CSD88584Q5DCT [TI]

采用 5mm x 6mm SON 封装的 50A、40V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块 | DMM | 22 | -55 to 150;
CSD88584Q5DCT
型号: CSD88584Q5DCT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 5mm x 6mm SON 封装的 50A、40V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块 | DMM | 22 | -55 to 150

电动机控制 光电二极管
文件: 总25页 (文件大小:1397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
CSD88584Q5DC 40V NexFET块  
1 特性  
3 说明  
半桥电源块  
CSD88584Q5DC 40V 电源块是一款针对手持设备、  
无绳园艺工具和电动工具等高电流电机控制应用的优化  
设计。该器件利用 TI 获得专利的堆叠裸片技术来更大  
限度地减小寄生电感,同时采用节省空间的散热增强型  
DualCool5mm × 6mm 封装,可提供完整半桥。利用  
外露的金属顶部,该电源块器件允许简单散热应用通过  
封装顶部散发 PCB 热量,从而在许多电机控制应用所  
要求的较高电流下,实现出色的热性能。  
高密度 5mm × 6mm SON 封装  
RDS(ON),可更大限度地降低传导损耗  
电流为 35A 时,PLoss 2.4W  
DualCool散热增强型封装  
超低电感封装  
符合 RoHS  
无卤素  
无铅端子镀层  
底视图  
顶视图  
2 应用  
GL  
NC  
GH  
SH  
用于无刷直流电机控制的三相桥  
多达 8s 电池的电动工具  
其他半桥和全桥拓扑  
VIN  
PGND  
VSW  
VIN  
GH  
SH  
VSW  
器件信息  
介质  
器件  
数量  
封装  
配送  
GL  
CSD88584Q5DC 2500 13 英寸卷带  
SON  
5.00mm × 6.00mm  
塑料封装  
卷带包  
PGND  
CSD88584Q5DCT 250  
7 英寸卷带  
Copyright © 2017, Texas Instruments Incorporated  
电源块原理图  
6
VIN  
VIN = 24 V  
VGS = 10 V  
5
4
3
2
1
0
D.C. = 50%  
L = 480 mH  
fSW = 20 kHz  
TA = 25èC  
VM  
CSD88584  
CSD88584  
CSD88584  
GH_A  
GL_A  
Motor  
GH_B  
GL_B  
DRV832X  
Gate Driver  
GH_C  
GL_C  
0
5
10  
15  
20  
25  
30  
RMS Phase Current (A)  
35  
40  
45  
50  
D000  
功率损耗与输出电流  
Copyright © 2018, Texas Instruments Incorporated  
典型电路  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLPS598  
 
