  
R/W  
Q1_FULLON  
R/W  
ICHG[5]  
R/W  
ICHG[4]  
R/W  
ICHG[3]  
R/W  
ICHG[2]  
R/W  
ICHG[1]  
R/W  
ICHG[0]  
R/W  
9-8. REG02 Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
Comment  
R/W  
by REG_RST  
by Watchdog 0 = 0.5 A  
1 = 1.2 A  
Default: 1.2 A (1)  
Note:  
The current limit options listed are  
minimum current limit specs.  
7
BOOST_LIM  
1
R/W  
by REG_RST  
0 Use higher Q1 RDSON when  
programmed IINDPM < 700mA  
(better accuracy)  
In boost mode, full FET is always  
used and this bit has no effect  
6
Q1_FULLON  
0
1 Use lower Q1 RDSON always  
(better efficiency)  
R/W  
1
by REG_RST  
by Watchdog  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
1920 mA  
960 mA  
480 mA  
240 mA  
120 mA  
60 mA  
R/W  
0
by REG_RST  
by Watchdog  
Fast Charge Current  
Default: 2040mA (100010)  
Range: 0 mA (0000000) 3000  
mA (110010)  
by REG_RST  
by Watchdog  
0
0
1
0
R/W  
R/W  
Note:  
by REG_RST  
by Watchdog  
ICHG = 0 mA disables charge.  
ICHG > 3000 mA (110010 clamped  
to register value 3000 mA  
(110010))  
R/W  
R/W  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.4 REG03 (address = 03) [reset = 001 0001 0]  
9-23. Register REG03  
7
6
5
4
3
2
1
0
IPRECHG[3]  
R/W  
IPRECHG[2]  
R/W  
IPRECHG[1]  
R/W  
IPRECHG[0]  
R/W  
ITERM[3]  
R/W  
ITERM[2]  
R/W  
ITERM[1]  
R/W  
ITERM[0]  
R/W  
9-9. REG03 Field Descriptions  
Bit  
Field  
IPRECHG[3]  
POR Type(1)  
Reset  
Description  
Comment  
7
6
5
4
3
2
1
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by Watchdog  
480 mA  
240 mA  
120 mA  
60 mA  
Precharge Current  
Default: 180 mA (0010)  
Offset: 60 mA  
Note: IPRECHG > 780 mA  
clamped to 780 mA (1100)  
IPRECHG[2]  
0
1
0
0
0
1
0
by REG_RST  
by Watchdog  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
480 mA  
240 mA  
120 mA  
60 mA  
ITERM[2]  
by REG_RST  
by Watchdog  
Termination Current  
Default: 180 mA (0010)  
Offset: 60 mA  
ITERM[1]  
by REG_RST  
by Watchdog  
ITERM[0]  
by REG_RST  
by Watchdog  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.5 REG04 (address = 04) [reset = 01011000]  
9-24. Register REG04  
7
6
5
4
3
2
1
0
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
TOPOFF_TIME TOPOFF_TIME  
VRECHG  
R[1]  
R[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9-10. REG04 Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
Comment  
by REG_RST  
by Watchdog  
7
6
5
4
3
2
1
0
VREG[4]  
VREG[3]  
VREG[2]  
VREG[1]  
VREG[0]  
0
1
0
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
512 mV  
256 mV  
128 mV  
64 mV  
Charge Voltage  
Offset: 3.847 V  
by REG_RST  
by Watchdog  
Range: 3.847 V to 4.615 V (11000)  
Default: 4.199 V (01011)  
Special Value:  
by REG_RST  
by Watchdog  
(01111): 4.343 V  
by REG_RST  
by Watchdog  
Note: Value above 11000 (4.615  
V) is clamped to register value  
11000 (4.615 V)  
by REG_RST  
by Watchdog  
32 mV  
by REG_RST  
by Watchdog  
00 Disabled (Default)  
01 15 minutes  
10 30 minutes  
The extended time following the  
termination condition is met. When  
disabled, charge terminated when  
termination conditions are met  
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
VRECHG  
by REG_RST  
by Watchdog  
11 45 minutes  
by REG_RST  
by Watchdog  
0 100 mV  
1 200 mV  
Recharge threshold  
Default: 100mV (0)  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.6 REG05 (address = 05) [reset = 10011111]  
9-25. Register REG05  
7
6
5
4
3
2
1
0
EN_TERM  
R/W  
Reserved  
R/W  
WATCHDOG[1] WATCHDOG[0]  
R/W R/W  
EN_TIMER  
R/W  
CHG_TIMER  
R/W  
TREG  
R/W  
JEITA_ISET  
R/W  
9-11. REG05 Field Descriptions  
Bit  
Field  
EN_TERM  
Reserved  
POR Type(1)  
Reset  
Description  
Comment  
by REG_RST 0 Disable  
by Watchdog  
7
6
5
4
1
0
0
1
R/W  
R/W  
R/W  
R/W  
Default: Enable termination (1)  
Reserved  
1 Enable  
by REG_RST  
by Watchdog  
Reserved  
by REG_RST  
by Watchdog  
WATCHDOG[1]  
WATCHDOG[0]  
00 Disable timer, 01 40 s, 10  
80 s,11 160 s  
Default: 40 s (01)  
by REG_RST  
by Watchdog  
0 Disable  
1 Enable both fast charge and  
precharge timer  
by REG_RST  
by Watchdog  
3
2
1
0
EN_TIMER  
CHG_TIMER  
TREG  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
