BQ25622 [TI]

具有 18V 最大输入、电流限制、ADC 和 OTG 的 I²C 控制型单节 3.5A 降压电池充电器;
BQ25622
型号: BQ25622
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 18V 最大输入、电流限制、ADC 和 OTG 的 I²C 控制型单节 3.5A 降压电池充电器

电池
文件: 总84页 (文件大小:3764K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
BQ25620/BQ25622 I2C Controlled, 3.5-A, Maximum 18-V Input, Charger with NVDC  
Power Path Management and OTG Output  
IP Camera, EPOS  
Portable Medical Equipment  
1 Features  
High-efficiency, 1.5-MHz, synchronous switching  
mode buck charger for single cell battery  
– >90% efficiency down to 25-mA output current  
from 5-V input  
– Charge termination from 10 mA to 620 mA, 10-  
mA steps  
– Flexible JEITA profile for safe charging over  
temperature  
BATFET control to support shutdown, ship mode  
and full system reset  
– 1.5-μA quiescent current in battery only mode  
– 0.15-μA battery leakage current in ship mode  
– 0.1-μA battery leakage current in shutdown  
Supports USB On-The-Go (OTG)  
– Boost mode operation supporting 3.84-V to 9.6-  
V output  
– >90% boost efficiency down to 100-mA OTG  
current for 5-V VBUS  
Supports a wide range of input sources  
3 Description  
The BQ25620 and BQ25622 are highly-integrated  
3.5-A switch-mode battery charge management and  
system power path management devices for single  
cell Li-Ion and Li-polymer batteries. The solution is  
highly integrated with built-in current sensing, loop  
compensation, input reverse-blocking FET (RBFET,  
Q1), high-side switching FET (HSFET, Q2), low-  
side switching FET (LSFET, Q3), and battery FET  
(BATFET, Q4) between system and battery. The  
devices use narrow VDC power path management,  
regulating the system slightly above the battery  
voltage without dropping below  
a
configurable  
minimum system voltage. The low impedance power  
path optimizes switch-mode operation efficiency,  
reduces battery charging time, extends battery life  
during discharging phase, and the ultra-low 0.15-μA  
ship mode current extends battery shelf life. The I2C  
serial interface with charging and system settings  
makes the BQ25620 and BQ25622 truly flexible  
solutions.  
– 3.9-V to 18-V wide input operating voltage  
range with 26-V absolute maximum input  
voltage  
– Maximizes source power with input voltage  
regulation (VINDPM) and input current  
regulation (IINDPM)  
– VINDPM threshold automatically tracks battery  
voltage  
Device Information  
PART NUMBER  
BQ25620  
BQ25622  
PACKAGE(1)  
BODY SIZE (NOM)  
2.50 mm × 3.00 mm  
2.50 mm × 3.00 mm  
WQFN (18)  
WQFN (18)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Efficient battery operation with 15-mΩ BATFET  
Narrow VDC (NVDC) power path management  
System  
1 uH  
– System instant-on with depleted or no battery  
– Battery supplement when adapter is fully  
loaded  
Load  
3.4 - 18V  
VBUS  
SW  
USB  
Detection  
USB  
D+/D- (620)  
Flexible autonomous or I2C-controlled modes  
Integrated 12-bit ADC for voltage, current,  
temperature monitoring  
BTST  
SYS  
TS_BIAS (622)  
ILIM (622)  
2.6 – 4.85V  
REGN (620)  
TS_BIAS (622)  
REGN  
High accuracy  
I2C Bus  
PG  
BQ25620  
BQ25622  
– ±0.5% charge voltage regulation  
– ±5% charge current regulation  
– ±5% input current regulation  
Safety  
Host  
CE  
TS  
BAT  
1.8 – 4.8V  
QON  
– Thermal regulation and thermal shutdown  
– Input, system, battery overvoltage protection  
– Battery, converter overcurrent protection  
– Charging safety timer  
GND  
Optional  
2 Applications  
BQ25620/2 Simplified Application Diagram  
Tablet  
Gaming and Computer Accessories  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Description (continued).................................................. 3  
6 Device Comparison.........................................................4  
7 Pin Configuration and Functions...................................5  
8 Specifications.................................................................. 7  
8.1 Absolute Maximum Ratings........................................ 7  
8.2 ESD Ratings............................................................... 7  
8.3 Recommended Operating Conditions.........................7  
8.4 Thermal Information....................................................8  
8.5 Electrical Characteristics.............................................8  
8.6 Timing Requirements................................................16  
8.7 Typical Characteristics..............................................18  
9 Detailed Description......................................................20  
9.1 Overview...................................................................20  
9.2 Functional Block Diagram.........................................21  
9.3 Feature Description...................................................22  
9.4 Device Functional Modes..........................................33  
9.5 Programming............................................................ 35  
9.6 Register Maps...........................................................38  
10 Application and Implementation................................65  
10.1 Application Information........................................... 65  
10.2 Typical Application.................................................. 65  
11 Power Supply Recommendations..............................71  
12 Layout...........................................................................72  
12.1 Layout Guidelines................................................... 72  
12.2 Layout Example...................................................... 72  
13 Device and Documentation Support..........................75  
13.1 Device Support....................................................... 75  
13.2 Documentation Support.......................................... 75  
13.3 Receiving Notification of Documentation Updates..75  
13.4 Support Resources................................................. 75  
13.5 Trademarks.............................................................75  
13.6 Electrostatic Discharge Caution..............................75  
13.7 Glossary..................................................................75  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 76  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (September 2022) to Revision A (October 2022)  
Page  
Changed BQ25622 from Preview to Production Data........................................................................................ 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
5 Description (continued)  
The BQ25620 supports a wide range of input sources, including standard USB host port, USB charging port,  
and USB compliant high voltage adapter. It sets the default input current limit based on the built-in D+/D- USB  
adapter detection interface. BQ25622 has an ILIM pin to set the default input current limit and a TS_BIAS  
pin for controlled thermistor bias. The device is compliant with USB 2.0 and USB 3.0 power specifications for  
input current and voltage regulation and meets USB On-the-Go (OTG) operation power rating specification with  
constant current limit up to 3.2 A.  
The power path management regulates the system slightly above battery voltage but does not drop below  
the programmable minimum system voltage. With this feature, the system maintains operation even when the  
battery is completely depleted or removed. When the input current limit or input voltage limit is reached, the  
power path management automatically reduces the charge current. As the system load continues to increase,  
the battery starts to discharge until the system power requirement is met. This supplement mode prevents  
overloading the input source.  
The BQ25620 and BQ25622 initiate and complete a charging cycle without host control. By sensing the battery  
voltage, it charges the battery in four different phases: trickle charge, pre-charge, constant current (CC) charge,  
and constant voltage (CV) charge. At the end of the charging cycle, the charger automatically terminates when  
the charge current is below a preset threshold and the battery voltage is higher than the recharge threshold.  
Termination is supported for all TS pin temperature zones.  
The BQ25620 and BQ25622 provide various safety features for battery charging and system operations,  
including battery negative temperature coefficient thermistor monitoring, charging safety timer, and overvoltage  
and overcurrent protections. The thermal regulation reduces charge current when the junction temperature  
exceeds the programmable threshold. The STAT output reports the charging status and any fault conditions.  
Other safety features include battery temperature sensing for charge mode and OTG boost mode, thermal  
shutdown and input UVLO and overvoltage protection. The PG output indicates if a good power source is  
present. The INT output notifies the host when a fault occurs or status changes.  
The BQ25620 and BQ25622 are available in a 18-pin, 2.5 mm × 3.0 mm WQFN package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
6 Device Comparison  
Table 6-1. Device Comparison  
FUNCTION  
BQ25611D  
4V - 13.5V  
I2C  
BQ25616  
4V - 13.5V  
Standalone  
BQ25620  
3.9V - 18V  
I2C  
BQ25622  
Input Voltage Range  
Part Configuration  
3.9V - 18V  
I2C  
3.5 - 4.3V (100mV per  
step); 4.3 - 4.52V (10mV  
per step)  
Programmable Charge  
Voltage  
4.1V / 4.2V / 4.35V  
3.5 - 4.8V (10mV per step) 3.5 - 4.8V (10mV per step)  
D+/D- USB Detection  
ILIM Pin  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
No  
JEITA  
No  
JEITA  
TS Profile  
HOT/COLD  
9.5μA  
JEITA  
Quiescent Battery Current  
OTG  
9.5μA  
1.5μA  
1.5μA  
Yes  
Yes  
Yes  
Yes  
OTG Current Limit  
ADC  
1.2A  
1.2A  
3.2A  
3.2A  
None  
None  
12-bit ADC  
2.5x3mm2 QFN (18)  
12-bit ADC  
2.5x3mm2 QFN (18)  
Package  
4x4mm2 QFN (24)  
4x4mm2 QFN (24)  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
7 Pin Configuration and Functions  
14  
CE  
1
BTST  
REGN  
PG  
2
3
4
13  
12  
11  
SCL  
BQ25620  
RYK  
2.5mm x 3mm  
SDA  
INT  
D-  
D+  
5
10  
STAT  
Figure 7-1. BQ25620 Pinout, 18-Pin WQFN Top View  
14  
1
BTST  
CE  
REGN  
PG  
2
3
4
13  
12  
11  
SCL  
SDA  
INT  
BQ25622  
RYK  
2.5mm x 3mm  
ILIM  
TS_BIAS  
5
10  
STAT  
Figure 7-2. BQ25622 Pinout, 18-Pin WQFN Top View  
Table 7-1. Pin Functions  
NAME  
NO.  
TYPE(1)  
DESCRIPTION  
BQ25622  
BQ25620  
High Side Switching MOSFET Gate Driver Power Supply – Connect a 10V or higher  
rating, 47nF ceramic capacitor between SW and BTST as the bootstrap capacitor for driving  
high side switching MOSFET (Q2).  
BTST  
1
P
The Charger Internal Linear Regulator Output – Internally, REGN is connected to the  
anode of the boost-strap diode. Connect a 10V or higher rating, 4.7μF ceramic capacitor  
from REGN to power ground, The capacitor should be placed close to the IC. The REGN  
LDO output is used for the internal MOSFETs gate driving voltage and for biasing the  
external TS pin thermistor in BQ25620.  
REGN  
2
P
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 7-1. Pin Functions (continued)  
NAME  
NO.  
TYPE(1)  
DESCRIPTION  
BQ25622  
BQ25620  
Open Drain Active Low Power Good Indicator – Connect to the pull up rail via 10kΩ  
resistor. LOW indicates an input source of VVBUS_UVLO < VBUS < VVBUS_OVP. Failing poor  
source detection or triggering the sleep comparator ( VBUS < VBAT + VSLEEP ) also causes  
PG to transition HIGH.  
PG  
3
DO  
Input Current Limit Setting Input Pin – ILIM pin sets the input current limit as IINREG  
=
KILIM / RILIM, where RILIM is connected from ILIM pin to GND. The input current is limited to  
the lower of the two values set by ILIM pin and IINDPM register bits. The ILIM pin can also  
be used to monitor input current. The input current is proportional to the voltage on ILIM pin  
and can be calculated by IIN = (KILIM x VILIM) / (RILIM x 0.8). The ILIM pin function is disabled  
when EN_EXTILIM bit is set to 0.  
ILIM  
D-  
4
5
AIO  
Negative Line of the USB Data Line Pair – D+/D- based USB host/charging port detection.  
The detection includes data contact detection (DCD), primary and secondary detection in  
BC1.2.  
Bias for the TS Resistor Voltage Divider – Provides the bias voltage for the TS resistor  
voltage divider.  
P
TS_BIAS  
D+  
Positive Line of the USB Data Line Pair – D+/D- based USB host/charging port detection.  
The detection includes data contact detection (DCD), primary and secondary detection in  
BC1.2.  
AIO  
Temperature Qualification Voltage Input – Connect a negative temperature coefficient  
thermistor. Program temperature window with a resistor divider from TS pin bias reference  
(REGN in BQ25620, TS_BIAS in BQ25622) to TS, then to GND. Charge suspends when TS  
pin voltage is out of range. Recommend a 103AT-2 10kΩ thermistor.  
TS  
6
7
AI  
DI  
BATFET Enable or System Power Reset Control Input – If the charger is in ship mode, a  
logic low on this pin with tSM_EXIT duration forces the device to exit ship mode. If the charger  
is not in ship mode, a logic low on this pin with tRST initiates a full system power reset if either  
VVBUS < VVBUS_UVLO or BATFET_CTRL_WVBUS = 1. QON has no effect during shutdown  
mode. The pin contains an internal pull-up to maintain default high logic.  
QON  
The Battery Charging Power Connection – Connect to the positive terminal of the battery  
pack. The internal BATFET is connected between SYS and BAT.  
BAT  
SYS  
8
9
P
P
The Charger Output Voltage to System –The Buck converter output connection point to  
the system. The internal BATFET is connected between SYS and BAT.  
Open Drain Charge Status Output – It indicates various charger operations. Connect to the  
pull up rail via 10kΩ resistor. LOW indicates charging in progress. HIGH indicates charging  
completed or charging disabled. When any fault condition occurs, STAT pin blinks at 1Hz.  
Setting DIS_STAT = 1 disables the STAT pin function, causing the pin to be pulled HIGH.  
Leave floating if unused.  
STAT  
INT  
10  
11  
DO  
DO  
Open Drain Interrupt Output. – Connect to the pull up rail via 10kΩ resistor. The INT pin  
sends an active low, 256μs pulse to the host to report the charger device status and faults.  
SDA  
SCL  
12  
13  
DIO  
DI  
I2C Interface Data – Connect SDA to the logic rail through a 10 kΩ resistor.  
I2C Interface Clock – Connect SCL to the logic rail through a 10 kΩ resistor.  
Active Low Charge Enable Pin – Battery charging is enabled when EN_CHG bit is 1 and  
CE pin is LOW. CE pin must be pulled HIGH or LOW, do not leave floating.  
CE  
14  
15  
DI  
P
GND  
Ground Return  
Switching Node Connecting to Output Inductor – Internally SW is connected to the  
source of the n-channel HSFET and the drain of the n-channel LSFET. Connect the 47 nF  
bootstrap capacitor from SW to BTST.  
SW  
16  
P
HSFET Drain Connection – Internally PMID is connected to the drain of the reverse  
blocking MOSFET (RBFET) and the drain of HSFET.  
PMID  
VBUS  
17  
18  
P
P
Charger Input Voltage – The internal n-channel reverse block MOSFET (RBFET) is  
connected between VBUS and PMID with VBUS on source.  
(1) AI = Analog input, AO = Analog Output, AIO = Analog input Output, DI = Digital input, DO = Digital Output, DIO = Digital input Output,  
P = Power  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–2  
MAX  
26  
26  
6
UNIT  
V
VBUS (converter not switching)  
PMID (converter not switching)  
BAT, SYS (converter not switching)  
–0.3  
V
–0.3  
V
Voltage range (with  
respect to GND)  
SW  
–2 (50ns)  
–0.3  
21  
27  
6
V
BTST (when converter switching)  
CE, STAT, SCL, SDA, INT, REGN, QON  
D+, D-, ILIM, PG, TS, TS_BIAS  
V
–0.3  
V
–0.3  
6
V
Output Sink Current  
Differential Voltage  
INT, STAT, PG  
BTST-SW  
6
mA  
V
–0.3  
–0.3  
–0.3  
–40  
–55  
6
PMID-VBUS  
6
V
SYS-BAT  
6
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated  
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
8.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
18  
UNIT  
V
VVBUS  
VBAT  
IVBUS  
ISW  
Input voltage  
3.9  
Battery voltage  
4.8  
3.2  
3.5  
3.5  
6
V
Input current  
A
Output current (SW)  
A
Fast charging current  
A
IBAT  
RMS discharge current (continuously)  
Peak discharge current (up to 50ms)  
Maximum REGN Current  
Ambient temperature  
A
10  
A
IREGN  
TA  
20  
mA  
°C  
°C  
µH  
µF  
µF  
µF  
–40  
–40  
0.68  
1
85  
TJ  
Junction temperature  
125  
2.2  
LSW  
Inductor for the switching regulator  
VBUS capacitor (without de-rating)  
PMID capacitor (without de-rating)  
SYS capacitor (without de-rating)  
CVBUS  
CPMID  
CSYS  
10  
20  
500  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
CBAT  
BAT capacitor (without de-rating)  
10  
µF  
8.4 Thermal Information  
BQ25620, BQ25622  
THERMAL METRIC(1)  
RYK (QFN)  
18 pins  
60.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
42.1  
13.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.3  
ΨJB  
12.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.5 Electrical Characteristics  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
Quiescent battery current (BAT,  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 4V, No VBUS, BATFET is  
SYS, SW) when the charger is in enabled, I2C enabled, ADC disabled,  
the battery only mode, BATFET is system is powered by battery. -40 °C <  
IQ_BAT  
1.5  
3
µA  
µA  
enabled, ADC is disabled  
TJ < 60 °C  
Quiescent battery current (BAT,  
VBAT = 4V, No VBUS, BATFET is  
SYS, SW) when the charger is in enabled, I2C enabled, ADC enabled,  
the battery only mode, BATFET is system is powered by battery. -40 °C <  
IQ_BAT_ADC  
260  
0.1  
enabled, ADC is enabled  
TJ < 60 °C  
Quiescent battery current (BAT)  
when the charger is in shutdown  
mode, BATFET is disabled, ADC  
is disabled  
VBAT = 4V, No VBUS, BATFET is  
disabled, I2C disabled, in shutdown  
mode, ADC disabled, TJ < 60 °C  
IQ_BAT_SD  
0.2 µA  
Quiescent battery current (BAT)  
when the charger is in ship  
mode, BATFET is disabled, ADC  
is disabled  
VBAT = 4V, No VBUS, BATFET is  
disabled, I2C disabled, in ship mode,  
ADC disabled, TJ < 60 °C  
IQ_BAT_SHIP  
0.15  
450  
0.5 µA  
VBUS = 5V, VBAT = 4V, charge disabled,  
converter switching, ISYS = 0A, PFM  
enabled  
IQ_VBUS  
Quiescent input current (VBUS)  
µA  
VBUS = 5V, VBAT = 4V, HIZ mode, ADC  
disabled  
5
20 µA  
35 µA  
Quiescent input current (VBUS) in  
HIZ  
IQ_VBUS_HIZ  
VBUS = 15V, VBAT = 4V, HIZ mode, ADC  
disabled  
20  
VBAT = 4.2V, VBUS = 5V, OTG  
mode enabled, converter switching,  
PFM enabled, IVBUS = 0A, TS float,  
TS_IGNORE = 1  
Quiescent battery current (BAT,  
SYS, SW) in boost OTG mode  
IQ_OTG  
250  
µA  
VBUS / VBAT SUPPLY  
VVBUS_OP  
VBUS operating range  
3.9  
3.0  
18  
V
V
VBUS falling to turn off I2C, no  
battery  
VVBUS_UVLO  
VBUS falling  
3.15  
3.3  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBUS rising for active I2C, no  
battery  
VVBUS_UVLOZ  
VBUS rising  
3.2  
3.35  
3.5  
V
VVBUS_OVP  
VVBUS_OVPZ  
VVBUS_OVP  
VBUS overvoltage rising threshold VBUS rising, VBUS_OVP = 0  
VBUS overvoltage falling hreshold VBUS rising, VBUS_OVP = 0  
VBUS overvoltage rising threshold VBUS rising, VBUS_OVP = 1  
6.1  
5.8  
6.4  
6.0  
6.7  
6.2  
V
V
V
18.2  
18.5  
18.8  
VBUS overvoltage falling  
VBUS falling, VBUS_OVP = 1  
threshold  
VVBUS_OVPZ  
17.4  
17.7  
18.0  
V
VSLEEP  
Enter Sleep mode threshold  
Exit Sleep mode threshold  
(VBUS - VBAT), VBUS falling  
(VBUS - VBAT), VBUS rising  
9
45  
85 mV  
VSLEEPZ  
115  
220  
340 mV  
BAT voltage for active I2C, turn on  
BATFET, no VBUS  
VBAT_UVLOZ  
VBAT rising  
2.3  
2.4  
2.5  
V
VBAT falling, VBAT_UVLO = 0  
VBAT falling, VBAT_UVLO = 1  
VBAT rising, VBAT_OTG_MIN = 0  
VBAT rising, VBAT_OTG_MIN = 1  
VBAT falling, VBAT_OTG_MIN = 0  
VBAT falling, VBAT_OTG_MIN = 1  
VBUS falling  
2.1  
1.7  
2.9  
2.5  
2.7  
2.3  
3.6  
2.2  
1.8  
3.0  
2.6  
2.8  
2.4  
3.7  
2.3  
1.9  
3.1  
2.7  
2.9  
2.5  
V
V
V
V
V
V
V
BAT voltage to turnoff I2C, turn off  
BATFET, no VBUS  
VBAT_UVLO  
BAT voltage rising threshold to  
enable OTG mode  
VBAT_OTG  
BAT voltage falling threshold to  
disable OTG mode  
VBAT_OTGZ  
VPOORSRC  
IPOORSRC  
Bad adapter detection threshold  
Bad adapter detection current  
source  
10  
mA  
POWER-PATH MANAGEMENT  
ISYS = 0A, VBAT > VSYSMIN, Charge  
Disabled. Offset above VBAT  
50  
mV  
mV  
VSYS_REG_ACC  
Typical system voltage regulation  
ISYS = 0A, VBAT < VSYSMIN, Charge  
Disabled. Offset above VSYSMIN  
230  
VSYSMIN_RNG  
VSYSMIN register range  
2.56  
3.52  
3.84  
V
VSYSMIN_REG_STEP  
VSYSMIN register step size  
80  
mV  
Minimum DC system voltage  
output  
ISYS = 0A, VBAT < VSYSMIN = B00h  
(3.52V), Charge Disabled  
VSYSMIN_REG_ACC  
VSYS_SHORT  
3.75  
V
V
V
VSYS short voltage falling  
threshold to enter forced PFM  
0.9  
1.1  
VSYS short voltage rising  
threshold to exit forced PFM  
VSYS_SHORTZ  
BATTERY CHARGER  
VREG_RANGE  
Typical charge voltage regulation  
range  
3.50  
4.80  
V
VREG_STEP  
Typical charge voltage step  
Charge voltage accuracy  
10  
80  
mV  
%
TJ = 25°C  
–0.3  
–0.4  
0.3  
0.4  
VREG_ACC  
TJ = –10°C - 85°C  
%
Typical charge current regulation  
range  
ICHG_RANGE  
ICHG_STEP  
0.08  
3.52  
A
mA  
%
Typical charge current regulation  
step  
VBAT = 3.1V or 3.8V, ICHG = 1760mA, TJ  
= –10°C - 85°C  
–5  
–5.5  
–5.5  
5
5.5  
5.5  
VBAT = 3.1V or 3.8V, ICHG = 1040mA, TJ  
= –10°C - 85°C  
ICHG_ACC  
Charge current accuracy  
%
VBAT = 3.1V or 3.8V, ICHG = 320mA, TJ  
= –10°C - 85°C  
%
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
620 mA  
mA  
IPRECHG_RANGE  
IPRECHG_STEP  
Typical pre-charge current range  
Typical pre-charge current step  
20  
20  
VBAT = 2.5V, IPRECHG = 500mA, TJ =  
–10°C - 85°C  
–12  
–12  
12  
12  
15  
%
%
%
Pre-charge current accuracy when VBAT = 2.5V, IPRECHG = 200mA, TJ =  
IPRECHG_ACC  
VBAT below VSYSMIN setting  
–10°C - 85°C  
VBAT = 2.5V, IPRECHG = 100mA, TJ =  
–10°C - 85°C  
–15  
10  
ITERM_RANGE  
ITERM_STEP  
Typical termination current range  
Typical termination current step  
620 mA  
mA  
10  
ITERM = 20mA, TJ = –10°C - 85°C  
ITERM = 100mA, TJ = –10°C - 85°C  
ITERM = 300mA, TJ = –10°C - 85°C  
–60  
–15  
–13  
60  
15  
13  
%
%
%
ITERM_ACC  
Termination current accuracy  
Battery short voltage rising  
threshold to start pre-charge  
VBAT_SHORTZ  
VBAT_SHORT  
VBAT_SHORT  
VBAT rising  
2.25  
2.05  
1.85  
V
V
V
Battery short voltage falling  
threshold to stop pre-charge  
VBAT falling, VBAT_UVLO=0  
VBAT falling, VBAT_UVLO=1  
Battery short voltage falling  
threshold to stop pre-charge  
VBAT < VBAT_SHORTZ, ITRICKLE = 0  
VBAT < VBAT_SHORTZ, ITRICKLE = 1  
Transition from pre-charge to fast charge  
Transition from fast charge to pre-charge  
VBAT falling, VRECHG = 0  
15  
62  
25  
82  
35 mA  
Battery short trickle charging  
current  
IBAT_SHORT  
102 mA  
VBAT_LOWVZ  
VBAT_LOWV  
Battery voltage rising threshold  
Battery voltage falling threshold  
2.9  
2.7  
3.0  
2.8  
100  
200  
30  
3.1  
2.9  
V
V
mV  
mV  
mA  
mA  
mA  
Battery recharge threshold below  
VREG  
VRECHG  
VBAT falling, VRECHG = 1  
IPMID_LOAD  
IBAT_LOAD  
ISYS_LOAD  
BATFET  
PMID discharge load current  
Battery discharge load current  
System discharge load current  
20  
20  
20  
30  
30  
MOSFET on resistance from SYS  
to BAT  
RBATFET  
15  
25 mΩ  
BATTERY PROTECTIONS  
Battery overvoltage rising  
threshold  
VBAT_OVP  
As percentage of VREG  
As percentage of VREG  
103  
101  
6
104  
102  
105  
%
%
A
Battery overvoltage falling  
threshold  
VBAT_OVPZ  
IBATFET_OCP  
103  
BATFET over-current rising  
threshold  
IBAT_PK = 00  
IBAT_PK = 01  
IBAT_PK = 10  
IBAT_PK = 11  
1.5  
3
A
A
A
A
Battery discharging peak current  
rising threshold  
IBAT_PK  
6
12  
INPUT VOLTAGE / CURRENT REGULATION  
Typical input voltage regulation  
range  
VINDPM_RANGE  
VINDPM_STEP  
3.8  
16.8  
V
Typical input voltage regulation  
step  
40  
mV  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VINDPM=4.6V  
–4  
4
3
2
%
%
%
VINDPM_ACC  
Input voltage regulation accuracy VINDPM=8V  
VINDPM=16V  
–3  
–2  
VBAT = 3.9V, VINDPM_BAT_TRACK=1,  
VINDPM = 4V  
VINDPM_BAT_TRACK  
IINDPM_RANGE  
IINDPM_STEP  
Battery tracking VINDPM accuracy  
4.15  
0.04  
4.3  
20  
4.45  
3.2  
V
A
Typical input current regulation  
range  
Typical input current regulation  
step  
mA  
IINDPM = 500mA, VBUS=5V  
450  
810  
475  
855  
500 mA  
900 mA  
1500 mA  
IINDPM_ACC  
