DLP471NE [TI]

0.47-inch, 1080p, HSSI DLP® digital micromirror device (DMD);
DLP471NE
型号: DLP471NE
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

0.47-inch, 1080p, HSSI DLP® digital micromirror device (DMD)

文件: 总48页 (文件大小:2193K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DLP471NE  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
DLP471NE 0.47 全高DMD  
1 特性  
3 说明  
0.47 英寸对角线微镜阵列  
DLP471NE 数字微镜器件 (DMD) 是一款数控微机电系  
(MEMS) 空间照明调制器 (SLM)可用于实现高亮  
的全高清显示系统。TI DLP® 产品 0.47 英寸全高清  
(1080p) 芯片组由 DMDDLPC7540 显示控制器以及  
DLPA100 电源和电机驱动器组成。芯片组的外形紧  
为体型小巧的全高清显示提供完整的系统解决方  
案。  
1080p (1920 × 1080) 显示分辨率  
5.4µm 微镜间距  
±17° 微镜倾斜度相对于平坦表面)  
– 底部照明  
• 高速串行接(HSSI) 输入数据总线  
• 支持全高清240Hz)  
DLPC7540 显示控制器、DLPA100 电源管理和  
电机驱动IC 支持激光荧光、LEDRGB 激光和  
灯泡运行  
DMD 生态系统还提供现成的资源帮助用户加快设计  
周期。这些资源包括 量产就绪型光学模块光学模块  
制造商设计公司。  
2 应用  
访问 TI DLP 显示技术入门了解有关使用 DMD 开  
始设计的更多信息。  
智能投影仪  
企业投影仪  
器件信息  
器件型(1)  
DLP471NE  
封装尺寸标称值)  
封装  
FYN (149)  
32.2mm × 22.3mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
LS Interface  
HSSI Macro A Data Pairs  
DMD DCLKA  
8
8
HSSI Macro B Data Pairs  
DMD DCLKB  
DLPC7540  
DLP471NE  
HSSI DMD  
VOFFSET  
DMD Power Enable  
Display Controller  
Power  
Management  
TPS65145  
VBIAS  
3.3 V  
VRESET  
VREG  
12 V  
1.8 V  
VREG  
DMD VDD Enable  
I2C  
Temperature  
TMP411  
2
简化版应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: DLPS190  
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Table of Contents  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle....... 26  
8 Application and Implementation..................................29  
8.1 Application Information............................................. 29  
8.2 Typical Application.................................................... 29  
8.3 Temperature Sensor Diode.......................................32  
9 Power Supply Recommendations................................34  
9.1 DMD Power Supply Power-Up Procedure................34  
9.2 DMD Power Supply Power-Down Procedure........... 34  
10 Layout...........................................................................36  
10.1 Layout Guidelines................................................... 36  
10.2 Impedance Requirements.......................................36  
10.3 Layers..................................................................... 36  
10.4 Trace Width, Spacing..............................................37  
10.5 Power......................................................................37  
10.6 Trace Length Matching Recommendations............ 38  
11 Device and Documentation Support..........................39  
11.1 第三方产品免责声明................................................39  
11.2 Device Support........................................................39  
11.3 Documentation Support.......................................... 40  
11.4 Receiving Notification of Documentation Updates..40  
11.5 支持资源..................................................................40  
11.6 Trademarks............................................................. 40  
11.7 Electrostatic Discharge Caution..............................40  
11.8 术语表..................................................................... 40  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 Storage Conditions..................................................... 8  
6.3 ESD Ratings............................................................... 8  
6.4 Recommended Operating Conditions.........................8  
6.5 Thermal Information..................................................10  
6.6 Electrical Characteristics...........................................10  
6.7 Switching Characteristics..........................................12  
6.8 Timing Requirements................................................13  
6.9 System Mounting Interface Loads............................ 17  
6.10 Micromirror Array Physical Characteristics.............18  
6.11 Micromirror Array Optical Characteristics............... 19  
6.12 Window Characteristics.......................................... 21  
6.13 Chipset Component Usage Specification............... 21  
7 Detailed Description......................................................22  
7.1 Overview...................................................................22  
7.2 Functional Block Diagram.........................................22  
7.3 Feature Description...................................................23  
7.4 Device Functional Modes..........................................23  
7.5 Optical Interface and System Image Quality  
Considerations............................................................ 23  
7.6 Micromirror Array Temperature Calculation.............. 24  