Default: Enable (1)  
Default: 10 hours (1)  
Default: 110°C (1)  
Default: 20% (1)  
by REG_RST 0 5 hrs  
by Watchdog  
1 10 hrs  
Thermal Regulation Threshold:  
0 - 90°C  
1 - 110°C  
by REG_RST  
by Watchdog  
JEITA_ISET  
(0C-10C)  
by REG_RST 0 50% of ICHG  
by Watchdog  
1 20% of ICHG  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.7 REG06 (address = 06) [reset = 01100110]  
9-26. Register REG06  
7
6
5
4
3
2
1
0
OVP[1]  
R/W  
OVP[0]  
R/W  
BOOSTV[1]  
R/W  
BOOSTV[0]  
R/W  
VINDPM[3]  
R/W  
VINDPM[2]  
R/W  
VINDPM[1]  
R/W  
VINDPM[0]  
R/W  
9-12. REG06 Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
Comment  
7
OVP[1]  
OVP[0]  
0
R/W  
R/W  
by REG_RST  
VAC OVP threshold:  
00 - 5.5 V  
01 6.5 V (5-V input)  
10 10.5 V (9-V input)  
11 14 V (12-V input)  
Default: 6.5V (01)  
6
1
by REG_RST  
5
4
BOOSTV[1]  
BOOSTV[0]  
1
0
R/W  
R/W  
by REG_RST  
by REG_RST  
Boost Regulation Voltage:  
00 - 4.85V  
01 - 5.00V  
10 - 5.15V  
11 - 5.30V  
3
2
1
0
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
0
1
1
0
R/W  
R/W  
R/W  
R/W  
by REG_RST 800 mV  
by REG_RST 400 mV  
by REG_RST 200 mV  
by REG_RST 100 mV  
Absolute VINDPM Threshold  
Offset: 3.9 V  
Range: 3.9 V (0000) 5.4 V  
(1111)  
Default: 4.5V (0110)  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.8 REG07 (address = 07) [reset = 01001100]  
9-27. Register REG07  
7
6
5
4
3
2
1
0
IINDET_EN  
TMR2X_EN  
BATFET_DIS  
JEITA_VSET  
BATFET_DLY BATFET_RST_ VDPM_BAT_TR VDPM_BAT_TR  
EN  
ACK[1]  
ACK[0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9-13. REG07 Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
Comment  
0 - Not in input current limit  
by REG_RST detection  
by Watchdog 1 - Force input current limit  
detection when VBUS is present  
Returns to 0 after input detection  
is complete  
7
6
IINDET_EN  
0
1
R/W  
R/W  
0 Disable  
by REG_RST  
by Watchdog  
1 Safety timer slowed by 2X  
during input DPM (both V and I) or  
JEITA cool, or thermal regulation  
TMR2X_EN  
0 Allow Q4 turn on, 1 Turn off  
Q4 with tBATFET_DLY delay time  
(REG07[3])  
5
4
BATFET_DIS  
0
0
R/W  
R/W  
by REG_RST  
Default: Allow Q4 turn on(0)  
0 Set Charge Voltage to 4.1V  
( max),  
1 Set Charge Voltage to VREG  
JEITA_VSET  
(45C-60C)  
by REG_RST  
by Watchdog  
0 Turn off BATFET immediately  
when BATFET_DIS bit is set  
1 Turn off BATFET after  
tBATFET_DLY (typ. 10 s) when  
BATFET_DIS bit is set  
Default: 1  
Turn off BATFET after tBATFET_DLY  
(typ. 10 s) when BATFET_DIS bit  
is set  
3
BATFET_DLY  
1
R/W  
by REG_RST  
0 Disable BATFET reset  
function  
1 Enable BATFET reset function  
by REG_RST  
by Watchdog  
Default: 1  
Enable BATFET reset function  
2
1
BATFET_RST_EN  
1
0
R/W  
R/W  
VDPM_BAT_TRACK[1]  
by REG_RST 00 - Disable function (VINDPM set  
by register)  
Sets VINDPM to track BAT  
voltage. Actual VINDPM is higher  
of register value and VBAT +  
VDPM_BAT_TRACK  
01 - VBAT + 200mV  
10 - VBAT + 250mV  
11 - VBAT + 300mV  
0
VDPM_BAT_TRACK[0]  
0
R/W  
by REG_RST  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.9 REG08 (address = 08) [reset = xxxxxxxx]  
9-28. Register REG08  
7
6
5
4
3
2
PG_STAT  
R
1
0
VSYS_STAT  
R
VBUS_STAT[2] VBUS_STAT[1] VBUS_STAT[0] CHRG_STAT[1] CHRG_STAT[0]  
THERM_STAT  
R
R
R
R
R
R
9-14. REG08 Field Descriptions  
Bit  
7
Field  
POR Type(1)  
Reset  
Description  
VBUS_STAT[2]  
VBUS_STAT[1]  
x
x
R
R
NA  
NA  
VBUS Status register  
BQ25601D  
000: No input  
6
001: USB Host SDP  
010: USB CDP: (1.5A)  
011: USB DCP (2.4 A)  
5
VBUS_STAT[0]  
x
R
NA  
101: Unknown Adapter (500 mA)  
110: Non-Standard Adapter (1A/2A/2.1A/2.4A)  
111: OTG  
Software current limit is reported in IINDPM register  
4
3
CHRG_STAT[1]  
CHRG_STAT[0]  
x
x
R
R
NA  
NA  
Charging status:  
00 Not Charging  
01 Pre-charge (< VBATLOWV  
10 Fast Charging  
)
11 Charge Termination  
Power Good status:  
0 Power Not Good  
1 Power Good  
2
PG_STAT  
x
R
NA  
0 Not in ther mAl regulation  
1 in ther mAl regulation  
1
0
THERM_STAT  
VSYS_STAT  
x
x
R
R
NA  
NA  
0 Not in VSYSMin regulation (BAT > VSYSMin)  
1 in VSYSMin regulation (BAT < VSYSMin)  