Input current regulation accuracy IINDPM = 900mA, VBUS=5V  
IINDPM = 1500mA, VBUS=5V  
1350  
1425  
ILIM Pin Scale Factor, IINREG =  
INREG = 1.6 A  
KILIM  
2250  
2500  
2750 AΩ  
KILIM / RILIM  
D+ / D- DETECTION  
VD+D-_0p6V_SRC  
ID+D-_LKG  
D+/D- voltage source (600 mV)  
Leakage current into D+/D-  
1 mA load on D+/D-  
HiZ mode  
400  
–1  
600  
800 mV  
1
µA  
V
D+/D- comparator threshold for  
non-standard adapter  
VD+D-_2p8  
VD+D-_2p0  
2.55  
1.85  
2.85  
D+/D- comparator threshold for  
non-standard adapter  
2.15  
V
THERMAL REGULATION AND THERMAL SHUTDOWN  
TREG = 1  
TREG = 0  
120  
60  
°C  
°C  
Junction temperature regulation  
accuracy  
TREG  
Thermal Shutdown Rising  
Threshold  
TSHUT  
Temperature Increasing  
140  
30  
°C  
°C  
Thermal Shutdown Falling  
TSHUT_HYS  
Hysteresis  
Temperature Decreasing by TSHUT_HYS  
THERMISTOR COMPARATORS (CHARGE MODE)  
As Percentage to TS pin bias reference  
(-5°C w/ 103AT), TS_TH1_TH2_TH3  
= 100, 101, 110  
75.0  
72.8  
73.9  
71.7  
75.5  
73.3  
74.4  
72.2  
76.0  
73.8  
74.9  
72.7  
%
%
%
%
TS pin rising voltage threshold  
for TH1 comparator to  
transition from TS_COOL to  
TS_COLD. Charge suspended  
above this voltage.  
VTS_COLD  
As Percentage to TS pin bias reference  
(0°C w/ 103AT), Fixed JEITA threshold or  
TS_TH1_TH2_TH3 = 000, 001, 010, 011,  
111  
As Percentage to TS pin bias reference  
(-2.5°C w/ 103AT), TS_TH1_TH2_TH3  
= 100, 101, 110  
TS pin falling voltage threshold  
for TH1 comparator to  
transition from TS_COLD to  
TS_COOL. TS_COOL charge  
settings resume below this  
voltage.  
VTS_COLDZ  
As Percentage to TS pin bias reference  
(2.5°C w/ 103AT), Fixed JEITA threshold  
or TS_TH1_TH2_TH3 = 000, 001, 010,  
011, 111  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to TS pin bias reference  
(5°C w/ 103AT), TS_ISET_COOL = 00 or  
TS_TH1_TH2_TH3 = 000, 100  
70.6  
71.1  
71.6  
68.9  
%
%
As Percentage to TS pin bias reference  
(10°C w/ 103AT), TS_ISET_COOL = 01  
or TS_TH1_TH2_TH3 = 001, 101, 110,  
111  
TS pin rising voltage threshold  
for TH2 comparator to  
67.9  
68.4  
VTS_COOL  
transition from TS_PRECOOL to  
TS_COOL. TS_COOL charging  
settings used above this voltage.  
As Percentage to TS pin bias reference  
(15°C w/ 103AT), TS_ISET_COOL = 10  
or TS_TH1_TH2_TH3 = 010  
65.0  
61.9  
69.3  
65.5  
62.4  
69.8  
66.0  
62.9  
70.3  
%
%
%
As Percentage to TS pin bias reference  
(20°C w/ 103AT), TS_ISET_COOL = 11  
or TS_TH1_TH2_TH3 = 011  
As Percentage to TS pin bias reference  
(7.5°C w/ 103AT), TS_ISET_COOL = 00  
or TS_TH1_TH2_TH3 = 000, 100  
As Percentage to TS pin bias reference  
(12.5°C w/ 103AT), TS_ISET_COOL = 01  
or TS_TH1_TH2_TH3 = 001, 101, 110,  
111  
TS pin falling voltage threshold  
for TH2 comparator to  
transition from TS_COOL to  
TS_PRECOOL. TS_PRECOOL  
charging settings resume below  
this voltage.  
66.6  
67.1  
67.6  
%
VTS_COOLZ  
As Percentage to TS pin bias reference  
(17.5°C w/ 103AT), TS_ISET_COOL = 10  
or TS_TH1_TH2_TH3 = 010  
63.7  
60.6  
65.0  
61.9  
63.7  
60.6  
51.5  
47.9  
53.3  
49.2  
64.2  
61.1  
65.5  
62.4  
64.2  
61.1  
52.0  
48.4  
53.8  
49.7  
64.7  
61.6  
66.0  
62.9  
64.7  
61.6  
52.5  
48.9  
54.3  
50.2  
%
%
%
%
%
%
%
%
%
%
As Percentage to TS pin bias reference  
(22.5°C w/ 103AT), TS_ISET_COOL = 11  
or TS_TH1_TH2_TH3 = 011  
As Percentage to TS pin bias reference  
(15°C w/ 103AT), TS_TH1_TH2_TH3 =  
000, 001, 100, 101  
TS pin rising voltage threshold  
for TH3 comparator to  
transition from TS_NORMAL to  
TS_PRECOOL. TS_PRECOOL  
charge settings used above this  
voltage.  
VTS_PRECOOL  
VTS_PRECOOLZ  
VTS_PREWARM  
VTS_PREWARMZ  
As Percentage to TS pin bias reference  
(20°C w/ 103AT), TS_TH1_TH2_TH3 =  
010, 011, 110, 111  
As Percentage to TS pin bias reference  
(17.5°C w/ 103AT), TS_TH1_TH2_TH3 =  
000, 001, 100, 101  
TS pin falling voltage threshold  
for TH3 comparator to  
transition from TS_PRECOOL to  
TS_NORMAL. Normal charging  
resumes below this voltage.  
As Percentage to TS pin bias reference  
(22.5°C w/ 103AT), TS_TH1_TH2_TH3 =  
010, 011, 110, 111  
As Percentage to TS pin bias reference  
(35°C w/ 103AT), TS_TH4_TH5_TH6 =  
000, 001, 010, 100, 101  
TS pin falling voltage threshold  
for TH4 comparator to  
transition from TS_NORMAL to  
TS_PREWARM. TS_PREWARM  
charging settings used below this  
voltage.  
As Percentage to TS pin bias reference  
(40°C w/ 103AT), TS_TH4_TH5_TH6 =  
011, 110, 111  
As Percentage to TS pin bias reference  
(32.5°C w/ 103AT), TS_TH4_TH5_TH6 =  
000, 001, 010, 100, 101  
TS pin rising voltage threshold  
for TH4 comparator to  
transition from TS_PREWARM to  
TS_NORMAL. Normal charging  
resumes above this voltage.  
As Percentage to TS pin bias reference  
(37.5°C w/ 103AT), TS_TH4_TH5_TH6 =  
011, 110, 111  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to TS pin bias reference  
(40°C w/ 103AT), TS_ISET_WARM = 00  
or TS_TH4_TH5_TH6 = 000, 100  
47.9  
48.4  
48.9  
45.3  
41.7  
38.2  
50.2  
46.6  
43.0  
39.5  
41.7  
%
%
%
%
%
%
%
%
%
As Percentage to TS pin bias reference  
(45°C w/ 103AT), TS_ISET_WARM = 01  
or TS_TH4_TH5_TH6 = 001, 101, 110  
TS pin falling voltage threshold  
for TH5 comparator to  
transition from TS_PREWARM to  
TS_WARM. TS_WARM charging  
settings used below this voltage.  
44.3  
40.7  
37.2  
49.2  
45.6  
42.0  
38.5  
40.7  
44.8  
41.2  
37.7  
49.7  
46.1  
42.5  
39  
VTS_WARM  
As Percentage to TS pin bias reference  
(50°C w/ 103AT), TS_ISET_WARM = 10  
or TS_TH4_TH5_TH6 = 010, 111  
As Percentage to TS pin bias reference  
(55°C w/ 103AT), TS_ISET_WARM = 11  
or TS_TH4_TH5_TH6 = 011  
As Percentage to TS pin bias reference  
(37.5°C w/ 103AT), TS_ISET_WARM =  
00 or TS_TH4_TH5_TH6 = 000, 100  
As Percentage to TS pin bias reference  
(42.5°C w/ 103AT), TS_ISET_WARM =  
01 or TS_TH4_TH5_TH6 = 001, 101, 110  
TS pin rising voltage threshold  
for TH5 comparator to  
transition from TS_WARM to  
TS_PREWARM. TS_PREWARM  
charging settings resume above  
this voltage.  
VTS_WARMZ  
As Percentage to TS pin bias reference  
(47.5°C w/ 103AT), TS_ISET_WARM =  
10 or TS_TH4_TH5_TH6 = 010, 111  
As Percentage to TS pin bias reference  
(52.5°C w/ 103AT), TS_ISET_WARM =  
11 or TS_TH4_TH5_TH6 = 011  
As Percentage to TS pin bias reference  
(50°C w/ 103AT), TS_TH4_TH5_TH6 =  
100 or 101  
41.2  
TS pin falling voltage threshold  
for TH6 comparator to  
VTS_HOT  
transition from TS_WARM to  
TS_HOT. Charging is suspended  
below this voltage.  
As Percentage to TS pin bias reference  
(60°C w/ 103AT), Fixed JEITA threshold  
or TS_TH4_TH5_TH6 = 000, 001, 010,  
011, 110 or 111  
33.9  
42.0  
35.2  
34.4  
42.5  
35.7  
34.9  
43.0  
36.2  
%
%
%
As Percentage to TS pin bias reference  
(47.5°C w/ 103AT), TS_TH4_TH5_TH6 =  
100 or 101  
TS pin rising voltage threshold  
for TH6 comparator to  
transition from TS_HOT to  
TS_WARM. TS_WARM charging  
settings resume above this  
voltage.  
VTS_HOTZ  
As Percentage to TS pin bias reference  
(57.5°C w/ 103AT), Fixed JEITA threshold  
or TS_TH4_TH5_TH6 = 000, 001, 010,  
011, 110 or 111  
THERMISTOR COMPARATORS (OTG MODE)  
As Percentage to TS pin bias reference  
(–20°C w/ 103AT), TS_TH_OTG_COLD =  
0
TS pin rising voltage  
threshold to transition  
from TS_OTG_NORMAL to  
TS_OTG_COLD. OTG suspended  
above this voltage.  
79.5  
76.6  
78.2  
75.0  
80.0  
77.1  
78.7  
75.5  
80.5  
77.6  
79.2  
76.5  
%
%
%
%
VTS_ OTG_ COLD  
As Percentage to TS pin bias reference  
(–10°C w/ 103AT), TS_TH_OTG_COLD =  
1
As Percentage to TS pin bias reference  
(–15°C w/ 103AT), TS_TH_OTG_COLD =  
0
TS pin falling voltage threshold  
to transition from TS_OTG_COLD  
to TS_OTG_NORMAL. OTG  
resumes below this voltage.  
VTS_OTG_COLDZ  
As Percentage to TS pin bias reference  
(–5°C w/ 103AT), TS_TH_OTG_COLD =  
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
As Percentage to TS pin  
bias reference (55°C w/ 103AT),  
TS_OTG_HOT = 00  
37.2  
37.7  
38.2  
%
TS pin falling voltage  
threshold to transition  
VTS_OTG_HOT  
from TS_OTG_NORMAL to  
TS_OTG_HOT. OTG suspended  
below this voltage.  
As Percentage to TS pin bias reference  
(60°C w/ 103AT), TS_OTG_HOT = 01  
33.9  
30.8  
38.5  
34.4  
31.3  
39.0  
34.9  
31.8  
39.5  
%
%
%
As Percentage to TS pin bias reference  
(65°C w/ 103AT), TS_OTG_HOT = 10  
As Percentage to TS pin bias reference  
(52.5°C w/ 103AT), TS_OTG_HOT = 00  
TS pin rising voltage threshold  
to transition from TS_OTG_HOT  
to TS_OTG_NORMAL. OTG  
resumes above this threshold.  
As Percentage to TS pin bias  
reference (57.5°C w/ 103AT),  
TS_OTG_HOT = 01  
35.2  
32.0  
35.7  
32.5  
36.2  
33.0  
%
%
VTS_OTG_HOTZ  
As Percentage to TS pin bias  
reference (62.5°C w/ 103AT),  
TS_OTG_HOT = 10  
SWITCHING CONVERTER  
FSW  
PWM switching frequency  
Oscillator frequency  
Tj = –40°C-85°C  
1.35  
1.5  
1.65 MHz  
MOSFET TURN-ON RESISTANCE  
RQ1_ON  
VBUS to PMID on resistance  
26  
55  
34 mΩ  
78 mΩ  
Buck high-side switching MOSFET  
turn on resistance between PMID Tj = –40°C-85°C  
and SW  
RQ2_ON  
Buck low-side switching MOSFET  
RQ3_ON  
turn on resistance between SW  
and PGND  
Tj = –40°C-85°C  
60  
90 mΩ  
OTG MODE CONVERTER  
Typical OTG mode voltage  
VOTG_RANGE  
VOTG_STEP  
VOTG_ACC  
VOTG_ACC  
IOTG_RANGE  
IOTG_STEP  
3.8  
9.6  
V
mV  
%
regulation range  
Typical OTG mode voltage  
regulation step  
80  
OTG mode voltage regulation  
accuracy  
IVBUS = 0A, VOTG = 9V  
IVBUS = 0A, VOTG = 5V  
–2  
–3  
2
3
OTG mode voltage regulation  
accuracy  
%
Typical OTG mode current  
regulation range  
0.1  
3.2  
A
Typical OTG mode current  
regulation step  
20  
mA  
IOTG = 1.8A  
IOTG = 1.5A  
IOTG = 0.5A  
–3  
–5  
3
5
%
%
%
OTG mode current regulation  
accuracy  
IOTG_ACC  
–10  
10  
OTG mode undervoltage falling  
threshold at PMID  
VOTG_UVP  
3.4  
V
V
OTG mode overvoltage rising  
threshold at VBUS  
VOTG_VBUS_OVP  
10.5  
11.0  
11.5  
5.2  
REGN LDO  
VVBUS = 5V, IREGN = 20mA  
VVBUS = 9V, IREGN = 20mA  
Converter switching  
4.4  
4.8  
4.6  
5.0  
3.2  
2.3  
V
V
VREGN  
REGN LDO output voltage  
V
VREGNZ_OK  
IREGN_LIM  
14  
REGN not good falling threshold  
REGN LDO current limit  
Converter not switching  
VVBUS = 5V, VREGN = 4.3V  
V
20  
mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Rising threshold to transition from  
TSBIAS good condition to fault  
condition  
REGN=5V; ISINK applied on TS_BIAS  
pin  
ITS_BIAS_FAULT  
2.5  
4.5  
8
7
mA  
mA  
Falling threshold to transition from  
TSBIAS fault condition to good  
condition  
REGN=5V; ISINK applied on TS_BIAS  
pin  
ITS_BIAS_FAULTZ  
2
3.85  
ADC MEASUREMENT ACCURACY AND PERFORMANCE  
ADC_SAMPLE = 00  
24  
12  
6
ms  
ms  
ms  
ms  
bits  
bits  
bits  
bits  
ADC_SAMPLE = 01  
ADC_SAMPLE = 10  
ADC_SAMPLE = 11  
ADC_SAMPLE = 00  
ADC_SAMPLE = 01  
ADC_SAMPLE = 10  
ADC_SAMPLE = 11  
Conversion-time, Each  
Measurement  
tADC_CONV  
3
11  
10  
9
12  
11  
10  
9
ADCRES  
Effective Resolution  
8
ADC MEASUREMENT RANGE AND LSB  
ADC Bus Current Reading (both  
Range  
LSB  
–4  
0
4
19.85  
19.85  
5.572  
5.572  
4.0  
A
mA  
V
IBUS_ADC  
VBUS_ADC  
VPMID_ADC  
VBAT_ADC  
VSYS_ADC  
IBAT_ADC  
forward and OTG)  
2
3.97  
3.97  
1.99  
1.99  
2
Range  
LSB  
ADC VBUS Voltage Reading  
mV  
V
Range  
LSB  
0
ADC PMID Voltage Reading  
ADC BAT Voltage Reading  
ADC SYS Voltage Reading  
ADC BAT Current Reading  
mV  
V
Range  
LSB  
0
mV  
V
Range  
LSB  
0
mV  
A
Range  
LSB  
-7.5  
mA  
Range as a percent of REGN (–40 to  
85 for 103AT)  
ADC TS Voltage Reading  
ADC TS Voltage Reading  
20.9  
–40  
83.2  
%
%
TS_ADC  
LSB  
0.0961  
0.5  
Range  
LSB  
150 °C  
°C  
TDIE_ADC  
ADC Die Temperature Reading  
I2C INTERFACE (SCL, SDA)  
Input high threshold level, SDA  
and SCL  
VIH  
VIL  
0.78  
V
Input low threshold level, SDA and  
SCL  
0.42  
V
VOL_SDA  
IBIAS  
Output low threshold level  
High-level leakage current  
Capacitive load for each bus line  
Sink current = 5mA, 1.2V VDD  
Pull up rail 1.8V  
0.3  
1
V
µA  
CBUS  
400 pF  
LOGIC OUTPUT PIN (INT , PG, STAT)  
VOL  
Output low threshold level  
High-level leakage current  
Sink current = 5mA  
Pull up rail 1.8V  
0.3  
1
V
IOUT_BIAS  
µA  
LOGIC INPUT PIN (CE, QON)  
VIH_CE  
Input high threshold level, /CE  
0.78  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.5 Electrical Characteristics (continued)  
VVBUS_UVLOZ < VVBUS < VVBUS_OVP, TJ = -40°C to +125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIL_CE  
Input low threshold level, /CE  
High-level leakage current, /CE  
Input high threshold level, /QON  
Input low threshold level, /QON  
Internal /QON pull up  
0.4  
1
V
µA  
V
IIN_BIAS_CE  
VIH_QON  
VIL_QON  
VQON  
Pull up rail 1.8V  
1.3  
0.4  
V
/QON is pulled up internally  
5
V
RQON  
Internal /QON pull up resistance  
250  
kΩ  
8.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VBUS / VBAT POWER UP  
VBUS_OVP propagation delay to  
tVBUS_OVP_PROP  
stop converter, VBUS rising (no  
deglitch)  
130  
200  
ns  
µs  
VBUS OVP deglitch time  
to set VBUS_OVP_STAT and  
VBUS_OVP_FLAG  
tVBUS_OVP  
tPOORSRC  
Bad adapter detection duration  
30  
2
ms  
s
Bad adapter detection retry wait  
time  
tPOORSRC_RETRY  
Restart the bad adapter detection  
after latchoff  
tPOORSRC_RESTART  
15  
30  
min  
ms  
The duration of the pull down  
current source applied on VBUS  
tVBUS_PD  
BATTERY CHARGER  
tTERM_DGL  
Deglitch time for charge  
termination  
50  
ms  
ms  
Deglitch time for recharge  
threshold at VBAT falling  
tRECHG_DGL  
256  
12  
24  
36  
15  
30  
45  
18 min  
36 min  
54 min  
tTOP_OFF  
Typical top-off timer accuracy  
Charge safety timer accuracy in  
trickle charge  
tSAFETY_TRKCHG  
0.85  
1
1.1 hr  
PRECHG_TMR = 0  
PRECHG_TMR = 1  
CHG_TMR = 0  
1.75  
0.43  
10.5  
21.0  
2
0.5  
2.2 hr  
0.55 hr  
12.5 hr  
24.5 hr  
Charge safety timer accuracy in  
pre-charge  
tSAFETY_PRECHG  
11.5  
22.5  
Charge safety timer accuracy in  
fast charge  
tSAFETY  
CHG_TMR = 1  
BATFET CONTROL  
Time after writing to  
BATFET_DLY = 1  
BATFET_DLY = 0  
10  
20  
s
BATFET_CTRL before BATFET  
turned off for ship mode or  
shutdown  
tBATFET_DLY  
ms  
Deglitch time for QON to be pulled  
low in order to exit from Ship  
Mode  
tSM_EXIT  
0.55  
9.0  
0.65  
0.75  
11.5  
s
Time QON is held low to initiate  
system power reset  
tQON_RST  
10  
s
Duration that BATFET is disabled  
during system power reset  
tBATFET_RST  
350  
ms  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.6 Timing Requirements (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
I2C INTERFACE  
fSCL  
DIGITAL CLOCK AND WATCHDOG  
Watchdog Reset time (EN_HIZ =  
SCL clock frequency  
1.0 MHz  
tLP_WDT  
100  
136  
160  
160  
s
s
1, WATCHDOG = 160s)  
Watchdog Reset time (EN_HIZ =  
0, WATCHDOG = 160s)  
tWDT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.7 Typical Characteristics  
CVBUS = 1µF, CPMID= 10µF, CSYS= 20µF, CBAT= 1µF, L= 1µH (unless otherwise specified)  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
VBUS = 5V  
VBUS = 9V  
VBUS = 12V  
VBUS = 15V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
5
10  
50  
100  
500  
1000  
Charge Current (A)  
System Current (mA)  
VBAT = 3.8  
DCR = 15mΩ  
VSYSMIN = 3.52V  
DCR = 15mΩ  
Figure 8-1. Charge Efficiency vs. Charge Current  
100  
Figure 8-2. System Light Load Efficiency vs. System Current  
10  
VBAT = 3.0V  
VBAT = 3.8V  
8
95  
90  
85  
80  
75  
70  
65  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
VBAT = 3.2V  
VBAT = 3.8V  
VBAT = 4.2V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
5
10  
50  
100  
500 1000 2000  
ICHG Setting (A)  
Boost Current (mA)  
VBUS = 5V  
VOTG = 5.04V  
DCR = 15mΩ  
Figure 8-4. Charge Current Accuracy vs. ICHG Setting  
Figure 8-3. Boost Mode Efficiency vs. Boost Output Current  
4.4  
4.3  
4.35  
4.3  
4.2  
4.1  
4
4.25  
4.2  
3.9  
3.8  
3.7  
4.15  
4.1  
VREG = 4.1V  
VREG = 4.2V  
4.05  
3.6  
VBAT = 3.2V (SYSMIN)  
VBAT = 4.2V (Charge Done)  
VREG = 4.35V  
4
-40  
3.5  
-20  
0
20  
40  
60 80 100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
System Current (A)  
1
Temperature (C)  
Figure 8-5. Charge Voltage Accuracy vs. VREG Setting  
VBUS = 12V  
Figure 8-6. System Load Regulation for SYSMIN and After  
Charge Done  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
8.7 Typical Characteristics (continued)  
CVBUS = 1µF, CPMID= 10µF, CSYS= 20µF, CBAT= 1µF, L= 1µH (unless otherwise specified)  
1
-1  
3
2
-40C  
25C  
85C  
-3  
1
-5  
-7  
0
-9  
-1  
-2  
-3  
-11  
-13  
-15  
-40C  
25C  
85C  
0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
3
3.25  
4.5  
5
5.5  
6
6.5  
7
7.5  
8
8.5  
9
9.5  
IINDPM Setting (A)  
VOTG Setting (V)  
VBUS = 5V  
VBAT = 3.8V  
Figure 8-7. Input Current Regulation Accuracy vs. IINDPM  
Setting  
Figure 8-8. Boost Voltage Regulation vs VOTG Setting  
10  
8
-40C  
25C  
85C  
6
4
2
0
-2  
-4  
-6  
-8  
-10  
0.5  
1
1.5  
2
2.5  
IOTG Setting (A)  
VBAT = 3.8V  
VOTG = 5.04V  
Figure 8-9. Boost Current Regulation Accuracy vs. IOTG Setting  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9 Detailed Description  
9.1 Overview  
BQ25620 and BQ25622 are highly-integrated 3.5A switch-mode battery chargers for single-cell Li-ion and  
Li-polymer batteries. The device includes input reverse-blocking FET (RBFET, Q1), high-side switching FET  
(HSFET, Q2), low-side switching FET (LSFET, Q3), battery FET (BATFET, Q4), and bootstrap diode for the  
high-side gate driver.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.2 Functional Block Diagram  
PMID  
VBUS  
RBFET (Q1)  
VVBUS_UVLO  
+
VBUS_UVLO  
IBUS  
VVBUS  
Q1 Gate  
Control  
VBAT + VSLEEP  
+
REGN  
EN_REGN  
SLEEP  
VVBUS  
REGN  
LDO  
EN_HIZ  
VVBUS  
+
VBUS_OV  
VVBUS_OV  
BTST  
VO_REF  
VVBUS  
+
VBUS_OVP_BOOST  
VOTG_OVP  
VVBUS  
+
IQ2  
+
VOTG  
Q2_UCP_BOOST  
Q3_OCP_BOOST  
HSFET (Q2)  
VOTG_HSZCP  
VVBUS  
SW  
IQ3  
+
VINDPM  
+
REGN  
VOTG_BAT  
IBUS  
BATSNS  
+
CONVERTER  
Control  
IINDPM  
+
BATOVP  
UCP  
LSFET (Q3)  
IQ2  
VBAT_OVP  
IC_TJ  
+
GND  
TREG  
ILSFET_UCP  
BATSNS  
+
+
+
Q2_OCP  
IHSFET_OCP  
BTST - VSW  
VBTST_REFRESH  
SYS  
+
VBAT_REG  
IQ3  
+
VSYSMIN  
ICHG  
V
EN_HIZ  
+
REFRESH  
ICHG_REG  
EN_CHG  
SYS  
EN_OTG  
GND  
ICHG  
VBAT_REG  
ICHG_REG  
BATFET  
(Q4)  
Q4 Gate  
Control  
VPOORSRC  
Converter  
Control State  
Machine  
+
BAT  
REF  
DAC  
VVBUS  
IC_TJ  
TSHUT  
POORSRC  
TSHUT  
BATSNS  
AMP  
+
BATSNS  
ILIM  
IBUS  
VBUS  
VPMID  
IBAT  
D+  
D-  
VQON  
Input  
Source  
Detection  
USB  
Adapter  
ADC  
VBAT  
VSYS  
VTS  
PG  
QON  
TDIE  
VREG -VRECHG  
BATSNS  
+
RECHRG  
BQ25620 / 622  
Block Diagram  
ICHG  
STAT  
INT  
+
TERMINATION  
ITERM  
CHARGE  
CONTROL  
STATE  
REGN  
VBAT_LOWV  
+
BATLOWV  
TS_BIAS  
TS  
BATSNS  
VBAT_SHORT  
BATSNS  
MACHINE  
+
BATSHORT  
SUSPEND  
I2C  
Interface  
VTS  
Battery  
Temperature  
Sensing  
SCL SDA  
CE  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.3 Feature Description  
9.3.1 Power-On-Reset (POR)  
BQ25620 and BQ25622 power internal bias circuits from the higher voltage of VBUS and BAT. When either  
voltage rises above its undervoltage lockout (UVLO) threshold, all registers are reset to their POR values and  
the I2C interface is enabled for communication. A non-maskable INT pulse is generated, after which the host can  
access all of the registers.  
9.3.2 Device Power Up from Battery  
If only the battery is present and the VBAT is above depletion threshold (VBAT_UVLOZ), BQ25620 and BQ25622  
perform a power-on reset then turns on the BATFET to connect the battery to system. The REGN LDO output  
remains off to minimize the quiescent current. The low RDSON of BATFET and the low quiescent current on BAT  
minimize the conduction loss and maximize the battery run time.  
9.3.3 Device Power Up from Input Source  
When a valid input source is plugged in with VBAT < VBAT_UVLOZ, BQ25620 and BQ25622 perform a power-on  
reset then checks the input source voltage to turn on the REGN LDO and all the bias circuits. It detects and sets  
the input current limit before the buck converter is started. The power up sequence from input source is as listed:  
1. REGN LDO power up (Section 9.3.3.1)  
2. Poor source qualification (Section 9.3.3.2)  
3. Input source type detection using D+/D– to set input current limit (IINDPM) register and input source type  
(Section 9.3.3.3)  
4. Input voltage limit threshold setting (Section 9.3.3.5)  
5. Converter power-up (Section 9.3.3.6)  
9.3.3.1 REGN LDO Power Up  
The REGN LDO regulator supplies internal bias circuits as well as the HSFET and LSFET gate drive. The REGN  
LDO also provides bias rail to TS external resistors. The pull-up rail of STAT can be connected to REGN as well.  
The REGN is enabled when all the below conditions are valid:  
VBUS above VVBUS_UVLOZ  
VBUS above VBAT + VSLEEPZ  
EN_HIZ = 0  
After 220-ms delay is completed  
If any one of the above conditions is not valid, the REGN LDO and the converter power stage remain off with the  
converter disabled. In this state, the battery supplies power to the system.  
9.3.3.2 Poor Source Qualification  
After the REGN LDO powers up, the device checks the current capability of the input source. The input source  
has to meet the following requirements in order to move forward to the next power on steps.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC  
Once these conditions are met, BQ25620 and BQ25622 proceed to input source type detection.  
If a poor source is detected (when pulling IPOORSRC, VVBUS drops below VPOORSRC), BQ25620 and BQ25622  
wait for tPOORSRC_RETRY and then repeat the poor source qualification routine. After 7 consecutive failures, the  
device sets EN_HIZ = 1 and goes to HIZ mode. VBUS_STAT remains at 000 (not powered from VBUS) and  
there is no change to VBUS_FLAG.  
After tPOORSRC_RESTART (15 minutes typical) in HIZ latchoff from seven consecutive poor source failures, the poor  
source detection routine restarts.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.3.3.3 D+/D– Detection Sets Input Current Limit (BQ25620 Only)  
After the REGN LDO is powered, the adapter has been qualified as a good source, and AUTO_INDET_EN bit  
= 1 (POR default), BQ25620 runs input source detection through D+/D– lines to detect USB Battery Charging  
Specification 1.2 (BC1.2) input sources (CDP / SDP / DCP) and non-standard adapters. If DCP is detected,  
BQ25620 runs HVDCP detection if either EN_9V or EN_12V is 1. The detection algorithm runs automatically  
each time that VBUS is plugged in, updating the IINDPM according to Table 9-2. If AUTO_INDET_EN = 0, the  
detection algorithm is not run and IINDPM remains unchanged. The host can force the detection algorithm to run  
and update IINDPM by setting FORCE_INDET to 1.  
The USB BC1.2 is able to identify Standard Downstream Port (SDP), Charging Downstream Port (CDP), and  
Dedicated Charging Port (DCP). When the Data Contact Detection (DCD) timer of 500ms is expired, the  
non-standard adapter detection is applied to set the input current limit.  
The secondary detection is used to distinguish two types of charging ports (CDP and DCP). Most of the time, a  
CDP requires the portable device (such as smart phone, tablet) to send back an enumeration within 2.5 seconds  
of CDP plug-in. Otherwise, the port reverts back to SDP even though the D+/D– detection indicates CDP.  
Upon the completion of input source type detection, the following registers are changed:  
1. Input Current Limit (IINDPM) register is changed to set current limit  
2. VBUS_STAT bits are updated to indicate the detected input source type  
After detection completes, the host can over-write the IINDPM register to change the input current limit if  
needed.  
Divider 1: 1A  
Non-Standard  
Adapter  
Divider 2: 2.1A  
Divider 3: 2.4A  
Divider 4: 1A  
DCP  
(1.5A)  
Adapter Plug-in  
or  
FORCE_INDET  
DCP/CDP  
Data Contact  
Detec on  
Secondary  
Detection  
HVDCP  
(1.5A)  
VBUS Detec on  
Primary Detec on  
HVDCP  
USB BC1.2 Standard  
DCP  
SDP  
CDP  
(1.5A)  
(500mA)  
(1.5A)  
Figure 9-1. D+/D– Detection Flow  
If DCP is detected (VBUS_STAT = 011), BQ25620 turns on VD+D-_0p6V_SRC on D+ if EN_DCP_BIAS is set to  
1. Setting EN_DCP_BIAS to 0 while VBUS_STAT = 011 disables the VD+D-_0p6V_SRC on D+ pin, and setting  
EN_DCP_BIAS to 1 while VBUS_STAT = 011 enables the VD+D-_0p6V_SRC on D+ pin. The EN_HIZ bit has priority  