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Specifications.................................................................. 3  
5.1 Absolute Maximum Ratings(1) ....................................3  
5.2 Recommended Operating Conditions.........................3  
5.3 Power Block Performance.......................................... 3  
5.4 Thermal Information....................................................3  
5.5 Electrical Characteristics.............................................4  
5.6 Typical Power Block Device Characteristics...............6  
5.7 Typical Power Block MOSFET Characteristics...........8  
6 Application and Implementation..................................10  
6.1 Application Information............................................. 10  
6.2 Brushless DC Motor With Trapezoidal Control..........11  
6.3 Power Loss Curves...................................................13  
6.4 Safe Operating Area (SOA) Curve............................14  
6.5 Normalized Power Loss Curves................................14  
6.6 Design Example – Regulate Current to Maintain  
Safe Operation............................................................ 14  
6.7 Design Example – Regulate Board and Case  
Temperature to Maintain Safe Operation.................... 15  
7 Layout.............................................................................17  
7.1 Layout Guidelines..................................................... 17  
7.2 Layout Example........................................................ 19  
8 Device and Documentation Support............................20  
8.1 接收文档更新通知..................................................... 20  
8.2 支持资源....................................................................20  
8.3 Trademarks...............................................................20  
8.4 静电放电警告............................................................ 20  
8.5 术语表....................................................................... 20  
9 Mechanical, Packaging, and Orderable Information..21  
4 Revision History  
Changes from Revision C (January 2018) to Revision D (December 2018)  
Page  
Updated current sense resistor description in applications section .................................................................17  
Changes from Revision * (May 2017) to Revision A (May 2017)  
Page  
更新了典型电路 图中的栅极驱动器器件型号......................................................................................................1  
Changes from Revision A (May 2017) to Revision B (September 2017)  
Page  
Updated 5-3 to extend to 50 A....................................................................................................................... 6  
Changes from Revision B (September 2017) to Revision C (January 2018)  
Page  
功率损耗与输出电流 3-1 图中将 VDD = 10V 改为 VGS = 10V.....................................................................1  
Changed VDD to VGS in sections Recommended Operating Conditions, Block Performance, & Typical Power  
Block Device Characteristics ............................................................................................................................. 3  
Changed IDSS test condition from 20 V to 32 V in the Electrical Characteristics table....................................... 4  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
2
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
–0.8  
–0.3  
–20  
–20  
MAX  
40  
UNIT  
VIN to PGND  
VSW to PGND  
40  
Voltage  
V
GH to SH  
20  
GL to PGND  
20  
(2)  
Pulsed current rating, IDM  
400  
12  
A
Power dissipation, PD  
W
High-side FET, ID = 103 A, L = 0.1 mH  
Low-side FET, ID = 103 A, L = 0.1 mH  
525  
525  
150  
150  
Avalanche energy, EAS  
mJ  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–55  
–55  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated in the Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Single FET conduction, max RθJC = 1.1°C/W, pulse duration ≤ 100 μs, single pulse.  
5.2 Recommended Operating Conditions  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
MAX  
16  
UNIT  
V
VGS  
VIN  
ƒSW  
IOUT  
TJ  
Gate drive voltage  
4.5  
Input supply voltage(1)  
Switching frequency  
36  
V
CBST = 0.1 µF (min)  
5
50  
kHz  
A
RMS motor winding current  
Operating temperature  
50  
125  
°C  
(1) Up to 32-V input use one capacitor per phase, MLCC 10 nF, 100 V, X7S, 0402, PN: C1005X7S2A103K050BB from VIN to GND return.  
Between 32-V to 36-V input operation, add RC switch-node snubber as described in the 7.1.1 section of this data sheet.  
5.3 Power Block Performance  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
CONDITIONS  
VIN = 24 V, VGS = 10 V,  
MIN  
TYP  
MAX UNIT  
IOUT = 35 A, ƒSW = 20 kHz,  
TJ = 25°C, duty cycle = 50%,  
L = 480 µH  
PLOSS  
Power loss(1)  
2.4  
W
VIN = 24 V, VGS = 10 V,  
IOUT = 35 A, ƒSW = 20 kHz,  
TJ = 125°C, duty cycle = 50%,  
L = 480 µH  
PLOSS  
Power loss  
3.5  
W
(1) Measurement made with eight 10-µF, 50-V, ±10% X5R (TDK C3225X5R1H106K250AB or equivalent) ceramic capacitors placed  
across VIN to PGND pins and using UCC27210DDAR 100-V, 4-A driver IC.  
5.4 Thermal Information  
TJ = 25°C (unless otherwise stated)  
THERMAL METRIC  
Junction-to-ambient thermal resistance (min Cu)(2)  
Junction-to-ambient thermal resistance (max Cu)(2) (1)  
MIN  
TYP MAX UNIT  
125  
°C/W  
50  
RθJA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
 
 
 
 
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
TJ = 25°C (unless otherwise stated)  
THERMAL METRIC  
MIN  
TYP MAX UNIT  
Junction-to-case thermal resistance (top of package)(2)  
Junction-to-case thermal resistance (VIN pin)(2)  
2.1  
°C/W  
1.1  
RθJC  
(1) Device mounted on FR4 material with 1-in2 (6.45-cm2) Cu.  
(2) RθJC is determined with the device mounted on a 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in  
(3.81-cm × 3.81-cm), 0.06-in (1.52-mm) thick FR4 board. RθJC is specified by design while RθJA is determined by the user’s board  
design.  
5.5 Electrical Characteristics  
TJ = 25°C (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC CHARACTERISTICS  
BVDSS  
IDSS  
Drain-to-source voltage  
VGS = 0 V, IDS = 250 µA  
VGS = 0 V, VDS = 32 V  
VDS = 0 V, VGS = 20 V  
VDS = VGS, IDS = 250 µA  
VGS = 4.5 V, IDS = 30 A  
VGS = 10 V, IDS = 30 A  
VDS = 4 V, IDS = 30 A  
40  
V
µA  
nA  
V
Drain-to-source leakage current  
Gate-to-source leakage current  
Gate-to-source threshold voltage  
1
100  
2.3  
IGSS  
VGS(th)  
1.2  
1.7  
1.0  
1.5  
RDS(on)  
gfs  
Drain-to-source on resistance  
Transconductance  
mΩ  
S
0.68  
149  
0.95  
DYNAMIC CHARACTERISTICS  
CISS  
COSS  
CRSS  
RG  
Input capacitance  
9540  
957  
474  
1.0  
68  
12400  
1240  
616  
2.0  
pF  
pF  
pF  
Ω
VGS = 0 V, VDS = 20 V,  
ƒ = 1 MHz  
Output capacitance  
Reverse transfer capacitance  
Series gate resistance  
Gate charge total (4.5 V)  
Gate charge total (10 V)  
Gate charge gate-to-drain  
Gate charge gate-to-source  
Gate charge at Vth  
Output charge  
Qg  
88  
nC  
nC  
nC  
nC  
nC  
nC  
ns  
ns  
ns  
ns  
Qg  
137  
26  
178  
VDS = 20 V,  
IDS = 30 A  
Qgd  
Qgs  
Qg(th)  
QOSS  
td(on)  
tr  
24  
16  
VDS = 20 V, VGS = 0 V  
42  
Turnon delay time  
11  
Rise time  
24  
VDS = 20 V, VGS = 10 V,  
IDS = 30 A, RG = 0 Ω  
td(off)  
tf  
Turnoff delay time  
53  
Fall time  
17  
DIODE CHARACTERISTICS  
VSD  
Qrr  
trr  
Diode forward voltage  
IDS = 30 A, VGS = 0 V  
0.75  
34  
1.0  
V
Reverse recovery charge  
Reverse recovery time  
nC  
ns  
VDS = 20 V, IF = 30 A,  
di/dt = 300 A/µs  
24  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
4
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
Max RθJA = 50°C/W when mounted on 1 in2 (6.45 cm2) of  
2-oz (0.071-mm) thick Cu.  
Max RθJA = 125°C/W when mounted on minimum pad area  
of 2-oz (0.071-mm) thick Cu.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
5.6 Typical Power Block Device Characteristics  
The typical power block system characteristic curves (5-1 through 5-6) are based on measurements made  
on a PCB design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (H) and 6 copper layers of 2-oz copper  
thickness. See 6 section for detailed explanation. TJ = 125°C, unless stated otherwise.  
10  
9
8
7
6
5
4
3
2
1
0
1.2  
1.1  
1
Typical  
Max  
0.9  
0.8  
0.7  
0.6  
0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
30  
Output Current (A)  
35  
40  
45  
50  
Junction Temperature (èC)  
D002  
D001  
VIN = 24 V  
VGS = 10 V  
IOUT = 50 A  
D.C. = 50%  
L = 480 µH  
VIN = 24 V  
VGS = 10 V  
L = 480 µH  
D.C. = 50%  
ƒSW = 20 kHz  
ƒSW = 20 kHz  
5-2. Power Loss vs Temperature  
5-1. Power Loss vs Output Current  
Top Case Temperature (èC)  
108 112 116 120  
100  
55  
104  
124  
128  
TX  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0
100  
104  
108  
112  
116  
120  
124  
128  
Board Temperature (èC)  
D005  
VIN = 24 V  
VGS = 10 V  
L = 480 µH  
D.C. = 50%  
ƒSW = 20 kHz  
5-3. Typical Safe Operating Area  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
6
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
1.4  
2.8  
2.1  
1.4  
0.7  
0.0  
-0.7  
-1.4  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
0.8  
0.7  
0.6  
0.4  
0.3  
0.1  
0.0  
-0.1  
-0.3  
-0.4  
1.3  
1.2  
1.1  
1
0.9  
0.8  
5
10  
15  
20  
Switching Frequency (kHz)  
25  
30  
35  
40  
45  
50  
12  
16  
20 24  
Input Voltage (V)  
28  
32  
D006  
D007  
VIN = 24 V  
IOUT = 50 A  
VGS = 10 V  
D. C. = 50%  
L = 480 µH  
IOUT = 50 A  
VGS = 10 V  
D. C. = 50%  
L = 480 µH  
ƒSW = 20 kHz  
5-4. Normalized Power Loss vs Switching  
5-5. Normalized Power Loss vs Input Voltage  
Frequency  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.8  
0.7  
0.6  
0.4  
0.3  
0.1  
0.0  
-0.1  
10  
20  
30  
40  
50 60  
Duty Cycle (%)  
70  
80  
90  
100  
D009  
VIN = 24 V  
ƒSW = 20 kHz  
VGS = 10 V  
L = 480 µH  
IOUT = 50 A  
5-6. Normalized Power Loss vs Duty Cycle  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
5.7 Typical Power Block MOSFET Characteristics  
TJ = 25°C, unless stated otherwise.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
40  
VGS = 4.5 V  
VGS = 8 V  
VGS = 10 V  
20  
0
0
1E-5  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
VDS - Drain-to-Source Voltage (V)  
0.35  
0.4  
0.0001  
0.001  
0.01  
0.1  
1
Duration (s)  
D010  
D014  
D018  
Max RθJA = 125°C/W  
5-8. MOSFET Saturation Characteristics  
5-7. Single Pulse Current vs Pulse Duration  
100  
10  
9
8
7
6
5
4
3
2
1
0
TC = 125° C  
TC = 25° C  
TC = -55° C  
10  
1
0.1  
0.01  
0.001  
0
0.5  
1
1.5  
2
2.5  
VGS - Gate-to-Source Voltage (V)  
3
3.5  
0
15  
30  
45  
60  
Qg - Gate Charge (nC)  
75  
