CDCE6214RGER [TI]

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105;
CDCE6214RGER
型号: CDCE6214RGER
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105

时钟 时钟发生器
文件: 总55页 (文件大小:5707K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CDCE6214  
SNAS811 JULY 2020  
CDCE6214 Ultra-Low Power Clock Generator With One PLL, Four Differential Outputs,  
Two Inputs, and Internal EEPROM  
1 Features  
Integrated EEPROM with two pages and  
external select pin. In-situ programming  
allowed.  
1
Configurable high performance, low-power, frac-N  
PLL with RMS jitter with spurs (12 kHz – 20 MHz,  
Fout > 100 MHz) as:  
Supports 100-Ω systems  
Low electromagnetic emissions  
Small footprint: 24-pin VQFN (4 mm × 4 mm)  
Integer mode:  
Differential output: 350 fs typical, 600 fs  
maximum  
2 Applications  
LVCMOS output: 1.05 ps typical, 1.5 ps  
maximum  
PCIe Gen 1 - Gen 5 clocking  
Data Center & Enterprise Computing, PC &  
Notebook  
Fractional mode:  
Differential output: 1.7 ps typical, 2.1 ps  
maximum  
Enterprise Machine - Multi-Function Printer  
Test & Measurement, Handheld Equipment  
LVCMOS output: 2.0 ps typical, 4.0 ps  
maximum  
3 Description  
Supports PCIe Gen1/2/3/4 with SSC and Gen  
1/2/3/4/5 without SSC  
The CDCE6214 is a four-channel, ultra-low power,  
medium grade jitter, clock generator that can  
generate five independent clock outputs selectable  
between various modes of drivers. The input source  
could be a single-ended or differential input clock  
source, or a crystal. The CDCE6214 features a frac-N  
PLL to synthesize unrelated base frequency from any  
input frequency. The CDCE6214 can be configured  
through the I2C interface. In the absence of the serial  
interface, the GPIO pins can be used in Pin Mode to  
configure the product into distinctive configurations.  
2.335-GHz to 2.625-GHz internal VCO  
Typical power consumption: 65 mA for 4-output  
channel, 23 mA for 1-output channel.  
Universal clock input, two reference inputs for  
redundancy  
Differential AC-coupled or LVCMOS: 10 MHz  
to 200 MHz  
Crystal: 10 MHz to 50 MHz  
Flexible output clock distribution  
Device Information(1)  
4 channel dividers: Up to 5 unique output  
frequencies from 24 kHz to 328.125 MHz  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
CDCE6214  
VQFN (24)  
4.00 mm × 4.00 mm  
Combination of LVDS-like, LP-HCSL or  
LVCMOS outputs on OUT0 – OUT4 pins  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Glitchless output divider switching and output  
channel synchronization  
Application Example CDCE6214  
Individual output enable through GPIO and  
register  
Voltage Domain  
1.8V / 2.5V / 3.3V  
FPGA  
Frequency margining options  
DCO mode: frequency increment/decrement  
with 10ppb or less step-size  
Crystal  
DAC  
Voltage Domain  
1.8V / 2.5V / 3.3V  
CDCE6214  
Fully-integrated, configurable loop bandwidth: 100  
kHz to 1.6 MHz  
MCU  
Single or mixed supply for level translation: 1.8  
V/2.5 V/3.3 V  
Ethernet  
LVCMOS  
Crystal Copy  
PCIe  
Voltage Domain  
1.8V / 2.5V / 3.3V  
Configurable GPIOs and flexible configuration  
options  
I2C-compatible interface: up to 400 kHz  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
Table of Contents  
7.25 Typical Characteristics.......................................... 12  
Parameter Measurement Information ................ 14  
8.1 Reference Inputs..................................................... 14  
8.2 Outputs.................................................................... 14  
8.3 Serial Interface........................................................ 15  
8.4 PSNR Test .............................................................. 15  
8.5 Clock Interfacing and Termination .......................... 16  
Detailed Description ............................................ 18  
9.1 Overview ................................................................. 18  
9.2 Functional Block Diagram ....................................... 18  
9.3 Feature Description................................................. 18  
9.4 Device Functional Modes........................................ 30  
9.5 Programming........................................................... 30  
1
2
3
4
5
6
7
Features.................................................................. 1  
8
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description (cont.) ................................................. 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 EEPROM Characteristics.......................................... 6  
7.6 Reference Input, Single-Ended Characteristics........ 6  
7.7 Reference Input, Differential Characteristics ............ 6  
7.8 Reference Input, Crystal Mode Characteristics ........ 6  
7.9 General-Purpose Input Characteristics..................... 6  
7.10 Triple Level Input Characteristics............................ 7  
7.11 Logic Output Characteristics................................... 7  
7.12 Phase Locked Loop Characteristics ....................... 7  
7.13 Closed-Loop Output Jitter Characteristics .............. 7  
7.14 Input and Output Isolation....................................... 8  
7.15 Buffer Mode Characteristics.................................... 8  
7.16 PCIe Spread Spectrum Generator.......................... 8  
7.17 LVCMOS Output Characteristics ............................ 9  
7.18 LP-HCSL Output Characteristics ............................ 9  
7.19 LVDS Output Characteristics ................................ 10  
7.20 Output Synchronization Characteristics................ 10  
7.21 Power-On Reset Characteristics........................... 10  
7.22 I2C-Compatible Serial Interface Characteristics.... 10  
9
10 Application and Implementation........................ 38  
10.1 Application Information.......................................... 38  
10.2 Typical Application ............................................... 39  
11 Power Supply Recommendations ..................... 40  
11.1 Power-Up Sequence............................................. 40  
11.2 Decoupling ............................................................ 40  
12 Layout................................................................... 41  
12.1 Layout Guidelines ................................................. 41  
12.2 Layout Examples................................................... 41  
13 Device and Documentation Support ................. 43  
13.1 Device Support .................................................... 43  
13.2 Receiving Notification of Documentation Updates 43  
13.3 Support Resources ............................................... 43  
13.4 Trademarks........................................................... 43  
13.5 Electrostatic Discharge Caution............................ 43  
13.6 Glossary................................................................ 43  
7.23 Timing Requirements, I2C-Compatible Serial  
Interface ................................................................... 11  
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 43  
7.24 Power Supply Characteristics ............................... 11  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
July 2020  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
 