(1) LEGEND: R/W = Read/Write  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.10 REG09 (address = 09) [reset = xxxxxxxx]  
9-29. Register REG09  
7
6
5
4
3
2
1
0
WATCHDOG_F BOOST_FAULT CHRG_FAULT[ CHRG_FAULT[  
BAT_FAULT  
NTC_FAULT[2] NTC_FAULT[1] NTC_FAULT[0]  
AULT  
1]  
0]  
R
R
R
R
R
R
R
R
9-15. REG09 Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
7
WATCHDOG_FAULT  
BOOST_FAULT  
x
x
R
R
NA  
NA  
0 Normal, 1- Watchdog timer expiration  
0 Normal, 1 VBUS overloaded in OTG, or VBUS OVP, or battery  
is too low (any conditions that we cannot start boost function)  
6
5
4
3
2
1
CHRG_FAULT[1]  
CHRG_FAULT[0]  
BAT_FAULT  
x
x
x
x
x
R
R
R
R
R
NA  
NA  
NA  
NA  
NA  
00 Normal, 01 input fault (VAC OVP or VBAT < VBUS < 3.8 V),  
10 - Thermal shutdown, 11 Charge Safety Timer Expiration  
0 Normal, 1 BATOVP  
NTC_FAULT[2]  
NTC_FAULT[1]  
JEITA  
000 Normal, 010 Warm, 011 Cool, 101 Cold, 110 Hot  
(Buck mode)  
0
NTC_FAULT[0]  
x
R
NA  
000 Normal, 101 Cold, 110 Hot (Boost mode)  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.11 REG0A (address = 0A) [reset = xxxxxx00]  
9-30. Register REG0A  
7
6
5
4
3
2
1
0
VBUS_GD  
VINDPM_STAT IINDPM_STAT  
Reserved  
TOPOFF_ACTI ACOV_STAT  
VE  
VINDPM_INT_ IINDPM_INT_  
MASK  
MASK  
R
R
R
R
R
R
R/W  
R/W  
9-16. REG0A Field Descriptions  
Bit  
Field  
VBUS_GD  
POR Type(1)  
Reset  
Description  
0 Not VBUS attached,  
1 VBUS Attached  
7
x
R
NA  
6
5
4
VINDPM_STAT  
IINDPM_STAT  
Reserved  
x
x
x
R
R
R
NA  
NA  
NA  
0 Not in VINDPM, 1 in VINDPM  
0 Not in IINDPM, 1 in IINDPM  
0 Top off timer not counting.  
1 Top off timer counting  
3
TOPOFF_ACTIVE  
x
R
NA  
NA  
0 Device is NOT in ACOV  
1 Device is in ACOV  
2
1
0
ACOV_STAT  
x
0
0
R
0 - Allow VINDPM INT pulse  
1 - Mask VINDPM INT pulse  
VINDPM_INT_ MASK  
IINDPM_INT_ MASK  
R/W  
R/W  
by REG_RST  
by REG_RST  
0 - Allow IINDPM INT pulse  
1 - Mask IINDPM INT pulse  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.7.12 REG0B (address = 0B) [reset = 00111xxx]  
9-31. Register REG0B  
7
6
PN[3]  
R
5
PN[2]  
R
4
PN[1]  
R
3
PN[0]  
R
2
Reserved  
R
1
DEV_REV[1]  
R
0
DEV_REV[0]  
R
REG_RST  
R/W  
9-17. REG0B Field Descriptions  
Bit  
Field  
POR Type(1)  
Reset  
Description  
Register reset  
0 Keep current register setting  
1 Reset to default register value and reset safety timer  
7
REG_RST  
0
R/W  
NA  
Note: Bit resets to 0 after register reset is completed  
6
5
4
3
2
1
0
PN[3]  
0
1
1
1
x
x
x
R
R
R
R
R
R
R
NA  
NA  
NA  
NA  
NA  
NA  
NA  
PN[2]  
BQ25601D : 0010  
PN[1]  
PN[0]  
Reserved  
DEV_REV[1]  
DEV_REV[0]  
(1) LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25601D  
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application information  
A typical application consists of the device configured as an I2C controlled power path management device and  
a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smart phones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2 Typical Application  
SYSTEM  
3.5 V œ 4.6 V  
1 H  
VBUS  
PMID  
SW  
10 F  
10 F  
1 F  
47 nF  
BTST  
REGN  
10 F  
4.7 µF  
GND  
SYS  
VAC  
SYS  
Opt.  
2.2 kꢁ  
BAT  
BQ25601D  
STAT  
VREF  
10 F  
3 x 10 kꢁ  
REGN  
5.23 kꢁ  
SDA  
SCL  
INT  
TS  
Host  
+
30.1 k10 kꢁ  
CE  
QON  
D+  
D-  
USB  
Optional  
10-1. Power Path Management Application  
10-1. Design Requirements  
10.2.1 Design Requirements  
PARAMETER  
VALUE  
Input Voltage  
3.9V to 13.5V  
3.0A  
Input Current  
Fast Charge Current  
Battery Regulation Voltage  
3.0A  
4.2V  
10.2.2 Detailed Design Procedure  
10.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
I
SAT ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(4)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually  
inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off  
between inductor size and efficiency for a practical design.  
10.2.2.2 Input Capacitor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest  
to 50% and can be estimated using 方程5.  
ICIN = ICHG ´ D ´ (1- D)  
(5)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher capacitor is  
preferred for 15 V input voltage. Capacitance of 22-μF is suggested for typical of 3A charging current.  
10.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
