BQ25611DRTWT [TI]

具有 USB 检测功能和 1.2A 升压操作的 I2C 控制型单节 3A 降压型电池充电器 | RTW | 24 | -40 to 85;
BQ25611DRTWT
型号: BQ25611DRTWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 USB 检测功能和 1.2A 升压操作的 I2C 控制型单节 3A 降压型电池充电器 | RTW | 24 | -40 to 85

电池
文件: 总63页 (文件大小:3561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25611D  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
具有 USB 检测和 1.2A 升压运行的 BQ25611D I2C 控制型 3.0A 单节降压电池充电  
1 特性  
2 应用  
高效 1.5MHz 同步开关模式降压充电器  
手机平板电脑  
工业医疗便携式电子产品  
– 在 2A 电流5V 输入下具有 92% 的充电效率  
±0.4% 充电电压调节阶跃为 10mV  
– 可编程 JEITA 阈值  
3 说明  
BQ25611D 适用于单节锂离子电池和锂聚合物电  
池、高度集成的 3A 开关模式电池充电管理和系统电源  
路径管理器件。该解决方案在系统和电池之间高度集成  
输入反向阻断 FETRBFETQ1、高侧开关 FET  
HSFETQ2、低侧开关 FETLSFETQ3以  
及电池 FETBATFETQ4。其低阻抗电源路径对  
开关模式运行效率进行了优化缩短了电池充电时间并  
延长了放电阶段的电池运行时间。  
– 远程电池检测可更快地进行充电  
支持 USB On-The-Go (OTG)可调输出电压范围  
4.6V 5.15V  
– 具有高达 1.2A 输出的 升压转换器  
– 在 1A 输出下具有 92% 的升压效率  
– 精确的恒定电流 (CC) 限制  
– 高达 500µF 容性负载的软启动  
单个输入支持 USB 输入以及高电压适配器或无线  
电源  
BQ25611D 是适用于锂离子电池和锂聚合物电池、高  
度集成的 3A 开关模式电池充电管理和系统电源路径管  
理器件。它可为智能手机和平板电脑等各种应用提供快  
速充电功能和高输入电压。其低阻抗电源路径对开关模  
式运行效率进行了优化缩短了电池充电时间并延长了  
放电阶段的电池运行时间。其输入电压和电流调节和电  
池远程检测可以为电池提供最大的充电功率。  
– 支持 4V 13.5V 输入电压范围绝对最大输入  
额定值为 22V  
130ns 快速关断输入过压保护  
– 通过 I2C100mA 3.2A100mA/阶跃实现  
可编程输入电流限制 (IINDPM)  
器件信息 (1)  
– 通过高达 5.4V VINDPM 阈值自动跟踪电池电  
从而实现最大功率  
– 自动检测 USB SDPCDPDCP 以及非标准适  
配器  
封装尺寸标称值)  
器件型号  
BQ25611D  
封装  
WQFN (24)  
4.00mm x 4.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VDC (NVDC) 电源路径管理  
– 无需电池或使用深度放电的电池即可使系统瞬时  
启动  
RDSON 19.5mΩ BATFET可更大程度地降低  
充电损耗和延长电池运行时间  
– 用于运输模式的 BATFET 控制、使用和不使用  
适配器的完全系统复位功能  
运输模式下的 7µA 低电池泄漏电流  
在系统待机时具有 9.5µA 的低电池泄漏电流  
高精度电池充电曲线  
±6% 充电电流调节  
±7.5% 输入电流调节  
简化版应用  
±3% VINDPM 电压调节  
– 用于电池完全充电的可编程充电完成计时器  
高集成度包括所有 MOSFET、电流感应和环路补偿  
安全相关认证:  
– 经 IEC 62368-1 CB 认证  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDF6  
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
Table of Contents  
9.5 Register Maps...........................................................32  
10 Application and Implementation................................46  
10.1 Application Information........................................... 46  
10.2 Typical Application.................................................. 46  
10.3 Application Curves..................................................49  
11 Power Supply Recommendations..............................51  
12 Layout...........................................................................51  
12.1 Layout Guidelines................................................... 51  
12.2 Layout Example...................................................... 51  
13 Device and Documentation Support..........................53  
13.1 Device Support....................................................... 53  
13.2 Documentation Support.......................................... 53  
13.3 Receiving Notification of Documentation Updates..53  
13.4 Support Resources................................................. 53  
13.5 Trademarks.............................................................53  
13.6 Electrostatic Discharge Caution..............................53  
13.7 Glossary..................................................................53  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configuration and Functions...................................4  
8 Specifications.................................................................. 6  
8.1 Absolute Maximum Ratings........................................ 6  
8.2 ESD Ratings............................................................... 6  
8.3 Recommended Operating Conditions.........................6  
8.4 Thermal Information....................................................6  
8.5 Electrical Characteristics.............................................7  
8.6 Timing Requirements................................................12  
8.7 Typical Characteristics..............................................14  
9 Detailed Description......................................................16  
9.1 Overview...................................................................16  
9.2 Functional Block Diagram.........................................16  
9.3 Feature Description...................................................17  
9.4 Device Functional Modes..........................................30  
Information.................................................................... 54  
4 Revision History  
Changes from Revision A (June 2020) to Revision B (September 2020)  
Page  
特性 列表添加了“安全相关认证”项目符号...................................................................................................1  
更新了整个文档的表、图和交叉参考的编号格式................................................................................................ 1  
Added description about VQON to QON pin description....................................................................................4  
Changed max of BAT, SYS from 17 V to 7 V......................................................................................................6  
Changed max of VBAT_DPL from 2.62 V to 2.55 V............................................................................................... 7  
Changed typ of VBAT_DPL to 2.40 V.....................................................................................................................7  
Added additional 25°C spec for VBAT_DPL ..........................................................................................................7  
Added IHSFET_OCP row........................................................................................................................................ 7  
Updated 9-2 ................................................................................................................................................ 18  
Updated BATFET Full System Reset section................................................................................................... 25  
Changed Bits 3-6 description from "Reserved" to "BQ25611D: 1010" in 9-19 ............................................32  
Changes from Revision * (January 2020) to Revision A (June 2020)  
Page  
Changed max of VREG_ACC at 4.19 V from 4.206 V to 4.200 V...........................................................................7  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
5 说明)  
该解决方案在系统和电池之间高度集成输入反向阻断 FETRBFETQ1、高侧开关 FETHSFETQ2、低  
侧开关 FETLSFETQ3以及电池 FETBATFETQ4。它还集成了自举二极管以进行高侧栅极驱动从  
而简化系统设计。I2C 串行接口和充电和系统设置使该器件成为一款真正灵活的解决方案。  
该器件支持多种输入源包括标准 USB 主机端口、USB 充电端口、兼容 USB 的高电压适配器和无线电源。该器  
件符合 USB 2.0 USB 3.0 电源规格具有输入电流和电压调节功能。该器件从系统检测电路USB PHY 器  
获取结果。  
该器件通过单个电感器将降压充电器和升压稳压器集成在一个解决方案中。通过提供 5V 电压可调 4.6V/  
4.75V/5V/5.15V),恒定电流限值高达 1.2A该器件可符合 USB On-the-Go (OTG) 运行功率额定值规格。  
在应用适配器时电源路径管理将系统电压调节至稍高于电池电压的水平但不会降至 3.5V 最小系统电压可编  
以下。借助于这个特性即使在电池电量完全耗尽或者电池被拆除时系统也能保持运行。当达到输入电流  
限值或电压限值时电源路径管理会自动减小充电电流。随着系统负载持续增加电池开始放电直到满足系统  
电源需求。该补充模式可防止输入源过载。  
此器件在无需软件控制情况下启动并完成一个充电周期。它感应电池电压并通过三个阶段为电池充电预充电、  
恒定电流和恒定电压。在充电周期的末尾当充电电流低于预设限值并且电池电压高于再充电阈值时充电器自  
动终止。如果已完全充电的电池降至再充电阈值以下则充电器自动启动另一个充电周期。  
此充电器提供针对电池充电和系统运行的多种安全特性其中包括电池负温度系数热敏电阻监视、充电安全性计  
时器和过压/过流保护。当结温超过 110°C 热调节会减小充电电流。状态寄存器报告充电状态和任何故障状  
况。借助 I2CVBUS_GD 位指示电源是否正常当故障发生时INT 输出会立即通知主机。  
该器件还提供用于 BATFET 使能和复位控制的 QON 引脚以退出低功耗出厂模式或完全系统复位功能。  
BQ25611D 器件采用 24 引脚 4mm × 4mm x 0.75mm 薄型 WQFN 封装。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
6 Device Comparison Table  
BQ25601  
BQ25601D  
BQ25611D  
3.5 - 4.3 V (100 mV per step); 4.3  
- 4.52 V (10 mV per step)  
Programmable Charge Voltage  
3.856 - 4.624 V, 32 mV per step 3.856 - 4.624 V, 32 mV per step  
D+/D- USB Detection  
Default ICHG  
No  
Yes  
Yes  
1 A  
2.04 A  
6.4 V  
2.04 A  
6.4 V  
Default VACOV  
14.2 V  
130 ns  
VBUS OVP reaction-time  
200 ns  
200 ns  
Battery remote sensing with open/  
short detection  
No  
No  
Yes  
JEITA, with fixed temperature  
thresholds  
JEITA, with fixed temperature  
thresholds  
JEITA, with adjustable  
temperature thresholds  
TS profile  
TS ignore bit  
No  
No  
Yes  
Charge safety timer  
5hr, 10 hr (default)  
5 hr, 10 hr (default)  
20 hr, 10 hr (default)  
Allow QON fire when adapter is  
present  
No  
No  
Yes  
Deglitch time for chagre termination  
250 ms  
250 ms  
50 ms  
7 Pin Configuration and Functions  
VAC  
D+  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
GND  
GND  
SYS  
SYS  
BAT  
BAT  
D-  
Thermal  
Pad  
STAT  
SCL  
SDA  
Not to scale  
7-1. RTW Package 24-Pin WQFN Top View  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
13  
Battery connection point to the positive terminal of the battery pack. The internal current sensing resistor  
is connected between SYS and BAT. Connect a 10 µF(2) closely to the BAT pin.  
BAT  
P
14  
Battery voltage sensing pin for charge voltage regulation. In order to minimize the parasitic trace  
resistance during charging, BATSNS pin is connected to the positive terminal of battery pack as close as  
possible. If BATSNS pin is open or short to ground, BATSNS_STAT bit is set to 1 and charger regulates  
the battery voltage through BAT pin.  
BATSNS  
BTST  
10  
21  
AI  
P
PWM high side driver positive supply. Internally, the BTST is connected to the cathode of the boot-strap  
diode. Connect the 0.047-μF bootstrap capacitor(2) from SW to BTST.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
CE  
9
DI  
Charge enable pin. When this pin is driven LOW, battery charging is enabled.  
Positive line of the USB data line pair. D+/Dbased USB host/charging port detection. The detection  
includes data contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard  
adaptors.  
D+  
2
3
AIO  
AIO  
Negative line of the USB data line pair. D+/Dbased USB host/charging port detection. The detection  
includes data contact detection (DCD), primary and secondary detection in BC1.2 and nonstandard  
adaptors.  
D-  
17  
18  
GND  
Ground.  
Open-drain interrupt output. Connect the INT to a logic rail through a 10-kΩ resistor. The INT pin sends  
an active low, 256-µs pulse to the host to report charger device status and fault.  
INT  
7
8
DO  
NC  
Not connected.  
Connected to the drain of the reverse blocking MOSFET (RBFET) and the drain of HSFET. Place a 10-µF  
capacitor(2) on PMID to GND.  
PMID  
23  
P
BATFET enable/reset control input. When the BATFET is in ship mode, a logic LOW of tSHIPMODE duration  
turns on BATFET to exit ship mode. When the BATFET is not in ship mode, a logic LOW of tQON_RST  
(minimum 8 s) duration resets SYS (system power) by turning BATFET off for tBATFET_RST (minimum 250  
ms) and then re-enables BATFET to provide full system power reset. The host chooses the BATFET reset  
function with VBUS unplugged or not through I2C bit BATFET_RST_WVBUS. The pin is pulled up to VQON  
through 200 kΩ to maintain default HIGH logic during ship mode. It has an internal clamp to 6.5 V. QON  
pin is pulled through 200-kΩ resistor to VQON. VQON is supplied from VBUS minus 2 diode voltage drop or  
from VBAT minus 1 diode voltage drop. It has an internal voltage clamp to 6.5 V.  
QON  
12  
DI  
PWM low side driver positive supply output. Internally, REGN is connected to the anode of the boot-strap  
diode. Connect a 4.7-μF (10-V rating) ceramic capacitor(2) from REGN to analog GND. The capacitor  
should be placed close to the IC.  
REGN  
22  
P
I2C interface clock. Connect SCL to the logic rail through a 10-kΩ resistor.  
I2C interface data. Connect SDA to the logic rail through a 10-kΩ resistor.  
SCL  
SDA  
5
6
DI  
DIO  
Open-drain interrupt output. Connect the STAT pin to a logic rail via 10-kresistor. The STAT pin  
indicates charger status.  
STAT  
4
DO  
Charge in progress: LOW.  
Charge complete or charger in SLEEP mode: HIGH.  
Charge suspend (fault response): blink at 1 Hz.  
19  
20  
Switching node connecting to output inductor. Internally, SW is connected to the source of the n-channel  
HSFET and the drain of the n-channel LSFET. Connect the 0.047-μF bootstrap capacitor(2) from SW to  
BTST.  
SW  
P
P
15  
16  
System output connection point. The internal current sensing resistor is connected between SYS and BAT.  
Connect a 10 µF (min)(2) closely to the SYS pin.  
SYS  
Battery temperature qualification voltage input. Connect a negative temperature coefficient thermistor  
(NTC). Program temperature window with a resistor divider from REGN to TS to GND. Charge and boost  
mode suspended when TS pin voltage is out of range. When TS pin is not used, connect a 10-kΩ resistor  
from REGN to TS and a 10-kΩ resistor from TS to GND or set TS_IGNORE to HIGH to ignore TS pin. It  
is recommended to use a 103AT-2 thermistor.  
TS  
11  
AI  
VAC  
1
P
P
Input voltage sensing. This pin must be tied to VBUS.  
Charger input voltage. The internal n-channel reverse block MOSFET (RBFET) is connected between  
VBUS and PMID with VBUS on source. Place a 1-uF ceramic capacitor(2) from VBUS to GND and place it  
as close as possible to the device.  
VBUS  
24  
Ground reference for the device that is also the thermal pad used to conduct heat from the device. This  
connection serves two purposes. The first purpose is to provide an electrical ground connection for the  
device. The second purpose is to provide a low thermal-impedance path from the device die to the PCB.  
This pad should be tied externally to a ground plane.  
Thermal Pad  
P
(1) AI = Analog Input, AO = Analog Output, AIO = Analog Input Output, DI = Digital input, DO = Digital Output, DIO = Digital Input Output,  
P = Power  
(2) All capacitors are ceramic unless otherwise specified  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2  
MAX  
22  
22  
22  
16  
7
UNIT  
V
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
Voltage  
VAC (converter not switching)  
VBUS (converter not switching)  
PMID (converter not switching)  
SW  
-2  
V
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
V
BAT, SYS (converter not switching)  
BTST  
V
22  
7
V
BATSNS (converter not switching)  
D+. D-, STAT, SCL, SDA, INT, CE, TS, QON, REGN  
V
7
V
Output Sink  
Current  
STAT, INT  
6
mA  
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
40  
55  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
13.5  
4.52  
3.2  
3.2  
3
UNIT  
V
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
4
Battery voltage  
V
Input current  
A
Output current (SW)  
Fast charging current  
RMS discharge current  
Ambient temperature  
A
A
IBAT  
TA  
6
A
85  
°C  
40  
8.4 Thermal Information  
BQ25611D  
THERMAL METRIC(1)  
RTW (WQFN)  
24 Pins  
35.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance (JEDEC(1)  
Junction-to-case (top) thermal resistance  
)
°C/W  
°C/W  
RθJC(top)  
22.7  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
 
