BQ71550DCKR [TI]

5V FIXED POSITIVE LDO REGULATOR, 0.75V DROPOUT, PDSO5, PLASTIC, SOT-323, SC-70, 5 PIN;
BQ71550DCKR
型号: BQ71550DCKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5V FIXED POSITIVE LDO REGULATOR, 0.75V DROPOUT, PDSO5, PLASTIC, SOT-323, SC-70, 5 PIN

光电二极管 输出元件 调节器
文件: 总13页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
Actual Size  
(2,15 mm x 2,3 mm)  
SLVS338E – MAY 2001 – REVISED JUNE 2003  
HIGH INPUT VOLTAGE, MICROPOWER  
SC70/SOT-323 PACKAGED 50-mA LDO LINEAR REGULATORS  
FEATURES  
APPLICATIONS  
D
50-mA Low-Dropout Regulator  
D
D
D
Battery Management  
Microcontroller  
D
Available in 2.5 V, 3.0 V, 3.3 V, 5.0 V, and  
Adjustable  
PDAs and Notebooks  
D
D
D
D
D
D
24-V Maximum Input Voltage  
DCK PACKAGE  
(TOP VIEW)  
Low 3.2-µA Quiescent Current at 50 mA  
5-Pin SC70/SOT-323 (DCK) Package  
Stable With Any Capacitor (>0.47 µF)  
Over Current Limitation  
FB/NC  
GND  
NC  
1
2
5
OUT  
IN  
3
4
–40°C to 125°C Operating Junction  
Temperature Range  
The usual PNP pass transistor has been replaced by a  
PMOSpasselement. BecausethePMOSpasselement  
behaves as a low-value resistor, the low dropout  
voltage, typically 415 mV at 50 mA of load current, is  
directly proportional to the load current. The low  
quiescent current (3.2 µA typically) is stable over the  
entire range of output load current (0 mA to 50 mA).  
DESCRIPTION  
The TPS715xx low-dropout (LDO) voltage regulators  
offer the benefits of high input voltage, low-dropout  
voltage, low-power operation, and miniaturized  
packaging. The devices, which operate over an input  
range of 2.5 V to 24 V, are stable with any capacitor  
(>0.47 µF). The low dropout voltage and low quiescent  
current allow operations at extremely low power levels.  
Therefore, the devices are ideal for powering battery  
management ICs. Specifically, since the devices are  
enabled as soon as the applied voltage reaches the  
minimum input voltage, the output is quickly available to  
power continuously operating battery charging ICs.  
AVAILABLE OPTIONS  
T
J
VOLTAGE  
PACKAGE  
PART NUMBER  
SYMBOL  
TPS71525DCKR  
bq71525DCKR  
TPS71530DCKR  
bq71530DCKR  
TPS71533DCKR  
bq71533DCKR  
TPS71550DCKR  
bq71550DCKR  
TPS71501DCKR  
bq71501DCKR  
SC70/SOT-323  
(DCK)  
2.5 V  
AQL  
SC70/SOT-323  
(DCK)  
3.0 V  
3.3 V  
5.0 V  
AQM  
AQI  
SC70/SOT-323  
(DCK)  
–40°C to 125°C  
SC70/SOT-323  
(DCK)  
T48  
(Adjustable) SC70/SOT-323  
1.2 V–15 V (DCK)  
ARB  
Contact the factory for other voltage options between 1.25 V and 5.85 V.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
This document contains information on products in more than one phase  
of development. The status of each device is indicated on the page(s)  
specifying its electrical characteristics.  
Copyright 2001 – 2003, Texas Instruments Incorporated  
1
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
Ĕ
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range ꢀ ꢁ ꢂꢂ ꢃ ꢄꢅꢂ ꢆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 24 V  
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
ESD rating, HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
ESD rating, CDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Operating junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
J
Operating ambient temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 85°C  
A
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to network ground terminal.  
DISSIPATION RATING TABLE  
DERATING FACTOR  
R
R
T
A
25°C  
T
= 70°C  
T = 85°C  
A
θJC  
θJA  
A
BOARD  
PACKAGE  
°C/W  
165.39  
165.39  
°C/W  
396.24  
314.74  
ABOVE T = 25°C  
POWER RATING POWER RATING POWER RATING  
A