Information.................................................................... 41  
12.1 Package Option Addendum....................................42  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (September 2021) to Revision B (May 2022)  
Page  
• 根据最新的德州仪(TI) 和行业数据表标准对本文档进行了更新.......................................................................1  
Updated the definition of tDELAY2 and fixed a typo in tDELAY3 units in 9-1 .................................................... 34  
Updated 9-1 ................................................................................................................................................ 34  
Changes from Revision * (September 2020) to Revision A (June 2021)  
Page  
Updated minimum value of VID | CLK 6.4 ..................................................................................................... 8  
Updated ILLUV value and wavelength range in 6.4 .......................................................................................8  
Updated table header with package information in 6.5 ...............................................................................10  
Put in separate minimum eye opening parameters for data and clock 6.6 ................................................. 10  
Split rise and fall time for HSSI clock and data signals into separate lines in 6.8 .......................................13  
Corrected typo in 6-8 ...................................................................................................................................13  
Updated table in 6.12 ..................................................................................................................................21  
Corrected a typo in 7.2 ................................................................................................................................22  
Corrected typo in 7.7.4.................................................................................................................................26  
Added pin connection conditions for when the temp sensor is not used in 8.3. ..........................................32  
Merged Table 9-1 and Table 9-2 into a new 9-1 ..........................................................................................34  
Updated table references to reflect Table 9-2 was merged into Table 9-1 in 9.1 ........................................ 34  
Updated table references to reflect Table 9-2 was merged into Table 9-1 and fixed typos in 9.2 ...............34  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Updated 9-1 ................................................................................................................................................ 34  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DLP471NE  
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
5 Pin Configuration and Functions  
1
3
5
7
9
11 13 15 17 19  
12 14 16 18 20  
2
4
6
8
10  
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
5-1. FYN Package 149-Pin PGA Bottom View  
CAUTION  
Properly manage the layout and the operation of signals identified in the Pin Functions table to make sure there is reliable,  
long-term operation of the 0.47Full HD S451 DMD. Refer to the PCB Design Requirements for TI DLP TRP Digital  
Micromirror Devices application report for specific details and guidelines before designing the board.  
5-1. Pin Functions  
PIN  
TRACE  
LENGTH (mm)  
INPUT-OUTPUT(1)  
DESCRIPTION  
NAME  
D_AP(0)  
No.  
J1  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
16.24427  
16.24426  
16.39699  
16.39691  
15.58905  
15.58908  
14.98471  
14.9844  
Highspeed differential data pair lane A0  
Highspeed differential data pair lane A0  
Highspeed differential data pair lane A1  
Highspeed differential data pair lane A1  
Highspeed differential data pair lane A2  
Highspeed differential data pair lane A2  
Highspeed differential data pair lane A3  
Highspeed differential data pair lane A3  
Highspeed differential data pair lane A4  
Highspeed differential data pair lane A4  
Highspeed differential data pair lane A5  
Highspeed differential data pair lane A5  
Highspeed differential data pair lane A6  
Highspeed differential data pair lane A6  
Highspeed differential data pair lane A7  
D_AN(0)  
D_AP(1)  
D_AN(1)  
D_AP(2)  
D_AN(2)  
D_AP(3)  
D_AN(3)  
D_AP(4)  
D_AN(4)  
D_AP(5)  
D_AN(5)  
D_AP(6)  
D_AN(6)  
D_AP(7)  
H1  
G1  
F1  
F2  
E2  
D2  
C2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
12.89101  
12.89101  
10.57206  
10.57242  
8.48593  
8.48702  
6.63434  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH (mm)  
INPUT-OUTPUT(1)  
DESCRIPTION  
NAME  
D_AN(7)  
No.  