 
 
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.4 Thermal Information (continued)  
BQ25611D  
THERMAL METRIC(1)  
RTW (WQFN)  
UNIT  
24 Pins  
11.9  
0.2  
RθJB  
ΨJT  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.2  
ΨJB  
RθJC(bot)  
2.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENTS  
VBAT = 4.5 V, VBUS floating or VBUS = 0V - 5 V,  
SCL, SDA = 0 V or 1.8 V, TJ < 85 °C, BATFET  
enabled  
Quiescent battery current  
(BATSNS, BAT, SYS, SW)  
IQ_BAT  
9.5  
15  
µA  
VBAT = 4.5 V, VBUS floating or VBUS = 0V - 5 V,  
SCL, SDA = 0 V or 1.8 V, TJ < 85 °C, BATFET  
disabled  
Shipmode battery current  
(BATSNS, BAT, SYS, SW)  
ISHIP_BAT  
7
9.5  
µA  
Input current (VBUS) in buck  
mode when converter is switching ISYS = 0 A  
VBUS=5 V, charge disabled, converter switching,  
IVBUS  
2.3  
mA  
VAC/VBUS = 5 V, HIZ mode, no battery  
37  
68  
50  
90  
µA  
µA  
IHIZ_VBUS  
Quiescent input current in HIZ  
VAC/VBUS = 12 V, HIZ mode, no battery  
Quiescent battery current  
(BATSNS, BAT, SYS, SW) in  
boost mode when converter is  
switching  
VBAT = 4.5 V, VBUS = 5 V, boost mode enabled,  
converter switching, IPMID = 0A  
IBST  
2.4  
mA  
VBUS / VBAT SUPPLY  
VVBUS_OP  
VBUS operating range  
4
13.5  
3.7  
V
V
VBUS rising for active I2C, no  
battery  
VVBUS_UVLOZ  
VBUS rising  
VBUS falling  
3.3  
3
VBUS falling to turnoff I2C, no  
battery  
VVBUS_UVLO  
3.3  
V
VVBUS_PRESENT VBUS to enable REGN  
VVBUS_PRESENTZ VBUS to disable REGN  
VBUS rising  
3.65  
3.15  
60  
3.9  
3.4  
V
V
VBUS falling  
VSLEEP  
Enter Sleep mode threshold  
Exit Sleep mode threshold  
VBUS falling, VBUS - VBAT, VBAT = 4V  
VBUS rising, VBUS - VBAT, VBAT = 4V  
VAC rising, OVP[1:0]=00  
VAC rising, OVP[1:0]=01  
VAC rising, OVP[1:0]=10  
VAC rising, OVP[1:0]=11 (default)  
VAC falling, OVP[1:0]=00  
VAC falling, OVP[1:0]=01  
VAC falling, OVP[1:0]=10  
VAC falling, OVP[1:0]=11 (default)  
15  
115  
5.45  
6.1  
110 mV  
340 mV  
VSLEEPZ  
220  
5.85  
6.4  
6.07  
6.75  
V
V
V
V
V
V
V
V
VAC overvoltage rising threshold  
to turn of switching  
10.45  
13.5  
5.2  
11 11.55  
14.2 14.85  
VACOV  
5.6  
6.2  
5.8  
6.45  
11.1  
14.5  
5.8  
VAC overvoltage falling threshold  
to resume switching  
10  
10.7  
13.9  
13  
BAT voltage for active I2C, no  
VBUS  
VBAT_UVLOZ  
VBAT rising  
2.5  
V
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BAT depletion rising threshold to  
turn on BATFET  
VBAT_DPLZ  
VBAT_DPL  
VBAT rising  
VBAT falling  
VBAT falling  
2.35  
2.8  
V
V
BAT depletion falling threshold to  
turn off BATFET  
2.18  
2.40  
2.55  
BAT depletion falling threshold to  
turn off BATFET  
VBAT_DPL  
TJ = 25°C  
2.40  
3.9  
2.50  
4.0  
V
V
VPOORSRC  
Bad adapter detection threshold VBUS falling  
3.75  
3.5  
POWER-PATH MANAGEMENT  
Typical minimum system  
regulation voltage  
VSYS_MIN  
VBAT=3.2 V < SYS_MIN = 3.5 V, ISYS = 0 A  
VREG = 4.35 V, Charge disabled, ISYS = 0 A  
3.65  
V
VSYS_OVP  
System overvoltage threshold  
Blocking FET on-resistance  
4.7  
45  
V
RON_RBFET  
mΩ  
High-side switching FET on-  
resistance  
RON_HSFET  
RON_LSFET  
VBATFET  
62  
71  
30  
mΩ  
mΩ  
mV  
Low-side switching FET on-  
resistance  
BATFET forward voltage in  
supplement mode  
_
BAT discharge current 10 mA, converter running  
FWD  
BATTERY CHARGER  
Typical charge voltage regulation  
range  
VREG_RANGE  
3.49  
4.51  
V
VREG_STEP  
VREG_ACC  
VREG_ACC  
VREG_ACC  
VREG_ACC  
Typical charge voltage step  
Charge voltage accuracy  
Charge voltage accuracy  
Charge voltage accuracy  
Charge voltage accuracy  
4.29 V < VREG < 4.51 V  
10  
mV  
V
4.073  
4.173  
4.332  
4.432  
4.09 4.106  
4.19 4.200  
4.35 4.367  
4.45 4.468  
VREG = 4.09 V, TJ = 40°C - 85°C  
VREG = 4.19 V, TJ = 40°C - 85°C  
VREG = 4.35 V, TJ = 40°C - 85°C  
VREG = 4.45 V, TJ = 40°C - 85°C  
V
V
V
Typical charge current regulation  
range  
ICHG_RANGE  
ICHG_STEP  
0
3
A
mA  
A
Typical charge current regulation  
step  
60  
ICHG = 0.24 A, VBAT = 3.1 V or 3.8 V, TJ = 40°C  
- 85°C  
0.2112  
0.6768  
0.24 0.2688  
0.72 0.7632  
1.38 1.4628  
Fast charge current regulation  
accuracy  
ICHG = 0.72 A, VBAT = 3.1 V or 3.8 V, TJ = 40°C  
- 85°C  
ICHG_ACC  
A
ICHG = 1.38 A, VBAT = 3.1 V or 3.8 V, TJ = 40°C  
- 85°C  
1.2972  
60  
A
IPRECHG_RANGE Typical pre-charge current range  
780 mA  
mA  
IPRECHG_STEP  
Typical pre-charge current step  
60  
120  
240  
VBAT = 2.6 V, IPRECHG = 120 mA  
VBAT = 2.6 V, IPRECHG = 240 mA  
102  
204  
60  
138 mA  
276 mA  
780 mA  
mA  
IPRECHG_ACC  
Precharge current accuracy  
ITERM_RANGE  
ITERM_STEP  
Typical termination current range  
Typical termination current step  
60  
ITERM = 180 mA, ICHG > 780 mA, VREG = 4.35  
V, TJ = 40°C - 85°C  
162  
42  
180  
192 mA  
78 mA  
ITERM_ACC  
Termination current accuracy  
ITERM = 60mA, ICHG = < 780 mA, VREG = 4.35  
V, TJ = 40°C - 85°C  
60  
Battery short voltage rising  
threshold to start pre-charge  
VBAT_SHORTZ  
VBAT rising  
2.13  
2.25  
2.35  
V
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
2.15  
110 mA  
Battery short voltage falling  
threshold to stop pre-charge  
VBAT_SHORT  
IBAT_SHORT  
VBAT falling  
1.85  
2
V
Battery short trickle charging  
current  
VBAT < VBAT_SHORTZ  
VBAT rising  
70  
3
90  
3.12  
2.8  
Battery LOWV rising threshold to  
start fast-charge  
3.24  
2.9  
V
V
VBATLOWV  
Battery LOWV falling threshold to  
stop fast-charge  
VBAT falling  
2.7  
VRECHG=0, VBAT falling (default)  
VRECHG=1, VBAT falling  
90  
120  
210  
150 mV  
245 mV  
VRECHG  
Battery recharge threshold  
185  
System discharge load current  
during SYSOVP  
ISYS_LOAD  
30  
mA  
19.5  
19.5  
26  
30  
TJ = 40°C - 85°C  
TJ = 40°C - 125°C  
mΩ  
mΩ  
RON_BATFET  
Battery FET on-resistance  
BATTERY OVER-VOLTAGE PROTECTION  
Battery overvoltage rising  
threshold  
VBAT rising, as percentage of VREG  
VBAT falling, as percentage of VREG  
103  
101  
104  
102  
105  
103  
%
%
VBAT_OVP  
Battery overvoltage falling  
threshold  
INPUT VOLTAGE / CURRENT REGULATION  
Typical input voltage regulation  
VINDPM_RANGE  
range  
3.9  
5.4  
V
mV  
V
Typical input voltage regulation  
step  
VINDPM_STEP  
100  
Typical input voltage regulation  
VINDPM_ACC  
accuracy  
4.365  
4.45  
0.1  
4.5 4.635  
VINDPM threshold to track  
VINDPM_TRACK  
VBAT = 4.35 V, VINDPM_BAT_TRACK = VBAT +  
200 mV  
4.55  
4.74  
3.2  
V
battery voltage  
Typical input current regulation  
range  
IINDPM_RANGE  
IINDPM_STEP  
A
Typical input current regulation  
100  
mA  
step  
Input current regulation accuracy IINDPM = 500 mA (TJ=-40°C - 85°C)  
Input current regulation accuracy IINDPM = 900 mA (TJ=-40°C-85°C)  
IINDPM_ACC  
450  
750  
465  
835  
500 mA  
900 mA  
1500 mA  
IINDPM_ACC  
IINDPM_ACC  
Input current regulation accuracy IINDPM = 1500 mA (TJ=-40°C-85°C)  
1300  
1390  
D+ / D- Detection  
VDP_SRC  
D+ line source voltage  
500  
7
600  
10  
700 mV  
D+ line data contact detect  
VD + = 200 mV,  
IDP_SRC  
14  
µA  
µA  
current source  
IDP_SINK  
D+ line sink current  
VD + = 500 mV,  
D+ pin Rising,  
D+ pin Rising,  
VD+ = 500 mV  
Pull up to 1.8 V  
50  
100  
150  
VDP_DAT_REF  
VDP_LGC_LOW  
RDP_DWN  
ID+_LKG  
D+ line data detect voltage  
D+ line logic low.  
250  
400 mV  
800 mV  
D+ line pull-down resistance  
Leakage current into D+ line  
D- line source voltage  
D- line sink current  
14.25  
24.8  
1
kΩ  
µA  
1  
500  
VDM_SRC  
600  
100  
700 mV  
150 µA  
400 mV  
24.8  
IDM_SINK  
VD- = 500 mV,  
D- pin Rising,  
VD- = 500 mV  
50  
VDM_DAT_REF  
RDM_DWN  
D- line data detect voltage  
D- line pull-down resistance  
250  
14.25  
kΩ  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ID-_LKG  
Leakage current into D- line  
Pull up to 1.8 V  
1
µA  
V
1  
D+/D- comparator threshold for  
non-standard adapter  
VD+/D- _2p8  
2.55  
1.85  
1.05  
2.85  
D+/D- comparator threshold for  
non-standard adapter  
VD+/D- _2p0  
VD+/D- _1p2  
2.15  
1.35  
V
V
D+/D- comparator threshold for  
non-standard adapter  
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 90°C  
TREG = 110°C  
90  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
110  
Thermal Shutdown Rising  
threshold  
TSHUT  
Temperature Increasing  
Temperature Decreasing  
150  
130  
°C  
°C  
Thermal Shutdown Falling  
threshold  
CHARGE MODE THERMISTOR COMPARATOR (JEITA 616J or HOT/COLD 616)  
TS pin voltage rising threshold,  
VT1_RISE%  
Charge suspended above this  
voltage.  
As Percentage to REGN (0°C w/ 103AT)  
As Percentage to REGN  
72.4  
71.5  
73.3  
72  
74.2  
72.5  
%
%
TS pin voltage falling threshold.  
Charge re-enabled to 20% of  
ICHG and VREG below this  
voltage.  
VT1_FALL%  
As Percentage to REGN, JEITA_T2 = 5°C w/  
103AT  
70.25 70.75 71.25  
67.75 68.25 68.75  
64.75 65.25 65.75  
61.75 62.25 62.75  
%
%
%
As Percentage to REGN, JEITA_T2 = 10°C w/  
103AT  
TS pin voltage rising threshold,  
Charge back to 20% of ICHG and  
VREG above this voltage.  
VT2_RISE%  
VT2_FALL%  
VT3_FALL%  
As Percentage to REGN, JEITA_T2 = 15°C w/  
103AT  
As Percentage to REGN, JEITA_T2 = 20°C w/  
103AT  
%
%
%
As Percentage to REGN, JEITA_T2=5°C w/ 103AT  
68.7  
69.2  
69.7  
As Percentage to REGN, JEITA_T2=10°C w/  
103AT  
66.45 66.95 67.45  
TS pin voltage falling threshold.  
Charge back to ICHG and VREG  
below this voltage.  
As Percentage to REGN, JEITA_T2=15°C w/  
103AT  
63.7  
60.7  
64.2  
61.2  
64.7  
61.7  
%
%
%
%
%
%
As Percentage to REGN, JEITA_T2=20°C w/  
103AT  
As Percentage to REGN, JEITA_T3=40°C w/  
103AT  
47.75 48.25 48.75  
44.25 44.75 45.25  
As Percentage to REGN, JEITA_T3=45°C w/  
103AT  
TS pin voltage falling threshold.  
Charge to ICHG and 4.1V below  
this voltage.  
As Percentage to REGN, JEITA_T3=50°C w/  
103AT  
40.2  
37.2  
40.7  
37.7  
41.2  
38.2  
As Percentage to REGN, JEITA_T3=55°C w/  
103AT  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to REGN, JEITA_T3 = 40°C w/  
103AT  
48.8  
49.3  
49.8  
46.3  
42.3  
39.5  
%
%
%
%
As Percentage to REGN, JEITA_T3 = 45°C w/  
103AT  
45.3  
41.3  
38.5  
45.8  
41.8  
39  
TS pin voltage rising threshold.  
Charge back to ICHG and VREG  
above this voltage.  
VT3_RISE%  
As Percentage to REGN, JEITA_T3 = 50°C w/  
103AT  
As Percentage to REGN, JEITA_T3 = 55°C w/  
103AT  
TS pin voltage falling threshold,  
charge suspended below this  
voltage.  
VT5_FALL%  
As Percentage to REGN (60°C w/ 103AT)  
As Percentage to REGN  
33.7  
35  
34.2  
35.5  
35.1  
36  
%
%
TS pin voltage rising threshold.  
Charge back to ICHG and 4.1V  
above this voltage.  
VT5_RISE%  
BOOST MODE THERMISTOR COMPARATOR (HOT/COLD)  
TS pin voltage rising threshold,  
VBCOLD_RISE%  
VBCOLD_FALL%  
VBHOT_FALL%  
boost mode is suspended above  
this voltage.  
79.5  
30.2  
80  
72  
80.5  
32.2  
%
%
%
As Percentage to REGN (19.5°C w/ 103AT)  
As Percentage to REGN (0°C w/ 103AT)  
As Percentage to REGN, (64°C w/ 103AT)  
TS pin voltage falling threshold  
TS pin voltage threshold. boost  
mode is suspended below this  
voltage.  
31.2  
As Percentage to REGN, (55°C w/ 103AT),  
REG0C[1:0] = 11  
VBHOT_RISE%  
TS pin voltage rising threshold  
39  
%
SWITCHING CONVERTER  
FSW  
PWM switching frequency  
Maximum PWM Duty Cycle  
Oscillator frequency  
BAT falling  
1.32  
1.5  
97  
1.68 MHz  
%
DMAX  
BOOST MODE CONVERTER  
Battery voltage exiting boost  
mode  
VBST_BAT  
2.4  
4.6  
4.85  
0.5  
1.2  
0.5  
9
2.5  
5
2.6  
5.15  
5.15  
1.2  
V
V
V
A
A
A
A
Typical boost mode voltage  
regulation range  
VBST_RANGE  
VBST_ACC  
IBST_RANGE  
IBST_ACC  
Boost mode voltage regulation  
accuracy  
IVBUS = 0 A, BOOST_V = 5 V  
Typical boost mode current  
regulation  
Boost mode maximum output  
current limit  
1.4  
10  
1.6  
Boost mode battery discharge  
current clamp on RBFET Q1  
IBST_OCP_Q1  
BOOST_LIM = 0.5 A  
0.72  
Boost mode battery discharge  
current clamp on BATFET Q4  
ISYS_OCP_Q4  
REGN LDO  
VVBUS = 5 V, IREGN = 20 mA  
VVBUS = 9 V, IREGN = 20 mA  
VVBUS = 5 V, VREGN = 3.8 V  
4.58  
5.6  
50  
4.7  
6
4.8  
6.5  
V
V
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
IREGN  
mA  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA  
and SCL  
VIH  
VIL  
Pull up rail 1.8 V  
Pull up rail 1.8 V  
1.3  
V
V
Input low threshold level  
0.4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OV and VVBUS > VBAT + VSLEEP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOL  
Output low threshold level  
High-level leakage current  
Input high threshold level, SDA  
Input low threshold level  
Output low threshold level  
High-level leakage current  
Input high threshold level, SDA  
Input low threshold level  
Output low threshold level  
High-level leakage current  
Sink current = 5 mA  
0.4  
1
V
µA  
V
IBIAS  
Pull up rail 1.8 V  
Pull up rail 1.8 V  
Pull up rail 1.8 V  
Sink current = 5 mA  
Pull up rail 1.8 V  
Pull up rail 1.8 V  
Pull up rail 1.8 V  
Sink current = 5 mA  
Pull up rail 1.8 V  
VIH_SDA  
VIL_SDA  
VOL_SDA  
IBIAS_SDA  
VIH_SCL  
VIL_SCL  
VOL_SCL  
IBIAS_SCL  
1.3  
0.4  
0.4  
1
V
V
µA  
V
1.3  
1.3  
0.4  
0.4  
1
V
V
µA  
LOGIC INPUT PIN  
VIH  
Input high threshold level (/CE)  
Input low threshold level (/CE)  
High-level leakage current (/CE) Pull up rail 1.8 V  
V
V
VIL  
0.4  
1
IIN_BIAS  
µA  
LOGIC OUTPUT PIN  
Output low threshold level (/INT,  
STAT, /PG)  
VOL  
Sink current = 5 mA  
Pull up rail 1.8 V  
0.4  
1
V
High-level leakage current (/INT,  
STAT, /PG)  
IOUT_BIAS  
µA  
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)  
HSFET cycle-by-cycle over-  
IHSFET_OCP  
5.2  
8.0  
A
current threshold  
8.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
VBUS / VBAT POWER UP  
tVBUS_OV  
VBUS OVP Reaction-time  
130  
30  
2
ns  
ms  
s
tPOORSRC  
Bad adapter detection duration  
Bad adapter detection retry wait time  
tPOORSRC_RETRY  
BATTERY CHARGER  
tTERM_DGL  
Deglitch time for charge termination  
30  
30  
30  
20  
10  
ms  
ms  
min  
hr  
tRECHG_DGL  
tTOP_OFF  
Deglitch time for recharge threshold  
Typical top-off timer accuracy TOP_OFF_TIMER[1:0]=10  
Charge safety timer accuracy, CHG_TIMER = 20hr  
Charge safety timer accuracy, CHG_TIMER = 10hr  
24  
17  
8
36  
24  
12  
tSAFETY  
tSAFETY  
hr  
QON Timing  
QON low time to turn on BATFET and exit shipmode (10℃ ≤ TJ  
60)  
tSHIPMODE  
0.9  
1.3  
s
QON low time before BATFET full system reset (10℃ ≤ TJ ≤  
60)  
tQON_RST  
8
250  
10  
12  
400  
15  
s
ms  
s
tBATFET_RST  
tBATFET_DLY  
BATFET off time during full system reset (10℃ ≤ TJ 60)  
Delay time before BATFET turn off in ship mode (10℃ ≤ TJ ≤  
60)  
DIGITAL CLOCK AND WATCHDOG  
fLPDIG Digital low-power clock (REGN LDO is disabled)  
30  
kHz  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
MIN  
NOM  
500  
160  
160  
MAX  
UNIT  
kHz  
s
fDIG  
Digital power clock  
tLP_WDT  
tWDT  
Watchdog Reset time  
Watchdog Reset time (WATCHDOG REG05[5:4] = 160s)  
s
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
8.7 Typical Characteristics  
95  
90  
85  
80  
75  
70  
96  
94  
92  
90  
88  
86  
84  
82  
VBAT=4.2V  
VBAT=3.8V  
VBAT=3.2V  
VBUS = 5 V  
VBUS = 9 V  
VBUS = 12 V  
65  
60  
0
0.5  
1 1.5  
Charge Current (A)  
2
2.5  
3
0
0.2  
0.4  
0.6  
Boost Current (A)  
0.8  
1
1.2  
Char  
VBUS = 5 V, 9 V, 12 V VBAT = 3.8 V  
Inductor 1µH, DCR =  
VBAT = 3.2 V, 3.8 V, 4.2 VBUS = 5 V  
V
Inductor 1µH, DCR =  
14.6 mΩ  
14.6 mΩ  
8-1. Charge Efficiency  
8-2. Boost Efficiency  
1
0.5  
0
4.45  
4.4  
VBATREG = 4.35 V  
4.35  
4.3  
-0.5  
-1  
-1.5  
4.25  
0
0.5  
1 1.5  
Charge Current (A)  
2
2.5  
3
-40  
-15  
10  
35  
60  
85  
110 125  
Junction Temperature (èC)  
Char  
Char  
8-3. Charge Current Accuracy  
8-4. Battery Charge Voltage vs Junction  
Temperature  
1.6  
1.4  
1.2  
1
4.6  
ICHG = 500 mA  
ICHG = 1000 mA  
ICHG = 1380 mA  
VINDPM = 4.1 V  
VINDPM = 4.3 V  
VINDPM = 4.4 V  
VINDPM = 4.5 V  
4.5  
4.4  
4.3  
4.2  
4.1  
4
0.8  
0.6  
0.4  
-40  
-25  
-10  
5
20  
35  
50  
65  
8085  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
Junction Temperature (èC)  
Char  
VIND  
8-5. Charge Current vs Junction Temperature  
8-6. VINDPM vs Junction Temperature  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
3.8  
1.75  
1.5  
IINDPM = 0.5 A  
INDPM = 0.9 A  
INDPM = 1.5 A  
3.75  
3.7  
1.25  
1
0.75  
0.5  
3.65  
3.6  
0.25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
-40  
-25  
-10  
5
20  
35  
Junction Temperature (°C)  
50  
65  
8085  
VSYS  
IIND  
8-7. SYSMIN Voltage vs Junction Temperature  
8-8. Input Current Limit vs Junction  
(VSYS set at 3.5V)  
Temperature  
5.25  
2.25  
BOOSTV = 5.0 V  
BOOSTV = 5.15 V  
2
1.75  
1.5  
1.25  
1
5.2  
5.15  
5.1  
0.75  
0.5  
0.25  
0
5.05  
110 °C  
90 °C  
5
55  
65  
75  
85  
95  
105  
Junction Temperature (°C)  
115  
125  
135  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
D001  
VOTG  
8-10. Charge Current vs Junction Temperature  
8-9. Boost Output Voltage vs Junction  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9 Detailed Description  
9.1 Overview  
The BQ25611D device is a highly integrated 3.0-A switch-mode battery charger for single cell Li-Ion and Li-  
polymer battery. It includes the input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4), and bootstrap diode for the high-side gate  
drive.  
9.2 Functional Block Diagram  
VBUS  
PMID  
VVBUS_UVLOZ  
RBFET (Q1)  
+
UVLO  
SLEEP  
ACOV  
VVBUS  
Q1 Gate  
Control  
œ
IIN  
VBAT + VSLEEP  
+
VAC  
VAC  
REGN  
BTST  
EN_REGN  
EN_HIZ  
VVBUS  
REGN  
LDO  
œ
VVBUS  
+
VVACOV  
œ
FBO  
VVBUS  
VBUS_OVP_BOOST  
+
VBST_OVP  
œ
IQ2  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
+
VOTG_HSZCP  
VVBUS  
œ
œ
+
+
œ
+
œ
œ
+
HSFET (Q2)  
LSFET (Q3)  
IQ3  
VINDPM  
SW  
+
VOTG_BAT  
IIN  
CONVERTER  
Control  
œ
REGN  
IINDPM  
VBAT  
+
BAT_OVP  
UCP  
104% × VREG  
IC TJ  
TREG  
PGND  
œ
ILSFET_UCP  
IQ2  
VBATSNS  
Q2_OCP  
+
œ
+
œ
+
+
IHSFET_OCP  
IQ3  
VSYS  
VREG  
œ
œ
VSYS_MIN  
VBTST - VSW  
ICHG  
EN_HIZ  
EN_CHARGE  
EN_BOOST  
+
REFRESH  
VBTST_REFRESH  
ICHG_REG  
œ
SYS  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
BAT  
REF  
DAC  
VPOORSRC  
VVBUS  
+
POORSRC  
TSHUT  
Converter  
Control State  
Machine  
œ
IC TJ  
+
BATSNS  
TSHUT  
œ
VQON  
D+  
Input Source  
Detection  
USB  
DÅ  
Adapter  
VREG -VRECHG  
VBATSNS  
ICHG  
+
RECHRG  
QON  
œ
INT  
+
TERMINATION  
BATLOWV  
ITERM  
œ
CHARGE  
CONTROL  
STATE  
VBATLOWV  
STAT  
+
VBATSNS  
VSHORT  
MACHINE  
œ
BQ25611D  
+
BATSHORT  
SUSPEND  
VBATSNS  
I2C  
œ
Interface  
Battery  
Sensing  
TS  
Thermistor  
Copyright © 2019, Texas Instruments Incorporated  
SCL SDA  
CE  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.3 Feature Description  
9.3.1 Power-On-Reset (POR)  
The device powers internal bias circuits from the higher voltage of VBUS and BAT. When VVBUS rises above  
VVBUS_UVLOZ or VBAT rises above VBAT_UVLOZ , the sleep comparator, battery depletion comparator and BATFET  
driver are active. I2C interface is ready for communication and all the registers are reset to default value. The  
host can access all the registers after POR.  
9.3.2 Device Power Up from Battery without Input Source  
If only the battery is present and the voltage is above depletion threshold (VBAT _DPLZ), the BATFET turns on and  
connects the battery to the system. The REGN stays off to minimize the quiescent current. The low RDSON of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
The device always monitors the discharge current through BATFET. When the system is overloaded or shorted  
(IBAT > ISYS_OCP_Q4), the device turns off BATFET immediately until the input source plugs in again.  
With I2C, when the BATFET turns off due to over-current, the device sets the BATFET_DIS bit to indicate the  
BATFET is disabled until the input source plugs in again or one of the methods described in the 9.3.7.2  
section is applied to re-enable BATFET.  
9.3.3 Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on the REGN LDO and  
all the bias circuits. It detects and sets the input current limit before the buck converter is started. The power up  
sequence from input source is as listed:  
1. Power Up REGN LDO, see Power Up REGN LDOsection  
2. Poor Source Qualification, see Poor Source Qualification section  
3. Input Source Type Detection is based on D+/Dto set default input current limit (IINDPM threshold), see  
Input Source Type Detection (IINDPPM Threshold) section  
4. Input Voltage Limit Threshold Setting (VINDPM threshold), see Input Voltage Limit Thresholding Setting  
(VINDPM Threshold) section  
5. Power Up Converter, see Power Up Converter in Buck Mode section  
9.3.3.1 Power Up REGN LDO  
The REGN LDO supplies internal bias circuits as well as the HSFET and LSFET gate drive. It also provides the  
bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well. The REGN LDO is  
enabled when all the below conditions are valid:  
VVBUS > VVBUS_UVLOZ  
In buck mode, VVBUS > VBAT + VSLEEPZ  
In boost mode, VVBUS < VBAT + VSLEEPZ  
After 220-ms delay is completed  
During high impedance mode when EN_HIZ bit is 1, REGN LDO turns off. The battery powers up the system.  
9.3.3.2 Poor Source Qualification  
After the REGN LDO powers up, the device starts to check current capability of the input source. The first step is  
poor source detection.  
VBUS voltage above VPOORSRC when pulling IBADSRC (typical 30 mA)  
With I2C, once the input source passes poor source detection, the status register bit VBUS_GD is set to 1 and  
the INT pin is pulsed to signal to the host.  
If the device fails the poor source detection, it repeats poor source qualification every 2 seconds.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25611D  
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.3.3.3 Input Source Type Detection (IINDPM Threshold)  
After poor source detection, the device runs input source detection through D+/Dlines . The D+/Ddetection  
follows the USB Battery Charging Specification 1.2 (BC1.2) to detect standard (SDP/CDP/DCP) and non-  
standard adapters through USB D+/Dlines.  
With I2C, after input source type detection is completed, an INT pulse is asserted to the host. in addition, the  
following register bits are updated:  
The host can over-write the IINDPM register to change the input current limit if needed.  
9.3.3.3.1 D+/DDetection Sets Input Current Limit  
The device contains a D+/Dbased input source detection to set the input current limit when a 5-V adapter is  
plugged-in. The D+/Ddetection includes standard USB BC1.2 and non-standard adapters. When an input  
source is plugged in, the device starts standard USB BC1.2 detection. The USB BC1.2 is capable of identifying  
Standard Downstream Port (SDP), Charging Downstream Port (CDP) and Dedicated Charging Port (DCP). The  
non-standard detection is used to distinguish vendor specific adapters (Apple and Samsung) based on their  
unique dividers on the D+/Dpins. If an adapter is detected as DCP, the input current limit is set at 2.4-A. If an  
adapter is detected as unknown, the input current limit is set at 0.5 A by ILIM pin.  
The secondary detection is used to distinguish two types of charging ports (CDP and DCP). The protocol for  
secondary detection is as follows:  
Most of the time, a CDP requires the portable device (such as smart phone, tablet) to send back an enumeration  
within 2.5 seconds of CDP plug-in. Otherwise, the port will power cycle back to SDP even the D+/Ddetection  
indicates CDP.  
9-1. Non-Standard Adapter Detection  
NON-STANDARD  
D+ THRESHOLD  
INPUT CURRENT LIMIT (A)  
DTHRESHOLD  
ADAPTER  
Divider 1  
Divider 2  
Divider 3  
Divider 4  
VD+ within VD+/D- _2p8  
VD+ within VD+/D- _1p2  
VD+ within VD+/D- _2p0  
VD+ within VD+/D- _2p8  
VDwithin VD+/D- _2p0  
VDwithin VD+/D- _1p2  
VDwithin VD+/D- _2p8  
VDwithin VD+/D- _2p8  
2.1  
2
1
2.4  
9-2. Input Current Limit Setting from D+/DDetection  
INPUT CURRENT LIMIT (IINLIM)  
D+/DDETECTION  
USB SDP (USB500)  
USB DCP  
500 mA  
2.4 A  
1 A  
Divider 3  
Divider 1  
2.1 A  
2.4 A  
2 A  
Divider 4  
Divider 2  
Unknown 5-V Adapter  
500 mA  
9.3.3.4 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
The device has two modes to set the VINDPM threshold.  
Fixed VINDPM threshold. The VINDPM is in default set at 4.5 V (programmable from 3.9 V to 5.4 V) .  
VINDPM threshold tracks the battery voltage to optimize the converter headroom between input and output.  
When it is enabled in REG07[1:0], the actual input voltage limit is the higher of the VINDPM setting in register  
and VBAT + offset voltage in VINDPM_BAT_TRACK[1:0] .  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.3.3.5 Power Up Converter in Buck Mode  
After the input current limit is set, the converter is enabled and the HSFET and LSFET start switching. The  
system voltage is powered from the converter instead of the battery. If battery charging is disabled, the BATFET  
turns off. Otherwise, the BATFET stays on to charge the battery.  
The device provides soft-start when system rail is ramping up. When the system rail is below VBAT_SHORT, the  
input current is limited to the lower of 200-mA or IINDPM register setting. The system load shall be appropriately  
planned not to exceed the 200-mA IINDPM limit. After the system rises above VBAT_SHORTZ, the device input  
current limit is the value set by the IINDPM register .  
As a battery charger, the device deploys a highly efficient 1.5-MHz step-down switching regulator. The fixed  
frequency oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery  
voltage, charge current and temperature simplifying output filter design.  
The converter supports PFM operation by default for fast transient response during system voltage regulation  
and better light load efficiency. The PFM_DIS bit disables PFM operation if system voltage is not in regulation.  
9.3.3.6 HIZ Mode with Adapter Present  
By setting EN_HIZ bit to 1 with adapter, the device enters high impedance state (HIZ). In HIZ mode, the system  
is powered from battery even with good adapter present. The device is in the low input quiescent current state  
with Q1 RBFET, REGN LDO and the bias circuits off.  
9.3.4 Boost Mode Operation From Battery  
The device supports boost converter operation to deliver power from the battery to other portable devices  
through a USB port. The output voltage is regulated at 5-V (programmable 4.6/4.75/5.0/5.15 V) and output  
current is up to 1.2 A (programmable 0.5 A/1.2 A ) with constant current regulation. The user needs to have at  
least 350 mV between VBAT and boost mode regulation voltage (VBST) to power up boost mode reliably. For  
example, BOOSTV[1:0] setting is recommended to be 4.75 V or higher if the battery voltage is 4.4 V.  
The boost operation is enabled if the conditions below are valid:  
1. Register setting: BATFET_DIS = 0, CHG_COFNIG = 0 and BST_CONFIG = 1  
2. BAT above VBST_BAT set by MIN_VBAT_SEL bit,  
3. VBUS less than VBAT + VSLEEP (in sleep mode) before converter starts.  
4. Voltage at TS (thermistor) pin, as a percentage of VREGN, is within acceptable range (VBHOT_RISE% < VTS%  
VBCOLD_FALL%  
<
)
5. After 30-ms delay from boost mode enable .  
During boost mode, the status register VBUS_STAT bits is set to 111 .  
The converter supports PFM operation at light load in boost mode. The PFM_DIS bit can be used to disable  
PFM operation in boost configuration.  
9.3.5 Power Path Management  
The device accommodates a wide range of input sources such as USB, wall adapter, or car charger. The device  
provides automatic power path selection to supply the system (SYS) from the input source (VBUS), battery  
(BAT), or both.  
9.3.5.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. The  
minimum system voltage is set by SYS_Min bits. Even with a fully depleted battery, the system is regulated  
above the minimum system voltage.  
When the battery is below the minimum system voltage setting, the BATFET operates in linear mode (LDO  
mode), and the system is typically 180 mV above the minimum system voltage setting. As the battery voltage  
rises above the minimum system voltage, the BATFET is fully on and the voltage difference between the system  
and battery is the VDS of the BATFET.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
When battery charging is disabled and above the minimum system voltage setting or charging is terminated, the  
system is always regulated at typically 50 mV above the battery voltage. The status register VSYS_STAT bit  
goes to 1 when the system is in minimum system voltage regulation.  
4.5  
Minimum System Voltage  
Charge Disabled  
Charge Enabled  
4.1  
4.3  
3.9  
3.7  
3.5  
3.3  
3.1  
2.7  
2.9  
3.1  
3.3  
3.5  
BAT (V)  
3.7  
3.9  
4.1  
4.3  
D002  
9-1. System Voltage vs Battery Voltage  
9.3.5.2 Dynamic Power Management  
To meet the maximum current limit in the USB specification and avoid overloading the adapter, the device  
features Dynamic Power Management (DPM), which continuously monitors the input current and input voltage.  
When input source is overloaded, either the current exceeds the input current limit (IINDPM) or the voltage falls  
below the input voltage limit (VINDPM). The device then reduces the charge current until the input current falls  
below the input current limit or the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to  
drop. Once the system voltage falls below the battery voltage, the device automatically enters the supplement  
mode where the BATFET turns on and the battery starts discharging so that the system is supported from both  
the input source and battery.  
During DPM mode, the status register bits VINDPM_STAT or IINDPM_STAT go to 1.  
9-2 shows the DPM response with 9-V/1.2-A adapter, 3.2-V battery, 2.8-A charge current and 3.5-V minimum  
system voltage setting.  
Voltage  
VBUS  
9V  
SYS  
BAT  
3.6V  
3.4V  
3.2V  
3.18V  
Current  
4A  
ICHG  
3.2A  
2.8A  
ISYS  
1.2A  
1.0A  
IIN  
0.5A  
-0.6A  
DPM  
DPM  
Supplement  
9-2. DPM Response  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.3.5.3 Supplement Mode  
When the system voltage falls below the battery voltage, the BATFET turns on and the BATFET gate is  
regulated so that the minimum BATFET VDS stays at 30 mV when the current is low. This prevents oscillation  
from entering and exiting the supplement mode.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until  
the BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge  
current. 9-3 shows the V-I curve of the BATFET gate regulation operation. The BATFET turns off to exit  
supplement mode when the battery is below battery depletion threshold.  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
5
10 15 20 25 30 35 40 45 50 55  
V(BAT-SYS) (mV)  
D001  
Plot1  
9-3. BAFET V-I Curve  
9.3.6 Battery Charging Management  
The device charges 1-cell Li-Ion battery with up to 3.0-A charge current for high capacity tablet battery. The 19.5-  
mΩ BATFET improves charging efficiency and minimizes the voltage drop during discharging.  
9.3.6.1 Autonomous Charging Cycle  
When battery charging is enabled (CHG_CONFIG bit = 1 and CE pin is LOW), the device autonomously  
completes a charging cycle without host involvement. The device default charging parameters are listed in 表  
9-3. The host configures the power path and charging parameters by writing to the corresponding registers  
through I2C.  
9-3. Charging Parameter Default Setting  
DEFAULT MODE  
Charging voltage  
Charging current  
Pre-charge current  
Termination current  
Temperature profile  
Safety timer  
BQ25611D  
4.20 V  
1.02 A  
180 mA  
180 mA  
JEITA  
10 hours  
A new charge cycle starts when the following conditions are valid:  
Converter starts  
Battery charging is enabled (CHG_CONFIG bit = 1 and ICHG register is not 0 mA and CE is low)  
No thermistor fault on TS. (TS pin can be ignored by setting TS_IGNORE bit to 1)  
No safety timer fault  
BATFET is not forced to turn off (BATFET_DIS bit = 0)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25611D  
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
The device automatically terminates the charging cycle when the charging current is below the termination  
threshold, the battery voltage is above the recharge threshold, and the device is not in DPM mode or thermal  
regulation. When a fully charged battery is discharged below recharge threshold (selectable through VRECHG  
bit), the device automatically starts a new charging cycle. After the charge is done, toggle CE pin or  
CHG_CONFIG bit will initiate a new charging cycle. Adapter removal and replug will also restart a charging  
cycle.  
The STAT output indicates the charging status: charging (LOW), charging complete or charge disable (HIGH) or  
charging fault (blinking). The status register (CHRG_STAT) indicates the different charging phases: 00-charging  
disable, 01-pre-charge, 10-fast charge (CC) and constant voltage (CV), 11-charging done. Once a charging  
cycle is completed, an INT pulse is asserted to notify the host.  
9.3.6.2 Battery Charging Profile  
The device charges the battery in five phases: battery short, preconditioning, constant current, constant voltage  
and top-off trickle charging (optional). At the beginning of a charging cycle, the device checks the battery voltage  
and regulates current and voltage accordingly.  
Resistance between charger output and battery cell terminal such as board routing, connector, MOSFETs and  
sense resistor can force the charging process to move from constant current to constant voltage too early and  
increase charge time. To speed up the charging cycle, the device provides BATSNS pin to extend the constant  
current charge time to delivery maximum power to battery. BATSNS pin is connected directly to battery cell  
terminal to remotely sense battery cell voltage. BATSNS is by default enabled, and can be disabled through  
BATSNS_DIS bit. If BATSNS is connected to GND or left floating, the charger regulates BAT pin instead.  
9-4. Charging Current Setting  
VBAT  
< 2.2 V  
CHARGING CURRENT  
DEFAULT SETTING  
CHRG_STAT  
IBAT_SHORT  
100 mA  
01  
01  
10  
2.2 V to 3 V  
> 3 V  
IPRECHG  
180 mA  
ICHG  
1020 mA  
Regulation Voltage  
Charge Current  
Battery Voltage  
Charge Current  
VBATLOWV (3 V)  
VSHORTZ (2.2 V)  
IPRECHG  
ITERM  
ISHORT  
Fast Charge and Voltage Regulation  
Trickle Charge  
Pre-charge  
Safety Timer  
Expiration  
Top-off Timer  
9-4. Battery Charging Profile  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.3.6.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above the recharge threshold, and the current  
is below termination current. After the charging cycle is completed, the BATFET turns off. The STAT is asserted  
HIGH to indicate charging done. The converter keeps running to power the system, and BATFET can turn on  
again to engage Supplement Mode.  
If the device is in IINDPM/VINDPM regulation, or thermal regulation, the actual charging current will be less than  
the termination value. In this case, termination is temporarily disabled.  
When termination occurs, STAT pin goes HIGH. The status register CHRG_STAT is set to 11, and an INT pulse  
is asserted to the host. Termination can be disabled by writing 0 to EN_TERM bit prior to charge termination.  
The termination current is set in REG03[3:0]. Due to the termination current accuracy, the actual termination  
current may be higher than the termination target. In order to compensate for termination accuracy, a  
programmable top-off timer can be applied after termination is detected . The top-off timer will follow safety timer  
constraints, such that if safety timer is suspended, so will the top-off timer. Similarly, if safety timer is doubled, so  
will the termination top-off timer. TOPOFF_ACTIVE bit reports whether the top off timer is active or not. The host  
can read CHRG_STAT and TOPOFF_ACTIVE to find out the termination status. STAT pin stays HIGH during  
top-off timer counting cycle.  
Top-off timer gets reset at one of the following conditions:  
1. Charge disable to enable  
2. Charger enters termination  
3. REG_RST register bit is set  
The top-off timer settings are read in once termination is detected by the charger. Programming a top-off timer  
value (01, 10, 11) after termination will have no effect unless a recharge cycle is initiated. The top-off timer will  
immediately stop if it is disabled (00). An INT is asserted to the host when entering top-off timer segment as well  
as when top-off timer expires.  
9.3.6.4 Thermistor Qualification  
The device provides a single thermistor input for battery temperature monitoring.  
9.3.6.4.1 JEITA Guideline Compliance During Charging Mode  
To improve the safety of charging Li-ion batteries, the JEITA guideline was released on April 20, 2007. The  
guideline emphasized the importance of avoiding a high charge current and high charge voltage at certain low  
and high temperature ranges.  
To initiate a charge cycle, the voltage on TS pin, as a percentage of VREGN, must be within the VT1_FALL% to  
VT5_RISE% thresholds. If the TS voltage percentage exceeds the T1-T5 range, the controller suspends charging,  
a TS fault is reported and waits until the battery temperature is within the T1 to T5 range.  
At cool temperature (T1-T2), the charge current is reduced to a programmable fast charge current (0%, 20%  
default, 50%, 100% of ICHG, by JEITA_ISET). At warm temperature (T3-T5), the charge voltage is reduced to 4.1  
V or kept at VREG (JEITA_VSET). and the charge current can be reduced to a programmable level (0%, 20%,  
50%, 100% default). Battery termination is disabled in T3-T5. The charger provides more flexible settings on T2  
and T3 threshold as well to program the temperature profile beyond JEITA. When the T1 is set to 0°C and T5 is  
set to 60°C, T2 can be programmed to 5.5°C/10°C(default)/15°C/20°C, and T3 can be programmed to 40°C/  
45.5°C(default)/50.5°C/54.5°C.  
When charger does not need to monitor the NTC, host sets TS_IGNORE bit to 1 to ignore the TS pin condition  
during charging and boost mode. If TS_IGNORE bit is set to 1, TS pin is ignored and the charger ignore TS pin  
input. In this case, NTC_FAULT bits are 000 to report normal TS status.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
JEITA_WARM_ISET  
100% of ICHG  
(default)  
(0%, 20%, 50%, 100%)  
JEITA_VSET  
4.1V (default)  
(VREG or 4.1V)  
JEITA_COOL_ISET  
20% of ICHG  
(default)  
(0%,20%,50%,100%)  
T1  
0
T2  
10 15 20  
T3  
T5  
60  
5
25  
30 35  
40  
45 50  
Battery Thermistor Temperature (°C)  
9-5. JEITA Profile  
方程式 1 through 方程式 2 describe how to calculate resistor divider values on Ts pin.  
REGN  
RT1  
TS  
NTC  
103AT  
RT2  
9-6. TS Pin Resistor Network  
%
(1)  
(2)  
%
%
%
%
In the equations above, RNTC, T1 is NTC thermistor resistance value at temperature T1 and RNTC, T5 is NTC  
thermistor resistance values at temperature T5. Select 0°C to 60°C range for Li-ion or Li-polymer battery then  
RNTC,T1 = 27.28 KΩ (0°C)  
RNTC,T5 = 3.02 KΩ (60°C)  
RT1 = 5.3 KΩ  
RT2 = 31.14 KΩ  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.3.6.4.2 Boost Mode Thermistor Monitor During Battery Discharge Mode  
For battery protection during boost mode, the device monitors the battery temperature to be within the VBCOLD  
and VBHOT thresholds. When RT1 is 5.3 KΩ and RT2 is 31.14 KΩ, TBCOLD default is -19.5°C and TBHOT default  
is 64°C. When temperature is outside of the temperature thresholds, the boost mode is suspended. In addition,  
VBUS_STAT bits are set to 000 and NTC_FAULT is reported. Once temperature returns within thresholds, boost  
mode is recovered and NTC_FAULT is cleared.  
9.3.6.5 Charging Safety Timer  
The device has a built-in safety timer to prevent extended charging cycle due to abnormal battery conditions.  
The safety timer is 2 hours when the battery is below VBATLOWV threshold and 10 hours (10/20 hours in  
REG05[2] ) when the battery is higher than VBATLOWV threshold. When the safety timer expires, STAT pin is  
blinking at 1 Hz to report a safety timer expiration fault.  
The user can program the fast charge safety timer through I2C (CHG_TIMER bit REG05[2]). When safety timer  
expires, the fault register CHRG_FAULT bits (REG09[5:4]) are set to 11 and an INT is asserted to the host. The  
safety timer (both fast charge and pre-charge) can be disabled through I2C by setting EN_TIMER bit.  
During IINDPM/VINDPM regulation, thermal regulation, or JEITA cool/warm when fast charge current is  
reduced,the safety timer counts at a half clock rate, because the actual charge current is likely below the setting.  
For example, if the charger is in input current regulation (IINDPM_STAT = 1) throughout the whole charging  
cycle, and the safety time is set to 10 hours, the safety timer will expire in 20 hours. This half clock rate feature  
can be disabled by writing 0 to the TMR2X_EN bit.  
During faults of BAT_FAULT, NTC_FAULT that lead to charging suspend, safety timer is suspended as well.  
Once the fault goes away, timer resumes. If user stops the current charging cycle, and start again, timer gets  
reset (toggle CE pin or CHG_CONFIG bit).  
9.3.7 Ship Mode and QON Pin  
9.3.7.1 BATFET Disable (Enter Ship Mode)  
To extend battery life and minimize power when the system is powered off during system idle, shipping, or  
storage, the device turns off BATFET so that the system voltage is floating to minimize the battery leakage  
current. When the host sets the BATFET_DIS bit, the charger can turn off the BATFET immediately or delay by  
tBATFET_DLY as configured by the BATFET_DLY bit. To set the device into ship mode with the adapter present, the  
host has to first set BATFET_RST_VBUS to 1 and then BATFET_DIS to 1. The charger will turn off the BATFET  
(no charging, no supplement) while the adapter is still attached. When the adapter is removed, the charger will  
enter ship mode.  
9.3.7.2 BATFET Enable (Exit Ship Mode)  
When the BATFET is disabled (in ship mode) as indicated by setting BATFET_DIS, one of the following events  
can enable the BATFET to restore system power:  
1. Plug in adapter  
2. Clear BATFET_DIS bit  
3. Set REG_RST bit to reset all registers including BATFET_DIS bit to default (0)  
4. A logic high to low transition on QON pin with tSHIPMODE deglitch time to enable BATFET to exit ship mode.  
EN_HIZ bit is set to 1 (regardless of adapter present or not). Host has to set EN_HIZ bit to 0 before boost  
mode enable. Once adapter plugs in, EN_HIZ will be cleared.  
9.3.7.3 BATFET Full System Reset  
The BATFET functions as a load switch between battery and system when input source is not pluggedin.  
When BATFET_RST_EN=1 and BATFET_DIS=0, BATFET full system reset function is enabled. By changing the  
state of BATFET from on to off, systems connected to SYS can be effectively forced to have a power-on-reset.  
The QON pin supports push-button interface to reset system power without host by changing the state of  
BATFET. Internally, it is pulled up to the VQON voltage through a 200-kΩ resistor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
When the QON pin is driven to logic low for tQON_RST, BATFET reset process starts. The BATFET is turned off  
for tBATFET_RST and then it is re-enabled to reset system power. This function can be disabled by setting  
BATFET_RST_EN bit to 0.  
BATFET full system reset functions either with or without adapter present. If BATFET_RST_WVBUS=1, the  
system reset function starts after tQON_RST when QON pin is pushed to LOW. Once the reset process starts, the  
device first goes into HIZ mode to turn off the converter, and then power cycles BATFET. If  
BATFET_RST_WVBUS=0, the system reset function doesn't start till tQON_RST after QON pin is pushed to LOW  
and adapter is removed.  
After BATFET full system reset is complete, the device will power up again if EN_HIZ is not set to 1 before the  
system reset.  
Adapter  
SYS  
Q4  
Control  
/QON  
VQON  
tBATFET_DLY  
tSHIPMODE  
ON  
BATFET Q4  
OFF  
/QON  
Enter Shipmode  
after BATFET_DIS=1  
Exit Shipmode  
with /QON  
BATFET_RS  
T_WVBUS  
Adapter  
/QON  
Q4  
tQON_RST  
tQON_RST  
tQON_RST  
ON  
ON  
ON  
OFF  
OFF  
OFF  
tBATFET_RST  
Enter HIZ tBATFET_RST  
Enter HIZ  
tBATFET_RST  
BATFET Reset with  
BATFET_RST_WVBUS=0  
BATFET Reset with  
BATFET_RST_WVBUS=1  
9-7. QON Timing  
9.3.8 Status Outputs ( STAT, INT )  
9.3.8.1 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED.  
9-5. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Charging termination (top off timer may be running)  
Sleep mode, charge disable, boost mode  
HIGH  
HIGH  
Charge suspend (input over-voltage, TS fault, safety timer fault or system over-voltage)  
Blinking at 1 Hz  
9.3.8.2 Interrupt to Host ( INT)  
In some applications, the host does not always monitor the charger operation. The INT pulse notifies the host on  
the device operation. The following events will generate a 256-μs INT pulse.  
Good input source detected  
VVBUS above battery (not in sleep)  
VVBUS below VACOV threshold  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
VVBUS above VPOORSRC (typical 3.8 V) when IBADSRC (typical 30 mA) current is applied (not a poor source)  
Input adapter removed  
USB/adapter source identified during Input Source Type Detection (IINDPM Threshold).  
Charge complete  
Any FAULT event in REG09  
VINDPM / IINDPM event detected (REG0A[1:0], maskable)  
Top off timer starts and expires  
REG09[7:0] and REG0A[6:4] report charger operation faults and status change to the host. When a fault/status  
change occurs, the charger sends out an INT pulse and keeps the state in REG09[7:0]/REG0A[6:4] until the host  
reads the registers. Before the host reads REG09[7:0]/REG0A[6:4] and all the ones are cleared, the charger  
would not send any INT upon new fault/status change. To read the current status, the host has to read REG09/  
REG0A two times consecutively. The first read reports the pre-existing register status and the second read  
reports the current register status.  
9.3.9 Protections  
9.3.9.1 Voltage and Current Monitoring in Buck Mode  
9.3.9.1.1 Input Over-Voltage Protection (ACOV)  
The input voltage is sensed via the VAC pin. The default OVP threshold is 14.2-V, and can be programmed at  
5.7 V/6.4 V/11 V/14.2 V via OVP[1:0] register bits . ACOV event will immediately stop converter switching  
whether in buck or boost mode. The device will automatically resume normal operation once the input voltage  
drops back below the OVP threshold. During ACOV, REGN LDO is on, and the device doesn't enter HIZ mode.  
During ACOV, the fault register CHRG_FAULT bits are set to 01. An INT pulse is asserted to the host.  
9.3.9.1.2 System Over-Voltage Protection (SYSOVP)  
The charger device clamps the system voltage during a load transient so that the components connected to the  
system are not damaged due to high voltage. VSYS_OVP threshold is about 300-mV above battery regulation  
voltage when battery charging is terminated. Upon SYSOVP, converter stops switching immediately to clamp the  
overshoot. The charger pulls 30-mA ISYS_LOAD discharge current to bring down the system voltage.  
9.3.9.2 Voltage and Current Monitoring in Boost Mode  
9.3.9.2.1 Boost Mode Over-Voltage Protection  
When the PMID voltage rises above regulation the target and exceeds VBST_OVP, the device stops switching  
immediately and the device exits boost mode and PMID_GOOD is pulled low as well after the boost mode OVP  
lasts for 12 ms. Meanwhile, if VAC (and VBUS when shorted to VAC) voltage exceed VACOV, the device will exit  
boost mode as well. BST_CONFIG bit is set to 0. During boost mode over-voltage, the fault register bit  
BOOST_FAULT is set tot 1 to indicate fault in boost operation. An INT is asserted to the host.  
9.3.9.3 Thermal Regulation and Thermal Shutdown  
9.3.9.3.1 Thermal Protection in Buck Mode  
Besides the battery temperature monitor on TS pin, the device monitors the internal junction temperature TJ to  
avoid overheating the chip and limits the IC junction temperature in buck mode. When the internal junction  
temperature exceeds thermal regulation limit (110°C), the device lowers down the charge current. During thermal  
regulation, the actual charging current is usually below the programmed battery charging current. Therefore,  
termination is disabled, the safety timer runs at half the clock rate, and the status register THERM_STAT bit goes  
high.  
Additionally, the device has thermal shutdown to turn off the converter and BATFET when IC surface  
temperature exceeds TSHUT 150°C. The BATFET and converter is enabled to recover when IC temperature is  
130°C. The fault register CHRG_FAULT is set to 10 during thermal shutdown and an INT is asserted to the host.  
9.3.9.3.2 Thermal Protection in Boost Mode  
Besides the battery temperature monitor on TS pin, The device monitors the internal junction temperature to  
provide thermal shutdown during boost mode. When IC junction temperature exceeds TSHUT 150°C, the boost  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
mode is disabled by setting BST_CONFIG bit low . When IC junction temperature is below 145°C, the host can  
re-enable boost mode.  
9.3.9.4 Battery Protection  
9.3.9.4.1 Battery Over-Voltage Protection (BATOVP)  
The battery over-voltage limit is clamped at 4% above the battery regulation voltage. When battery over-voltage  
occurs, the charger device immediately stops switching. The fault register BAT_FAULT bit goes high and an INT  
is asserted to the host.  
9.3.9.4.2 Battery Over-Discharge Protection  
When battery is discharged below VBAT_DPL_FALL, the BATFET will latch off to protect battery from over  
discharge. To recover from over-discharge latch-off, an input source plug-in is required at VAC/VBUS.  
9.3.9.4.3 System Over-Current Protection  
ISYS_OCP_Q4 sets battery discharge current limit. Once IBAT > ISYS_OCP_Q4 , charger will latch off Q4 and put the  
device into ship mode. All methods to exit ship mode are valid to bring the part out of Q4 latch off.  
9.3.10 Serial Interface  
The device uses I2C compatible interface for flexible charging parameter programming and instantaneous device  
status reporting. I2CTM is a bi-directional 2-wire serial interface developed by Philips Semiconductor (now NXP  
Semiconductors). Only two bus lines are required: a serial data line (SDA) and a serial clock line (SCL). Devices  
can be considered as masters or slaves when performing data transfers. A master is the device which initiates a  
data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device  
addressed is considered a slave.  
The device operates as a slave device with address 6BH , receiving control inputs from the master device like  
micro controller or a digital signal processor through REG00-REG0C. Register read beyond REG0C returns  
0xFF. The I2C interface supports both standard mode (up to 100 kbits), and fast mode (up to 400 kbits).  
connecting to the positive supply voltage via a current source or pull-up resistor. When the bus is free, both lines  
are HIGH. The SDA and SCL pins are open drain.  
9.3.10.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
9-8. Bit Transfer on the I2C Bus  
9.3.10.2 START and STOP Conditions  
All transactions begin with a START (S) and can be terminated by a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition. START and STOP conditions are always generated by the master. The  
bus is considered busy after the START condition, and free after the STOP condition.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
SDA  
SCL  
SDA  
SCL  
START (S)  
STOP (P)  
9-9. TS START and STOP conditions  
9.3.10.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant  
Bit (MSB) first. If a slave cannot receive or transmit another complete byte of data until it has performed some  
other function, it can hold the clock line SCL low to force the master into a wait state (clock stretching). Data  
transfer then continues when the slave is ready for another byte of data and release the clock line SCL.  
Acknowledgement  
signal from slave  
Acknowledgement  
signal from receiver  
MSB  
1
SDA  
SCL  
2
7
8
9
1
2
8
9
S or Sr  
P or Sr  
START or  
Repeated  
START  
STOP or  
Repeated  
START  
ACK  
ACK  
9-10. Data Transfer on the I2C Bus  
9.3.10.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter  
that the byte was successfully received and another byte may be sent. All clock pulses, including the  
acknowledge ninth clock pulse, are generated by the master. The transmitter releases the SDA line during the  
acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH  
period of this clock pulse.  
When SDA remains HIGH during the ninth clock pulse, this is the Not Acknowledge signal. The master can then  
generate either a STOP to abort the transfer or a repeated START to start a new transfer.  
9.3.10.5 Slave Address and Data Direction Bit  
After the START, a slave address is sent. This address is 7 bits long followed by the eighth bit as a data direction  
bit (bit R/W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
SDA  
1 - 7  
8
9
1-7  
8
9
1-7  
8
9
S
P
SCL  
START  
ADDRESS  
R / W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
9-11. Complete Data Transfer  
9.3.10.6 Single Read and Write  
If the register address is not defined, the charger IC send back NACK and go back to the idle state.  
1
7
1
0
1
8
1
8
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
9-12. Single Write  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
1
7
1
0
1
8
1
1
7
1
1
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
S
Slave Addr  
ACK  
8
1
1
Data  
NCK  
P
9-13. Single Read  
9.3.10.7 Multi-Read and Multi-Write  
The charger device supports multi-read and multi-write on REG00 through REG0C.  
1
7
1
0
1
8
1
S
Slave Address  
ACK  
Reg Addr  
ACK  
8
1
8
1
8
1
1
Data to Addr  
ACK  
Data to Addr + N  
ACK  
Data to Addr + N  
ACK  
P
9-14. Multi-Write  
1
7
1
1
8
1
1
7
1
1
1
S
Slave Address  
0
ACK  
Reg Addr  
ACK  
S
Slave Address  
ACK  
8
1
8
1
8
1
1
Data @ Addr  
ACK  
Data @ Addr + 1  
ACK  
Data @ Addr + N NCK  
P
9-15. Multi-Read  
REG09[7:0]/REG0A[6:4] are fault/status change register. They keep all the fault/status information from last read  
until the host issues a new read. For example, if Charge Safety Timer Expiration fault occurs but recovers later,  
the fault register REG09 reports the fault when it is read the first time, but returns to normal when it is read the  
second time. In order to get the fault information at present, the host has to read REG09/REG0A for the second  
time.  
9.4 Device Functional Modes  
9.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used an autonomous charger with no host or while host is in sleep mode. When the  
charger is in default mode, WATCHDOG_FAULT bit is HIGH. When the charger is in host mode,  
WATCHDOG_FAULT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired, or default mode. All the  
registers are in the default settings.  
All the device parameters can be programmed by the host. To keep the device in host mode, the host has to  
reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WATCHDOG_FAULT  
bit is set), or disable watchdog timer by setting WATCHDOG bits = 00.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
POR  
watchdog timer expired  
Reset registers  
I2C interface enabled  
Host Mode  
Start watchdog timer  
Host programs registers  
Y
I2C Write?  
N
Default Mode  
Reset watchdog timer  
Reset selective registers  
Y
WD_RST bit = 1?  
N
N
Y
Y
N
I2C Write?  
Watchdog Timer  
Expired?  
9-16. Watchdog Timer Flow Chart  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5 Register Maps  
I2C Slave Address: 6BH  
Default I2C Slave Address: 0x6B (1101 011B + R/ W)  
9-6. I2C Registers  
Address  
00h  
Access Type  
Acronym  
REG00  
REG01  
REG02  
REG03  
REG04  
REG05  
REG06  
REG07  
REG08  
REG09  
REG0A  
REG0B  
REG0C  
Register Name  
Section  
Go  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Input Current Limit  
Charger Control 0  
Charge Current Limit  
pre-charge and Termination Current Limit  
Battery Voltage Limit  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Status 0  
01h  
Go  
02h  
Go  
03h  
Go  
04h  
Go  
05h  
Go  
06h  
Go  
07h  
Go  
08h  
Go  
09h  
R
Charger Status 1  
Go  
0Ah  
0Bh  
0Ch  
R
Charger Status 2  
Go  
R
Part Information  
Go  
R/W  
Charger Control 4  
Go  
Complex bit access types are encoded to fit into small table cells. 9-7 shows the codes that are used for  
access types in this section.  
9-7. I2C Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
Write  
Reset Value  
-n  
Value after reset  
Undefined value  
-X  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.1 Input Current Limit Register (Address = 00h) [reset = 17h]  
9-17. REG00 Register  
7
0
6
0
5
0
4
3
2
1
1
1
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-8. REG00 Field Descriptions  
Bit  
Field  
POR  
Type  
R/W  
R/W  
Reset  
Description  
HIZ mode enable in buck mode.  
0 Disable (default)  
1 Enable  
by REG_RST  
by Watchdog  
7
EN_HIZ  
0
When charger does not monitor the NTC, host sets this bit to 1 to  
ignore the TS pin condition during charging and boost mode.  
0 Include TS pin into charge and boost mode enable  
6
TS_IGNORE  
0
by REG_RST conditions. (default)  
1 Ignore TS pin. Always consider TS is good to allow charging  
and boost mode. NTC_FAULT bits are 000 to report normal  
status.  
R/W  
Select either BATSNS pin or BAT pin to regulate battery voltage.  
0 Enable BATSNS in battery CV regulation. If the device fails  
by REG_RST BATSNS open/short detection (BATSNS_STAT = 1). Battery  
voltage is regulated through BAT pin. (default)  
5
BATSNS_DIS  
0
1 Disable BATSNS. Use BAT pin in battery CV regulation.  
4
3
2
1
IINDPM[4]  
IINDPM[3]  
IINDPM[2]  
IINDPM[1]  
1
0
1
1
R/W  
R/W  
R/W  
R/W  
by REG_RST 1600 mA  
by REG_RST 800 mA  
by REG_RST 400 mA  
by REG_RST 200 mA  
Input current limit setting (maximum limit, not  
typical)  
Offset: 100 mA  
Range: 100 mA (000000) 3.2 A (11111)  
Default: 2400 mA (10111)  
IINDPM bits are changed automatically after  
Onput Source Type Detection (IINDPM  
Threshold) is completed  
USB SDP = 500 mA  
USB CDP = 1.5 A  
USB DCP = 2.4 A  
0
IINDPM[0]  
1
R/W  
by REG_RST 100 mA  
Unknown Adapter = 500 mA  
Non-Standard Adapter = 1 A, 2 A, 2.1 A, or  
2.4  
Host can reprogram IINDPM register bits after  
input source detection is completed.  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.2 Charger Control 0 Register (Address = 01h) [reset = 1Ah]  
9-18. REG01 Register  
7
0
6
0
5
0
4
3
2
0
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-9. REG01 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
PFM disable in both buck and boost mode.  
by REG_RST 0 PFM enable (default)  
1 PFM disable  
R/W  
R/W  
R/W  
7
6
PFM_DIS  
0
0
I2C Watchdog timer reset. Back to 0 after watchdog timer reset  
0 Normal (default)  
1 Reset  
by REG_RST  
by Watchdog  
WD_RST  
Boost mode enable. In charging case application, based on adapter  
plug-in or removal, the charger will automatically transit between  
charging mode and boost mode by setting BST_CONFIG bit and  
CHG_CONFIG bit both to 1.  
by REG_RST  
by Watchdog  
5
BST_CONFIG  
0
0 Boost mode disable (default)  
1 Boost mode enable  
R/W  
Battery charging buck mode enable. Charging is enabled when CE pin  
is pulled low, CHG_CONFIG bit is 1 and charge current is not zero.  
by REG_RST  
4
CHG_CONFIG  
1
by Watchdog 0 Charge Disable  
1 Charge Enable (default)  
3
2
SYS_MIN[2]  
SYS_MIN[1]  
1
0
R/W by REG_RST System minimum voltage setting.  
000 2.6 V  
001 2.8 V  
R/W by REG_RST  
R/W  
010 3 V  
011 3.2 V  
100 3.4 V  
101 3.5 V (default)  
110 3.6 V  
1
0
SYS_MIN[0]  
1
0
by REG_RST  
111 3.7 V  
R/W  
Minimum battery voltage when exiting boost mode. The rising threshold  
allows the device to start boost mode if other conditions are valid.  
0 2.8V VBAT falling, 3 V rising (default)  
MIN_VBAT_SEL  
by REG_RST  
1 2.5V VBAT falling, 2.8V rising  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.3 Charge Current Limit Register (Address = 02h) [reset = 91h]  
9-19. REG02 Register  
7
1
6
0
5
0
4
3
2
0
1
0
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-10. REG02 Field Descriptions  
Bit  
Field  
POR  
Type  
Reset  
Description  
R/W  
Boost mode current regulation limit (minimum current limit, not  
typical).  
0 0.5 A  
by REG_RST  
by Watchdog  
7
BOOST_LIM  
1
1 1.2 A (default)  
R/W  
In buck mode, charger will fully turn on Q1 RBFET according  
to this bit setting when IINDPM is below 700 mA. When  
IINDPM is over 700 mA, Q1 is always fully on. In boost mode ,  
Q1 is always fully on too, regardless of this bit setting.  
0 Partially turn on Q1 for better regulation accuracy when  
IINDPM is below 700 mA. (default)  
6
Q1_FULLON  
0
by REG_RST  
1 Fully turn on Q1 for better efficiency when IINDPM is  
below 700 mA.  
R/W  
R/W  
by REG_RST  
by Watchdog  
5
4
3
2
1
0
ICHG[5]  
ICHG[4]  
ICHG[3]  
ICHG[2]  
ICHG[1]  
ICHG[0]  
0
1
0
0
0
1
1920 mA  
by REG_RST  
by Watchdog  
960 mA  
Fast charge current setting  
Default: 1020 mA (010001)  
Range: 0 mA (0000000) –  
3000 mA (110010)  
ICHG 0 mA disables charge.  
ICHG > 3000 mA is clamped to  
3000 mA (110010)  
by REG_RST  
by Watchdog  
R/W  
R/W  
480 mA  
by REG_RST  
by Watchdog  
240 mA  
120 mA  
60 mA  
R/W  
R/W  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.4 Pre-charge and Termination Current Limit Register (Address = 03h) [reset = 12h]  
9-20. REG03 Register  
7
0
6
0
5
0
4
3
2
0
1
1
0
0
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-11. REG03 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
by REG_RST  
by Watchdog  
7
6
5
4
3
2
1
0
IPRECHG[3]  
0
0
1
0
0
0
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
480 mA  
Pre-charge current setting  
Default: 180 mA (0010)  
Range: 60 mA (0000) 780 mA  
(1100)  
Offset: 60 mA  
Note: IPRECHG > 780 mA is  
clamped to 780 mA (1100)  
by REG_RST  
by Watchdog  
IPRECHG[2]  
IPRECHG[1]  
IPRECHG[0]  
ITERM[3]  
240 mA  
120 mA  
60 mA  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
480 mA  
240 mA  
120 mA  
60 mA  
by REG_RST  
by Watchdog  
Termination current setting  
Default: 180 mA (0010)  
Range: 60 mA 780 mA (1100)  
Offset: 60 mA  
ITERM[2]  
by REG_RST  
by Watchdog  
ITERM[1]  
by REG_RST  
by Watchdog  
ITERM[0]  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.5 Battery Voltage Limit Register (Address = 04h) [reset = 40h]  
9-21. REG04 Register  
7
0
6
1
5
0
4
3
2
0
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-12. REG04 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
by REG_RST Battery voltage setting, also called VREG  
by Watchdog Default: 4.190 V (01000)  
.
7
6
5
4
VBATREG[4]  
0
1
0
0
R/W  
R/W  
R/W  
R/W  
00000 3.494 V  
00001 3.590 V  
00010 3.686 V  
00011 3.790 V  
by REG_RST  
by Watchdog  
VBATREG[3]  
VBATREG[2]  
VBATREG[1]  
by REG_RST  
by Watchdog  
00100 3.894 V  
by REG_RST  
by Watchdog  
00101 3.990 V  
00110 4.090 V  
00111 4.140 V  
01000 4.190 V  
by REG_RST  
3
VBATREG[0]  
0
R/W  
by Watchdog 01001 - 11111 4.290 V - 4.510 V, 10 mV/step  
01110 4.340 V, 10011 4.390V, 11000 4.440 V, 11101 4.490 V  
by REG_RST Top-off timer setting.  
2
1
TOPOFF_TIMER[1]  
TOPOFF_TIMER[0]  
0
0
R/W  
R/W  
by Watchdog  
00 Disabled (Default)  
01 15 minutes  
by REG_RST  
by Watchdog  
10 30 minutes  
11 45 minutes  
by REG_RST Battery recharge threshold setting.  
by Watchdog  
0
VRECHG  
0
R/W  
0 120 mV (default)  
1 210 mV  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.6 Charger Control 1 Register (Address = 05h) [reset = 9Eh]  
9-22. REG05 Register  
7
1
6
0
5
0
4
3
2
1
1
1
0
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-13. REG05 Field Descriptions  
Bit  
Field  
POR  
Type  
Reset  
Description  
Battery charging termination enable.  
0 Disable  
1 Enable (default)  
by REG_RST  
by Watchdog  
7
EN_TERM  
1
R/W  
by REG_RST  
by Watchdog  
6
5
Reserved  
0
0
R/W  
R/W  
Reserved  
by REG_RST Watchdog timer setting.  
by Watchdog  
WATCHDOG[1]  
00 Disable timer  
01 40 s (default)  
10 80 s  
by REG_RST  
by Watchdog  
4
3
WATCHDOG[0]  
EN_TIMER  
1
1
R/W  
R/W  
11 160 s  
Battery charging safety timer enable, including both fast  
charge and pre-charge timers. Pre-charge timer is 2 hours.  
Fast charge timer is set by REG05[2]  
0 Disable  
by REG_RST  
by Watchdog  
1 Enable timer (default)  
Battery fast charging safety timer setting.  
0 20 hrs  
1 10 hrs (default)  
by REG_RST  
by Watchdog  
2
1
CHG_TIMER  
TREG  
1
1
R/W  
R/W  
Thermal Regulation Threshold:  
0 90°C  
1 110°C (default)  
by REG_RST  
by Watchdog  
Battery voltage setting during JEITA warm (T3 - T5,  
typically 45C - 60C)  
by Watchdog 0 Set Charge Voltage to 4.1 V (max) (default)  
by REG_RST  
0
JEITA_VSET (45C-60C)  
0
R/W  
1 Set Charge Voltage to VREG  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.7 Charger Control 2 Register (Address = 06h) [reset = E6h]  
9-23. REG06 Register  
7
1
6
1
5
1
4
3
2
1
1
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-14. REG06 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
7
6
5
4
OVP[1]  
1
1
1
0
R/W by REG_RST VACOV threshold during buck mode and boost mode.  
00 5.85 V  
01 6.4 V (5-V input)  
10 11 V (9-V input)  
OVP[0]  
R/W by REG_RST  
11 14.2 V (12-V input) (default)  
BOOSTV[1]  
BOOSTV[0]  
R/W by REG_RST Boost regulation voltage setting  
00 4.6 V  
01 4.75 V  
10 5.0 V (default)  
R/W by REG_RST  
11 5.15 V  
3
2
1
0
VINDPM[3]  
VINDPM[2]  
VINDPM[1]  
VINDPM[0]  
0
1
1
0
R/W by REG_RST 800 mV  
R/W by REG_RST 400 mV  
R/W by REG_RST 200 mV  
R/W by REG_RST 100 mV  
VINDPM threshold setting  
Default: 4.5 V (0110)  
Range: 3.9 V (0000) 5.4 V  
(1111)  
Offset: 3.9 V  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.8 Charger Control 3 Register (Address = 07h) [reset = 4Ch]  
9-24. REG07 Register  
7
0
6
1
5
0
4
3
2
1
1
0