over EN_DCP_BIAS.  
High Voltage Dedicated Charging Port (HVDCP) is used to negotiate either 9V or 12V from the power source if  
BC1.2 DCP support is detected.  
In order to remain in 9V or 12V HVDCP, BQ25620 must maintain a bias on D+ and D-, resulting in higher  
quiescent current. The host may remove this bias and associated quiescent current by setting EN_9V and  
EN_12V to 0 at any time. Setting EN_9V and EN_12V to 0 when an HVDCP adapter is providing either 9V or  
12V causes the adapter to revert to 5V DCP operation.  
The non-standard detection is used to distinguish vendor specific adapters based on their unique dividers on the  
D+/D- pins. Comparators detect the voltage applied on each pin and determine the input current limit according  
to Table 9-1.  
Table 9-1. Non-Standard Adapter Detection  
INPUT CURRENT  
NON-STANDARD ADAPTER  
D+ THRESHOLD  
D– THRESHOLD  
LIMIT (A)  
Divider 1  
VD+ within VD+D-_2p0  
VD– within VD+D-_2p8  
1
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: BQ25620 BQ25622  
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-1. Non-Standard Adapter Detection (continued)  
INPUT CURRENT  
NON-STANDARD ADAPTER  
D+ THRESHOLD  
D– THRESHOLD  
LIMIT (A)  
Divider 2  
Divider 3  
VD+ within VD+D-_2p8  
VD+ within VD+D-_2p8  
VD– within VD+D-_2p0  
VD– within VD+D-_2p8  
2.1  
2.4  
Table 9-2. Input Current Limit Setting from D+/D– Detection  
D+/D– DETECTION  
INPUT CURRENT LIMIT (IINLIM)  
VBUS_STAT  
USB SDP (USB500)  
500 mA  
1.5 A  
1.5 A  
1 A  
0x1  
0x2  
0x3  
0x5  
0x5  
0x5  
0x6  
0x4  
USB CDP  
USB DCP  
Divider 1  
Divider 2  
2.1 A  
2.4 A  
1.5 A  
500mA  
Divider 3  
HVDCP  
Unknown 5-V Adapter  
9.3.3.4 ILIM Pin (BQ25622 Only)  
The ILIM pin clamps the input current limit to IINREG = KILIM / RILIM, where RILIM is connected from the ILIM pin  
to GND. The ILIM pin can be used to limit the input current limit from 100 mA - 3.2 A. The input current is limited  
to the lower of the two values set by the ILIM pin and IINDPM register bits. The ILIM pin can also be used to  
monitor input current. The input current is proportional to the voltage on the ILIM pin and can be calculated by  
IIN = (KILIM x VILIM) / (RILIM x 0.8). The ILIM pin function is disabled when the EN_EXTILIM bit is set to 0.  
An RC filter in parallel with RILIM is required when the input current setting on the ILIM pin is either:  
below 400 mA or  
above 2 A when using a 2.2-μH inductor  
The value for the RC filter is 1.2 kΩ and 330 nF, respectively.  
9.3.3.5 Input Voltage Limit Threshold Setting (VINDPM Threshold)  
BQ25620 and BQ25622 support a wide range of input voltage limit (3.8 V – 16.8V). Its POR default VINDPM  
threshold is set at 4.6V. BQ25620 and BQ25622 also support dynamic VINDPM tracking, which tracks the  
battery voltage to ensure a sufficient margin between input and battery voltages for proper operation of the buck  
converter. This function is enabled via the VINDPM_BAT_TRACK register bit. When enabled, the actual input  
voltage limit is the higher of the VINDPM register or VINDPM_BAT_TRACK (VBAT + 400 mV typical offset.)  
9.3.3.6 Converter Power-Up  
After the input current and voltage limits are set, the converter is enabled and the HSFET and LSFET start  
switching. If battery charging is disabled, the BATFET turns off. Otherwise, the BATFET stays on to charge the  
battery. Converter startup requires the following conditions:  
VBUS has passed poor source qualification ( Section 9.3.3.2 )  
VBUS > VBAT + VSLEEPZ  
VVBUS < VVBUS_OVP  
EN_HIZ = 0  
VSYS < VSYS_OVP  
TJ < TSHUT  
BQ25620 and BQ25622 provide soft start when the system rail is ramped up by setting IINDPM to its lowest  
programmable value and stepping up through each available setting until reaching the value set by IINDPM  
register. Concurrently, the system short protection limits the output current to approximately 0.5A when the  
system rail is below VSYS_SHORT  
.
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
These devices use a highly efficient 1.5 MHz, fixed frequency pulse width modulated (PWM) step-down  
switching regulator. The internally compensated feedback loop keep tight control of the switching frequency  
under all conditions of input voltage, battery voltage, charge current and temperature, simplifying output filter  
design.  
The device switches to pulse frequency modulation (PFM) control at light load condition. The PFM_FWD_DIS  
and PFM_OTG_DIS bits can be used to disable the PFM operation in buck and boost respectively.  
9.3.4 Power Path Management  
BQ25620 and BQ25622 accommodate a wide range of input sources from USB, wall adapter, wireless charger,  
to car charger. They provide automatic power path selection to supply the system from input source, battery, or  
both.  
9.3.4.1 Narrow VDC Architecture  
BQ25620 and BQ25622 use the Narrow VDC architecture (NVDC) with BATFET separating system from battery.  
The minimum system voltage is set by VSYSMIN register setting. Even with a fully depleted battery, the system  
is regulated to the minimum system voltage. If charging is enabled, the BATFET operates in linear mode (LDO  
mode). The default minimum system voltage at POR is 3.52 V.  
As the battery voltage rises above the minimum system voltage, the BATFET is turned fully on. When battery  
charging is disabled and VBAT is above the minimum system voltage setting, or charging is terminated, the  
system is regulated 50mV (typical) above battery voltage.  
9.3.4.2 Dynamic Power Management  
To meet the USB maximum current limit and avoid overloading the adapter, the device features Dynamic Power  
Management (DPM), which continuously monitors the input current and input voltage. When the input source  
is overloaded, either the current exceeds the input current limit (IINDPM) or the voltage falls below the input  
voltage limit (VINDPM). The device then reduces the charge current until the input current falls below the input  
current limit and the input voltage rises above the input voltage limit.  
When the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts  
to drop. Once the system voltage falls below the battery voltage by VSUPP, the device automatically enters the  
supplement mode where the BATFET turns on and the battery starts discharging so that the system is supported  
from both the input source and battery.  
9.3.4.3 High Impedance Mode  
The host may place BQ25620 and BQ25622 into high impedance mode by writing EN_HIZ = 1. In high  
impedance mode, RBFET (Q1), HSFET (Q2) and LSFET (Q3) are turned off. The RBFET and HSFET block  
current flow to and from VBUS, putting the VBUS pin into a high impedance state. The BATFET (Q4) is turned  
on to connect the BAT to SYS. During high impedance mode, REGN is disabled and the digital clock is slowed to  
conserve power.  
9.3.5 Battery Charging Management  
BQ25620 and BQ25622 charge 1-cell Li-Ion battery with up to 3.5 A charge current. The 15 mΩ BATFET  
improves charging efficiency and minimizes the voltage drop during discharging.  
9.3.5.1 Autonomous Charging Cycle  
When battery charging is enabled (EN_CHG bit = 1 and CE pin is LOW), BQ25620 and BQ25622 autonomously  
complete a charging cycle without host involvement. The device default charging parameters are listed in Table  
9-3. The host can always control the charging operations and optimize the charging parameters by writing to the  
corresponding registers through I2C.  
Table 9-3. Charging Parameter Default Setting  
TOPOFF  
TIMER  
VREG  
VRECHG  
ITRICKLE  
IPRECHG  
ICHG  
ITERM  
BQ25620  
4.2V  
VREG - 100 mV  
20 mA  
100 mA  
1040 mA  
60 mA  
Disabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-3. Charging Parameter Default Setting (continued)  
TOPOFF  
TIMER  
VREG  
VRECHG  
ITRICKLE  
IPRECHG  
ICHG  
ITERM  
BQ25622  
4.2V  
VREG - 100 mV  
20 mA  
100 mA  
1040 mA  
60 mA  
Disabled  
A new charge cycle starts when the following conditions are valid:  
Converter starts per the conditions in Section 9.3.3.6  
EN_CHG = 1  
CE pin is low  
No thermistor fault on TS  
No safety timer fault  
BQ25620 and BQ25622 automatically terminate the charging cycle when the charging current is below  
termination threshold, battery voltage is above recharge threshold, and device not is in DPM or thermal  
regulation. When a fully charged battery is discharged below VRECHG, the device automatically starts a new  
charging cycle. After charging terminates, toggling CE pin or EN_CHG bit also initiates a new charging cycle.  
The STAT output indicates the charging status. Refer to Section 9.3.8.2 for details of STAT pin operation.  
In addition, the status register (CHG_STAT) indicates the different charging phases: 00-charging disabled or  
terminated, 01-constant current, 10 constant voltage, 11-topoff charging.  
9.3.5.2 Battery Charging Profile  
BQ25620 and BQ25622 charges the battery in five phases: trickle charge, pre-charge, constant current, constant  
voltage and an optional top-off charging phase. At the beginning of a charging cycle, the device checks the  
battery voltage and regulates current and voltage accordingly.  
Regula on Voltage  
VREG  
Ba ery Voltage  
Charge Current  
ICHG  
Charge Current  
VBAT_LOWVZ (3 V)  
VBAT_SHORTZ (2.25 V)  
IPRECHG  
ITERM  
IBAT_SHORT  
Fast Charge and Voltage Regula on  
Trickle Charge  
Pre-charge  
Top-o Timer  
(op onal)  
Safety Timer  
Expira on  
Figure 9-2. Battery Charging Profile  
9.3.5.3 Charging Termination  
BQ25620 and BQ25622 terminate a charge cycle when the battery voltage is above recharge threshold, the  
converter is in constant-voltage regulation and the current is below ITERM. Because constant-voltage regulation  
is required for termination, BQ25620 and BQ25622 do not terminate while IINDPM, VINDPM or thermal  
regulation loops are active. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and the BATFET can turn on again to engage supplement mode. Termination can  
be permanently disabled by writing 0 to EN_TERM bit prior to charge termination.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
At low termination currents, due to the comparator offset, the actual termination current may be 10 mA-20 mA  
higher than the termination target. in order to compensate for comparator offset, a programmable top-off timer  
can be applied after termination is detected. The top-off timer follows safety timer constraints, such that if the  
safety timers suspend, so does the top-off timer. Similarly, if the safety timers count at half-clock rate, so does  
the top-off timer. Refer to Section 9.3.5.5 for the list of conditions. The host can read CHG_STAT to find out the  
termination status.  
Top-off timer gets reset by any of the following conditions:  
1. Charging cycle stop and restart (toggle CE pin, toggle EN_CHG bit, charged battery falls below recharge  
threshold or adapter removed and replugged)  
2. Termination status low to high  
3. REG_RST register bit is set  
The top-off timer settings are read in after is detected by the charger. Programming a top-off timer value after  
termination has no effect unless a recharge cycle is initiated. CHG_FLAG is set to 1 when entering top-off timer  
segment and again when the top-off timer expires.  
9.3.5.4 Thermistor Qualification  
BQ25620 and BQ25622 provide a single thermistor input for battery temperature monitoring. The TS pin input of  
the battery temperature can be ignored by the charger if TS_IGNORE = 1. When the TS pin feedback is ignored,  
the charger considers the TS to always be valid for charging and OTG modes, and TS_STAT always reports  
000. The TS pin may be left floating if TS_IGNORE is set to 1.  
When TS_IGNORE=1, the TS_ADC channel is disabled, with TS_ADC_DIS forced to 1; Attempting to write to 0  
is ignored.  
When TS_IGNORE = 0, the charger adjusts the charging profile based on the TS pin feedback information  
according to the configurable profile described in Section 9.3.5.4.1. When the battery temperature crosses from  
one temperature range to another, TS_STAT is updated accordingly, and the charger sets the FLAG bit for the  
newly-entered temperature range. If TS_MASK is set to 0, any change to TS_STAT, including a transition to  
TS_NORMAL, generates an INT pulse.  
9.3.5.4.1 Advanced Temperature Profile in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and  
high temperature ranges. As battery technology continues to evolve, battery manufacturers have released  
temperature safety specifications that extend beyond the JEITA standard. BQ25620 and BQ25622 feature  
a highly flexible temperature-based charging profile to meet these advanced specifications while remaining  
backwards compatible with the original JEITA standard. Figure 8-3 shows the programmability for charger  
behavior under different battery temperature (TS) operating regions.  
Percentage of  
ICHG / CHG_RATE  
Charging Voltage  
programmable  
programmable  
programmable  
100%  
VREG  
VREG -100mV  
VREG -200mV  
VREG -300mV  
TS_VSET_SYM  
40%  
20%  
suspend  
TH1  
TH2  
TS_PRECOOL  
TH4  
TH5  
TH6  
TH1  
TH2  
TS_PRECOOL  
TH4  
TH5  
TH6  
TH3  
TH3  
TS_COLD TS_COOL  
TS_NORMAL  
TS_PREWARM TS_WARM TS_HOT  
TS_COLD TS_COOL  
TS_NORMAL  
TS_PREWARM TS_WARM TS_HOT  
TS Temperature  
TS Temperature  
Figure 9-3. TS Charging Values  
Charging safety timer is adjusted within the temperature zones to reflect changes to the charging current. When  
IPRECHG and ICHG are reduced to 20% or 40% in the cool or warm temperature zones, the charging safety  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
timer counts at half rate. If charging is suspended, the safety timer is suspended, the STAT pin blinks and  
CHG_STAT is set to 00 (not charging or charge terminated.)  
9.3.5.4.2 TS Pin Thermistor Configuration  
The typical TS resistor network is illustrated below.  
REGN  
10 kΩ  
TS  
Figure 9-4. TS Resistor Network  
The value of RT1 and RT2 are determined from the resistance of the thermistor at 0 and 60 ºC (RTH0degC and  
RTH60degC) and the corresponding voltage thresholds VTS_0degC and VTS_60degC (expressed as percentage of  
REGN with value between 0 and 1.) For the most accurate thermistor curve fitting, use the rising threshold for  
VTS_COLD at 0 ºC and the falling threshold for VTS_HOT at 60 ºC, regardless of the actual register settings for  
TS_TH1_TH2_TH3 and TS_TH4_TH5_TH6.  
1
1
RTH  
× RTH  
1
×
60degC  
0degC  
×
V
V
TS_0degC  
TS_60degC  
RT2 =  
RT1 =  
(1)  
(2)  
1
RTH  
V
1 RTH  
0degC  
×
1  
60degC  
V
V
TS_60degC  
TS_0degC  
1
1  
TS_0degC  
1
R
1
+
RTH  
T2  
0degC  
Assuming a 103AT NTC thermistor on the battery pack, the RT1 and RT2 are calculated to be 5.30 kΩ and 31.1  
kΩ respectively.  
9.3.5.4.3 Cold/Hot Temperature Window in OTG Mode  
For battery protection during boost OTG, BQ25620 and BQ25622 monitor the battery temperature to be within  
the TS_TH_OTG_COLD to TS_TH_OTG_HOT register settings. For a 103AT NTC thermistor with RT1 of 5.3  
kΩ and RT2 of 31.1 kΩ, TS_TH_OTG_COLD default is -10°C and TS_TH_OTG_HOT default is 60°C. When  
temperature is outside of this range, the OTG mode is suspended with REGN remaining on. In addition,  
VBUS_STAT bits are set to 000, TS_STAT is set to 001 (TS_OTG_COLD) or 010 (TS_OTG_HOT), and  
TS_FLAG is set. Once the battery temperature returns to normal temperature, the boost OTG is restarted and  
TS_STAT returns to 000 (TS_NORMAL).  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
IOTG  
Suspended  
TH_OTG_COLD  
TH_OTG_HOT  
TS_OTG_HOT  
TS_OTG_COLD  
TS_NORMAL  
TS Temperature  
Figure 9-5. TS Pin Thermistor Sense Threshold in Boost Mode  
9.3.5.4.4 JEITA Charge Rate Scaling  
The TS_ISET_PRECOOL, TS_ISET_COOL, TS_ISET_PREWARM and TS_ISET_WARM cool and warm  
charge current fold backs are based on a 1C charging rate.  
A setting of TS_ISET_COOL = 01 sets ICHG_COOL = 20% ICHG1C. When the battery enters the TS_COOL  
temperature zone, the current is reduced to 20% of the 1C charging rate. In order to convert the charging  
foldback, the host must set the CHG_RATE register to the C rate for the battery. This scales the fold back  
accordingly, producing an ICHG_COOL as shown in Equation 3:  
I
CHG_COOL  
I
=
× JEITA_ISETC  
(3)  
CHG  
CHG_RATE  
When TS_ISET_PRECOOL, TS_ISET_COOL, TS_ISET_PREWARM or TS_ISET_WARM is set to either 00  
(suspend) or 11 (unchanged), the CHG_RATE setting has no effect. A summary is provided in Table 9-4.  
Table 9-4. ICHG Fold Back  
TS_ISET_PRECOOL, TS_ISET_COOL,  
TS_ISET_PREWARM or TS_ISET_WARM  
FOLD-BACK CURRENT AS PERCENTAGE  
OF ICHG  
CHG_RATE  
00  
Any  
0% (Suspended)  
20%  
01 (20%)  
00 (1C)  
01 (2C)  
10 (4C)  
11 (6C)  
00 (1C)  
01 (2C)  
10 (4C)  
11 (6C)  
Any  
10%  
5%  
3.3%  
10 (40%)  
40%  
20%  
10%  
6.6%  
11  
100%  
9.3.5.4.5 TS_BIAS Pin (BQ25622 Only)  
The BQ25622 has the TS_BIAS pin to isolate the battery temperature sensing thermistor and associated  
resistor-divider from REGN. The 103AT thermistor with typical resistor-divider network requires about 400 μA  
to bias. The BQ25622 provides the TS_BIAS pin, which is internally connected to the REGN LDO via a back-to-  
back MOSFET switch. When no temperature measurement is being taken, the switch is disabled to disconnect  
the thermistor and resistor-divider from the REGN LDO, saving the 400 μA bias current from being expended  
unnecessarily.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: BQ25620 BQ25622  
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
The TS_BIAS pin has short-circuit protection. If a short is detected on the TS_BIAS pin, the switch is disabled  
to disconnect the short from REGN. If this condition occurs, TS_STAT register is set to 0x3. Charging and OTG  
modes are suspended until the short is removed.  
9.3.5.5 Charging Safety Timers  
BQ25620 and BQ25622 have three built-in safety timers to prevent extended charging cycle due to abnormal  
battery conditions. The fast charge safety timer and pre-charge safety timers are set through I2C CHG_TMR and  
PRECHG_TMR fields, respectively. The trickle charge timer is fixed at 1 hour.  
The trickle charging, pre-charging and fast charging safety timers can be disabled by setting  
EN_SAFETY_TMRS = 0. EN_SAFETY_TMRS can be enabled anytime regardless of which charging stage  
the charger is in. Each timer starts to count as soon as the following two conditions are simultaneously true:  
EN_SAFETY_TMRS=1 and the corresponding charging stage is active.  
When either the fast charging, trickle charging or pre-charging safety timer expires, the SAFETY_TMR_STAT  
and SAFETY_TMR_FLAG bits are set to 1.  
Events that cause a reduction in charging current also cause the charging safety timer to count at half-clock rate  
if TMR2X_EN bit is set.  
During faults which suspend charging, the charge, pre-charge and trickle safety timers are also suspended,  
regardless of the state of the TMR2X_EN bit. Once the fault goes away, charging resumes and the safety timer  
resumes from where it stopped.  
The charging safety timer and the charging termination can be disabled at the same time. Under this condition,  
the charging keeps running until it is disabled by the host.  
9.3.6 USB On-The-Go (OTG)  
9.3.6.1 Boost OTG Mode  
BQ25620 and BQ25622 support boost converter operation to deliver power from the battery to VBUS. The  
output voltage and maximum current are set in the VOTG and IOTG registers, respectively. VBUS_STAT is set  
to 111 upon a successful entry into boost OTG. The boost operation is enabled when the following conditions are  
met:  
1. BAT above VBAT_OTG  
2. VBUS less than VBAT+VSLEEP  
3. Boost mode operation is enabled (EN_OTG = 1)  
4. VTS_OTG_HOT < VTS < VTS_OTG_COLD  
5. VREGN > VREGN_OK  
6. 30 ms delay after EN_OTG = 1  
7. Boost mode regulation voltage in REG0x0C is greater than 105% of battery voltage.  
9.3.7 Integrated 12-Bit ADC for Monitoring  
BQ25620 and BQ25622 provide an integrated 12-bit ADC for the host to monitor various system parameters.  
To enable the ADC, the ADC_EN bit must be set to ‘1’. The ADC is disabled by default (ADC_EN=0) to conserve  
power. The ADC is allowed to operate if either VBUS > VPOORSRC or VBAT > VBAT_LOWV is valid. If ADC_EN  
is set to ‘1’ before VBUS or VBAT reach their respective valid thresholds, then ADC_EN stays '0'. When the  
charger enters HIZ mode, the ADC is disabled. The host can re-enable the ADC during HIZ mode by setting  
ADC_EN =1.  
At battery only condition, if the TS_ADC channel is enabled, the ADC only operates when the battery voltage is  
higher than 3.2V (the minimal value to turn on REGN), otherwise, the ADC operates when the battery voltage is  
higher than VBAT_LOWV  
.
The ADC_DONE_STAT, ADC_DONE_FLAG bits are set when a conversion is complete in one-shot mode only.  
During continuous conversion mode, the ADC_DONE_STAT, ADC_DONE_FLAG bits have no meaning and  
remain at 0. In one-shot mode, the ADC_EN bit is set to 0 at the completion of the conversion, at the same time  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
as the ADC_DONE_FLAG bit is set. In continuous mode, the ADC_EN bit remains at 1 until the user disables  
the ADC by setting it to 0.  
9.3.8 Status Outputs ( PG, STAT, INT)  
9.3.8.1 PG Pin Power Good Indicator  
The PG pin (BQ25620 and BQ25622) goes LOW to indicate a good input source when:  
VVBUS is above VVBUS_UVLOZ  
VVBUS is above battery (not in sleep)  
VVBUS is below VVBUS_OVP threshold  
VVBUS is above VPOORSRC when IPOORSRC current is applied (not a poor source)  
9.3.8.2 Charging Status Indicator (STAT)  
BQ25620 and BQ25622 indicates charging state on the open drain STAT pin. The STAT pin can drive an LED.  
The STAT pin function can be disabled via the DIS_STAT bit.  
Table 9-5. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
LOW  
Charging in progress (including recharge)  
Not charging, no fault detected. (Includes charging complete, Charge Disabled, no adapter present, in OTG mode.)  
HIGH  
Charge suspend  
Boost Mode suspend  
Blinking at 1 Hz  
9.3.8.3 Interrupt to Host ( INT)  
In many applications, the host does not continually poll the charger status registers. Instead, the INT pin may  
be used to notify the host of a status change with a 256-μs INT pulse. Upon receiving the interrupt pulse,  
the host may read the flag registers (Charger_Flag_X and FAULT_Flag_X) to determine the event that caused  
the interrupt, and for each flagged event, read the corresponding status registers (Charger_Status_X and  
FAULT_Status_X) to determine the current state. Once set to 1, the flag bits remain latched at 1 until they are  
read by the host, which clears them. The status bits, however, are updated whenever there is a change to status  
and always represent the current state of the system.  
All of the INT events can be masked off to prevent INT pulses from being sent out when they occur, with the  
exception of the initial power-up interrupt. Interrupt events are masked by setting their mask bit in registers  
(Charger_Mask_X and FAULT_Mask_X.) Events always cause the corresponding flag bit to be set to 1,  
regardless of whether or not the interrupt pulse has been masked.  
9.3.9 BATFET Control  
BQ25620 and BQ25622 have an integrated, bi-directionally blocking BATFET that can be turned off to remove  
leakage current from the battery to the system. The BATFET is controlled by the BATFET_CTRL register bits,  
and supports shutdown mode, ship mode and system power reset.  
Table 9-6. BATFET Control Modes  
ENTRY, WITH ADAPTER, ENTRY, WITH ADAPTER,  
MODE  
BATFET  
I2C  
ENTRY, NO ADAPTER  
BATFET_CTRL_WVBUS BATFET_CTRL_WVBUS  
= 0 = 1  
EXIT  
Normal  
On  
Active  
N/A  
N/A  
N/A  
N/A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
www.ti.com  
EXIT  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
Table 9-6. BATFET Control Modes (continued)  
ENTRY, WITH ADAPTER, ENTRY, WITH ADAPTER,  
BATFET_CTRL_WVBUS BATFET_CTRL_WVBUS  
= 0 = 1  
MODE  
BATFET  
I2C  
ENTRY, NO ADAPTER  
Ship mode  
Off  
Off  
Writing BATFET_CTRL = Writing BATFET_CTRL = Writing BATFET_CTRL = QON or  
10 turns off BATFET after 10 has no effect while 10 turns off BATFET adapter  
BATFET_DLY and enters adapter is present. When after BATFET_DLY. When plug-in  
ship mode.  
both BATFET_DLY has  
expired and the adapter  
is removed, the device  
turns off BATFET and  
both BATFET_DLY has  
expired and adapter is  
removed, the device  
enters ship mode. Writing  
enters ship mode. Writing BATFET_CTRL = 00  
BATFET_CTRL = 00 before adapter is removed  
before adapter is removed turns BATFET on and  
aborts ship mode.  
aborts ship mode.  
System reset  
On to Off Active  
to On  
Writing BATFET_CTRL  
= 11 initiates  
Writing BATFET_CTRL  
= 11 is ignored and  
Writing BATFET_CTRL  
= 11 initiates  
N/A  
system reset after  
BATFET_DLY. Holding  
QON low for tQON_RST  
initiates immediate reset  
(BATFET_DLY is not  
applied.)  
BATFET_CTRL resets to system reset after  
00. Holding QON low for  
tQON_RST is ignored.  
BATFET_DLY. Holding  
QON low for tQON_RST  
initiates immediate reset.  
Converter is placed in HIZ  
during system reset and  
exits HIZ when system  
reset completes.  
Shutdown mode  
Off  
Off  
Writing BATFET_CTRL = Writing BATFET_CTRL = 01 with adapter present  
01 turns off BATFET after is ignored, regardless of BATFET_CTRL_WVBUS  
BATFET_DLY and enters setting, and BATFET_CTRL is reset to 00.  
shutdown.  
Adapter  
plug-in  
9.3.9.1 Shutdown Mode  
For the lowest battery leakage current, the host can shut down BQ25620 and BQ25622 by setting the register  
bits BATFET_CTRL to 01. In this mode, the BATFET is turned off to prevent the battery from powering the  
system, the I2C is disabled and the charger is totally shut down. BQ25620 and BQ25622 can only be woken up  
by plugging in an adapter. When the adapter is plugged in, BQ25620 and BQ25622 start back up with all register  
settings in their POR default.  
After the host sets BATFET_CTRL to 01, the BATFET turns off after waiting either 20 ms or 10 s as configured  
by BATFET_DLY register bit. Shutdown mode can only be entered when VVBUS < VVBUS_UVLO, regardless of the  
BATFET_CTRL_WVBUS setting, which has no effect on shutdown mode entry. If the host writes BATFET_CTRL  
= 01 with VVBUS > VVBUS_UVLOZ, the request is ignored and the BATFET_CTRL bits are set back to 00.  
If the host writes BATFET_CTRL to 01 while boost OTG, BQ25620 and BQ25622 first exit from boost OTG by  
setting EN_OTG = 0 and then enters shutdown mode.  
QON has no effect during shutdown mode. The internal pull-up on the QON pin is disabled during shutdown to  
prevent leakage through the pin.  
9.3.9.2 Ship Mode  
The host may place BQ25620 and BQ25622 into ship mode by setting BATFET_CTRL = 10. In ship mode, the  
BATFET is turned off to prevent the battery from powering the system, and the I2C is disabled. Ship mode has  
slightly higher quiescent current than shutdown mode, but QON may be used to exit from ship mode. BQ25620  
and BQ25622 are taken out of ship mode by either of these methods:  
Pulling the QON pin low for tSM_EXIT  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
VVBUS > VVBUS_UVLOZ (adapter plug-in)  
When BQ25620 and BQ25622 exit from ship mode, the registers are reset to their POR values.  
Ship mode is only entered when the adapter is not present. Setting BATFET_CTRL = 10 while VVBUS  
>
VVBUS_UVLOZ (adapter present) either disables the BATFET or has no immediate effect depending on the setting  
of BATFET_CTRL_WVBUS.  
When BATFET_CTRL_WVBUS is set to 0 and VVBUS > VVBUS_UVLO (adapter present), setting BATFET_CTRL  
= 10 has no immediate effect. If the adapter is removed while BATFET_CTRL is set to 10, then the BATFET is  
disabled and the device enters ship mode. The BATFET turns off either after tBATFET_DLY or when the adapter is  
removed, whichever comes later.  
When BATFET_CTRL_WVBUS is set to 1 and VVBUS > VVBUS_UVLO (adapter present), setting BATFET_CTRL  
= 10 turns off the BATFET after tBATFET_DLY. The converter continues to run while the adapter is present,  
supplying SYS power from the adapter. If the adapter is removed while BATFET_CTRL is set to 10, BQ25620  
and BQ25622 enters ship mode. Ship mode is entered either after tBATFET_DLY or when the adapter is removed,  
whichever comes later.  
9.3.9.3 System Power Reset  
The BATFET functions as a load switch between battery and system when the converter is not running. By  
changing the state of BATFET from on to off, systems connected to SYS can be power cycled. Any of the  
following conditions initiates a system power reset:  
BATFET_CTRL_WVBUS = 1 and QON is pulled low for tQON_RST  
BATFET_CTRL_WVBUS = 1 and BATFET_CTRL = 11  
BATFET_CTRL_WVBUS = 0 and VBUS < VVBUS_UVLO simultaneously with QON pulled low for tQON_RST  
BATFET_CTRL_WVBUS = 0 and VBUS < VVBUS_UVLO and BATFET_CTRL = 11  
BATFET_CTRL  
_WVBUS  
Adapter  
tQON_RST  
tQON_RST  
tQON_RST  
/QON  
ON  
ON  
ON  
BATFET  
OFF  
tBATFET_RST  
OFF  
tBATFET_RST  
OFF  
tBATFET_RST  
Enter HIZ  
Enter HIZ  
BATFET Reset with  
BATFET_CTRL_WVBUS=0  
BATFET Reset with  
BATFET_CTRL_WVBUS=1  
Figure 9-6. System Power Reset Timing  
When BATFET_CTRL_WVBUS is set to 1, system power reset proceeds if either BATFET_CTRL is set to 11 or  
QON is pulled low for tQON_RST, regardless of whether VBUS is present or not . There is a delay of tBATFET_DLY  
before initiating the system power reset. If QON is pulled low, there is no delay after the tQON_RST completes,  
regardless of BATFET_DLY setting.  
The system power reset can be initiated from the battery only condition, from OTG mode or from the forward  
charging mode with adapter present. If the system power is reset when the charger is in boost OTG mode, the  
boost OTG mode is first stopped by setting EN_OTG = 0.  
9.4 Device Functional Modes  
9.4.1 Host Mode and Default Mode  
The device is a host controlled charger, but it can operate in default mode without host management. In default  
mode, the device can be used as an autonomous charger with no host or while host is in sleep mode. When the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
charger is in default mode, WD_STAT bit becomes HIGH, WD_FLAG is set to 1, and an INT is asserted low to  
alert the host (unless masked by WD_MASK). The WD_FLAG bit would read as 1 upon the first read and then 0  
upon subsequent reads. When the charger is in host mode, WD_STAT bit is LOW.  
After power-on-reset, the device starts in default mode with watchdog timer expired. All the registers are in the  
default settings.  
In default mode, the device keeps charging the battery with default 1-hour trickle charging safety timer, 2-hour  
pre-charging safety timer and the 12-hour fast charging safety timer. At the end of the 1-hour or 2-hour or  
12-hour timer expired, the charging is stopped and the buck converter continues to operate to supply system  
load.  
A write to any I2C register transitions the charger from default mode to host mode, and initiates the watchdog  
timer. All the device parameters can be programmed by the host. To keep the device in host mode, the host has  
to reset the watchdog timer by writing 1 to WD_RST bit before the watchdog timer expires (WD_STAT bit is set),  
or disable watchdog timer by setting WATCHDOG bits = 00.  
When the watchdog expires, the device returns to default mode. The ICHG value is divided in half when the  
watchdog timer expires, and a number of other fields are reset to their POR default values as shown in the notes  
column of the register tables in Section 9.6. When watchdog timer expires, WD_STAT and WD_FLAG is set to 1,  
and an INT is asserted low to alert the host (unless masked by WD_MASK).  
Reset  
Selective  
Registers  
Default Mode  
WD_STAT=1  
POR  
I2C Write  
Reset  
Watchdog  
Timer  
Yes  
Host Mode  
WD_STAT=0  
I2C Write to  
WD_RST  
No  
Watchdog Timer Expired?  
Yes  
No  
Figure 9-7. Watchdog Timer Flow Chart  
9.4.2 Register Bit Reset  
Beside the register reset by the watchdog timer in the default mode, the register and the timer could be reset to  
the default value by writing the REG_RST bit to 1. The register bits, which can be reset by the REG_RST bit, are  
noted in the Register Map section. After the register reset, the REG_RST bit goes back from 1 to 0 automatically.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.5 Programming  
9.5.1 Serial Interface  
BQ25620 and BQ25622 uses I2C compatible interface for flexible charging parameter programming and  
instantaneous device status reporting. I2C is a bi-directional 2-wire serial interface. Only two open-drain bus  
lines are required: a serial data line (SDA), and a serial clock line (SCL).  
The device has 7-bit I2C address 0x6B , receiving control inputs from a host device such as a micro-controller  
or digital signal processor through register addresses 0x02 – 0x38. The host device initiates all transfers and the  
charger responds. Register reads outside of these addresses return 0xFF. When the bus is free, both SDA and  
SCL lines are HIGH.  
The I2C interface supports standard mode (up to 100 kbits/s), fast mode (up to 400 kbits/s) and fast mode plus  
(up to 1 Mbits/s.) These lines are pulled up to a reference voltage via pull-up resistor. The device I2C detection  
thresholds support a communication reference voltage from 1.2 V to 5 V.  
9.5.1.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the  
data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each  
data bit transferred.  
SDA  
SCL  
Data line stable;  
Data valid  
Change of data  
allowed  
Figure 9-8. Bit Transfer on the I2C Bus  
9.5.1.2 START and STOP Conditions  
All transactions begin with a START (S) and are terminated with a STOP (P). A HIGH to LOW transition on the  
SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line when the  
SCL is HIGH defines a STOP condition.  
START and STOP conditions are always generated by the host. The bus is considered busy after the START  
condition, and free after the STOP condition.  
SDA  
SCL  
SDA  
SCL  
STOP (P)  
Figure 9-9. START and STOP Conditions on the I2C Bus  
START (S)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.5.1.3 Byte Format  
Every byte on the SDA line must be 8 bits long. The number of bytes to be transmitted per transfer is  
unrestricted. Each byte has to be followed by an ACKNOWLEDGE (ACK) bit. Data is transferred with the  
Most Significant Bit (MSB) first. If target cannot receive or transmit another complete byte of data until it has  
performed some other function, it can hold the SCL line low to force the host into a wait state (clock stretching).  
Data transfer then continues when the target is ready for another byte of data and releases the SCL line.  
Acknowledgement  
Acknowledgement  
signal from host  
signal from target  
MSB  
SDA  
1
2
7
8
9
1
2
8
9
SCL S or Sr  
START or  
P or Sr  
ACK  
ACK  
STOP or  
Repeate  
d START  
Repeated  
START  
Figure 9-10. Data Transfer on the I2C Bus  
9.5.1.4 Acknowledge (ACK) and Not Acknowledge (NACK)  
The ACK signaling takes place after each transmitted byte. The ACK bit allows the target to signal the host that  
the byte was successfully received and another byte may be sent. All clock pulses, including the acknowledge  
9th clock pulse, are generated by the host.  
The host releases the SDA line during the acknowledge clock pulse so the target can pull the SDA line LOW and  
it remains stable LOW during the HIGH period of this 9th clock pulse.  
A NACK is signaled when the SDA line remains HIGH during the 9th clock pulse. The host can then generate  
either a STOP to abort the transfer or a repeated START to start a new transfer.  
9.5.1.5 Target Address and Data Direction Bit  
After the START signal, a target address is sent. This address is 7 bits long, followed by the 8 bit as a data  
direction bit (bit R/ W). A zero indicates a transmission (WRITE) and a one indicates a request for data (READ).  
The device 7-bit address is defined as 1101 011' (0x6B).  
SDA  
S
8
9
8
9
8
9
P
SCL  
1-7  
1-7  
1-7  
DATA  
START  
ADDRESS  
R/W ACK  
DATA  
ACK  
ACK  
STOP  
Figure 9-11. Complete Data Transfer on the I2C Bus  
9.5.1.6 Single Write and Read  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
P
Figure 9-12. Single Write  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
S
Target Addr  
ACK  
1
Data  
NCK  
P
Figure 9-13. Single Read  
If the register address is not defined, the charger IC sends back NACK and returns to the idle state.  
9.5.1.7 Multi-Write and Multi-Read  
The charger device supports multi-byte read and multi-byte write of all registers. These multi-byte operations are  
allowed to cross register boundaries. For instance, the entire register map may be read in a single operation with  
a 39-byte read that starts at register address 0x01.  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
Data to Addr  
ACK  
Data to Addr+1  
ACK  
Data to Addr+N  
ACK  
P
Figure 9-14. Multi-Write  
S
Target Addr  
0
ACK  
Reg Addr  
ACK  
S
Target Addr  
ACK  
1
Data @ Addr  
ACK Data @ Addr+1 ACK  
Data @ Addr+N NCK  
P
Figure 9-15. Multi-Read  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6 Register Maps  
I2C Device Address: 0x6B.  
9.6.1 Register Programming  
The BQ25620 and BQ25622 contain 8-bit and 16-bit registers. When writing to 16-bit registers, I2C transactions  
follow the little endian format, starting at the address of the least significant byte and writing both register bytes in  
a single 16-bit transaction.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6.2 BQ25620 Registers  
Table 9-7 lists the memory-mapped registers for the BQ25620 registers. All register offset addresses not listed in  
Table 9-7 should be considered as reserved locations and the register contents should not be modified.  
Table 9-7. BQ25620 Registers  
Address Acronym  
Register Name  
Charge Current Limit  
Charge Voltage Limit  
Input Current Limit  
Input Voltage Limit  
IOTG regulation  
VOTG regulation  
Minimal System Voltage  
Pre-charge Control  
Termination Control  
Charge Control 0  
Charge Timer Control  
Charger Control 1  
Charger Control 2  
Charger Control 3  
Charger Control 4  
NTC Control 0  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0x2  
0x4  
REG0x02_Charge_Current_Limit  
REG0x04_Charge_Voltage_Limit  
REG0x06_Input_Current_Limit  
REG0x08_Input_Voltage_Limit  
REG0x0A_IOTG_regulation  
REG0x0C_VOTG_regulation  
REG0x0E_Minimal_System_Voltage  
REG0x10_Pre-charge_Control  
REG0x12_Termination_Control  
REG0x14_Charge_Control_0  
REG0x15_Charge_Timer_Control  
REG0x16_Charger_Control_1  
REG0x17_Charger_Control_2  
REG0x18_Charger_Control_3  
REG0x19_Charger_Control_4  
REG0x1A_NTC_Control_0  
REG0x1B_NTC_Control_1  
REG0x1C_NTC_Control_2  
REG0x1D_Charger_Status_0  
REG0x1E_Charger_Status_1  
REG0x1F_FAULT_Status_0  
REG0x20_Charger_Flag_0  
REG0x21_Charger_Flag_1  
REG0x22_FAULT_Flag_0  
REG0x23_Charger_Mask_0  
REG0x24_Charger_Mask_1  
REG0x25_FAULT_Mask_0  
REG0x26_ADC_Control  
0x6  
0x8  
0xA  
0xC  
0xE  
0x10  
0x12  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x2A  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0x38  
NTC Control 1  
NTC Control 2  
Charger Status 0  
Charger Status 1  
FAULT Status 0  
Charger Flag 0  
Charger Flag 1  
FAULT Flag 0  
Charger Mask 0  
Charger Mask 1  
FAULT Mask 0  
ADC Control  
REG0x27_ADC_Function_Disable_0  
REG0x28_IBUS_ADC  
ADC Function Disable 0  
IBUS ADC  
REG0x2A_IBAT_ADC  
IBAT ADC  
REG0x2C_VBUS_ADC  
VBUS ADC  
REG0x2E_VPMID_ADC  
VPMID ADC  
REG0x30_VBAT_ADC  
VBAT ADC  
REG0x32_VSYS_ADC  
VSYS ADC  
REG0x34_TS_ADC  
TS ADC  
REG0x36_TDIE_ADC  
TDIE ADC  
REG0x38_Part_Information  
Part Information  
Complex bit access types are encoded to fit into small table cells. Table 9-8 shows the codes that are used for  
access types in this section.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-8. BQ25620 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
9.6.2.1 REG0x02_Charge_Current_Limit Register (Address = 0x2) [Reset = X]  
REG0x02_Charge_Current_Limit is shown in Figure 9-16 and described in Table 9-9.  
Return to the Summary Table.  
Charge Current Limit  
Figure 9-16. REG0x02_Charge_Current_Limit Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
ICHG  
R/W-X  
6
5
4
3
2
ICHG  
R/W-X  
RESERVED  
R-0x0  
Table 9-9. REG0x02_Charge_Current_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0x0  
X
Notes  
Description  
15:12  
11:5  
RESERVED  
ICHG  
R
Reserved  
R/W  
WATCHDOG Timer  
Expiration sets ICHG to  
1/2 its previous value  
(rounded down)  
Reset by:  
Charge Current Regulation Limit:  
This 16-bit register follows the little-endian convention.  
ICHG[5:2] falls in REG0x03[3:0], and ICHG[1:0] falls in  
REG0x02[7:6].  
POR: 1040mA (1Ah)  
REG_RESET  
Range: 80mA-3520mA (2h-58h)  
Clamped Low  
Clamped High  
Bit Step: 80mA (2h)  
NOTE: When Q4_FULLON=1, this register has a  
minimum value of 160mA  
4:0  
RESERVED  
R
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6.2.2 REG0x04_Charge_Voltage_Limit Register (Address = 0x4) [Reset = 0x0D20]  
REG0x04_Charge_Voltage_Limit is shown in Figure 9-17 and described in Table 9-10.  
Return to the Summary Table.  
Charge Voltage Limit  
Figure 9-17. REG0x04_Charge_Voltage_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
RESERVED  
R-0x0  
VREG  
R/W-0x1A4  
5
4
3
2
1
VREG  
RESERVED  
R-0x0  
R/W-0x1A4  
Table 9-10. REG0x04_Charge_Voltage_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:3  
RESERVED  
VREG  
R
0x0  
Reserved  
R/W  
0x1A4  
Reset by:  
Battery Voltage Regulation Limit:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
VREG[8:5] falls in REG0x05[3:0], and VREG[4:0] falls  
in REG0x04[7:3].  
POR: 4200mV (1A4h)  
Range: 3500mV-4800mV (15Eh-1E0h)  
Clamped Low  
Clamped High  
Bit Step: 10mV  
2:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.3 REG0x06_Input_Current_Limit Register (Address = 0x6) [Reset = 0x0A00]  
REG0x06_Input_Current_Limit is shown in Figure 9-18 and described in Table 9-11.  
Return to the Summary Table.  
Input Current Limit  
Figure 9-18. REG0x06_Input_Current_Limit Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
IINDPM  
R/W-0xA0  
5
4
3
2
IINDPM  
RESERVED  
R-0x0  
R/W-0xA0  
Table 9-11. REG0x06_Input_Current_Limit Register Field Descriptions  
Bit  
15:12  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-11. REG0x06_Input_Current_Limit Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
11:4  
IINDPM  
R/W  
0xA0  
Reset by:  
Input Current Regulation Limit:  
REG_RESET  
Adapter Removal  
This 16-bit register follows the little-endian convention.  
IINDPM[7:4] falls in REG0x07[3:0], and IINDPM[3:0]  
falls in REG0x06[7:4]. BQ25620: Based on D+/D-  
detection results:  
USB SDP = 500mA  
USB CDP = 1.5A  
USB DCP = 1.5A  
USB HVDCP = 1.5A  
Unknown Adapter = 500mA  
Non-Standard Adapter = 1A/2.1A/2.4A  
POR: 3200mA (A0h)  
Range: 100mA-3200mA (5h-A0h)  
Clamped Low  
Clamped High  
Bit Step: 20mA  
When the adapter is removed, IINDPM is reset to its  
POR value of 3.2 A.  
3:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.4 REG0x08_Input_Voltage_Limit Register (Address = 0x8) [Reset = 0x0E60]  
REG0x08_Input_Voltage_Limit is shown in Figure 9-19 and described in Table 9-12.  
Return to the Summary Table.  
Input Voltage Limit  
Figure 9-19. REG0x08_Input_Voltage_Limit Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VINDPM  
R/W-0x73  
6
5
4
3
2
VINDPM  
R/W-0x73  
RESERVED  
R-0x0  
Table 9-12. REG0x08_Input_Voltage_Limit Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:14  
13:5  
RESERVED  
VINDPM  
R
0x0  
Reserved  
R/W  
0x73  
Absolute Input Voltage Regulation Limit:  
This 16-bit register follows the little-endian convention.  
VINDPM[8:3] falls in REG0x09[5:0], and VINDPM[2:0]  
falls in REG0x08[7:5].  
POR: 4600mV (73h)  
Range: 3800mV-16800mV (5Fh-1A4h)  
Clamped Low  
Clamped High  
Bit Step: 40mV  
4:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.5 REG0x0A_IOTG_regulation Register (Address = 0xA) [Reset = 0x0320]  
REG0x0A_IOTG_regulation is shown in Figure 9-20 and described in Table 9-13.  
Return to the Summary Table.  
IOTG regulation  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Figure 9-20. REG0x0A_IOTG_regulation Register  
15  
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
IOTG  
R/W-0x32  
7
5
4
3
2
IOTG  
RESERVED  
R-0x0  
R/W-0x32  
Table 9-13. REG0x0A_IOTG_regulation Register Field Descriptions  
Bit  
15:12  
11:4  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
IOTG  
R
0x0  
Reserved  
R/W  
0x32  
Reset by:  
OTG mode current regulation limit:  
REG_RESET  
WATCHDOG  
This 16-bit register follows the little-endian convention.  
IOTG[7:4] falls in REG0x0B[3:0], and IOTG[3:0] falls in  
REG0x0A[7:4].  
POR: 1000mA (32h)  
Range: 100mA-3200mA (5h-A0h)  
Clamped Low  
Clamped High  
Bit Step: 20mA  
3:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.6 REG0x0C_VOTG_regulation Register (Address = 0xC) [Reset = 0x0FC0]  
REG0x0C_VOTG_regulation is shown in Figure 9-21 and described in Table 9-14.  
Return to the Summary Table.  
VOTG regulation  
Figure 9-21. REG0x0C_VOTG_regulation Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VOTG  
R/W-0x3F  
6
5
4
3
2
VOTG  
RESERVED  
R-0x0  
R/W-0x3F  
Table 9-14. REG0x0C_VOTG_regulation Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:13  
12:6  
RESERVED  
VOTG  
R
0x0  
Reserved  
R/W  
0x3F  
Reset by:  
OTG mode regulation voltage:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
VOTG[6:2] falls in REG0x0D[4:0], and VOTG[1:0] falls  
in REG0x0C[7:6].  
POR: 5040mV (3Fh)  
Range: 3840mV-9600mV (30h-78h)  
Clamped Low  
Clamped High  
Bit Step: 80mV  
5:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.7 REG0x0E_Minimal_System_Voltage Register (Address = 0xE) [Reset = 0x0B00]  
REG0x0E_Minimal_System_Voltage is shown in Figure 9-22 and described in Table 9-15.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Minimal System Voltage  
Figure 9-22. REG0x0E_Minimal_System_Voltage Register  
15  
14  
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VSYSMIN  
R/W-0x2C  
7
6
5
4
3
2
VSYSMIN  
R/W-0x2C  
RESERVED  
R-0x0  
Table 9-15. REG0x0E_Minimal_System_Voltage Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:6  
RESERVED  
VSYSMIN  
R
0x0  
Reserved  
R/W  
0x2C  
Reset by:  
Minimal System Voltage:  
REG_RESET  
This 16-bit register follows the little-endian  
convention. VSYSMIN[5:2] falls in REG0x0F[3:0], and  
VSYSMIN[1:0] falls in REG0x0E[7:6].  
POR: 3520mV (2Ch)  
Range: 2560mV-3840mV (20h-30h)  
Clamped Low  
Clamped High  
Bit Step: 80mV  
5:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.8 REG0x10_Pre-charge_Control Register (Address = 0x10) [Reset = 0x0050]  
REG0x10_Pre-charge_Control is shown in Figure 9-23 and described in Table 9-16.  
Return to the Summary Table.  
Pre-charge Control  
Figure 9-23. REG0x10_Pre-charge_Control Register  
15  
7
14  
6
13  
12  
11  
10  
9
8
RESERVED  
R-0x0  
IPRECHG  
R/W-0xA  
5
4
3
2
1
0
IPRECHG  
R/W-0xA  
RESERVED  
R-0x0  
Table 9-16. REG0x10_Pre-charge_Control Register Field Descriptions  
Bit  
15:9  
8:3  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
IPRECHG  
R
0x0  
Reserved  
R/W  
0xA  
Reset by:  
Pre-charge current regulation limit:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
IPRECHG[4] falls in REG0x11[0], and IPRECHG[3:0]  
falls in REG0x10[7:4]  
POR: 100mA (Ah)  
Range: 20mA-620mA (2h-3Eh)  
Clamped Low  
Bit Step: 20mA (2h)  
NOTE: When Q4_FULLON=1, this register has a  
minimum value of 80mA  
2:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.9 REG0x12_Termination_Control Register (Address = 0x12) [Reset = 0x0030]  
REG0x12_Termination_Control is shown in Figure 9-24 and described in Table 9-17.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Return to the Summary Table.  
Termination Control  
Figure 9-24. REG0x12_Termination_Control Register  
15  
14  
13  
12  
11  
10  
9
1
8
RESERVED  
R-0x0  
ITERM  
R/W-0xC  
7
6
5
4
3
2
0
ITERM  
RESERVED  
R-0x0  
R/W-0xC  
Table 9-17. REG0x12_Termination_Control Register Field Descriptions  
Bit  
15:9  
8:2  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
ITERM  
R
0x0  
Reserved  
R/W  
0xC  
Reset by:  
Termination Current Threshold:  
REG_RESET  
This 16-bit register follows the little-endian convention.  
ITERM[5] falls in REG0x13[0], and ITERM[4:0] falls in  
REG0x12[7:3].  
POR: 60mA (Ch)  
Range: 10mA-620mA (2h-7Ch)  
Clamped Low  
Bit Step: 10mA (2h)  
NOTE: When Q4_FULLON=1, this register has a  
minimum value of 120mA, so Reset value becomes  
120mA in this case  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.10 REG0x14_Charge_Control_0 Register (Address = 0x14) [Reset = 0x06]  
REG0x14_Charge_Control_0 is shown in Figure 9-25 and described in Table 9-18.  
Return to the Summary Table.  
Charge Control 0  
Figure 9-25. REG0x14_Charge_Control_0 Register  
7
6
5
4
3
2
1
0
Q1_FULLON  
Q4_FULLON  
ITRICKLE  
TOPOFF_TMR  
R/W-0x0  
EN_TERM  
VINDPM_BAT_TRAC  
K
VRECHG  
R-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x1  
R/W-0x1  
R/W-0x0  
Table 9-18. REG0x14_Charge_Control_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
Q1_FULLON  
R
0x0  
Forces RBFET (Q1) into low resistance state (26 mΩ) ,  
regardless of IINDPM setting.  
0x0 = RBFET RDSON determined by IINDPM setting  
(default)  
0x1 = RBFET RDSON is always 26 mΩ  
6
5
Q4_FULLON  
R/W  
R/W  
0x0  
0x0  
Forces BATFET (Q4) into low resistance state (15  
mΩ), regardless of ICHG setting. (Only applies when  
VBAT > VSYSMIN. Otherwise BATFET operates in  
linear mode.)  
0x0 = BATFET RDSON determined by charge current  
(default)  
0x1 = BATFET RDSON is always 15 mΩ  
ITRICKLE  
Reset by:  
REG_RESET  
Trickle charging current setting:  
0b = 20mA (default)  
1b = 80mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-18. REG0x14_Charge_Control_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
4:3  
TOPOFF_TMR  
R/W  
0x0  
Reset by:  
REG_RESET  
Top-off timer control:  
0x0 = Disabled (default)  
0x1 = 15 mins  
0x2 = 30 mins  
0x3 = 45 mins  
2
1
EN_TERM  
R/W  
0x1  
0x1  
Reset by:  
REG_RESET  
WATCHDOG  
Enable termination  
0x0 = Disable  
0x1 = Enable (default)  
VINDPM_BAT_TRA R/W  
CK  
Reset by:  
REG_RESET  
Sets VINDPM to track BAT voltage. Actual VINDPM  
is higher of the VINDPM register value and VBAT +  
VINDPM_BAT_TRACK.  
0x0 = Disable function (VINDPM set by register)  
0x1 = VBAT + 400 mV (default)  
0
VRECHG  
R/W  
0x0  
Reset by:  
REG_RESET  
Battery Recharge Threshold Offset (Below VREG)  
0x0 = 100mV (default)  
0x1 = 200mV  
9.6.2.11 REG0x15_Charge_Timer_Control Register (Address = 0x15) [Reset = 0x5C]  
REG0x15_Charge_Timer_Control is shown in Figure 9-26 and described in Table 9-19.  
Return to the Summary Table.  
Charge Timer Control  
Figure 9-26. REG0x15_Charge_Timer_Control Register  
7
6
5
4
3
2
1
0
DIS_STAT  
R/W-0x0  
EN_AUTO_INDET  
R/W-0x1  
FORCE_INDET  
R/W-0x0  
EN_DCP_BIAS  
R/W-0x1  
TMR2X_EN  
R/W-0x1  
EN_SAFETY_TMRS  
R/W-0x1  
PRECHG_TMR  
R/W-0x0  
CHG_TMR  
R/W-0x0  
Table 9-19. REG0x15_Charge_Timer_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
DIS_STAT  
R/W  
0x0  
Reset by:  
REG_RESET  
Disable the STAT pin output  
0x0 = Enable (default)  
0x1 = Disable  
6
EN_AUTO_INDET  
R/W  
0x1  
Reset by:  
Automatic D+/D- Detection Enable  
REG_RESET  
WATCHDOG  
0x0 = Disable DPDM detection when VBUS is  
plugged-in  
0x1 = Enable DPDM detection when VBUS is plugged-  
in (default)  
5
4
FORCE_INDET  
EN_DCP_BIAS  
R/W  
R/W  
0x0  
0x1  
Reset by:  
REG_RESET  
WATCHDOG  
Force D+/D- detection  
0x0 = Do not force DPDM detection (default)  
0x1 = Force DPDM algorithm, when DPDM detection  
is done, this bit is reset to 0  
Reset by:  
REG_RESET  
WATCHDOG  
Enable 600 mV bias on D+ pin whenever DCP is  
detected by BC1.2 detection algorithm (VBUS_STAT  
= 011b.)  
0x0 = Disable 600 mV bias on D+ pin  
0x1 = Enable 600 mV bias on D+ pin if DCP detected  
3
TMR2X_EN  
R/W  
0x1  
Reset by:  
2X charging timer control  
REG_RESET  
0x0 = Trickle charge, pre-charge and fast charge  
timer not slowed by 2X during input DPM or thermal  
regulation.  
0x1 = Trickle charge, pre-charge and fast charge timer  
slowed by 2X during input DPM or thermal regulation  
(default)  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-19. REG0x15_Charge_Timer_Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
2
EN_SAFETY_TMRS R/W  
0x1  
Reset by:  
Enable fast charge, pre-charge and trickle charge  
REG_RESET  
WATCHDOG  
timers  
0x0 = Disable  
0x1 = Enable (default)  
1
0
PRECHG_TMR  
CHG_TMR  
R/W  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
Pre-charge safety timer setting  
0x0 = 2 hrs (default)  
0x1 = 0.5 hrs  
Reset by:  
REG_RESET  
Fast charge safety timer setting  
0x0 = 12 hrs (default)  
0x1 = 24 hrs  
9.6.2.12 REG0x16_Charger_Control_1 Register (Address = 0x16) [Reset = 0xA1]  
REG0x16_Charger_Control_1 is shown in Figure 9-27 and described in Table 9-20.  
Return to the Summary Table.  
Charger Control 1  
Figure 9-27. REG0x16_Charger_Control_1 Register  
7
6
5
4
3
2
1
0
EN_AUTO_IBATDIS  
R/W-0x1  
FORCE_IBATDIS  
R/W-0x0  
EN_CHG  
R/W-0x1  
EN_HIZ  
R/W-0x0  
FORCE_PMID_DIS  
R/W-0x0  
WD_RST  
R/W-0x0  
WATCHDOG  
R/W-0x1  
Table 9-20. REG0x16_Charger_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
EN_AUTO_IBATDIS R/W  
0x1  
Reset by:  
REG_RESET  
Enable the auto battery discharging during the battery  
OVP fault  
0x0 = The charger does NOT apply a discharging  
current on BAT during battery OVP triggered  
0x1 = The charger does apply a discharging current on  
BAT during battery OVP triggered (default)  
6
FORCE_IBATDIS  
R/W  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Force a battery discharging current (~30mA)  
0x0 = IDLE (default)  
0x1 = Force the charger to apply a discharging current  
on BAT  
5
4
EN_CHG  
EN_HIZ  
R/W  
R/W  
0x1  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Charger enable configuration  
0x0 = Charge Disable  
0x1 = Charge Enable (default)  
Reset by:  
Enable HIZ mode.  
0x0 = Disable (default)  
0x1 = Enable  
REG_RESET  
WATCHDOG  
Adapter Plug In  
3
2
FORCE_PMID_DIS R/W  
0x0  
0x0  
0x1  
Reset by:  
REG_RESET  
WATCHDOG  
Force a PMID discharge current (~30mA.)  
0x0 = Disable (default)  
0x1 = Enable  
WD_RST  
R/W  
R/W  
Reset by:  
REG_RESET  
I2C watch dog timer reset  
0x0 = Normal (default)  
0x1 = Reset (this bit goes back to 0 after timer reset)  
1:0  
WATCHDOG  
Reset by:  
REG_RESET  
Watchdog timer setting  
0x0 = Disable  
0x1 = 40s (default)  
0x2 = 80s  
0x3 = 160s  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6.2.13 REG0x17_Charger_Control_2 Register (Address = 0x17) [Reset = 0x4F]  
REG0x17_Charger_Control_2 is shown in Figure 9-28 and described in Table 9-21.  
Return to the Summary Table.  
Charger Control 2  
Figure 9-28. REG0x17_Charger_Control_2 Register  
7
6
5
4
3
2
1
0
REG_RST  
R/W-0x0  
TREG  
R/W-0x1  
SET_CONV_FREQ  
R/W-0x0  
SET_CONV_STRN  
R/W-0x3  
RESERVED  
R/W-0x1  
VBUS_OVP  
R/W-0x1  
Table 9-21. REG0x17_Charger_Control_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
REG_RST  
R/W  
0x0  
REG_RESET  
Reset registers to default values and reset timer  
Value resets to 0 after reset completes.  
0x0 = Not reset (default)  
0x1 = Reset  
6
TREG  
R/W  
0x1  
0x0  
Reset by:  
REG_RESET  
Thermal regulation thresholds.  
0x0 = 60C  
0x1 = 120C (default)  
5:4  
SET_CONV_FREQ R/W  
SET_CONV_STRN R/W  
Reset by:  
REG_RESET  
Adjust switching frequency of the converter  
0x0 = Nominal, 1.5 MHz (default)  
0x1 = -10%, 1.35 MHz  
0x2 = +10%, 1.65 MHz  
0x3 = RESERVED  
3:2  
0x3  
Reset by:  
Adjust the high side and low side drive strength of the  
REG_RESET  
converter to adjust efficiency versus EMI.  
0x0 = weak  
0x1 = normal  
0x2 = RESERVED  
0x3 = strong  
1
0
RESERVED  
VBUS_OVP  
R/W  
R/W  
0x1  
0x1  
Reserved  
Reset by:  
Sets VBUS overvoltage protection threshold  
REG_RESET  
0x0 = 6.3 V  
0x1 = 18.5 V  
9.6.2.14 REG0x18_Charger_Control_3 Register (Address = 0x18) [Reset = 0x04]  
REG0x18_Charger_Control_3 is shown in Figure 9-29 and described in Table 9-22.  
Return to the Summary Table.  
Charger Control 3  
Figure 9-29. REG0x18_Charger_Control_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
EN_OTG  
PFM_OTG_DIS  
PFM_FWD_DIS  
BATFET_CTRL_WV  
BUS  
BATFET_DLY  
BATFET_CTRL  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R-0x0  
R/W-0x1  
Table 9-22. REG0x18_Charger_Control_3 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Notes  
Description  
RESERVED  
EN_OTG  
0x0  
Reserved  
6
0x0  
Reset by:  
OTG mode control  
REG_RESET  
WATCHDOG  
0b = OTG Disable (default)  
1b = OTG Enable  
5
PFM_OTG_DIS  
R/W  
0x0  
Reset by:  
REG_RESET  
Disable PFM in OTG boost mode  
0x0 = Enable (Default)  
0x1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-22. REG0x18_Charger_Control_3 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
4
PFM_FWD_DIS  
R/W  
0x0  
Reset by:  
REG_RESET  
Disable PFM in forward buck mode  
0x0 = Enable (Default)  
0x1 = Disable  
3
2
BATFET_CTRL_WV  
BUS  
R
0x0  
0x1  
0x0  
Optionally allows batfet off or system power reset with  
adapter present.  
0x0 = 0x0  
0x1 = 0x1  
BATFET_DLY  
R/W  
R/W  
Reset by:  
REG_RESET  
Delay time added to the taking action in bits [1:0] of the  
BATFET_CTRL  
0x0 = Add 20 ms delay time  
0x1 = Add 10s delay time (default)  
1:0  
BATFET_CTRL  
Reset by:  
BATFET control  
REG_RESET  
The control logic of the BATFET to force the device  
enter different modes.  
0x0 = Normal (default)  
0x1 = Shutdown Mode  
0x2 = Ship Mode  
0x3 = System Power Reset  
9.6.2.15 REG0x19_Charger_Control_4 Register (Address = 0x19) [Reset = 0xC0]  
REG0x19_Charger_Control_4 is shown in Figure 9-30 and described in Table 9-23.  
Return to the Summary Table.  
Charger Control 4  
Figure 9-30. REG0x19_Charger_Control_4 Register  
7
6
5
4
3
2
1
0
IBAT_PK  
R/W-0x3  
VBAT_UVLO  
VBAT_OTG_MIN  
EN_9V  
EN_12V_or_EN_EXT  
ILIM  
CHG_RATE  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
Table 9-23. REG0x19_Charger_Control_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7:6  
IBAT_PK  
R/W  
0x3  
Reset by:  
Battery discharging peak current protection threshold  
REG_RESET  
setting  
0x0 = 1.5A  
0x1 = 3A  
0x2 = 6A  
0x3 = 12A (default)  
5
VBAT_UVLO  
R/W  
0x0  
Reset by:  
REG_RESET  
Select the VBAT_UVLO falling threshold and  
VBAT_SHORT threshold  
0x0 = VBAT_UVLO 2.2V, VBAT_SHORT 2.05V  
(default)  
0x1 = VBAT_UVLO 1.8V, VBAT_SHORT 1.85V  
4
3
VBAT_OTG_MIN  
EN_9V  
R/W  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
Select the minimal battery voltage to start the OTG  
mode  
0x0 = 3V rising / 2.8 falling (default)  
0x1 = 2.6V rising / 2.4 falling  
Reset by:  
REG_RESET  
BQ25620: Enable 9V adapter detection  
Host has to set EN_12V=EN_9V=0, followed by proper  
setting of EN_12V and EN_9V to start a detection.  
After successful 9V detection, if EN_9V is set to  
0, charger starts a 12V detection (if EN_12V=1),  
or releases D+/D- bias and goes back to DCP (if  
EN_12V=0). 0b = Disabled (default)  
1b = Enabled  
BQ25622: RESERVED with default 0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-23. REG0x19_Charger_Control_4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
2
EN_12V_or_EN_EX R/W  
TILIM  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
BQ25620: Enable 12V adapter detection  
If EN_12V = EN_9V = 1, charger attempts 12V  
negotiation first. If 12V is detected, charger skips 9V  
negotiation.  
Host has to set EN_12V = EN_9V = 0, followed  
by proper setting of EN_12V and EN_9V to start a  
negotiation.  
After successful 12V negotiation, if EN_12V is set to 0  
and EN_9V stays at 1, charger starts 9V negotiation.  
0b = Disabled (default)  
1b = Enabled  
BQ25622:  
Enable the external ILIM pin input current regulation  
0b = Disabled  
1b = Enabled (default)  
1:0  
CHG_RATE  
R/W  
0x0  
Reset by:  
The charge rate definition for the fast charge stage.  
REG_RESET  
The charging current fold back value is equal to ICHG  
register setting times the fold back ratio, then divided  
by the charge rate.  
0x0 = 1C (default)  
0x1 = 2C  
0x2 = 4C  
0x3 = 6C  
9.6.2.16 REG0x1A_NTC_Control_0 Register (Address = 0x1A) [Reset = 0x3D]  
REG0x1A_NTC_Control_0 is shown in Figure 9-31 and described in Table 9-24.  
Return to the Summary Table.  
NTC Control 0  
Figure 9-31. REG0x1A_NTC_Control_0 Register  
7
6
5
4
3
2
1
0
TS_IGNORE  
R/W-0x0  
TS_TH_OTG_HOT  
R/W-0x1  
TS_TH_OTG_COLD  
R/W-0x1  
TS_ISET_WARM  
R/W-0x3  
TS_ISET_COOL  
R/W-0x1  
Table 9-24. REG0x1A_NTC_Control_0 Register Field Descriptions  
Bit  
Field  
TS_IGNORE  
Type  
Reset  
Notes  
Description  
7
R/W  
0x0  
Reset by:  
REG_RESET  
WATCHDOG  
Ignore the TS feedback: the charger considers the TS  
is always good to allow charging and OTG modes,  
TS_STAT reports TS_NORMAL condition.  
0x0 = Not ignore (Default)  
0x1 = Ignore  
6:5  
TS_TH_OTG_HOT R/W  
0x1  
Reset by:  
REG_RESET  
OTG Mode TS_HOT rising temperature threshold  
to transition from normal operation into suspended  
OTG mode when a 103AT NTC thermistor is used,  
RT1=5.24kΩ and RT2=30.31kΩ.  
0x0 = 55°C  
0x1 = 60°C (default)  
0x2 = 65°C  
0x3 = Disable  
4
TS_TH_OTG_COLD R/W  
0x1  
Reset by:  
REG_RESET  
OTG Mode TS_COLD falling temperature threshold  
to transition from normal operation into suspended  
OTG mode when a 103AT NTC thermistor is used,  
RT1=5.24kΩ and RT2=30.31kΩ.  
0x0 = -20°C  
0x1 = -10°C (default)  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-24. REG0x1A_NTC_Control_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
3:2  
TS_ISET_WARM  
R/W  
0x3  
Reset by:  
REG_RESET  
TS_WARM Current Setting  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20%  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged (default)  
1:0  
TS_ISET_COOL  
R/W  
0x1  
Reset by:  
REG_RESET  
TS_COOL Current Setting  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20% (default)  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged  
9.6.2.17 REG0x1B_NTC_Control_1 Register (Address = 0x1B) [Reset = 0x25]  
REG0x1B_NTC_Control_1 is shown in Figure 9-32 and described in Table 9-25.  
Return to the Summary Table.  
NTC Control 1  
Figure 9-32. REG0x1B_NTC_Control_1 Register  
7
6
5
4
3
2
1
0
TS_TH1_TH2_TH3  
R/W-0x1  
TS_TH4_TH5_TH6  
R/W-0x1  
TS_VSET_WARM  
R/W-0x1  
Table 9-25. REG0x1B_NTC_Control_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7:5  
TS_TH1_TH2_TH3 R/W  
0x1  
Reset by:  
REG_RESET  
TH1, TH2 and TH3 comparator falling temperature  
thresholds when a 103AT NTC thermistor is used,  
RT1=5.24kΩ and RT2=30.31kΩ.  
0x0 = TH1 is 0°C, TH2 is 5°C, TH3 is 15°C  
0x1 = TH1 is 0°C, TH2 is 10°C, TH3 is 15°C (default)  
0x2 = TH1 is 0°C, TH2 is 15°C, TH3 is 20°C  
0x3 = TH1 is 0°C, TH2 is 20°C, TH3 20°C  
0x4 = TH1 is -5°C, TH2 is 5°C, TH3 is 15°C  
0x5 = TH1 is -5°C, TH2 is 10°C, TH3 is 15°C  
0x6 = TH1 is -5°C, TH2 is 10°C, TH3 is 20°C  
0x7 = TH1 is 0°C, TH2 is 10°C, TH3 is 20°C  
4:2  
TS_TH4_TH5_TH6 R/W  
0x1  
Reset by:  
REG_RESET  
TH4, TH5 and TH6 comparator rising temperature  
thresholds when a 103AT NTC thermistor is used,  
RT1=5.24kΩ and RT2=30.31kΩ.  
0x0 = TH4 is 35°C, TH5 is 40°C, TH6 is 60°C  
0x1 = TH4 is 35°C, TH5 is 45°C, TH6 is 60°C (default)  
0x2 = TH4 is 35°C, TH5 is 50°C, TH6 is 60°C  
0x3 = TH4 is 40°C, TH5 is 55°C, TH6 is 60°C  
0x4 = TH4 is 35°C, TH5 is 40°C, TH6 is 50°C  
0x5 = TH4 is 35°C, TH5 is 45°C, TH6 is 50°C  
0x6 = TH4 is 40°C, TH5 is 45°C, TH6 is 60°C  
0x7 = TH4 is 40°C, TH5 is 50°C, TH6 is 60°C  
1:0  
TS_VSET_WARM  
R/W  
0x1  
Reset by:  
TS_WARM Voltage Setting  
REG_RESET  
0x0 = Set VREG to VREG-300mV  
0x1 = Set VREG to VREG-200mV (default)  
0x2 = Set VREG to VREG-100mV  
0x3 = VREG unchanged  
9.6.2.18 REG0x1C_NTC_Control_2 Register (Address = 0x1C) [Reset = 0x3F]  
REG0x1C_NTC_Control_2 is shown in Figure 9-33 and described in Table 9-26.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
NTC Control 2  
Figure 9-33. REG0x1C_NTC_Control_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
TS_VSET_SYM  
R/W-0x0  
TS_VSET_PREWARM  
R/W-0x3  
TS_ISET_PREWARM  
R/W-0x3  
TS_ISET_PRECOOL  
R/W-0x3  
Table 9-26. REG0x1C_NTC_Control_2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
RESERVED  
6
TS_VSET_SYM  
R/W  
0x0  
Reset by:  
REG_RESET  
When this bit is set to 0, the voltage regulation  
for TS_PRECOOL and TS_COOL is unchanged.  
When this bit is set to 1, TS_PRECOOL uses  
the TS_VSET_PREWARM setting of TS_PREWARM  
and TS_COOL uses the TS_VSET_WARM setting of  
TS_WARM .  
0x0 = VREG unchanged (default)  
0x1 = TS_COOLx matches TS_WARMx  
5:4  
3:2  
1:0  
TS_VSET_PREWAR R/W  
M
0x3  
0x3  
0x3  
Reset by:  
REG_RESET  
Advanced temperature profile voltage setting for  
TS_PREWARM (TH4 - TH5)  
0x0 = Set VREG to VREG-300mV  
0x1 = Set VREG to VREG-200mV  
0x2 = Set VREG to VREG-100mV  
0x3 = VREG unchanged (default)  
TS_ISET_PREWAR R/W  
M
Reset by:  
REG_RESET  
Advanced temperature profile current setting for  
TS_PREWARM zone(TH4 - TH5)  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20%  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged (default)  
TS_ISET_PRECOO R/W  
L
Reset by:  
REG_RESET  
Advanced temperature profile current setting for  
TS_PRECOOL zone (TH2 - TH3)  
0x0 = Charge Suspend  
0x1 = Set ICHG to 20%  
0x2 = Set ICHG to 40%  
0x3 = ICHG unchanged (default)  
9.6.2.19 REG0x1D_Charger_Status_0 Register (Address = 0x1D) [Reset = 0x00]  
REG0x1D_Charger_Status_0 is shown in Figure 9-34 and described in Table 9-27.  
Return to the Summary Table.  
Charger Status 0  
Figure 9-34. REG0x1D_Charger_Status_0 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
ADC_DONE_STAT  
R-0x0  
TREG_STAT  
R-0x0  
VSYS_STAT  
R-0x0  
IINDPM_STAT  
R-0x0  
VINDPM_STAT  
R-0x0  
SAFETY_TMR_STAT  
R-0x0  
WD_STAT  
R-0x0  
Table 9-27. REG0x1D_Charger_Status_0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
Reserved  
6
ADC_DONE_STAT  
R
0x0  
ADC Conversion Status (in one-shot mode only)  
Note: Always reads 0 in continuous mode  
0x0 = Conversion not complete  
0x1 = Conversion complete  
5
TREG_STAT  
R
0x0  
IC Thermal regulation status  
0x0 = Normal  
0x1 = Device in thermal regulation  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-27. REG0x1D_Charger_Status_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
4
VSYS_STAT  
R
0x0  
VSYS Regulation Status (forward mode)  
0x0 = Not in VSYSMIN regulation (BAT>VSYSMIN)  
0x1 = In VSYSMIN regulation (BAT<VSYSMIN)  
3
2
IINDPM_STAT  
VINDPM_STAT  
R
R
0x0  
0x0  
In forward mode, indicates that either IINDPM  
regulation is active or ILIM pin regulation is active  
In OTG mode, indicates that IOTG regulation is active  
0x0 = Normal  
0x1 = In IINDPM/ILIM regulation or IOTG regulation  
VINDPM status (forward mode) or VOTG status (OTG  
mode, backup mode)  
0x0 = Normal  
0x1 = In VINDPM regulation or VOTG regulation  
1
0
SAFETY_TMR_STA  
T
R
R
0x0  
0x0  
Fast charge, trickle charge and pre-charge timer status  
0x0 = Normal  
0x1 = Safety timer expired  
WD_STAT  
I2C watch dog timer status  
0x0 = Normal  
0x1 = WD timer expired  
9.6.2.20 REG0x1E_Charger_Status_1 Register (Address = 0x1E) [Reset = 0x00]  
REG0x1E_Charger_Status_1 is shown in Figure 9-35 and described in Table 9-28.  
Return to the Summary Table.  
Charger Status 1  
Figure 9-35. REG0x1E_Charger_Status_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CHG_STAT  
R-0x0  
VBUS_STAT  
R-0x0  
Table 9-28. REG0x1E_Charger_Status_1 Register Field Descriptions  
Bit  
7:5  
4:3  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
CHG_STAT  
R
0x0  
Reserved  
R
0x0  
Charge Status bits  
0x0 = Not Charging or Charge Terminated  
0x1 = Trickle Charge, Pre-charge or Fast charge (CC  
mode)  
0x2 = Taper Charge (CV mode)  
0x3 = Top-off Timer Active Charging  
2:0  
VBUS_STAT  
R
0x0  
VBUS status bits  
BQ25620:  
000b = No qualified adapter, or EN_AUTO_INDET = 0.  
001b = USB SDP Adapter (500mA)  
010b = USB CDP Adapter (1.5A)  
011b = USB DCP Adapter (1.5A)  
100b = Unknown Adapter (500mA)  
101b = Non-Standard Adapter (1A/2.1A/2.4A)  
110b = HVDCP adapter (1.5A)  
111b = In boost OTG mode  
BQ25622:  
100b = Unknown Adapter (default IINDPM setting)  
9.6.2.21 REG0x1F_FAULT_Status_0 Register (Address = 0x1F) [Reset = 0x00]  
REG0x1F_FAULT_Status_0 is shown in Figure 9-36 and described in Table 9-29.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Return to the Summary Table.  
FAULT Status 0  
Figure 9-36. REG0x1F_FAULT_Status_0 Register  
7
6
5
4
3
2
1
0
VBUS_FAULT_STAT  
R-0x0  
BAT_FAULT_STAT  
R-0x0  
SYS_FAULT_STAT  
R-0x0  
OTG_FAULT_STAT  
R-0x0  
TSHUT_STAT  
R-0x0  
TS_STAT  
R-0x0  
Table 9-29. REG0x1F_FAULT_Status_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
VBUS_FAULT_STAT R  
0x0  
VBUS fault status, VBUS OVP and sleep comparator  
0x0 = Normal  
0x1 = Device not switching due to overvoltage  
protection or sleep comparator  
6
BAT_FAULT_STAT  
R
0x0  
BAT fault status, IBAT OCP and VBAT OVP  
0x0 = Normal  
0x1 = Device in battery overcurrent protection or  
battery overvoltage protection  
5
4
SYS_FAULT_STAT  
OTG_FAULT_STAT  
R
R
0x0  
0x0  
VSYS undervoltage and overvoltage status  
0x0 = Normal  
0x1 = SYS in SYS short circuit or overvoltage  
Reverse-current or undervoltage or overvoltage fault  
detected at PMID or VBUS during boost OTG  
0x0 = Normal  
0x1 = Reverse-current fault or PMID or VBUS in  
overvoltage or undervoltage during OTG  
3
TSHUT_STAT  
TS_STAT  
R
R
0x0  
0x0  
IC temperature shutdown status  
0x0 = Normal  
0x1 = Device in thermal shutdown protection  
2:0  
The TS temperature zone.  
0x0 = TS_NORMAL  
0x1 = TS_COLD or TS_OTG_COLD or TS resistor  
string power rail is not available.  
0x2 = TS_HOT or TS_OTG_HOT  
0x3 = TS_COOL  
0x4 = TS_WARM  
0x5 = TS_PRECOOL  
0x6 = TS_PREWARM  
0x7 = TS pin bias reference fault  
9.6.2.22 REG0x20_Charger_Flag_0 Register (Address = 0x20) [Reset = 0x00]  
REG0x20_Charger_Flag_0 is shown in Figure 9-37 and described in Table 9-30.  
Return to the Summary Table.  
Charger Flag 0  
Figure 9-37. REG0x20_Charger_Flag_0 Register  
7
6
5
4
3
2
1
0
RESERVED  
ADC_DONE_FLAG  
TREG_FLAG  
VSYS_FLAG  
IINDPM_FLAG  
VINDPM_FLAG  
SAFETY_TMR_FLA  
G
WD_FLAG  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
R-0x0  
Table 9-30. REG0x20_Charger_Flag_0 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
R
0x0  
Reserved  
6
ADC_DONE_FLAG  
R
0x0  
ADC conversion flag (only in one-shot mode)  
0x0 = Conversion not completed  
0x1 = Conversion completed  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-30. REG0x20_Charger_Flag_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
5
TREG_FLAG  
R
0x0  
IC Thermal regulation flag  
0x0 = Normal  
0x1 = TREG signal rising threshold detected  
4
3
VSYS_FLAG  
R
R
0x0  
0x0  
VSYS min regulation flag  
0x0 = Normal  
0x1 = Entered or existed VSYS min regulation  
IINDPM_FLAG  
Indicates that either the IINDPM regulation loop, ILIM  
pin regulation or IOTG regulation loop has been  
entered.  
0x0 = Normal  
0x1 = IINDPM, ILIM or IOTG regulation signal rising  
edge detected  
2
VINDPM_FLAG  
R
0x0  
VINDPM or VOTG flag  
0x0 = Normal  
0x1 = VINDPM or VOTG regulation signal rising edge  
detected  
1
0
SAFETY_TMR_FLA  
G
R
R
0x0  
0x0  
Fast charge, trickle charge and pre-charge timer flag  
0x0 = Normal  
0x1 = Fast charge timer expired rising edge detected  
WD_FLAG  
I2C watchdog timer flag  
0x0 = Normal  
0x1 = WD timer signal rising edge detected  
9.6.2.23 REG0x21_Charger_Flag_1 Register (Address = 0x21) [Reset = 0x00]  
REG0x21_Charger_Flag_1 is shown in Figure 9-38 and described in Table 9-31.  
Return to the Summary Table.  
Charger Flag 1  
Figure 9-38. REG0x21_Charger_Flag_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CHG_FLAG  
R-0x0  
RESERVED  
R-0x0  
VBUS_FLAG  
R-0x0  
Table 9-31. REG0x21_Charger_Flag_1 Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
CHG_FLAG  
R
0x0  
Reserved  
R
0x0  
Charge status flag  
0x0 = Normal  
0x1 = Charge status changed  
2:1  
0
RESERVED  
VBUS_FLAG  
R
R
0x0  
0x0  
Reserved  
VBUS status flag  
0x0 = Normal  
0x1 = VBUS status changed  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6.2.24 REG0x22_FAULT_Flag_0 Register (Address = 0x22) [Reset = 0x00]  
REG0x22_FAULT_Flag_0 is shown in Figure 9-39 and described in Table 9-32.  
Return to the Summary Table.  
FAULT Flag 0  
Figure 9-39. REG0x22_FAULT_Flag_0 Register  
7
6
5
4
3
2
1
0
VBUS_FAULT_FLAG BAT_FAULT_FLAG  
R-0x0 R-0x0  
SYS_FAULT_FLAG  
R-0x0  
OTG_FAULT_FLAG  
R-0x0  
TSHUT_FLAG  
R-0x0  
RESERVED  
R-0x0  
TS_FLAG  
R-0x0  
Table 9-32. REG0x22_FAULT_Flag_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
6
5
VBUS_FAULT_FLA  
G
R
0x0  
VBUS overvoltage or sleep flag  
0x0 = Normal  
0x1 = Entered VBUS OVP or sleep  
BAT_FAULT_FLAG  
SYS_FAULT_FLAG  
R
R
0x0  
0x0  
IBAT overcurrent and VBAT overvoltage flag  
0x0 = Normal  
0x1 = Entered battery discharged OCP or VBAT OVP  
VSYS overvoltage and SYS short flag  
0x0 = Normal  
0x1 = Stopped switching due to system overvoltage or  
SYS short fault  
4
3
OTG_FAULT_FLAG  
TSHUT_FLAG  
R
R
0x0  
0x0  
OTG PMID and VBUS reverse-current, undervoltage  
and overvoltage flag  
0x0 = Normal  
0x1 = Stopped OTG due to reverse-current fault, PMID  
undervoltage or overvoltage fault  
IC thermal shutdown flag  
0x0 = Normal  
0x1 = TS shutdown signal rising threshold detected  
2:1  
0
RESERVED  
TS_FLAG  
R
R
0x0  
0x0  
Reserved  
TS status flag  
0x0 = Normal  
0x1 = A change to TS status was detected  
9.6.2.25 REG0x23_Charger_Mask_0 Register (Address = 0x23) [Reset = 0x00]  
REG0x23_Charger_Mask_0 is shown in Figure 9-40 and described in Table 9-33.  
Return to the Summary Table.  
Charger Mask 0  
Figure 9-40. REG0x23_Charger_Mask_0 Register  
7
6
5
4
3
2
1
0
RSERVED  
ADC_DONE_MASK  
TREG_MASK  
VSYS_MASK  
IINDPM_MASK  
VINDPM_MASK  
SAFETY_TMR_MAS  
K
WD_MASK  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
Table 9-33. REG0x23_Charger_Mask_0 Register Field Descriptions  
Bit  
7
Field  
RSERVED  
Type  
Reset  
Notes  
Description  
R/W  
0x0  
Reserved  
6
ADC_DONE_MASK R/W  
0x0  
Reset by:  
REG_RESET  
ADC conversion mask flag (only in one-shot mode)  
0x0 = ADC conversion done does produce INT pulse  
0x1 = ADC conversion done does not produce INT  
pulse  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-33. REG0x23_Charger_Mask_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
5
TREG_MASK  
R/W  
0x0  
Reset by:  
IC thermal regulation mask flag  
REG_RESET  
0x0 = Entering TREG does produce INT  
0x1 = Entering TREG does not produce INT  
4
3
2
1
VSYS_MASK  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
Reset by:  
REG_RESET  
VSYS min regulation mask flag  
0x0 = Enter or exit VSYSMIN regulation does produce  
INT pulse  
0x1 = Enter or exit VSYSMIN regulation does not  
produce INT pulse  
IINDPM_MASK  
VINDPM_MASK  
Reset by:  
REG_RESET  
IINDPM, ILIM or IOTG mask  
0x0 = Enter IINDPM, ILIM or IOTG does produce INT  
pulse  
0x1 = Enter IINDPM, ILIM or IOTG does not produce  
INT pulse  
Reset by:  
REG_RESET  
VINDPM or VOTG mask  
0x0 = Enter VINDPM or VOTG does produce INT  
pulse  
0x1 = Enter VINDPM or VOTG does not produce INT  
pulse  
SAFETY_TMR_MAS R/W  
K
Reset by:  
REG_RESET  
Fast charge, trickle charge and pre-charge timer mask  
flag  
0x0 = Fast charge, trickle charge or pre-charge timer  
expiration does produce INT  
0x1 = Fast charge, trickle charge or pre-charge timer  
expiration does not produce INT  
0
WD_MASK  
R/W  
0x0  
Reset by:  
I2C watch dog timer mask  
REG_RESET  
0x0 = I2C watch dog timer expired does produce INT  
pulse  
0x1 = I2C watch dog timer expired does not produce  
INT pulse  
9.6.2.26 REG0x24_Charger_Mask_1 Register (Address = 0x24) [Reset = 0x00]  
REG0x24_Charger_Mask_1 is shown in Figure 9-41 and described in Table 9-34.  
Return to the Summary Table.  
Charger Mask 1  
Figure 9-41. REG0x24_Charger_Mask_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
CHG_MASK  
R/W-0x0  
RESERVED  
R-0x0  
VBUS_MASK  
R/W-0x0  
Table 9-34. REG0x24_Charger_Mask_1 Register Field Descriptions  
Bit  
7:4  
3
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
CHG_MASK  
R
0x0  
Reserved  
R/W  
0x0  
Reset by:  
Charge status mask flag  
REG_RESET  
0x0 = Charging status change does produce INT  
0x1 = Charging status change does not produce INT  
2:1  
0
RESERVED  
R
0x0  
0x0  
Reserved  
VBUS_MASK  
R/W  
Reset by:  
VBUS status mask flag  
REG_RESET  
0x0 = VBUS status change does produce INT  
0x1 = VBUS status change does not produce INT  
9.6.2.27 REG0x25_FAULT_Mask_0 Register (Address = 0x25) [Reset = 0x00]  
REG0x25_FAULT_Mask_0 is shown in Figure 9-42 and described in Table 9-35.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Return to the Summary Table.  
FAULT Mask 0  
Figure 9-42. REG0x25_FAULT_Mask_0 Register  
7
6
5
4
3
2
1
0
VBUS_FAULT_MAS BAT_FAULT_MASK SYS_FAULT_MASK OTG_FAULT_MASK  
K
TSHUT_MASK  
RESERVED  
R-0x0  
TS_MASK  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
R/W-0x0  
Table 9-35. REG0x25_FAULT_Mask_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
VBUS_FAULT_MAS R/W  
K
0x0  
Reset by:  
REG_RESET  
VBUS overvoltage and sleep comparator mask flag  
0x0 = Entering VBUS OVP or sleep does produce INT  
0x1 = Entering VBUS OVP or sleep does not produce  
INT  
6
BAT_FAULT_MASK R/W  
SYS_FAULT_MASK R/W  
OTG_FAULT_MASK R/W  
0x0  
0x0  
0x0  
Reset by:  
REG_RESET  
IBAT overcurrent and VBAT overvoltage mask flag  
0x0 = IBAT OCP fault or VBAT OVP fault does  
produce INT  
0x1 = Neither IBAT OCP fault nor VBAT OVP fault  
produces INT  
5
4
Reset by:  
REG_RESET  
SYS overvoltage and SYS short mask  
0x0 = System overvoltage or SYS short fault does  
produce INT  
0x1 = Neither system overvoltage nor SYS short fault  
produces INT  
Reset by:  
REG_RESET  
OTG VBUS and PMID reverse-current, undervoltage  
and overvoltage mask  
0x0 = OTG VBUS or PMID reverse-current,  
undervoltage fault or overvoltage fault does produce  
INT  
0x1 = Neither reverse-current fault, OTG PMID or  
VBUS undervoltage nor overvoltage fault produces  
INT  
3
TSHUT_MASK  
R/W  
0x0  
Reset by:  
REG_RESET  
IC thermal shutdown mask flag  
0x0 = TSHUT does produce INT  
0x1 = TSHUT does not produce INT  
2:1  
0
RESERVED  
TS_MASK  
R
0x0  
0x0  
R/W  
Reset by:  
REG_RESET  
Temperature charging profile interrupt mask  
0x0 = A change to TS temperature zone does produce  
INT  
0x1 = A change to the TS temperature zone does not  
produce INT  
9.6.2.28 REG0x26_ADC_Control Register (Address = 0x26) [Reset = 0x30]  
REG0x26_ADC_Control is shown in Figure 9-43 and described in Table 9-36.  
Return to the Summary Table.  
ADC Control  
Figure 9-43. REG0x26_ADC_Control Register  
7
6
5
4
3
2
1
0
ADC_EN  
R/W-0x0  
ADC_RATE  
R/W-0x0  
ADC_SAMPLE  
R/W-0x3  
ADC_AVG  
R/W-0x0  
ADC_AVG_INIT  
R/W-0x0  
RESERVED  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-36. REG0x26_ADC_Control Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
ADC_EN  
R/W  
0x0  
Reset by:  
ADC Control  
REG_RESET  
WATCHDOG  
The registers POR to all 0 's, then after that always  
retain the last measurement, and never clear.  
0x0 = Disable (default)  
0x1 = Enable  
6
ADC_RATE  
R/W  
R/W  
0x0  
0x3  
Reset by:  
REG_RESET  
ADC conversion rate control  
0x0 = Continuous conversion (default)  
0x1 = One shot conversion  
5:4  
ADC_SAMPLE  
Reset by:  
ADC sample speed  
REG_RESET  
0x0 = 12 bit effective resolution  
0x1 = 11 bit effective resolution  
0x2 = 10 bit effective resolution  
0x3 = 9 bit effective resolution (default)  
3
2
ADC_AVG  
R/W  
R/W  
0x0  
0x0  
Reset by:  
REG_RESET  
ADC average control  
0x0 = Single value (default)  
0x1 = Running average  
ADC_AVG_INIT  
Reset by:  
REG_RESET  
ADC average initial value control  
0x0 = Start average using the existing register value  
(default)  
0x1 = Start average using a new ADC conversion  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.29 REG0x27_ADC_Function_Disable_0 Register (Address = 0x27) [Reset = 0x00]  
REG0x27_ADC_Function_Disable_0 is shown in Figure 9-44 and described in Table 9-37.  
Return to the Summary Table.  
ADC Function Disable 0  
Figure 9-44. REG0x27_ADC_Function_Disable_0 Register  
7
6
5
4
3
2
1
0
IBUS_ADC_DIS  
R/W-0x0  
IBAT_ADC_DIS  
R/W-0x0  
VBUS_ADC_DIS  
R/W-0x0  
VBAT_ADC_DIS  
R/W-0x0  
VSYS_ADC_DIS  
R/W-0x0  
TS_ADC_DIS  
R/W-0x0  
TDIE_ADC_DIS  
R/W-0x0  
VPMID_ADC_DIS  
R/W-0x0  
Table 9-37. REG0x27_ADC_Function_Disable_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
7
IBUS_ADC_DIS  
IBAT_ADC_DIS  
VBUS_ADC_DIS  
VBAT_ADC_DIS  
VSYS_ADC_DIS  
TS_ADC_DIS  
R/W  
0x0  
Reset by:  
REG_RESET  
IBUS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
6
5
4
3
2
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
Reset by:  
REG_RESET  
IBAT ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VBUS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VBAT ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
REG_RESET  
VSYS ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
Reset by:  
TS ADC control  
REG_RESET  
0x0 = Enable (Default)  
0x1 = Disable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-37. REG0x27_ADC_Function_Disable_0 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Notes  
Description  
1
TDIE_ADC_DIS  
R/W  
0x0  
Reset by:  
REG_RESET  
TDIE ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
0
VPMID_ADC_DIS  
R/W  
0x0  
Reset by:  
REG_RESET  
VPMID ADC control  
0x0 = Enable (Default)  
0x1 = Disable  
9.6.2.30 REG0x28_IBUS_ADC Register (Address = 0x28) [Reset = 0x0000]  
REG0x28_IBUS_ADC is shown in Figure 9-45 and described in Table 9-38.  
Return to the Summary Table.  
IBUS ADC  
Figure 9-45. REG0x28_IBUS_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
IBUS_ADC  
R-0x0  
5
4
3
2
0
IBUS_ADC  
R-0x0  
RESERVED  
R-0x0  
Table 9-38. REG0x28_IBUS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:1  
IBUS_ADC  
R
0x0  
IBUS ADC reading  
Reported in 2 's Complement.  
When the current is flowing from VBUS to PMID, IBUS  
ADC reports positive value, and when the current  
is flowing from PMID to VBUS, IBUS ADC reports  
negative value.  
POR: 0mA (0h)  
Format: 2s Complement  
Range: -4000mA-4000mA (7830h-7FFFh), (0h-7D0h)  
Clamped Low  
Clamped High  
Bit Step: 2mA  
0
RESERVED  
R
0x0  
Reserved  
9.6.2.31 REG0x2A_IBAT_ADC Register (Address = 0x2A) [Reset = 0x0000]  
REG0x2A_IBAT_ADC is shown in Figure 9-46 and described in Table 9-39.  
Return to the Summary Table.  
IBAT ADC  
Figure 9-46. REG0x2A_IBAT_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
IBAT_ADC  
R-0x0  
5
4
3
2
IBAT_ADC  
R-0x0  
RESERVED  
R-0x0  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Table 9-39. REG0x2A_IBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:2  
IBAT_ADC  
R
0x0  
IBAT ADC reading  
Reported in 2 's Complement.  
The IBAT ADC reports positive value for the battery  
charging current, and negative value for the battery  
discharging current.  
The IBAT ADC resets to zero when EN_CHG=0.  
POR: 0mA (0h)  
Format: 2s Complement  
Range: -7500mA-4000mA (38ADh-3FFFh), (0h-3E8h)  
Clamped Low  
Clamped High  
Bit Step: 4mA  
If polarity of battery current changes from charging  
to discharging or vice-versa during the ADC  
measurement, the conversion is aborted and the  
register reports code 0x8000 (which is code 0x2000  
for IBAT_ADC field)  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.32 REG0x2C_VBUS_ADC Register (Address = 0x2C) [Reset = 0x0000]  
REG0x2C_VBUS_ADC is shown in Figure 9-47 and described in Table 9-40.  
Return to the Summary Table.  
VBUS ADC  
Figure 9-47. REG0x2C_VBUS_ADC Register  
15  
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VBUS_ADC  
R-0x0  
7
5
4
3
2
VBUS_ADC  
R-0x0  
RESERVED  
R-0x0  
Table 9-40. REG0x2C_VBUS_ADC Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
VBUS_ADC  
R
0x0  
Reserved  
14:2  
R
0x0  
VBUS ADC reading  
POR: 0mV (0h)  
Range: 0mV-19850mV (0h-1388h)  
Clamped High  
Bit Step: 3.97mV  
1:0  
RESERVED  
R
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6.2.33 REG0x2E_VPMID_ADC Register (Address = 0x2E) [Reset = 0x0000]  
REG0x2E_VPMID_ADC is shown in Figure 9-48 and described in Table 9-41.  
Return to the Summary Table.  
VPMID ADC  
Figure 9-48. REG0x2E_VPMID_ADC Register  
15  
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
VPMID_ADC  
R-0x0  
7
5
4
3
2
VPMID_ADC  
R-0x0  
RESERVED  
R-0x0  
Table 9-41. REG0x2E_VPMID_ADC Register Field Descriptions  
Bit  
15  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
VPMID_ADC  
R
0x0  
Reserved  
14:2  
R
0x0  
VPMID ADC reading  
POR: 0mV (0h)  
Range: 0mV-19850mV (0h-1388h)  
Clamped High  
Bit Step: 3.97mV  
1:0  
RESERVED  
R
0x0  
Reserved  
9.6.2.34 REG0x30_VBAT_ADC Register (Address = 0x30) [Reset = 0x0000]  
REG0x30_VBAT_ADC is shown in Figure 9-49 and described in Table 9-42.  
Return to the Summary Table.  
VBAT ADC  
Figure 9-49. REG0x30_VBAT_ADC Register  
15  
7
14  
13  
12  
11  
10  
9
1
8
RESERVED  
R-0x0  
VBAT_ADC  
R-0x0  
6
5
4
3
2
0
VBAT_ADC  
R-0x0  
RESERVED  
R-0x0  
Table 9-42. REG0x30_VBAT_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:13  
12:1  
RESERVED  
VBAT_ADC  
R
0x0  
Reserved  
R
0x0  
VBAT ADC reading  
POR: 0mV (0h)  
Range: 0mV-5572mV (0h-AF0h)  
Clamped High  
Bit Step: 1.99mV  
0
RESERVED  
R
0x0  
Reserved  
9.6.2.35 REG0x32_VSYS_ADC Register (Address = 0x32) [Reset = 0x0000]  
REG0x32_VSYS_ADC is shown in Figure 9-50 and described in Table 9-43.  
Return to the Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
VSYS ADC  
Figure 9-50. REG0x32_VSYS_ADC Register  
15  
14  
13  
12  
11  
10  
9
1
8
RESERVED  
R-0x0  
VSYS_ADC  
R-0x0  
7
6
5
4
3
2
0
VSYS_ADC  
R-0x0  
RESERVED  
R-0x0  
Table 9-43. REG0x32_VSYS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:13  
12:1  
RESERVED  
VSYS_ADC  
R
0x0  
Reserved  
R
0x0  
VSYS ADC reading  
POR: 0mV (0h)  
Range: 0mV-5572mV (0h-AF0h)  
Clamped High  
Bit Step: 1.99mV  
0
RESERVED  
R
0x0  
Reserved  
9.6.2.36 REG0x34_TS_ADC Register (Address = 0x34) [Reset = 0x0000]  
REG0x34_TS_ADC is shown in Figure 9-51 and described in Table 9-44.  
Return to the Summary Table.  
TS ADC  
Figure 9-51. REG0x34_TS_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
TS_ADC  
R-0x0  
5
4
3
2
TS_ADC  
R-0x0  
Table 9-44. REG0x34_TS_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:0  
RESERVED  
TS_ADC  
R
0x0  
Reserved  
R
0x0  
Reset by:  
Adapter Plug In  
TS ADC reading as TS pin voltage in percentage of  
bias reference. Valid with TS pin bias reference active.  
POR: 0%(0h)  
Range: 0% - 98.3103% (0h-3FFh)  
Clamped High  
Bit Step: 0.0961%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
9.6.2.37 REG0x36_TDIE_ADC Register (Address = 0x36) [Reset = 0x0000]  
REG0x36_TDIE_ADC is shown in Figure 9-52 and described in Table 9-45.  
Return to the Summary Table.  
TDIE ADC  
Figure 9-52. REG0x36_TDIE_ADC Register  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
RESERVED  
R-0x0  
TDIE_ADC  
R/W-0x0  
5
4
3
2
TDIE_ADC  
R/W-0x0  
Table 9-45. REG0x36_TDIE_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Notes  
Description  
15:12  
11:0  
RESERVED  
TDIE_ADC  
R
0x0  
Reserved  
R/W  
0x0  
TDIE ADC reading  
Reported in 2 's Complement.  
POR: 0°C(0h)  
Format: 2s Complement  
Range: -40°C - 150°C (FB0h-12Ch)  
Clamped Low  
Clamped High  
Bit Step: 0.5°C  
9.6.2.38 REG0x38_Part_Information Register (Address = 0x38) [Reset = 0x02]  
REG0x38_Part_Information is shown in Figure 9-53 and described in Table 9-46.  
Return to the Summary Table.  
Part Information  
Figure 9-53. REG0x38_Part_Information Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0x0  
PN  
DEV_REV  
R-0x2  
R-0x0  
Table 9-46. REG0x38_Part_Information Register Field Descriptions  
Bit  
7:6  
5:3  
Field  
Type  
Reset  
Notes  
Description  
RESERVED  
PN  
R
0x0  
Reserved  
R
0x0  
Device Part number  
All the other options are reserved  
0h = BQ25620  
1h = BQ25622  
2:0  
DEV_REV  
R
0x2  
Device Revision  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
10.1 Application Information  
A typical application consists of the device configured as an I2C controlled power path management device  
and a single cell battery charger for Li-Ion and Li-polymer batteries used in a wide range of smartphone and  
other portable devices. It integrates an input reverse-block FET (RBFET, Q1), high-side switching FET (HSFET,  
Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET Q4) between the system and battery. The  
device also integrates a bootstrap diode for the high-side gate drive.  
10.2 Typical Application  
Q1  
Q2  
System  
Load  
1 uH  
3.9 - 18 V  
1 µF  
SW  
VBUS  
VBUS  
47 nF  
BTST  
20uF  
Q3  
4.7 µF  
REGN  
PMID  
0.1 µF  
10 µF  
GND  
SYS  
1.85 - 4.85 V  
D+  
D-  
Q4  
USB  
10 µF  
1.8 - 4.8 V  
BAT  
TS  
REGN  
SYS  
SYS  
STAT  
PG  
VREF  
BQ25620  
SYS  
SDA  
SCL  
INT  
CE  
QON  
Host  
Optional  
Figure 10-1. BQ25620 Application Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: BQ25620 BQ25622  
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Q1  
Q2  
System  
Load  
1 uH  
3.9 - 18 V  
SW  
VBUS  
VBUS  
1 µF  
47 nF  
BTST  
20uF  
Q3  
4.7 µF  
REGN  
PMID  
10 µF  
0.1 µF  
GND  
SYS  
1.85 - 4.85 V  
1.8 - 4.8 V  
ILIM  
Q4  
10 µF  
BAT  
SYS  
SYS  
TS_BIAS  
TS  
STAT  
PG  
VREF  
BQ25622  
SYS  
SDA  
SCL  
INT  
CE  
QON  
Host  
Optional  
Figure 10-2. BQ25622 Application Diagram  
10.2.1 Design Requirements  
Table 10-1. Design Requirements  
PARAMETER  
VALUE  
3.9 -18.0 V  
3200 mA  
3040 mA  
3520 mV  
4200 mV  
VBUS range  
Input current limit (REG0x06-0x07)  
Fast charge current (REG0x02-0x03)  
Minimum system voltage (REG0x0E-0x0F)  
Battery regulation voltage (REG0x04-0x05)  
10.2.2 Detailed Design Procedure  
10.2.2.1 Inductor Selection  
The 1.5-MHz switching frequency allows the use of small inductor and capacitor values to maintain an inductor  
saturation current higher than the charging current (ICHG) plus half the ripple current (IRIPPLE):  
ISAT ≥ ICHG + (1/2) IRIPPLE  
(4)  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
The inductor ripple current depends on the input voltage (VVBUS), the duty cycle (D = VBAT/VVBUS), the switching  
frequency (fS) and the inductance (L).  
VIN ´D ´ (1- D)  
=
IRIPPLE  
fs ´ L  
(5)  
The maximum inductor ripple current occurs when the duty cycle (D) is approximately 0.5. Usually inductor ripple  
is designed between 20% and 40% of the maximum charging current as a trade-off between inductor size and  
efficiency.  
10.2.2.2 Input Capacitor  
Design input capacitance to provide enough ripple current rating to absorb input switching ripple current. The  
worst case RMS ripple current is half of the charging current when duty cycle is 0.5. If the converter does not  
operate at 50% duty cycle, then the worst case capacitor RMS current ICin occurs where the duty cycle is closest  
to 50% and can be estimated using Equation 6.  
ICIN = ICHG ´ D ´ (1- D)  
(6)  
Low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed as close as possible to the drain of the high-side MOSFET (PMID) and source of the low-side MOSFET  
(GND). Voltage rating of the capacitor must be higher than normal input voltage level. A rating of 25-V or higher  
capacitor is preferred for 15 V input voltage. 10-μF ceramic capacitor is suggested for typical of 3.5A charging  
current.  
10.2.2.3 Output Capacitor  
Ensure that the output capacitance has enough ripple current rating to absorb the output switching ripple current.  
Equation 7 shows the output capacitor RMS current ICOUT calculation.  
IRIPPLE  
ICOUT  
=
» 0.29 ´ IRIPPLE  
2 ´  
3
(7)  
(8)  
The output capacitor voltage ripple can be calculated as follows:  
V
V
SYS  
SYS  
8 × L × C  
ΔV  
=
1 −  
V
SYS  
2
VBUS  
× f  
SW  
SYS  
At certain input and output voltage and switching frequency, the voltage ripple can be reduced by increasing the  
output filter LC.  
The charger device has internal loop compensation optimized for ≥ 10-μF ceramic output capacitor. The  
preferred ceramic capacitor is 10-V rating, X7R or X5R.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: BQ25620 BQ25622  
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
10.2.3 Application Curves  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
Figure 10-3. Power-Up with Charge Enabled  
Figure 10-4. Power-Down  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 1 A  
VBAT = 3.2 V  
Figure 10-5. Charge Enable  
Figure 10-6. Charge Disable  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 480mA  
VBAT = 3.2 V  
Figure 10-7. System Reset by QON without VBUS  
Present  
Figure 10-8. System Reset by QON with VBUS  
Present  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
VVBUS = 5 V  
ISYS = 50 mA  
VBAT = 3.2 V  
VVBUS = 5 V  
ICHG = 1 A  
VVBAT = 3.2 V  
Charge Disabled  
Figure 10-9. PFM Switching in Buck Mode  
Figure 10-10. PWM Switching in Buck Mode  
VBAT = 3.8 V  
VBOOST = 5.04 V  
VVBUS = 5 V  
VBAT = 3.2 V  
IBOOST = 100 mA  
ISYS from 0 A to 1 A  
Charge Disabled  
Figure 10-12. Boost Mode Power Up  
Figure 10-11. System Load Transient  
VBAT = 3.8 V  
IBOOST = 100 mA  
VBOOST = 5.04V  
VBAT = 3.8 V  
IBOOST= 50 mA  
VBOOST = 5.04V  
Figure 10-13. Boost Mode Power Down  
Figure 10-14. PFM Switching in Boost Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
VBAT = 3.8 V  
IBOOST= 1 A  
VBOOST = 5.04V  
VBAT = 3.8 V  
VBOOST = 5.04 V  
IBOOST from 0 A to 0.5 A  
Figure 10-15. PWM Switching in Boost Mode  
Figure 10-16. Boost Mode Load Transient  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
11 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9 V and 18.0  
V input with at least 100-mA current rating connected to VBUS or a single-cell Li-Ion battery with voltage >  
VBATUVLO connected to BAT.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
The switching node rise and fall times should be minimized for lowest switching loss. Proper layout of the  
components to minimize high frequency current path loop (see Figure 12-1) is important to prevent electrical and  
magnetic field radiation and high frequency resonant problems. Follow this specific order carefully to achieve the  
proper layout.  
1. For lowest switching noise during forward/charge mode, place the decoupling capacitor CPMID1 and then  
bulk capacitor CPMID2 positive terminals as close as possible to PMID pin. Place the capacitor ground  
terminal close to the GND pin using the shortest copper trace connection or GND plane on the same layer  
as the IC. See Figure 12-2.  
2. For lowest switching noise during reverse/OTG mode, place the CSYS1 and CSYS2 output capacitors'  
positive terminals near the SYS pin. The capacitors' ground terminals must be via'd down through multiple  
vias to an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See Figure  
12-2.  
3. Since REGN powers the internal gate drivers, place the CREGN capacitor positive terminal close to REGN  
pin to minimize switching noise. The capacitor's ground terminal must be via'd down through multiple vias to  
an all ground internal layer that returns to IC GND pin through multiple vias under the IC. See Figure 12-2.  
4. Place the CVBUS and CBAT capacitors positive terminals as close to the VBUS and BAT pins as possible.  
The capacitors' ground terminals must be via'd down through multiple vias to an all ground internal layer that  
returns to IC GND pin through multiple vias under the IC. See Figure 12-2.  
5. Place the inductor input pin near the positive terminal of the SYS pin capacitors. Due to the PMID capacitor  
placement requirements, the inductor's switching node terminal must be via'd down with multiple via's to  
a second internal layer with a wide trace that returns to the SW pin with multiple vias. See Figure 12-3.  
Using multiple vias ensures that the via's additional resistance is negligible compared to the inductor's  
dc resistance and therefore does not impact efficiency. The vias additional series inductance is negligible  
compared to the inductor's inductance.  
6. Place the BTST capacitor on the opposite side from the IC using vias to connect to the BTST pin and SW  
node. See Figure 12-4.  
7. A separate analog GND plane for non-power related resistors and capacitors is not required if those  
components are placed away from the power components traces and planes.  
8. Ensure that the I2C SDA and SCL lines are routed away from the SW node.  
Additionally, it is important that the PCB footprint and solder mask for BQ25620 cover the entire length of each  
of the pins. GND, SW, PMID, SYS and BAT pins extend further into the package than the other pins. Using the  
entire length of these pins reduces parasitic resistance and increases thermal conductivity from the package into  
the board.  
12.2 Layout Example  
+
+
œ
Figure 12-1. High Frequency Current Path  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Figure 12-2. Layout Example: Top Layer (red) and All PGND Internal Layer 2 (brown)  
Figure 12-3. Layout Example: Inner Layer 3 (AGND pour; SW node pour; signal routing)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: BQ25620 BQ25622  
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
Figure 12-4. Layout Example: Bottom Layer X-Ray From Top (PGND pour; BTST capacitor; redundant  
SW, SYS and BAT pours)  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 Documentation Support  
13.2.1 Related Documentation  
For related documentation see the following:  
BQ25601 and BQ25601D (PWR877) Evaluation Module User's Guide  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: BQ25620 BQ25622  
 