90 105 120 135 150  
D012  
VDS = 5 V  
ID = 30 A  
VDS = 20 V  
5-9. MOSFET Transfer Characteristics  
5-10. MOSFET Gate Charge  
100000  
2.3  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
10000  
1000  
100  
0
10  
20  
30  
VDS - Drain-to-Source Voltage (V)  
40  
-75 -50 -25  
0
25  
50  
TC - Case Temperature (° C)  
75 100 125 150 175  
D016  
5-11. MOSFET Capacitance  
ID = 250 µA  
5-12. Threshold Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
8
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
5
4.5  
4
2
1.8  
1.6  
1.4  
1.2  
1
TC = 25° C  
TC = 125° C  
VGS = 4.5 V  
VGS = 10 V  
3.5  
3
2.5  
2
1.5  
1
0.8  
0.6  
0.4  
0.5  
0
0
-75 -50 -25  
0
25  
50  
TC - Case Temperature (° C)  
75 100 125 150 175  
2
4
6
8
10  
12  
14  
VGS - Gate-to-Source Voltage (V)  
16  
18  
20  
D022  
D020  
ID = 30 A  
VDS = 20 V  
ID = 30 A  
5-14. MOSFET Normalized RDS(on) vs  
5-13. MOSFET RDS(on) vs VGS  
Temperature  
100  
10  
1000  
TC = 25° C  
TC = 125° C  
TC = 25è C  
TC = 125è C  
1
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
0
0.2  
0.4  
0.6  
VSD - Source-to-Drain Voltage (V)  
0.8  
1
0.01  
0.1  
TAV - Time in Avalanche (ms)  
1
D024  
D026  
5-15. MOSFET Body Diode Forward Voltage  
5-16. MOSFET Single Pulse Unclamped  
Inductive Switching  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
6 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
6.1 Application Information  
Historically, battery powered tools have favored brushed DC configurations to spin their primary motors, but  
more recently, the advantages offered by brushless DC operation (BLDC) operation have brought about the  
advent of popular designs that favor the latter. Those advantages include, but are not limited to higher efficiency  
and therefore longer battery life, superior reliability, greater peak torque capability, and smooth operation over  
a wider range of speeds. However, BLDC designs put increased demand for higher power density and current  
handling capabilities on the power stage responsible for driving the motor.  
The CSD88584Q5DC is part of TI’s power block product family and is a highly optimized product designed  
explicitly for the purpose driving higher current DC motors in power and gardening tools. It incorporates TI’s  
latest generation silicon which has been optimized for low resistance to minimize conduction losses and offer  
excellent thermal performance. The power block utilizes TI’s stacked die technology to offer one complete half  
bridge vertically integrated into a single 5-mm × 6-mm package with a DualCool exposed metal case. This  
feature allows the designer to apply a heatsink to the top of the package and pull heat away from the PCB, thus  
maximizing the power density while reducing the power stage footprint by up to 50%.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
10  
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
6.2 Brushless DC Motor With Trapezoidal Control  
The trapezoidal commutation control is simple and has fewer switching losses compared to sinusoidal control.  
Vin  
Vin  
Vin  
PB1  
Vin  
PB2  
PB3  
PWM1  
PWM2  
PWM3  
PWM4  
GH1  
DRV8323RX  
SH1  
GL1  
GH2  
SH2  
GL2  
GH3  
SH3  
Q3  
Q2  
Q1  
GH2  
SH2  
GH3  
SH3  
GH1  
SH1  
Three Phase  
Gate Driver  
Vsw1  
Vsw3  
Vsw2  
SPEED SET  
U
PWM5  
PWM6  
VCS  
Hall  
Sensors  
TORQUE SET  
GL3  
Q5  
N
S
GL2  
GL1  
A
B
C
Q4  
Q6  
GL3  
PGND  
PGND  
PGND  
V
W
SPA  
SPB  
SPC  
SPA  
SPB  
SPC  
A
Rcs1  
Rcs2  
Rcs3  
B
C
0
0
0
0
Hall  
Inputs  
Copyright © 2017, Texas Instruments Incorporated  
6-1. Functional Block Diagram  
The block diagram shown in 6-1 offers a simple instruction of what is required to drive a BLDC motor: one  
microcontroller, one three-phase driver IC, 3 power blocks (historically 6 power MOSFETs) and 3 Hall effect  
sensors. The microcontroller responsible for block commutation must always know the rotor orientation or its  
position relative to the stator coils. This is easy achieved with a brushed DC motor due to the fixed geometry and  
position of the rotor windings, shaft and commutator.  
A three-phase BLDC motor requires three Hall effect sensors or a rotary encoder to detect the rotor  
position in relation to stator armature windings. Combining these three Hall effect sensors output signals, the  
microcontroller can determine the proper commutation sequence. The three Hall sensors named A, B, and C  
are mounted on the stator core at 120° intervals and the stator phase windings are implemented in a star  
configuration. For every 60° of motor rotation, one Hall sensor changes its state. Based on the Hall sensor  
outputs code, at the end of each block commutation interval the ampere conductors are commutated to the next  
position. There are 6 steps needed to complete a full electrical cycle. The number of block commutation cycles  
to complete a full mechanical rotation is determined by the number of rotor pole pairs.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
H a l l  
c o d e  
1 0 1  
1 0 0  
0 0 1  
0 1 1  
1 1 0  
0 1 0  
i _ U  
0
i _ V  
0
i _ W  
0
6-2. Winding Current Waveforms on a BLDC Motor  
6-2 above shows the three phase motor winding currents i_U, i_V, and i_W when running at 100% duty cycle.  
Trapezoidal commutation control offers the following advantages:  
Only two windings in series carry the phase winding current at any time while the third winding is open.  
Only one current sensor is necessary for all 3 windings U, V, and W.  
The position of the current sensor allows the use of low-cost shunt resistors.  
However, trapezoidal commutation control has the disadvantage of commutation torque ripple. The current  
sense on a three-phase inverter can be configured to use a single-shunt or three different sense resistors. For  
cost sensitive applications targeting sensorless control, the three Hall effect sensors can be replaced with BEMF  
voltage feedback dividers.  
To obtain faster motor rotations and higher revolutions per minute (RPM), shorter periods and higher VIN voltage  
are necessary. Contrarily, to reduce the rotational speed of the motor, it is necessary to lower the RMS voltage  
applied across stator windings. This can easily be easily achieved by modulating the duty cycle, while maintain  
a constant switching frequency. Frequency for the three-phase inverter chosen is usually low between 10 kHz to  
50 kHz to reduce winding losses and to avoid audible noise.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
12  
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
6.3 Power Loss Curves  
CSD88584Q5DC was designed to operate up to 7-cell Li-Ion battery voltage applications ranging from 18 V to  
32 V, typical 24 V. For 8s, input voltages between 32 V to 36 V, RC snubbers are required for each switch-node  
U, V, and W. To reduce ringing, refer to the 7.1.1 section. In an effort to simplify the design process, Texas  
Instruments has provided measured power loss performance curves over a variety of typical conditions.  
5-1 plots the CSD88584Q5DC power loss as a function of load current. The measured power loss includes  
both input conversion loss and gate drive loss.  
方程式 1 is used to generate the power loss curve:  
Power loss (W) = (VIN × IIN_SHUNT) + (VDD × IDD_SHUNT) – (VSW_AVG × IOUT  
)
(1)  
The power loss measurements were made on the circuit shown in 6-3, power block devices for legs U  
and V, PB1 and PB2 were disabled by shorting the CSD88584Q5DC high-side and low-side FETs gate-to-  
source terminals. Current shunt Iin_shunt provides Input current and Idd_SHUNT provides driver supply current  
measurements. The winding current is measured from the DC load. An averaging circuit provides switch node W  
equivalent RMS voltage.  
Iin_SHUNT  
Vin  
Vin  
PB1  
Vin  
PB2  
PB3  
Idd_SHUNT  
Cin2  
Cin1  
Vdd  
Vdd  
GH2  
SH2  
0
0
GH3  
SH3  
GH1  
SH1  
0
0
W
HI  
Vsw3  
Vsw1  
U
V
Vsw2  
Vin  
GATE  
DRIVER  
Lout  
DCR  
U1A  
1
2
GL2  
LI  
GL1  
GL3  
Iout  
LOAD  
PGND  
PGND  
PGND  
0
0
0
0
0
0
0
0
0
AVERAGE  
SWITCH NODE  
AVERAGING  
CIRCUIT  
PWM  
Vsw_AVG  
Copyright © 2017, Texas Instruments Incorporated  
6-3. Power Loss Test Circuit  
The RMS current on the CSD88584Q5DC device depends on the motor winding current. For trapezoidal control,  
the MOSFET RMS current is calculated using 方程式 2.  
IRMS = IOUT × √2  
(2)  
Taking into consideration system tolerances with the current measurement scheme, the inverter design needs to  
withstand a 20% overload current.  
6-1. RMS and Overload Current Calculations  
Winding RMS Current (A)  
CSD88584Q5DC IRMS (A)  
Overload 120% × IRMS (A)  
30  
40  
50  
42  
56  
70  
51  
68  
85  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
6.4 Safe Operating Area (SOA) Curve  
The SOA curve in 5-3 provide guidance on the temperature boundaries within an operating system  
by incorporating the thermal resistance and system power loss. This curve outlines the board and case  
temperatures required for a given load current. The area under the curve dictates the safe operating area.  
This curve is based on measurements made on a PCB design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in  
(H) and 6 copper layers of 2-oz copper thickness.  
6.5 Normalized Power Loss Curves  
The normalized curves in the CSD88584Q5DC data sheet provide guidance on the power loss and SOA  
adjustments based on application specific needs. These curves show how the power loss and SOA temperature  
boundaries will adjust for different operation conditions. The primary Y-axis is the normalized change in power  
loss while the secondary Y-axis is the change in system temperature required in order to comply with the SOA  
curve. The change in power loss is a multiplier for the typical power loss. The change in SOA temperature is  
subtracted from the SOA curve.  
6.6 Design Example – Regulate Current to Maintain Safe Operation  
If the case and board temperature of the power block are known, the SOA can be used to determine the  
maximum allowed current that will maintain operation within the safe operating area of the device. The following  
procedure outlines how to determine the RMS current limit while maintaining operation within the confines of the  
SOA, assuming the temperatures of the top of the package and PCB directly underneath the part are known.  
1. Start at the maximum current of the device on the Y-axis and draw a line from this point at the known top  
case temperature to the known PCB temperature.  
2. Observe where this point intersects the TX line.  
3. At this intersection with the TX line, draw vertical line until you hit the SOA current limit. This intercept is the  
maximum allowed current at the corresponding power block PCB and case temperatures.  
In the example below, we show how to achieve this for the temperatures TC = 124°C and TB = 120°C. First we  
draw from 50 A on the Y-axis at 124°C to 120°C on the X-axis. Then, we draw a line up from where this line  
crosses the TX line to see that this line intercepts the SOA at 39 A. Thus we can assume if we are measuring a  
PCB temperature of 124°C, and a top case temperature of 120°C, the power block can handle 39-A RMS, at the  
normalized conditions. At conditions that differ from those in 5-1, the user may be required to make an SOA  
temperature adjustment on the TX line, as shown in the next section.  
6-4. Regulating Current to Maintain Safe Operation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
14  
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
6.7 Design Example – Regulate Board and Case Temperature to Maintain Safe Operation  
In the previous example we showed how given the PCB and case temperature, the current of the power block  
could be limited to ensure operation within the SOA. Conversely, if the current and other application conditions  
are known, one can determine from the SOA what board or case temperature the user will need to limit their  
design to. The user can estimate product loss and SOA boundaries by arithmetic means (see 6.7.1 section).  
Though the power loss and SOA curves in this data sheet are taken for a specific set of test conditions, the  
following procedure outlines the steps the user should take to predict product performance for any set of system  
conditions.  
6.7.1 Operating Conditions  
Winding output current (IOUT) = 40 A  
Input voltage (VIN) = 32 V  
Switching frequency (FSW) = 40 kHz  
Duty cycle (D.C.) = 95%  
6.7.2 Calculating Power Loss  
Power loss at 40 A ≈ 4.7 W (5-1)  
Normalized power loss for switching frequency ≈ 1.24 (5-4)  
Normalized power loss for input voltage ≈ 1.09 (5-5)  
Normalized power loss for duty cycle ≈ 1.06 (5-6)  
Final calculated power loss = 4.7 W × 1.24 × 1.09 × 1.06 ≈ 6.7 W  
6.7.3 Calculating SOA Adjustments  
SOA adjustment for switching frequency ≈ 1.7°C (5-4)  
SOA adjustment for input voltage ≈ 0.6°C (5-5)  
SOA adjustment for duty cycle ≈ 0.4°C (5-6)  
Final calculated SOA adjustment = 1.7 + 0.6 + 0.4 ≈ 2.7°C  
In the 6.6 section above, the estimated power loss of the CSD88584Q5DC would increase to 6.7 W. In  
addition, the maximum allowable board temperature would have to increase by 2.7°C. In 6-5, the SOA graph  
was adjusted accordingly.  
1. Start by drawing a horizontal line from the application current (40 A) to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the TX line.  
3. Adjust the intersection point by subtracting the temperature adjustment value.  
In this design example, the SOA board/ambient temperature adjustment yields a decrease of allowed junction  
temperature of 2.7°C from 121.0°C to 118.3°C. Now it is known that the intersection of the case and PCB  
temperatures on the TX line must stay below this point. For instance, if the power block case is observed  
operating at 124°C, the PCB temperature must in turn be kept under 115°C to maintain this crossover point.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
6-5. Regulate Temperature to Maintain Safe Operation  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
16  
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
7 Layout  
The two key system-level parameters that can be optimized with proper PCB design are electrical and thermal  
performance. A proper PCB layout will yield maximum performance in both areas. Below are some tips for how  
to address each.  
7.1 Layout Guidelines  
7.1.1 Electrical Performance  
The CSD88584Q5DC power block has the ability to switch at voltage rates greater than 1 kV/µs. Special care  
must be then taken with the PCB layout design and placement of the input capacitors; high-current, high dI/dT  
switching path; current shunt resistors; and GND return planes. As with any high-power inverter operated in  
hard switching mode, there will be voltage ringing present on the switch nodes U, V, and W. Switch-node  
ringing appears mainly at the HS FET turnon commutation with positive winding current direction. The U, V,  
and W phase connections to the BLDC motor can be usually excluded from the ringing behavior since they  
are subjected to high-peak currents but low dI/dT slew-rates. However, a compact PCB design with short and  
low-parasitic loop inductances is critical to achieve low ringing and compliance with EMI specifications.  
For safe and reliable operation of the three-phase inverter, motor phase currents have to be accurately  
monitored and reported to the system microcontroller. One current sensor needs to be connected on each  
motor phase winding U, V, and W. This sensing method is best for current sensing as it provides good accuracy  
over a wide range of duty cycles, motor torque, and winding currents. Using current sensors is recommended  
because it is less intrusive to the VIN and GND connections.  
V i n  