方程6 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(6)  
The output capacitor voltage ripple can be calculated as follows:  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(7)  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for 20μF ceramic output capacitance. The  
preferred ceramic capacitor is 10V rating, X7R or X5R.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10.2.3 Application Curves  
VVBUS = 5 V  
VVBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
10-2. Power-Up with Charge Disabled  
10-3. Power-Up with Charge Enabled  
VVBUS = 5 V  
VVBUS = 9 V  
ISYS = 50 mA  
Charge Disabled  
ISYS = 50 mA  
Charge Disabled  
10-4. PFM Switching in Buck Mode  
10-5. PFM Switching in Buck Mode  
VVBUS = 12 V  
ISYS = 50 mA  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.8 V  
Charge Disabled  
10-6. PFM Switching in Buck Mode  
10-7. PWM Switching in Buck Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
VVBUS = 12 V  
ICHG = 2 A  
VVBAT = 3.8 V  
VVBUS = 5 V  
ICHG = 2 A  
VVBAT = 3.2 V  
10-8. PWM Switching in Buck Mode  
10-9. Charge Enable  
VVBUS = 5 V  
VVBAT = 3.2 V  
VVBAT = 4 V  
ICHG = 2 A  
ILOAD= 50 mA  
PFM Enabled  
10-10. Charge Disable  
10-11. OTG Switching  
VVBAT = 4 V  
ILOAD= 1 A  
VVBAT = 4 V  
ILOAD= 0 A  
PFM Enabled  
PFM Disabled  
10-12. OTG Switching  
10-13. OTG Switching  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 1 A  
VVBUS = 5 V  
IINDPM = 2 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
ICHG = 1 A  
10-14. System Load Transient  
10-15. System Load Transient  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 2 A  
VVBUS = 5 V  
IINDPM = 1 A  
ICHG = 2 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
10-16. System Load Transient  
10-17. System Load Transient  
VVBUS = 5 V  
IINDPM = 2 A  
ICHG = 2 A  
VVBUS = 5 V  
IINDPM = 2 A  
ICHG = 2 A  
ISYS from 0 A to 2 A  
VBAT = 3.7 V  
ISYS from 0 A to 4 A  
VBAT = 3.7 V  
10-18. System Load Transient  
10-19. System Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
VBAT = 3.8 V  
CLOAD = 470 µF  
Adaptor ILIM = 1 A  
10-20. OTG Start-Up  
10-21. VINDPM Tracking Battery Voltage  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Power Supply Recommendations  
in order to provide an output voltage on SYS, the BQ25601D device requires a power supply between 3.9 V and  
14.2 V input with at least 100-mA current rating connected to VBUS and a single-cell Li-Ion battery with voltage  
> VBATUVLO connected to BAT. The source current rating needs to be at least 3 A in order for the buck converter  
of the charger to provide maximum output power to SYS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 10-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane.  
2. Place inductor input pin to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
3. Put output capacitor near to the inductor and the device. Ground connections need to be tied to the IC  
ground with a short copper trace connection or GND plane.  
4. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using thermal pad as the single ground  
connection point. Or using a 0-Ωresistor to tie analog ground to power ground.  
5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the  
device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.  
6. Place decoupling capacitors next to the IC pins and make trace connection as short as possible.  
7. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
8. Ensure that the number and sizes of vias allow enough copper for a given current path.  
See the EVM user's guide BQ25601 and BQ25601D (PWR877) Evaluation Module User's Guide for the  
recommended component placement with trace and via locations. For the VQFN information, refer to Quad  
Flatpack No-Lead Logic Packages Application Report and QFN and SON PCB Attachment Application Report.  
10.2 Layout Example  
+
+
œ
10-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
10-2. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25601D  
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
BQ25601 and BQ25601D (PWR877) Evaluation Module User's Guide  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25601D  
 