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
5 Description (cont.)  
On-chip EEPROM can be used to change the configuration, which is pre-selectable through the pins. The device  
provides frequency margining options with glitch-free operation to support system design verification tests (DVT)  
and Ethernet Audio-Video Bridging (eAVB). Fine frequency margining is available on any output channel by  
steering the fractional feedback divider in DCO mode.  
Internal power conditioning provides excellent power supply ripple rejection (PSRR), reducing the cost and  
complexity of the power delivery network. The analog and digital core blocks operate from either a 1.8-V, 2.5-V,  
or 3.3-V ±5% supply, and output blocks operate from a 1.8-V, 2.5-V, or 3.3-V ±5% supply.  
The CDCE6214 enables high-performance clock trees from a single reference at ultra-low power with a small  
footprint. The factory- and user-programmable EEPROM features make the CDCE6214 an easy-to-use, instant-  
on clocking device with a low power consumption.  
6 Pin Configuration and Functions  
CDCE6214 RGE Package  
24-Pin VQFN  
Top View  
SECREF_P  
SECREF_N  
VDD_REF  
REFSEL  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
OUT2_P  
OUT2_N  
VDDO_12  
VDDO_34  
OUT3_P  
OUT3_N  
DAP  
PRIREF_P  
PRIREF_N  
Not to scale  
(1) (2) (3) (4) (5)  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
POWER  
Die Attach Pad. The DAP is an electrical connection and provides a thermal dissipation path.  
For proper electrical and thermal performance of the device, the DAP must be connected to  
PCB ground plane.  
DAP  
G
VDD_REF  
VDD_VCO  
3
P
P
1.8 V/2.5 V/3.3 V Power Supply for Reference Input and Digital.  
1.8 V/2.5 V/3.3 V Power Supply for PLL/VCO.  
24  
(1) G = Ground, P = Power  
(2) I = Input, I/O = Input/Output, O = Output  
(3) I, RPUPD = Input with Resistive Pull-up and Pull-down  
(4) I, RPU = Input with Resistive Pull=up  
(5) I/O, RPU = Input/Output with resistive pull-up  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
(1) (2) (3) (4)  
Pin Functions  
(5) (continued)  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
16  
VDDO_12  
P
P
1.8 V/2.5 V/3.3 V Power Supply for OUT1 and OUT2 channels  
VDDO_34  
15  
1.8 V/2.5 V/3.3 V Power Supply for OUT0, OUT3, and OUT4 channels  
INPUT BLOCK  
HW_SW_CT  
RL  
Manual selection pin for EEPROM pages (3-state). Weak Pullup/Pulldown. RPU = 50 kΩ. RPD  
= 50 kΩ.  
23  
5
I, RPUPD  
I
PRIREF_P  
Primary reference clock. Accepts a differential or single-ended input. Input pins need AC-  
coupling capacitors and internally biased in differential mode. For LVCMOS, input should be  
provided on PRIREF_P and the non-driven input pin should be pulled down to ground.  
Internal biasing for differential mode is disabled in single-ended mode.  
PRIREF_N  
6
I
Manual selection pin of reference input (3-state). Weak Pullup/Pulldown. RPU = 50 kΩ. RPD  
50 kΩ.  
=
REFSEL  
4
1
I, RPUPD  
I
SECREF_P  
Secondary reference clock. Accepts a differential or single-ended input or XTAL. Input pins  
need AC-coupling capacitors and internally biased in differential mode. For XTAL input,  
connect crystal between SECREF_P and SECREF_N pin. SECREF_P is XOUT, SECREF_N  
is XIN. This device do not need any power limiting resistor on XOUT. For LVCMOS input,  
input should be provided on SECREF_P, and the non-driven input pin should be pulled down  
to ground. Internal biasing for differential mode is disabled in single-ended and XTAL mode.  
SECREF_N  
2
I
OUTPUT BLOCK  
OUT0  
LVCMOS Output 0. Reference Input can be bypassed into this output. Output slew-rate  
configurable on all LVCMOS outputs.  
7
O
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
OUT4_P  
OUT4_N  
22  
21  
18  
17  
14  
13  
10  
9
O
O
O
O
O
O
O
O
LVDS-like/LP-HCSL/LVCMOS Output Pair 1. Programmable driver with LVDS-like/LP-HCSL  
or 2x LVCMOS outputs.  
LVDS-like/LP-HCSL Output Pair 2. Programmable driver with LVDS-like/LP-HCSL outputs.  
LVDS-like/LP-HCSL Output Pair 3. Programmable driver with LVDS-like/LP-HCSL outputs.  
LVDS-like/LP-HCSL/LVCMOS Output Pair 4. Programmable driver with LVDS-like/LP-HCSL  
or 2x LVCMOS outputs.  
DIGITAL CONTROL / INTERFACES  
STATUS output or GPIO1 input. Weak pullup resistor when configured as Input. RPU = 50  
kΩ. Pullup resistor disabled in output mode.  
GPIO1  
GPIO4  
PDN  
20  
11  
8
I/O, RPU  
I/O, RPU  
I, RPU  
STATUS output or GPIO4 input. Weak pullup resistor when configured as Input. RPU = 50  
kΩ. Pullup resistor disabled in output mode.  
Device Power-down/RESET (active low) or SYNCN. Weak pullup resistor. RPU = 50 kΩ.  
Pullup resistor disabled in output mode.  
I2C Serial Data (bidirectional, open-drain) or GPIO2 input. Requires an external pullup  
resistor to VDD_REF in I2C mode. I2C slave address is initialized from on-chip EEPROM.  
Fail-safe Input.  
I2C Serial Clock or GPIO3 input. Requires an external pullup resistor to VDD_REF in I2C  
mode. Fail-safe Input.  
SDA/GPIO2  
SCL/GPIO3  
19  
12  
I/O  
I
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VDD_REF, VDD_VCO, VDDO_12, VDDO_34  
PRIREF_P, PRIREF_N, SECREF_P, SECREF_N  
Supply Voltage  
Input Voltage  
-0.3  
3.63  
V
VDD_REF +  
0.3  
-0.3  
-0.3  
-0.3  
V
V
V
GPIO1, SDA/GPIO2, SCL/GPIO3, GPIO4, REFSEL, HW_SW_CTRL,  
PDN  
VDD_REF +  
0.3  
VDDO_X(2)  
+
Input Voltage  
OUT0, OUT1_P, OUT1_N, OUT2_P, OUT2_N, OUT3_P, OUT3_N,  
OUT4_P, OUT4_N(2)  
Output Voltage  
0.3  
125  
150  
TJ  
Junction Temperature  
Storage temperature  
ºC  
ºC  
Tstg  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VDDO_X refers to the output supply for a specific output channel, where X denotes the channel index.  
7.2 ESD Ratings  
VALUE  
2000  
750  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VDD_VCO  
Core supply voltage  
Output supply voltage  
1.71  
1.8, 2.5, 3.3  
3.465  
V
VDDO_12,  
VDDO_34  
1.71  
1.8, 2.5, 3.3  
1.8, 2.5, 3.3  
3.465  
V
VDD_REF  
TA  
Reference supply voltage  
1.71  
-40  
3.465  
105  
125  
145  
30  
V
Ambient temperature  
ºC  
ºC  
ºC  
ms  
TJ  
Junction temperature  
-40  
TLOCK  
tRAMP  
Continuous lock over temperature (without VCO calibration)  
Maximum supply voltage ramp time(1)  
0.1  
(1) VDD pin should monotonically reach 95% of its final value within supply ramp time. All VDD pins were tied together for this evaluation.  
For non-monotonic or slower power supply ramp, it is recommended to pull-down PDN pin until VDD pins have reached 95% of its final  
value. PDN pin has a 50 kpullup resistor. When PDN pin cannot be actively controlled, TI recommends to add a capacitor to GND on  
PDN pin to delay the release of reset.  
7.4 Thermal Information  
CDCE6214-Q1  
THERMAL METRIC(1)  
RGE (VQFN)  
24 PINS  
32.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
RθJC(bot)  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
32.5  
12.2  
Junction-to-case (bottom) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.0  
0.4  
ψJB  
12.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
7.5 EEPROM Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
cycles  
years  
nEEcyc  
tEEret  
EEPROM programming cycles  
EEPROM data retention  
each word  
10  
10  
7.6 Reference Input, Single-Ended Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN_Ref  
VIH  
Reference frequency  
10  
200  
MHz  
0.8 ×  
VDD_REF  
Input high voltage  
Input low voltage  
LVCMOS Input Buffer  
V
V
0.2 ×  
VDD_REF  
VIL  
LVCMOS Input Buffer  
20% - 80%  
dVIN/dT  
IDC  
Input slew rate  
1
40  
V/ns  
%
Input duty cycle  
60  
100  
5
IIN_LEAKAGE  
CIN_REF  
Input leakage current  
Input capacitance  
-100  
µA  
pF  
at 25°C  
7.7 Reference Input, Differential Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fIN_Ref  
Reference frequency  
10  
200  
MHz  
Differential input voltage swing, peak-to-  
peak  
VIN_DIFF  
VDD_REF = 2.5 V/3.3 V  
0.4  
0.4  
1.6  
1.0  
V
V
Differential input voltage swing, peak-to-  
peak  
VIN_DIFF  
VDD_REF = 1.8 V  
20% - 80%  
dVIN/dT  
IDC  
Input slew rate  
1
40  
V/ns  
%
Input duty cycle  
60  
IIN_LEAKAGE  
CIN_REF  
Input leakage current  
Input capacitance  
-100  
100  
µA  
pF  
at 25°C  
5
7.8 Reference Input, Crystal Mode Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
Ω
fIN_Xtal  
ZESR  
ZESR  
ZESR  
Crystal frequency  
Fundamental mode  
10  
50  
Crystal equivalent series resistance  
Crystal equivalent series resistance  
Crystal equivalent series resistance  
fXTAL = 10 MHz to 16 MHz  
fXTAL = 16 MHz to 30 MHz  
fXTAL = 30 MHz to 50 MHz  
60  
50  
Ω
30  
Ω
Using on-chip load capacitance. A  
supported Crystal is within  
CL  
Crystal load capacitance  
5
3
12.8  
pF  
PXTAL  
Crystal tolerated drive power  
On-Chip load capacitance  
A supported crystal tolerates up to  
Programmable in typ. 200 fF steps  
200  
9.1  
µW  
pF  
CXIN_LOAD  
(1) For detailed application report on configuring the XTAL Input, please refer to SNAA331: CDCI6214 and CDCE6214-Q1 design with  
crystal input.  
7.9 General-Purpose Input Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8 ×  
VDD_REF  
VIH  
Input high voltage  
V
0.2 ×  
VDD_REF  
VIL  
IIH  
Input low voltage  
V
Input high level current  
VIH = VDD_REF, GPIO[1:4], PDN  
-5  
5
µA  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
General-Purpose Input Characteristics (continued)  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
Input low level current  
Input low level current  
Input slew rate  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
IIL  
VIL = GND, GPIO[2:3]  
-5  
5
IIL  
VIL = GND, GPIO[1], GPIO[4], PDN  
20% - 80%  
-100  
0.5  
100  
µA  
dVIN/dT  
V/ns  
TPULSE_WIDT  
Pulse width for correct operation  
10  
30  
ns  
H
RPU  
CIN  
Pullup Resistance  
Pin Capacitance  
Pins PDN, GPIO[1], GPIO[4]  
55  
80  
10  
k  
pF  
7.10 Triple Level Input Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8 ×  
VDD_REF  
VIH  
VIM  
VIL  
Input high voltage  
V
0.41 ×  
VDD_REF  
0.5 ×  
VDD_REF  
0.58 ×  
VDD_REF  
Input mid voltage  
Input low voltage  
Float pin  
V
V
0.2 ×  
VDD_REF  
IIH  
IIL  
Input high level current  
Input low level current  
VIH = VDD_REF  
VIL = GND  
20  
50  
100  
-20  
µA  
µA  
-100  
-50  
7.11 Logic Output Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.8 ×  
VDD_REF  
VOH  
VOL  
Output high voltage  
V
0.2 ×  
VDD_REF  
Output low voltage  
V
7.12 Phase Locked Loop Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
MHz  
fPFD  
Phase Detector Frequency  
Integer and Fractional PLL mode  
1
100  
fVCO  
fBW  
Voltage Controlled Oscillator Frequency  
Configurable closed-loop PLL Bandwidth  
Voltage-Controlled Oscillator Gain  
Voltage-Controlled Oscillator Gain  
2335  
100  
2625  
1600  
MHz  
REF = 25 MHz  
fVCO = 2.4 GHz  
fVCO = 2.5 GHz  
kHz  
KVCO  
KVCO  
140  
175  
MHz/V  
MHz/V  
Allowable Temperature Drift for  
Continuous Lock(1)  
oC  
|ΔTCL  
|
dT/dt 20 K / min  
145  
0.1  
fMAX-ERROR  
Maximum frequency error with frac-N PLL  
ppm  
(1) The maximum allowable temperature drift for continuous lock: how far the temperature can drift in either direction from the value it was  
at the time, when the On-Chip VCO was calibrated while the PLL stays in lock throughout the temperature drift. The internal VCO  
calibration takes place: at device start-up, when the device is reset using the RESET pin and when REGISTER bit is changed. This  
implies the device will work over the entire frequency range, but if the temperature drifts more than the 'maximum allowable temperature  
drift for continuous lock', then it is necessary to re-calibrate the VCO, using the appropriate REGISTER bit, to ensure the PLL stays in  
lock. Regardless of what temperature the part was initially calibrated at, the temperature can never drift outside the ambient temperature  
range of -40° C to 105° C.  
7.13 Closed-Loop Output Jitter Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RMS jitter with spurs from 12 kHz to 20  
MHz , Input Crystal = 25 MHz, Differential  
OUTx > 100 MHz, int-PLL  
tRJ_CL  
RMS Phase Jitter  
350  
600  
fs  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
Closed-Loop Output Jitter Characteristics (continued)  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RMS jitter with spurs from 12 kHz to 20  
MHz, Input Crystal = 25 MHz, Differential  
OUTx > 100 MHz, frac-PLL  
tRJ_CL  
RMS Phase Jitter(1)  
1600  
2100  
fs  
PCIe Gen 3 Filter applied, XIN = Crystal  
25 MHz, OUTx = 100 MHz, frac-N PLL  
with and without SSC, LP-HCSL or LVDS  
output  
tRJ_CL, PCIE  
RMS Phase Jitter  
475  
1000  
fs  
(1) FIN = 25MHz, FOUT= 161.1328MHz, FPFD = 25MHz, RMS Noise = 1.83ps. FIN = 25MHz, FOUT= 161.1328MHz, FPFD = 50MHz, RMS  
Noise = 1.33ps. FIN = 25MHz, FOUT= 148.5MHz, FPFD = 25MHz, RMS Noise = 1.74ps. FIN = 25MHz, FOUT= 148.5MHz, FPFD = 50MHz,  
RMS Noise = 1.43ps. FIN = 25MHz, FOUT= 148.3516MHz, FPFD = 25MHz, RMS Noise = 1.6ps. FIN = 25MHz, FOUT= 148.3516MHz,  
FPFD = 50MHz, RMS Noise = 1.5ps. FIN = 25MHz, FOUT= 106.5MHz, FPFD = 25MHz, RMS Noise = 0.8ps. FIN = 25MHz, FOUT  
=
106.5MHz, FPFD = 50MHz, RMS Noise = 1.3ps.  
7.14 Input and Output Isolation  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Crosstalk between reference inputs,  
PRIREF = 27MHz LVCMOS, SECREF =  
25MHz XTAL  
PISOLATION  
PISOLATION  
PISOLATION  
PISOLATION  
Reference input isolation  
-64  
dB  
Crosstalk between reference inputs,  
PRIREF = 100MHz LVDS, SECREF =  
25MHz LVCMOS  
Reference input isolation  
Clock output isolation  
Clock output isolation  
-72  
-65  
-42  
dB  
dB  
dB  
Crosstalk between clock outputs, OUT1 =  
100MHz LP-HCSL, OUT2 = 156.25MHz  
LVDS, PFD = 25MHz, int-PLL  
Crosstalk between clock outputs, OUT1 =  
156.25MHz LVDS, OUT0 = 25MHz  
LVCMOS  
7.15 Buffer Mode Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
int. Range from 10 kHz to 20 MHz , REF  
tRJ_ADD  
Additive RMS Phase Jitter, System Level = HCSL 100 MHz with 0.5 V/ns, OUTx =  
100 MHz LP-HCSL  
350  
fs  
tPROP,  
REF = LVCMOS 25 MHz, OUTx = 25  
Input-to-output propagation delay  
MHz LVCMOS  
1
ns  
ns  
LVCMOS  
tPROP,  
REF = AC-LVDS 100 MHz, OUTx = 100  
Input-to-output propagation delay(1)  
2.3  
MHz. Measured on OUT0  
Differential  
ZDB mode, LVCMOS input = LVCMOS  
tPROP-  
Input-to-output delay variation in ZDB  
output = 25 MHz, PLL BW = 300 kHz to  
mode  
-400  
400  
ps  
VARIATION  
900 kHz across temperature  
(1) OUT1/OUT4 and OUT2/OUT3 are matched pair-wise. OUT1/OUT4 has LVCMOS buffer while OUT2/OUT3 do not have LVCMOS  
buffer. There is an additional skew 150 ps- 250 ps between OUT1/OUT4 and OUT2/OUT3.  
7.16 PCIe Spread Spectrum Generator  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
31.5  
6.8  
MAX  
UNIT  
kHz  
dB  
fSSC-RATE  
PAMPL-RED  
PAMPL-RED  
fSSC-STEP  
SSC modulation rate  
OUTx = 100 MHz  
30  
33  
SSC amplitude reduction  
SSC amplitude reduction  
Down and Center spread SSC step size  
OUTx = 100 MHz, -0.25% Down spread  
OUTx = 100 MHz, -0.50% Down spread  
OUTx = 100 MHz  
9.9  
dB  
0.25  
%
tSSC_FREQ_DE Down spread minimum/maximum  
OUTx = 100 MHz. FPFD = 25 MHz, 50  
MHz, 100 MHz  
-0.5  
-0.5  
0
%
%
deviation  
VIATION  
tSSC_FREQ_DE Center spread minimum/maximum  
OUTx = 100 MHz. FPFD = 25 MHz, 50  
MHz, 100 MHz  
0.5  
deviation  
VIATION  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
7.17 LVCMOS Output Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
fO_LVCMOS  
Output frequency  
2 pF to GND, normal mode  
0.024  
200  
MHz  
IOH = 1 mA, VDDO_x is corresponding  
supply voltage.  
0.8 ×  
VDDO_x  
VOH_LVCMOS Output high voltage  
V
V
IOL = 1 mA, VDDO_x is corresponding  
supply voltage.  
0.2 ×  
VDDO_x  
VOL_LVCMOS  
Output low voltage  
IOH  
Output high current  
Output high current  
Output high current  
Output low current  
Output low current  
Output low current  
Output rise/fall time  
Vout = 0.8 × VDDO_x, VDDO_x = 1.8 V  
Vout = 0.8 × VDDO_x, VDDO_x = 2.5 V  
Vout = 0.8 × VDDO_x, VDDO_x = 3.3 V  
Vout = 0.2 × VDDO_x, VDDO_x = 1.8 V  
Vout = 0.2 × VDDO_x, VDDO_x = 2.5 V  
Vout = 0.2 × VDDO_x, VDDO_x = 3.3 V  
20/80%, CL= 5 pF, normal mode  
-6  
-8.5  
-11.2  
6
mA  
mA  
mA  
mA  
mA  
mA  
ps  
IOH  
IOH  
IOL  
IOL  
8.5  
IOL  
11.2  
500  
TRISE-FALL  
300  
700  
20/80%, CL= 5 pF, slow mode, measured  
on OUT0  
TRISE-FALL  
TSKEW  
Output rise/fall time  
1000  
100  
ps  
ps  
ps  
LVCMOS-to-LVCMOS outputs, same  
divide value  
Output-to-output skew(1)  
LVCMOS-to-Differential outputs, same  
divide value  
TSKEW  
ODC  
Output-to-output skew(1)  
Output duty cycle  
400  
Not in PLL bypass mode  
Normal mode  
45  
45  
50  
55  
75  
85  
%
RON_LVCMOS Output impedance  
RON_LVCMOS Output impedance  
60  
65  
Slow mode  
(1) OUT1/OUT4 and OUT2/OUT3 are matched pair-wise. OUT1/OUT4 has LVCMOS buffer while OUT2/OUT3 do not have LVCMOS  
buffer. OUT1/OUT4 is matched within TOUT-SKEW. OUT2/OUT3 is matched within TOUT-SKEW  
.
7.18 LP-HCSL Output Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
0.024  
660  
TYP  
MAX  
328.125  
850  
UNIT  
MHz  
mV  
mV  
fO_HCSL  
VOH  
Output frequency  
Output high voltage(1)  
VOL  
Output low voltage  
Differential Output Impedance(1)  
-150  
90  
150  
ZDIFF  
100  
110  
12-in, 100 Ω ±10% diff. trace with 2  
pF±5%/pin in FR4.  
VCROSS  
ΔVCROSS  
dV/dt  
Absolute crossing point  
250  
550  
140  
4
mV  
mV  
Relative crossing point variation  
Slew rate for rising and falling edge  
with respect to average crossing point  
differential, at VCROSS +/-150 mV,  
1
V/ns  
(2)  
fO_HCSL=100 MHz  
single-ended, at VCROSS +/-75 mV,  
fO_HCSL=100 MHz  
ΔdV/dt  
Slew rate matching  
20  
%
(2)  
Measured on differential output at 100  
MHz and specifies minimum voltage from  
zero crossing  
Vrb  
Output ringback voltage  
-100  
100  
mV  
Tstable  
ODC  
Time elapsed until ringback  
Output duty cycle  
Minimum time until ringback is allowed  
Not in PLL bypass mode  
500  
45  
ps  
%
55  
TOUT-SKEW  
Output skew(3)  
Same divide value, LP-HCSL to LP-HCSL  
100  
ps  
(1) Differential Output characteristic is trimmed in factory and trim settings are stored in EEPROM. Parameter not valid in Fall-back mode.  
(2) PCIe test load slew rate  
(3) OUT1/OUT4 and OUT2/OUT3 are matched pair-wise. OUT1/OUT4 has LVCMOS buffer while OUT2/OUT3 do not have LVCMOS  
buffer. OUT1/OUT4 is matched within TOUT-SKEW. OUT2/OUT3 is matched within TOUT-SKEW. There is an additional skew 150 ps- 250 ps  
between OUT1/OUT4 and OUT2/OUT3.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
7.19 LVDS Output Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
0.024  
1.025  
0.85  
TYP  
MAX  
328.125  
1.375  
UNIT  
MHz  
V
fO_PRG_AC  
VCM  
Output frequency  
Output common mode(1)  
Output common mode(1)  
VDDO_X = 2.5 V, 3.3 V  
1.2  
VCM  
VDDO_X = 1.8 V  
0.95  
1.05  
V
VDDO_X = 1.8 V (Fout < 200 MHz), 2.5 V,  
3.3 V.  
VOD  
Differential output voltage(1)  
0.25  
0.30  
0.45  
V
VOD  
Differential output voltage(1)  
Output rise/fall times  
Output duty cycle  
VDDO_X = 1.8 V & Fout > 200 MHz  
LVDS (20% to 80%)  
0.22  
450  
45  
0.30  
650  
0.45  
900  
55  
V
tRF  
ps  
%
ps  
ODC  
TOUT-SKEW  
Not in PLL bypass mode  
Output skew(2)  
Same divide value, LVDS to LVDS output  
100  
(1) Output Common Mode voltage and Differential output swing is dependent upon register settings DIFFBUF_IBIAS_TRIM,  
LVDS_CMTRIM_DEC and LVDS_CMTRIM_INC. Parameters defined for DIFFBUF_IBIAS_TRIM=6h, LVDS_CMTRIM_DEC=0h and  
LVDS_CMTRIM_INC=0h. Output Common Mode tested at DC.  
(2) OUT1/OUT4 and OUT2/OUT3 are matched pair-wise. OUT1/OUT4 has LVCMOS buffer while OUT2/OUT3 do not have LVCMOS  
buffer. OUT1/OUT4 is matched within TOUT-SKEW. OUT2/OUT3 is matched within TOUT-SKEW. There is an additional skew 150 ps- 250 ps  
between OUT1/OUT4 and OUT2/OUT3.  
7.20 Output Synchronization Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ±5%, 2.5 V ±5%, 3.3 V ±5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
with respect to PLL reference rising edge  
at 100 MHz with R=1  
tSU_SYNC  
tH_SYNC  
Setup time SYNC pulse  
3
ns  
with respect to PLL reference rising edge  
at 100 MHz with R=1  
Hold time SYNC pulse  
3
ns  
ns  
With R = 1, at least 2 PFD periods + 24  
feedback pre-scaler periods  
tPWH_SYNC  
High pulse width for SYNC  
60  
6
tPWL_SYNC  
tEN  
Low pulse width for SYNC  
With R = 1, at least 1 PFD period  
tri-state to first valid rising edge  
last valid falling edge to tri-state  
ns  
Individual output enable time(1)  
Individual output disable time(1)  
4
4
nCK  
nCK  
tDIS  
(1) Output clock cycles of respective output channel. Global output enable handled by digital logic, additional propagation will be added.  
7.21 Power-On Reset Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VTHRESHOLD POR threshold voltage(1)  
0.875  
1.275  
V
Start-up time after VDD reaches 95% to  
the time outputs are toggling with correct  
frequency (input = crystal or external  
clock)  
tSTARTUP  
Start-up time  
9
ms  
ms  
timing requirement for any VDD pin while  
PDN=LOW  
tVDD  
Power supply ramp time(2)  
0.1  
30  
(1) POR threshold voltage is the power supply voltage at which the internal reset is deasserted. It is qualified internally with PDN.  
(2) VDD pin should monotonically reach 95% of its final value within supply ramp time. Parameters specified by characterization. All VDD  
pins were tied together for this evaluation. For non-monotonic or slower power supply ramp, it is recommended to pull-down PDN pin  
until VDD pins have reached 95% of its final value. PDN pin has a 50 kpullup resistor. When PDN pin cannot be actively controlled, TI  
recommends to add a capacitor to GND on PDN pin to delay the release of reset.  
7.22 I2C-Compatible Serial Interface Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.7 ×  
VDD_REF  
VIH  
Input Voltage, Logic High  
V
0.3 ×  
VDD_REF  
VIL  
IIH  
Input Voltage, Logic Low  
Input Leakage Current  
V
VDD_REF ± 10%  
-5  
5
µA  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
I2C-Compatible Serial Interface Characteristics (continued)  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
Low Level Output Voltage  
Input Capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VOL  
CIN  
at 3 mA sink current  
0.4  
10  
pF  
COUT  
Output Capacitance  
max bus capacitance per pin  
400  
pF  
7.23 Timing Requirements, I2C-Compatible Serial Interface  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ns  
tPW_G  
fSCL  
Pulse Width of Suppressed Glitches  
SCL Clock Frequency  
50  
Standard  
100  
400  
0.6  
kHz  
kHz  
µs  
fSCL  
SCL Clock Frequency  
Fast-mode  
tSU_STA  
Setup Time Start Condition  
SCL=VIH before SDA=VIL  
SCL=VIL after SCL=VIL After this time, the  
first clock edge is generated.  
tH_STA  
Hold Time Start Condition  
0.6  
µs  
tSU_SDA  
tSU_SDA  
tH_SDA  
tVD_SDA  
tVD_SDA  
tPWH_SCL  
tPWH_SCL  
tPWL_SCL  
tPWL_SCL  
tIR  
Setup Time Data  
SDA valid after SCL=VIL, fSCL=100 kHz  
SDA valid after SCL=VIL, fSCL=400 kHz  
SDA valid before SCL=VIH  
fSCL=100 kHz(3)  
250  
100  
0(2)  
ns  
ns  
Setup Time Data  
Hold Time Data(1)  
(3)µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Valid Data or Acknowledge Time  
Valid Data or Acknowledge Time  
Pulse Width High, SCL  
Pulse Width High, SCL  
Pulse Width Low, SCL  
Pulse Width Low, SCL  
Input Rise Time  
3.45  
0.9  
fSCL=400 kHz(2)  
fSCL=100 kHz  
4.0  
0.6  
4.7  
1.3  
fSCL=400 kHz  
fSCL=100 kHz  
fSCL=400 kHz  
300  
300  
250  
tIF  
Input Fall Time  
ns  
tOF  
Output Fall Time  
10 pF COUT 400 pF  
ns  
tSU_STOP  
Setup Time Stop Condition  
0.6  
1.3  
µs  
Time between a Stop and a Start  
condition  
tBUS  
Bus-Free Time  
µs  
(1) tH_SDA is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.  
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
(3) The maximum tH_SDA could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode, but must be less than the maximum of tVD_SDA by  
a transition time. This maximum must only be met if the device does not stretch the LOW period (tPWL_SCL) of the SCL signal. If the  
clock stretches the SCL, the data must be valid by the setup time before it releases the clock.  
7.24 Power Supply Characteristics  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IDD_REF  
IDD_VCO  
VDD_REF supply current  
25 MHz XTAL, DBL ON  
8
mA  
fVCO=2400 MHz, PSA = PSB = 4 and N-  
divider = 48  
VCO and PLL current  
14  
22  
mA  
mA  
IOD=6, LP-HCSL, 100MHz on OUT3 and  
OUT4, 25MHz on OUT0  
IDD_OUT  
Output Channel Current  
IOD = 6, LP-HCSL, 100 MHz on OUT1  
and OUT2  
IDD_OUT  
IDD_PDN  
IDD_TYP  
Output Channel Current  
Power down current  
Typical current  
17.5  
2.8  
50  
mA  
mA  
mA  
using reset pin / bits  
5
4 x 100 MHz LVDS case using crystal  
input and doubler, SSC off  
70  
4 x 100 MHz LP-HCSL case using crystal  
input and doubler, SSC off  
IDD_TYP  
LPSNR  
Typical current  
65  
90  
mA  
dB  
OUTx = 100 MHz differential, on one of  
VDDx injected sine wave at fINJ = 100 kHz  
Power supply noise rejection  
-61  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
Power Supply Characteristics (continued)  
VDD_VCO, VDDO_12, VDDO_34, VDD_REF = 1.8 V ± 5%, 2.5 V ± 5%, 3.3 V ± 5% and TA = -40°C to 105°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTx = 100 MHz differential, on one of  
VDDx injected sine wave at fINJ = 1 MHz  
LPSNR  
Power supply noise rejection  
-57  
dB  
7.25 Typical Characteristics  
Measured at room temperature  
Reference: Crystal  
Closed-Loop Phase  
Input 25 MHz Noise from 2.4-GHz  
VCO  
100-MHz LP-HCSL  
Reference: Crystal  
Closed-Loop Phase  
156.25-MHz LVDS  
Input 25 MHz Noise from 2.5-GHz  
VCO  
Figure 2. 100-MHz LP-HCSL Output  
Figure 1. 156.25-MHz LVDS Output  
Reference: Crystal  
Input 25 MHz  
Closed-Loop Phase  
Noise from 2.376-  
GHz VCO  
148.5-MHz LVDS  
Reference: Crystal  
Input 25 MHz  
Closed-Loop Phase  
Noise from 2.4576-  
GHz VCO  
24.576-MHz  
LVCMOS  
Figure 3. 148.5-MHz LVDS Output  
Figure 4. 24.576-MHz LVCMOS Output  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Typical Characteristics (continued)  
Measured at room temperature  
Figure 6. All Power Supply = 3.3 V, VDD Ramp Time = 1 ms  
Figure 5. All Power Supply = 1.8 V, VDD Ramp Time = 1 ms  
Figure 8. All Power Supply = 3.3 V, VDD Ramp Time = 10 ms  
Figure 7. All Power Supply = 1.8 V, VDD Ramp Time = 10 ms  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
8 Parameter Measurement Information  
8.1 Reference Inputs  
Signal  
< 2 VPP  
100  
DUT  
Generator  
Figure 9. Differential AC-Coupled Input  
8.2 Outputs  
Scope  
LVCMOS  
50  
DUT  
GND  
Figure 10. LVCMOS Output Test Configuration  
Scope  
50  
DUT  
LVDS  
50ꢀ  
GND  
Figure 11. LVDS Output Test Configuration, AC-Coupled  
Scope  
(50 )  
DUT  
Balun  
Figure 12. LP-HCSL Test Configuration, DC-Coupled  
50  
>1MΩ  
CDCE6214  
Scope  
50 ꢀ  
GND  
Figure 13. LVDS Common Mode Voltage, DC-Coupled  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Outputs (continued)  
QAx, QBx  
VOD  
nQAx, nQBx  
80%  
0 V  
VOUT,DIFF,PP = 2xVOD  
20%  
tf  
tf  
Figure 14. Differential Output Voltage and Rise/Fall Time  
8.3 Serial Interface  
ACK  
STOP  
STOP  
START  
tIR  
tIF  
tPWL_SCL tPWH_SCL  
VIH  
VIL  
SCL  
tH_STA  
tSU_STA  
tBUS  
tSU_SDA  
tIR  
tH_SDA  
tSU_STOP  
tIF  
VIH  
VIL  
SDA  
Figure 15. I2C Timing  
8.4 PSNR Test  
Sine  
Wave  
Modulator  
Power Supply  
Phase Noise/  
Spectrum  
Analyzer  
Signal  
Generator  
DUT  
Device Output  
Balun  
Reference  
Input  
Figure 16. PSNR Test Configuration  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
8.5 Clock Interfacing and Termination  
8.5.1 Reference Input  
Rs  
LVCMOS  
Driver  
CDCE6214  
Figure 17. Single-Ended LVCMOS to Reference  
Signal  
Generator  
100 ꢀ  
< 2 VPP  
DUT  
Figure 18. Differential Input to Reference  
8.5.2 Outputs  
Rs  
CDCE6214  
DUT  
GND  
Figure 19. LVCMOS Output  
CDCE6214  
DUT  
Figure 20. LVDS Output - DC-Coupled. Place 100Ω close to the DUT  
VCM  
CDCE6214  
DUT  
VCM  
Figure 21. LVDS Output - AC-Coupled  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Clock Interfacing and Termination (continued)  
Rs  
Rs  
CDCE6214  
DUT  
Figure 22. LP-HCSL Output  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The CDCE6214 clock generator is a Phase-Locked Loop (PLL) with integrated voltage controlled Oscillator  
(VCO) and integrated loop filter with selectable input reference. Input reference supports XTAL, Differential and  
single-ended LVCMOS inputs. The PLL consists of Frac-N PLL with integrated VCO range of 2335MHz -  
2625MHz. The output of the VCO is connected to the clock distribution network, which includes multiple  
