CDCVF25084 [TI]

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER; 3.3 -V 1 : 8零延迟( PLL ) X4时钟乘法器
CDCVF25084
型号: CDCVF25084
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER
3.3 -V 1 : 8零延迟( PLL ) X4时钟乘法器

时钟
文件: 总12页 (文件大小:169K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A – APRIL 2003 – REVISED MAY 2003  
PW PACKAGE (TSSOP)  
(TOP VIEW)  
D
Phase-Locked Loop-Based Multiplier by  
Four  
D
Input Frequency Range: 2.5 MHz to 45 MHz  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
CLKIN  
1Y0  
FBIN  
1Y3  
1Y2  
D
Output Frequency Range: 10 MHz to  
180 MHz  
1Y1  
D
D
D
D
LVCMOS/LVTTL I/O Compatible  
V
V
DD  
DD  
GND  
2Y0  
2Y1  
S2  
GND  
2Y3  
2Y2  
S1  
Low Jitter (Cycle-Cycle): ±120 ps Over the  
Range 75 MHz to 180 MHz  
Distributes One Clock Input to Two Banks  
of Four Outputs  
Auto Frequency Detection to Disable  
Device (Power-Down Mode)  
D
Operates From Single 3.3-V Supply  
D
Industrial Temperature Range –40°C to  
85°C  
D
D
D
D
25-On-Chip Series Damping Resistors  
No External RC Network Required  
Spread Spectrum Clock Compatible (SSC)  
Available in 16-Pin TSSOP Package  
description  
The CDCVF25084 is a high-performance, low-skew, low-jitter, phase-lock loop clock multiplier. It uses a PLL  
to precisely align, in both frequency and phase, the output clocks to the input clock signal including a  
multiplication factor of four. The CDCVF25084 operates from a nominal supply voltage of 3.3 V. The device also  
includes integrated series-damping resistors in the output drivers that make it ideal for driving point-to-point  
loads.  
Two banks of four outputs each provide low-skew, low-jitter copies of CLKIN x four. All outputs operate at the  
same frequency. Output duty cycles are adjusted to 50%, independent of duty cycle at CLKIN. The device  
automatically goes into power-down mode when no input signal is applied to CLKIN and the outputs go into a  
low state. Unlike many products containing PLLs, the CDCVF25084 does not require an external RC network.  
The loop filter for the PLL is included on-chip, minimizing component count, space, and cost.  
Because it is based on a PLL circuitry, the CDCVF25084 requires a stabilization time to achieve phase lock of  
the feedback signal to the reference signal. This stabilization is required following power up and application of  
a fixed-frequency signal at CLKIN and any following changes to the PLL reference.  
The CDCVF25084 is characterized for operation from –40°C to 85°C.  
FUNCTION TABLE  
S2  
0
S1  
0
1Y0–1Y3  
Hi-Z  
2Y0–2Y3  
Hi-Z  
OUTPUT SOURCE  
PLL SHUTDOWN  
N/A  
Yes  
No  
0
1
Active  
Active  
Active  
Hi-Z  
PLL  
Input clock (PLL bypass)  
1
0
Active  
Active  
Yes  
No  
PLL  
1
1
A CLK input frequency < 2 MHz switches the outputs to low level.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
Terminal Functions  
TERMINAL  
TYPE  
DESCRIPTION  
NAME  
PIN NO.  
1Y[0:3]  
2, 3, 14, 15  
O
Bank 1Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated  
25-series-damping resistor.  
2Y[0:3]  
CLKIN  
6, 7, 10, 11  
1
O
I