 
 
 
 
 
 
 
BQ25601D  
ZHCSIJ0B JULY 2018 REVISED FEBRUARY 2022  
www.ti.com.cn  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25601D  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25601DRTWR  
BQ25601DRTWT  
ACTIVE  
WQFN  
WQFN  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ  
25601D  
ACTIVE  
RTW  
NIPDAU  
BQ  
25601D  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Jan-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25601DRTWR  
BQ25601DRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25601DRTWR  
BQ25601DRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ25601RTWR

具有电源路径和 OTG 的 I2C 单节 3A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25601RTWT

具有电源路径和 OTG 的 I2C 单节 3A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25606

具有高输入电压和电源路径的独立型单节 3A 快速充电器
TI

BQ25606RGER

具有高输入电压和电源路径的独立型单节 3A 快速充电器 | RGE | 24 | -40 to 85
TI

BQ25606RGET

具有高输入电压和电源路径的独立型单节 3A 快速充电器 | RGE | 24 | -40 to 85
TI

BQ25611D

具有 USB 检测功能和 1.2A 升压操作的 I2C 控制型单节 3A 降压型电池充电器
TI

BQ25611DRTWR

具有 USB 检测功能和 1.2A 升压操作的 I2C 控制型单节 3A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25611DRTWT

具有 USB 检测功能和 1.2A 升压操作的 I2C 控制型单节 3A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25616

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器
TI

BQ25616JRTWR

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25616JRTWT

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25616RTWR

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI