CSD88599Q5DC [TI]

采用 5mm x 6mm SON 封装的 40A、60V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块;
CSD88599Q5DC
型号: CSD88599Q5DC
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 5mm x 6mm SON 封装的 40A、60V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块

驱动 光电二极管 接口集成电路
文件: 总25页 (文件大小:1003K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
CSD88599Q5DC 60V 半桥 NexFET™电源块  
1 特性  
3 说明  
1
半桥电源块  
CSD88599Q5DC 60V 电源块是用于高电流电机控制  
应用的经优化设计,这些 应用包括手持无线园艺和电  
动工具等。该器件利用 TI 的堆叠裸片技术,以最大限  
度地减小寄生电感,同时在节省空间的热增强型  
DualCool™5mm × 6mm 封装中提供完整的半桥。利  
用外露的金属顶部,该电源块器件允许简单散热应用将  
热量从封装顶部吸收并将其从 PCB 带走,从而在许多  
电机控制应用所要求的较高电流下,实现出色的热 性  
能。  
高密度 5mm × 6mm SON 封装  
RDS(ON),可实现最小的传导损耗  
电流为 30A 时,PLoss 3.0W  
DualCool™热增强型封装  
超低电感封装  
符合 RoHS 标准  
无卤素  
无铅引脚镀层  
底视图  
俯视图  
2 应用  
GL  
NC  
GH  
SH  
用于无刷直流电机控制的三相桥  
多达 12s 电池的电动工具  
其他半桥和全桥拓扑  
VIN  
PGND  
VSW  
电源块原理图  
VIN  
GH  
SH  
器件信息  
包装介质  
器件  
数量  
封装  
发货  
VSW  
CSD88599Q5DC 2500 13 英寸卷带  
SON  
5.00mm × 6.00mm  
塑料封装  
卷带封  
CSD88599Q5DCT 250  
7 英寸卷带  
GL  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
典型电路  
功率损耗与输出电流  
VIN  
6
VIN = 36 V  
VDD = 10 V  
D.C. = 50%  
L = 480 mH  
fSW = 20 kHz  
TA = 25èC  
5
4
3
2
1
0
VM  
CSD88599  
GH_A  
Motor  
GL_A  
CSD88599  
GH_B  
DRV832X  
Gate Driver  
GL_B  
CSD88599  
GH_C  
GL_C  
0
5
10  
15  
20  
25  
RMS Phase Current (A)  
30  
35  
40  
D000  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLPS597  
 
 
 