A10  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
6.63441  
15.53899  
15.53868  
4.52398  
4.52368  
6.4103  
Highspeed differential data pair lane A7  
Highspeed differential clock A  
DCLK_AP  
DCLK_AN  
D_BP(0)  
C1  
D1  
Highspeed differential clock A  
A11  
A12  
A13  
A14  
A15  
A16  
A18  
A19  
D19  
C19  
H20  
J20  
D20  
E20  
F20  
G20  
B17  
B18  
T10  
R11  
R9  
Highspeed differential data pair lane B0  
Highspeed differential data pair lane B0  
Highspeed differential data pair lane B1  
Highspeed differential data pair lane B1  
Highspeed differential data pair lane B2  
Highspeed differential data pair lane B2  
Highspeed differential data pair lane B3  
Highspeed differential data pair lane B3  
Highspeed differential data pair lane B4  
Highspeed differential data pair lane B4  
Highspeed differential data pair lane B5  
Highspeed differential data pair lane B5  
Highspeed differential data pair lane B6  
Highspeed differential data pair lane B6  
Highspeed differential data pair lane B7  
Highspeed differential data pair lane B7  
Highspeed differential clock B  
D_BN(0)  
D_BP(1)  
D_BN(1)  
6.40894  
8.78102  
8.78364  
12.05827  
12.06154  
11.04817  
11.0479  
14.54976  
14.54991  
11.67363  
11.67598  
12.33442  
12.33409  
10.22973  
10.22551  
7.8047  
D_BP(2)  
D_BN(2)  
D_BP(3)  
D_BN(3)  
D_BP(4)  
D_BN(4)  
D_BP(5)  
D_BN(5)  
D_BP(6)  
D_BN(6)  
D_BP(7)  
D_BN(7)  
DCLK_BP  
DCLK_BN  
LS_WDATA_P  
LS_WDATA_N  
LS_CLK_P  
LS_CLK_N  
Highspeed differential clock B  
LVDS data  
LVDS data  
0.64391  
8.20952  
7.35885  
LVDS CLK  
R10  
LVDS CLK  
LS_RDATA_A_B  
ISTA  
T13  
O
LVCMOS output  
2.01174  
BIST_B  
T12  
B20  
R14  
O
O
O
LVCMOS output  
Analog test mux  
Digital test mux  
2.20006  
10.74435  
2.25459  
AMUX_OUT  
DMUX_OUT  
DMD_DEN_AR  
STZ  
T11  
I
ARSTZ  
2.00365  
TEMP_N  
TEMP_P  
R8  
R7  
I
I
Temp diode N  
Temp diode P  
9.03231  
11.38391  
B13, B7, C18,  
E3, H3, J2, K3,  
L2, L19, M1, M2,  
N3, N19, P2,  
P18, R3, R5,  
R12, R17, R19,  
T2, T4, T6, T8,  
T18  
VDD  
P
Digital core supply voltage  
Plane  
B11, B16, B4,  
B9, C20, D3,  
E18, G2, G19  
VDDA  
P
HSSI supply voltage  
Plane  
VRESET  
VBIAS  
B3, R1  
E1, P1  
P
P
Supply voltage for negative bias of micromirror reset signal  
Supply voltage for positive bias of micromirror reset signal  
Plane  
Plane  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DLP471NE  
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
5-1. Pin Functions (continued)  
PIN  
TRACE  
LENGTH (mm)  
INPUT-OUTPUT(1)  
DESCRIPTION  
NAME  
No.  
