BQ25886RGET [TI]

具有电源路径且适用于 USB 输入的独立型 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85;
BQ25886RGET
型号: BQ25886RGET
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源路径且适用于 USB 输入的独立型 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85

电池
文件: 总43页 (文件大小:4093K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
具备 PowerPathUSB BC1.2 检测和 USB On-the-Go (OTG) 升压式的  
BQ25886 独立式 2 节电池、2A 升压模式电池充电器  
1 特性  
2 应用  
1
高效的 2A1.5MHz 开关模式升压充电器  
无线扬声器  
智能扬声器  
5V 适配器、7.6V 电池、充电电流为 1A 下  
的充电效率为 93.4%  
EPOS 打印机  
便携式 POS  
IP 网络摄像头  
针对 USB 输入和 2 节锂离子电池进行了优化  
单个输入,支持 USB 输入适配器  
支持 4.3V 6.2V 的输入电压范围,绝对最大  
输入电压额定值为 20V  
3 说明  
输入电流限制(500mA 3.3A),支持  
USB2.0USB3.0 标准适配器  
BQ25886 是一款高度集成的 2A 升压式开关模式电池  
充电管理以及能实现即时通电并提供精确终端控制的系  
PowerPath 管理器件,适用于 2 (2s) 锂离子和锂  
聚合物电池。 BQ25886 是具有 PowerPath OTG  
功能的独立解决方案。  
集成式 USB D+/D- 自动检测 USB SDP、  
CDPDCP 以及非标准适配器  
独立功能,具有 PowerPath 管理功能  
采用 17m电池放电 MOSFET,具有较高的电  
池放电效率  
器件信息(1)  
器件型号  
BQ25886  
封装  
封装尺寸(标称值)  
VDC (NVDC) PowerPath 管理  
VQFN (24)  
4.00mm x 4.00mm  
无需电池或深度放电的电池即可瞬时启动  
电池充电模式下实现理想的二极管运行  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
通过 VSET 引脚可调的充电电压支持 8.2V、  
8.4V8.7V 8.8V  
简化原理图  
通过 ICHGSET 引脚可调的充电电流支持 100  
2200mA  
5V @ 3A  
VREF  
STAT  
/PG  
VBUS  
PMID  
通过 ILIM 引脚可调的输入电流限制  
SYSTEM  
LOAD  
输入电流优化器 (ICO),无需过载适配器即可最大  
限度地提高输入功率  
6.0V to 8.8V  
SYS  
BAT  
SW  
ICHG=2A  
高集成度包括所有 MOSFET、电流检测和环路补偿  
BTST  
高精度  
REGN  
±0.5% 充电电压调节  
±5% 充电电流调节  
±7.5% 输入电流调节  
D+  
D-  
VREGN  
Host  
OTG  
/CE  
安全  
TS  
在充电下的电池温度检测  
热调节和热关断  
BQ25886  
ILIM  
`
VSET  
GND  
ICHGSET  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSD88  
 
 
 
 
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 24  
Application and Implementation ........................ 25  
9.1 Application Information............................................ 25  
9.2 Typical Application .................................................. 25  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements.............................................. 10  
7.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
9
10 Power Supply Recommendations ..................... 31  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 32  
12 器件和文档支持 ..................................................... 33  
12.1 器件支持 ............................................................... 33  
12.2 文档支持................................................................ 33  
12.3 接收文档更新通知 ................................................. 33  
12.4 社区资源................................................................ 33  
12.5 ....................................................................... 33  
12.6 静电放电警告......................................................... 33  
12.7 Glossary................................................................ 33  
13 机械、封装和可订购信息....................................... 34  
8
4 修订历史记录  
Changes from Original (March 2019) to Revision A  
Page  
已更改 将预告信息更改为生产数据.................................................................................................................................... 1  
2
Copyright © 2019, Texas Instruments Incorporated  
 
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
5 Device Comparison Table  
Table 1. Device Comparison  
PART NUMBER  
VBUS Operating Range  
USB Detection  
PowerPath  
BQ25882  
BQ25883  
3.9 to 6.2 V  
D+/D-  
BQ25886  
4.3 to 6.2 V  
D+/D-  
BQ25887  
3.9 to 6.2 V  
PSEL  
3.9 to 6.2 V  
D+/D-  
Yes  
Yes  
Yes  
No  
Cell Balancing  
OTG  
No  
No  
No  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
Yes  
Up to 2 A  
No  
No OTG  
Yes  
16 bit ADC  
Control Interface  
Status Pin  
I2C  
I2C  
Standalone  
STAT, /PG  
4x4 QFN-24  
I2C  
/PG  
STAT, /PG  
4x4 QFN-24  
STAT, /PG  
4x4 QFN-24  
Package  
2.1x2.1 WCSP-25  
Copyright © 2019, Texas Instruments Incorporated  
3
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
6 Pin Configuration and Functions  
RGE Package (Standalone)  
24-Pin VQFN  
Top View  
24  
23  
22  
21  
20  
19  
1
18  
17  
16  
15  
14  
13  
D-  
SW  
SW  
SYS  
SYS  
2
STAT  
3
/CE  
BQ25886  
RGE, 4x4  
4
GND  
5
OTG  
BAT  
BAT  
VSET  
6
7
8
9
10  
11  
12  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Positive USB data line – D+/D– based USB host/charging port detection. The detection includes  
data contact detection (DCD) and secondary detection in BC1.2.  
D+  
24  
AIO  
AIO  
Negative USB data line – D+/D– based USB host/charging port detection. The detection includes  
data contact detection (DCD) and secondary detection in BC1.2.  
D–  
1
2
Open drain charge status indicator – Connect to the pull-up rail via 10-kresistor. LOW indicates  
charge in progress. HIGH indicates charge complete or charge disabled. When any fault occurs, the  
STAT pin blinks at 1Hz.  
STAT  
DO  
Active Low Charge Enable Pin – Battery charging is enabled when CE pin is LOW. CE pin is  
internally pulled low with 900k-Ω resistor.  
CE  
3
5
DI  
DI  
OTG – USB On-The-Go Enable input. Pull high to enable OTG function. Pull low to disable OTG  
function.  
OTG  
Battery Charge Voltage Limit – VSET pin sets battery charge voltage. Program battery regulation  
voltage with a resistor pull-down from VSET to GND as follows:  
RVSET< 18kΩ (short to GND) = 8.2 V  
RVSET= 39kΩ (±10%) = 8.8 V  
RVSET= 75kΩ (±10%) = 8.7 V  
VSET  
TS  
6
7
8
AI  
AI  
AI  
RVSET> 150kΩ (floating) = 8.4 V  
Temperature Qualification Voltage – Connect a negative temperature coefficient thermistor.  
Program temperature window with a resistor divider from REGN to TS to GND. Charge suspends  
when TS pin is out of range. Recommend 103AT-2 thermistor.  
Input Current Limit (IINDPM) – ILIM pin sets the maximum input current and can be used to  
monitor input current. IINDPM loop regulates ILIM pin voltage at 0.8V. When ILIM pin is less than  
0.8V, the input current can be calculated by IIN = KILIM x VILIM / (RILIM x 0.8V). A resistor  
connected from ILIM pin to ground sets the input current limit as maximum (IINMAX = KILIM /  
RILIM). When ILIM pin is short to GND, the input current limit is set to maximum by ILIM. Input  
current limit less than 500mA is not supported on ILIM pin. Do not float this pin.  
ILIM  
4
Copyright © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Open drain active low power good indicator – Connect to the pull up rail via 10-kresistor. LOW  
indicates a good input source if the input voltage is within VVBUS_OP (3.9 V), and can provide more  
than IPOORSRC (30 mA).  
PG  
9
DO  
Charge Current Limit – A resistor from ICHGSET to GND is used to program the charge current.  
The acceptable programming range on ICHGSET pin is 30mA (114) – 2.2A (8k). Pre-charge and  
termination current is 1/10 of the fast charge current. The minimum pre-charge current is clamped at  
30mA (typ). Minimum termination current is clamped at 10mA (typ). ICHGSET short to GND clamps  
charge current to minimum setting 30mA (typ). Floating ICHGSET disables charge.  
ICHGSET  
10  
AI  
Gate Drive Supply – Bias supply for internal MOSFETs driver and IC. Bypass REGN to GND with a  
4.7-µF ceramic capacitor. REGN current limit is 50 mA.  
REGN  
BTST  
BAT  
11  
12  
P
P
P
PWM High-side Driver Supply – Internally, BTST is connected to the cathode of the boot-strap  
diode. Connect a 47nF bootstrap capacitor from SW to BTST.  
Battery Power Connection – Connect minimum recommended 10-µF capacitance after derating  
closely to the BAT pin and GND.  
13, 14  
System Connection – The internal BATFET is connected between SYS and BAT. When the battery  
falls below the minimum system voltage, the switch-mode converter keeps SYS above the minimum  
system voltage. Connect a 2x22-µF capacitance after derating closely to the SYS pin and PGND.  
SYS  
15, 16  
P
SW  
17, 18  
P
Inductor Connection – Connect to the switched side of the external inductor.  
GND  
19, 20, 4  
Ground Return  
Blocking MOSFET Connection – The minimum recommended total input low-ESR capacitance on  
VBUS and PMID, after applied derating, is 10 uF. At least 1-uF is recommended at VBUS with the  
remainder at PMID. Typical value for PMID is 10 uF.  
PMID  
21, 22  
P
Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at least 1-  
µF ceramic capacitor, placed as close to the IC as possible.  
VBUS  
NC  
23  
1
P
No Connect – Leave these pins floating or tie to ground.  
Copyright © 2019, Texas Instruments Incorporated  
5
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
-0.3  
-0.3  
MAX  
20  
8.5  
12  
13  
19  
6
UNIT  
V
VBUS (converter not switching)  
PMID (converter not switching)  
BAT, SYS (converter not switching)  
SW  
V
-0.3  
V
(2)  
-0.3  
V
Voltage Range (with respect to GND unless otherwise  
specified)  
BTST  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
V
REGN, STAT, /PG, TS  
ILIM  
V
5
V
BTST to SW  
6
V
D+, D-, ICHGSET, VSET, /CE  
STAT, /PG  
6
V
Output Sink Current  
6
mA  
°C  
°C  
Junction Temperature, TJ  
Storage temperature, Tstg  
–40  
–40  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
(2) -2V for 50ns  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101(2)  
±250  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
6.2  
3.3  
2.2  
5
UNIT  
VVBUS  
IVBUS  
Input Voltage  
4.3  
V
A
A
A
Average input current (VBUS)  
Average charge current (IBAT)  
RMS discharging current with internal MOSFET  
IBAT  
IBAT_RMS  
9 (up to  
1us)  
IBAT_PK  
Peak discharging current with internal MOSFET  
A
VBAT  
TA  
Battery Voltage  
9.2(1)  
V
Operating free-air temperature range  
-40  
85  
°C  
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on SW pin. A tight layout minimizes  
switching noise.  
6
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
7.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
BQ25886  
THERMAL METRIC(1)  
RGE (VQFN)  
24-PIN  
18  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance (EVM(2)  
)
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJA  
Junction-to-ambient thermal resistance (JEDEC (1)  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
)
32.4  
RΘJC(top)  
RΘJB  
26.7  
10.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ΨJB  
10.6  
RΘ JC(bot)  
3.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) Measured on 35µm thick copper, 4-layer board  
7.5 Electrical Characteristics  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
QUIESCENT CURRENTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, TJ=25C, ADC Disabled  
12  
12  
30  
30  
1.5  
3
14 µA  
20 µA  
IBAT  
Battery discharge current (BAT)  
Input supply current (VBUS) in HIZ  
Input supply current (VBUS)  
VBAT = 9 V, No VBUS, SCL, SDA = 0 V  
or 1.8 V, TJ < 85C, ADC Disabled  
VBUS = 5 V, High-Z Mode, no battery,  
25  
48 µA  
IVBUS_HIZ  
VBUS = 5 V, High-Z Mode, no battery,  
<85℃  
55.2 µA  
VBUS = 5 V, VBAT = 7.6 V, converter not  
switching  
3
mA  
mA  
IVBUS  
VBUS = 5 V, VBAT = 7.6 V, converter  
switching, ISYS = 0A  
VBUS/VBAT POWER UP  
VVBUS_OP  
VBUS operating range  
4.3  
6.2  
3.68  
6.6  
V
V
VVBUS_UVLO_RISING VBUS rising, no battery  
VBUS rising  
3.3  
VBUS over-voltage rising threshold  