Bank 2Yn clock outputs. These outputs are low-skew copies of CLKIN. Each output has an integrated  
25-series-damping resistor.  
Clock input. CLKIN provides the clock signal to be distributed by the CDCVF25084 clock driver. CLKIN is  
used to provide the reference signal to the integrated PLL that generates the output signal. CLKIN must  
have a fixed frequency and phase in order for the PLL to acquire lock. Once the circuit is powered up and  
a valid signal is applied, a stabilization time is required for the PLL to phase lock the feedback signal to  
CLKIN.  
FBIN  
16  
I
Feedback input. FBIN provides the feedback signal to the internal PLL. FBIN must be wired to one of the  
outputstocompletethefeedbackloopoftheinternalPLL.TheintegratedPLLsynchronizestheFBINand  
output signal so there is nominally zero-delay from input clock to output clock.  
GND  
5, 12  
9, 8  
Ground Ground  
S1, S2  
I
Select pins to determine mode of operation. See the FUNCTION TABLE for mode selection options.  
V
DD  
4, 13  
Power  
Supply voltage. The supply voltage range is 3 V to 3.6 V  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
functional block diagram  
2
1Y0  
25  
16  
Div by 4  
FBIN  
PLL  
M
U
X
1
3
CLKIN  
1Y1  
1Y2  
1Y3  
25 Ω  
25 Ω  
25 Ω  
14  
15  
8
S2  
S1  
Input  
Select  
Decoding  
9
6
2Y0  
2Y1  
2Y2  
2Y3  
25 Ω  
25 Ω  
25 Ω  
25 Ω  
7
10  
11  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.6 V  
DD  
Input voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.6 V  
I
Output voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
O
DD  
Input clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
IK  
I
Output clamp current, I (V < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
OK  
O
Continuous total output current, I (V = 0 to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA  
O
O
DD  
Package thermal impedance, θ (see Note 3): PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147°C/W  
JA  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
2. This value is limited to 4.6 V maximum.  
3. The package thermal impedance is calculated in accordance with JESD 51.  
recommended operating conditions  
MIN  
NOM MAX  
UNIT  
V
Supply voltage, V  
DD  
3
3.3  
3.6  
0.8  
Low level input voltage, V  
V
IL  
High level input voltage, V  
2
0
V
IH  
Input voltage, V  
3.6  
12  
12  
V
I
High-level output current, I  
mA  
mA  
°C  
OH  
Low-level output current, I  
OL  
Operating free-air temperature, T  
40  
85  
A
timing requirements over recommended ranges of supply voltage, load and operating free-air  
temperature  
MIN  
2.5  
NOM MAX  
45  
UNIT  
Input clock frequency, f  
Input clock duty cycle  
MHz  
CLKIN  
40%  
10  
60%  
180  
Clock frequency, f  
clkout  
C
= 15 pF  
MHz  
L
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
Input voltage  
TEST CONDITIONS  
= 3 V, I = 18 mA  
MIN TYP  
MAX  
1.2  
±5  
UNIT  
V
V
IK  
V
DD  
V = 0 V or V  
I
I
I
I
I
Input current  
µA  
µA  
mA  
µA  
pF  
I
I
DD  
= 0 MHz,  
Power-down current  
Dynamic current  
f
f
V
= 3.3 V  
= 15 pF  
100  
80  
PD  
DD  
OZ  
CLKIN  
= 80 MHz,  
DD  
C
60  
out  
L
Output 3-state  
V = 0 V or V  