A20, B2, T1,  
T20  
VOFFSET  
P
Supply voltage for HVCMOS logic, stepped up logic level  
Plane  
A17, B10, B14,  
B6, D18, F3,  
F19, J3, K19,  
K2, L1, L3, M3,  
N2, N18, N20,  
P3, P20, R2, R4,  
R6, R13, R20,  
T5, T7, T16,  
VSS  
G
G
Ground  
Plane  
T17, T19  
B12, B15, B19,  
B5, B8, C3, E19,  
G3, H2, H19,  
K1, N1, P19,  
R18, T3, T9  
VSSA  
N/C  
Ground  
Plane  
F18, G18, H18,  
J18, J19, K18,  
K20, L18, L20,  
M18, M19, M20,  
R15, R16, T14,  
T15  
No connect  
(1) I=Input, O=output, P=Power, G=Ground, NC = No Connect  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6 Specifications  
6.1 Absolute Maximum Ratings  
Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not  
imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating  
Conditions. If outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
MIN  
MAX UNIT  
SUPPLY VOLTAGE  
Supply voltage for LVCMOS core logic and LVCMOS low speed interface  
(LSIF)(1)  
VDD  
2.3  
V
0.5  
VDDA  
Supply voltage for high speed serial interface (HSSI) receivers(1)  
Supply voltage for HVCMOS and micromirror electrode(1) (2)  
Supply voltage for micromirror electrode(1)  
2.2  
11  
V
V
V
V
V
V
V
0.3  
0.5  
0.5  
15  
VOFFSET  
VBIAS  
19  
0.5  
0.3  
11  
VRESET  
Supply voltage for micromirror electrode(1)  
Supply voltage delta (absolute value)(3)  
| VDDA VDD  
|
Supply voltage delta (absolute value)(4)  
| VBIAS VOFFSET  
|
Supply voltage delta (absolute value)(5)  
34  
| VBIAS VRESET  
|
INPUT VOLTAGE  
Input voltage for other inputs LSIF and LVCMOS(1)  
Input voltage for other inputs HSSI(1) (6)  
0.5  
0.2  
2.45  
V
V
VDDA  
LOW SPEED INTERFACE (LSIF)  
fCLOCK LSIF clock frequency (LS_CLK)  
130 MHz  
| VID  
IID  
|
LSIF differential input voltage magnitude(6)  
810  
10  
mV  
mA  
LSIF differential input current  
HIGH SPEED SERIAL INTERFACE (HSSI)  
fCLOCK HSSI clock frequency (DCLK)  
1.65 GHz  
| VID  
| VID  
|
|
HSSI differential input voltage magnitude Data Lane(6)  
HSSI differential input voltage magnitude Clock Lane(6)  
700  
700  
mV  
mV  
ENVIRONMENTAL  
Temperature, operating(7)  
0
90  
90  
°C  
°C  
TWINDOW and TARRAY  
Temperature, non-operating(7)  
40  
Absolute temperature delta between any point on the window edge and the  
ceramic test point TP1(8)  
|TDELTA  
TDP  
|
30  
81  
°C  
°C  
Dew point temperature, operating and nonoperating (noncondensing)  
(1) All voltage values are with respect to the ground terminals (VSS). The following required power supplies must be connected for proper  
DMD operation: VDD, VDDA, VOFFSET, VBIAS, and VRESET. All VSS connections are also required.  
(2) VOFFSET supply transients must fall within specified voltages.  
(3) Exceeding the recommended allowable absolute voltage difference between VDDA and VDD may result in excessive current draw.  
(4) Exceeding the recommended allowable absolute voltage difference between VBIAS and VOFFSET may result in excessive current draw.  
(5) Exceeding the recommended allowable absolute voltage difference between VBIAS and VRESET may result in excessive current draw.  
(6) This maximum input voltage rating applies when each input of a differential pair is at the same voltage potential. LVDS and HSSI  
differential inputs must not exceed the specified limit or damage may result to the internal termination resistors.  