VBUS over-voltage falling threshold  
VPOORSRC_FALLING Bad adapter detection threshold  
VBUS rising  
6.2  
5.9  
V
VVBUS_OV  
VBUS falling  
6.4  
V
VBUS falling below VPOORSRC_FALLING  
3.7  
15  
V
IPOORSRC  
Bad adapter detection current source  
mA  
POWER-PATH  
ISYS = 0A, VBAT = 8.80 V > SYS_MIN,  
Charge Disabled  
100  
mV  
VSYS  
Typical System Regulation Voltage  
System Regulation Voltage  
ISYS = 0A, VBAT < SYS_MIN, Charge  
Disabled  
200  
6.4  
mV  
V
VSYS_MIN  
VBAT < SYS_MIN, Charge Disabled  
6.2  
BATTERY CHARGER  
RVSET < 18 k, VREG = 8.20 V, TJ =  
-40- 85℃  
VREG_ACC  
VREG_ACC  
VREG_ACC  
VREG_ACC  
Charge voltage  
8.159  
8.756  
8.656  
8.358  
8.2  
8.8  
8.7  
8.4  
8.241  
8.844  
8.744  
8.442  
V
V
V
V
RVSET = 39 k(±10%), VREG = 8.80 V,  
TJ = -40- 85℃  
Charge voltage  
Charge voltage  
Charge voltage  
RVSET = 75 k(±10%), VREG = 8.70 V,  
TJ = -40- 85℃  
RSET > 150k,VREG = 8.40 V, TJ =  
-40to 85℃  
Copyright © 2019, Texas Instruments Incorporated  
7
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Charge current regulation setting  
ratio  
ICHG = RICHGSET/KICHGSET. ICHG = 1000  
mA  
KICHGSET  
ICHG_RANGE  
ICHG_ACC  
3810  
/A  
Charge current regulation range  
30  
2200 mA  
Fast Charge current regulation  
accuracy  
ICHG = 1000 mA, VBAT = 6.2 V or 7.6 V,  
TJ = 0°C to 85°C  
-7.5  
7.5  
15  
25  
%
%
%
Fast Charge current regulation  
accuracy  
ICHG = 500mA, VBAT = 6.2 V or 7.6 V, TJ  
= 0°C to 85°C  
ICHG_ACC  
-15  
Fast Charge current regulation  
accuracy  
ICHG = 250 mA, VBAT = 6.2 V or 7.6 V,  
TJ = 0°C to 85°C  
ICHG_ACC  
-25  
30  
IPRECHG_RANGE  
Precharge current range  
Precharge current accuracy  
Termination current range  
800 mA  
237 mA  
VBAT = 5.2 V, IPRECHG = 200 mA, TJ =  
25°C  
170  
IPRECHG_ACC  
VBAT = 5.2 V, IPRECHG = 200 mA, TJ =  
0°C to 85°C  
150  
245 mA  
ITERM_RANGE  
ITERM_ACC  
10  
800 mA  
159 mA  
ICHG = 1.5A, ITERM = 150 mA, TJ = 25°C  
143  
ICHG = 1.5A, ITERM = 150 mA, TJ = 0°C  
to 85°C  
ITERM_ACC  
ITERM_ACC  
ITERM_ACC  
120  
42  
180 mA  
60 mA  
75 mA  
Termination current accuracy  
ICHG = 1.5A, ITERM = 50 mA, TJ = 25°C  
ICHG = 1.5A, ITERM = 50 mA, TJ = 0°C to  
85°C  
18  
Short Battery Voltage rising threshold  
to start pre-charging  
VBAT_SHORT_RISING  
VBAT rising  
4.1  
3.7  
4.4  
4
4.7  
4.3  
V
V
Short Battery Voltage falling  
threshold to stop pre-charging  
VBAT_SHORT_FALLIN  
G
VBAT falling  
Low Battery Voltage trickle charging  
current  
IBAT_SHORT  
VBAT < 4.4 V  
100  
6
mA  
V
VBAT LOWV Rising threshold to  
start fast-charging  
VBAT_LOWV_RISING  
VBAT rising, VBATLOWV = 6.0 V  
VBAT falling, VBATLOWV = 6.0 V  
5.7  
5.3  
6.3  
5.9  
VBAT LOWV Falling threshold to  
stop fast-charging  
VBAT_LOWV_FALLING  
VRECHG  
5.6  
V
Recharge threshold below VREG  
VBAT falling  
TJ = 25°C  
200  
32  
mV  
High-side switching MOSFET on-  
resistance between SW and  
SYS (Q2)  
35 mΩ  
47 mΩ  
46 mΩ  
63 mΩ  
RON_QHS (Q2)  
TJ = – 40°C to 125°C  
TJ = 25°C  
32  
42  
42  
Low-side switching MOSFET on-  
resistance between SW and GND  
(Q3)  
RON_QLS (Q3)  
RON_QBAT (Q4)  
TJ = – 40°C to 125°C  
MOSFET on-resistance between  
SYS and BAT (Q4)  
TJ = 25°C  
18  
19 mΩ  
MOSFET on-resistance between  
SYS and BAT (Q4)  
RON_QBAT (Q4)  
IBAT_DISCHG  
TJ = – 40°C - 85°C  
18  
23 mΩ  
BAT Discharge current source  
VBAT = 8V, EN_BAT_DISCHG = 1  
8
11.5  
16 mA  
INPUT VOLTAGE / CURRENT REGULATION  
VINDPM  
Input voltage regulation range  
4.171  
4.3  
4.429  
V
A x  
Ω
KILIM  
IINMAX = KILIM/RILIM  
Input Current regulation by ILIM pin  
1110  
Input Current regulation by ILIM pin = 0.5A  
Input Current regulation by ILIM pin = 0.9A  
Input Current regulation by ILIM pin = 1.5A  
TJ = 25°C  
457  
839  
505  
909  
1518  
33  
553 mA  
980 mA  
1624 mA  
37 mΩ  
Input current regulation limit, IINMAX  
KILIM/RILIM  
=
IINDPM  
1413  
Blocking MOSFET on-resistance  
between VBUS and PMID (QBLK)  
RON_QBLK (Q1)  
TJ = – 40°C to 125°C  
33  
51 mΩ  
8
Copyright © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
D + /D- DETECTION  
VD+D-_600MVSRC  
ID+_10UASRC  
D+/D- Voltage Source (600 mV)  
D+ Current Source (10 µA)  
D+/D- Current Sink (100 µA)  
500  
7
600  
10  
700 mV  
14 µA  
ID+D-_100UASNK  
50  
100  
150 µA  
D+/D- Comparator Threshold for  
Secondary Detection  
VD+D-_0P325  
RD-_19K  
250  
400 mV  
24.8 kΩ  
800 mV  
D- Resistor to Ground (19 k)  
14.25  
D+ Comparator Threshold for Data  
Contact Detection  
VD+_0P8  
D+/D- Threshold for Non-standard  
adapter  
VD+D-_1P2  
VD+D-_2P0  
VD+D-_2P8  
ID+D-_LKG  
1.05  
1.85  
1.35  
2.15  
V
V
D+/D- Comparator Threshold for  
Non-standard adapter  
D+/D- Threshold for Non-standard  
adapter  
2.55  
-1  
2.85  
1
V
D+/D- Leakage Current  
HiZ  
µA  
BATTERY OVER-VOLTAGE PROTECTION  
VBAT_OVP_RISING  
VBAT_OVP_FALLING  
Battery over-voltage rising threshold VBAT rising, as percentage of VREG  
Battery over-voltage falling threshold VBAT falling, as percentage of VREG  
102.5  
101  
104  
102  
105  
%
%
103.3  
THERMAL REGULATION AND THERMAL SHUTDOWN  
Junction temperature regulation  
accuracy  
TREG  
TREG = 120°C  
120  
°C  
Thermal Shutdown Rising threshold  
TSHUT_RISING  
Temperature Increasing  
150  
120  
°C  
°C  
Thermal Shutdown Falling threshold Temperature Decreasing  
JEITA THERMISTOR COMPARATOR (BOOST MODE)  
TS pin voltage rising. T1 (0°C)  
VT1  
threshold, Charge suspended below As Percentage to REGN  
this temperature.  
72.75  
67.75  
44.25  
73.25  
1.3  
73.75  
68.75  
45.25  
%
%
%
%
%
%
%
%
TS pin voltage falling. Charge re-  
enabled to ICHG/2 and VREG above As Percentage to REGN  
this temperature  
VT1_HYS  
TS pin voltage rising. T2 (10°C)  
threshold, charge set to ICHG/2 and As Percentage to REGN  
VREG below this temperature  
VT2  
68.25  
1.2  
TS pin voltage falling. Charge set to  
VT2_HYS  
ICHG and VREG above this  
temperature  
As Percentage to REGN  
As Percentage to REGN  
As Percentage to REGN  
TS pin voltage falling. T3 (45°C)  
threshold, charge set to ICHG and  
8.1 V above this temperature.  
VT3  
44.75  
1
TS pin voltage rising. Charge set to  
ICHG and VREG below this  
temperature  
VT3_HYS  
TS pin voltage falling. T5 (60°C)  
threshold, charge suspended above As Percentage to REGN  
this temperature.  
VT5  
33.875 34.375 34.875  
1.35  
TS pin voltage rising. Charge set to  
VT5_HYS  
ICHG and 8.1 V below this  
temperature  
As Percentage to REGN  
COLD/HOT THERMISTOR COMPARATOR (OTG BUCK MODE)  
Cold Temperature Threshold, TS pin As Percentage to REGN (Approx. – 10°C  
VBCOLD0  
76.5  
77  
1
77.5  
%
%
Voltage Rising Threshold  
w/ 103AT)  
Cold Temperature Threshold, TS pin  
Voltage Falling Threshold  
VBCOLD0_HYS  
As Percentage to REGN  
Copyright © 2019, Texas Instruments Incorporated  
9
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
VVBUS_UVLO_RISING< VVBUS < VVBUS_OV, TJ = -40°C to+125°C, and TJ = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Hot Temperature Threshold, TS pin  
Voltage falling Threshold  
As Percentage to REGN (Approx. 60°C w/  
103AT)  
VBHOT1  
33.875 34.375 34.875  
3
%
%
Hot Temperature Threshold, TS pin  
Voltage rising Threshold  
VBHOT1_HYS  
As Percentage to REGN  
BOOST MODE CONVERTER  
FSW  
PWM switching frequency  
Oscillator frequency  
1.35  
1.5  
5.1  
1.65 MHz  
OTG BUCK MODE CONVERTER  
OTG Buck mode voltage regulation  
accuracy  
VOTG_ACC  
VOTG_ACC  
IOTG_ACC  
VOTG_OVP  
IVBUS = 0A, OTG_VLIM = 5.1V  
IVBUS = 0A, OTG_VLIM = 5.1 V  
OTG_ILIM = 2A  
4.947  
-3  
5.253  
V
%
%
V
OTG Buck mode voltage regulation  
accuracy  
3
0
OTG Buck mode current regulation  
accuracy  
-15  
5.8  
-7.5  
6
OTG Buck mode over-voltage  
threshold  
REGN LDO  
VREGN  
REGN LDO output voltage  
REGN LDO current limit  
VVBUS = 5 V, IREGN = 20 mA  
VVBUS = 5 V, VREGN = 3.8 V  
4.7  
50  
4.8  
5.15  
0.4  
V
IREGN  
mA  
LOGIC I/O PIN (/CE)  
VIH_CEZ  
Input high threshold level, /CE  
Input low threshold level, /CE  
High level leakage current, /CE  
1.3  
V
V
VIL_CEZ  
IIN_BIAS_CEZ  
Pull-up rail 1.8 V  
2.5 uA  
LOGIC O PIN (/INT, /PG, STAT)  
VOL  
Output low threshold level  
High level leakage current  
Sink current = 5 mA  
Pull-up rail 1.8 V  
0.4  
1
V
IOUT_BIAS  
µA  
7.6 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
VBUS/BAT POWER UP  
VBUS rising above VBUS_OV threshold to  
converter turn off  
tVBUS_OV  
VBUS OVP reaction time  
Bad adapter detection duration  
200  
30  
ns  
tPOORSRC  
BATTERY CHARGER  
ms  
tTERM_DGL  
Deglitch time for charge termination  
Charge current falling below ITERM  
250  
250  
ms  
ms  
BAT voltage falling below VRECHG = 100  
mV  
tRECGH_DGL  
Deglitch time for recharge threshold  
Deglitch time for battery over-voltage  
to disable charge  
tBAT_OVP_DGL  
tSAFETY  
1
µs  
Charge Safety Timer Accuracy  
CHG_TIMER = 12 hours  
10.8  
12  
13.2 hr  
DIGITAL CLOCK AND WATCHDOG TIMER  
fLPDIG  
fDIG  
Digital low power clock  
Digital clock  
REGN LDO disabled  
REGN LDO enabled  
18  
30  
45 kHZ  
1.35  
1.5  
1.65 MHz  
10  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
7.7 Typical Characteristics  
CVBUS = 1µF, CPMID= 10µF, CSYS= 44µF, CBAT = 10µF, L = 1µH (DFE252012F-1R0) (unless otherwise specified)  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
VBAT = 7.6 V  
VBAT = 8.0 V  
VBAT = 7.6 V  
VBAT = 8.0 V  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Charge Current (A)  
Charge Current (A)  
D001  
D001  
VBUS = 5V  
1. Charge Efficiency vs. Charge Current  
VBUS = 5V  
L = 1µH (IHLP2525CZER1R0k01)  
2. Charge Efficiency vs. Charge Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
95  
90  
85  
80  
75  
70  
65  
60  
55  
PFM En, OOA En  
0.2 0.3 0.5 0.7  
PFM En, OOA En  
0.01  
0.02 0.03 0.050.07 0.1  
System Current (A)  
1
0.01  
0.02 0.03 0.050.07 0.1  
0.2 0.3  
0.5 0.7  
1
System Current (A)  
D016  
D017  
VBUS = 5V  
VBAT = 8.4V  
VBUS = 5V VBAT = 8.4V  
L = 1µH (IHLP2525CZER1R0k01)  
3. System Efficiency vs. System Current  
4. System Efficiency vs. System Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
96  
91  
86  
81  
76  
71  
66  
61  
56  
PFM En, OOA En  
PFM En, OOA En  
0.01  
0.02 0.03 0.050.07 0.1  
IBUS (A)  
0.2 0.3  
0.5 0.7  
1
0.01  
0.02 0.03 0.050.07 0.1  
IBUS (A)  
0.2 0.3  
0.5 0.7  
1
D018  
D019  
VBUS = 5V  
VBAT = 7.6V  
VBUS = 5V VBAT = 7.6V  
L = 1µH (IHLP2525CZER1R0k01)  
5. OTG Efficiency vs. VBUS Output Current  
6. OTG Efficiency vs. VBUS Output Current  
版权 © 2019, Texas Instruments Incorporated  
11  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
CVBUS = 1µF, CPMID= 10µF, CSYS= 44µF, CBAT = 10µF, L = 1µH (DFE252012F-1R0) (unless otherwise specified)  
10  
7.5  
5
10  
7.5  
5
VBAT = 6.6 V  
VBAT = 7.6 V  
VBAT = 6.6 V  
VBAT = 7.6 V  
2.5  
0
2.5  
0
-2.5  
-5  
-2.5  
-5  
-7.5  
-10  
-7.5  
-10  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
ICHG Setting (A)  
ICHG Setting (A)  
D004  
D004  
VBUS = 5V  
VBUS = 5V  
L = 1µH (IHLP2525CZER1R0k01)  
7. Charge Current Accuracy vs. ICHG Setting  
8. Charge Current Accuracy vs. ICHG Setting  
225  
200  
175  
150  
125  
100  
75  
8.56  
8.55  
8.54  
8.53  
8.52  
8.51  
8.5  
8.49  
8.48  
8.47  
8.46  
8.45  
50  
25  
0
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
System Current (A)  
System Current (A)  
D006  
D007  
VBUS = 5V  
VBAT = 6V, EN_CHG = 0  
SYSMIN = 7V  
VBUS = 5V  
VBAT = 8.4V  
EN_CHG = 0  
9. SYSMIN Load Regulation  
10. System Load Regulation After Charge Done  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
ICHG = 0.5A  
ICHG = 1.0A  
ICHG = 1.4A  
-40°C  
0°C  
25°C  
85°C  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
6
6.3  
6.6  
6.9  
7.2  
7.5  
7.8  
8.1  
8.4  
8.7  
90  
95  
100  
105  
110  
115  
120  
125  
130  
VBAT Voltage (V)  
Die Temperature (°C)  
D010  
D015  
VBUS = 5.1V  
IBUS = 1A  
VBUS = 5V  
VBAT = 7.6V  
ICHG = 0.5A, 1.0A, 1.4A  
Measured on 35-µm thick copper, 4-layer board  
11. OTG Voltage Regulation vs. VBAT Voltage  
12. Max Current Temperature Profile  
12  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
8 Detailed Description  
8.1 Overview  
The BQ25886 device is a highly integrated 2-A switch-mode battery charger for 2s Li-Ion and Li-polymer battery.  
It integrates the input blocking FET (Q1, QBLK), high-side switching FET (Q2, QHS), low-side switching FET  
(Q3, QLS), and battery FET (Q4, QBAT). The device also integrates the boot-strap diode for high-side gate drive.  
8.2 Functional Block Diagram  
VBUS  
PMID  
VVBUS_UVLO_RISING  
QBLK  
(Q1)  
+
+
UVLO  
QBLK  
CONTROL  
REGN  
BTST  
REGN  
REGN  
LDO  
EN_HIZ  
VBUS_OVP  
VVBUS_OV  
VOREF  
SYS  
OTG_OVP(1)  
VVBUS  
+
VOTG_OVP  
QHS  
(Q2)  
OTG_Q2_OCP(1)  
+
IQ2  
IHSOCP  
VVBUS  
VINDPM  
SNS  
6.2V  
+
+
+
+
SW  
BAT_OVP  
BAT  
IIN  
BAT  
+
+
+
QLS  
(Q3)  
VBAT_OVP  
REGN  
DC-DC  
CONTROL  
VBAT_REG  
IINDPM  
IC_TJ  
TREG  
ICHG  
GND  
ICHG_REG  
EN_CHARGE  
IQ3  
+
+
Q3_OCP  
GND  
EN_HIZ  
ILSOCP  
EN_OTG  
VBTST  
œ VSW  
REFRESH  
SYS  
VBTST_REFRESH  
VPOORSRC  
CONVERTER  
CONTROL  
STATE  
+
+
POORSRC  
VVBUS  
IC_TJ  
TSHUT  
MACHINE  
REF  
DAC  
TSHUT  
ICHG  
ILIM  
VSET  
QBAT  
(Q4)  
VBAT_REG  
ICHG_REG  
ICHGSET  
QBAT  
CONTROL  
D+  
D-  
BAT  
USB  
DETECTION  
VREG - VRECHG  
RECHRG  
+
BAT  
/PG  
ICHG  
ITERM  
TERMINATION  
+
+
CHARGE  
CONTROL  
STATE  
VBAT_LOWV  
BAT  
BATLOWV  
MACHINE  
STAT  
VBAT_UVLO_RISING  
BATUVLO  
+
BAT  
BATTERY  
SENSING  
THERMISTOR  
VTS  
TS_SUSPEND  
TS  
OTG  
/CE  
版权 © 2019, Texas Instruments Incorporated  
13  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Device Power-On-Reset  
The internal bias circuits are powered from either VBAT or VBUS when it rises above VVBUS_UVLO_RISING or  
VBAT_UVLO_RISING. When VBUS rises above VVBUS_UVLO_RISING or BAT rises above VBAT_UVLO_RISING, the BATFET  
driver is active.  
8.3.2 Device Power Up from Battery without Input Source  
If only the battery is present and the voltage is above UVLO threshold (VBAT_UVLO_RISING), the BATFET turns on  
and connects battery to system. The REGN LDO stays off to minimize the quiescent current. The low RDS(ON) of  
BATFET and the low quiescent current on BAT minimize the conduction loss and maximize the battery run time.  
8.3.3 Device Power Up from Input Source  
When an input source is plugged in, the device checks the input source voltage to turn on REGN LDO and all the  
bias circuits. It detects and sets the input current limit before the boost converter is started. The power up  
sequence from input source is as listed:  
1. Poor Source Qualification  
2. Input Source Type Detection based on D+/D- to set default Input Current Limit (IINDPM) and input source  
type  
3. Power Up REGN LDO  
4. Converter Power-up  
8.3.3.1 Poor Source Qualification  
After REGN LDO powers up, the device checks the current capability of the input source. The input source has  
to meet the following requirements in order to start the boost converter.  
1. VBUS voltage below VVBUS_OVP  
2. VBUS voltage above VPOORSRC when pulling IPOORSRC (typical 15mA)  
If VBUS_OVP is detected (condition 1 above), the device automatically retries detection once the over-voltage fault  
goes away. If a poor source is detected (condition 2 above), the device repeats poor source qualification routine  
every 2 seconds. After 7 consecutive failures, the device goes to HIZ mode. The battery powers up the system  
when the device is in HIZ. On BQ25886, adapter re-plugin is required to restart device operation. If the fault is  
not removed, the part will enter HIZ mode again after the 7 consecutive failures.  
8.3.3.2 Input Source Type Detection  
After input source is qualified, the charger device runs input source type detection.  
The BQ25886 sets input current limit through D+/D- pin. After input source type detection, /PG pin is pulled LOW.  
The charger input current is always limited by the lower of ILIM pin or input source detection (500mA or 900mA),  
Input Current Optimizer (ICO) setting if a DCP is detected.  
8.3.3.2.1 D+/D– Detection Sets Input Current Limit  
The BQ25886 contains a D+/D- based input source detection to program the input current limit. The D+/D-  
detection has three major steps: Data Contact Detect (DCD), Primary Detection, and Secondary Detection.  
14  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
Feature Description (接下页)  
Unknown/500mA  
Divider 3/1A  
Divider 1/2.1A  
Divider 4/2.4A  
Non-Standard  
Adapter  
Data Detection  
Contact  
Adapter Plug-in  
Secondary  
DCP  
Primary  
Detection  
VBUS Detection  
or  
Detection  
(3000mA)  
(DCD)  
FORCE_INDET  
USB BC1.2 Standard  
CDP  
SDP  
(1500mA)  
(500mA)  
13. D+/D- Detection Flow  
2. Non-Standard Adapter Detection  
NON-STANDARD  
ADAPTER  
D+ THRESHOLD  
D– THRESHOLD  
INPUT CURRENT LIMIT  
Divider 1  
Divider 3  
Divider 4  
VD+ within V2P8_VTH  
VD+ within V2P0_VTH  
VD+ within V2P8_VTH  
VD– within V2P0_VTH  
VD– within V2P8_VTH  
VD– within V2P8_VTH  
2.1 A  
1 A  
2.4 A  
3. Input Current Limit Setting from D+/D– Detection  
D+/D– DETECTION  
INPUT CURRENT LIMIT (IINDPM)  
USB SDP (USB500)  
USB CDP  
500 mA  
1.5 A  
3.0 A  
1 A  
USB DCP  
Divider 3  
Divider 1  
2.1 A  
2.4 A  
500 mA  
Divider 4  
Unknown 5V Adapter  
8.3.3.3 Power Up REGN Regulator (LDO)  
The REGN LDO supplies internal bias circuits as well as the QHS and QLS gate drive. The LDO also provides  
bias rail to TS external resistors. The pull-up rail of STAT and PG can be connected to REGN as well. The  
REGN is enabled when all the below conditions are valid.  
1. VBUS above VVBUS_UVLO_RISING in boost mode or VBUS below VVBUS_UVLO_RISING in buck mode  
2. Poor Source Qualification detects a valid input source  
3. Input Source Type Detection completes and sets appropriate input current limit  
4. After 220-ms delay is complete  
If one of the above conditions is not valid, the device is in high impedance mode (HIZ) with REGN LDO off. The  
device draws less than IVBUS_HIZ from VBUS during HIZ state. The battery powers up the system when the device  
is in HIZ.  
版权 © 2019, Texas Instruments Incorporated  
15  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
8.3.3.4 Converter Power Up  
After the input current limit is set, the PG pin is pulled LOW, and the converter is enabled, allowing the QHS and  
QLS to start switching.Before charging begins, the battery discharge source (IBAT_DISCHG) is enabled  
automatically to detect the presence of battery. BATFET stays on to charge the battery. The device provides soft-  
start when system rail is ramped up.  
As a battery charger, the device deploys a highly efficient 1.5-MHz boost switching regulator. The fixed frequency  
oscillator keeps tight control of the switching frequency under all conditions of input voltage, battery voltage,  
charge current and temperature, simplifying output filter design.  
In order to improve light-load efficiency, the device switches to PFM (Pulse Frequency Modulation) control at light  
load when battery is below minimum system voltage setting or charging is disabled. During the PFM operation,  
the switching duty cycle is set by the ratio of SYS and VBUS.  
8.3.4 Input Current Optimizer (ICO)  
The device provides innovative Input Current Optimizer (ICO) to identify maximum power point without  
overloading the input source. The algorithm automatically identifies maximum input current limit of a power  
source without staying in VINDPM to avoid input source overload.  
On BQ25886, ICO starts automatically when DCP type of input source is detected. When other input source typs  
are detected, ICO is disabled. The actual input current limit used by the Dynamic Power Management circuitry is  
limited by the lower value of current limit identified by the ICO algorithm or the current limit set by the ILIM pin.  
When the algorithm is enabled, it runs continuously to adjust input current limit of Dynamic Power Management  
(IINDPM) using ICO algorithm. When optimal input current is identified, the input current limit set by ICO will not  
be changed until the algorithm is forced to run by the following event:  
1. A new input source is plugged-in  
2. VINDPM is entered  
3. VBUS_OVP event  
4. Input Current Optimizer Automatic Operation  
INPUT CURRENT LIMIT  
(IINDPM)  
AUTOMATIC START ICO  
ALGORITHM  
DEVICE  
INPUT SOURCE  
USB SDP (USB500)  
USB CDP  
500 mA  
1.5 A  
3.0 A  
1 A  
Disable  
Disable  
Enable  
Disable  
Disable  
Disable  
Disable  
USB DCP  
BQ25886 (D+/D–)  
Divider 3  
Divider 1  
2.1 A  
2.4 A  
500 mA  
Divider 4  
Unknown 5V Adapter  
8.3.5 Buck Mode Operation from Battery (OTG)  
The device supports buck converter operation to deliver power from the battery to other portable devices through  
USB port. The buck mode output current rating meets the USB On-The-Go 500-mA output requirement. The  
maximum output is 2.0 A. The buck operation is enabled when the following conditions are valid:  
1. BAT above VOTG_BAT  
2. VBUS less than VVBUS_PRESENT  
3. Buck mode operation is enabled (OTG pin is pulled high)  
4. Voltage at TS (thermistor) pin is within range BHOT and BCOLD  
5. After 30-ms delay from buck mode enable  
16  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
8.3.6 PowerPath Management  
The device accommodates a wide range of input sources from USB, to wall adapter, to power bank. The device  
provides automatic power path selection to supply the system (SYS) from input source (VBUS), battery (BAT), or  
both.  
8.3.6.1 Narrow VDC Architecture  
The device deploys Narrow VDC architecture (NVDC) with BATFET separating system from battery. Even with a  
fully depleted battery, the system is regulated above the minimum system voltage (fixed 6.2 V (typ)).  
When the battery is below minimum system voltage setting, the BATFET operates in linear mode (LDO mode),  
and the system is typically 200 mV above the minimum system voltage setting. As the battery voltage rises  
above the minimum system voltage, the BATFET is fully on and the voltage difference between the system and  
battery is the the BATFET's drain to source voltage drop.  
When the battery charging is disabled and VBAT is above minimum system voltage setting or charging is  
terminated, the system is always regulated at typically 50mV above battery voltage.  
9.0  
8.6  
Charge Enabled  
8.2  
7.8  
Charge Disabled  
7.4  
7.0  
Minimum System Voltage  
6.6  
6.2  
5.4  
5.8 6.2 6.6 7.0 7.4 7.8 8.2 8.6  
BAT (V)  
14. System Voltage vs. Battery Voltage  
8.3.6.2 Dynamic Power Management  
To meet the maximum current limit in the USB spec and avoid over loading the adapter, the device features  
Dynamic Power Management (DPM), which continuously monitors the input current and input voltage. As the  
charger's system load plus charge current increases with constant input voltage, the charger's input current must  
increase. If this current exceeds the charger's preset input current limit or causes the input source voltage to  
droop near the input voltage limit (VINDPM fixed at 4.3 V typical), the device then reduces the charge current  
until the input current is regulated to the input current limit or the input voltage is regulated to the VINDPM  
threshold.Note that if the D+/D- algorithm detected a DCP port and VINDPM triggered, the ICO algorithm lowers  
the input current limit.  
If the charge current is reduced to zero, but the input source is still overloaded, the system voltage starts to drop.  
Once the system voltage falls below the battery voltage, the device automatically enters the Supplement Mode  
where the BATFET turns on and battery starts discharging so that the system is supported from both the input  
source and battery.  
The figure shows the DPM response with 5-V/3-A adapter, 6.4-V battery, 1.5-A charge current and 6.8 V  
minimum system voltage setting.  
版权 © 2019, Texas Instruments Incorporated  
17  
 
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
VSYS  
VBAT  
7.0V  
6.8V  
6.4V  
6.0V  
VBUS  
5.0V  
4.0V  
3A  
2A  
IBUS  
IBAT  
1A  
0A  
ISYS  
-1A  
DPM  
CC  
DPM  
CC  
Supplement  
15. DPM Response  
8.3.6.3 Supplement Mode  
When the voltage falls below the battery voltage, the BATFET turns on.  
As the discharge current increases, the BATFET gate is regulated with a higher voltage to reduce RDSON until the  
BATFET is in full conduction. At this point onwards, the BATFET VDS linearly increases with discharge current.  
The figure shows the V-I curve of the BATFET gate regulation operation. BATFET turns off to exit Supplement  
Mode when the battery is below battery depletion threshold (VBAT_UVLO_RISING).  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
IBAT(A)  
D001  
16. BATFET I-V Curve  
18  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
8.3.7 Battery Charging Management  
The BQ25886 charges 2-cell Li-Ion battery with up to 2.2-A charge current for high capacity battery. The low  
RDS(ON) BATFET improves charging efficiency and minimize the voltage drop during discharging.  
8.3.7.1 Autonomous Charging Cycle  
When battery charging is enabled (CE pin is LOW), the device autonomously completes a charging cycle without  
host involvement. The device default charging parameters are listed in 5 below.  
5. Charging Parameter Default Settings  
DEFAULT MODE  
Charging Voltage  
Charging Current  
Pre-Charge Current  
Termination Current  
Temperature Profile  
Safety Timer  
BQ25886  
Set by VSET  
Set by ICHGSET  
1/10 of ICHG  
1/10 of ICHG  
JEITA  
12 hours  
A new charge cycle starts when the following conditions are valid:  
1. Converter starts  
2. No thermistor fault on TS  
3. No safety timer fault  
The charger automatically terminates the charging cycle when the charging current is below termination  
threshold, charge voltage is above recharge threshold, and device is not in DPM mode or thermal regulation.  
When a full battery voltage is discharged below recharge threshold (threshold fixed at 200 mV for BQ25886), the  
device automatically starts a new charging cycle. After the charge is done, toggle CE pin can initiate a new  
charging cycle.  
The STAT output indicates the charging status of: charging (LOW), charging complete or charge disable (HIGH)  
or charging fault (Blinking). If no battery is connected, the STAT pin blinks as capacitance connected at BAT  
charges, discharges, then recharges.  
8.3.7.2 Battery Charging Profile  
The device charges the battery in five phases: trickle charge, pre-charge, constant current, constant voltage, and  
top-off timer charging. At the beginning of a charging cycle, the device checks the battery voltage and regulates  
current/voltage accordingly.  
If the charger device is in DPM regulation or thermal regulation during charging, the actual charging current will  
be less than the programmed value. In this case, termination is temporarily disabled and the charging safety  
timer is counted at half the clock rate, as explained in the Charging Safety Timer section.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
VREG  
Battery Voltage  
Charge Current  
ICHG  
VBATLOWV  
VBAT_SHORT  
IPRECHG  
I
TERM  
17. Battery Charging Profile  
8.3.7.3 Charging Termination  
The device terminates a charge cycle when the battery voltage is above recharge threshold, and the current is  
below termination current. After the charging cycle is completed, the BATFET turns off. The converter keeps  
running to power the system, and BATFET can turn on again to engage Supplement Mode.  
When termination occurs, the STAT pin goes HIGH. Termination is temporarily disabled when the charger device  
is in input current, voltage or thermal regulation. On the BQ25886, termination threshold is 1/10 of the fast  
charge current setting.  
8.3.7.4 Thermistor Qualification  
The charger device provides a single thermistor input for battery temperature monitor.  
8.3.7.4.1 JEITA Guideline Compliance in Charge Mode  
To improve the safety of charging Li-ion batteries, JEITA guideline was released on April 20, 2007. The guideline  
emphasized the importance of avoiding a high charge current and high charge voltage at certain low and high  
temperature ranges.  
To initiate a charge cycle, the voltage on TS pin must be within the VT1 to VT5 thresholds. If TS voltage exceeds  
the T1-T5 range, the controller suspends charging and waits until the battery temperature is within the T1 to T5  
range. At cool temperature (T1-T2), JEITA recommends the charge current to be reduced to half of the charge  
current or lower. At warm temperature (T3-T5), JEITA recommends charge voltage less than 4.1 V / cell.  
On the BQ25886, at cool temperature (T1-T2), the charge current is reduced to 20% of the fast charge current,  
ICHG. At warm temperature (T3 - T5), the charge voltage is set to 8.0 V. Whenever the charger detectes "warm"  
or "cool" temperature, termination is automatically disabled.  
20  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
REGN  
TS  
BQ2588x  
18. TS Resistor Network  
100  
%
VREG  
80%  
60%  
40%  
20%  
8.3V  
8.0V  
T2  
10°  
C
T3  
45°  
C
T5  
60°  
C
T2  
10°  
C
T3  
45°  
C
T5  
60°  
C
T1  
0°C  
T1  
0°C  
TS Temperature  
TS Temperature  
19. TS Charging Values  
Assuming a 103AT NTC (Negative Temperature Coefficient) thermistor on the battery pack as shown above, the  
value of RT1 and RT2 can be determined by:  
«
÷
1
1
RNTC,T1 ì RNTC,T 5  
ì
-
VT 5 VT1  
RT2 =  
RT1=  
«
«
÷
1
1
RNTC,T1  
ì
-1 - R  
ì
-1  
÷
NTC,T 5  
VT1  
VT 5  
(1)  
(2)  
1
-1  
VT1  
1
1
+
RT 2 RNTC,T1  
Select 0°C to 60°C range for Li-ion or Li-polymer battery:  
RNTC,T1 = 27.28 kΩ  
RNTC,T5 = 3.02 kΩ  
RT1 = 5.24 kΩ  
RT2 = 30.31 kΩ  
8.3.7.5 Charging Safety Timer  
The device has built-in safety timer to prevent extended charging cycle due to abnormal battery conditions.  
版权 © 2019, Texas Instruments Incorporated  
21  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
During input voltage, current or thermal regulation, the safety timer counts at half clock rate as the actual charge  
current is likely to be below the setting. For example, if the charger is in input current regulation throughout the  
whole charging cycle, and the safety timer is set to 12 hours, then the timer will expire in 24 hours.  
During faults which disable charging, or supplement mode, timer is suspended. Once the fault goes away, safety  
timer resumes. If the charging cycle is stopped and started again, the timer gets reset.  
The safety timer is reset for the following events:  
1. Charging cycle stop and restart (toggle CE pin, or charged battery falls below recharge threshold).  
2. BAT voltage changes from pre-charge to fast-charge or vice versa.  
The precharge safety timer (fixed 2hr counter that runs when VBAT < VBAT_LOWV), follows the same rules as the  
fast-charge safety timer in terms of getting suspended, reset, and counting at half-rate.  
8.3.8 Status Outputs  
8.3.8.1 Power Good Indicator (PG)  
The open drain PG pin goes low to indicate a good input source when:  
1. VBUS above VVBUS_UVLO_RISING  
2. VBUS below VVBUS_OV threshold  
3. VBUS above VPOORSRC (typ. 3.7 V) when IPOORSRC (typ. 30 mA) current is applied (not a poor source)  
4. Input Source Type Detection is completed  
8.3.8.2 Charging Status Indicator (STAT)  
The device indicates charging state on the open drain STAT pin. The STAT pin can drive LED.  
6. STAT Pin State  
CHARGING STATE  
STAT INDICATOR  
Charging in progress (including trickle charge, pre-charge, fast-  
charge, recharge)  
LOW  
Charging complete  
HIGH  
HIGH  
Sleep mode, charge disable  
Charge suspend (Input over-voltage, TS fault, timer fault or battery  
over-voltage) OTG Buck Mode suspend (due to TS fault)  
Blinking at 1Hz  
8.3.9 Input Current Limit on ILIM Pin  
For safe operation, the BQ2588x has an additional hardware pin on ILIM to limit maximum input current. The  
maximum input current is set by a resistor from ILIM pin to ground as:  
KILIM  
=
I
INMAX  
RILIM  
(3)  
The actual input current limit is the lower value between ILIM pin setting and current limit set by D+/D- detection.  
The device regulates ILIM pin at 0.8 V. If ILIM voltage exceeds 0.8 V, the device enters input current regulation  
(refer to Dynamic Power Management section).  
The ILIM pin can also be used to monitor input current. The voltage on ILIM pin is proportional to the input  
current. ILIM can be used to monitor input current with the following relationship:  
KILIM ìVILIM  
RILIM ì0.8V  
IIN  
=
(4)  
For example, if ILIM pin is set with 820-Ω resistor, and the ILIM voltage 0.5V, the actual input current is 0.795 A  
to 0.973 A. If ILIM pin is open, the input current is limited to zero since ILIM voltage floats above 0.8 V.  
8.3.10 Voltage and Current Monitoring  
The device closely monitors the input voltage, as well as internal FET currents for safe boost and buck mode  
operation.  
22  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
8.3.10.1 Voltage and Current Monitoring in Boost Mode  
8.3.10.1.1 Input Over-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage exceeds VVBUS_OV, the  
device stops switching immediately to protect the power FETs. The device automatically starts switching again  
when the over-voltage condition goes away.  
8.3.10.1.2 Input Under-Voltage Protection  
The valid input voltage range for boost mode operation is VVBUS_OP. If VBUS voltage falls below VPOORSRC during  
operation, the device stops switching. The device automatically attempts to restart switching when the under-  
voltage condition goes away.  
8.3.10.1.3 System Over-Voltage Protection  
The charger device clamps the system voltage during load transient so that the components connect to system  
would not be damaged due to high voltage. SYSOVP threshold is 350 mV above system regulation voltage.  
Upon SYSOVP, converter stops immediately to clamp the overshoot.  
8.3.10.1.4 System Over-Current Protection  
The charger device continually monitors and compares VBUS to VSYS to protect against a system short-circuit  
event. In the event that VSYS drops to within 250 mV of VBUS during operation, a short circuit event is flagged  
and the converter stops switching. The device attempts to recover from this condition automatically.  
8.3.10.2 Voltage and Current Monitoring in OTG Buck Mode  
The device closely monitors the VBUS voltage, as well as RBFET (Q1, QBLK) and LSFET (Q3, QLS) current to  
ensure safe buck mode operation.  
8.3.10.2.1 VBUS Over-voltage Protection  
When the VBUS voltage rises above regulation target and exceeds VOTG_OVP, the device enters over-voltage  
protection which stops switching, and exits buck mode.  
8.3.10.2.2 VBUS Over-Current Protection  
The device monitors output current to provide output short protection. The OTG buck mode has built-in constant  
current regulation to allow OTG to adapt to various types of loads. If short circuit is detected on VBUS, the OTG  
turns off and retries 7 times. If the retries are not successful, OTG is disabled.  
8.3.11 Thermal Regulation and Thermal Shutdown  
8.3.11.1 Thermal Protection in Boost Mode  
The device monitors internal junction temperature, TJ, to avoid overheating and limits the IC surface temperature  
in boost mode. When the internal junction temperature exceeds the thermal regulation limit (120°C), the device  
reduces charge current.  
During thermal regulation, the actual charging current is usually below the programmed value. Therefore,  
termination is disabled, and the safety timer runs at half the clock rate.  
Additionally, the device has thermal shutdown to turn off the converter when IC surface temperature exceeds  
TSHUT. The converter turns back on when IC temperature is below TSHUT_HYS  
.
8.3.11.2 Thermal Protection in OTG Buck Mode  
The BQ2588x monitors the internal junction temperature to provide thermal shutdown during OTG buck mode.  
8.3.12 Battery Protection  
8.3.12.1 Battery Over-Voltage Protection (BATOVP)  
The battery over-voltage limit is clamped at 4% above the battery regulation voltage while charging. When  
battery over-voltage occurs, the charger device immediately disables charge.  
版权 © 2019, Texas Instruments Incorporated  
23  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
The BQ25886 is a standalone device and therefore does not include any functional modes for I2C operations.  
24  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A typical application consists of the BQ25886 configured as a standalone device and a 2s battery charger for Li-  
Ion and Li-Polymer batteries used in a wide range of portable devices. It integrates an input blocking FET (QBLK,  
Q1), high-side switching FET (QHS, Q2), and low-side switching FET (QLS, Q3). The device also integrates a  
bootstrap diode for the high-side gate drive.  
9.2 Typical Application  
5V @ 3A  
2.2K VREF  
VBUS  
PMID  
STAT  
/PG  
1 F  
2.2K ꢁ  
Q1  
30 F  
10 F  
(optional)  
1H  
SYSTEM  
LOAD  
Q2  
SYS  
BAT  
6.4V  
SW  
47nF  
44 F  
BTST  
ICHG=2A  
Q4  
10 F  
4.7F  
REGN  
Q3  
D+  
D-  
Host  
VREGN  
OTG  
/CE  
TS  
383  
ILIM  
BQ25886  
150kΩ  
5.7kΩ  
VSET  
`
ICHGSET  
GND  
20. BQ25886 (Stand-Alone) Typical Application Diagram  
版权 © 2019, Texas Instruments Incorporated  
25  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in 7 below.  
7. Design Parameters  
PARAMETER  
VBUS voltage range  
VALUE  
4.3 V to 6.2 V  
2.4 A  
Input current limit (ILIM)  
Fast charge current limit (ICHGSET)  
Minimum System Voltage  
Battery Regulation Voltage (VSET)  
1.5 A  
6.2 V  
8.4 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The device has 1.5-MHz switching frequency to allow the use of small inductor and capacitor values. The  
inductor saturation current should be higher than the input current (IIN) plus half the ripple current (IRIPPLE):  
I
RIPPLE  
ISAT í IIN +  
2
(5)  
The inductor ripple current (IRIPPLE) depends on input voltage (VVBUS), duty cycle (D = VBAT/VBUS), switching  
frequency (fSW) and inductance (L):  
V
BUS ì(VSYS-VBUS)  
IRIPPLE  
=
VSYS ì fSW ì L  
(6)  
The maximum inductor ripple current happens in the vicinity of D = 0.5. Usually inductor ripple is designed in the  
range of (20 – 40%) maximum charging current as a trade-off between inductor size and efficiency for a practical  
design.  
9.2.2.2 Input (VBUS / PMID) Capacitor  
The input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst  
case RMS ripple current occurs when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then  
the worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50% and can be estimated  
by  
I
RIPPLE  
IPMID  
=
ö 0.29ì IRIPPLE  
2ì 3  
(7)  
A low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be  
placed close to the PMID and GND pins of the IC. Voltage rating of the capacitor must be higher than normal  
input voltage level. 25-V rating or higher capacitor is preferred for up to 5-V input voltage. A minimum 10-μF  
capacitor is suggested for up to 3.3-A input current. Keep in mind, long impedance cable would cause significant  
voltage drop with higher inrush current. For optimal performance, 44-uF cap on PMID is recommended. In  
addition, a minimum 1-μF capacitor is suggested at VBUS pin.  
9.2.2.3 Output (VSYS) Capacitor  
The SYS capacitor is the boost converter output capacitor and should also have enough ripple current rating to  
absorb output switching ripple current. The output capacitor RMS current ICOUT is given:  
D
ICSYS, rms = IOUT ì  
1- D  
(8)  
The output capacitor voltage ripple is a function of the boost output current (IOUT), and can be calculated as  
follows:  
26  
版权 © 2019, Texas Instruments Incorporated  
 
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
I
OUT ì D  
DVSYS  
=
f
SW ìCSYS  
(9)  
A low ESR ceramic capacitor such as X7R or X5R is preferred for SYS decoupling capacitor and should be  
placed close to the SYS and GND pins of the IC. Voltage rating of the capacitor must be higher than normal  
output voltage level. 16-V rating or higher capacitor is preferred. Minimum 44-μF capacitor is suggested for up to  
2.2-A boost converter output current.  
9.2.2.4 ILIM resistor  
The ILIM resistor sets the maximum input current limit and can be used to monitor input current. The maximum  
input current is set by a resistor from ILIM pin to ground as:  
KILIM  
=
I
INMAX  
RILIM  
(10)  
Using maximum input current limit 900mA as an example. The KLIM is 1110. If the maximum input current limit  
cannot exceed 900mA, then IINMAX used in the calculation should be 819.9mA as regulation accuracy at  
900mA (typ) setting is around +/-8.9%. Resistor accuracy should also be taken into consideration when setting  
input current limit. When ILIM pin is short to GND, the input current limit is set to maximum by ILIM. Input current  
limit less than 500mA is not supported on ILIM pin. Do not float this pin.  
9.2.2.5 ICHGSET resistor  
A resistor from ICHGSET to GND is used to program the charge current. Pre-charge and termination current is  
1/10 of the fast charge current. The minimum pre-charge current is clamped at 30mA (typ). Minimum termination  
current is clamped at 10mA (typ). ICHGSET short to GND clamps charge current to minimum setting 30mA (typ).  
Floating ICHGSET disables charge. RICHGSET can be calculated as:  
R
ICHGSET  
ICHGSET  
ICHGSET  
=
K
(11)  
版权 © 2019, Texas Instruments Incorporated  
27  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
9.2.3 Application Curves  
CVBUS = 1 µF, CPMID= 10 µF, CBAT = 10 µF, CSYS = 44 µF, L = DFE252012F-1R0 (1 µH) (unless otherwise specified)  
VBUS = 5 V  
VBAT = 6.0 V  
ICHG = 1 A  
VBUS = 5 V  
VBAT = 7.4 V  
ICHG = 1 A  
21. Adapter Power Up with Charge Enabled  
22. Charge Enable  
VBUS = 5 V  
VBAT = 7.4 V  
ICHG = 1 A  
VBUS = 5 V  
VBAT = Open  
Charge enabled  
23. Charge Disabled  
24. Adapter Plug-in with No Battery  
VBAT = 7.6 V  
VBUS = 5.1 V  
No IBUS load  
VBAT = 7.6 V  
Adapter removed  
with OTG = HIGH  
RBUS = 25 Ω  
26. Buck Mode Startup After Adapter Removal  
25. Buck Mode (OTG) Startup  
28  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
CVBUS = 1 µF, CPMID= 10 µF, CBAT = 10 µF, CSYS = 44 µF, L = DFE252012F-1R0 (1 µH) (unless otherwise specified)  
VBAT = 7.6 V  
VBUS = 5.1 V  
IBUS = 1 A  
VBAT = 7.6 V  
VBUS = 5.1 V  
IBUS = 0 mA  
27. Buck Mode (OTG) PWM Switching  
28. Buck Mode (OTG) PFM Switching  
VBUS = 5 V  
VBAT = 7.6 V  
ICHG = 1 A  
VBUS = 5 V  
VBAT = 8.4 V  
Charge disabled  
29. Boost Mode PWM Switching  
30. Boost Mode PFM Switching  
DCP Adapter  
VBAT = 8.0 V  
Charge enabled  
VBUS = 5 V  
VBAT = 8.4 V  
Charge disabled  
32. VINDPM Transient Response  
31. System Load Transient Response  
版权 © 2019, Texas Instruments Incorporated  
29  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
CVBUS = 1 µF, CPMID= 10 µF, CBAT = 10 µF, CSYS = 44 µF, L = DFE252012F-1R0 (1 µH) (unless otherwise specified)  
DCP Adapter  
VBAT = 8.0 V  
Charge enabled  
VBAT = 7.6 V  
VBUS = 5.1 V  
33. IINDPM Transient Response  
34. Buck Mode (OTG) Load Transient Response  
30  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
10 Power Supply Recommendations  
In order to provide an output voltage on SYS, the device requires a power supply between 3.9-V and 6.2-V input  
with at least 500-mA current rating connected to VBUS or a 2-cell Li-Ion battery with voltage > VBAT_UVLO  
connected to BAT. The source current rating needs to be at least 3-A in order for the boost converter of the  
charger to provide maximum output power to SYS.  
11 Layout  
11.1 Layout Guidelines  
The switching node rise and fall times should be minimized for minimum switching loss. Proper layout of the  
components to minimize high frequency current path loops is important to prevent electrical and magnetic field  
radiation and high frequency resonant problems. Here is a PCB layout priority list for proper layout. Layout PCB  
according to this specific order is essential.  
1. Put SYS output capacitor as close to SYS and GND pins as possible. Ground connections need to be tied to  
the IC ground with a short copper trace connection or GND plane.  
2. Place PMID input capacitor as close as possible to PMID pins and PGND pins and use shortest copper trace  
connection or GND plane.  
3. Place inductor input terminal to SW pins as close as possible. Minimize the copper area of this trace to lower  
electrical and magnetic field radiation but make the trace wide enough to carry the input current. Minimize  
parasitic capacitance from this area to any other trace or plane.  
4. Decoupling capacitors should be placed on the same side of and next to the IC and make trace connection  
as short as possible.  
5. Route analog ground separately from power ground. Connect analog ground and connect power ground  
separately. Connect analog ground and power ground together using thermal pad as the single ground  
connection point. Or using a 0-Ω resistor to tie analog ground to power ground.  
6. It is critical that the exposed thermal pad on the backside of the device package be soldered to the PCB  
ground. Ensure that there are sufficient thermal vias directly under the IC, connecting to the ground plane on  
the other layers.  
7. Via size and number should be enough for a given current path.  
Refer to the EVM design and the Layout Example below for the recommended component placement with trace  
and via locations.  
版权 © 2019, Texas Instruments Incorporated  
31  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
11.2 Layout Example  
35. PCB Layout Example  
32  
版权 © 2019, Texas Instruments Incorporated  
BQ25886  
www.ti.com.cn  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
BQ2588x 升压电池充电器评估模块用户指南》  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2019, Texas Instruments Incorporated  
33  
BQ25886  
ZHCSJI9A MARCH 2019REVISED JUNE 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
BQ25886RGER  
BQ25886RGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
BQ25886  
BQ25886  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jun-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
BQ25886RGER  
BQ25886RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-Jun-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
BQ25886RGER  
BQ25886RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
A
4.1  
3.9  
B
4.1  
3.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
ꢀꢀꢀꢀꢁꢂꢃ“ꢄꢂꢅ  
(0.2) TYP  
2X 2.5  
12  
7
20X 0.5  
6
13  
25  
2X  
SYMM  
2.5  
1
18  
0.30  
PIN 1 ID  
(OPTIONAL)  
24X  
0.18  
24  
19  
0.1  
0.05  
C A B  
C
SYMM  
0.48  
0.28  
24X  
4219016 / A 08/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
2.7)  
(
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
25  
SYMM  
(3.825)  
2X  
(1.1)  
ꢆ‘ꢄꢂꢁꢇꢀ9,$  
TYP  
6
13  
(R0.05)  
7
12  
2X(1.1)  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219016 / A 08/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGE0024H  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.825)  
4X ( 1.188)  
24  
19  
24X (0.58)  
24X (0.24)  
1
18  
20X (0.5)  
SYMM  
(3.825)  
(0.694)  
TYP  
6
13  
25  
(R0.05) TYP  
METAL  
TYP  
7
12  
(0.694)  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
78% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4219016 / A 08/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

BQ25887

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器
TI

BQ25887RGER

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85
TI

BQ25887RGET

适用于 USB 输入、集成式电池均衡的 I2C 2 节 2A 升压电池充电器 | RGE | 24 | -40 to 85
TI

BQ25890

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器
TI

BQ25890H

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器
TI

BQ25890HRTWR

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890HRTWT

具有 NVDC 电源路径和 HVDCP 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890RTWR

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890RTWT

采用 Maxcharge™ 技术、支持高输入且具有 D+/D- 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI

BQ25890_15

bq25890/2 I2C Controlled Single Cell 5-A Fast Charger with MaxChargeTM Technology for High Input Voltage and Adjustable Voltage USB On-the-Go Boost Mode
TI

BQ25892

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器
TI

BQ25892RTWR

具有 NVDC 电源路径和 PSEL 的 I2C 单节 5A 降压电池充电器 | RTW | 24 | -40 to 85
TI