,
V
DD  
= 3.6 V  
±5  
o
DD  
DD  
DD  
DD  
C
C
C
Input capacitance at FBIN, CLKIN  
Input capacitance at S1, S2  
Output capacitance  
V = 0 V or V  
4
2.2  
3
I
I
V = 0 V or V  
pF  
I
I
V = 0 V or V  
pF  
O
I
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= min to max,  
= 3 V,  
I
I
I
I
I
I
= 100 µA  
= 12 mA  
= 6 mA  
V
DD  
0.2  
2.1  
OH  
OH  
OH  
V
High-level output voltage  
Low-level output voltage  
High-level output current  
Low-level output current  
V
V
OH  
= 3 V,  
2.4  
= min to max,  
= 3 V,  
= 100 µA  
= 12 mA  
= 6 mA  
0.2  
0.8  
OL  
OL  
OL  
V
I
OL  
= 3 V,  
0.55  
= 3 V,  
V
V
V
V
V
V
= 1 V  
24  
O
O
O
O
O
O
= 3.3 V,  
= 3.6 V,  
= 3 V,  
= 1.65 V  
= 3.135 V  
= 1.95 V  
= 1.65 V  
= 0.4 V  
30  
mA  
mA  
OH  
-15  
14  
26  
I
= 3.3 V,  
= 3.6 V,  
33  
OL  
All typical values are at respective nominal V  
.
DD  
over frequency see Figure 9.  
All outputs are switching; for I  
DD  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
switching characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
PLL lock time  
TEST CONDITIONS  
= 100 MHz  
MIN TYP  
MAX  
UNIT  
t
t
f
f
f
2
µs  
(lock)  
out  
out  
out  
= 40 MHz to 75 MHz, Vth = V /2  
DD  
±200  
±100  
4.5  
Phase offset (CLKIN to FBIN), (see  
Note 5)  
ps  
(phoffset)  
= 75 MHz to 180 MHz, Vth = V /2  
DD  
t
t
, t  
Propagation delay  
S2 = High, S1 = Low (PLL bypass mode)  
See Figure 3  
2.3  
ns  
ps  
PLH PHL  
Output skew (Yn to Yn) (see Note 4)  
75  
150  
sk(o)  
PLL bypass mode  
900  
Part-to-part skew  
(low-to-high transition)  
PLL mode, f  
PLL mode, f  
= 40 MHz to 75 MHz  
= 75 MHz to 180 MHz  
350  
t
ps  
out  
out  
sk(pp)  
300  
f
f
f
f
f
= 40 MHz to 75 MHz  
±220  
±120  
260  
ps  
ps  
ps  
ps  
out  
out  
out  
out  
out  
t
t
Jitter (cycle-to-cycle)  
Period jitter  
jit(cc)  
= 75 MHz to 180 MHz  
= 40 MHz to 75 MHz  
jit(per)  
= 75 MHz to 180 MHz  
140  
= 75 MHz to 180 MHz, peak-to-peak  
±110  
ps  
ps  
(see Note 6)  
t
Phase jitter  
jit(θ)  
f
f
= 75 MHz to 180 MHz, RMS (see Note 6)  
= 10 MHz to 180 MHz  
26  
55%  
0.3  
3
out  
odc  
Output duty cycle  
Pulse skew  
45%  
1
out  
t
S2 = High, S1 = low (PLL bypass mode)  
See Figure 4  
ns  
sk(p)  
t , t  
Rise / fall time rate  
V/ns  
r f  
All typical values are at respective nominal V  
.
DD  
specification is only valid for equal loading of all outputs.  
NOTES: 4. The t  
sk(o)  
5. Similarwaveform at CLKIN and FBIN are required. Output 1Y3 is used as a feedback to FBIN loaded with 11 pF and all otheroutputs  
have 15 pF. For phase displacement between CLKIN and Y-outputs, see Figure 5.  
6. Input phase jitter < ±50 ps; output sample size is 20000 cycles.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
PARAMETER MEASUREMENT INFORMATION  
V
DD  
1000 Ω  
1000 Ω  
From Output Under Test  
= 15 pF at f = 10 MHz to 180 MHz  
C
L
NOTES: A.  
C includes probe and jig capacitance.  
L
B. All input pulses are supplied by generators having the following characteristics: Z = 50 , t < 1.2 ns, t < 1.2 ns  
O
r
f
C. The outputs are measured one at a time with one transition per measurement.  