 
 
 
 
 
 
 
BQ25620, BQ25622  
SLUSEG2A – SEPTEMBER 2022 – REVISED OCTOBER 2022  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: BQ25620 BQ25622  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25620RYKR  
BQ25622RYKR  
ACTIVE  
ACTIVE  
WQFN-HR  
WQFN-HR  
RYK  
RYK  
18  
18  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
BQ620  
BQ622  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Jul-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25620RYKR  
BQ25622RYKR  
WQFN-  
HR  
RYK  
RYK  
18  
18  
3000  
3000  
180.0  
12.4  
2.8  
3.3  
1.1  
4.0  
12.0  
Q2  
WQFN-  
HR  
180.0  
12.4  
2.8  
3.3  
1.1  
4.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25620RYKR  
BQ25622RYKR  
WQFN-HR  
WQFN-HR  
RYK  
RYK  
18  
18  
3000  
3000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
WQFN-HR - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RYK0018A  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
2.6  
2.4  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.525  
0.325  
3X  
0.5  
0.3  
5X  
PKG  
0.675  
0.475  
2X  
0.725  
2X  
0.6  
0.525  
(0.1) TYP  
4X  
0.4  
9
6
0.9  
0.7  
10  
2X 0.85  
5X  
5
2X 0.407  
2X 0.007  
0
PKG  
2X 0.393  
2X 0.85  
1
14  
0.25  
0.15  
22X  
15  
18  
0.519  
0.319  
0.1  
C A B  
C
0.05  
PIN 1 ID (OPTIONAL)  
4226526/A 02/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN-HR - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RYK0018A  
2X (0.775)  
(0.619)  
PKG  
2X (0.825)  
15  
18  
(1.141)  
4X (0.7)  
5X (1)  
2X (0.95)  
1
14  
2X (0.85)  
2X (0.393)  
PKG  
(0)  
2X (0.007)  
2X (0.407)  
22X (0.2)  
(R 0.05) TYP  
10  
5
2X (1.1)  
(1.15)  
9
6
5X (0.6)  
3X (0.625)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226526/A 02/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) .  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN-HR - 0.8 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RYK0018A  
2X (0.775)  
(0.619)  
PKG  
2X (0.825)  
15  
18  
(1.141)  
4X (0.7)  
1
5X (1)  
2X (0.95)  
14  
2X (0.85)  
2X (0.393)  
PKG  
(0)  
2X (0.007)  
2X (0.407)  
22X (0.2)  
(R 0.05) TYP  
10  
5
2X (1.1)  
(1.15)  
9
6
5X (0.6)  
3X (0.625)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100 mm THICK STENCIL  
SCALE: 20X  
4226526/A 02/2021  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

