CC3120RNMARGKT [TI]

适用于 MCU 应用的 SimpleLink™ Wi-Fi® 网络处理器、物联网解决方案 | RGK | 64 | -40 to 85;
CC3120RNMARGKT
型号: CC3120RNMARGKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 MCU 应用的 SimpleLink™ Wi-Fi® 网络处理器、物联网解决方案 | RGK | 64 | -40 to 85

文件: 总63页 (文件大小:2519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CC3120  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
CC3120 SimpleLink™ Wi-Fi® 网络处理器,  
适用MCU 应用的物联网解决方案  
Wi-Fi TX 功率  
1 特性  
1 DSSS 18.0dBm  
54 OFDM 14.5dBm  
Wi-Fi RX 灵敏度:  
1 DSSS -96.0dBm  
54 OFDM -74.5dBm  
• 应用吞吐量:  
UDP16Mbps  
TCP13Mbps  
• 电源管理子系统  
CC3120R SimpleLinkWi-Fi® 包含无线网络处理  
(NWP) 和电源管理子系统  
• 采用专Wi-Fi Internet-on-a chipWi-Fi NWP,  
可充分减轻应用微控制器单(MCU) 承担Wi-Fi  
和互联网协议压力  
Wi-Fi 模式:  
802.11b/g/n 基站  
802.11b/g/n 接入(AP) 支持多4 个基站  
Wi-Fi Direct® 客户端/组所有者  
WPA2 个人版和企业版安全性WEPWPA/  
WPA2PSKWPA2 企业(802.1x)WPA3个  
人版、WPA3企业版  
– 集成式直流/直流转换器支持宽电源电压范围:  
VBAT 宽电压模式2.1 V 3.6 V  
VIO 始终VBAT 关联  
• 预稳1.85V 模式  
IPv4 IPv6 TCP/IP 堆栈  
– 高级低功耗模式  
– 行业标BSD 套接字应用编程接(API):  
• 关断1µA  
• 休眠4.5µA  
16 个同TCP UDP 套接字  
6 个同TLS SSL 套接字  
IP 寻址具有重复地址检(DAD) 的静IP、  
LLADHCPv4 DHCPv6  
• 适用于自主和快Wi-Fi 连接SimpleLink 连接管  
理器  
• 低功耗深度睡(LPDS)115µA  
RX 流量54 OFDM 59mA  
TX 流量54 OFDM 229mA 最大功  
• 空闲连接MCU LPDS 状态):DTIM  
= 1 690µA  
• 可通SmartConfig技术、AP 模式WPS2 选  
项灵活配Wi-Fi:  
• 时钟源  
RESTful API 支持使用内HTTP 服务器)  
• 广泛的安全功能:  
– 具有内部振荡器40.0MHz 晶体  
32.768kHz 晶体或外RTC  
RGK 封装  
– 硬件特性:  
• 独立执行环境  
• 器件标识  
64 9mm × 9mm 极薄四方扁平无引线  
(VQFN) 封装0.5mm 间距  
• 工作温度  
– 网络安全性:  
– 环境温度范围40°C +85°C  
• 器件支SimpleLink MCU 平台开发人员生态系统  
• 个人和企Wi-Fi 安全性  
• 安全套接字SSLv3TLS1.0/1.1/TLS1.2)  
HTTPS 服务器  
• 受信任的根证书目录  
TI 信任根公钥  
2 应用  
• 用于物联网应(IoT)例如:  
– 云连接  
– 软件知识产权保护:  
– 互联网网关  
– 家庭和楼宇自动化  
– 电器  
• 安全密钥存储  
• 文件系统安全  
• 软件篡改检测  
– 访问控制  
• 克隆保护  
• 在专NWP 上运行的嵌入式网络应用:  
– 具有动态用户回调HTTP/HTTPS Web 服务器  
mDNSDNS-SDDHCP 服务器  
Ping  
• 恢复机恢复为出厂默认设置或恢复为完整出  
厂映像  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SWAS034  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
– 安防系统  
– 智能能源  
– 工业控制  
– 智能插座和仪表计量  
– 无线音频  
IP 网络传感器节点  
– 资产跟踪  
– 医疗设备  
3 说明  
CC3120R 器件SimpleLink™ 微控制(MCU) 平台的一部分Wi-Fi®、低功Bluetooth®Sub-1GHz 器  
件和主机 MCU。它们均共用一个通用、简单易用的开发环境其中包含单核软件开发套件 (SDK) 和丰富的工具  
集。借助一次性集成的 SimpleLink™ 平台可以将产品组合中的任何器件组合添加至您的设计中从而在设计要  
求变更时实100% 代码重用。有关更多信息请访www.ti.com/simplelink。  
通过来自德州仪器 (TI)CC3120R 器件将任何微控制器 (MCU) 连接到物联网 (IoT)。经过 Wi-Fi Alliance® 认  
CC3120R 器件属于第二SimpleLink™ Wi-Fi® 系列解决方案极大地简化了低功耗互联网连接的实施。  
CC3120R 支持 ROM 中实施的所有 Wi-Fi 和互联网协议在专用的片上 Arm® 网络处理器上运行极大地减轻了  
MCU 的压力并简化了系统集成。  
CC3120R Wi-Fi® Internet-on-a chip™ 器件包含一个专用的 Arm® MCU可减少主机 MCU 的很多联网活动。此  
子系统包含 802.11b/g/n 无线电、基带和具有强大加密引擎的 MAC采用 256 位加密可实现快速、安全的互联  
网连接。CC3120R 器件支持基站、接入点Wi-Fi Direct 模式。此器件还支WPA2™ 个人版和企业版安全性以  
WPA3™ 个人版和企业版。此器件包含嵌入式 TCP/IP TLS/SSL 堆栈、HTTP 服务器和多种互联网协议。  
CC3120R 器件支持各Wi-Fi 配置方法包括基于接入点模式HTTPSmartConfig™ 技术WPS2.0。  
TI 第二SimpleLink™ Wi-Fi® 系列的一部分CC3120R 器件推出了全新特性和增强功能例如:  
IPv6  
• 增强Wi-Fi 配置  
• 优化的低功耗管理  
Wi-Fi AP 可连接多4 个基站  
• 可同时打开更多BSD 套接字16 BSD 套接字6 个支持安全型  
HTTPS)  
• 支RESTful API  
• 非对称密钥加密库  
CC3120R 器件随附一个纤薄的用户友好型主机驱动器可简化网络应用的集成和开发。主机驱动程序可轻松移植  
到大多数平台和操作系统 (OS)。此驱动程序采用严格的 ANSI-C (C99) 编程语言编写只需极小的平台适配层  
移植层。此驱动程序占用的内存非常小可在具有任何时钟速度的 8 位、16 位或 32 MCU 上运行无需  
使用高性能时钟或实时时钟。  
CC3120R 器件提供易于布局的 VQFN 封装作为完整的平台解决方案提供其中包括各种工具和软件、示例应  
用、用户和编程指南、参考设计以及 TI E2E支持社区。CC3120R 器件是 SimpleLink MCU 生态系统的一部  
分。  
器件信息  
器件型(1)  
CC3120RNMARGKT/R  
封装尺寸标称值)  
封装  
VQFN (64)  
9.00mm x 9.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附录。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
4 功能方框图  
4-1 显示CC3120R SimpleLink Wi-Fi 解决方案的功能方框图。  
VCC  
SPI  
flash  
40-MHz  
crystal  
32-MHz  
crystal  
32 kHz  
CC3120R  
Network Processor  
MCU  
MCU  
nHIB  
HOST_INTR  
SPI/UART  
4-1. 功能模块图  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
4-2 概要显示CC3120R 的硬件。  
External MCU  
Wi-Fi® Network Processor  
Host Interface  
Hardware  
1× SPI  
1× UART  
Power Management  
Network Processor  
Application  
Protocols  
Wi-Fi® Driver  
TCP/IP Stack  
Oscillators  
DC/DC  
RTC  
RAM  
ROM  
Arm® Cortex®  
Synthesizer  
4-2. CC3120R 硬件概述  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
4-3 概要显示CC3120R 的嵌入式软件。  
User Application  
SimpleLink™ Driver  
SPI or UART Driver  
External Microcontroller  
Internet Protocols  
TLS/SSL  
TCP/IP  
Embedded Internet  
Supplicant  
Wi-Fi® Driver  
Wi-Fi® MAC  
Wi-Fi® Baseband  
Wi-Fi® Radio  
Embedded Wi-Fi®  
Arm® Processor (Wi-Fi® Network Processor)  
4-3. CC3120R 软件概述  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
Table of Contents  
8.13 Reset Requirement.................................................21  
8.14 Timing and Switching Characteristics..................... 22  
8.15 External Interfaces..................................................30  
9 Detailed Description......................................................34  
9.1 Device Features........................................................34  
9.2 Power-Management Subsystem...............................37  
9.3 Low-Power Operating Modes................................... 38  
9.4 Memory.....................................................................39  
9.5 Restoring Factory Default Configuration...................40  
10 Applications, Implementation, and Layout............... 41  
10.1 Application Information........................................... 41  
10.2 PCB Layout Guidelines...........................................45  
11 Device and Documentation Support..........................48  
11.1 Development Tools and Software........................... 48  
11.2 Firmware Updates...................................................49  
11.3 Device Nomenclature..............................................49  
11.4 Documentation Support.......................................... 50  
11.5 支持资源..................................................................52  
11.6 Trademarks............................................................. 52  
11.7 Electrostatic Discharge Caution..............................52  
11.8 Export Control Notice..............................................52  
11.9 术语表..................................................................... 52  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 2  
4 功能方框图.........................................................................3  
5 Revision History.............................................................. 6  
6 Device Comparison.........................................................8  
6.1 Related Products........................................................ 9  
7 Terminal Configuration and Functions........................10  
7.1 Pin Diagram.............................................................. 10  
7.2 Pin Attributes.............................................................11  
7.3 Connections for Unused Pins................................... 13  
8 Specifications................................................................ 14  
8.1 Absolute Maximum Ratings...................................... 14  
8.2 ESD Ratings............................................................. 14  
8.3 Power-On Hours (POH)............................................14  
8.4 Recommended Operating Conditions.......................15  
8.5 Current Consumption Summary .............................. 15  
8.6 TX Power and IBAT versus TX Power Level  
Settings....................................................................... 16  
8.7 Brownout and Blackout Conditions...........................18  
8.8 Electrical Characteristics (3.3 V, 25°C)..................... 19  
8.9 WLAN Receiver Characteristics................................20  
8.10 WLAN Transmitter Characteristics..........................20  
8.11 WLAN Filter Requirements..................................... 21  
8.12 Thermal Resistance Characteristics....................... 21  
Information.................................................................... 53  
12.1 Packaging Information............................................ 53  
5 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from February 7, 2018 to May 13, 2021 (from Revision * (Feb 2017) to Revision A  
(May 2021))  
Page  
• 更新和格式和组织以反映最TI 标准.........................................................................................................0  
1 新增WPA3 个人版WPA3 企业版........................................................................................................ 1  
• 更改了部分..................................................................................................................................................1  
3 新增WPA3 个人版WPA3 企业版........................................................................................................ 2  
• 更改了部分..................................................................................................................................................2  
• 在功能方框部分添加了功能方框................................................................................................................ 3  
• 添加CC3120R 硬件概方框图.....................................................................................................................3  
Added Device Comparison section.....................................................................................................................8  
Changed Device Features Comparison table.....................................................................................................8  
Changed CC3120 SDK Plug-In link....................................................................................................................9  
Added NC = No internal connection note to the pinout diagram ......................................................................10  
Changed Pin Attributes table............................................................................................................................ 11  
Deleted the pin number for GND_TAB .............................................................................................................11  
Changed Connections for Unused Pins table...................................................................................................13  
Changed the typical value for Hibernate from "4 µA" to "4.5 µA"..................................................................... 15  
Deleted the + sign from the typical values in the WLAN Transmitter Characteristics table.............................. 20  
Added the table note "Power of 802.11b rates are reduced to meet ETSI requirements" to the WLAN  
Transmitter Characteristics table...................................................................................................................... 20  
Added Reset Requirement table ......................................................................................................................21  
Changed from "200-mS" to 200-ms" in the Device Reset section ...................................................................22  
Changed from "pin 32" to "pin 52" in the second list item of the Device Reset section ...................................22  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
Changed the Host SPI Interface Timing diagram............................................................................................. 28  
Changed the parameter numbers in the Host SPI Interface Timing Parameters table ....................................28  
Changed Flash SPI Interface Timing diagram..................................................................................................29  
Changed the parameter numbers in the Flash SPI Interface Timing Parameters table .................................. 29  
Added WPA3 Personal and WPA3 Enterprise to 9 ..................................................................................... 34  
Added WPA3 Personal and WPA3 Enterprise to 9.1.1 ............................................................................... 34  
Added WPA3 personal and enterprise to 9-1 ..............................................................................................34  
Added "The typical battery drain in this mode is 4.5 µA" to the Hibernate section...........................................38  
Added "The typical battery drain in this mode is 1 µA" to the Shutdown section..............................................38  
Changed the table title from "Title" to "Recommended Flash Size" .................................................................39  
Changed the CC3120R Wide-Voltage Mode Application Circuit diagram........................................................ 41  
Added R14 information to the Bill of Materials for CC3120R in Wide-Voltage Mode table...............................41  
Changed the CC3120R Preregulated 1.85-V Mode Application Circuit diagram ............................................ 43  
Added R13 information to the Bill of Materials for CC3120R in Preregulated, 1.85-V Mode table...................43  
Changed from "XTALM" to "XTAL_N" in the Clock Interfaces section..............................................................46  
Changed Tools and Software section............................................................................................................... 48  
Changed CC3120R Device Nomenclaturefigure..............................................................................................49  
Changed Documentation Support section........................................................................................................50  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CC3120  
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
6 Device Comparison  
6-1 shows the features supported across different CC3220 devices.  
6-1. Device Features Comparison  
DEVICE  
FEATURE  
CC3220R  
CC3220S  
On-Chip Application Memory  
256KB  
CC3220SF  
RAM  
256KB  
256KB  
1MB  
Flash  
Security Features  
File system security  
File system security  
Secure key storage  
Software tamper detection  
Cloning protection  
Secure key storage  
Software tamper detection  
Cloning protection  
Enhanced Application Level  
Security  
Initial secure programming  
Initial secure programming  
Hardware Acceleration  
Additional Networking Security  
Secure Boot  
Hardware Crypto Engines  
Unique Device Identity  
Trusted Root-Certificate Catalog Trusted Root-Certificate Catalog Trusted Root-Certificate Catalog  
TI Root-of-Trust Public key  
Hardware Crypto Engines  
Unique Device Identity  
Hardware Crypto Engines  
Unique Device Identity  
TI Root-of-Trust Public key  
TI Root-of-Trust Public key  
No  
Yes  
Yes  
Additional Features  
802.11 b/g/n  
Standard  
TCP/IP Stack  
Package  
IPv4, IPv6  
9 mm × 9 mm VQFN  
16  
Sockets  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
6.1 Related Products  
For information about other devices in this family of products or related products, see the following links:  
SimpleLink™ MCU  
Portfolio  
This portfolio offers a single development environment that delivers flexible hardware,  
software and tool options for customers developing wired and wireless applications. With  
100 percent code reuse across host MCUs, Wi-Fi™, Bluetooth® low energy, Sub-1 GHz  
devices and more, choose the MCU or connectivity standard that fits your design. A one-  
time investment with the SimpleLink software development kit (SDK) allows you to reuse  
often, opening the door to create unlimited applications.  
SimpleLink™ Wi-Fi® This device platform offers several Internet-on-a chip™ solutions, which address the  
Family  
need of battery operated, security enabled products. Texas instruments offers a single  
chip wireless microcontroller and a wireless network processor which can be paired with  
any MCU, to allow developers to design new wi-fi products, or upgrade existing products  
with wi-fi capabilities.  
MSP432™ Host  
MCU  
These MCUs feature the Arm® Cortex®-M4 processor that offers ample processing  
capability with floating point unit and memory footprint for advanced processing  
algorithm, communication protocols and application needs, while incorporating a 14-bit  
1-msps ADC14 that provides a flexible and low-power analog with best-in-class  
performance to enable developers to add differentiated sensing and measurement  
capabilities to their Wi-Fi applications.  
Reference Designs  
for CC3100 and  
CC3120 Devices  
TI Designs Reference Design Library is a robust reference design library spanning  
analog, embedded processor and connectivity. Created by TI experts to help you jump  
start your system design, all TI Designs include schematic or block diagrams, BOMs and  
design files to speed your time to market. Search and download designs at ti.com/  
tidesigns.  
SimpleLink™ Wi-Fi® This SDK plug-in contains drivers, sample applications for Wi-Fi features and internet,  
CC3120 SDK Plug-in and documentation required to use the CC3120 solution.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
7 Terminal Configuration and Functions  
7.1 Pin Diagram  
7-1 shows pin assignments for the 64-pin VQFN package.  
48  
47  
46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35 34 33  
VDD_RAM  
UART1_nRTS  
RTC_XTAL_P  
RTC_XTAL_N  
NC  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
nRESET  
RF_BG  
RESERVED  
RESERVED  
NC  
VIN_IO2  
NC  
UART1_TX  
VDD_DIG2  
UART1_RX  
TEST_58  
TEST_59  
TEST_60  
UART1_nCTS  
TEST_62  
NC  
NC  
LDO_IN2  
VDD_PLL  
WLAN_XTAL_P  
WLAN_XTAL_N  
SOP2/TCXO_EN  
NC  
RESERVED  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14 15 16  
NC = No internal connection  
7-1. VQFN 64-Pin Assignments Top View  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
7.2 Pin Attributes  
7-1 describes the CC3120R pins.  
Note  
If an external device drives a positive voltage to signal pads when the CC3120R device is not  
powered, DC current is drawn from the other device. If the drive strength of the external device is  
adequate, an unintentional wakeup and boot of the CC3120R device can occur. To prevent current  
draw, TI recommends one of the following:  
All devices interfaced to the CC3120R device must be powered from the same power rail as the  
CC3120R device.  
Use level shifters between the CC3120R device and any external devices fed from other  
independent rails.  
The nRESET pin of the CC3120R device must be held low until the VBAT supply to the device is  
driven and stable.  
7-1. Pin Attributes  
STATE AT RESET  
AND HIBERNATE  
PIN  
DEFAULT FUNCTION  
I/O TYPE(1)  
DESCRIPTION  
Hibernate signal input to the NWP subsystem  
(active low). This is connected to the MCU  
GPIO. If the GPIO from the MCU can float while  
the MCU enters low power, consider adding a  
pullup resistor on the board to avoid floating.  
2
nHIB  
Hi-Z  
I
3
5
Reserved  
HOST_SPI_CLK  
HOST_SPI_MOSI  
HOST_SPI_MISO  
HOST_SPI_nCS  
VDD_DIG1  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Reserved for future use  
I
Host interface SPI clock  
6
I
Host interface SPI data input  
Host interface SPI data output  
Host interface SPI chip select (active low)  
Digital core supply (1.2 V)  
7
O
8
I
9
Power  
10  
11  
12  
13  
VIN_IO1  
Power  
I/O supply  
FLASH_SPI_CLK  
FLASH_SPI_MOSI  
FLASH _SPI_MISO  
O
O
I
Serial Flash interface: SPI clock  
Serial Flash interface: SPI data out  
Serial Flash interface: SPI data in (active high)  
Serial Flash interface: SPI chip select  
(active low)  
14  
FLASH _SPI_CS  
Hi-Z  
O
15  
19  
HOST_INTR  
Reserved  
Hi-Z  
Hi-Z  
O
Interrupt output (active high)  
Connect a 100-kΩpulldown resistor to ground.  
Controls restore to default mode. Enable signal  
for external TCXO. Add a 10-kΩpulldown  
resistor to ground.  
21  
SOP2/TCXO_EN  
Hi-Z  
O
22  
23  
24  
25  
29  
30  
31  
WLAN_XTAL_N  
WLAN_XTAL_P  
VDD_PLL  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Analog  
Analog  
Power  
Power  
Connect the WLAN 40-MHz crystal here.  
Connect the WLAN 40-MHz crystal here.  
Internal PLL power supply (1.4-V nominal)  
Input to internal LDO  
LDO_IN2  
Reserved  
RF_BG  
Hi-Z  
Hi-Z  
O
Reserved for future use  
RF  
2.4-GHz RF TX, RX  
RESET input for the device. Active low input.  
Use RC circuit (100 k || 0.1 µF) for power on  
reset (POR).  
32  
nRESET  
Hi-Z  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
7-1. Pin Attributes (continued)  
STATE AT RESET  
I/O TYPE(1)  
PIN  
33  
DEFAULT FUNCTION  
VDD_PA_IN  
DESCRIPTION  
AND HIBERNATE  
Hi-Z  
Hi-Z  
Power  
Power supply for the RF power amplifier (PA)  
SOP[2:0] used for factory restore. Add 100-kΩ  
pulldown to ground. See .  
34  
SOP1  
SOP[2:0] used for factory restore. Add 100-kΩ  
pulldown to ground. See .  
35  
36  
37  
SOP0  
LDO_IN1  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Input to internal LDO  
Power supply for the DC/DC converter for  
analog section  
VIN_DCDC_ANA  
38  
39  
40  
41  
DCDC_ANA_SW  
VIN_DCDC_PA  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
Power  
Analog DC/DC converter switch output  
PA DC/DC converter input supply  
DCDC_PA_SW_P  
DCDC_PA_SW_N  
PA DC/DC converter switch output +ve  
PA DC/DC converter switch output ve  
PA DC/DC converter output. Connect the output  
capacitor for DC/DC here.  
42  
43  
44  
DCDC_PA_OUT  
DCDC_DIG_SW  
VIN_DCDC_DIG  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
Digital DC/DC converter switch output  
Power supply input for the digital DC/DC  
converter  
45  
46  
47  
48  
49  
50  
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
VDD_ANA2  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Power  
Power  
Power  
Power  
Power  
O
Analog2 DC/DC converter switch output +ve  
Analog2 DC/DC converter switch output ve  
Analog2 power supply input  
VDD_ANA1  
Analog1 power supply input  
VDD_RAM  
Power supply for the internal RAM  
UART host interface (active low)  
UART1_nRTS  
32.768-kHz XTAL_P or external CMOS level  
clock input  
51  
RTC_XTAL_P  
Hi-Z  
Analog  
32.768-kHz XTAL_N or 100-kΩexternal pullup  
for external clock  
52  
54  
55  
56  
57  
RTC_XTAL_N  
VIN_IO2  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Analog  
Power  
O
I/O power supply. Same as battery voltage.  
UART host interface. Connect to test point on  
prototype for Flash programming.  
UART1_TX  
VDD_DIG2  
UART1_RX  
Power  
I
Digital power supply (1.2 V)  
UART host interface; connect to test point on  
prototype for Flash programming.  
60  
61  
62  
TEST_60  
UART1_nCTS  
TEST_62  
Hi-Z  
Hi-Z  
Hi-Z  
O
I
Test signal; connect to an external test point.  
UART host interface (active low)  
O
Test signal; connect to an external test point.  
Ground tab used as thermal and electrical  
ground  
GND  
Power  
(1) I = Input  
O = Output  
RF = radio frequency  
I/O = bidirectional  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
7.3 Connections for Unused Pins  
All unused pins must be left as no connect (NC) pins. 7-2 provides a list of NC pins.  
7-2. Connections for Unused Pins  
STATE AT RESET  
PIN  
DEFAULT FUNCTION  
I/O TYPE  
DESCRIPTION  
AND HIBERNATE  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
WLAN analog  
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
Unused; leave unconnected.  
4
16  
17  
18  
20  
26  
27  
28  
53  
TEST_58 Unused; leave  
unconnected.  
58  
59  
NC  
NC  
WLAN analog  
WLAN analog  
TEST_59 Unused; leave  
unconnected.  
TEST_60 Unused; leave  
unconnected.  
63  
64  
NC  
NC  
WLAN analog  
WLAN analog  
Unused; leave unconnected.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8 Specifications  
All measurements are referenced at the device pins, unless otherwise indicated. All specifications are over  
process and voltage, unless otherwise indicated.  
8.1 Absolute Maximum Ratings  
These specifications indicate levels where permanent damage to the device can occur. Functional operation is not ensured  
under these conditions. Operation at absolute maximum conditions for extended periods can adversely affect long-term  
reliability of the device. (1) (2)  
MIN  
MAX  
UNIT  
VBAT and VIO  
Pins: 37, 39, 44  
Pins: 10, 54  
3.8  
V
0.5  
0.0  
V
VIO VBAT (differential)  
Digital inputs  
VIO + 0.5  
2.1  
V
0.5  
0.5  
0.5  
40  
55  
RF pins  
V
Analog pins, crystal  
Operating temperature, TA  
Storage temperature, Tstg  
Pins: 22, 23, 51, 52  
2.1  
V
85  
°C  
°C  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
VESD  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Power-On Hours (POH)  
This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's  
standard terms and conditions for TI semiconductor products.  
POWER-ON HOURS [POH]  
OPERATING CONDITION  
(hours)  
TA up to 85°C(1)  
87,600  
(1) The TX duty cycle (power amplifier ON time) is assumed to be 10% of the device POH. Of the remaining 90% of the time, the device  
can be in any other state.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
TYP  
MAX  
UNIT  
Direct battery connection(3)  
2.1(6)  
3.3  
3.6  
VBAT, VIO  
(shorted to VBAT  
Pins: 10, 37, 39,  
44, 54  
V
Preregulated 1.85 V(4) (5)  
)
Ambient thermal slew  
20 °C/minute  
20  
(1) Operating temperature is limited by crystal frequency variation.  
(2) When operating at an ambient temperature of over 75°C, the transmit duty cycle must remain below 50% to avoid the auto-protect  
feature of the power amplifier. If the auto-protect feature triggers, the device takes a maximum of 60 seconds to restart the  
transmission.  
(3) To ensure WLAN performance, ripple on the 2.1- to 3.3-V supply must be less than ±300 mV.  
(4) To ensure WLAN performance, ripple on the 1.85-V supply must be less than 2% (±40 mV).  
(5) TI recommends keeping VBAT above 1.85 V. For lower voltages, use a boost converter.  
(6) The minimum voltage specified includes the ripple on the supply voltage and all other transient dips. The brownout condition is also 2.1  
V, and care must be taken when operating at the minimum specified voltage.  
8.5 Current Consumption Summary  
TA = 25°C, VBAT = 3.6 V  
PARAMETER  
TEST CONDITIONS(1) (4)  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
TX power level = 0  
TX power level = 4  
MIN  
TYP  
272  
188  
248  
179  
223  
160  
53  
MAX UNIT  
1 DSSS  
6 OFDM  
54 OFDM  
TX  
mA  
1 DSSS  
RX(6)  
mA  
54 OFDM  
53  
Idle connected(2)  
LPDS  
690  
115  
4.5  
µA  
µA  
µA  
µA  
Hibernate(5)  
Shutdown  
1
VBAT = 3.6 V  
VBAT = 3.3 V  
VBAT = 2.1 V  
VBAT = 1.85 V  
420  
450  
670  
700  
Peak calibration current(3) (6)  
mA  
(1) TX power level = 0 implies maximum power (see 8-1, 8-2, and 8-3). TX power level = 4 implies output power backed off  
approximately 4 dB.  
(2) DTIM = 1  
(3) The complete calibration can take up to 17 mJ of energy from the battery over a time of 24 ms. In default mode, calibration is  
performed sparingly, and typically occurs when re-enabling the NWP and when the temperature has changed by more than 20°C.  
There are two additional calibration modes that may be used to reduced or completely eliminate the calibration event. For further  
details, see CC3120, CC3220 SimpleLink™ Wi-Fi® and IoT Network Processor Programmer's Guide.  
(4) The CC3120R system is a constant power-source system. The active current numbers scale based on the VBAT voltage supplied.  
(5) For the 1.85-V mode, the hibernate current is higher by 50 µA across all operating modes because of leakage into the PA and analog  
power inputs.  
(6) The RX current is measured with a 1-Mbps throughput rate.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CC3120  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.6 TX Power and IBAT versus TX Power Level Settings  
8-1, 8-2, and 8-3 show TX Power and IBAT versus TX power level settings for modulations of 1 DSSS,  
6 OFDM, and 54 OFDM, respectively.  
In 8-1, the area enclosed in the circle represents a significant reduction in current during transition from TX  
power level 3 to level 4. In the case of lower range requirements (14-dBm output power), TI recommends using  
TX power level 4 to reduce the current.  
1 DSSS  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-1. TX Power and IBAT vs TX Power Level Settings (1 DSSS)  
6 OFDM  
19.00  
17.00  
280.00  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
Color by  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-2. TX Power and IBAT vs TX Power Level Settings (6 OFDM)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
54 OFDM  
19.00  
17.00  
280.00  
Color by  
264.40  
249.00  
233.30  
218.00  
202.00  
186.70  
171.00  
TX Power (dBm)  
15.00  
13.00  
IBAT (VBAT @ 3.6 V)  
11.00  
9.00  
7.00  
5.00  
3.00  
1.00  
155.60  
140.00  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
TX power level setting  
8-3. TX Power and IBAT vs TX Power Level Settings (54 OFDM)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.7 Brownout and Blackout Conditions  
The device enters a brownout condition when the input voltage drops below Vbrownout (see 8-4 and 8-5).  
This condition must be considered during design of the power supply routing, especially when operating from a  
battery. High-current operations, such as a TX packet or any external activity (not necessarily related directly to  
networking) can cause a drop in the supply voltage, potentially triggering a brownout condition. The resistance  
includes the internal resistance of the battery, the contact resistance of the battery holder (four contacts for 2×  
AA batteries), and the wiring and PCB routing resistance.  
Note  
When the device is in HIBERNATE state, brownout is not detected. Only blackout is in effect during  
HIBERNATE state.  
8-4. Brownout and Blackout Levels (1 of 2)  
8-5. Brownout and Blackout Levels (2 of 2)  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
In the brownout condition, all sections of the device (including the 32-kHz RTC) shut down except for the  
Hibernate module, which remains on. The current in this state can reach approximately 400 µA. The blackout  
condition is equivalent to a hardware reset event in which all states within the device are lost.  
8-1 lists the brownout and blackout voltage levels.  
8-1. Brownout and Blackout Voltage Levels  
CONDITION  
VOLTAGE LEVEL  
UNIT  
V
Vbrownout  
Vblackout  
2.1  
1.67  
V
8.8 Electrical Characteristics (3.3 V, 25°C)  
GPIO Pins Except 29, 30, 50, 52, and 53 (25°C)(1)  
PARAMETER  
Pin capacitance  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
pF  
V
CIN  
VIH  
VIL  
IIH  
4
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
0.65 × VDD  
VDD + 0.5 V  
0.35 × VDD  
V
0.5  
5
5
nA  
nA  
IIL  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.8  
VDD × 0.7  
VDD × 0.7  
VDD × 0.75  
VDD × 0.7  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
IL = 8 mA; configured I/O drive  
strength = 8 mA;  
2.4 V VDD < 3.6 V  
VOH  
High-level output voltage  
V
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD = 1.85 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.4 V VDD < 3.6 V  
VDD × 0.2  
VDD × 0.2  
VDD × 0.2  
VDD × 0.25  
VDD × 0.35  
IL = 4 mA; configured I/O drive  
strength = 4 mA;  
2.4 V VDD < 3.6 V  
IL = 8 mA; configured I/O drive  
strength = 8 mA;  
2.4 V VDD < 3.6 V  
VOL  
Low-level output voltage  
V
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
2.1 V VDD < 2.4 V  
IL = 2 mA; configured I/O drive  
strength = 2 mA;  
VDD = 1.85 V  
2-mA drive  
2
4
6
High-level  
source current  
IOH  
4-mA drive  
6-mA drive  
mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
GPIO Pins Except 29, 30, 50, 52, and 53 (25°C)(1)  
PARAMETER  
2-mA drive  
TEST CONDITIONS  
MIN  
2
NOM  
MAX  
UNIT  
mA  
V
Low-level  
sink current  
IOL  
4-mA drive  
6-mA drive  
4
6
VIL  
nRESET(2)  
0.6  
(1) TI recommends using the lowest possible drive strength that is adequate for the applications. This recommendation minimizes the risk  
of interference to the WLAN radio and reduces any potential degradation of RF sensitivity and performance. The default drive strength  
setting is 6 mA.  
(2) The nRESET pin must be held below 0.6 V for the device to register a reset.  
8.9 WLAN Receiver Characteristics  
TA = 25°C, VBAT = 2.1 V to 3.6 V. Parameters are measured at the SoC pin on channel 6 (2437 MHz).  
PARAMETER  
TEST CONDITIONS (Mbps)  
MIN  
TYP(1)  
96.0  
94.0  
88.0  
90.5  
90.0  
86.5  
80.5  
74.5  
71.5  
70.5  
4.0  
MAX  
UNIT  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Sensitivity  
9 OFDM  
(8% PER for 11b rates, 10% PER for 11g/11n  
dBm  
rates) (10% PER)(3)  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (GF)(2)  
MCS7 (MM)(2)  
802.11b  
Maximum input level  
(10% PER)  
dBm  
802.11g  
10.0  
(1) In preregulated 1.85-V mode, RX sensitivity is 0.25- to 1-dB lower.  
(2) Sensitivity for mixed mode is 1-dB worse.  
(3) Sensitivity is 1-dB worse on channel 13 (2472 MHz).  
8.10 WLAN Transmitter Characteristics  
TA = 25°C, VBAT = 2.1 V to 3.6 V. Parameters measured at SoC pin on channel 7 (2442 MHz).(1) (2) (3)  
PARAMETER  
TEST CONDITIONS(3)  
MIN  
TYP  
18.0  
18.0  
18.3  
17.3  
17.3  
17.0  
16.0  
14.5  
13.0  
MAX  
UNIT  
dBm  
ppm  
1 DSSS  
2 DSSS  
11 CCK  
6 OFDM  
Maximum RMS output power measured at 1  
dB from IEEE spectral mask or EVM  
9 OFDM  
18 OFDM  
36 OFDM  
54 OFDM  
MCS7 (MM)  
Transmit center frequency accuracy  
25  
25  
(1) The edge channels (2412 and 2472 MHz) have reduced TX power to meet FCC emission limits.  
(2) Power of 802.11b rates are reduced to meet ETSI requirements.  
(3) In preregulated 1.85-V mode, maximum TX power is 0.25- to 0.75-dB lower for modulations higher than 18 OFDM.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
 
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.11 WLAN Filter Requirements  
The device requires an external band-pass filter to meet the various emission standards, including FCC. 节  
8.11.1 presents the attenuation requirements for the band-pass filter. TI recommends using the same filter used  
in the reference design to ease the process of certification.  
8.11.1 WLAN Filter Requirements  
PARAMETER  
FREQUENCY (MHz)  
2412 to 2484  
2412 to 2484  
800 to 830  
MIN  
TYP  
MAX  
UNIT  
dB  
Return loss  
Insertion loss(1)  
10  
1
45  
25  
48  
50  
25  
25  
35  
45  
25  
50  
1.5  
dB  
30  
20  
30  
45  
20  
20  
20  
35  
20  
1600 to 1670  
3200 to 3300  
4000 to 4150  
4800 to 5000  
5600 to 5800  
6400 to 6600  
7200 to 7500  
7500 to 10000  
2412 to 2484  
Bandpass  
Attenuation  
dB  
Reference impendence  
Filter type  
Ω
(1) Insertion loss directly impacts output power and sensitivity. At customer discretion, insertion loss can be relaxed to meet attenuation  
requirements.  
8.12 Thermal Resistance Characteristics  
8.12.1 Thermal Resistance Characteristics for RGK Package  
AIR FLOW  
PARAMETER  
0 lfm (C/W)  
150 lfm (C/W)  
250 lfm (C/W)  
500 lfm (C/W)  
23  
0.2  
2.3  
6.3  
2.4  
14.6  
0.2  
12.4  
0.3  
10.8  
0.1  
θja  
Ψjt  
2.3  
2.2  
2.4  
Ψjb  
θjc  
θjb  
8.13 Reset Requirement  
PARAMETER  
Operation mode level  
Shutdown mode level(1)  
MIN  
TYP  
0.65 × VBAT  
0.6  
MAX UNIT  
VIH  
VIL  
V
V
0
5
Minimum time for nReset low for resetting the module  
Rise and fall times  
ms  
µs  
Tr and Tf  
20  
(1) The nRESET pin must be held below 0.6 V for the module to register a reset.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CC3120  
 
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.14 Timing and Switching Characteristics  
8.14.1 Power Supply Sequencing  
For proper operation of the CC3120R device, perform the recommended power-up sequencing as follows:  
1. Tie VBAT (pins 37, 39, 44) and VIO (pins 54 and 10) together on the board.  
2. Hold the RESET pin low while the supplies are ramping up. TI recommends using a simple RC circuit (100 K  
||, 1 µF, RC = 100 ms).  
3. For an external RTC, ensure that the clock is stable before RESET is deasserted (high).  
For timing diagrams, see 8.14.3.  
8.14.2 Device Reset  
When a device restart is required, the user may either issue a negative pulse on the nHIB pin (pin 2) or on the  
nRESET pin (pin 32), keeping the other pulled high, depending on the configuration of the platform. In case the  
nRESET pin is used, the user must follow one of the two alternatives to ensure the reset is properly applied:  
A high-to-low reset pulse (on pin 32) of at least 200-ms duration  
If the above cannot be ensured, a pulldown resistor of 2 Mshould be connected to pin 52 (RTC_XTAL_N).  
If implemented, a shorter pulse of at least 100 µs can be used.  
To ensure a proper reset sequence, the user has to call the sl_stop function prior to toggling the reset.  
8.14.3 Reset Timing  
8.14.3.1 nRESET (32-kHz Crystal)  
8-6 shows the reset timing diagram for the 32-kHz crystal first-time power-up and reset removal.  
T2  
T1  
T3  
VBAT  
VIO  
nRESET  
nHIB  
Device Ready to  
serve API calls  
POWER  
OFF  
RESET  
HW INIT  
FW INIT  
STATE  
32-kHz  
XTAL  
8-6. First-Time Power-Up and Reset Removal Timing Diagram (32-kHz Crystal)  
8.14.3.2 describes the timing requirements for the crystal first-time power-up and reset removal.  
8.14.3.2 First-Time Power-Up and Reset Removal Timing Requirements (32-kHz Crystal)  
ITEM  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
ms  
ms  
s
Depends on application board  
power supply, decoupling capacitor,  
and so on  
T1  
T2  
T3  
Supply settling time  
Hardware wake-up time  
Initialization time  
3
25  
32-kHz crystal settling plus  
firmware initialization time plus  
radio calibration  
1.35  
8.14.3.3 nRESET (External 32-kHz)  
8-7 shows the reset timing diagram for the external 32-kHz first-time power-up and reset removal.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
T1  
T2  
T3  
VBAT  
VIO  
nRESET  
nHIB  
POWER  
OFF  
Device Ready to  
serve API calls  
STATE  
RESET  
HW INIT  
FW INIT  
32-kHz  
RTC CLK  
8-7. First-Time Power-Up and Reset Removal Timing Diagram (External 32-kHz)  
8.14.3.3.1 describes the timing requirements for the external first-time power-up and reset removal.  
8.14.3.3.1 First-Time Power-Up and Reset Removal Timing Requirements (External 32-kHz)  
ITEM  
NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Depends on application board power  
supply, decoupling capacitor, and so  
on  
T1  
Supply settling time  
3
ms  
T2  
T3  
Hardware wake-up time  
Initialization time  
25  
ms  
ms  
Firmware initialization time plus radio  
calibration  
250  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.14.4 Wakeup From HIBERNATE Mode  
8-8 shows the timing diagram for wakeup from HIBERNATE mode.  
T
T
wake_from_hib  
hib_min  
VBAT  
VIO  
nRESET  
nHIB  
ACTIVE  
HIBERNATE  
HW WAKEUP+FW INIT  
ACTIVE  
HIBERNATE  
32-kHz  
XTAL/CXO  
8-8. nHIB Timing Diagram  
Note  
The 32.768-kHz crystal is kept enabled by default when the chip goes into HIBERNATE mode in  
response to nHIB being pulled low.  
8.14.4.1 8.14.4.1 describes the timing requirements for nHIB.  
8.14.4.1 nHIB Timing Requirements  
ITEM  
Thib_min  
NAME  
DESCRIPTION  
MIN  
TYP MAX  
UNIT  
Minimum hibernate time  
Minimum pulse width of nHIB being low(2)  
10  
ms  
Hardware wakeup time plus  
firmware initialization time  
Twake_from_hib  
See(1)  
50  
ms  
(1) If temperature changes by more than 20°C, initialization time from HIB can increase by 200 ms due to radio calibration.  
(2) Ensure that the nHIB pulse width is kept above the minimum requirement under all conditions (such as power up, MCU reset, and so  
on).  
8.14.5 Clock Specifications  
The CC3120R device requires two separate clocks for its operation:  
A slow clock running at 32.768 kHz is used for the RTC.  
A fast clock running at 40 MHz is used by the device for the internal processor and the WLAN subsystem.  
The device features internal oscillators that enable the use of less-expensive crystals rather than dedicated  
TCXOs for these clocks. The RTC can also be fed externally to provide reuse of an existing clock on the system  
and to reduce overall cost.  
8.14.5.1 Slow Clock Using Internal Oscillator  
The RTC crystal connected on the device supplies the free-running slow clock. The accuracy of the slow clock  
frequency must be 32.768 kHz ±150 ppm. In this mode of operation, the crystal is tied between RTC_XTAL_P  
(pin 51) and RTC_XTAL_N (pin 52) with a suitable load capacitance to meet the ppm requirement.  
8-9 shows the crystal connections for the slow clock.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
51  
RTC_XTAL_P  
10 pF  
GND  
32.768 kHz  
52  
RTC_XTAL_N  
10 pF  
GND  
Copyright © 2017, Texas Instruments Incorporated  
8-9. RTC Crystal Connections  
8.14.5.1.1 lists the RTC crystal requirements.  
8.14.5.1.1 RTC Crystal Requirements  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
kHz  
ppm  
kΩ  
32.768  
Frequency accuracy  
Crystal ESR  
Initial plus temperature plus aging  
32.768 kHz  
±150  
70  
8.14.5.2 Slow Clock Using an External Clock  
When an RTC oscillator is present in the system, the CC3120R device can accept this clock directly as an input.  
The clock is fed on the RTC_XTAL_P line, and the RTC_XTAL_N line is held to VIO. The clock must be a CMOS-  
level clock compatible with VIO fed to the device.  
8-10 shows the external RTC input connection.  
32.768 kHz  
RTC_XTAL_P  
Host system  
VIO  
100 KΩ  
RTC_XTAL_N  
Copyright © 2017, Texas Instruments Incorporated  
8-10. External RTC Input  
8.14.5.2.1 lists the external RTC digital clock requirements.  
8.14.5.2.1 External RTC Digital Clock Requirements  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
32768  
Hz  
Frequency accuracy  
(Initial plus temperature plus aging)  
±150  
ppm  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: CC3120  
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tr, tf  
Input transition time tr, tf (10% to 90%)  
Frequency input duty cycle  
100  
80%  
ns  
20%  
50%  
Vih  
Vil  
0.65 × VIO  
VIO  
V
Slow clock input voltage limits  
Input impedance  
Square wave, DC coupled  
0
1
0.35 × VIO  
Vpeak  
MΩ  
pF  
5
8.14.5.3 Fast Clock (Fref) Using an External Crystal  
The CC3120R device also incorporates an internal crystal oscillator to support a crystal-based fast clock. The  
crystal is fed directly between WLAN_XTAL_P (pin 23) and WLAN_XTAL_N (pin 22) with suitable loading  
capacitors.  
8-11 shows the crystal connections for the fast clock.  
23  
WLAN_XTAL_P  
6.2 pF  
GND  
40 MHz  
22  
WLAN_XTAL_N  
6.2 pF  
GND  
SWAS031-030  
A. The crystal capacitance must be tuned to ensure that the PPM requirement is met. See CC31xx & CC32xx Frequency Tuning for  
information on frequency tuning.  
8-11. Fast Clock Crystal Connections  
8.14.5.3.1 lists the WLAN fast-clock crystal requirements.  
8.14.5.3.1 WLAN Fast-Clock Crystal Requirements  
CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
ppm  
Ω
Frequency  
40  
Frequency accuracy  
Crystal ESR  
Initial plus temperature plus aging  
40 MHz  
±25  
60  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.14.5.4 Fast Clock (Fref) Using an External Oscillator  
The CC3120R device can accept an external TCXO/XO for the 40-MHz clock. In this mode of operation, the  
clock is connected to WLAN_XTAL_P (pin 23). WLAN_XTAL_N (pin 22) is connected to GND. The external  
TCXO/XO can be enabled by TCXO_EN (pin 21) from the device to optimize the power consumption of the  
system.  
If the TCXO does not have an enable input, an external LDO with an enable function can be used. Using the  
LDO improves noise on the TCXO power supply.  
8-12 shows the connection.  
Vcc  
XO (40 MHz)  
EN  
CC3120R  
TCXO_EN  
82 pF  
WLAN_XTAL_P  
OUT  
WLAN_XTAL_N  
Copyright © 2017, Texas Instruments Incorporated  
8-12. External TCXO Input  
8.14.5.4.1 lists the external Fref clock requirements.  
8.14.5.4.1 External Fref Clock Requirements (40°C to +85°C)  
CHARACTERISTICS  
Frequency  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
40.00  
MHz  
Frequency accuracy (Initial plus temperature plus  
aging)  
±25 ppm  
55%  
Frequency input duty cycle  
Clock voltage limits  
45%  
0.7  
50%  
Sine or clipped sine wave, AC  
coupled  
Vpp  
1.2  
Vpp  
at 1 kHz  
125  
138.5  
143  
Phase noise at 40 MHz  
at 10 kHz  
at 100 kHz  
dBc/Hz  
Resistance  
Input impedance  
12  
kΩ  
Capacitance  
7
pF  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.14.6 Interfaces  
This section describes the interfaces that are supported by the CC3120R device:  
Host SPI  
Flash SPI  
8.14.6.1 Host SPI Interface Timing  
8-13 shows the Host SPI interface timing diagram.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-13. Host SPI Interface Timing  
8.14.6.1.1 lists the Host SPI interface timing parameters.  
8.14.6.1.1 Host SPI Interface Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
Clock frequency at VBAT = 3.3 V  
20  
12  
T1  
F(1)  
MHz  
Clock frequency at VBAT 2.1 V  
Clock period  
(1) (2)  
(1)  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
tclk  
tLP  
tHT  
50  
ns  
ns  
ns  
Clock low period  
25  
25  
(1)  
Clock high period  
Duty cycle  
D(1)  
45%  
55%  
(1)  
tIS  
tIH  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
4
4
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
tOD  
tOH  
20  
24  
(1) The timing parameter has a maximum load of 20 pF at 3.3 V.  
(2) Ensure that nCS (active-low signal) is asserted 10 ns before the clock is toggled. The nCS can be deasserted 10 ns after the clock  
edge.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.14.6.2 Flash SPI Interface Timing  
8-14 shows the Flash SPI interface timing diagram.  
T2  
CLK  
T6  
T7  
MISO  
MOSI  
T9  
T8  
8-14. Flash SPI Interface Timing  
8.14.6.2.1 lists the Flash SPI interface timing parameters.  
8.14.6.2.1 Flash SPI Interface Timing Parameters  
PARAMETER  
NUMBER  
MIN  
MAX  
UNIT  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
F
Clock frequency  
Clock period  
20  
MHz  
ns  
tclk  
tLP  
tHT  
D
50  
Clock low period  
Clock high period  
Duty cycle  
25  
25  
ns  
ns  
45%  
55%  
tIS  
RX data setup time  
RX data hold time  
TX data output delay  
TX data hold time  
1
2
ns  
ns  
ns  
ns  
tIH  
tOD  
tOH  
8.5  
8
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.15 External Interfaces  
8.15.1 SPI Flash Interface  
The external serial Flash stores the user profiles and firmware patch updates. The CC3120R device acts as a  
master in this case; the SPI serial Flash acts as the slave device. This interface can work up to a speed of 20  
MHz.  
8-15 shows the SPI Flash interface.  
CC3120R (master)  
Serial Flash  
FLASH_SPI_CLK  
SPI_CLK  
SPI_CS  
FLASH_SPI_CS  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
SPI_MISO  
SPI_MOSI  
8-15. SPI Flash Interface  
8.15.1.1 lists the SPI Flash interface pins.  
8.15.1.1 SPI Flash Interface  
PIN NAME  
FLASH_SPI_CLK  
DESCRIPTION  
Clock (up to 20 MHz) CC3120R device to serial Flash  
CS signal from CC3120R device to serial Flash  
Data from serial Flash to CC3120R device  
FLASH_SPI_CS  
FLASH_SPI_MISO  
FLASH_SPI_MOSI  
Data from CC3120R device to serial Flash  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.15.2 SPI Host Interface  
The device interfaces to an external host using the SPI interface. The CC3120R device can interrupt the host  
using the HOST_INTR line to initiate the data transfer over the interface. The SPI host interface can work up to a  
speed of 20 MHz.  
8-16 shows the SPI host interface.  
CC3120R (slave)  
MCU  
HOST_SPI_CLK  
SPI_CLK  
SPI_nCS  
SPI_MISO  
SPI_MOSI  
INTR  
HOST_SPI_nCS  
HOST_SPI_MISO  
HOST_SPI_MOSI  
HOST_INTR  
nHIB  
GPIO  
Copyright © 2017, Texas Instruments Incorporated  
8-16. SPI Host Interface  
8.15.2.1 lists the SPI host interface pins.  
8.15.2.1 SPI Host Interface  
PIN NAME  
HOST_SPI_CLK  
DESCRIPTION  
Clock (up to 20 MHz) from MCU host to CC3120R device  
CS (active low) signal from MCU host to CC3120R device  
Data from MCU host to CC3120R device  
HOST_SPI_nCS  
HOST_SPI_MOSI  
HOST_INTR  
Interrupt from CC3120R device to MCU host  
HOST_SPI_MISO  
Data from CC3120R device to MCU host  
Active-low signal that commands the CC3120R device to enter hibernate mode (lowest  
power state)  
nHIB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.15.3 Host UART Interface  
The SimpleLink device requires the UART configuration described in 8.15.3.1.  
8.15.3.1 SimpleLink™ UART Configuration  
PROPERTY  
Baud rate  
SUPPORTED CC3120R CONFIGURATION  
115200 bps, no auto-baud rate detection, can be changed by the host up to 3 Mbps using a special command  
Data bits  
8 bits  
Flow control  
Parity  
CTS/RTS  
None  
Stop bits  
1
Bit order  
LSBit first  
Active high  
Rising edge or level 1  
Little-endian only(1)  
Host interrupt polarity  
Host interrupt mode  
Endianness  
(1) The SimpleLink device does not support automatic detection of the host length while using the UART interface.  
8.15.3.2 5-Wire UART Topology  
8-17 shows the typical 5-wire UART topology comprised of four standard UART lines plus one IRQ line from  
the device to the host controller to allow efficient low-power mode.  
nRTS  
nCTS  
TX  
nRTS  
nCTS  
TX  
HOST MCU  
UART  
CC3120R SL  
UART  
RX  
RX  
HOST_INTR(IRQ)  
HOST_INTR(IRQ)  
Copyright © 2017, Texas Instruments Incorporated  
8-17. Typical 5-Wire UART Topology  
This topology is recommended because the configuration offers the maximum communication reliability and  
flexibility between the host and the SimpleLink device.  
8.15.3.3 4-Wire UART Topology  
The 4-wire UART topology eliminates the host IRQ line (see 8-18). Using this topology requires meeting one  
of the following conditions:  
The host is always awake or active.  
The host goes to sleep, but the UART module has receiver start-edge detection for auto wakeup and does  
not lose data.  
nRTS  
nCTS  
TX  
nRTS  
nCTS  
TX  
HOST MCU  
UART  
CC3120R SL  
UART  
RX  
RX  
H_IRQ  
H_IRQ  
X
Copyright © 2017, Texas Instruments Incorporated  
8-18. 4-Wire UART Configuration  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
8.15.3.4 3-Wire UART Topology  
The 3-wire UART topology requires only the following lines (see 8-19):  
RX  
TX  
CTS  
nRTS  
nCTS  
TX  
nRTS  
nCTS  
X
HOST MCU  
UART  
CC3120R SL  
UART  
TX  
RX  
RX  
H_IRQ  
H_IRQ  
X
Copyright © 2017, Texas Instruments Incorporated  
8-19. 3-Wire UART Topology  
Using this topology requires meeting one of the following conditions:  
The host always stays awake or active.  
The host goes to sleep but the UART module has receiver start-edge detection for auto-wake-up and does  
not lose data.  
The host can always receive any amount of data transmitted by the SimpleLink device because there is no  
flow control in this direction.  
Because there is no full flow control, the host cannot stop the SimpleLink device to send its data; thus, the  
following parameters must be carefully considered:  
Maximum baud rate  
RX character interrupt latency and low-level driver jitter buffer  
Time consumed by the user's application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
9 Detailed Description  
The CC3120R Wi-Fi Internet-on-a-chip contains a dedicated Arm MCU that offloads many of the networking  
activities from the host MCU. The device includes an 802.11b/g/n radio, baseband, and MAC with a powerful  
crypto engine for a fast, secure WLAN and Internet connections with 256-bit encryption. The CC3120R device  
supports station, AP, and Wi-Fi Direct modes. The device also supports WPA2 personal and enterprise security,  
WPS 2.0, and WPA3 personal and enterprise security. The Wi-Fi network processor includes an embedded IPv6  
and IPv4 TCP/IP stack.  
9.1 Device Features  
9.1.1 WLAN  
The WLAN features are as follows:  
802.11b/g/n integrated radio, modem, and MAC supporting WLAN communication as a BSS station, AP, Wi-  
Fi Direct client and group owner with CCK and OFDM rates in the 2.4-GHz ISM band, channels 1 to 13.  
Note  
802.11n is supported only in Wi-Fi station, Wi-Fi direct, and P2P client mode  
Autocalibrated radio with a single-ended 50-Ωinterface enables easy connection to the antenna without  
requiring expertise in radio circuit design.  
Advanced connection manager with multiple user-configurable profiles stored in serial Flash allows automatic  
fast connection to an access point without user or host intervention.  
Supports all common Wi-Fi security modes for personal and enterprise networks with on-chip security  
accelerators, including: WEP, WPA/WPA2 PSK, WPA2 Enterprise (802.1x), WPA3 Personal, and WPA3  
Enterprise.  
Smart provisioning options deeply integrated within the device providing a comprehensive end-to-end  
solution. With elaborate events notification to the host, enabling the application to control the provisioning  
decision flow. The wide variety of Wi-Fi provisioning methods include:  
Access Point using HTTPS  
SmartConfig Technology: a 1-step, 1-time process to connect a CC3120R-enabled device to the home  
wireless network, removing dependency on the I/O capabilities of the host MCU; thus, it is usable by  
deeply embedded applications  
802.11 transceiver mode allows transmitting and receiving of proprietary data through a socket without  
adding MAC or PHY headers. The 802.11 transceiver mode provides the option to select the working  
channel, rate, and transmitted power. The receiver mode works with the filtering options.  
9.1.2 Network Stack  
The Network Stack features are as follows:  
Integrated IPv4, IPv6 TCP/IP stack with BSD (BSD adjacent) socket APIs for simple Internet connectivity with  
any MCU, microprocessor, or ASIC  
Note  
Not all APIs are 100% BSD compliant. Not all BSD APIs are supported.  
Support of 16 simultaneous TCP, UDP, or RAW sockets  
Support of 6 simultaneous SSL\TLS sockets  
Built-in network protocols:  
Static IP, LLA, DHCPv4, DHCPv6 with DAD and stateless autoconfiguration  
ARP, ICMPv4, IGMP, ICMPv6, MLD, ND  
DNS client for easy connection to the local network and the Internet  
Built-in network application and utilities:  
HTTP/HTTPS  
Web page content stored on serial Flash  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
RESTful APIs for setting and configuring application content  
Dynamic user callbacks  
Service discovery: Multicast DNS service discovery lets a client advertise its service without a centralized  
server. After connecting to the access point, the CC3120R device provides critical information, such as  
device name, IP, vendor, and port number.  
DHCP server  
Ping  
9-1 summarizes the NWP features.  
9-1. NWP Features  
Feature  
Description  
802.11b/g/n station  
Wi-Fi standards  
802.11b/g AP supporting up to four stations  
Wi-Fi Direct client and group owner  
Channels 1 to 13  
Wi-Fi  
Wi-Fi security  
Wi-Fi provisioning  
IP protocols  
IP addressing  
Cross layer  
WEP, WPA/WPA2 PSK, WPA2 enterprise (802.1x), WPA3 personal and enterprise  
SmartConfig technology, Wi-Fi protected setup (WPS2), AP mode with internal HTTP/HTTPS web server  
IPv4/IPv6  
Static IP, LLA, DHCPv4, DHCPv6 (Stateful) with DAD and stateless auto configuration  
ARP, ICMPv4, IGMP, ICMPv6, MLD, NDP  
UDP, TCP  
Transport  
SSLv3.0/TLSv1.0/TLSv1.1/TLSv1.2  
RAW IP  
Ping  
HTTP/HTTPS web server  
Network applications and  
utilities  
mDNS  
DNS-SD  
DHCP server  
Host interface  
Security  
UART/SPI  
Device identity  
Trusted root-certificate catalog  
TI root-of-trust public key  
Power management  
Other  
Enhanced power policy management uses 802.11 power save and deep sleep power modes  
RF Transceiver  
Programmable RX Filters with Events trigger mechanism including WoWLAN  
Recovery mechanism Restore to factory default  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
9.1.3 Security  
The SimpleLink Wi-Fi CC3120R Internet-on-a-chip device enhances the security capabilities available for  
development of IoT devices, while completely offloading these activities from the MCU to the networking  
subsystem. The security capabilities include the following key features:  
Wi-Fi and Internet Security:  
Personal and enterprise Wi-Fi security  
Personal standards  
AES (WPA2-PSK)  
TKIP (WPA-PSK)  
WEP  
Enterprise standards  
EAP Fast  
EAP PEAPv0 MSCHAPv2  
EAP PEAPv0 TLS  
EAP PEAPv1 TLS EAP LS  
EAP TTLS TLS  
EAP TTLS MSCHAPv2  
Secure sockets  
Protocol versions: SSL v3/TLS 1.0/TLS 1.1/TLS 1.2  
On-chip powerful crypto engine for fast, secure Wi-Fi and internet connections with 256-bit AES  
encryption for TLS and SSL connections  
Ciphers suites  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_SSL_RSA_WITH_RC4_128_MD5  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA  
SL_SEC_MASK_TLS_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384  
SL_SEC_MASK_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
SL_SEC_MASK_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: CC3120  
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
Server authentication  
Client authentication  
Domain name verification  
Socket upgrade to secure socket STARTTLS  
Secure HTTP server (HTTPS)  
The Trusted root-certificate catalog verifies that the CA used by the application is trusted and known secure  
content delivery  
The TI root-of-trust public key is a hardware-based mechanism that allows authenticating TI as the genuine  
origin of a given content using asymmetric keys  
Secure content delivery allows file transfer to the system in a secure way on any unsecured tunnel  
Code and Data Security:  
Secured network information: Network passwords and certificates are encrypted  
Secured and authenticated service pack: SP is signed based on TI certificate  
9.1.4 Host Interface and Driver  
Interfaces over a 4-wire serial peripheral interface (SPI) with any MCU or a processor at a clock speed of 20  
MHz.  
Interfaces over UART with any MCU with a baud rate up to 3 Mbps. A low footprint driver is provided for TI  
MCUs and is easily ported to any processor or ASIC.  
Simple APIs enable easy integration with any single-threaded or multithreaded application.  
9.1.5 System  
Works from a single preregulated power supply or connects directly to a battery  
Ultra-low leakage when disabled (hibernate mode) with a current of less than 4 µA with the RTC running  
Integrated clock sources  
9.2 Power-Management Subsystem  
The CC3120R power-management subsystem contains DC/DC converters to accommodate the different voltage  
or current requirements of the system.  
Digital DC/DC (Pin 44)  
Input: VBAT wide voltage (2.1 to 3.6 V) or preregulated 1.85 V  
ANA1 DC/DC (Pin 38)  
Input: VBAT wide voltage (2.1 to 3.6 V)  
In preregulated 1.85-V mode, the ANA1 DC/DC converter is bypassed.  
PA DC/DC (Pin 39)  
Input: VBAT wide voltage (2.1 to 3.6 V)  
In preregulated 1.85-V mode, the PA DC/DC converter is bypassed.  
The CC3120R device is a single-chip WLAN radio solution used on an embedded system with a wide-voltage  
supply range. The internal power management, including DC/DC converters and LDOs, generates all of the  
voltages required for the device to operate from a wide variety of input sources. For maximum flexibility, the  
device can operate in the modes described in 9.2.1 and 9.2.2.  
9.2.1 VBAT Wide-Voltage Connection  
In the wide-voltage battery connection, the device is powered directly by the battery or preregulated 3.3-V  
supply . All other voltages required to operate the device are generated internally by the DC/DC converters. This  
scheme supports wide-voltage operation from 2.1 to 3.6 V and is thus the most common mode for the device.  
9.2.2 Preregulated 1.85V  
The preregulated 1.85-V mode of operation applies an external regulated 1.85 V directly at pins 10, 25, 33, 36,  
37, 39, 44, 48, and 54 of the device. The VBAT and the VIO are also connected to the 1.85-V supply. This mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
provides the lowest BOM count version in which inductors used for PA DC/DC and ANA1 DC/DC (2.2 and 1 µH)  
and a capacitor (22 µF) can be avoided.  
In the preregulated 1.85-V mode, the regulator providing the 1.85 V must have the following characteristics:  
Load current capacity 900 mA  
Line and load regulation with <2% ripple with 500-mA step current and settling time of < 4 µs with the load  
step  
Note  
The regulator must be placed as close as possible to the device so that the IR drop to the device is  
very low.  
9.3 Low-Power Operating Modes  
This section describes the low-power modes supported by the device to optimize battery life.  
9.3.1 Low-Power Deep Sleep  
The low-power deep-sleep (LPDS) mode is an energy-efficient and transparent sleep mode that is entered  
automatically during periods of inactivity based on internal power optimization algorithms. The device can wake  
up in less than 3 ms from the internal timer or from any incoming host command. Typical battery drain in this  
mode is 115 µA. During LPDS mode, the device retains the software state and certain configuration information.  
The operation is transparent to the external host; thus, no additional handshake is required to enter or exit LPDS  
mode.  
9.3.2 Hibernate  
The hibernate mode is the lowest power mode in which all of the digital logic is power-gated. Only a small  
section of the logic powered directly by the main input supply is retained. The RTC is kept running and the  
device wakes up once the nHIB line is asserted by the host driver. The wake-up time is longer than LPDS mode  
at approximately 50 ms. The typical battery drain in this mode is 4.5 µA.  
Note  
Wake-up time can be extended depending on the service-pack size.  
9.3.3 Shutdown  
The shutdown mode is the lowest power-mode system-wise. All device logics are off, including the real-time  
clock (RTC). The wake-up time in this mode is longer than hibernate at approximately 1.1 s. The typical battery  
drain in this mode is 1 µA.  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
9.4 Memory  
9.4.1 External Memory Requirements  
The CC3120R device maintains a proprietary file system on the serial flash. The CC3120R file system stores the  
service pack file, system files, configuration files, certificate files, web page files, and user files. By using a  
format command through the API, users can provide the total size allocated for the file system. The starting  
address of the file system cannot be set and is always at the beginning of the serial flash. The applications  
microcontroller must access the serial flash memory area allocated to the file system directly through the  
CC3120R file system. The applications microcontroller must not access the serial flash memory area directly.  
The file system manages the allocation of serial flash blocks for stored files according to download order, which  
means that the location of a specific file is not fixed in all systems. Files are stored on serial flash using human-  
readable filenames rather than file IDs. The file system API works using plain text, and file encryption and  
decryption is invisible to the user. Encrypted files can be accessed only through the file system.  
All file types can have a maximum of 100 supported files in the file system. All files are stored in 4-KB blocks and  
thus use a minimum of 4KB of Flash space. Fail-safe files require twice the original size and use a minimum of  
8KB. Encrypted files are counted as fail-safe in terms of space. The maximum file size is 1MB.  
9-2 lists the minimum required memory consumption under the following assumptions:  
System files in use consume 64 blocks (256KB).  
Vendor files are not taken into account.  
Gang image:  
Storage for the gang image is rounded up to 32 blocks (meaning 128KB resolution).  
Gang image size depends on the actual content size of all components. Additionally, the image should be  
128KB aligned so unaligned memory is considered lost. Service pack, system files, and the 128KB  
aligned memory are assumed to occupy 256KB.  
All calculations consider that the restore-to-default is enabled.  
9-2. Recommended Flash Size  
ITEM  
File system allocation table  
System and configuration files  
Service Pack  
CC3120 [KB]  
20  
256  
264  
Gang image size  
256  
Total  
796  
Minimal Flash size  
Recommended Flash size  
8MBit  
16MBit  
Note  
The maximum supported serial flash size is 32MB (256Mb). See the Using Serial Flash on CC3120/  
CC3220 SimpleLink™ Wi-Fi® and Internet-of-Things Devices application report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
9.5 Restoring Factory Default Configuration  
The device has an internal recovery mechanism that allows rolling back the file system to its predefined factory  
image or restoring the factory default parameters of the device. The factory image is kept in a separate sector on  
the serial flash in a secure manner and cannot be accessed from the host processor. The following restore  
modes are supported:  
Noneno factory restore settings  
Enable restore of factory default parameters  
Enable restore of factory image and factory default parameters  
The restore process is performed by pulling or forcing SOP[2:0] = 110 pins and toggling the nRESET pin from  
low to high.  
The process is fail-safe and resumes operation if a power failure occurs before the restore is finished. The  
restore process typically takes about 8 seconds, depending on the attributes of the serial Flash vendor.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10 Applications, Implementation, and Layout  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
10.1.1 Typical ApplicationCC3120R Wide-Voltage Mode  
10-1 shows the typical application schematic using the CC3120R device in the wide-voltage mode of  
operation. For a full operation reference design, refer to the BoosterPack that uses the CC3120R device (see  
CC3120 SimpleLink™ and Internet of Things Hardware Design Files).  
10-1 lists the bill of materials for an application using the CC3120R device in wide-voltage mode.  
Antenna match. Pi  
network might be  
E1  
required depending on  
type of antenna.  
Optional:  
Consider adding extra decoupling  
capacitors if the battery cannot source  
the peak currents.  
L1  
FL1  
IN  
VBAT_CC  
1
3
OUT  
50Ohm  
3.3nH  
VBA T_CC  
2
4
GND  
GND  
C1  
0.5pF  
GNDGND  
VBAT_CC  
#10  
#37  
#39  
#44  
#54  
GND  
GND  
U1  
C2  
100µF  
C3  
100µF  
8
C4  
C5  
C6  
4.7µF  
C8  
0.1µF  
C7  
0.1µF  
VCC  
R1  
10k  
4.7µF  
4.7µF  
1
6
5
2
3
7
CS  
SCLK  
SI/SIO0  
C9  
0.1µF  
VBAT_CC  
GND  
GND  
GND  
GND  
U2  
GND  
GND  
GND  
SO/SIO1  
WP/SIO2  
RESET/SIO3  
R2  
100k  
4
GND  
GND  
VDD_FL  
VDD_ANA  
48  
47  
33  
9
31  
11  
VBAT_CC  
GND  
VDD_ANA1  
VDD_ANA2  
VDD_PA_IN  
VDD_DIG1  
VDD_DIG2  
VDD_PLL  
RF_BG  
VDD_PA  
VDD_DIG_CC  
SFL_CLK  
C10  
10µF  
C11  
0.1µF  
FLASH_SPI_CLK  
FLASH _SPI_CS  
14 SFL_CS  
SFL_MISO  
12 SFL_MOSI  
56  
24  
13  
FLASH _SPI_MISO  
FLASH_SPI_MOSI  
VDD_PLL  
R3  
100k  
R4  
100k  
VDD_RAM 49  
VDD_RAM  
GND  
GND  
VBAT_CC  
C12  
1µF  
C13  
C14  
C15  
C16  
61  
50  
55  
57  
CC_UART1_CTS  
CC_UART1_RTS  
CC_UART1_TX  
CC_UART1_RX  
UART1_CTS  
UART1_RTS  
UART1_TX  
UART1_RX  
CC_UART1_CTS  
CC_UART1_RTS  
CC_UART1_TX  
CC_UART1_RX  
0.1µF  
0.1µF  
37  
0.1µF  
0.1µF  
Flash Programming  
Control  
/ Host  
VIN_DCDC_ANA  
VIN_DCDC_PA  
VIN_DCDC_DIG  
VIN_IO1  
39  
44  
10  
54  
GND GND  
GND  
GND  
GND  
VIN_IO2  
58  
59  
60  
62  
L2  
TEST_58  
TEST_59  
TEST_60  
TEST_62  
R62 is needed only if  
UART is used as host  
interface.  
R5  
100k  
CC_WL_UART_TX  
CC_NWP_UART_TX  
TP1  
TP2  
38  
DCDC_ANA_SW  
2.2uH  
36  
25  
LDO_IN1  
LDO_IN2  
GND  
L3  
PA_SWP  
PA_SWN 41  
40  
4
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
NC  
C17  
10µF  
C19  
0.1µF  
C18  
0.1µF  
VDD_PA  
42  
5
CC_SPI_CLK  
CC_SPI_CS  
CC_SPI_DOUT  
CC_SPI_DIN  
CC_IRQ  
L4  
HOST_SPI_CLK  
HOST_SPI_CS  
HOST_SPI_MISO  
HOST_SPI_MOSI  
HOST_INTR  
CC_SPI_CLK  
8
7
HOST INTERFACE  
CC_SPI_CS  
CC_SPI_DOUT  
CC_SPI_DIN  
CC_IRQ  
GND  
GND  
GND  
43  
C21  
22µF  
DCDC_DIG_SW  
C20  
22µF  
6
(Ensure the nHIB line does  
not float at any time.)  
C22  
10µF  
2.2uH  
45  
46  
15  
2
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
CC_nHIB  
HIB  
CC_nHIB  
R6  
GND  
GND  
GND  
C23  
RTC_XTAL_N  
RTC_XTAL_P  
52  
51  
23  
R7  
100k  
100k  
RTC_XTAL_N  
RTC_XTAL_P  
WLAN_XTAL_P  
WLAN_XTAL_N  
WLAN_XTAL_P  
WLAN_XTAL_N  
10pF  
C24  
Y1  
32.768kHz  
GND  
22  
GND  
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VBAT_CC  
35  
34  
21  
16  
17  
18  
20  
26  
27  
28  
53  
63  
64  
GND  
SOP0  
SOP1  
SOP2/TCXO_EN  
10pF  
R14  
1.0k  
Y2  
40 MHz  
J1  
C25  
6.2pF  
2
1
3
5
32  
RESET  
4
6
C26  
6.2pF  
3
19  
29  
30  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
VBAT_CC  
R12  
65  
PAD  
GND  
CC3120RNMRGK  
GND  
R9  
100k  
R10  
100k  
R11  
2.7K  
GND  
100k  
GND  
GND  
R13  
100k  
C27  
0.1µF  
GND  
GND  
10-1. CC3120R Wide-Voltage Mode Application Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: CC3120  
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10-1. Bill of Materials for CC3120R in Wide-Voltage Mode  
QUANTI  
TY  
MANUFACTUR  
ER  
DESIGNATOR  
C1  
VALUE  
PART NUMBER  
DESCRIPTION  
GRM1555C1HR50BA01 Capacitor, Ceramic, 0.5 pF, 50 V, ±20%, C0G/NP0,  
1
0.5 pF  
Murata  
D
0402  
Capacitor, Ceramic, 100 µF, 10 V, ±20%, X5R,  
AEC-Q200 Grade 3, 1210  
2
3
C2, C3  
100 µF  
4.7 µF  
Taiyo Yuden  
TDK  
LMK325ABJ107MMHT  
C1005X5R0J475M050B Capacitor, Ceramic, 4.7 µF, 6.3 V, ±20%, X5R,  
C4, C5, C6  
C
0402  
C7, C8, C9, C11,  
C13, C14, C15,  
C16, C18, C19,  
C27  
C1005X5R1A104K050B  
A
11  
0.1 µF  
TDK  
Capacitor, Ceramic, 0.1 µF, 10 V, ±10%, X5R, 0402  
GRM188R60J106ME47  
D
3
1
2
2
2
C10, C17, C22  
C12  
10 µF  
1 µF  
Murata  
TDK  
Capacitor, Ceramic, 10 µF, 6.3 V, ±20%, X5R, 0603  
Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402  
Capacitor, Ceramic, 22 µF, 4 V, ±20%, X5R, 0603  
C1005X5R1A105K050B  
B
C1608X5R0G226M080A  
A
C20, C21  
C23, C24  
C25, C26  
22 µF  
10 pF  
6.2 pF  
TDK  
Johanson  
Technology  
Capacitor, Ceramic, 10 pF, 50 V, ±5%, C0G/NP0,  
0402  
500R07S100JV4T  
GRM1555C1H6R2CA01 Capacitor, Ceramic, 6.2 pF, 50 V, ±5%, C0G/NP0,  
D
Murata  
0402  
2.45-  
GHz  
1
E1  
Taiyo Yuden  
AH316M245001-T  
ANT Bluetooth W-LAN Zigbee® WiMAX, SMD  
Antenna  
DEA202450BT-1294C1- Multilayer Chip Band Pass Filter For 2.4GHz W-  
1
1
2
1
FL1  
L1  
1.02 dB TDK  
H
LAN/Bluetooth, SMD  
Inductor, Multilayer, Air Core, 3.3 nH, 0.3 A, 0.17  
ohm, SMD  
3.3 nH  
2.2 µH  
1 µH  
Murata  
LQG15HS3N3S02D  
Inductor, Multilayer, Ferrite, 2.2 µH, 1.3 A, 0.08  
ohm, SMD  
L2, L4  
L3  
Murata  
Murata  
LQM2HPN2R2MG0L  
LQM2HPN1R0MG0L  
Inductor, Multilayer, Ferrite, 1 µH, 1.6 A, 0.055 ohm,  
SMD  
1
1
R1  
10 k  
Vishay-Dale  
Vishay-Dale  
CRCW040210K0JNED RES, 10 k, 5%, 0.063 W, 0402  
CRCW04022K70JNED RES, 2.7 k, 5%, 0.063 W, 0402  
R11  
2.7 k  
R2, R3, R4, R5,  
R6, R7, R9, R10,  
R12, R13  
10  
1
100 k  
1.0 k  
Vishay-Dale  
CRCW0402100KJNED RES, 100 k, 5%, 0.063 W, 0402  
CRCW04021K00JNED RES, 1.0 k, 5%, 0.063 W, 0402  
R14  
Vishay-Dale  
Macronix  
Ultra-Low Power, 16-Mbit [x 1/x 2/x 4] CMOS  
MXSMIO  
(Serial Multi I/O) Flash Memory, SOP-8  
1
U1  
MX25R International Co., MX25R1635FM1IL0  
LTD  
SimpleLink™ Wi-Fi® Network Processor, internet-  
of-things Solution for MCU Applications,  
RGK0064B  
Texas  
Instruments  
1
U2  
CC3120  
CC3120RNMRGK  
Abracon  
Corporation  
1
1
Y1  
Y2  
Crystal  
Crystal  
ABS07-32.768KHZ-9-T CRYSTAL, 32.768 kHz, 9 pF, SMD  
Epson  
Q24FA20H0039600  
Crystal, 40 MHz, 8 pF, SMD  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10.1.2 Typical Application SchematicCC3120R Preregulated, 1.85-V Mode  
10-2 shows the typical application schematic using the CC3120R in preregulated, 1.85-V mode of operation.  
For addition information on this mode of operation please contact your TI representative.  
Antenna match. Pi  
network might be  
E1  
required depending on  
type of antenna.  
Optional:  
Consider adding extra decoupling  
capacitors if the battery cannot source  
the peak currents.  
L1  
FL1  
IN  
1.85V  
1
3
OUT  
50Ohm  
3.3nH  
1.85V  
2
4
GND  
GND  
C1  
0.5pF  
GNDGND  
1.85V  
1.85V  
#10  
#37  
#39  
#44  
#54  
GND  
GND  
U1  
C2  
100µF  
C3  
100µF  
8
C4  
C5  
C6  
4.7µF  
C8  
0.1µF  
C7  
0.1µF  
VCC  
R1  
10k  
4.7µF  
4.7µF  
1
6
5
2
3
7
CS  
SCLK  
SI/SIO0  
C9  
0.1µF  
C10  
GND  
GND  
GND  
GND  
U2  
GND  
GND  
GND  
SO/SIO1  
WP/SIO2  
RESET/SIO3  
10µF  
R2  
100k  
4
GND  
GND  
GND  
48  
47  
33  
9
31  
11  
1.85V  
GND  
VDD_ANA1  
VDD_ANA2  
VDD_PA_IN  
VDD_DIG1  
VDD_DIG2  
VDD_PLL  
RF_BG  
SFL_CLK  
FLASH_SPI_CLK  
FLASH _SPI_CS  
14 SFL_CS  
SFL_MISO  
13  
12 SFL_MOSI  
56  
24  
49  
FLASH _SPI_MISO  
FLASH_SPI_MOSI  
R3  
100k  
R4  
100k  
VDD_RAM  
1.85V  
C12  
1µF  
C11  
0.1µF  
C14  
C15  
C13  
VBAT_CC  
61  
50  
55  
57  
CC_UART1_CTS  
CC_UART1_RTS  
CC_UART1_TX  
CC_UART1_RX  
UART1_CTS  
UART1_RTS  
UART1_TX  
UART1_RX  
CC_UART1_CTS  
CC_UART1_RTS  
CC_UART1_TX  
CC_UART1_RX  
0.1µF  
22µF  
0.1µF  
Flash Programming  
Control  
/ Host  
37  
39  
44  
10  
54  
VIN_DCDC_ANA  
VIN_DCDC_PA  
VIN_DCDC_DIG  
VIN_IO1  
GND  
GND  
GND GND  
GND  
VIN_IO2  
58  
59  
60  
62  
TEST_58  
TEST_59  
TEST_60  
TEST_62  
R62 is needed only if  
UART is used as host  
interface.  
R5  
100k  
CC_WL_UART_TX  
CC_NWP_UART_TX  
TP1  
TP1  
38  
DCDC_ANA_SW  
36  
25  
LDO_IN1  
LDO_IN2  
GND  
40  
41  
42  
4
DCDC_PA_SW_P  
DCDC_PA_SW_N  
DCDC_PA_OUT  
NC  
C16  
0.1µF  
C17  
0.1µF  
5
CC_SPI_CLK  
CC_SPI_CS  
CC_SPI_DOUT  
CC_SPI_DIN  
CC_IRQ  
L2  
HOST_SPI_CLK  
HOST_SPI_CS  
HOST_SPI_MISO  
HOST_SPI_MOSI  
HOST_INTR  
CC_SPI_CLK  
CC_SPI_CS  
CC_SPI_DOUT  
CC_SPI_DIN  
CC_IRQ  
8
7
HOST INTERFACE  
GND  
GND  
43  
DCDC_DIG_SW  
6
(Ensure the nHIB line does  
not float at any time.)  
C18  
C19  
C20  
10µF  
2.2uH  
45  
46  
15  
2
DCDC_ANA2_SW_P  
DCDC_ANA2_SW_N  
0.1µF  
0.1µF  
CC_nHIB  
C21  
HIB  
CC_nHIB  
R6  
10pF  
C22  
Y1  
32.768kHz  
GND  
GND  
GND  
52  
51  
23  
22  
R7  
100k  
100k  
RTC_XTAL_N  
RTC_XTAL_P  
WLAN_XTAL_P  
WLAN_XTAL_N  
GND  
GND  
10pF  
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VBAT_CC  
35  
34  
21  
16  
17  
18  
20  
26  
27  
28  
53  
63  
64  
GND  
SOP0  
SOP1  
SOP2/TCXO_EN  
R13  
1.0k  
Y2  
40 MHz  
J1  
C23  
6.2pF  
2
4
6
1
3
5
32  
RESET  
C24  
6.2pF  
3
19  
29  
30  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R8  
100k  
R9  
100k  
R10  
2.7K  
1.85V  
65  
PAD  
GND  
CC3120RNMARGKR  
GND  
GND  
R11  
100k  
GND  
R12  
100k  
GND  
C25  
0.1µF  
GND  
GND  
10-2. CC3120R Preregulated 1.85-V Mode Application Circuit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10-2 lists the bill of materials for an application using the CC3120R device in preregulated 1.85-V mode.  
10-2. Bill of Materials for CC3120R in Preregulated, 1.85-V Mode  
QUANTI  
TY  
MANUFACTURE  
R
DESIGNATOR  
VALUE  
PART NUMBER  
DESCRIPTION  
GRM1555C1HR50BA Capacitor, Ceramic, 0.5 pF, 50 V, ±20%, C0G/NP0,  
1
C1  
0.5 pF  
MuRata  
Taiyo Yuden  
TDK  
01D  
0402  
Capacitor, Ceramic, 100 µF, 10 V, ±20%, X5R, AEC-  
Q200 Grade 3, 1210  
2
3
C2, C3  
100 µF  
4.7 µF  
LMK325ABJ107MMHT  
C1005X5R0J475M050 Capacitor, Ceramic, 4.7 µF, 6.3 V, ±20%, X5R, 0402  
BC  
C4, C5, C6  
C7, C8, C9, C11,  
C14, C15, C16,  
C17, C18, C19, C25  
Capacitor, Ceramic, 0.1 µF, 10 V, ±10%, X5R, 0402  
C1005X5R1A104K050  
BA  
11  
0.1 µF  
TDK  
GRM188R60J106ME4 Capacitor, Ceramic, 10 µF, 6.3 V, ±20%, X5R, 0603  
7D  
2
1
1
2
2
C10, C20  
C12  
10 µF  
1 µF  
MuRata  
TDK  
C1005X5R1A105K050 Capacitor, Ceramic, 1 µF, 10 V, ±10%, X5R, 0402  
BB  
C1608X5R0G226M08 Capacitor, Ceramic, 22 µF, 4 V, ±20%, X5R, 0603  
0AA  
C13  
22 µF  
10 pF  
6.2 pF  
TDK  
Johanson  
Technology  
Capacitor, Ceramic, 10 pF, 50 V, ±5%, C0G/NP0,  
C21, C22  
C23, C24  
500R07S100JV4T  
0402  
GRM1555C1H6R2CA Capacitor, Ceramic, 6.2 pF, 50 V, ±5%, C0G/NP0,  
MuRata  
01D  
0402  
2.45-  
ANT Bluetooth W-LAN Zigbee® WiMAX, SMD  
1
E1  
GHz  
Taiyo Yuden  
AH316M245001-T  
Antenna  
DEA202450BT-1294C Multilayer Chip Band Pass Filter For 2.4-GHz W-  
1
1
1
1
FL1  
L1  
1.02 dB TDK  
1-H  
LAN/Bluetooth, SMD  
Inductor, Multilayer, Air Core, 3.3 nH, 0.3 A, 0.17  
ohm, SMD  
3.3 nH  
2.2 µH  
10 k  
MuRata  
LQG15HS3N3S02D  
Inductor, Multilayer, Ferrite, 2.2 µH, 1.3 A, 0.08 ohm,  
SMD  
L2  
MuRata  
LQM2HPN2R2MG0L  
CRCW040210K0JNE Resistor, 10 k, 5%, 0.063 W, 0402  
D
R1  
Vishay-Dale  
R2, R3, R4, R5, R6,  
R7, R8, R9, R11,  
R12  
Resistor, 100 k, 5%, 0.063 W, 0402  
CRCW0402100KJNE  
D
10  
100 k  
Vishay-Dale  
Vishay-Dale  
CRCW04022K70JNE Resistor, 2.7 k, 5%, 0.063 W, 0402  
D
1
1
R10  
R13  
2.7 k  
1.0 k  
CRCW04021K00JNE  
Vishay-Dale  
Macronix  
Resistor, 1.0 k, 5%, 0.063 W, 0402  
D
Ultra-Low Power, 16M-BIT [x 1/x 2/x 4] CMOS  
1
1
U1  
U2  
MX25R International Co., MX25R1635FM1IL0  
LTD  
MXSMIO  
(Serial Multi I/O) Flash Memory, SOP-8  
Texas  
SimpleLink™ Wi-Fi®Network Processor, internet-of-  
things Solution for MCU Applications, RGK0064B  
CC3120  
CC3120RNMRGK  
Instruments  
Abracon  
Corportation  
ABS07-32.768KHZ-9- Crystal, 32.768 kHz, 9 pF, SMD  
T
1
1
Y1  
Y2  
Crystal  
Crystal  
Epson  
Q24FA20H0039600  
Crystal, 40 MHz, 8 pF, SMD  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10.2 PCB Layout Guidelines  
This section details the PCB guidelines to speed up the PCB design using the CC3120R VQFN device. Follow  
these guidelines ensures that the design will minimize the risk with regulatory certifications including FCC, ETSI,  
and CE. For more information, see CC3120 and CC3220 SimpleLinkWi-Fi® and IoT Solution Layout  
Guidelines.  
10.2.1 General PCB Guidelines  
Use the following PCB guidelines:  
Verify the recommended PCB stackup in the PCB design guidelines, as well as the recommended layers for  
signals and ground.  
Ensure that the PCB footprint of the VQFN follows the information in .  
Ensure that the GND and solder paste of the VQFN PCB follow the recommendations provided in CC3120  
and CC3220 SimpleLink™ Wi-Fi® and IoT Solution Layout Guidelines.  
Decoupling capacitors must be as close as possible to the VQFN device.  
10.2.2 Power Layout and Routing  
Three critical DC/DC converters must be considered for the CC3120R device.  
Analog DC/DC converter  
PA DC/DC converter  
Digital DC/DC converter  
Each converter requires an external inductor and capacitor that must be laid out with care. DC current loops are  
formed when laying out the power components.  
10.2.2.1 Design Considerations  
The following design guidelines must be followed when laying out the CC3120R device:  
Route all of the input decoupling capacitors (C11, C13, and C18) on L2 using thick traces, to isolate the RF  
ground from the noisy supply ground. This step is also required to meet the IEEE spectral mask  
specifications.  
Maintain the thickness of power traces to be greater than 12 mils. Take special consideration for power  
amplifier supply lines (pins 33, 40, 41, and 42), and all input supply pins (pins 37, 39, and 44).  
Ensure the shortest grounding loop for the PLL supply decoupling capacitor (pin 24).  
Place all decoupling capacitors as close to the respective pins as possible.  
Power budget: The CC3120R device can consume up to 450 mA for 3.3 V, 670 mA for 2.1 V, and 700 mA for  
1.85 V, for 24 ms during the calibration cycle.  
Ensure the power supply is designed to source this current without any issues. The complete calibration (TX  
and RX) can take up to 17 mJ of energy from the battery over a time of 24 ms.  
The CC3120R device contains many high-current input pins. Ensure the trace feeding these pins is capable  
of handling the following currents:  
VIN_DCDC_PA input (pin 39) maximum is 1 A  
VIN_DCDC_ANA input (pin 37) maximum is 600 mA  
VIN_DCDC_DIG input (pin 44) maximum is 500 mA  
DCDC_PA_SW_P (pin 40) and DCDC_PA_SW_N (pin 41) switching nodes maximum is 1 A  
DCDC_PA_OUT output node (pin 42) maximum 1 A  
DCDC_ANA_SW switching node (pin 38) maximum is 600 mA  
DCDC_DIG_SW switching node (pin 43) maximum is 500 mA  
VDD_PA_IN supply (pin 33) maximum is 500 mA  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10-3 shows the ground routing for the input decoupling capacitors.  
10-3. Ground Routing for the Input Decoupling Capacitors  
The ground return for the input capacitors are routed on L2 to reduce the EMI and improve the spectral mask.  
This routing must be strictly followed because it is critical for the overall performance of the device.  
10.2.3 Clock Interfaces  
The following guidelines are for the slow clock.  
The 32.768-kHz crystal must be placed close to the VQFN package.  
Ensure that the load capacitance is tuned according to the board parasitics to the frequency tolerance is  
within ±150 ppm.  
The ground plane on layer two is solid below the trace lanes and there is ground around these traces on the  
top layer.  
The following guidelines are for the fast clock.  
The 40-MHz crystal must be placed close to the VQFN package.  
Ensure that he load capacitance is tuned according to the board parasitics to the frequency tolerance is  
within ±100 ppm at room temperature. The total frequency across parts, temperature, and with aging, must  
be ±25 ppm to meet the WLAN specification.  
Ensure that no high-frequency lines are routed close to the crystal routing to avoid noise degradation.  
Ensure that crystal tuning capacitors are close to the crystal pads.  
Make both traces (XTAL_N and XTAL_P) as close to parallel as possible and approximately the same length.  
The ground plane on layer two is solid below the trace lines and that there is ground around these traces on  
the top layer.  
See CC31xx & CC32xx Frequency Tuning for frequency tuning.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
10.2.4 Digital Input and Output  
The following guidelines are for the digital I/O.  
Route SPI and UART lines away from any RF traces.  
Keep the length of the high-speed lines as short as possible to avoid transmission line effects.  
Keep the line lower than 1/10 of the rise time of the signal to ignore transmission line effects. This is required  
if the traces cannot be kept short. Place the resistor at the source end, closer to the device that is driving the  
signal.  
Add a series-terminating resistor for each high-speed line (such as SPI_CLK or SPI_DATA) to match the  
driver impedance to the line. Typical terminating-resistor values range from 27 to 36 Ωfor a 50-Ωline  
impedance.  
Route high-speed lines with a ground reference plane continuously below it to offer good impedance  
throughout. This routing also helps shield the trace against EMI.  
Avoid stubs on high-speed lines to minimize the reflections. If the line must be routed to multiple locations,  
use a separate line driver for each line.  
If the lines are longer compared to the rise time, add series-terminating resistors near the driver for each  
high-speed line to match the driver impedance to the line. Typical terminating-resistor values range from 27 to  
36 Ωfor a 50-Ωline impedance.  
10.2.5 RF Interface  
The following guidelines are for the RF interface. Follow guidelines specified in the vendor-specific antenna  
design guides (including placement of the antenna). Also see CC3120 and CC3220 SimpleLink™ Wi-Fi® and IoT  
Solution Layout Guidelines for general antenna guidelines.  
Ensure that the antenna is matched for 50-Ω. TI recommends using a Pi-matching network.  
Ensure that the area underneath the BPF pads is grounded on layer one and layer two, and ensure that the  
minimum filter requirements are met.  
Verify that the Wi-Fi RF trace is a 50-Ω, impedance-controlled trace with a reference to solid ground.  
The RF trace bends must be made with gradual curves. Avoid using 90-degree bends.  
The RF traces must not have sharp corners.  
Do not place traces or ground under the antenna section.  
The RF traces must have via stitching on the ground plane beside the RF trace on both sides.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: CC3120  
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
11 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed in this section.  
11.1 Development Tools and Software  
For the most up-to-date list of development tools and software, see the CC3120 Tools & Software product page.  
Users can also click the "Alert Me" button on the top right corner of the CC3120 Tools & Software page to stay  
informed about updates related to the CC3120MOD device.  
Development Tools  
SimpleLinkWi-Fi® The supported devices are: CC3100, CC3200, CC3120R, and CC3220x.  
Starter Pro  
The SimpleLinkWi-Fi® Starter Pro mobile App is a new mobile application for  
SimpleLink provisioning. The app goes along with the embedded provisioning library and  
example that runs on the device side (see SimpleLink™ Wi-Fi® CC3120 SDK plugin and  
TI SimpleLink ™ Wi-Fi® CC3220 Software Development Kit (SDK)). The new  
provisioning release is a TI recommendation for Wi-Fi provisioning using SimpleLink Wi-  
Fi products. The provisioning release implements advanced AP mode and SmartConfig™  
technology provisioning with feedback and fallback options to ensure successful process  
has been accomplished. Customers can use both embedded library and the mobile  
library for integration to their end products.  
SimpleLinkWi-Fi® The CC3120R device is supported.  
CC3120 SDK plugin  
The CC3120 SDK contains drivers, many sample applications for Wi-Fi features and  
internet, and documentation needed to use the CC3120 Internet-on-a chip™ solution.  
This SDK can be used with TIs MSP432P401R LaunchPad, or SimpleLink Studio, a  
PC tool that allows MCU development with CC3120. You can also use the SDK as  
example code for any platform. All sample applications in the SDK are supported on TI’  
s MSP432P401R ultra-low power MCUs with Code Composer Studio IDE and TI RTOS.  
In addition, many of the applications support IAR.  
SimpleLinkStudio The CC3120R device is supported.  
for CC31xx  
SimpleLink Studio for CC31xx is a Windows®-based software tool used to aid in the  
development of embedded networking applications and software for microcontrollers.  
Using SimpleLink Studio for CC31xx, embedded software developers can develop and  
test applications using any desktop IDE, such as Visual Studio or Eclipse, and connect  
their applications to the cloud using the CC31xx BoosterPackPlug-in Module. The  
application can then be easily ported to any microcontroller. With the SimpleLink Wi-Fi  
CC31xx solution, customers now have the flexibility to add Wi-Fi to any microcontroller  
(MCU). This Internet-on-a-chip solution contains all you need to easily create IoT  
solutions: security, quick connection, cloud support, and more. For more information on  
CC31xx, visit SimpleLinkWi-Fi® Solutions.  
SimpleLinkWi-Fi® The supported devices are: CC3100, CC3200, and CC3220x.  
Radio Testing Tool  
The SimpleLink™ Wi-Fi® Radio Testing Tool is a Windows-based software tool for RF  
evaluation and testing of SimpleLink Wi-Fi CC3120 and CC3220 designs during  
development and certification. The tool enables low-level radio testing capabilities by  
manually setting the radio into transmit or receive modes. Using the tool requires  
familiarity and knowledge of radio circuit theory and radio test methods.  
Created for the Internet of Things (IoT), the SimpleLink Wi-Fi CC31xx and CC32xx  
family of devices include on-chip Wi-Fi, Internet, and robust security protocols with no  
prior Wi-Fi experience needed for faster development. For more information on these  
devices, visit SimpleLinkWi-Fi® family, Internet-on-a chip™ solutions.  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
CC3220 Software  
Development Kit  
(SDK)  
The CC3120R device is supported.  
The SimpleLink Wi-Fi CC3220 SDK contains drivers for the CC3220 programmable  
MCU, 30+ sample applications, and documentation needed to use the solution. The SDK  
also contains the Flash programmer, a command line tool for flashing software,  
configuring network and software parameters (SSID, access point channel, network  
profile, and so on), system files, and user files (certificates, web pages, and so on). This  
SDK can be used with TIs SimpleLInk Wi-Fi CC3220 LaunchPaddevelopment kit.  
The SDK has a variety of support offerings. All sample applications in the SDK are  
supported on the integrated Cortex-M4 processor with CCS IDE and no RTOS. In  
addition, a few of the applications support IAR, Free RTOS, and TI-RTOS.  
Uniflash Standalone  
Flash Tool for TI  
Microcontrollers  
(MCU), Sitara  
CCS Uniflash is a standalone tool used to program on-chip flash memory on TI MCUs  
and on-board flash memory for Sitara processors. Uniflash has a GUI, command line,  
and scripting interface. CCS Uniflash is available free of charge.  
Processors &  
SimpleLink Devices  
TI Designs and Reference Designs  
The TI Designs Reference Design Library is a robust reference design library spanning analog, embedded  
processor, and connectivity. Created by TI experts to help you jumpstart your system design, all TI Designs  
include schematic or block diagrams, BOMs, and design files to speed your time to market.  
11.2 Firmware Updates  
TI updates features in the service pack for this module with no published schedule. Due to the ongoing changes,  
TI recommends that the user has the latest service pack in their module for production.  
To stay informed, click the SDK Alert mebutton the top right corner of the product page, or visit SimpleLink  
™ Wi-Fi® CC3120 SDK plugin.  
11.3 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of the  
CC3120R device and support tools (see 11-1).  
CC  
3120  
R
NM  
A
RGK R/T  
PACKAGING  
R = tape/reel  
T = small reel  
PREFIX  
X = perproduction device  
no prefix = production device  
DEVICE FAMILY  
CC = wireless connectivity  
PACKAGE  
RGK = 9-mm x 9-mm VQFN  
SERIES NUMBER  
3 = Wi-Fi Centric  
REVISION  
A = Revision A  
R = ROM  
NM = No Memory  
11-1. CC3120R Device Nomenclature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: CC3120  
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
11.4 Documentation Support  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com (CC3120). In the upper right corner, click the "Alert me" button. This registers you to receive a  
weekly digest of product information that has changed (if any). For change details, check the revision history of  
any revised document. The current documentation that describes the processor, related peripherals, and other  
technical collateral follows.  
The following documents provide support for the CC3120 device.  
Application Reports  
CC3120 and CC3220 SimpleLink CC3120 and CC3220 SimpleLink™ Wi-Fi® Embedded Programming  
Wi-Fi® Embedded Programming  
SimpleLink™ CC3120, CC3220 Wi- This application report describes the best practices for power  
Fi® Internet-on-a chip™ Networking management and extended battery life for embedded low-power Wi-Fi  
Sub-System Power Management  
devices such as the SimpleLink™ Wi-Fi® Internet-on-a chip™ solution  
from Texas Instruments™.  
SimpleLink™ CC3120, CC3220 Wi- The SimpleLinkWi-Fi® CC3120 and CC3220 Internet-on-a chip™  
Fi® Internet-on-a chip ™ Solution family of devices from Texas Instruments™ offer a wide range of built-in  
Built-In Security Features  
security features to help developers address a variety of security needs,  
which is achieved without any processing burden on the main  
microcontroller (MCU). This document describes these security-related  
features and provides recommendations for leveraging each in the  
context of practical system implementation.  
SimpleLink™ CC3120, CC3220 Wi- This document describes the OTA library for the SimpleLink™ Wi-Fi®  
Fi® and Internet of Things Over-the- CC3x20 family of devices from Texas Instruments™ and explains how to  
Air Update  
prepare a new cloud-ready update to be downloaded by the OTA library.  
SimpleLink™ CC3120, CC3220 Wi- This guide describes the provisioning process, which provides the  
Fi® Internet-on-a chip ™ Solution SimpleLink ™ Wi-Fi® device with the information (network name,  
Device Provisioning  
password, and so forth) needed to connect to a wireless network.  
Transfer of TI's Wi-Fi® Alliance This document explains how to employ the Wi-Fi® Alliance (WFA)  
Certifications to Products Based on derivative certification transfer policy to transfer a WFA certification,  
SimpleLink™  
already obtained by Texas Instruments, to a system you have developed.  
Using Serial Flash on SimpleLink™ This application note is divided into two parts. The first part provides  
CC3120 and CC3220 Wi-Fi® and important guidelines and best- practice design techniques to consider  
Internet-of-Things Devices  
when choosing and embedding a serial Flash paired with the CC3120  
and CC3220 (CC3x20) devices. The second part describes the file  
system, along with guidelines and considerations for system designers  
working with the CC3x20 devices.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: CC3120  
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
User's Guides  
SimpleLink™ Wi-Fi® and Internet This document provides software (SW) programmers with all of the required  
of Things CC3120 and CC3220 knowledge for working with the networking subsystem of the SimpleLink™  
Network Processor  
Wi-Fi® devices. This guide provides basic guidelines for writing robust,  
optimized networking host applications, and describes the capabilities of the  
networking subsystem. The guide contains some example code snapshots,  
to give users an idea of how to work with the host driver. More  
comprehensive code examples can be found in the formal software  
development kit (SDK). This guide does not provide a detailed description of  
the host driver APIs.  
SimpleLink ™ Wi-Fi® CC3120 The SimpleLink™ Wi-Fi® CC3120 wireless network processor from Texas  
BoosterPack ™ Plug-In Module Instruments™ provides users the flexibility to add Wi-Fi to any MCU. This  
and IoT Solution  
user's guide explains the various configurations of the CC3120 BoosterPack  
™ Plug-In Module.  
SimpleLink ™ Wi-Fi® CC3120 This document provides the design guidelines of the 4-layer PCB used for  
and CC3220 and IoT Solution the CC3120 and CC3220 SimpleLink™ Wi-Fi® family of devices from Texas  
Layout Guidelines  
Instruments™. The CC3120 and CC3220 devices are easy to lay out and are  
available in quad flat no-leads (QFNS) packages. When designing the board,  
follow the suggestions in this document to optimize performance of the  
board.  
SimpleLink ™ Wi-Fi® CC3120 This guide is intended to help users in the initial setup and demonstration of  
Internet-on-a-chip ™  
SDK  
Solution the different demos in the CC3120 SDK. The guide lists the software and  
hardware components required to get started, and explains how to install the  
supported integrated development environment (IDE), SimpleLink CC3120  
SDK, and the various other tools required.  
SimpleLink ™  
Wi-Fi®  
and The Radio Tool serves as a control panel for direct access to the radio, and  
Internet-on-a-chip™ CC3120 and can be used for both the radio frequency (RF) evaluation and for certification  
CC3220 Solution Radio Tool  
purposes. This guide describes how to have the tool work seamlessly on  
Texas Instruments™ evaluation platforms such as the BoosterPack™ plus  
FTDI emulation board for CC3120 devices, and the LaunchPadfor  
CC3220 devices.  
SimpleLink ™ Wi-Fi® CC3120  
and CC3220 Provisioning for  
Mobile Applications  
This guide describes TIs SimpleLinkWi-Fi® provisioning solution for  
mobile applications, specifically on the usage of the Androidand iOS®  
building blocks for UI requirements, networking, and provisioning APIs  
required for building the mobile application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: CC3120  
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
UniFlash CC3120 and CC3220 This document describes the installation, operation, and usage of the  
SimpleLink ™ and SimpleLink ImageCreator tool as part of the UniFlash.  
Wi-Fi®  
Internet-on-a chip ™ Solution  
ImageCreator and Programming  
Tool  
More Literature  
RemoTI Manifest  
CC3120 SimpleLink™ WI-Fi® and Internet of Things  
CC3120, CC3220 SimpleLink™ Wi-Fi® and Internet of Things Design Checklist  
CC3120 hardware design files.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
SimpleLink, Internet-on-a chip, SmartConfig, 德州仪(TI), BoosterPack, LaunchPad, and TI E2E™  
are trademarks of Texas Instruments.  
WPA, WPA2, WPA3, and are trademarks of Wi-Fi Alliance.  
E2Eis a trademark of TI.  
WiMAXare trademarks of WiMAX Forum.  
Wi-Fi® and Wi-Fi Direct® are registered trademarks of Wi-Fi Alliance.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
Zigbee® are registered trademarks of Zigbee Alliance.  
Windows® is a registered trademark of Microsoft Inc.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 Export Control Notice  
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as  
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled  
product restricted by other applicable national regulations, received from disclosing party under nondisclosure  
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export  
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.  
Department of Commerce and other competent Government authorities to the extent required by those laws.  
11.9 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: CC3120  
 
 
 
 
 
CC3120  
www.ti.com.cn  
ZHCSOK6A FEBRUARY 2017 REVISED MAY 2021  
12 Mechanical, Packaging, and Orderable Information  
12.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: CC3120  
 
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CC3120RNMARGKR  
CC3120RNMARGKT  
ACTIVE  
VQFN  
VQFN  
RGK  
64  
64  
2500 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
CC3120R  
NMA  
ACTIVE  
RGK  
250 RoHS & Green NIPDAU | NIPDAUAG Level-3-260C-168 HR  
CC3120R  
NMA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jul-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CC3120RNMARGKR  
CC3120RNMARGKT  
VQFN  
VQFN  
RGK  
RGK  
64  
64  
2500  
250  
330.0  
180.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CC3120RNMARGKR  
CC3120RNMARGKT  
VQFN  
VQFN  
RGK  
RGK  
64  
64  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGK0064B  
VQFN - 1 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7.5  
6.3 0.1  
SYMM  
(0.2) TYP  
17  
32  
16  
33  
EXPOSED  
THERMAL PAD  
SYMM  
65  
2X 7.5  
0.30  
64X  
1
48  
60X 0.5  
PIN 1 ID  
0.18  
64  
49  
0.1  
C A B  
0.5  
0.3  
0.05  
64X  
4222201/B 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGK0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SEE SOLDER MASK  
DETAIL  
SYMM  
64X (0.6)  
64  
49  
64X (0.24)  
1
48  
60X (0.5)  
8X (1.1)  
(R0.05) TYP  
18X (1.2)  
(0.6) TYP  
SYMM  
65  
(8.8)  
(
0.2) TYP  
VIA  
16  
33  
17  
32  
(0.6) TYP  
18X (1.2)  
8X  
(1.1)  
(8.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222201/B 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGK0064B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
64  
(1.2) TYP  
49  
64X (0.6)  
64X (0.24)  
1
48  
60X (0.5)  
(R0.05) TYP  
(1.2) TYP  
65  
SYMM  
(8.8)  
16  
33  
METAL  
TYP  
17  
32  
SYMM  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 65  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4222201/B 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

CC3130

具有共存性、WPA3 和 16 个 TLS 插槽的 SimpleLink™ Arm Cortex-M3 Wi-Fi® 网络处理器
TI

CC3130A48M020

Cable Assembly,
MOLEX

CC3130RNMRGKR

具有共存性、WPA3 和 16 个 TLS 插槽的 SimpleLink™ Arm Cortex-M3 Wi-Fi® 网络处理器 | RGK | 64 | -40 to 85
TI

CC3135

SimpleLink™ 32 位 Arm Cortex-M3 双频带 Wi-Fi® 无线网络处理器
TI

CC3135MOD

SimpleLink™ 32 位 Arm Cortex-M3 双频带 Wi-Fi® 无线网络处理器模块
TI

CC3135MODRNMMOBR

SimpleLink™ 32 位 Arm Cortex-M3 双频带 Wi-Fi® 无线网络处理器模块 | MOB | 63 | -40 to 85
TI

CC3135RNMRGKR

SimpleLink™ 32 位 Arm Cortex-M3 双频带 Wi-Fi® 无线网络处理器 | RGK | 64 | -40 to 85
TI

CC3200

CC3200 SimpleLink™ Wi-Fi® and Internet-of-Things Solution, a Single-Chip Wireless MCU
TI

CC3200MOD

CC3200MOD SimpleLink™ Wi-Fi® and Internet-of-Things Module Solution, a Single-Chip Wireless MCU
TI

CC3200MODR1M2AMOBR

CC3200MOD SimpleLink™ Wi-Fi® and Internet-of-Things Module Solution, a Single-Chip Wireless MCU
TI

CC3200MODR1M2AMOBT

CC3200MOD SimpleLink™ Wi-Fi® and Internet-of-Things Module Solution, a Single-Chip Wireless MCU
TI

CC3200MOD_15

CC3200MOD SimpleLink™ Wi-Fi® and Internet-of-Things Module Solution, a Single-Chip Wireless MCU
TI