frequency dividers and multiplexers. The output of these network is connected to four output channels with  
configurable differential and single ended buffers. There are 4 power supply pins which can be independently  
configured to 1.8V/2.5V/3.3V. CDCE6214 can be configured using the I2C serial interface or built-in EEPROM at  
power up. This device supports various modes such as Digitally Controlled Oscillator (DCO) through GPIO/I2C  
and Internal/external Zero Delay mode.  
9.2 Functional Block Diagram  
Outputs (1.8/2.5/3.3 V)  
7
OUT0  
LVCMOS  
Inputs (1.8/2.5/3.3 V)  
0
22  
OUT1  
LVDS,  
LP-HCSL,  
LVCMOS  
Integer Div  
14-b  
1
21  
2
5
6
PRIREF  
Differential,  
LVCMOS  
APLL (1.8/2.5/3.3 V)  
0
1
2
18  
17  
OUT2  
LVDS,  
LP-HCSL  
x2  
Integer Div  
14-b  
VCO: 2.335-2.625 GHz  
R div  
8-b  
f
/4 - /6  
1
2
SECREF  
Differential,  
XTAL, LVCMOS  
XO  
0
1
2
14  
13  
OUT3  
LVDS,  
LP-HCSL  
Integer Div  
14-b  
N Div  
MARGIN  
/4 - /6  
15-b int,  
24-b frac  
4
REFSEL  
0
1
2
10  
9
OUT4  
LVDS,  
LP-HCSL,  
LVCMOS  
Integer Div  
14-b  
Control (1.8/2.5/3.3 V)  
Registers  
EEPROM  
Device Control  
and Status  
Power Conditioning  
Figure 23. CDCE6214 Clock Generator With 2 Inputs, 1 Fractional-N PLL, and 4 Outputs  
9.3 Feature Description  
The following sections describe the individual blocks of the CDCE6214 ultra low power clock generator.  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Feature Description (continued)  
9.3.1 Reference Block  
A reference clock to the PLL is fed to pins 1 (SECREF_P) and 2 (SECREF_N) or to pins 5 (PRIREF_P) and 6  
(PRIREF_N). There are multiple input stages to accommodate various clock references. Pins 1 and 2 can be  
used to connect a XTAL across it or provide an external single-ended LVCMOS clock or a differential clock.  
These modes are selectable through register programming. When differential mode is selected, appropriated  
biasing is applied to the pin. In case of differential mode, external AC-coupling capacitor is needed. When XTAL  
or LVCMOS mode is selected, biasing circuitry is disengaged. Pins 5 and 6 can be used to provide an external  
single-ended LVCMOS clock or a differential clock.  
The reference MUX selects the reference clock for the PLL. Setting REFSEL pin = L selects SECREF input,  
while setting REFSEL pin = H selects PRIREF Input. Alternatively, this can be configured through the register  
settings.  
Table 1. Reference Input Selection  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
VALUE  
DESCRIPTION  
Input Reference Mux controlled  
through Pin 4 (REFSEL)  
R2[1:0]  
REFSEL_SW  
0h or 1h  
Pin1/Pin 2 SECREF Input  
selected. This is independent of  
Pin 4 status.  
(Default: 0h)  
2h  
3h  
Pin 5/Pin 6 PRIREF Input  
selected. This is independent of  
Pin 4 status.  
XO enabled. Valid for SECREF  
pins.  
R24[1:0]  
R24[15]  
IP_SECREF_BUF_SEL  
(Default: 0h)  
0h  
1h  
LVCMOS Buffer enabled. Valid  
for SECREF pins.  
Differential Buffer enabled. Valid  
for SECREF pins.  
2h or 3h  
0h  
LVCMOS Buffer enabled. Valid  
for PRIREF pins.  
IP_PRIREF_BUF_SEL  
(Default: 0h)  
Differential Buffer enabled. Valid  
for PRIREF pins.  
1h  
A reference divider or a clock-doubler can be engaged to further multiply (2x) or divide the reference clock to the  
PLL. IP_RDIV[7:0] can be used to set the value of the divider. Setting this to 00h would enable the doubler.  
The output clock from the reference block can be bypassed to the OUT0 and other output channels. The  
bypassed clock is selectable between the Input clock or PFD clock. More details available in Table 9.  
The SECREF_P and SECREF_N pins provide a crystal oscillator stage to drive a fundamental mode crystal in  
the range of 10 MHz to 50 MHz. The crystal input stage integrates a tunable load capacitor array up to 9 pF and  
programmable through R24[12:8]. The drive capability of the oscillator is programmable through R24[5:2].  
The LVCMOS input buffer threshold voltage follows VDD_REF. This device can be used as a level shifter  
because the outputs have separate supplies.  
9.3.1.1 Zero Delay Mode, Internal and External Path  
The CDCE6214 can operate in Zero Delay Mode with internal as well as external feedback. In Zero Delay Mode,  
PRIREF clock is used as the reference clock to the PFD. SECREF input clock can be used to feed an external  
source as feedback clock to the PFD. External feedback path is recommended for zero delay operation.  
Moreover there is an additional internal feedback path which is sourced from output channel 2. It is expected that  
the Input-output propagation delay would be higher in Internal zero-delay mode than external zero delay mode.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
(1) (2) (3)  
Table 2. Zero Delay Operation  
R24[1:0] -  
IP_SECREF_B IP_PRIREF_B  
R24[15] -  
R0[10] -  
ZDM_CLOCKS DESCRIPTION  
EL  
R2[1:0] -  
REFSEL_SW  
R0[8] -  
ZDM_EN  
OPERATION  
REFSEL  
UF_SEL  
UF_SEL  
Normal  
Normal  
Operation,  
XTAL Input  
L
0h or 1h or 2h  
0h or 1h or 2h  
0h  
X
0h  
0h  
Operation,  
XTAL Input  
Normal  
Operation,  
Differential  
Input  
SECREF/Differ  
ential Input  
L
2h or 3h  
X
0h  
0h  
0h  
Normal  
Operation,  
Differential  
Input  
PRIREF/Differe  
ntial Input  
H
0h or 1h or 3h  
X
1h  
0h  
Normal  
Operation,  
LVCMOS Input  
SECREF/LVCM  
OS Input  
L
0h or 1h or 2h  
0h or 1h or 3h  
1h  
X
X
0h  
0h  
0h  
0h  
Normal  
Operation,  
LVCMOS Input  
PRIREF/LVCM  
OS Input  
H
0h  
External Zero  
Delay Mode,  
Differential  
Input  
Input Clock on  
PRIREF,  
Feedback clock  
on SECREF  
H
H
H
H
0h or 1h or 3h  
0h or 1h or 3h  
0h or 1h or 3h  
0h or 1h or 3h  
2h or 3h  
1h  
0h  
1h  
0h  
1h  
1h  
1h  
1h  
1h  
1h  
0h  
0h  
Input Clock on  
PRIREF,  
Feedback clock  
on SECREF  
External Zero  
Delay Mode,  
LVCMOS Input  
1h  
X
Internal Zero  
Delay Mode,  
Differential  
Input  
Input clock on  
PRIREF  
Internal Zero  
Delay Mode,  
Differential  
Input  
Input clock in  
PRIREF  
X
(1) In zero delay mode, all dividers should be programmed such that PLL can lock. On power-up in zero-delay mode, PLL would lock  
automatically  
(2) For internal Zero delay mode, channel 2 is required. Channel 2 should not be powered down  
(3) "X" allows any possible bit-field value. It has no impact on the functionality  
Figure 24. Input/Output Alignment in External Zero Delay Mode for LVCMOS Output  
20  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
9.3.2 Phase-Locked Loop (PLL)  
The CDCE6214 has a fully-integrated Phase-Locked Loop (PLL) circuit. The error between a reference phase  
and an internal feedback phase is compared at the phase-frequency-detector. The comparison result is fed to a  
charge pump that is connected to an integrated loop filter. The control voltage resulting from the loop filter tunes  
an internal Voltage-Controlled Oscillator (VCO). The frequency of the VCO is fed through a feedback divider (N-  
counter) back to the PFD.  
Integer and Fractional-N PLL mode of operation.  
First-, Second-, or Third-Order MASH operation in Fractional mode.  
24-bit Numerator and Denominator can be used to generate fractional frequencies with 0 ppb frequency  
accuracy.  
PFD operates between 1 MHz and 100 MHz.  
Live Lock Detector (R7[0] or PLL_LOCK in GPIO) provides PLL Lock status (in fractional mode and SSC  
enabled, lock detect window need to be widened. R50[10:8] = 7h). Additionally, sticky bit lock detect (R7[1])  
detects if there was any temporary loss of lock.  
Integrated selectable loop filter components.  
For a 25-MHz PFD frequency, PFD bandwidth between 100 kHz and 1.6 MHz can be achieved to optimize  
PLL to input reference.  
Voltage-controlled oscillator (VCO) ranges from 2335 MHz to 2615 MHz.  
Supports 0.25% and 0.5% center and down spread Spread Spectrum Clocking (SSC) generation. Further,  
VCO also supports up to 0.5% SSC references at 100 MHz for PCIe clocking.  
Table 3. Common Clock Generator Loop Filter Settings  
PHASE  
MARGIN IN °  
DAMPING  
FACTOR  
fVCO IN MHz fPFD IN MHz  
BW IN MHz  
ICP IN mA  
CPcap IN pF  
RRes IN kΩ  
CZcap IN pF  
2400  
2400  
2400  
2457.6  
2500  
2500  
2400  
25  
50  
0.469  
0.938  
1.60  
1.04  
0.49  
0.93  
400  
70  
70  
70  
70  
70  
70  
65  
0.5  
2
0.60  
0.60  
0.80  
0.60  
0.60  
0.60  
0.40  
16.1  
8.2  
2.5  
2.5  
2.5  
2.0  
2.5  
2.5  
1.5  
580  
276  
303  
331  
497  
386  
636  
100  
61.44  
25  
0.5  
1.15  
0.4  
1.0  
0.1  
8.2  
9.2  
13.5  
11.7  
11.7  
50  
50  
(1)  
Table 4. Common PLL Divider Settings  
INPUT  
FREQUENCY  
IN MHz  
OUTPUT  
FREQUENCY  
IN MHz  
N-COUNTER  
DIVIDER VALUE  
OUTPUT  
DIVIDER  
fPFD IN MHz  
fVCO  
NUMERATOR  
DENOMINATOR  
PSA  
25  
25  
25  
25  
25  
25  
50  
25  
50  
25  
25  
25  
100  
100  
2400  
2400  
2500  
2400  
2457.6  
2376  
48  
96  
50  
96  
98  
95  
NA  
NA  
NA  
NA  
4
4
4
4
4
4
6
6
156.25  
25  
NA  
NA  
4
NA  
NA  
24  
25  
4
24.576  
148.5  
5071614  
664983  
16682942  
16624579  
(1) Fractional Mode settings are based on DCO mode step size of 0.1ppm  
9.3.2.1 PLL Configuration and Divider Settings  
fPFD= Fin/Ffactor  
Ffactor is determined by R25[7:0] - ip_ref_div. Ffactor = 0.5 when ip_ref_div=0, Ffactor = ip_ref_div, otherwise.  
fVCO = fPFD × (N + Num/Den).  
N is set by R30[14:0] - PLL_NDIV. Num is the numerator of the fraction, set by {R32[7:0],R31[15:0]}. Den is the  
denominator of the fraction, set by R34[7:0],R33[15:0]. When {R34[7:0],R33[15:0]} = 0, Den=224.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
The sigma delta modulator supports different order of MASH to shape the quantization noise. For Integer mode,  
R27[1:0] is set as 0h. For fractional mode, it can be set to 1h, 2h or 3h for first, second and third order,  
respectively.  
In integer mode, PLL is configured in single-ended PFD configuration by setting R51[6]=1h. In Fractional mode,  
PLL should be configured in Differential PFD configuration by setting R51[6]=0h. Further, R51[10] is set as 1h in  
fractional mode and 0h in Integer mode.  
9.3.2.2 Spread Spectrum Clocking  
The energy of the harmonics from the rectangular clock signal can be spread over a certain frequency range.  
This frequency deviation leads to lowered average amplitude of the harmonics. This can help to mitigate  
electromagnetic interference (EMI) challenges in a system when the receiver supports this mode of operation.  
The modulation shape is triangular.  
The SSC clock is generated through the fractional-N PLL. When SSC is enabled, SSC clock is available on all  
clock sourced from the PLL. Reference clock or PFD clock is available on the OUT1–OUT4 pins.  
Down spread and center spread are supported. The following modes are supported.  
PFD frequencies: Either 25 MHz or 50 MHz.  
Down spread: –0.25% and ±0.5%  
Center spread: ±0.25% and ±0.5%  
Pre-configured settings are available to select any of these combinations.  
Using these pre-configured settings, fmod of 31.5 kHz is synthesized for 100-MHz output clock.  
Center-Spread  
Frequency  
fupper  
fSSC_MOD  
fnom  
fSPREAD  
flower  
Time  
Down-Spread  
Frequency  
fupper = fnom  
fSSC_MOD  
fSPREAD  
flower  
Time  
Figure 25. Spread Spectrum Clock  
(1) (2)  
Table 5. Spread Spectrum Settings  
R41[15] - SSC_EN  
0h  
R42[5] - SSC_TYPE  
R42[3:1] - SSC_SEL  
DESCRIPTION  
No SSC modulation at output  
X
X
(1) X signifies that this bitfield can take any value  
(2) For any other SSC spread and modulation rate, please contact TI representative.  
22  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
(1)  
Table 5. Spread Spectrum Settings (2) (continued)  
R41[15] - SSC_EN  
R42[5] - SSC_TYPE  
R42[3:1] - SSC_SEL  
DESCRIPTION  
Down spread SSC modulation.  
SSC spread is determined by  
ssc_sel  
1h  
1h  
1h  
1h  
1h  
0h  
X
Center spread SSC modulation.  
SSC spread is determined by  
ssc_sel  
1h  
X
X
25-MHz PFD, +/- 0.25% for  
Center spread, -0.25% for Down  
spread.  
0h  
1h  
2h  
25-MHz PFD, +/- 0.50% for  
Center spread, -0.50% for Down  
spread.  
X
50-MHz PFD, +/- 0.25% for  
Center spread, -0.25% for Down  
spread.  
X
50-MHz PFD, +/- 0.50% for  
Center spread, -0.50% for Down  
spread.  
1h  
1h  
X
X
3h  
4h-7h  
Do not use  
Figure 26. 100 MHz With - 0.25% Down Spread With and  
Without Trace  
Figure 27. 100 MHz With +/- 0.25% Center Spread With and  
Without Trace  
Figure 28. 100 MHz With - 0.5% Down Spread With and  
Without Trace  
Figure 29. 100 MHz With +/- 0.5% Center Spread With and  
Without Trace  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
RESULT  
Table 6. PCI Express Compliance Measurement  
MEASURED  
SCOPE  
METHOD  
MEASURED  
PNA METHOD  
NO.  
CLASS  
DATA RATE  
ARCHITECTURE  
SPEC LIMIT  
1
2
3
4
Gen4  
Gen4  
Gen5  
Gen5  
16 Gb/s  
16 Gb/s  
32 Gb/s  
32 Gb/s  
CC  
SRIS  
CC  
195 fs  
260 fs  
490 fs  
111 fs  
157 fs  
500 fs  
500 fs  
150 fs  
*
PASS  
PASS  
PASS  
*
-
87 fs  
-
SRIS  
9.3.2.3 Digitally-Controlled Oscillator/ Frequency Increment and Decrement - Serial Interface Mode and  
GPIO Mode  
In this mode, the output clock frequency can be incremented or decremented by a fixed frequency step. The  
frequency step size is determined by the register R43[15:0]. This value is added or subtracted to the numerator  
of the sigma-delta modulator. Various bit fields as shown in can be used to exercise this functionality. Every  
rising edge of FREQ_INC signal increases the output frequency, while every rising edge of FREQ_DEC signal  
decreases the output frequency. There are two ways to trigger the increment or decrement:  
1. Appropriate configuration of the GPIOs and sending FREQ_INC/FREQ_DEC signal through an external  
microcontroller or ASIC.  
2. Using register bit fields controlled through serial interface.  
Table 7. Register Settings for Frequency Increment/Decrement Functionality  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
DESCRIPTION  
R3[3]  
FREQ_INC_DEC_EN  
Enables/Disables DCO mode  
Selects DCO trigger through GPIOs or Serial  
Interface.  
R3[4]  
FREQ_INC_DEC_REG_MODE  
Generates FREQ_INC/FREQ_DEC signal  
through serial Interface  
R3[6:5]  
FREQ_DEC_REG, FREQ_INC_REG  
FREQ_INC_DEC_DELTA  
R43[15:0]  
Frequency Increment/Decrement step size  
Table 8. Computing Divider Settings in DCO Mode  
PARAMETERS  
VALUE (EXAMPLE)  
DESCRIPTION  
Input PFD Frequency (FPFD  
)
25 MHz  
Set according to FPFD.  
FVCO is set within the operating VCO range  
of 2335 MHz - 2625 MHz. FVCO is selected  
such that PSA/PSB/Output Divider is Integer.  
Expected VCO Frequency (FVCO  
)
2457.6 MHz  
24.576 MHz  
PSA = 4, IOD = 25. FVCO = PSA × IOD ×  
Expected Output Frequency (FOUT  
)
FOUT  
.
Every rising edge of FREQ_INC/FREQ_DEC  
would change the output by this step size.  
Expected step size (in ppm) (Fstep  
)
0.1  
98  
76  
N-divider Value (N)  
INT(FVCO/FPFD  
)
Minimum Numerator value to meet 0ppb  
accuracy (Num)  
These values are computed to meet  
accuracy requirement at output. Should be  
less than 224  
.
Minimum Denominator to meet 0ppb  
accuracy (Den)  
250  
Minimum Denominator value to meet ppm  
101725.26  
500000  
1/(Fstep × 1e6) / (FVCO/FPFD)  
step size (FDEN,min  
)
Final Denominator value (FDEN,final  
)
FDEN,final should be greater than FDEN,min and  
less than 224. FDEN,final and FNUM,final should  
be integer multiple of Den and Num  
respectively. FDEN,final/Den = FNUM,final/Num  
This value should be less than 216-1.  
FDEN,final should be closest integer multiple of  
Final Numerator value (FNUM,final  
)
152000  
5
Increment/ Decrement step size  
FDEN,min  
.
24  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
9.3.3 Clock Distribution  
The VCO output connects to two individually configurable pre-scalar dividers sourcing the on-chip clock  
distribution – PSA and PSB. PSA and PSB can be configured as division value of /4, /5 or /6 independently.  
The clock distribution consists of four output channels. Each output channel contains an integer divider (IOD)  
with glitchless switching and synchronization capabilities.  
IOD can be sourced from either the PSA, the PSB, or the Reference Clock. IOD can be bypassed to provide a  
Reference clock at the output.  
There are five output channels – OUT0, OUT1, OUT2, OUT3, and OUT4.  
The OUT0 is a slew-rate controllable LVCMOS output. Either the reference clock or PFD clock can be routed to  
this output through the clock distribution network.  
The OUT1 and OUT4 are identical output channels. The output buffers in this channel are compatible with  
various signaling standards – LVCMOS, LP-HCSL, and LVDS-like.  
The OUT2 and OUT3 are identical output channels. The output buffers in this channel are compatible with  
various signaling standards – LP-HCSL and LVDS-like.  
The LP-HCSL output buffer can be directly connected to the receiver without any termination resistor to GND.  
The output impedance of LP-HCSL is trimmed to 50 Ω ± 10%. A series resistor can be used to adapt to the  
trace impedance.  
The LVDS-like requires a differential termination connected between the positive and negative polarity output  
pins. The termination can be connected directly or through an AC-coupling capacitor. For a 50-Ω system, a  
100-Ω differential termination is appropriate.  
LVCMOS outputs are designed for capacitive loads only. The polarity of the positive and negative output pins  
can be configured individually.  
The differential buffers support wide range of output frequencies up to 328.125 MHz. LVCMOS supports up to  
200 MHz.  
(1)  
Table 9. Configuring Input Reference/PFD/PLL Clock to Output  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
DESCRIPTION  
Enables Reference Clock/PFD Clock to  
OUT0.  
R25[10]  
IP_BYP_OUT0_EN  
Selects between PFD Clock or Input  
Reference Clock  
R25[9]  
REF_CH_MUX  
IP_REF_TO_OUT4_EN,  
IP_REF_TO_OUT3_EN,  
IP_REF_TO_OUT2_EN,  
IP_REF_TO_OUT1_EN  
R25[14:11]  
Selects reference clock to OUT1-OUT4  
R56[15:14]  
R62[15:14]  
R67[15:14]  
R72[15:14]  
CH1_MUX  
CH2_MUX  
CH3_MUX  
CH4_MUX  
Clock selection MUX control for OUT1  
Clock selection MUX control for OUT2  
Clock selection MUX control for OUT3  
Clock selection MUX control for OUT4  
(1) It is recommended to disable any clock when not in use to reduce crosstalk  
Table 10. Configuring Clock Distribution Network  
REGISTER BIT ADDRESS  
R47[6:5]  
REGISTER BIT FIELD NAME  
PLL_PSB  
DESCRIPTION  
Programmable Pre-scalar divider PSB  
Programmable Pre-scalar divider PSA  
OUT1 Integer Divider value  
R47[4:3]  
PLL_PSA  
R56[13:0]  
CH1_DIV  
R62[13:0]  
CH2_DIV  
OUT2 Integer Divider value  
R67[13:0]  
CH3_DIV  
OUT3 Integer Divider value  
R72[13:0]  
CH4_DIV  
OUT4 Integer Divider value  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
(1) (2)  
Table 11. Configuring LVCMOS Output Buffer  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
DESCRIPTION  
Enables OUT0 LVCMOS Buffer  
R78[12]  
CH0_EN  
Controls output slew rate of OUT0 LVCMOS  
Buffer  
R79[3:0]  
CH0_CMOS_SLEW_RATE_CTRL  
R59[14], R75[14]  
R59[13], R75[13]  
CH1_CMOSN_EN, CH4_CMOSP_EN  
CH1_CMOSP_EN, CH4_CMOSN_EN  
Enables OUT1N/OUT4P LVCMOS Buffer  
Enables OUT1P/OUT4N LVCMOS Buffer  
Sets output polarity of OUT1N/OUT4P  
LVCMOS Buffer  
R59[12], R75[12]  
R59[11], R75[11]  
R60[3:0], R76[3:0]  
CH1_CMOSN_POL, CH4_CMOSP_POL  
CH1_CMOSP_POL, CH4_CMOSN_POL  
Sets output polarity of OUT1P/OUT4N  
LVCMOS Buffer  
CH1_CMOS_SLEW_RATE_CTRL,  
CH4_CMOS_SLEW_RATE_CTRL  
Controls output slew rate of OUT1/OUT4  
LVCMOS Buffer  
(1) Multiple output buffers should not be enabled at the same time  
(2) Based on the VDDO levels, ch1_1p8vdet, ch2_1p8vdet, ch3_1p8vdet, ch4_1p8vdet should be set accordingly. When setting for 1.8V,  
safety_1p8v_mode should be set.  
(1) (2) (3)  
Table 12. Configuring LP-HCSL Output Buffer  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
DESCRIPTION  
CH1_HCSL_EN, CH2_HCSL_EN,  
CH3_HCSL_EN, CH4_HCSL_EN  
Enables LP-HCSL buffer on  
OUT1/OUT2/OUT3/OUT4  
R57[14] , R63[13], R68[13], R73[13]  
(1) Multiple output buffers should not be enabled at the same time  
(2) External termination not needed. Voltage mode driver.  
(3) Based on the VDDO levels, ch1_1p8vdet, ch2_1p8vdet, ch3_1p8vdet, ch4_1p8vdet should be set accordingly. When setting for 1.8V,  
safety_1p8v_mode should be set.  
(1) (2) (3)  
Table 13. Configuring LVDS-Like Output Buffer  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
DESCRIPTION  
CH1_LVDS_EN, CH2_LVDS_EN,  
CH3_LVDS_EN, CH4_LVDS_EN  
Enables LVDS-like buffer on  
OUT1/OUT2/OUT3/OUT4  
R59[15], R65[11], R70[11], R75[15]  
CH1_DIFFBUF_IBIAS_TRIM,  
CH2_DIFFBUF_IBIAS_TRIM,  
CH3_DIFFBUF_IBIAS_TRIM,  
CH4_DIFFBUF_IBIAS_TRIM  
Sets the output swing and output common  
mode of OUT1/OUT2/OUT3/OUT4  
R60[15:12], R66[3:0], R71[3:0], R76[9:6]  
R60[11:10], R66[5:4], R71[5:4], R76[5:4]  
R60[5:4], R65[14:13], R71[10:9], R77[1:0]  
CH1_LVDS_CMTRIM_INC,  
CH2_LVDS_CMTRIM_INC,  
CH3_LVDS_CMTRIM_INC,  
CH4_LVDS_CMTRIM_INC  
Increases the output common mode of  
OUT1/OUT2/OUT3/OUT4. 2.5 V/3.3 V mode  
only.  
CH1_LVDS_CMTRIM_DEC,  
CH2_LVDS_CMTRIM_DEC,  
CH3_LVDS_CMTRIM_DEC,  
CH4_LVDS_CMTRIM_DEC  
Decreases the output common mode of  
OUT1/OUT2/OUT3/OUT4. 2.5 V/3.3 V mode  
only.  
(1) Multiple output buffers should not be enabled at the same time.  
(2) 100 Ω differential termination needed in DC-coupled mode. 50 Ω single ended or 100 Ω differential termination needed in AC-coupled  
mode  
(3) Based on the VDDO levels, ch1_1p8vdet, ch2_1p8vdet, ch3_1p8vdet, ch4_1p8vdet should be set accordingly. When setting for 1.8V,  
safety_1p8v_mode should be set.  
9.3.3.1 Glitchless Operation  
The bit fields ch{x}_glitchless_en can be used to enable glitchless output divider update. This feature ensures  
that the high pulse of a clock period is not cut off by the output divider update process. It also ensures that setup  
and hold time of a receiver is not violated. The low pulse in the transition from earlier period to the new period is  
extended accordingly.  
26  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Glitch-Less Divider Disabled:  
Glitch-Less Divider Enabled:  
tper1 > tper2  
tper1 < tper2  
Figure 30. Glitchless Divider Update  
9.3.3.2 Divider Synchronization  
The output dividers can be reset in a deterministic way. This can be achieved using the sync bit or PDN pin. The  
level of the pin is qualified internally using the reference frequency at the PFD input. A low level on the SYNCN  
pin or sync bit will mute the outputs. A high level will synchronously release all output dividers to operation, so  
that all outputs share a common rising edge. The first rising edge can be individually delayed in steps of the  
respective pre-scalar period, up to 32 cycles using ch{x}_sync_delay. This allows the user to compensate  
external delays like routing mismatch, cables, or inherent delays introduced by logic gates in an FPGA design.  
Each channel can be included or excluded from the SYNC process. Divider synchronization can be enabled  
individually by ch{x}_sync_en.  
For a deterministic behavior over power-cycles seen from input to output the reference divider must be set to 1. It  
should not divide the reference clock nor should the reference doubler be used.  
VCO  
Clock Distribution Pre-Scaler Dividers  
PS[BA]=4  
PS[BA]=5  
PS[BA]=6  
Output Channel Dividers  
All clocks muted.  
PS[BA]=4  
IOD=4  
PS[BA]=5  
IOD=4  
PS[BA]=6  
IOD=4  
Internal SYNC  
PFD qualified)  
1
2
3
Internal synchronization start  
All signals muted  
Synchronized dividers released  
Figure 31. Output Divider Synchronization  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
9.3.3.3 Global and Individual Output Enable  
The output enable functionality allows the user to enable or disable all or a specific output buffer. The bypass  
copy on OUT0 is excluded from the global output enable signal. When an output is disabled, it drives a  
configurable mute-state. When the serial interface is deactivated one can use all individual output enable signals  
at the same time. The individual output enable signal controls the respective output channel integer divider to  
gate the clock, therefore each integer divider must be active.  
The individual output enable signal enables and disables the respective output in a deterministic way. Therefore  
the high and low level of the signal is qualified by counting four cycles of the respective output clock.  
1. The OE falling edge disables the output. The output is enabled for 4 cycles after asserting the Output Enable  
of a channel. This will enable any further operation in the system after OE is asserted.  
2. The OE rising edge enables the output. Outputs starts toggling after 4 internal clock cycles.  
MUTE_SEL= Logic Low  
OE  
Y1P  
1
2
3
4
1
2
3
4
Y1N  
Y2P  
Y2N  
1
2
3
4
1
2
3
4
1
2
3
4
5
6
MUTE_SEL= Logic High  
OE  
Y1P  
1
2
3
4
1
2
3
4
Y1N  
Y2P  
Y2N  
1
2
3
4
1
2
3
4
1
2
3
4
5
6
Figure 32. Individual Output Enable and Disable  
Table 14. Glitch-less Operation, Divider Synchronization and Global/Individual OE Settings  
REGISTER BIT ADDRESS  
REGISTER BIT FIELD NAME  
DESCRIPTION  
R0[14]  
PDN_INPUT_SEL  
Configures PDN pin as PDN or SYNCN  
Generates SYNC signal through serial  
interface  
R0[5]  
SYNC  
CH1_GLITCHLESS_EN,  
CH2_GLITCHLESS_EN,  
CH3_GLITCHLESS_EN,  
CH4_GLITCHLESS_EN  
Enables Glitch-less switching for  
OUT1/OUT2/OUT3/OUT4  
R57[9], R63[9], R68[9], R73[9]  
CH1_SYNC_EN, CH2_SYNC_EN,  
CH3_SYNC_EN, CH4_SYNC_EN  
R57[3], R63[3], R68[3], R73[3]  
R57[1], R63[1], R68[1], R73[1]  
R57[0], R63[0], R68[0], R73[0]  
Enables SYNC for OUT1/OUT2/OUT3/OUT4  
CH1_MUTESEL, CH2_MUTESEL,  
CH3_MUTESEL, CH4_MUTESEL  
Sets Output level when mute on  
OUT1/OUT2/OUT3/OUT4  
CH1_MUTE, CH2_MUTE, CH3_MUTE,  
CH4_MUTE  
Mutes output on OUT1/OUT2/OUT3/OUT4  
28  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
9.3.4 Power Supplies and Power Management  
The CDCE6214 provides multiple power supply pins. Each of the power supplies supports 1.8 V, 2.5 V, or 3.3 V  
individually. Internal low-dropout regulators (LDO) source the internal blocks and allow each pin to be supplied  
with its individual supply voltage. The VDDREF pin supplies the control pins and the serial interface, therefore  
any pullup resistors shall be connected to the same domain as VDDREF.  
The device is very flexible with respect to internal power management. Each block offers a power-down bit and  
can be disabled to save power when the block is not required. The available bits are illustrated in Table 15. The  
bypass output Y0 is connected to the pdn_ch4 bit. Each output channel has a bit which should be adapted to the  
applied supply voltage, ch[4:1]_1p8vdet.  
Table 15. Power Management  
VDDREF  
VDDVCO  
VDDO_12  
R0[1] - POWERDOWN  
R4[4] - CH1_PD  
VDDO_34  
R0[1] - POWERDOWN  
R4[6] - CH3_PD  
R0[1] - POWERDOWN  
R0[1] - POWERDOWN  
R5[8] - PLL_VCOBUFF_LDO_PD  
R5[7] - PLL_VCO_LDO_PD  
R5[6] - PLL_VCO_BUFF_PD  
R5[5] - PLL_CP_LDO_PD  
R5[4] - PLL_LOCKDET_PD  
R5[3] - PLL_PSB_PD  
R4[5] - CH2_PD  
R4[7] - CH4_PD  
R5[2] - PLL_PSA_PD  
R5[1] - PLL_PFD_PD  
R53[6] - PLL_NCTR_EN  
R53[3] - PLL_CP_EN  
9.3.5 Control Pins  
The ultra-low power clock generator is controlled by multiple LVCMOS input pins.  
HW_SW_CTRL pin acts as EEPROM page select. The CDCE6214 clock generator contains two pages of  
configuration settings. The level of this pin is sampled after device power up. A low level selects page zero. A  
high level selects page one. The HW_SW_CTRL pin is a tri-level input pin. This third voltage level is  
automatically applied by an internal voltage divider. The mid-level is used to select an internal default where the  
serial interface is enabled.  
PDN/SYNCN (pin 8) , SCL (pin 12), and SDA (pin 19) have a secondary functionality and can act as general-  
purpose inputs and outputs (GPIO). This means that either the serial interface or the GPIO functionality can be  
active.  
PDN/SYNCN resets the internal circuitry and is used in the initial power-up sequence. The pin can be  
reconfigured to act as synchronization input. The differential outputs are kept in mute while SYNCN is low. When  
SYNCN is high, outputs are active.  
Table 16. Control and GPIO Pins  
PIN NO.  
23  
NAME  
HW_SW_CTRL  
GPIO1  
TYPE  
Input  
2-LEVEL INPUT  
3-LEVEL INPUT  
OUTPUT  
TERMINATION  
PUPD  
-
Yes  
-
-
20  
Input/Output  
Yes  
Yes  
PU (when Input)  
Open-Drain I/O in  
I2C mode, CMOS  
(Input)  
19  
GPIO2  
Input/Output  
Yes  
-
Yes  
12  
11  
8
GPIO3  
GPIO4  
PDN  
Input  
Input/Output  
Input  
Yes  
Yes  
Yes  
-
-
-
-
-
-
Yes  
PU (when Input)  
PU (when Input)  
PUPD  
-
-
4
REFSEL  
Input  
Yes  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: CDCE6214  
 
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
Table 17. GPIO Input/Output Signal List  
ABBREVIATION  
TYPE  
DESCRIPTION  
Frequency Increment; Increments the MASH  
numerator  
FREQ_INC  
FREQ_DEC  
OE (global)  
Input  
Input  
Input  
Frequency Decrement; Decrements the  
MASH numerator  
Enables or disables all differential outputs  
Y[4:1] (bypass not affected)  
SSC_EN  
OE1  
Input  
Input  
Input  
Input  
Input  
Enables or disables SSC.  
Enables or disables OUT1  
Enables or disables OUT2  
Enables or disables OUT3  
Enables or disables OUT4  
OE2  
OE3  
OE4  
PLL Lock Status. 0 = PLL out of lock; 1 =  
indicates PLL in lock  
PLL_LOCK  
Output  
9.4 Device Functional Modes  
9.4.1 Operation Modes  
The operating modes listed in Table 18 can be set, and the GPIOs configured. An operating mode change only  
becomes effective when it is loaded from the EEPROM after a power cycle.  
Table 18. Modes of Operations  
DESCRIPTION  
I2C + GPIO  
OE  
MODE  
Fall-back  
Pin Mode  
REFSEL  
M
HW_SW_CTRL  
GPIO1  
I/O  
GPIO2  
SDA  
GPIO3  
SCL  
GPIO4  
I/O  
M
L/H  
L/H  
OE1  
OE2  
OE3  
OE4  
Serial Interface  
Mode  
I2C + GPIO  
L/H  
L/H  
I/O  
SDA  
SCL  
I/O  
9.4.1.1 Fall-Back Mode  
As the programming interface can be intentionally deactivated using the EEPROM, an accidental disabling of the  
I2C blocks further access to the device. The serial interface can be forced using the fall-back mode. To enter this  
mode, the user leaves pin 4 and pin 23 floating while the supply voltage is applied to VDDREF. In this mode,  
EEPROM Read at power up is bypassed and device boots in default mode. In this mode, pin 11 is pre-  
configured as an input and pin 20 is configured as an output. After powering up in fall-back mode, the device can  
be re-programmed through serial interface and be re-configured for normal operation. EEPROM can also be re-  
programmed. The PLL would not be auto-calibrated, however, and the I2C interface would be active. This mode  
would allow the user to fully configure the device before re-locking the PLL.  
9.4.1.2 Pin Mode  
In pin mode, the pins 12 and 19 are input pins which act as individual output enable pins. Together with pins 11  
and 20, this allows for one output enable pin per output channel.  
9.4.1.3 Serial Interface Mode  
In serial interface mode, pins 12 and 19 are configured as an I2C interface.  
9.5 Programming  
9.5.1 I2C Serial Interface  
The CDCE6214 ultra-low power clock generator provides an I2C-compatible serial interface for register and  
EEPROM access. The device is compatible to standard-mode I2C at 100 kHz and the fast-mode I2C at 400-kHz  
clock frequency.  
1. In fall-back mode, I2C slave address = 67h.  
30  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
 
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Programming (continued)  
2. In other modes, I2C slave address = 68h (Default).  
3. The LSB bit of the device can be programmed in the EEPROM. For example, if I2C_A0 is programmed H in  
Page 0 of EEPROM, setting HW_SW_CTRL=0 would set I2C address as 69h.  
4. Two devices with EEPROM + 1 device in fall-back mode can be used on the same I2C bus with addresses  
67h, 68h and 69h.  
Table 19. I2C-Compatible Serial Interface, Slave Address Byte  
(1) (2)  
7
6
5
4
3
2
1
0
Slave Address [6:0]  
R/W# Bit  
(1) The slave address consists of two sections. The hardwired MSBs A[6:1] and the software-selectable LSBs A[0].  
(2) The R/W# bit indicates a read (1) or a write (0) transfer.  
Table 20. I2C-Compatible Serial Interface, Programmable Slave Address  
(1) (2)  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
HW_SW_SEL DESCRIPTION  
1
1
0
0
1
1
1
MID  
Fall-back Mode  
EEPROM Page  
0
1
1
1
1
0
0
1
1
0
0
0
0
I2C_A0  
I2C_A0  
LOW  
EEPROM Page  
1
HIGH  
(1) In EEPROM Page 0, Serial Interface is not available. Device configured in Pin Mode  
(2) In EEPROM Page 1, I2C_A0 is programmed as 0, Expected Slave Address is 68h  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
The serial interface uses the following protocol as shown in Figure 33. The slave address is followed by a word-  
wide register offset and a word-wide register value.  
Write Transfer  
7
1
1
S
Slave Address  
Wr  
A
8
8
1
1
Register Address High  
A
Register Address Low  
A
8
8
1
1
Date Byte High  
A
Date Byte Low  
A
P
Read Transfer  
7
1
1
S
Slave Address  
Wr  
A
8
8
1
1
Register Address High  
A
Register Address Low  
A
7
1
1
Sr  
Slave Address  
Rd  
A
8
8
1
1
Date Byte High  
A
Date Byte Low  
N
P
Legend  
S
Sr  
Start condition sent by master device  
Write bit = 0 sent by master device  
Acknowledge sent by master device  
Stop condition sent by master device  
Not-acknowledge sent by master device  
|
|
|
Repeated start condition sent by master device  
Read bit = 1 sent by master device  
Wr Rd  
A
P
N
A
Acknowledge sent by slave device  
N
|
Not-acknowledge sent by slave device  
Data  
Data  
Data sent by master | Data sent by slave  
Figure 33. I2C-Compatible Serial Interface, Supported Protocol  
32  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
 
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
9.5.2 EEPROM  
9.5.2.1 EEPROM - Cyclic Redundancy Check  
The device contains a cyclic redundancy check (CRC) function for reads from the EEPROM to the device  
registers. At start-up, the EEPROM will be read internally and a CRC value calculated. One of the EEPROM  
words contains an earlier stored CRC value. The stored and the actual CRC value are compared and the result  
transferred to register. The CRC calculation can be triggered again by writing a 1 to the update_crc bit. A  
mismatch between stored and calculated CRC value is informational only and non-blocking to the device  
operation. Just reading back the CRC status bit and the live CRC value can speed up in-system EEPROM  
programming and avoid reading back each word of the EEPROM for known configurations.  
The polynomial used is CCITT-CRC16: x16 + x12 + x5 + 1.  
9.5.2.2 Recommended Programming Procedure  
TI recommends programming the registers of the device in the following way:  
1. Read-back factory default EEPROM page configuration. Each device will have different EEPROM base page  
configuration.  
2. Modify register bits.  
3. Ensure that ee_lock is set to 5h (unlock) when overwriting the EEPROM.  
4. Program register addresses in descending order from 0x53 to 0x00 including all register addresses with  
reserved values.  
9.5.2.3 EEPROM Access  
NOTE  
The EEPROM word write access time is typically 8 ms.  
There are two methods to write into the internal EEPROM  
1. Register Commit method.  
2. EEPROM Direct Access Method  
Use the following steps to bring the device into a good known configuration.  
1. Power down all the supplies.  
2. Apply PDN = LOW.  
3. REFSEL and HW_SW_CTRL pins can be High, Low or High-Z. For factory programmed device, I2C interface  
is not available when HW_SW_CTRL is LOW.  
4. Apply power supplies to all VDD pins. When device operation is not required, apply power supply to  
VDDREF.  
5. Apply PDN = HIGH.  
6. Use the I2C interface to configure the device.  
9.5.2.3.1 Register Commit Flow  
In the Register Commit flow, all bits from the device registers are copied into the EEPROM. The recommended  
flow is:  
1. Pre-configure the device as desired, except the serial interface using mode.  
2. Write 1 to RECAL to calibrate the VCO in this operation mode.  
3. Select the EEPROM page, to copy the register settings into, using REGCOMMIT_PAGE.  
4. Unlock the EEPROM for write access with EE_LOCK = x5.  
5. Start the register commit operation by writing 1 to REGCOMMIT.  
6. Force a CRC update by writing a 1 to UPDATE_CRC.  
7. Read back the calculated CRC in NVMLCRC.  
8. Store the read CRC value in the EEPROM by writing 0x3F to NVM_WR_ADDR and then the CRC value to  
NVM_WR_DATA.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
9.5.2.3.2 Direct Access Flow  
In the EEPROM direct access flow, the EEPROM words are directly accessed using the address and the data  
bit-fields. The recommended flow is:  
1. Prepare an EEPROM image consisting of 64 words of 16 bits each.  
2. Unlock the EEPROM for write access with EE_LOCK = 0x5.  
3. Write the initial address offset to the address bit-field. Write a 0x00 to NVM_WR_ADDR.  
4. Loop through the EEPROM image from address 0 to 63 by writing each word from the image to  
NVM_WR_DATA. The EEPROM word address is automatically incremented by every write access to  
NVM_WR_DATA.  
Write Transfer  
I2C register  
offset  
15  
15  
6
5
0
0
Reserved  
NVM_WR_ADDR  
0x0E  
NVM_WR_DATA  
0x0D  
Read Transfer  
I2C register  
offset  
15  
15  
6
5
0
0
Reserved  
NVM_RD_ADDR  
0x0B  
0x0C  
NVM_RD_DATA  
Copyright  
© 2017, Texas Instruments Incorporated  
Figure 34. EEPROM Direct Access Using I2C  
9.5.2.4 Register Bits to EEPROM Mapping  
Register bits settings are mapped into EEPROM. EEPROM is divided into three segments:  
EEPROM Base Page: Selectable by connecting HW_SW_CTRL pin either to Logic 0 to Logic 1.  
EEPROM Page 0: Selectable by connecting HW_SW_CTRL pin to Logic 0.  
EEPROM Page 1: Selectable by connecting HW_SW_CTRL pin to Logic 1.  
34  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
(1) (2) (3) (4)  
Table 21. EEPROM Mapping  
15  
14  
1
13  
1
12  
1
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
2
3
0
0
0
0
R5[8] R5[7] R5[6] R5[5] R5[4] R5[1] R4[3] R4[2] R4[1] R4[0] R3[9] R0[3]  
1
0
0
1
1
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
R15[5]  
1
0
0
0
0
1
1
0
0
0
0
R47[1 R47[1 R47[1  
4
5
6
R48[4] R48[3] R48[2] R48[1] R48[0]  
R47[9] R47[8] R47[7]  
0
0
0
0
0
2]  
1]  
0]  
R48[1 R48[1 R48[1 R48[1 R48[1  
0
0
R49[4] R49[3] R49[2] R49[1] R49[0]  
R48[9] R48[8] R48[7] R48[6] R48[5]  
4]  
1
3]  
1
2]  
0
1]  
0
0]  
0
R50[1  
0]  
0
0
R50[9] R50[8]  
0
0
0
0
0
0
0
0
0
7
8
R55[6] R53[6]  
1
0
R53[2] R53[1] R53[0]  
1
1
0
1
0
0
0
0
1
0
0
0
0
R58[4] R58[3] R58[2] R58[1] R58[0]  
R55[9] R55[8] R55[7]  
R60[1 R60[1 R60[1 R60[1  
9
0
1
R60[3] R60[2] R60[1] R60[0] R59[9] R59[8] R59[7] R59[6] R59[5] R59[4]  
5]  
4]  
3]  
2]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
R65[8] R65[7] R65[6] R65[5] R65[4]  
1
0
0
0
0
0
0
R64[9] R64[8] R64[7] R64[6] R64[5]  
0
0
0
0
0
0
R69[9] R69[8] R69[7] R69[6] R69[5]  
1
R66[3] R66[2] R66[1] R66[0] R65[9]  
R74[5]  
1
R71[3] R71[2] R71[1] R71[0] R70[9] R70[8] R70[7] R70[6] R70[5] R70[4]  
1
0
R76[0] R75[9] R75[8] R75[7] R75[6] R75[5] R75[4]  
1
0
0
0
0
R74[9] R74[8] R74[7] R74[6]  
0
0
0
0
0
0
0
0
0
0
R79[3] R79[2] R79[1] R79[0] R76[9] R76[8] R76[7] R76[6] R76[3] R76[2] R76[1]  
0
R81[3]  
1
0
0
0
0
0
0
0
0
R80[3]  
0
R1[6] R1[5] R1[4] R1[3] R1[2] R1[1] R1[0] R0[15] R0[14] R0[13] R0[12]  
R0[10]  
R0[8] R0[0]  
R2[6] R2[5] R2[4] R2[3] R2[2] R2[1] R2[0] R1[15] R1[14] R1[13] R1[12] R1[11] R1[10] R1[9] R1[8] R1[7]  
R5[3] R5[2] R4[7] R4[6] R4[5] R4[4] R3[4] R3[3] R2[13] R2[12] R2[11] R2[10] R2[9] R2[8] R2[7]  
R24[1 R24[1 R24[1 R24[1  
0
19  
20  
21  
R24[9] R24[8]  
0
0
R24[5] R24[4] R24[3] R24[2] R24[1] R24[0]  
0
0
5]  
2]  
1]  
0]  
R25[1 R25[1 R25[1 R25[1 R25[1  
R27[0]  
0
R25[9] R25[7] R25[6] R25[5] R25[4] R25[3] R25[2] R25[1] R25[0]  
4]  
3]  
2]  
1]  
0]  
R30[1 R30[1 R30[1 R30[1 R30[1  
R30[9] R30[8] R30[7] R30[6] R30[5] R30[4] R30[3] R30[2] R30[1] R30[0] R27[1]  
4]  
3]  
2]  
1]  
0]  
R31[1 R31[1 R31[1 R31[1 R31[1 R31[1  
22  
23  
24  
R31[9] R31[8] R31[7] R31[6] R31[5] R31[4] R31[3] R31[2] R31[1] R31[0]  
5]  
4]  
3]  
2]  
1]  
0]  
R33[7] R33[6] R33[5] R33[4] R33[3] R33[2] R33[1] R33[0] R32[7] R32[6] R32[5] R32[4] R32[3] R32[2] R32[1] R32[0]  
R33[1 R33[1 R33[1 R33[1 R33[1 R33[1  
R34[7] R34[6] R34[5] R34[4] R34[3] R34[2] R34[1] R34[0]  
R43[1  
R33[9] R33[8]  
R41[1  
5]  
4]  
3]  
2]  
1]  
0]  
25  
26  
27  
28  
29  
30  
31  
32  
R43[9] R43[8] R43[7] R43[6] R43[5] R43[4] R43[3] R43[2] R43[1] R43[0] R42[5] R42[3] R42[2] R42[1]  
0]  
5]  
R51[1  
0]  
R43[1 R43[1 R43[1 R43[1 R43[1  
0
0
1
R51[6]  
0
0
R47[6] R47[5] R47[4] R47[3]  
5]  
4]  
1
3]  
0
2]  
0
1]  
0
R56[1  
0]  
R56[9] R56[8] R56[7] R56[6] R56[5] R56[4] R56[3] R56[2] R56[1] R56[0] R53[3]  
R57[1 R57[1  
R56[1 R56[1 R56[1 R56[1 R56[1  
R57[9] R57[8] R57[7] R57[6] R57[5] R57[4] R57[3] R57[1] R57[0]  
R60[1 R60[1  
4]  
2]  
5]  
4]  
4]  
0]  
3]  
0]  
3]  
3]  
R62[9] R62[8] R62[7]  
2]  
1]  
R59[1 R59[1 R59[1 R59[1 R59[1  
R62[6] R62[5] R62[4] R62[3] R62[2] R62[1] R62[0]  
R63[7] R63[6] R63[5] R63[4] R63[3] R63[1] R63[0]  
R60[5] R60[4]  
1]  
0]  
5]  
1]  
1]  
1]  
2]  
1]  
R62[1 R62[1 R62[1 R62[1 R62[1 R62[1  
5]  
4]  
3]  
2]  
3]  
2]  
R65[1 R65[1 R65[1 R63[1 R63[1  
R67[6] R67[5] R67[4] R67[3] R67[2] R67[1] R67[0] R66[5] R66[4]  
R63[9] R63[8]  
R67[9] R67[8] R67[7]  
4]  
R67[1 R67[1 R67[1 R67[1 R67[1 R67[1  
2]  
R68[7] R68[6] R68[5] R68[4] R68[3] R68[1] R68[0]  
5]  
4]  
3]  
(1) Address Locations 0-15: EEPROM Base Page  
(2) Address Locations 16-39: EEPROM Page 0  
(3) Address Locations 40-63: EEPROM Page 1  
(4) Bit locations marked in Red may vary from device to device  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
(1) (2) (3)  
Table 21. EEPROM Mapping  
(4) (continued)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R68[9] R68[8]  
R72[9] R72[8] R72[7]  
R71[1  
0]  
R70[1 R68[1 R68[1  
1]  
33  
34  
35  
36  
R72[6] R72[5] R72[4] R72[3] R72[2] R72[1] R72[0]  
R73[7] R73[6] R73[5] R73[4] R73[3] R73[1] R73[0]  
R71[9] R71[5] R71[4]  
3]  
2]  
R72[1 R72[1 R72[1 R72[1 R72[1 R72[1  
5]  
4]  
3]  
2]  
1]  
0]  
R75[1 R75[1 R75[1 R75[1 R75[1 R73[1 R73[1  
0
0
0
0
0
0
R77[1] R77[0] R76[5] R76[4]  
R73[9] R73[8]  
5]  
0
4]  
0
3]  
2]  
1]  
0
3]  
0
2]  
0
R78[1  
2]  
0
0
0
0
R79[9]  
0
0
37  
38  
39  
40  
41  
42  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R1[6] R1[5] R1[4] R1[3] R1[2] R1[1] R1[0] R0[15] R0[14] R0[13] R0[12]  
R0[10]  
R0[8] R0[0]  
R2[6] R2[5] R2[4] R2[3] R2[2] R2[1] R2[0] R1[15] R1[14] R1[13] R1[12] R1[11] R1[10] R1[9] R1[8] R1[7]  
R5[3] R5[2] R4[7] R4[6] R4[5] R4[4] R3[4] R3[3] R2[13] R2[12] R2[11] R2[10] R2[9] R2[8] R2[7]  
R24[1 R24[1 R24[1 R24[1  
0
43  
44  
45  
R24[9] R24[8]  
0
0
R24[5] R24[4] R24[3] R24[2] R24[1] R24[0]  
0
0
5]  
2]  
1]  
0]  
R25[1 R25[1 R25[1 R25[1 R25[1  
4]  
R27[0]  
0
R25[9] R25[7] R25[6] R25[5] R25[4] R25[3] R25[2] R25[1] R25[0]  
3]  
2]  
1]  
0]  
R30[1 R30[1 R30[1 R30[1 R30[1  
4]  
R30[9] R30[8] R30[7] R30[6] R30[5] R30[4] R30[3] R30[2] R30[1] R30[0] R27[1]  
3]  
2]  
1]  
0]  
R31[1 R31[1 R31[1 R31[1 R31[1 R31[1  
46  
47  
48  
R31[9] R31[8] R31[7] R31[6] R31[5] R31[4] R31[3] R31[2] R31[1] R31[0]  
5]  
4]  
3]  
2]  
1]  
0]  
R33[7] R33[6] R33[5] R33[4] R33[3] R33[2] R33[1] R33[0] R32[7] R32[6] R32[5] R32[4] R32[3] R32[2] R32[1] R32[0]  
R33[1 R33[1 R33[1 R33[1 R33[1 R33[1  
R34[7] R34[6] R34[5] R34[4] R34[3] R34[2] R34[1] R34[0]  
R33[9] R33[8]  
5]  
4]  
3]  
2]  
1]  
0]  
R43[1  
0]  
R41[1  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
R43[9] R43[8] R43[7] R43[6] R43[5] R43[4] R43[3] R43[2] R43[1] R43[0] R42[5] R42[3] R42[2] R42[1]  
5]  
R43[1 R43[1 R43[1 R43[1 R43[1  
R51[1  
0]  
0
0
1
R51[6]  
0
0
R47[6] R47[5] R47[4] R47[3]  
5]  
4]  
3]  
2]  
1]  
R56[1  
0]  
R56[9] R56[8] R56[7] R56[6] R56[5] R56[4] R56[3] R56[2] R56[1] R56[0] R53[3]  
1
0
0
0
R57[1 R57[1  
4]  
R56[1 R56[1 R56[1 R56[1 R56[1  
R57[9] R57[8] R57[7] R57[6] R57[5] R57[4] R57[3] R57[1] R57[0]  
R60[1 R60[1  
2]  
5]  
4]  
4]  
0]  
3]  
0]  
3]  
3]  
R62[9] R62[8] R62[7]  
2]  
1]  
R59[1 R59[1 R59[1 R59[1 R59[1  
R62[6] R62[5] R62[4] R62[3] R62[2] R62[1] R62[0]  
R63[7] R63[6] R63[5] R63[4] R63[3] R63[1] R63[0]  
R60[5] R60[4]  
1]  
0]  
5]  
1]  
1]  
2]  
1]  
R62[1 R62[1 R62[1 R62[1 R62[1 R62[1  
5]  
4]  
3]  
2]  
3]  
2]  
R71[9] R71[5] R71[4]  
R65[1 R65[1 R65[1 R63[1 R63[1  
R67[6] R67[5] R67[4] R67[3] R67[2] R67[1] R67[0] R66[5] R66[4]  
R63[9] R63[8]  
4]  
R67[1 R67[1 R67[1 R67[1 R67[1 R67[1  
5]  
2]  
R68[7] R68[6] R68[5] R68[4] R68[3] R68[1] R68[0]  
R72[6] R72[5] R72[4] R72[3] R72[2] R72[1] R72[0]  
R73[7] R73[6] R73[5] R73[4] R73[3] R73[1] R73[0]  
R67[9] R67[8] R67[7]  
4]  
3]  
1]  
R71[1  
0]  
R70[1 R68[1 R68[1  
1]  
R68[9] R68[8]  
3]  
2]  
R72[9] R72[8] R72[7]  
R72[1 R72[1 R72[1 R72[1 R72[1 R72[1  
5]  
4]  
3]  
2]  
1]  
0]  
R75[1 R75[1 R75[1 R75[1 R75[1 R73[1 R73[1  
0
0
0
0
0
0
R77[1] R77[0] R76[5] R76[4]  
R73[9] R73[8]  
5]  
0
4]  
0
3]  
2]  
1]  
0
3]  
0
2]  
0
R78[1  
2]  
0
0
0
0
R79[9]  
0
0
61  
62  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC SCRC  
[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [5] [4] [3] [2] [1] [0]  
63  
36  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Table 22. Register Defaults in Fall-Back Mode and EEPROM Mode  
REGISTER  
ADDRESSES  
FALL-BACK  
MODE  
HW_SW_CTRL = HW_SW_CTRL =  
REGISTER  
ADDRESSES  
FALL-BACK  
MODE  
HW_SW_CTRL = HW_SW_CTRL =  
0
1
0
1
R85  
R84  
R83  
R82  
R81  
R80  
R79  
R78  
R77  
R76  
R75  
R74  
R73  
R72  
R71  
R70  
R69  
R68  
R67  
R66  
R65  
R64  
R63  
R62  
R61  
R60  
R59  
R58  
R57  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
x0000  
x0000  
x0000  
x0000  
x0004  
x0000  
x0008  
x1000  
x0000  
x0008  
x0008  
xA181  
x2000  
x0006  
x0000  
x0008  
xA181  
x2000  
x0006  
x0000  
x0008  
xA181  
x2000  
x0006  
x0000  
x0008  
x0008  
x502C  
x4000  
x0006  
x001E  
x3400  
x0069  
x5000  
x40C0  
x01C0  
x0013  
x1A14  
x0A00  
x0000  
x4F80  
x0318  
x0051  
x0000  
x0000  
xFF00  
x01C0  
x0004  
x0008  
x0008  
x0000  
x0002  
x0188  
x0008  
xA181  
x2000  
x0006  
x0406  
x0008  
xA181  
x2000  
x0006  
x0006  
x4008  
xA181  
x2000  
x0006  
x0000  
x0008  
x0008  
x502C  
x4000  
x0006  
x001E  
x3400  
x0069  
x5000  
x40C0  
x01C0  
x0013  
x1A05  
x0280  
x0000  
x4F80  
x0318  
x0051  
x0000  
x0000  
xFF00  
x01C0  
x0004  
x0008  
x0008  
x0000  
x0002  
x0188  
x8008  
xA181  
x0000  
x0006  
x0406  
x0808  
xA181  
x0000  
x0006  
x0006  
x4808  
xA181  
x0000  
x0006  
x0000  
x6028  
x8008  
x502C  
x0000  
x0006  
x001E  
x3400  
x0069  
x5000  
x40C0  
x01C0  
x0013  
x1A05  
x0280  
x0000  
x4F80  
x0318  
x0051  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
x0002  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0030  
x0000  
x0000  
x0005  
x0000  
x0400  
x0718  
x0000  
x06A2  
x0000  
x0000  
x0000  
x0000  
x26C4  
x921F  
xA037  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0008  
x0000  
x0000  
x0000  
x2310  
x0000  
x0002  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0028  
x0000  
x0000  
x0000  
x0000  
x0030  
x0000  
x0000  
x0004  
x0000  
x0400  
x091C  
x2406  
x06A2  
x0590  
x0000  
x0000  
x0000  
x26C4  
x921F  
xA037  
x0000  
x0000  
x0000  
x0000  
xA777  
x7BFA  
x0001  
x0C2D  
x0E6C  
x0008  
x0000  
x0200  
x0000  
x7654  
x0001  
x0002  
x0000  
x0000  
x0000  
x0000  
x0000  
x0000  
x0028  
x0000  
x0000  
x0000  
x0000  
x0030  
x0000  
x0000  
x0004  
x0000  
x0400  
x091C  
x2406  
x06A2  
x0513  
x0000  
x0000  
x0000  
x26C4  
x921F  
xA037  
x0000  
x0000  
x7002  
x003F  
xA777  
xA777  
x0001  
x0C0D  
x0E6C  
x0008  
x0000  
x0200  
x0000  
x7652  
x2000  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
A typical application using the I2C interface and a 25-MHz crystal input is shown in Figure 35. The two ends of  
25-MHz XTAL are connected to pin 1 and 2. The REFSEL pin is pulled down to select a secondary input. The  
HW_SW_CTRL can be pulled either low or high if EEPROM is used, or kept floating if EEPROM is unused. 1.8  
V, 2.5 V, or 3.3 V can be supplied to the VDD_REF and VDD_VCO pins, as well as VDDO_12 and VDDO_34  
pins with filtering. Data and clock lines of I2C must be pulled to VDD_REF using pullup resistors. The PDN can  
be connected to the MCU if a hardware reset is required, otherwise it can be left floating. The GPIO1 and 4 pins  
can be connected to the MCU if needed, otherwise they can be left floating. Unused outputs can be left floating.  
1.8V  
/ 2.5V  
/ 3.3V  
1.8V  
/ 2.5V  
/ 3.3V  
1.8V  
/ 2.5V  
/ 3.3V  
1.8V  
/ 2.5V  
/ 3.3V  
VDD_REF  
VDD_VCO  
VDDO_12  
VDDO_34  
SECREF_P  
OUT0  
OUT1_P  
OUT1_N  
OUT2_P  
OUT2_N  
OUT3_P  
OUT3_N  
OUT4_P  
OUT4_N  
100 nF  
25 MHz  
SECREF_N  
PDN  
100 nF  
100 nF  
100 nF  
MCU_GPIO  
U1  
CDCE6214  
100 nF  
100 nF  
REFSEL  
HW_SW_CTRL  
100 nF  
VDD_REF  
DAP  
100 nF  
GND  
GPIO4  
SCL/GPIO3  
SDA/GPIO2  
GPIO1  
MCU_GPIO  
MCU_I2C_SCL  
MCU_I2C_SDA  
MCU_GPIO  
Figure 35. Typical Application Schematic With I2C Interface  
38  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
 