(7) The highest temperature of the active array (as calculated using Micromirror Array Temperature Calculation) or of any point along the  
window edge as defined in 7-1. The locations of thermal test points TP2, TP3, TP4 and TP5 in 7-1 are intended to measure the  
highest window edge temperature. If a particular application causes another point on the window edge to be at a higher temperature,  
that point should be used.  
(8) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta. If a particular  
application causes another point on the window edge to result in a larger delta temperature, that point should be used.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.2 Storage Conditions  
Applicable for the DMD as a component or non-operating in a system.  
MIN  
MAX  
UNIT  
°C  
TDMD  
DMD temperature  
80  
28  
36  
40  
TDP-AVG  
TDP-ELR  
CTELR  
Average dew point temperature, non-condensing(1)  
Elevated dew point temperature range, non-condensing(2)  
Cumulative time in elevated dew point temperature range  
°C  
28  
°C  
24 months  
(1) The average temperature over time (including storage and operating temperatures) that the device is not in the elevated dew point  
temperature range.  
(2) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
6.3 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
V
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
Over operating free-air temperature range and supply voltages (unless otherwise noted). The functional performance of the  
device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended  
Operating Conditions. No level of performance is implied when operating the device above or below the Recommended  
Operating Conditions limits.  
MIN  
TYP  
MAX  
UNIT  
SUPPLY VOLTAGES(1) (2)  
Supply voltage for LVCMOS core logic and low speed  
interface (LSIF)  
VDD  
1.71  
1.8  
1.95  
V
VDDA  
Supply voltage for high speed serial interface (HSSI) receivers  
Supply voltage for HVCMOS and micromirror electrode(3)  
Supply voltage for micromirror electrode  
Supply voltage for micromirror electrode  
Supply voltage delta, absolute value(4)  
1.71  
9.5  
1.8  
10  
1.95  
10.5  
V
V
V
V
V
VOFFSET  
VBIAS  
17.5  
18  
18.5  
VRESET  
14.5  
14  
13.5  
0.3  
| VDDA VDD  
|
| VBIAS VOFFSET  
|
Supply voltage delta, absolute value(5)  
Supply voltage delta, absolute value  
|
10.5  
33  
V
V
| VBIAS VRESET  
LVCMOS INPUT  
VIH  
VIL  
High level input voltage(6)  
Low level input voltage(6)  
0.7 × VDD  
V
V
0.3 × VDD  
LOW SPEED SERIAL INTERFACE (LSIF)  
fCLOCK  
DCDIN  
LSIF clock frequency (LS_CLK)(7)  
108  
44%  
150  
575  
700  
90  
120  
350  
130  
56%  
440  
MHz  
LSIF duty cycle distortion (LS_CLK)  
LSIF differential input voltage magnitude(7)  
LSIF voltage(7)  
| VID  
|
mV  
mV  
mV  
Ω
VLVDS  
VCM  
ZLINE  
ZIN  
1520  
1300  
110  
Common mode voltage(7)  
900  
100  
100  
Line differential impedance (PWB/trace)  
Internal differential termination resistance  
80  
120  
Ω
HIGH SPEED SERIAL INTERFACE (HSSI)  
fCLOCK  
HSSI clock frequency (DCLK)(8)  
1.2  
1.6  
GHz  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.4 Recommended Operating Conditions (continued)  
Over operating free-air temperature range and supply voltages (unless otherwise noted). The functional performance of the  
device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended  
Operating Conditions. No level of performance is implied when operating the device above or below the Recommended  
Operating Conditions limits.  