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
目录  
6.5 Normalized Power Loss Curves.............................. 13  
1
2
3
4
5
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Specifications......................................................... 3  
5.1 Absolute Maximum Ratings ...................................... 3  
5.2 Recommended Operating Conditions....................... 3  
5.3 Power Block Performance ........................................ 3  
5.4 Thermal Information.................................................. 4  
5.5 Electrical Characteristics........................................... 4  
5.6 Typical Power Block Device Characteristics............. 6  
5.7 Typical Power Block MOSFET Characteristics......... 7  
Application and Implementation .......................... 9  
6.1 Application Information.............................................. 9  
6.2 Brushless DC Motor With Trapezoidal Control ....... 10  
6.3 Power Loss Curves................................................. 12  
6.4 Safe Operating Area (SOA) Curve.......................... 13  
6.6 Design Example – Regulate Current to Maintain Safe  
Operation ................................................................. 13  
6.7 Design Example – Regulate Board and Case  
Temperature to Maintain Safe Operation ................ 14  
7
8
Layout ................................................................... 16  
7.1 Layout Guidelines ................................................... 16  
7.2 Layout Example ...................................................... 18  
器件和文档支持...................................................... 19  
8.1 接收文档更新通知 ................................................... 19  
8.2 社区资源.................................................................. 19  
8.3 ......................................................................... 19  
8.4 静电放电警告........................................................... 19  
8.5 Glossary.................................................................. 19  
机械、封装和可订购信息 ....................................... 20  
9.1 Q5DC 封装尺寸....................................................... 20  
9.2 焊盘图案建议........................................................... 21  
9.3 模版建议.................................................................. 22  
6
9
4 修订历史记录  
Changes from Revision B (January 2018) to Revision C  
Page  
Corrected Figure 20 to show 40-A maximum....................................................................................................................... 13  
Corrected Figure 21 to show 40-A maximum....................................................................................................................... 14  
Changes from Revision A (May 2017) to Revision B  
Page  
更新了机械制图..................................................................................................................................................................... 20  
Changes from Original (April 2017) to Revision A  
Page  
更新了典型电路制图 ............................................................................................................................................................... 1  
Changed the copper thickness to 2-oz in Typical Power Block Device Characteristics conditions ....................................... 6  
Changed the copper thickness to 2-oz in Safe Operating Area (SOA) Curve paragraph.................................................... 13  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
5 Specifications  
5.1 Absolute Maximum Ratings(1)  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
–0.8  
–0.3  
–20  
–20  
MAX  
60  
UNIT  
VIN to PGND  
VSW to PGND  
60  
Voltage  
V
GH to SH  
20  
GL to PGND  
20  
(2)  
Pulsed current rating, IDM  
400  
12  
A
Power dissipation, PD  
W
High-side FET, ID = 95 A, L = 0.1 mH  
Low-side FET, ID = 95 A, L = 0.1 mH  
448  
448  
150  
150  
Avalanche energy, EAS  
mJ  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–55  
–55  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated in the Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Single FET conduction, max RθJC = 1.1°C/W, pulse duration 100 μs, single pulse.  
5.2 Recommended Operating Conditions  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
CONDITIONS  
MIN  
MAX  
16  
UNIT  
V
VDD  
VIN  
ƒSW  
IOUT  
TJ  
Gate drive voltage  
4.5  
Input supply voltage(1)  
Switching frequency  
54  
V
CBST = 0.1 µF (min)  
5
50  
kHz  
A
RMS motor winding current  
Operating temperature  
40  
125  
°C  
(1) Up to 42-V input use one capacitor per phase, MLCC 10 nF, 100 V, X7S, 0402, PN: C1005X7S2A103K050BB from VIN to GND return.  
Between 42-V to 54-V input operation, add RC switch-node snubber as described in the Electrical Performance section of this data  
sheet.  
5.3 Power Block Performance  
TJ = 25°C (unless otherwise noted)  
PARAMETER  
Power loss(1)  
CONDITIONS  
VIN = 36 V, VDD = 10 V,  
IOUT = 30 A, ƒSW = 20 kHz,  
TJ = 25°C, duty cycle = 50%,  
L = 480 µH  
MIN  
TYP  
MAX UNIT  
PLOSS  
3.0  
W
VIN = 36 V, VDD = 10 V,  
IOUT = 30 A, ƒSW = 20 kHz,  
TJ = 125°C, duty cycle = 50%,  
L = 480 µH  
PLOSS  
Power loss  
3.4  
W
(1) Measurement made with eight 10-µF 50-V ±10% X5R (TDK C3225X5R1H106K250AB or equivalent) ceramic capacitors placed across  
VIN to PGND pins and using UCC27210DDAR 100-V, 4-A driver IC.  
Copyright © 2017–2018, Texas Instruments Incorporated  
3
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
MAX UNIT  
5.4 Thermal Information  
TJ = 25°C (unless otherwise stated)  
THERMAL METRIC  
MIN  
TYP  
Junction-to-ambient thermal resistance (min Cu)(1)  
Junction-to-ambient thermal resistance (max Cu)(1)(2)  
Junction-to-case thermal resistance (top of package)(1)  
Junction-to-case thermal resistance (VIN pin)(1)  
125  
°C/W  
50  
RθJA  
2.1  
RθJC  
(1)  
°C/W  
1.1  
R
θJC is determined with the device mounted on a 1-in2 (6.45-cm2), 2-oz (0.071-mm) thick Cu pad on a 1.5-in × 1.5-in  
(3.81-cm × 3.81-cm), 0.06-in (1.52-mm) thick FR4 board. RθJC is specified by design while RθJA is determined by the user’s board  
design.  
(2) Device mounted on FR4 material with 1-in2 (6.45-cm2) Cu.  
5.5 Electrical Characteristics  
TJ = 25°C (unless otherwise stated)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STATIC CHARACTERISTICS  
BVDSS  
IDSS  
Drain-to-source voltage  
VGS = 0 V, IDS = 250 µA  
VGS = 0 V, VDS = 48 V  
VDS = 0 V, VGS = 20 V  
VDS = VGS, IDS = 250 µA  
VGS = 4.5 V, IDS = 30 A  
VGS = 10 V, IDS = 30 A  
VDS = 6 V, IDS = 30 A  
60  
V
µA  
nA  
V
Drain-to-source leakage current  
Gate-to-source leakage current  
Gate-to-source threshold voltage  
1
100  
2.5  
3.3  
2.1  
IGSS  
VGS(th)  
1.4  
2.0  
2.5  
1.7  
130  
RDS(on)  
gfs  
Drain-to-source on-resistance  
Transconductance  
mΩ  
S
DYNAMIC CHARACTERISTICS  
CISS  
COSS  
CRSS  
RG  
Input capacitance  
3720  
670  
12  
4840  
870  
16  
pF  
pF  
pF  
Ω
VGS = 0V, VDS = 30 V,  
ƒ = 1 MHz  
Output capacitance  
Reverse transfer capacitance  
Series gate resistance  
Gate charge total (4.5 V)  
Gate charge total (10 V)  
Gate charge gate-to-drain  
Gate charge gate-to-source  
Gate charge at Vth  
Output charge  
0.9  
21  
1.8  
27  
Qg  
nC  
nC  
nC  
nC  
nC  
nC  
ns  
ns  
ns  
ns  
Qg  
43  
56  
VDS = 30 V,  
IDS = 30 A  
Qgd  
Qgs  
Qg(th)  
QOSS  
td(on)  
tr  
7.0  
10.1  
6.3  
100  
9
VDS = 30 V, VGS = 0 V  
Turnon delay time  
Rise time  
20  
VDS = 30 V, VGS = 10 V,  
IDS = 30 A, RG = 0 Ω  
td(off)  
tf  
Turnoff delay time  
Fall time  
23  
3
DIODE CHARACTERISTICS  
VSD  
Qrr  
trr  
Diode forward voltage  
IDS = 30 A, VGS = 0 V  
0.8  
172  
36  
1.0  
V
Reverse recovery charge  
Reverse recovery time  
nC  
ns  
VDS = 30 V, IF = 30 A,  
di/dt = 300 A/µs  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
Max RθJA = 125°C/W  
when mounted on  
minimum pad area of  
2-oz (0.071-mm) thick  
Cu.  
Max RθJA = 50°C/W  
when mounted on 1 in2  
(6.45 cm2) of 2-oz  
(0.071-mm) thick Cu.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
5.6 Typical Power Block Device Characteristics  
The typical power block system characteristic curves (Figure 1 through Figure 6) are based on measurements made on a  
PCB design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (H) and 6 copper layers of 2-oz copper thickness. See  
Application and Implementation section for detailed explanation. TJ = 125°C, unless stated otherwise.  
8
7
6
5
4
3
2
1
0
1.2  
1.1  
1
Typical  
Max  
0.9  
0.8  
0.7  
0.6  
0.5  
0
5
10  
15  
20  
25  
30  
35  
40  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Output Current (A)  
Junction Temperature (èC)  
D001  
D002  
VIN = 36 V  
ƒSW = 20 kHz  
VDD = 10 V  
D.C. = 50%  
VIN = 36 V  
VDD = 10 V  
D.C. = 50%  
IOUT = 40 A  
L = 480 µH  
ƒSW = 20 kHz  
L = 480 µH  
Figure 1. Power Loss vs Output Current  
Figure 2. Power Loss vs Temperature  
Top Case Temperature (èC)  
1.4  
1.3  
1.2  
1.1  
1
2.7  
2.1  
1.4  
0.7  
0.0  
-0.7  
-1.4  
100  
45  
104  
108  
112  
116  
120  
124  
128  
TX  
40  
35  
30  
25  
20  
15  
10  
5
0.9  
0.8  
0
100  
104  
108  
112  
116  
120  
124  
128  
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Board Temperature (èC)  
Switching Frequency (kHz)  
D005  
D006  
VIN = 36 V  
VDD = 10 V  
D.C. = 50%  
VIN = 36 V  
L = 480 µH  
VDD = 10 V  
IOUT = 40 A  
ƒSW = 20 kHz  
L = 480 µH  
D.C. = 50%  
Figure 3. Typical Safe Operating Area  
Figure 4. Normalized Power Loss vs Switching Frequency  
1.075  
1.05  
1.025  
1
0.5  
1.2  
1.15  
1.1  
1.4  
1.0  
0.7  
0.3  
0.0  
-0.3  
0.3  
0.2  
0.0  
0.975  
0.95  
0.925  
0.9  
-0.2  
-0.3  
-0.5  
-0.7  
1.05  
1
0.95  
15  
20  
25  
30  
35  
40  
45  
50  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Input Voltage (V)  
VDD = 10 V  
L = 480 µH  
Duty Cycle (%)  
D007  
D009  
D.C. = 50%  
ƒSW = 20 kHz  
IOUT = 40 A  
VIN = 36 V  
ƒSW = 20 kHz  
VDD = 10 V  
L = 480 µH  
Figure 5. Normalized Power Loss vs Input Voltage  
Figure 6. Normalized Power Loss vs Duty Cycle  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
5.7 Typical Power Block MOSFET Characteristics  
TJ = 25°C, unless stated otherwise.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
60  
40  
VGS = 4.5 V  
VGS = 8 V  
VGS = 10 V  
20  
0
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
VDS - Drain-to-Source Voltage (V)  
1
1E-5  
0.0001  
0.001  
Duration (s)  
Max RθJA = 125°C/W  
0.01  
0.1  
1
D010  
Figure 8. MOSFET Saturation Characteristics  
Figure 7. Single Pulse Current vs Pulse Duration  
10  
9
8
7
6
5
4
3
2
1
0
100  
10  
TC = 125°C  
TC = 25°C  
TC = -55°C  
1
0.1  
0.01  
0.001  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
Qg - Gate Charge (nC)  
VGS - Gate-to-Source Voltage (V)  
D012  
D014  
VDS = 5 V  
ID = 30 A  
VDS = 30 V  
Figure 9. MOSFET Transfer Characteristics  
Figure 10. MOSFET Gate Charge  
10000  
1000  
100  
10  
2.55  
2.35  
2.15  
1.95  
1.75  
1.55  
1.35  
1.15  
0.95  
Ciss = Cgd + Cgs  
Coss = Cds + Cgd  
Crss = Cgd  
1
0
10  
20  
30  
40  
50  
60  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
VDS - Drain-to-Source Voltage (V)  
TC - Case Temperature (°C)  
D016  
D018  
ID = 250 µA  
Figure 11. MOSFET Capacitance  
Figure 12. Threshold Voltage vs Temperature  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
Typical Power Block MOSFET Characteristics (continued)  
TJ = 25°C, unless stated otherwise.  
10  
9
8
7
6
5
4
3
2
1
0
2
1.8  
1.6  
1.4  
1.2  
1
TC = 25°C  
TC = 125°C  
VGS = 4.5 V  
VGS = 10 V  
0.8  
0.6  
0.4  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
VGS - Gate-to-Source Voltage (V)  
TC - Case Temperature (°C)  
D022  
D020  
ID = 30 A  
VDS = 30 V  
ID = 30 A  
Figure 14. MOSFET Normalized RDS(on) vs Temperature  
Figure 13. MOSFET RDS(on) vs VGS  
100  
10  
1000  
TC = 25°C  
TC = 125°C  
TC = 25è C  
TC = 125è C  
1
100  
10  
1
0.1  
0.01  
0.001  
0.0001  
0
0.2  
0.4  
0.6  
0.8  
1
0.01  
0.1  
1
VSD - Source-to-Drain Voltage (V)  
TAV - Time in Avalanche (ms)  
D024  
D026  
Figure 15. MOSFET Body Diode Forward Voltage  
Figure 16. MOSFET Single Pulse Unclamped Inductive  
Switching  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
6 Application and Implementation  
NOTE  
Information in the following Application section is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI customers are  
responsible for determining suitability of components selection for their designs.  
Customers should validate and test their design implementation to confirm system  
functionality.  
6.1 Application Information  
Historically, battery powered tools have favored brushed DC configurations to spin their primary motors, but more  
recently, the advantages offered by brushless DC operation (BLDC) operation have brought about the advent of  
popular designs that favor the latter. Those advantages include, but are not limited to higher efficiency and  
therefore longer battery life, superior reliability, greater peak torque capability, and smooth operation over a wider  
range of speeds. However, BLDC designs put increased demand for higher power density and current handling  
capabilities on the power stage responsible for driving the motor.  
The CSD88599Q5DC is part of TI’s power block product family and is a highly optimized product designed  
explicitly for the purpose driving higher current DC motors in power and gardening tools. It incorporates TI’s  
latest generation silicon which has been optimized for low resistance to minimize conduction losses and offer  
excellent thermal performance. The power block utilizes TI’s stacked die technology to offer one complete half  
bridge vertically integrated into a single 5-mm × 6-mm package with a DualCool exposed metal case. This  
feature allows the designer to apply a heatsink to the top of the package and pull heat away from the PCB, thus  
maximizing the power density while reducing the power stage footprint by up to 50%.  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
6.2 Brushless DC Motor With Trapezoidal Control  
The trapezoidal commutation control is simple and has fewer switching losses compared to sinusoidal control.  
Vin  
Vin  
Vin  
PB1  
Vin  
PB2  
PB3  
PWM1  
PWM2  
PWM3  
PWM4  
GH1  
DRV8323RX  
SH1  
GL1  
GH2  
SH2  
GL2  
GH3  
SH3  
Q3  
Q2  
Q1  
GH2  
SH2  
GH3  
SH3  
GH1  
SH1  
Three Phase  
Gate Driver  
Vsw1  
Vsw3  
Vsw2  
SPEED SET  
U
PWM5  
PWM6  
VCS  
Hall  
Sensors  
TORQUE SET  
GL3  
Q5  
N
S
GL2  
GL1  
A
B
C
Q4  
Q6  
GL3  
PGND  
PGND  
PGND  
V
W
SPA  
SPB  
SPC  
SPA  
SPB  
SPC  
A
Rcs1  
Rcs2  
Rcs3  
B
C
0
0
0
0
Hall  
Inputs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Functional Block Diagram  
The block diagram shown in Figure 17 offers a simple instruction of what is required to drive a BLDC motor: one  
microcontroller, one three-phase driver IC, three power blocks (historically six power MOSFETs) and three Hall  
effect sensors. The microcontroller responsible for block commutation must always know the rotor orientation or  
its position relative to the stator coils. This is easy achieved with a brushed DC motor due to the fixed geometry  
and position of the rotor windings, shaft and commutator.  
A three-phase BLDC motor requires three Hall effect sensors or a rotary encoder to detect the rotor position in  
relation to stator armature windings. With input from these three Hall effect sensors output signals, the  
microcontroller can determine the proper commutation sequence. The three Hall sensors named A, B, and C are  
mounted on the stator core at 120° intervals and the stator phase windings are implemented in a star  
configuration. For every 60° of motor rotation, one Hall sensor changes its state. Based on the Hall sensors'  
output code, at the end of each block commutation interval the ampere conductors are commutated to the next  
position. There are 6 steps required to complete a full electrical cycle. The number of block commutation cycles  
to complete a full mechanical rotation is determined by the number of rotor pole pairs.  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
Brushless DC Motor With Trapezoidal Control (continued)  
H
c
a
o
l
d
l
e
 
1
0 1  
1
0
0
0 0 1  
0
1 1  
1
1
0
0 1 0  
i _ U  
0
i _ V  
0
i _ W  
0
Figure 18. Winding Current Waveforms on a BLDC Motor  
Figure 18 above shows the three phase motor winding currents i_U, i_V, and i_W when running at 100% duty  
cycle.  
Trapezoidal commutation control offers the following advantages:  
Only two windings in series carry the phase winding current at any time while the third winding is open.  
Only one current sensor is necessary for all three windings U, V, and W.  
The position of the current sensor allows the use of low-cost shunt resistors.  
However, trapezoidal commutation control has the disadvantage of commutation torque ripple. The current sense  
on a three-phase inverter can be configured to use a single-shunt or three different sense resistors. For cost  
sensitive applications targeting sensorless control, the three Hall effect sensors can be replaced with BEMF  
voltage feedback dividers.  
To obtain faster motor rotations and higher revolutions per minute (RPM), shorter periods and higher VIN voltage  
are necessary. Contrarily, to reduce the rotational speed of the motor, it is necessary to lower the RMS voltage  
applied across stator windings. This can easily be easily achieved by modulating the duty cycle, while maintain a  
constant switching frequency. Frequency for the three-phase inverter chosen is usually low between 10 kHz to  
50 kHz to reduce winding losses and to avoid audible noise.  
Copyright © 2017–2018, Texas Instruments Incorporated  
11  
 
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
6.3 Power Loss Curves  
CSD88599Q5DC was designed to operate up to 10-cell Li-Ion battery voltage applications ranging from 30 V to  
42 V, typical 36 V. For 11 and 12s, input voltages between 42 V to 54 V, RC snubbers are required for each  
switch-node U, V, and W. To reduce ringing, refer to the Electrical Performance section. In an effort to simplify  
the design process, Texas Instruments has provided measured power loss performance curves over a variety of  
typical conditions.  
Figure 1 plots the CSD88599Q5DC power loss as a function of load current. The measured power loss includes  
both input conversion loss and gate drive loss.  
Equation 1 is used to generate the power loss curve:  
Power loss (W) = (VIN × IIN_SHUNT) + (VDD × IDD_SHUNT) – (VSW_AVG × IOUT  
)
(1)  
The power loss measurements were made on the circuit shown in Figure 19. Power block devices for legs U and  
V, PB1 and PB2 were disabled by shorting the CSD88599Q5DC high-side and low-side FETs' gate-to-source  
terminals. Current shunt Iin_SHUNT provides input current and Idd_SHUNT provides driver supply current  
measurements. The winding current is measured from the DC load. An averaging circuit provides switch node W  
equivalent RMS voltage.  
Iin_SHUNT  
Vin  
Vin  
PB1  
Vin  
PB2  
PB3  
Idd_SHUNT  
Cin2  
Cin1  
Vdd  
Vdd  
GH2  
SH2  
0
0
GH3  
SH3  
GH1  
SH1  
0
0
W
HI  
Vsw3  
Vsw1  
U
V
Vsw2  
Vin  
GATE  
DRIVER  
Lout  
DCR  
U1A  
1
2
GL2  
LI  
GL1  
GL3  
Iout  
LOAD  
PGND  
PGND  
PGND  
0
0
0
0
0
0
0
0
0
AVERAGE  
SWITCH NODE  
AVERAGING  
CIRCUIT  
PWM  
Vsw_AVG  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Power Loss Test Circuit  
The RMS current on the CSD88599Q5DC device depends on the motor winding current. For trapezoidal control,  
the MOSFET RMS current is calculated using Equation 2.  
IRMS = IOUT × 2  
(2)  
Taking into consideration system tolerances with the current measurement scheme, the inverter design needs to  
withstand a 20% overload current.  
Table 1. RMS and Overload Current Calculations  
Winding RMS Current (A)  
CSD88599Q5DC IRMS (A)  
Overload 20% × IRMS (A)  
20  
30  
40  
28  
42  
56  
34  
51  
68  
12  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
 
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
6.4 Safe Operating Area (SOA) Curve  
The SOA curve in Figure 3 provides guidance on the temperature boundaries within an operating system by  
incorporating the thermal resistance and system power loss. This curve outlines the board and case  
temperatures required for a given load current. The area under the curve dictates the safe operating area. This  
curve is based on measurements made on a PCB design with dimensions of 4 in (W) × 3.5 in (L) × 0.062 in (H)  
and 6 copper layers of 2-oz copper thickness.  
6.5 Normalized Power Loss Curves  
The normalized curves in the CSD88599Q5DC data sheet provide guidance on the power loss and SOA  
adjustments based on application specific needs. These curves show how the power loss and SOA temperature  
boundaries will adjust for different operation conditions. The primary Y-axis is the normalized change in power  
loss while the secondary Y-axis is the change in system temperature required in order to comply with the SOA  
curve. The change in power loss is a multiplier for the typical power loss. The change in SOA temperature is  
subtracted from the SOA curve.  
6.6 Design Example – Regulate Current to Maintain Safe Operation  
If the case and board temperature of the power block are known, the SOA can be used to determine the  
maximum allowed current that will maintain operation within the safe operating area of the device. The following  
procedure outlines how to determine the RMS current limit while maintaining operation within the confines of the  
SOA, assuming the temperatures of the top of the package and PCB directly underneath the part are known.  
1. Start at the maximum current of the device on the Y-axis and draw a line from this point at the known top  
case temperature to the known PCB temperature.  
2. Observe where this point intersects the TX line.  
3. At this intersection with the TX line, draw vertical line until you hit the SOA current limit. This intercept is the  
maximum allowed current at the corresponding power block PCB and case temperatures.  
In the example below, we show how to achieve this for the temperatures TC = 124°C and TB = 120°C. First we  
draw from 40 A on the Y-axis at 124°C to 120°C on the X-axis. Then, we draw a line up from where this line  
crosses the TX line to see that this line intercepts the SOA at 34 A. Thus we can assume if we are measuring a  
PCB temperature of 124°C, and a top case temperature of 120°C, the power block can handle 34-A RMS, at the  
normalized conditions. At conditions that differ from those in Figure 1, the user may be required to make an SOA  
temperature adjustment on the TX line, as shown in the next section.  
Figure 20. Regulating Current to Maintain Safe Operation  
Copyright © 2017–2018, Texas Instruments Incorporated  
13  
 
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
6.7 Design Example – Regulate Board and Case Temperature to Maintain Safe Operation  
In the previous example we showed how given the PCB and case temperature, the current of the power block  
could be limited to ensure operation within the SOA. Conversely, if the current and other application conditions  
are known, one can determine from the SOA what board or case temperature the user will need to limit their  
design to. The user can estimate product loss and SOA boundaries by arithmetic means (see Operating  
Conditions section). Though the power loss and SOA curves in this data sheet are taken for a specific set of test  
conditions, the following procedure outlines the steps the user should take to predict product performance for any  
set of system conditions.  
6.7.1 Operating Conditions  
Winding output current (IOUT) = 30 A  
Input voltage (VIN) = 42 V  
Switching frequency (FSW) = 40 kHz  
Duty cycle (D.C.) = 95%  
6.7.2 Calculating Power Loss  
Power loss at 30 A 3.4 W (Figure 1)  
Normalized power loss for switching frequency 1.19 (Figure 4)  
Normalized power loss for input voltage 1.03 (Figure 5)  
Normalized power loss for duty cycle 1.12 (Figure 6)  
Final calculated power loss = 3.4 W × 1.19 × 1.03 × 1.12 4.7 W  
6.7.3 Calculating SOA Adjustments  
SOA adjustment for switching frequency 1.3°C (Figure 4)  
SOA adjustment for input voltage 0.1°C (Figure 5)  
SOA adjustment for duty cycle 0.7°C (Figure 6)  
Final calculated SOA adjustment = 1.3 + 0.1 + 0.7 2.1°C  
In the Design Example – Regulate Current to Maintain Safe Operation section above, the estimated power loss  
of the CSD88599Q5DC would increase to 4.7 W. In addition, the maximum allowable board temperature would  
have to increase by 2.1°C. In Figure 21, the SOA graph was adjusted accordingly.  
1. Start by drawing a horizontal line from the application current (30 A) to the SOA curve.  
2. Draw a vertical line from the SOA curve intercept down to the TX line.  
3. Adjust the intersection point by subtracting the temperature adjustment value.  
In this design example, the SOA board/ambient temperature adjustment yields a decrease of allowed junction  
temperature of 2.1°C from 122.2°C to 120.1°C. Now it is known that the intersection of the case and PCB  
temperatures on the TX line must stay below this point. For instance, if the power block case is observed  
operating at 124°C, the PCB temperature must in turn be kept under 118°C to maintain this crossover point.  
14  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
 