V i n  
V i n  
PB1  
PB3  
PB2  
C 4  
C 5  
C 6  
G H 1  
S H 1  
G H 2  
S H 2  
G H 3  
S H 3  
0
0
0
U
W
V
V s w  
V s w  
V s w  
V in  
C s1  
C s3  
C s2  
G L 3  
G L 1  
G L 2  
P G N D  
P G N D  
P G N D  
R cs  
G N D  
0
R s1  
R s2  
R s3  
0
0
0
0
Copyright © 2017, Texas Instruments Incorporated  
7-1. Recommended Ringing Reduction Components  
However, for cost sensitive applications, current sensors are generally replaced with current sense resistors.  
For designs using the 60-V three-phase smart gate driver DRV8320SRHBR, current sense resistor RCS can  
be placed between common source terminals for all 3 power block devices CSD88584Q5DC to PGND and  
measured using an external current sense amplifier as depicted in 7-1 above.  
For designs using the 60-V three-phase gate driver DRV8323RSRGZT, three current sense resistors RCS1  
,
RCS2 and RCS3 can be used between each CSD88584Q5DC source terminal to GND and measured by the  
included DRV8323 current sense amplifiers. The three-phase driver IC should be placed as close as possible  
to the power block gate GL and GH terminals.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
Breaking the high-current flow path from the source terminals of the power block to GND by introducing the RCS  
current shunt resistors introduces parasitic PCB inductance. In the event the switch node waveforms exhibits  
peak ringing that reaches undesirable levels, the ringing can be reduced by using the following ringing reduction  
components:  
The use of a high-side gate resistor in series with the GH pin is one effective way to reduce peak ringing.  
The recommended HS FET gate resistor value will range between 4.7 Ω to 10 Ω depending on the driver IC  
output characteristics used in conjunction with the power block device. The low-side FET gate pin GL should  
connect directly to the driver IC output to avoid any parasitic cdV/dT turnon effect.  
Low inductance MLCC caps C4, C5, and C6 can be used across each power block device from VIN  
to the source terminal PGND. MLCC 10 nF, 100 V, ±10%, X7S, 0402, PN: C1005X7S2A103K050BB are  
recommended.  
Ringing can be reduced via the implementation of RC snubbers from each switch node U, V, and W to GND.  
Recommended snubber component values are as follows:  
– Snubber resistors Rs1, Rs2, Rs3: 2.21 Ω, 1%, 0.125 W, 0805, PN: CRCW08052R21FKEA  
– Snubber caps Cs1, Cs2, and Cs3: MLCC 4.7 nF, 100 V, X7S, 0402, PN: C1005X7S2A472M050BB  
With a switching frequency of 20 kHz on the three-phase inverter, the power dissipation on the RC snubber  
resistor is 80 mW per channel. As a result, 0805 package size for resistors Rs1, Rs2, and Rs3 is adequate.  
7.1.2 Thermal Considerations  
The CSD88584Q5DC power block device has the ability to utilize the PCB copper planes as the primary thermal  
path. As such, the use of thermal vias included in the footprint is an effective way to pull away heat from  
the device and into the system board. Concerns regarding solder voids and manufacturability issues can be  
addressed through the use of three basic tactics to minimize the amount of solder attach that will wick down the  
via barrel:  
Intentionally space out the vias from one another to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed by the design. The example in 7-2 uses vias with a 10-mil drill hole and  
a 16-mil solder pad.  
Tent the opposite side of the via with solder-mask. Ultimately the number and drill size of the thermal vias  
should align with the end user’s PCB design rules and manufacturing capabilities.  
To take advantage of the DualCool thermally enhanced package, an external heatsink can be applied on top of  
the power block devices. For low EMI, the heatsink is usually connected to GND through the mounting screws  
to the PCB. Gap pad insulators with good thermal conductivity should be used between the top of the package  
and the heatsink. The Bergquist Sil-Pad 980 is recommended which provides excellent thermal impedance of  
1.07°C/W at 50 psi.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
18  
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
7.2 Layout Example  
7-2. Top Layer  
7-3. Bottom Layer  
The placement of the input capacitors C4, C5, and C6 relative to VIN and PGND pins of CSD88584Q5DC device  
should have the highest priority during the component placement routine. It is critical to minimize the VIN to GND  
parasitic loop inductance. A shunt resistor R21 is used between all three U4, U5, and U6 power block source  
terminals to the input supply GND return pin.  
Input RMS current filtering is achieved via two bulk caps C17 and C18. Based on the RMS current ratings, the  
recommended part number for input bulk is CAP AL, 330 µF, 63 V, ±20%, PN: EMVA630ADA331MKG5S.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
8 Device and Documentation Support  
8.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
8.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
8.3 Trademarks  
NexFETand DualCoolare trademarks of TI.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
8.4 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
8.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLPS598  
20  
Submit Document Feedback  
Product Folder Links: CSD88584Q5DC  
 