BQ25622RYKR

具有 18V 最大输入、电流限制、ADC 和 OTG 的 I²C 控制型单节 3.5A 降压电池充电器 | RYK | 18 | -40 to 85
TI

BQ25628

具有升压模式和 ADC 的 I²C 控制型 18V 最大输入、2A 单节电池充电器
TI

BQ25628RYKR

具有升压模式和 ADC 的 I²C 控制型 18V 最大输入、2A 单节电池充电器 | RYK | 18 | -40 to 85
TI

BQ25629

具有 USB 检测和 ADC 的 I²C 控制型 18V 最大输入、2A 单节电池充电器
TI

BQ25629RYKR

具有 USB 检测和 ADC 的 I²C 控制型 18V 最大输入、2A 单节电池充电器 | RYK | 18 | -40 to 85
TI

BQ25672

具有双输入选择器和集成 ADC 的 I²C 控制型 1-4 节 3A 降压电池充电器
TI

BQ25672RQMR

具有双输入选择器和集成 ADC 的 I²C 控制型 1-4 节 3A 降压电池充电器 | RQM | 29 | -40 to 85
TI

BQ25700A

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器
TI

BQ25700ARSNR

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25700ARSNT

具有系统功率监控器和处理器的 SMBus 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI

BQ25703A

具有系统功率监控器和处理器的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器
TI

BQ25703ARSNR

具有系统功率监控器和处理器的 I2C 1 至 4 节 NVDC 降压/升压电池充电控制器 | RSN | 32 | -40 to 85
TI