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
Design Example – Regulate Board and Case Temperature to Maintain Safe  
Operation (continued)  
Figure 21. Regulate Temperature to Maintain Safe Operation  
Copyright © 2017–2018, Texas Instruments Incorporated  
15  
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7 Layout  
The two key system-level parameters that can be optimized with proper PCB design are electrical and thermal  
performance. A proper PCB layout will yield maximum performance in both areas. Below are some tips for how  
to address each.  
7.1 Layout Guidelines  
7.1.1 Electrical Performance  
The CSD88599Q5DC power block has the ability to switch at voltage rates greater than 1 kV/µs. Special care  
must be then taken with the PCB layout design and placement of the input capacitors; high-current, high dI/dT  
switching path; current shunt resistors; and GND return planes. As with any high-power inverter operated in hard  
switching mode, there will be voltage ringing present on the switch nodes U, V, and W. Switch-node ringing  
appears mainly at the HS FET turnon commutation with positive winding current direction. The U, V, and W  
phase connections to the BLDC motor can be usually excluded from the ringing behavior since they are  
subjected to high-peak currents but low dI/dT slew-rates. However, a compact PCB design with short and low-  
parasitic loop inductances is critical to achieve low ringing and compliance with EMI specifications.  
For safe and reliable operation of the three-phase inverter, motor phase currents have to be accurately  
monitored and reported to the system microcontroller. One current sensor needs to be connected on each motor  
phase winding U, V, and W. This sensing method is best for current sensing as it provides good accuracy over a  
wide range of duty cycles, motor torque, and winding currents. Using current sensors is recommended because it  
is less intrusive to the VIN and GND connections.  
V i n  
V i n  
V i n  
PB1  
PB3  
PB2  
C 4  
C 5  
C 6  
G H 1  
S H 1  
G H 2  
S H 2  
G H 3  
S H 3  
0
0
0
U
W
V
V s w  
V s w  
V s w  
V in  
C s1  
C s3  
C s2  
G L 3  
G L 1  
G L 2  
P G N D  
P G N D  
P G N D  
R cs  
G N D  
0
R s1  
R s2  
R s3  
0
0
0
0
Copyright © 2017, Texas Instruments Incorporated  
Figure 22. Recommended Ringing Reduction Components  
However, for cost sensitive applications, current sensors are generally replaced with current sense resistors.  
For designs using the 60-V three-phase smart gate driver DRV8320SRHBR, only one current sense resistor  
RCS can be placed between common source terminals for all three power block devices CSD88599Q5DC to  
PGND as depicted in Figure 22 above.  
For designs using the 60-V three-phase gate driver DRV8323RSRGZT, three current sense resistors RCS1  
,
RCS2, and RCS3 can be used between each CSD88599Q5DC source terminals to GND. The three-phase  
driver IC should be placed as close as possible to the power block gate GL and GH terminals.  
16  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
Layout Guidelines (continued)  
Breaking the high-current flow path from the source terminals of the power block to GND by introducing the RCS  
current shunt resistors introduces parasitic PCB inductance. In the event the switch node waveforms exhibits  
peak ringing that reaches undesirable levels, the ringing can be reduced by using the following ringing reduction  
components:  
The use of a high-side gate resistor in series with the GH pin is one effective way to reduce peak ringing. The  
recommended HS FET gate resistor value will range between 4.7 to 10 depending on the driver IC  
output characteristics used in conjunction with the power block device. The low-side FET gate pin GL should  
connect directly to the driver IC output to avoid any parasitic cdV/dT turnon effect.  
Low-inductance MLCC caps C4, C5, and C6 can be used across each power block device from VIN to the  
source terminal PGND. MLCC 10 nF, 100 V, ±10%, X7S, 0402, PN: C1005X7S2A103K050BB are  
recommended.  
Ringing can be reduced via the implementation of RC snubbers from each switch node U, V, and W to GND.  
Recommended snubber component values are as follows:  
Snubber resistors Rs1, Rs2, Rs3: 2.21 Ω, 1%, 0.125 W, 0805, PN: CRCW08052R21FKEA  
Snubber caps Cs1, Cs2, and Cs3: MLCC 4.7 nF, 100 V, X7S, 0402, PN: C1005X7S2A472M050BB  
With a switching frequency of 20 kHz on the three-phase inverter, the power dissipation on the RC snubber  
resistor is 80 mW per channel. As a result, 0805 package size for resistors Rs1, Rs2, and Rs3 is sufficient.  
7.1.2 Thermal Considerations  
The CSD88599Q5DC power block device has the ability to utilize the PCB copper planes as the primary thermal  
path. As such, the use of thermal vias included in the footprint is an effective way to pull away heat from the  
device and into the system board. Concerns regarding solder voids and manufacturability issues can be  
addressed through the use of three basic tactics to minimize the amount of solder attach that will wick down the  
via barrel.  
Intentionally space out the vias from one another to avoid a cluster of holes in a given area.  
Use the smallest drill size allowed by the design. The example in Figure 23 uses vias with a 10-mil drill hole  
and a 16-mil solder pad.  
Tent the opposite side of the via with solder-mask. Ultimately the number and drill size of the thermal vias  
should align with the end user’s PCB design rules and manufacturing capabilities.  
To take advantage of the DualCool thermally enhanced package, an external heatsink can be applied on top of  
the power block devices. For low EMI, the heatsink is usually connected to GND through the mounting screws to  
the PCB. Gap pad insulators with good thermal conductivity should be used between the top of the package and  
the heatsink. The Bergquist Sil-Pad 980 is recommended which provides excellent thermal impedance of  
1.07°C/W @ 50 psi.  
Copyright © 2017–2018, Texas Instruments Incorporated  
17  
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
7.2 Layout Example  
Figure 23. Top Layer  
Figure 24. Bottom Layer  
The placement of the input capacitors C4, C5, and C6 relative to VIN and PGND pins of CSD88599Q5DC device  
should have the highest priority during the component placement routine. It is critical to minimize the VIN to GND  
parasitic loop inductance. A shunt resistor R21 is used between all three U4, U5, and U6 power block source  
terminals to the input supply GND return pin.  
Input RMS current filtering is achieved via two bulk caps C17 and C18. Based on the RMS current ratings, the  
recommended part number for input bulk is CAP AL, 330 µF, 63 V, ±20%, PN: EMVA630ADA331MKG5S.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
8 器件和文档支持  
8.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
8.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
8.3 商标  
NexFET, DualCool, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
8.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
8.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
9 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
9.1 Q5DC 封装尺寸  
A
5.1  
4.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
3.329 0.1  
EXPOSED  
HEAT SLUG  
(CONNECTED TO PGND)  
(0.701)  
2X (0.35)  
2.284 0.1  
(1.486)  
C
1.05 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.3 0.1  
4X (1.9)  
2X (2)  
4X (0.25)  
2X (0.3)  
0.48  
0.38  
4X  
(0.2) TYP  
24  
11  
25  
12  
4X (0.175)  
EXPOSED  
THERMAL  
PAD  
2X  
PKG  
27  
5
5.4 0.1  
1
22  
20X 0.5  
0.3  
0.2  
23  
22X  
26  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
C
B
0.55  
0.45  
0.05  
22X  
4222731/A 02/2016  
所有线性尺寸的单位均为毫米。括号中的任何尺寸仅供参考。尺寸和公差值符合 ASME Y14.5M 标准。  
本图如有变更,恕不另行通知。  
必须在印刷电路板上焊接封装散热焊盘,以获得良好的散热和机械性能。  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
CSD88599Q5DC  
www.ti.com.cn  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
2. 引脚配置表  
位置  
1
引脚名称  
GH  
说明  
高侧栅极  
高侧栅极回路  
开关节点  
电源接地  
无连接  
2
SH  
3-11  
12-20  
21  
VSW  
PGND  
NC  
22  
GL  
低侧栅极  
无连接  
23-26  
27  
NC  
输入电压  
输入电压间  
9.2 焊盘图案建议  
(3.3)  
4X (2.115)  
22X (0.7)  
SYMM  
23  
26  
1
22  
22X (0.25)  
4X  
(3.013)  
20X (0.5)  
SYMM  
27  
(5.4)  
6X  
(1.32)  
2X  
(1.13)  
(
0.2) VIA  
TYP  
11  
12  
(R0.05) TYP  
24  
25  
6X (1.4)  
(0.3) TYP  
4X (0.375)  
4X (0.43)  
(4.7)  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
所有线性尺寸的单位均为毫米。括号中的任何尺寸仅供参考。尺寸和公差值符合 ASME Y14.5M 标准。  
此封装设计用于焊接到电路板的散热焊盘上。有关更多信息,请参阅QFN/SON PCB 连接》(SLUA271)。  
根据应用决定是否选用过孔,详情请参见器件数据表。如果实现了部分或全部过孔,则会显示建议的过孔位  
置。  
版权 © 2017–2018, Texas Instruments Incorporated  
21  
CSD88599Q5DC  
ZHCSG79C APRIL 2017REVISED APRIL 2018  
www.ti.com.cn  
9.3 模版建议  
SYMM  
22X (0.7)  
4X (2.115)  
8X (1.41)  
METAL  
TYP  
26  
23  
27  
1
22  
22X (0.25)  
8X  
(1.12)  
4X  
(3.013)  
20X (0.5)  
SYMM  
(0.66)  
TYP  
(R0.05) TYP  
(1.32)  
TYP  
12  
11  
(0.81) TYP  
24  
25  
4X (0.375)  
(0.3) TYP  
4X (0.43)  
(4.7)  
所有线性尺寸的单位均为毫米。括号中的任何尺寸仅供参考。尺寸和公差值符合 ASME Y14.5M 标准。  
具有漏斗形壁和圆角的激光切割孔可提供更佳的锡膏脱离。IPC-7525 可能提供替代设计建议。  
如需了解针对 PCB 设计的建议电路布局,请参阅《通过 PCB 布局技巧来减少振铃》(SLPA005)。  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
2500  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CSD88599Q5DC  
CSD88599Q5DCT  
ACTIVE  
VSON-CLIP  
VSON-CLIP  
DMM  
22  
22  
RoHS-Exempt  
& Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 150  
-55 to 150  
88599  
88599  
ACTIVE  
DMM  
RoHS-Exempt  
& Green  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