 
 
 
 
 
CSD88584Q5DC  
ZHCSG78D – MAY 2017 – REVISED DECEMBER 2018  
www.ti.com.cn  
9 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
9-1. Pin Configuration Table  
POSITION  
PIN NAME  
DESCRIPTION  
High Side Gate  
High Side Gate Return  
Switch Node  
1
2
GH  
SH  
3-11  
12-20  
21  
VSW  
PGND  
NC  
Power Ground  
No Connect  
22  
GL  
Low Side Gate  
No Connect  
23-26  
27  
NC  
VIN  
Input Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: CSD88584Q5DC  
English Data Sheet: SLPS598  
 
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD88584Q5DC  
CSD88584Q5DCT  
ACTIVE  
VSON-CLIP  
VSON-CLIP  
DMM  
22  
22  
RoHS-Exempt  
& Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 150  
-55 to 150  
88584  
88584  
Samples  
Samples  
ACTIVE  
DMM  
RoHS-Exempt  
& Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Apr-2023  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

CSD88599Q5DC

采用 5mm x 6mm SON 封装的 40A、60V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块
TI

CSD88599Q5DCT

采用 5mm x 6mm SON 封装的 40A、60V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块 | DMM | 22 | -55 to 150
TI

CSD88O

TO-220 - Power Transistors and Darlingtons
RECTRON

CSD93501-Q1

同步降压单片智能功率级
TI

CSD95372AQ5M

Synchronous Buck NexFET™ Power Stage
TI

CSD95372AQ5MT

IC SWITCHING REGULATOR, Switching Regulator or Controller
TI

CSD95372BQ5M

60A 同步降压 NexFET™ 智能功率级
TI

CSD95372BQ5MC

CSD95372BQ5MC Synchronous Buck NexFET Smart Power Stage
TI

CSD95372BQ5MCT

CSD95372BQ5MC Synchronous Buck NexFET Smart Power Stage
TI

CSD95372BQ5MC_15

CSD95372BQ5MC Synchronous Buck NexFET Smart Power Stage
TI

CSD95372BQ5MT

60A 同步降压 NexFET™ 智能功率级 | DQP | 12 | -55 to 150
TI

CSD95373AQ5M

Synchronous Buck NexFET Power Stage
TI