MIN  
44%  
100  
295  
200  
200  
TYP  
MAX  
56%  
600  
600  
800  
800  
UNIT  
DCDIN  
HSSI duty cycle distortion (DCLK)  
50%  
| VID | Data  
| VID | CLK  
VCMDC Data  
VCMDC CLK  
HSSI differential input voltage magnitude data lane(8)  
HSSI differential input voltage magnitude Clock lane(8)  
Input common mode voltage (DC) data lane(8)  
Input common mode voltage (DC) Clk lane(8)  
mV  
mV  
mV  
mV  
600  
600  
AC peak to peak (ripple) on common mode voltage of data  
lane and Clock lane(8)  
VCMACp-p  
100  
mV  
ZLINE  
Line differential impedance (PWB/trace)  
100  
100  
Ω
Ω
ZIN  
Internal differential termination resistance (RXterm  
)
80  
120  
ENVIRONMENTAL  
Array temperature, longterm operational(9) (10) (11) (12) (13)  
Array temperature, short-term operational, 500 hr max(10) (14)  
Window temperature, operational(15)  
10  
0
40 to 70  
10  
°C  
°C  
°C  
TARRAY  
TWINDOW  
85  
Absolute temperature delta between any point on the window  
edge and the ceramic test point TP1(16)  
|TDELTA  
|
14  
°C  
Average dew point temperature (noncondensing)(17)  
Elevated dew point temperature range (non-condensing)(18)  
Cumulative time in elevated dew point temperature range  
Illumination marginal ray angle(19)  
TDP-AVG  
TDP-ELR  
CTELR  
ILLθ  
28  
36  
°C  
°C  
28  
24 months  
55 degrees  
LAMP ILLUMINATION  
ILLUV  
ILLVIS  
ILLIR  
Illumination wavelength < 395 nm(9)  
0.68  
2
mW/cm2  
W/cm2  
Illumination wavelengths between 395 nm and 800 nm(13)  
36.8  
Illumination wavelength > 800 nm  
10 mW/cm2  
SOLID STATE ILLUMINATION  
ILLUV  
ILLVIS  
ILLIR  
Illumination wavelength < 410 nm(9)  
3
mW/cm2  
Illumination wavelengths between 410 nm and 800 nm(13)  
44.9 W/cm2  
10 mW/cm2  
Illumination wavelength > 800 nm  
(1) All power supply connections are required to operate the DMD: VDD, VDDA, VOFFSET, VBIAS, and VRESET. All VSS connections are  
required to operate the DMD.  
(2) All voltage values are with respect to the VSS ground pins.  
(3) VOFFSET supply transients must fall within specified max voltages.  
(4) To prevent excess current, the supply voltage delta | VDDA VDD | must be less than specified limit.  
(5) To prevent excess current, the supply voltage delta | VBIAS VOFFSET | must be less than specified limit.  
(6) LVCMOS input pin is DMD_DEN_ARSTZ.  
(7) See the low speed interface (LSIF) timing requirements in Timing Requirements.  
(8) See the high speed serial interface (HSSI) timing requirements in Timing Requirements.  
(9) Simultaneous exposure of the DMD to the maximum Recommended Operating Conditions for temperature and UV illumination  
reduces device lifetime.  
(10) The array temperature cannot be measured directly and must be computed analytically from the temperature measured at test point  
(TP1) shown in 7-1 and the package thermal resistance using the Micromirror Array Temperature Calculation.  
(11) Per 6-1, the maximum operational array temperature should be derated based on the micromirror landed duty cycle that the DMD  
experiences in the end application. Refer to Micromirror Landed-On/Landed-Off Duty Cycle for a definition of micromirror landed duty  
cycle.  
(12) Long-term is defined as the usable life of the device.  
(13) The maximum optical power that can be incident on the DMD is limited by the maximum opical power density and the micromirror  
array temperature  
(14) Short-term is the total cumulative time over the useful life of the device.  
(15) The locations of thermal test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to measure the highest window edge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
temperature. For most applications, the locations shown are representative of the highest window edge temperature. If a particular  
application causes additional points on the window edge to be at a higher temperature, test points should be added to those locations.  