Low K  
DCK  
DCK  
2.52 mW/°C  
3.18 mW/°C  
252 mW  
318 mW  
139 mW  
175 mW  
101 mW  
127 mW  
§
High K  
§
The JEDEC Low K (1s) board design used to derive this data was a 3 inch x 3 inch, two layer board with 2 ounce copper traces on top of the board.  
The JEDEC High K (2s2p) board design used to derive this data was a 3 inch x 3 inch, multilayer board with 1 ounce internal power and ground  
planes and 2 ounce copper traces on top and bottom of the board.  
recommended operating conditions  
MIN NOM  
MAX  
24  
UNIT  
I
I
= 10 mA  
= 50 mA  
2.5  
3
O
Input voltage, V  
(IN)  
(see Note 2)  
V
24  
O
Continuous output current, I  
(OUT)  
0
50  
mA  
Operating junction temperature, T  
40  
125  
°C  
J
NOTES: 2. To calculate the minimum input voltage for your maximum output current, use the following formula:  
V (min) = V (max) + V (max load)  
I
O
DO  
2
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (T = 40°C to 125°C), V  
V typical + 1 V, I  
(IN) = (OUT) (OUT)  
= 1 mA, C = 1 µF unless otherwise  
(OUT)  
J
noted  
PARAMETER  
TEST CONDITIONS  
1.2 V V 15 V  
MIN  
TYP  
MAX  
UNIT  
T = 25°C,  
J
O
TPS71501  
TPS71525  
TPS71530  
TPS71533  
TPS71550  
1.2 V V 15 V  
0.96 V  
1.04 V  
O
O
O
T = 25°C,  
3.5 V < V < 24 V  
2.5  
3
J
I
3.5 V < V < 24 V  
2.4  
2.6  
I
Output voltage (100 µA to  
50 mA Load)  
(see Note 3)  
T = 25°C,  
J
4 V < V < 24 V  
O
V
4 V < V < 24 V  
2.88  
3.168  
4.8  
3.12  
3.432  
5.2  
O
T = 25°C,  
J
4.3 V < V < 24 V  
3.3  
5
I
4.3 V < V < 24 V  
I
T = 25°C,  
J
6 V < V < 24 V  
O
6 V < V < 24 V  
O
T = 25°C,  
J
0 < I < 50 mA  
3.2  
O
T = 40°C to 85°C,  
I
I
I
I
= 50 mA  
= 50 mA  
4.2  
4.8  
5.8  
J
O
O
O
O
Quiescent current (GND current)  
Load regulation  
µA  
= 50 mA, V = 24 V  
I
T = 25°C,  
J
= 100 µA to 50 mA  
22  
20  
mV  
mV  
T = 25°C,  
J
V
+ 1 V < V 24 V  
I
Output voltage line regulation (V /V  
(see Note 3)  
O
O
O
O
)
V
+ 1 V < V 24 V  
60  
I
T = 25°C,  
BW = 200 Hz to 100 kHz,  
I = 50 mA  
O
J
Output noise voltage  
575  
µVrms  
C
= 10 µF,  
o
Output current limit  
V
= 0 V,  
See Note 3  
f = 100 kHz,  
125  
750  
mA  
dB  
O
Power supply ripple rejection  
T = 25°C,  
J
C
= 10 µF  
o
60  
T = 25°C,  
J
I
I
= 50 mA  
= 50 mA  
415  
O
Dropout voltage (see Note 4)  
mV  
750  
O
NOTES: 3. The maximum IN voltage is 24 V. There is no minimum output current and the maximum output current is 50 mA.  
4. IN voltage equals V  
(OUT)  
typical 100 mV; The TPS71533 input voltage is set to 3.2 V.  
3
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
functional block diagram adjustable version  
V
(IN)  
V
(OUT)  
Current  
Sense  
ILIM  
R1  
R2  
_
+
GND  
FB  
V
ref  
= 1.205 V  
Bandgap  
Reference  
functional block diagram fixed version  
V
(IN)  
V
(OUT)  
Current  
Sense  
ILIM  
R1  
R2  
_
+
GND  
V
ref  
= 1.205 V  
Bandgap  
Reference  
Terminal Functions  
TERMINAL  
NO.  
FIXED  
I/O  
DESCRIPTION  
NAME  
FB  
ADJ.  
1
Adjustable version. This terminal is the feedback input voltage.  
Fixed voltage version. No connection  
Ground  
NC  
1
2
3
4
5
GND  
NC  
2
3
4
5
No connection  
IN  
I
Unregulated input to the device.  
Output of the regulator.  
OUT  
O
4
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT VOLTAGE  
QUIESCENT CURRENT  
vs  
FREE-AIR TEMPERATURE  
vs  
FREE-AIR TEMPERATURE  
3.32  
4.5  
3.320  
3.315  
V = 4.3 V  
I
V = 4.3 V  
I
V
= 3.3 V  
3.31  
O
C
= 1 µF  
= 25°C  
I
O
= 1 mA  
o
J
4
C
= 1 µF  
o
T
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.310  
3.305  
3.300  
3.5  
3
I
O
= 50 mA  
2.5  
2
V = 4.3 V  
3.295  
3.290  
I
C
= 1 µF  
o
0
10  
20  
30  
40  
50  
40 25 10  
5
20 35 50 65 80 95 110 125  
4025 10 5 20 35 50 65 80 95 110 125  
I
O
Output Current mA  
T
A
FreeAir Temperature °C  
T
A
Free-Air Temperature °C  
Figure 2  
Figure 3  
Figure 1  
DROPOUT VOLTAGE  
vs  
OUTPUT SPECTRAL NOISE DENSITY  
OUTPUT IMPEDANCE  
vs  
vs  
OUTPUT CURRENT  
FREQUENCY  
FREQUENCY  
600  
500  
18  
16  
14  
8
V = 4.3 V  
V = 4.3 V  
I
V = 3.2 V  
= 1 µF  
O
I
O
I
C
V
= 3.3 V  
= 1 µF  
= 25°C  
7
6
5
4
3
2
1
0
V
C
= 3.3 V  
= 1 µF  
O
o
I
= 1 mA  
O
C
T
o
J
T
= 125°C  
J
12  
10  
8
400  
300  
I
O
= 50 mA  
T
= 25°C  
J
6
4
2
0
I
O
= 1 mA  
200  
100  
0
T
= 40°C  
J
I
O
= 50 mA  
10  
100  
1k  
10k 100k  
1 M 10 M  
0
10  
20  
30  
40  
50  
100  
1 k  
10 k  
100 k  
I Output Current mA  
O
f Frequency Hz  
f Frequency Hz  
Figure 4  
Figure 5  
Figure 6  
TPS791501  
POWER SUPPLY RIPPLE REJECTION  
DROPOUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
DROPOUT VOLTAGE  
vs  
INPUT VOLTAGE  
vs  
FREQUENCY  
600  
100  
1
V = 3.2 V  
I
V = 4.3 V  
I
O
= 200 mA  
I
90  
80  
C
= 1 µF  
V
= 3.3 V  
= 10 µF  
= 25°C  
0.9  
0.8  
o
O
o
500  
400  
C
T
I
O
= 50 mA  
T
= 125°C  
J
J
70  
60  
50  
0.7  
0.6  
I = 1 mA  
O
T
= 25°C  
J
300  
200  
100  
0
0.5  
0.4  
0.3  
40  
30  
20  
T
= 40°C  
J
I
= 10 mA  
O
I
O
= 50 mA  
0.2  
0.1  
0
10  
0
40 25 10  
5
20 35 50 65 80  
110 125  
10  
100  
1k  
10k 100k  
1 M 10 M  
95  
0
3
6
9
12  
15  
T
A
Free-Air Temperature °C  
f Frequency Hz  
V Input Voltage V  
I
Figure 8  
Figure 9  
Figure 7  
5
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
POWER UP / POWER DOWN  
LINE TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
8
V = 4.3 V  
I
V
R
= 3.3 V  
= 66 Ω  
O
L
V
= 3.3 V  
= 50 mA  
= 10 µF  
O
7
100  
50  
400  
200  
0
V
= 3.3 V  
O
I
O
C
= 10 µF  
o
C
o
6
5
4
0
50  
-200  
60  
40  
20  
0
3
V
I
2
1
0
5.3  
4.3  
V
O
0
100 200 300 400 500 600 700 800 900 100  
0
50 100 150 200 250 300 350 400 450 500  
0
2
4
6
8
10 12 14 16 18 20  
t Time µs  
t Time ms  
t Time ms  
Figure 10  
Figure 11  
Figure 12  
APPLICATION INFORMATION  
The TPS715xx family of LDO regulators has been optimized for use with battery management ICs. After the  
minimum input voltage requirement is met, it is always enabled. The devices maximum input voltage is 24 V.  
It has a dropout voltage of 415 mV at 50 mA, and its quiescent current is 3.2 µA typically. A typical application  
circuit is shown in Figure 13.  
4
5
V
I
IN  
OUT  
V
O
C1  
3
NC  
0.1 µF  
1
NC/FB  
0.47 µF  
GND  
2
Figure 13. Typical Application Circuit (Fixed Voltage Version)  
external capacitor requirements  
Althoughnot required, a 0.047-µF or larger input bypass capacitor, connected between IN andGNDandlocated  
close to the device, is recommended to improve transient response and noise rejection. A higher-value  
electrolytic input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the  
device is located several inches from the power source.  
The TPS715xx requires an output capacitor connected between OUT and GND to stabilize the internal control  
loop. Any capacitor 0.47 µF properly stabilizes this loop.  
6
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
power dissipation and junction temperature  
Specified regulator operation is assured to a junction temperature of 125°C; restrict the maximum junction  
temperature to 125°C under normal operating conditions. This restriction limits the power dissipation the  
regulator can handle in any given application. To ensure the junction temperature is within acceptable limits,  
calculate the maximum allowable dissipation, P  
, and the actual dissipation, P , which must be less than  
D(max)  
D
or equal to P  
.
D(max)  
The maximum-power-dissipation limit is determined using the following equation:  
T max * T  
J
A
P
+
D(max)  
R
qJA  
where:  
T max is the maximum allowable junction temperature.  
J
R
is the thermal resistance junction-to-ambient for the package (see the Dissipation Rating Table).  
θJA  
T is the ambient temperature.  
A
The regulator dissipation is calculated using:  
+ ǒVI * V  
Ǔ
P
  I  
D
O
O
Power dissipation resulting from quiescent current is negligible.  
regulator protection  
The TPS715xx PMOS-pass transistor has a built-in back diode that conducts reverse current when the input  
voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the  
input and is not internally limited. If extended reverse voltage operation is anticipated, external limiting might  
be appropriate.  
The TPS715xx features internal current limiting. During normal operation, the TPS715xx limits output current  
to approximately 500 mA. When current limiting engages, the output voltage scales back linearly until the  
overcurrent condition ends. Take care not to exceed the power dissipation ratings of the package.  
programming the TPS71501 adjustable LDO regulator  
The output voltage of the TPS71501 adjustable regulator is programmed using an external resistor divider as  
shown in Figure 14. The output voltage is calculated using:  
R1  
R2  
  ǒ1 )  
ref  
Ǔ
(3)  
V
+ V  
O
where  
= 1.205 V typ (the internal reference voltage)  
V
ref  
7
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
programming the TPS71501 adjustable LDO regulator (continued)  
Resistors R1 and R2 should be chosen for approximately 1.5-µA divider current. Lower value resistors can be  
used for improved noise performance, but the solution consumes more power. Higher resistor values should  
be avoided as leakage current into/out of FB across R1/R2 creates an offset voltage that artificially  
increases/decreases the feedback voltage and thus erroneously decreases/increases V . The recommended  
O
design procedure is to choose R2 = 1 Mto set the divider current at 1.5 µA, and then calculate R1 using:  
V
O
R1 +  
ǒ
* 1  
Ǔ
  R2  
(4)  
V
ref  
TPS71501  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
V
I
IN  
0.1 µF  
OUTPUT  
R1  
R2  
VOLTAGE  
OUT  
V
O
0.499 M1 MΩ  
1.33 M1 MΩ  
3.16 M1 MΩ  
1.8 V  
2.8 V  
5.0 V  
R1  
R2  
0.47 µF  
FB  
GND  
Figure 14. TPS71501 Adjustable LDO Regulator Programming  
battery management application  
One application for which this device is particularly suited is providing a regulated voltage from a much larger  
input voltage, as is often the case of ICs used in portable battery-powered devices. Many of the battery  
management ICs currently on the market monitor battery voltages above 20 V. However, the ICs internal  
circuitry and peripheral equipment, like an LEDs, generally need a lower power bus for operation. Some of the  
battery management ICs have internal LDO regulator controllers that require five or more external components  
in order to provide a regulated output voltage. The TPS715xx family has a maximum input voltage rating of  
24 V, provides up to 50 mA of output current, and requires only one external component. Therefore, using one  
of the TPS715xx regulators to power battery management ICs is a much simpler, more compact, and less  
expensive solution than using onboard LDO regulator controllers. In addition, the TPS715xx family uses only  
3.2 µA of quiescent current and does not significantly decrease battery life while the device is inactive.  
TIs bq2060 gas gauge IC was chosen to demonstrate the use of the TPS71533. The bq2060 battery  
management IC requires a regulated 3.3 V for normal operation. The bq2060 has a regulator controller output  
(REG) that, when used in conjunction with an external JFET (Q2), a bipolar transistor (Q1), two capacitors (C1  
and C2), and one resistor (R1), forms a 3.3-V output linear regulator as shown in Figure 15.  
8
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
3
2
BAT+  
Q1  
MMBT3904  
1
R1  
1
2
1 kΩ  
VCC  
1
2
C1 0.1 µF  
Q2  
SST113  
D
S
U1  
1
28  
27  
26  
25  
24  
23  
22  
21  
HDQ16  
ESCL  
ESDA  
SMBC  
SMBD  
G
2
3
4
5
VCELL4  
VCELL3  
VCELL2  
VCELL1  
SR1  
R2  
1
2
RBI  
RBG  
100 kΩ  
6
7
VOUT  
VCC  
S1  
8
VSS  
SR2  
31  
1
24  
20  
19  
18  
17  
9
DISP  
LED1  
LED2  
LED3  
SRC  
TS  
10  
11  
Device  
THon  
CVon  
R3  
2
12  
13  
14  
10 kΩ  
16  
15  
LED4  
LED5  
CFC  
DFC  
R4  
1
2
10 kΩ  
BQ2060  
1
2
U2  
C2 .001 µF  
1
5
4
SCL  
WP  
2
3
R5  
D1  
VSS  
SDA  
Color  
VCC  
330 Ω  
R6  
D2  
24LC01  
Color  
330 Ω  
R7  
D3  
Color  
330 Ω  
R8  
D4  
Color  
330 Ω  
R9  
D5  
Color  
330 Ω  
BAT–  
1
2
R10  
0.030 W  
Figure 15. bq2060 Powered With Internal LDO Controller  
9
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
However, with five external components, this regulator is more complex and costly than using a separate LDO  
regulator. Figure 16 shows the TPS71533 and its external output capacitor (C1) providing the regulated 3.3 V  
to the bq2060.  
U2  
TPS71533  
1
2
3
5
4
OUT  
GND  
IN  
BAT+  
1
2
U1  
C1 0.47 µF  
1
28  
27  
26  
25  
24  
23  
22  
21  
HDQ16  
ESCL  
ESDA  
SMBC  
SMBD  
2
3
4
5
VCELL4  
VCELL3  
VCELL2  
VCELL1  
SR1  
R1  
1
2
RBI  
RBG  
100 kΩ  
6
7
VOUT  
VCC  
S1  
8
VSS  
SR2  
31  
1
24  
20  
19  
18  
17  
9
DISP  
LED1  
LED2  
LED3  
SRC  
TS  
10  
11  
Device  
THon  
CVon  
R2  
2
12  
13  
14  
10 kΩ  
16  
15  
LED4  
LED5  
CFC  
DFC  
R3  
1
2
10 kΩ  
BQ2060  
U3  
1
2
3
5
SCL  
WP  
R4  
VSS  
SDA  
D1  
Green  
4
VCC  
470 Ω  
R5  
24LC01  
D2  
Green  
470 Ω  
R6  
D3  
Green  
470 Ω  
R7  
D4  
Green  
470 Ω  
R8  
D5  
Green  
470 Ω  
BAT–  
1
2
R9  
0.030 W  
Figure 16. bq2060 Powered With TPS71533  
10  
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
In Figure 16, the bq2060 is configured to monitor 4 Li-Ion batteries in series totaling 16.8 V. During either battery  
charging or discharging, the maximum current that the bq2060 requires from the TPS71533 occurs when the  
user presses the push button (S1) and potentially activates all five LEDs, indicating a fully charged battery. The  
LEDs require 3 mA each and remain on for 4 seconds. Therefore, the bq2060 LED requires a total of 15 mA  
with a maximun power dissipated by the TPS71533 of 203 mW [(16.8 V 3.3 V) x 15 mA for the 4-second  
interval]. The LEDs remain active for 4 seconds even if the push button remains depressed. When the LEDs  
are not activated, the bq2060 only requires approximately 200-µA quiescent current.  
For more information on the operation of the bq2060, refer to the data sheet (TI literature number SLUS035).  
An evaluation module with a similar configuration to the one shown in Figure 16 is also available (TI literature  
number SLUU063).  
11  
www.ti.com  
TPS71525  
TPS71530, TPS71533  
TPS71501, TPS71550  
SLVS338E MAY 2001 REVISED JUNE 2003  
MECHANICAL DATA  
DCK (R-PDSO-G5)  
PLASTIC SMALL-OUTLINE  
0,30  
0,15  
M
0,10  
0,65  
5
4
0,13 NOM  
1,40 2,30  
1,10 1,90  
1
3
Gage Plane  
2,15  
1,85  
0,15  
0°8°  
0,46  
0,26  
Seating Plane  
0,10  
1,10  
0,80  
0,10  
0,00  
4093553/B 06/99  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-203  
12  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products & application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

BQ75614-Q1

符合 ASIL-D 标准的汽车类 16 节串联精密电池监控器、平衡器和集成保护器
TI

BQ75614PAPRQ1

Automotive 16-S precision battery monitor, balancer and integrated protector with ASIL-D compliance | PAP | 64 | -40 to 125
TI

BQ756506-Q1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监控器、平衡器和集成保护器
TI

BQ756506PAPRQ1

符合 ASIL-D 标准的汽车类 6 节串联精密电池监控器、平衡器和集成保护器 | PAP | 64 | -40 to 125
TI

BQ76200

高侧 N 沟道 FET 驱动器
TI

BQ76200PW

高侧 N 沟道 FET 驱动器 | PW | 16 | -40 to 85
TI

BQ76200PWR

高侧 N 沟道 FET 驱动器 | PW | 16 | -40 to 85
TI

BQ769142

适用于锂离子、锂聚合物和磷酸铁锂电池的 3 节至 14 节串联高精度电池监控器和保护器
TI

BQ769142PFBR

适用于锂离子、锂聚合物和磷酸铁锂电池的 3 节至 14 节串联高精度电池监控器和保护器 | PFB | 48 | -40 to 85
TI

BQ76920

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列)
TI

BQ7692000PW

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI

BQ7692000PWR

3 至 5 节电池锂离子和锂磷酸盐电池监视器(bq76940 系列) | PW | 20 | -40 to 85
TI