CSD88599Q5DCT

采用 5mm x 6mm SON 封装的 40A、60V、N 沟道同步降压 NexFET™ 功率 MOSFET Dual-Cool™ 电源块 | DMM | 22 | -55 to 150
TI

CSD88O

TO-220 - Power Transistors and Darlingtons
RECTRON

CSD93501-Q1

同步降压单片智能功率级
TI

CSD95372AQ5M

Synchronous Buck NexFET™ Power Stage
TI

CSD95372AQ5MT

IC SWITCHING REGULATOR, Switching Regulator or Controller
TI

CSD95372BQ5M

60A 同步降压 NexFET™ 智能功率级
TI

CSD95372BQ5MC

CSD95372BQ5MC Synchronous Buck NexFET Smart Power Stage
TI

CSD95372BQ5MCT

CSD95372BQ5MC Synchronous Buck NexFET Smart Power Stage
TI

CSD95372BQ5MC_15

CSD95372BQ5MC Synchronous Buck NexFET Smart Power Stage
TI

CSD95372BQ5MT

60A 同步降压 NexFET™ 智能功率级 | DQP | 12 | -55 to 150
TI

CSD95373AQ5M

Synchronous Buck NexFET Power Stage
TI

CSD95373BQ5M

45A 同步降压 NexFET™ 智能功率级
TI