Figure 1. Test Load Circuit  
V
V
OH  
50% V  
DD  
CLKIN  
OL  
t
(phoffset)  
V
OH  
50% V  
DD  
FBIN  
V
OL  
Figure 2. Voltage Thresholds for Measurements, Phase Offset (PLL Mode)  
50% V  
DD  
Any Y  
Any Y  
50% V  
50% V  
DD  
DD  
t
t
1
sk(0)  
t
2
NOTE: odc = t /(t + t ) x 100%  
1
1
2
Figure 3. Output Skew and Output Duty Cycle (PLL Mode)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
PARAMETER MEASUREMENT INFORMATION  
V
OH  
50% V  
DD  
CLKIN  
V
OL  
t
t
PHL  
PLH  
V
OH  
80%  
80%  
50% V  
50% V  
DD  
20%  
DD  
20%  
Any Y  
V
OL  
t
t
f
r
NOTE: t |  
=|t  
t
sk(p) PLHPHL  
Figure 4. Propagation Delay and Pulse Skew (Non-PLL Mode)  
PHASE DISPLACEMENT  
PHASE OFFSET  
vs  
vs  
CLOAD  
FREQUENCY  
500  
250  
C
C
= 15 pF,  
400  
300  
200  
100  
V
C
= 3.3 V,  
= 15 pF  
L(Yn)  
L(FBIN)  
CC  
Yn  
= 11 pF  
200  
150  
0
100  
200  
300  
400  
500  
100  
50  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
0
50  
10 5  
0
5
10 15 20 25 30 50 35 40 45  
10  
110  
130 150 170  
30  
50  
70  
90  
Cload Difference Between FBIN and Yn Pins pF  
f Output Frequency MHz  
(C + 4 pF) C  
FBIN  
Yn  
Figure 5  
Figure 6  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
PARAMETER MEASUREMENT INFORMATION  
CYCLE-TO-CYCLE / PERIOD JITTER  
vs  
FREQUENCY  
TRANSFER CHARACTERISTIC FROM CLKIN TO Yn  
20  
1300  
1200  
1100  
1000  
900  
V
= 3.3 V  
DD  
All Outputs  
Switching  
18  
16  
14  
12  
10  
800  
700  
600  
Cycle-to-Cycle Jitter  
Period Jitter  
500  
8
6
4
400  
300  
200  
2
0
100  
0
10 30 50 70 90 110 130 150 170 190  
0.1  
1
10  
f Output Frequency MHz  
f Frequency MHz  
Figure 8  
Figure 7  
SUPPLY CURRENT  
vs  
FREQUENCY  
180  
160  
140  
120  
100  
80  
V
= 3.6 V  
= 85°C  
DD  
A
T
V
T
A
= 3 V  
DD  
= 40°C  
V
T
A
= 3 V  
= 40°C  
DD  
V
T
A
= 3 V  
= 40°C  
DD  
60  
40  
20  
0
10 30 50 70 90 110 130 150 170 190  
f Output frequency MHz  
Figure 9  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
CDCVF25084  
3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER  
SCAS690A APRIL 2003 REVISED MAY 2003  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
M
0,10  
0,65  
0,19  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°ā8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

CDCVF25084PW

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER
TI

CDCVF25084PWG4

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER
TI

CDCVF25084PWR

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER
TI

CDCVF25084PWRG4

3.3-V 1:8 ZERO DELAY (PLL) x4 CLOCK MULTIPLIER
TI

CDCVF2509

3.3-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF2509A

3.3-V PHASE-LOCK LOOP CLOCK DRIVER WITH POWER DOWN MODE
TI

CDCVF2509APW

3.3-V PHASE-LOCK LOOP CLOCK DRIVER WITH POWER DOWN MODE
TI

CDCVF2509APWR

3.3-V PHASE-LOCK LOOP CLOCK DRIVER WITH POWER DOWN MODE
TI

CDCVF2509PW

3.3-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF2509PWR

3.3-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF2510

3.3-V PHASE-LOCK LOOP CLOCK DRIVER
TI

CDCVF2510A

3.3-V PHASE-LOCK LOOP CLOCK DRIVER WITH POWER DOWN MODE
TI