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-15. REG07 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Force input source type detection. After the detection is complete, this  
bit returns to 0.  
by Watchdog 0 Not in input current limit detection. (default)  
1 Force input current limit detection when adapter is present.  
by REG_RST  
7
6
IINDET_EN  
0
1
R/W  
R/W  
Safety timer is slowed by 2X during input DPM, JEITA cool/warm or  
thermal regulation.  
by REG_RST  
TMR2X_EN  
0 Disable. Safety timer duration is set by REG05[2].  
by Watchdog  
1 Safety timer slowed by 2X during input DPM (both V and I) or  
JEITA cool/warm (except ICHG=100%), or thermal regulation. (default)  
BATFET Q4 ON/OFF control. Set this bit to 1 to enter ship mode. To  
reset the device with adapter present, the host shall set  
BATFET_RST_WVBUS to 1 and then BATFET_DIS to 1.  
0 Turn on Q4. (default)  
1 Turn off Q4 after tBATFET_DLY delay time (REG07[3])  
5
4
3
BATFET_DIS  
0
0
1
R/W by REG_RST  
R/W by REG_RST  
Start BATFET full system reset with or without adapter present.  
0 Start BATFET full system reset after adapter is removed from  
VBUS. (default)  
BATFET_RST_WVBUS  
BATFET_DLY  
1 Start BATFET full system reset when adapter is present on VBUS.  
Delay from BATFET_DIS (REG07[5]) set to 1 to BATFET turn off during  
ship mode.  
R/W by REG_RST 0 Turn off BATFET immediately when BATFET_DIS bit is set.  
1 Turn off BATFET after tBATFET_DLY (typ 10 s) when BATFET_DIS bit  
is set. (default)  
Enable BATFET full system reset. The time to start of BATFET full  
system reset is based on the setting of BATFET_RST_WVBUS bit.  
by REG_RST  
by Watchdog 0 Disable BATFET reset function  
1 Enable BATFET reset function when REG07[5] is also 1. (default)  
2
1
BATFET_RST_EN  
1
0
R/W  
VINDPM_BAT_TRACK[1]  
R/W by REG_RST Sets VINDPM to track BAT voltage. Actual VINDPM is higher of register  
value and VBAT + VINDPM_BAT_TRACK.  
00 Disable function (VINDPM set by register) (default)  
01 VBAT + 200 mV  
10 VBAT + 250 mV  
11 VBAT + 300 mV  
0
VINDPM_BAT_TRACK[0]  
0
R/W by REG_RST  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.9 Charger Status 0 Register (Address = 08h)  
9-25. REG08  
7
x
6
x
5
x
4
3
2
x
1
x
0
x
x
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-16. REG08 Field Descriptions  
Bit Field  
POR Type  
Reset  
Description  
7
6
5
4
VBUS_STAT[2]  
x
x
x
x
R
R
R
R
NA  
VBUS Status register  
Software current limit is reported in IINDPM register  
VBUS_STAT[1]  
VBUS_STAT[0]  
CHRG_STAT[1]  
NA  
NA  
NA  
Charging status:  
00 Not Charging  
01 Pre-charge or trickle charge (< VBATLOWV  
10 Fast Charging  
)
3
CHRG_STAT[0]  
x
R
NA  
11 Charge Termination  
2
1
Reserved  
x
x
R
R
NA  
NA  
Reserved  
0 Not in thermal regulation  
1 In thermal regulation  
THERM_STAT  
0 Not in SYS_MIN regulation (VBAT > VSYS_MIN  
)
0
VSYS_STAT  
x
R
NA  
1 In SYS_MIN regulation (VBAT < VSYS_MIN  
)
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.10 Charger Status 1 Register (Address = 09h)  
9-26. REG09 Register  
7
1
6
x
5
x
4
3
2
x
1
x
0
x
x
x
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-17. REG09 Field Descriptions  
Bit Field  
POR Type Reset  
Description  
0 Normal, device is in host mode,  
7
WATCHDOG_FAULT  
1
R
R
NA  
NA  
1 Watchdog timer expiration, device is in default mode.  
0 Normal  
1 Fault detected in boost mode (any conditions that are not valid for  
boost operation), including VBUS overloaded (BST_OVP) or battery is  
too low (BST_BAT)  
6
BOOST_FAULT  
x
5
4
CHRG_FAULT[1]  
CHRG_FAULT[0]  
x
x
R
R
NA  
NA  
00 Normal  
01 Input fault  
10 Thermal shutdown  
11 Charge safety timer expiration  
0 Normal,  
1 Battery over voltage.  
3
BAT_FAULT  
x
R
NA  
2
1
NTC_FAULT[2]  
NTC_FAULT[1]  
x
x
R
R
NA  
NA  
TS fault in buck mode  
000 Normal  
010 Warm  
011 Cool  
101 Cold  
110 Hot  
0
NTC_FAULT[0]  
x
R
NA  
TS fault in boost mode  
000 Normal  
101 Cold  
110 Hot  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.11 Charger Status 2 Register (Address = 0Ah)  
9-27. REG0A Register  
7
x
6
x
5
x
4
3
2
x
1
0
0
0
x
x
R
R
R
R
R
R
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-18. REG0A Field Descriptions  
Bit Field  
POR Type Reset  
Description  
0 VBUS does not pass poor source detection  
1 VBUS passes poor source detection  
7
6
5
VBUS_GD  
x
x
x
R
R
R
NA  
NA  
NA  
0 Not in VINDPM  
1 In VINDPM  
VINDPM_STAT  
IINDPM_STAT  
0 Not in IINDPM  
1 In IINDPM  
0 BATSNS pin is in good connection. Regulation battery voltage  
through BATSNS pin.  
1 BATSNS pin is open/short. Regulate battery voltage through BAT  
4
BATSNS_STAT  
x
R
NA  
pin.  
0 Top off timer not counting.  
1 Top off timer counting  
3
2
TOPOFF_ACTIVE  
ACOV_STAT  
x
x
R
R
NA  
NA  
0 Not in ACOV  
1 In ACOV  
Allow or block INT pulse assertion to host during VINDPM.  
1
0
VINDPM_INT_ MASK  
IINDPM_INT_ MASK  
0
0
R/W by REG_RST 0 INT is asserted to host during VINDPM (default)  
1 No INT pulse asserted to host during VINDPM  
Allow or block INT pulse assertion to host during IINDPM  
R/W by REG_RST 0 INT is asserted to host during IINDPM (default)  
1 No INT pulse asserted to host during IINDPM  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.12 Part Information Register (Address = 0Bh)  
9-28. REG0B Register  
7
0
6
1
5
0
4
3
2
1
1
0
0
0
1
0
R/W  
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-19. REG0B Field Descriptions  
Bit Field  
POR Type Reset  
Description  
Register reset  
0 Keep current register setting (default)  
1 Reset to default register value and reset safety timer. This bit  
7
REG_RST  
0
R/W NA  
returns to 0 after register reset is completed.  
6
5
4
3
2
PN[3]  
1
0
1
0
1
R
R
R
R
R
NA  
NA  
NA  
NA  
NA  
PN[2]  
BQ25611D: 1010  
PN[1]  
PN[0]  
Reserved  
Reserved  
Reserved  
1
0
0
0
R
R
NA  
NA  
Reserved  
Reserved  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
9.5.13 Charger Control 4 Register (Address = 0Ch) [reset = 75h]  
9-29. REG0C  
7
0
6
1
5
1
4
3
2
1
1
0
0
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9-20. REG0C Field Descriptions  
Bit Field  
POR Type Reset  
Description  
by REG_RST Fast charge current setting during cool temperature range (T1 - T2), as  
by Watchdog percentage of ICHG in REG02[5:0].  
00 No Charge  
7
6
5
4
JEITA_COOL_ISET [1]  
0
1
1
1
R/W  
R/W  
R/W  
R/W  
01 20% of ICHG (default)  
10 50% of ICHG  
11 100% of ICHG (safety timer does not become 2X)  
by REG_RST  
by Watchdog  
JEITA_COOL_ISET [0]  
JEITA_WARM_ISET [1]  
JEITA_WARM_ISET [0]  
by REG_RST Fast charge current setting during warm temperature range (T3 - T5), as  
by Watchdog percentage of ICHG in REG02[5:0].  
00 No Charge  
01 20% of ICHG  
10 50% of ICHG  
11 100% of ICHG (safety timer does not become 2X) (default)  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
00 VT2% = 70.75% (5.5°C)  
01 VT2% = 68.25% (10°C) (default)  
10 VT2% = 65.25% (15°C)  
11 VT2% = 62.25% (20°C)  
3
2
1
0
JEITA_VT2 [1]  
JEITA_VT2 [0]  
JEITA_VT3 [1]  
JEITA_VT3 [0]  
0
1
0
1
R/W  
R/W  
R/W  
R/W  
by REG_RST  
by Watchdog  
by REG_RST  
by Watchdog  
00 VT3% = 48.25% (40°C)  
01 VT3% = 44.75% (44.5°C) (default)  
10 VT3% = 40.75% (50.5°C)  
11 VT3% = 37.75% (54.5°C)  
by REG_RST  
by Watchdog  
LEGEND: R/W = Read/Write; R = Read only  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
A typical application consists of the device configured as an I2C controlled Power Path management device and  
a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smart phones and other  
portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET, Q2),  
low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
10.2 Typical Application  
VAC  
SYSTEM  
INPUT  
1µH  
3.5V œ 4.52V  
3.9V œ 14V  
SW  
VBUS  
Q1  
1µF  
Q2  
10µF  
BTST  
47nF  
Q3  
REGN  
PMID  
4. 7µF  
10µF  
PGND  
SYS  
SYS  
Q4  
STAT  
VREF  
BAT  
10µF  
BATSNS  
SDA  
SCL  
INT  
REGN  
Host  
TS  
+
CE  
QON  
D+  
D-  
USB  
Optional  
BQ25611D  
10-1. BQ25611D Application Diagram  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
10.2.1 Design Requirements  
For this design example, use the parameters shown in the table below.  
10-1. Design Parameters  
PARAMETER  
VALUE  
4 V to 13.5 V  
2.4 A  
VVBUS voltage range  
Input current limit (REG00[4:0] )  
Fast charge current limit (REG02[5:0] )  
Minimum system voltage (REG01[3:1])  
Battery regulation voltage (REG04[7:3] )  
1.024 A  
3.5 V  
4.2 V  
10.2.2 Detailed Design Procedure  
10.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
ISAT ICHG + (1/2) IRIPPLE  
(3)  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(4)  
The maximum inductor ripple current occurs when the duty cycle (D) is 0.5 or approximately 0.5. Usually  
inductor ripple is designed in the range between 20% and 40% maximum charging current as a trade-off  
between inductor size and efficiency for a practical design.  
10.2.2.2 Input Capacitor and Resistor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICIN occurs where the duty cycle is closest  
to 50% and can be estimated using 方程式 5.  
ICIN = ICHG ´ D ´ (1- D)  
(5)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed to the drain of the high-side MOSFET and source of the low-side MOSFET as close as possible. Voltage  
rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher capacitor is  
preferred for 12-V input voltage. Capacitance of minimum 10 μF is suggested for typical of 3-A charging current.  
During high current output over 700 mA in boost mode, a 10-kΩ pull-down resistor on VBUS is recommended to  
keep VBUS low in case Q1 RBFET leakage gets high.  
10.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
方程式 6 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(6)  
The output capacitor voltage ripple can be calculated as follows:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25611D  
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
æ
ç
è
ö
VOUT  
8LCfs2  
VOUT  
V
DVO =  
1-  
÷
IN ø  
(7)  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for > 10-μF ceramic output capacitance. The  
preferred ceramic capacitor is 10-V rating, X7R or X5R.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
10.3 Application Curves  
VVBUS = 5 V  
VBAT = 3.2 V  
VVBAT = 3.2 V  
10-2. Power Up  
10-3. System Reset by QON without VBUS  
Present  
ICHG = 0.5 A  
VVBUS = 5 V  
VBAT = 3.2 V  
ISYS = 0 - 2 A  
ICHG = 1.5 A  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 1 A  
10-4. System Reset by QON with VBUS Present  
10-5. System Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25611D  
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 2 A  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 1 A  
ISYS = 0 2 A  
ISYS = 0 4 A  
ICHG = 1 A  
ICHG = 1.5 A  
10-6. System Load Transient Respose  
10-7. System Load Transient Response  
VVBUS = 5 V  
VBAT = 3.7 V  
IINDPM = 2 A  
ISYS = 0 4 A  
ICHG = 1.5 A  
10-8. System Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
11 Power Supply Recommendations  
In order to provide an output voltage on SYS, the battery charger requires a power supply between 4-V and  
13.5-V input with at least 100-mA current rating connected to VBUS and a single-cell Li-Ion battery with battery  
voltage greater than VBAT_UVLOZ connected to BAT. The source current rating needs to be at least 3-A in order  
for the buck converter of the charger to provide maximum output power to SYS.  
12 Layout  
12.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loop (see 12-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
1. Place input capacitor as close as possible to PMID pin and GND pin connections and use shortest copper  
trace connection or GND plane. Add 1 nF small size (such as 0402 or 0201) decoupling cap for high  
frequency noise filter and EMI improvement.  
2. Place inductor input pin to SW pin as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the charging current. Do not  
use multiple layers in parallel for this connection. Minimize parasitic capacitance from this area to any other  
trace or plane.  
3. Put output capacitor near to the inductor and the device. Ground connections need to be tied to the IC ground  
with a short copper trace connection or GND plane.  
4. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using thermal pad as the single ground  
connection point. Or using a 0-Ω resistor to tie analog ground to power ground.  
5. Use single ground connection to tie charger power ground to charger analog ground. Just beneath the  
device. Use ground copper pour but avoid power pins to reduce inductive and capacitive noise coupling.  
6. Place decoupling capacitors next to the IC pins and make trace connection as short as possible.  
7. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
8. Ensure that the number and sizes of vias allow enough copper for a given current path.  
See the BQ25619 BMS025 Evaluation Module EVM User's Guide for the recommended component placement  
with trace and via locations. For the VQFN information, refer to Quad Flatpack No-Lead Logic Packages  
Application Report and QFN and SON PCB Attachment Application Report.  
12.2 Layout Example  
+
+
œ
12-1. High Frequency Current Path  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25611D  
 