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
10.2 Typical Application  
Figure 36 shows typical block diagram for eAVB system using CDCE6214.  
25MHz  
XTAL  
PFD  
Output  
Divider  
2.4576GHz  
VCO  
Audio CODEC  
N Div  
98.304  
Output  
Divider  
CDCE6214  
Processor  
PTP  
TS  
PHY  
CNT1  
I2C  
MAC  
CMP  
(freq inc/dec by  
< 1ppm steps)  
CNT1  
Figure 36. eAVB System Block Diagram Using CDCE6214  
10.2.1 Design Requirements  
For designs with the CDCE6214, the designer must select:  
a primary or secondary input  
an input type  
an input frequency  
a device communication mode (I2C and/or EEPROM)  
the required device operation modes to configure the connections of GPIO pins  
a supply voltage (1.8 V, 2.5 V, or 3.3 V)  
a digital reference (1.8 V, 2.5 V, or 3.3 V)  
an output reference (1.8 V, 2.5 V, or 3.3 V)  
an output format  
10.2.2 Detailed Design Procedure  
The CDCE6214 is designed for ease-of-use. To power up the device:  
1. Either tie the power supply pin (VDD_REF, VDD_VCO, VDDO_12 and VDDO_34) together or independently  
connect them to the 1.8-V, 2.5-V, or 3.3-V power supply.  
2. Solder the GND Pin (DAP) to the PCB Plane.  
3. Ensure that the REFSEL, HW_SW_CTRL, and PDN configuration pins are appropriately connected:  
1. Internally connect the PDN pin to VDD_REF through a pullup resistor. When floating, the PDN pin would  
automatically release device from PDN.  
2. If PDN pin is low, the device will not respond to I2C commands.  
3. REFSEL and HW_SW_CTRL are tri-level pins. If left floating, the device will start in fall-back mode.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: CDCE6214  
 