 
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
12-2. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25611D  
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
13 Device and Documentation Support  
13.1 Device Support  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
BQ25619 BMS025 Evaluation Module User's Guide  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25611D  
 
 
 
 
 
 
 
 
BQ25611D  
www.ti.com.cn  
ZHCSKO3B JANUARY 2020 REVISED SEPTEMBER 2020  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25611D  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25611DRTWR  
BQ25611DRTWT  
ACTIVE  
WQFN  
WQFN  
RTW  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ  
25611D  
ACTIVE  
RTW  
NIPDAU  
BQ  
25611D  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Aug-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Sep-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25611DRTWR  
BQ25611DRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Sep-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25611DRTWR  
BQ25611DRTWT  
WQFN  
WQFN  
RTW  
RTW  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

BQ25616

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器
TI

BQ25616JRTWR

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25616JRTWT

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25616RTWR

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25616RTWT

具有电源路径和 1.2A 升压操作的独立式单节 3.0A 降压型电池充电器 | RTW | 24 | -40 to 85
TI

BQ25618

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器
TI

BQ25618E

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI

BQ25618EYFFR

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI

BQ25618YFFR

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器 | YFF | 30 | -40 to 85
TI

BQ25618YFFT

采用 WCSP 封装、具有 20mA 终止电流和 1A 升压操作的 I2C 控制型 1.5A 单节降压型电池充电器 | YFF | 30 | -40 to 85
TI

BQ25619

具有 20mA 终止电流和 1A 升压电流的 I2C 控制型 1.5A 单节降压型电池充电器
TI

BQ25619E

BQ25618E, BQ25619E I2C Controlled 1-Cell 1.5-A Battery Chargers with 20-mA Termination Current
TI