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
Typical Application (continued)  
The device is factory-configured to provide:  
100-MHz LVDS with 25-MHz XTAL when HW_SW_CTRL=L. The 25-MHz output on OUT0 is enabled.  
100-MHz LP-HCSL with 25-MHz XTAL and HW_SW_CTRL = H. The 25-MHz output on OUT0 is enabled.  
10.2.3 Application Curves  
Reference: Crystal  
Input 25 MHz  
Closed-Loop  
Phase Noise from  
2.4-GHz VCO  
100-MHz LP-HCSL  
Reference: Crystal  
Input 25 MHz  
Closed-Loop  
Phase Noise from  
2.4576-GHz VCO  
24.576-MHz  
LVCMOS  
Figure 37. 100-MHz LP-HCSL Output for PCIe Application  
Figure 38. 24.576MHz LVCMOS Output for Audio Clocking  
11 Power Supply Recommendations  
The CDCE6214 provides multiple power supply pins. Each power supply supports 1.8 V, 2.5 V, or 3.3 V. Internal  
low-dropout regulators (LDO) source the internal blocks and allow each pin to be supplied with its individual  
supply voltage. The VDD_REF pin supplies the control pins and the serial interface. Therefore, any pullup  
resistors shall be connected to the same domain as VDD_REF. VDD_VCO powers all PLL blocks. VDDO_12  
powers outputs OUT1 and OUT2. VDDO_34 powers OUT0, OUT3, and OUT4.  
VDD_REF and VDDO_34 can be used for level translation operation on OUT0.  
11.1 Power-Up Sequence  
There are no restrictions from the device for applying power to the supply pins. From an application perspective,  
TI recommends to either apply all the VDDs at the same time or apply the VDDREF first. The digital core is  
connected to VDDREF and thus the settings of the EEPROM are applied automatically.  
11.2 Decoupling  
TI recommends isolating all power supplies using a ferrite bead and provide decoupling for each of the supplies.  
TI also recommends optimizing the decoupling for the respective layout, and consider the power supply  
impedance to optimize for the individual frequency plan.  
An example for a decoupling per supply pin: 1x 4.7 µF, 1x 470 nF, and 1x 100 nF.  
40  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
12 Layout  
12.1 Layout Guidelines  
For this example, follow these guidelines:  
Isolate inputs and outputs using a GND shield. routes all inputs and outputs as differential pairs.  
Isolate outputs to adjacent outputs when generating multiple frequencies.  
Isolate the crystal area, connect the GND pads of the crystal package and flood the adjacent area. Figure 40  
shows a foot print which supports multiple crystal sizes.  
Try to avoid impedance jumps in the fan-in and fan-out areas when possible.  
Use five VIAs to connect the thermal pad to a solid GND plane. Full-through VIAs are preferred.  
Place decoupling capacitors with small capacitance values very close to the supply pins. Try to place them  
very close on the same layer or directly on the backside layer. Larger values can be placed more far away.  
Figure 40 shows three decoupling capacitors close to the device. Ferrite beads are recommended to isolate  
the different frequency domains and the VDD_VCO domain.  
Preferably use multiple VIAs to connect wide supply traces to the respective power planes.  
12.2 Layout Examples  
Figure 39. Layout Example, Top Layer  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
Layout Examples (continued)  
Figure 40. Layout Example, Bottom Layer  
42  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Development Support  
Contact your TI representative for more information.  
13.1.2 Device Nomenclature  
CDCE6214 - 62= clock generator 1= 1x PLL 4=4x outputs  
13.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
44  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
CDCE6214  
www.ti.com  
SNAS811 JULY 2020  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: CDCE6214  
CDCE6214  
SNAS811 JULY 2020  
www.ti.com  
46  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: CDCE6214  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CDCE6214RGER  
CDCE6214RGET  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
6214A2  
6214A2  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
1-Oct-2021  
OTHER QUALIFIED VERSIONS OF CDCE6214 :  
Automotive : CDCE6214-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CDCE6214RGER  
CDCE6214RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CDCE6214RGER  
CDCE6214RGET  
VQFN  
VQFN  
RGE  
RGE  
24  
24  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGE 24  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4204104/H  
PACKAGE OUTLINE  
RGE0024P  
VQFN - 0.9 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.1 MIN  
(0.05)  
A
-
A
4
0
.
0
0
0
SECTION A-A  
TYPICAL  
0.9  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 2.5  
SYMM  
(0.2) TYP  
A2  
A3  
7
12  
(0.25) TYP  
EXPOSED  
THERMAL PAD  
6
13  
SYMM  
25  
A
A
2X 2.5  
2.7 0.1  
20X 0.5  
18  
1
PIN 1 ID  
A1  
0.3  
0.2  
A4  
24X  
24  
19  
0.1  
C A B  
0.5  
0.3  
24X  
(0.25) TYP  
0.05  
4X ( 0.25)  
4224751/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGE0024P  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.7)  
SYMM  
SEE SOLDER MASK  
DETAIL  
24  
19  
A1  
A4  
24X (0.6)  
1
18  
24X (0.25)  
SYMM  
20X (0.5)  
(3.8)  
25  
(
0.2) TYP  
(1.1)  
VIA  
(1.75)  
13  
6
A2  
(R0.05) TYP  
A3  
4X ( 0.25)  
7
12  
(1.75)  
(1.1)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224751/A 01/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGE0024P  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.695)  
19  
24  
A1  
A4  
24X (0.6)  
1
18  
24X (0.25)  
20X (0.5)  
(0.695)  
(3.8)  
25  
SYMM  
4X ( 1.19)  
13  
(1.75)  
6
A2  
(R0.05) TYP  
4X ( 0.25)  
A3  
7
12  
(1.75)  
SYMM  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X  
EXPOSED PAD 25  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4224751/A 01/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

CDCE6214RGET

具有一个 PLL、四个差分输出的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214TWRGERQ1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE6214TWRGETQ1

支持第 1-5 代 PCIe 且具有 2 个输入、4 个输出和内部 EEPROM 的超低功耗时钟发生器 | RGE | 24 | -40 to 105
TI

CDCE706

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER / MULTIPLIER / DIVIDER
TI

CDCE706PW

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE706PWG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE706PWR

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE706PWRG4

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE706_10

PROGRAMMABLE 3-PLL CLOCK SYNTHESIZER/MULTIPLIER/DIVIDER
TI

CDCE72010

Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor
TI

CDCE72010RGCR

Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor
TI

CDCE72010RGCRG4

Ten Output High Performance Clock Synchronizer, Jitter Cleaner, and Clock Distributor
TI