(16) Temperature delta is the highest difference between the ceramic test point 1 (TP1) and anywhere on the window edge as shown in 图  
7-1. The window test points TP2, TP3, TP4, and TP5 shown in 7-1 are intended to result in the worst case delta temperature. If a  
particular application causes another point on the window edge to result in a larger delta in temperature, that point should be used.  
(17) The average over time (including storage and operating) that the device is not in the elevated dew point temperature range'.  
(18) Exposure to dew point temperatures in the elevated range during storage and operation should be limited to less than a total  
cumulative time of CTELR  
.
(19) The maximum marginal ray angle of the incoming illumination light at any point in the micromirror array, including pond of micromirrors  
(POM), should not exceed 55 degrees from the normal to the device array plane. The device window aperture has not necessarily  
been designed to allow incoming light at higher maximum angles to pass to the micromirrors, and the device performance has not  
been tested nor qualified at angles exceeding this. Illumination light exceeding this angle outside the micromirror array (including POM)  
will contribute to thermal limitations described in this document, and may negatively affect lifetime.  
80  
70  
60  
50  
40  
30  
0/100  
100/0  
5/95 10/90 15/85 20/80 25/75 30/70 35/65 40/60 45/55 50/50  
65/35  
95/5  
90/10  
85/15  
80/20  
75/25  
70/30  
60/40  
55/45  
50/50  
Micromirror Landed Duty Cycle  
6-1. Maximum Recommended Array TemperatureDerating Curve  
6.5 Thermal Information  
DLP471NE  
FYP PACKAGE  
149 PINS  
THERMAL METRIC  
Unit  
Thermal Resistance, active area to test point 1 (TP1)(1)  
0.8  
°C/W  
(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package. The cooling system must be capable of  
maintaining the DMD within the temperature range specified in 6.4. The total heat load on the DMD is largely driven by the incident  
light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical  
power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear  
aperture since any additional thermal load in this area can significantly degrade the reliability of the device.  
6.6 Electrical Characteristics  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER (1) (2)  
CURRENT TYPICAL  
IDD Supply current VDD  
TEST CONDITIONS (1)  
MIN  
TYP  
MAX UNIT  
(3)  
800  
1200 mA  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.6 Electrical Characteristics (continued)  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER (1) (2)  
TEST CONDITIONS (1)  
MIN  
TYP  
1000  
500  
20  
MAX UNIT  
1200 mA  
600 mA  
25 mA  
4.0 mA  
mA  
(3)  
IDDA  
Supply current VDDA  
Supply current VDDA  
(3)  
IDDA  
Single macro mode  
(4) (5)  
IOFFSET  
IBIAS  
Supply current VOFFSET  
(4) (5)  
Supply current VBIAS  
Supply current VRESET  
2.5  
(5)  
IRESET  
-9.3  
-6.9  
POWER TYPICAL  
(3)  
PDD  
Supply power dissipation VDD  
1440  
1620  
900  
2437.5 mW  
2340 mW  
1170 mW  
(3)  
(3)  
PDDA  
Supply power dissipation VDDA  
Supply power dissipation VDDA  
PDDA  
single macro mode  
(4) (5)  
POFFSET  
Supply power dissipation VOFFSET  
230  
367.5 mW  
70.3 mW  
(4) (5)  
PBIAS  
Supply power dissipation VBIAS  
Supply power dissipation VRESET  
Supply power dissipation Total  
43.2  
107.8  
3441  
(5)  
PRESET  
152.25 mW  
5367.55 mW  
PTOTAL  
LVCMOS INPUT  
IIL  
Low level input current (6)  
High level input current (6)  
VDD = 1.95 V, VI = 0 V  
nA  
100  
IIH  
VDD = 1.95 V, VI = 1.95 V  
135 µA  
LVCMOS OUTPUT  
VOH  
VOL  
DC output high voltage (7)  
DC output low voltage (7)  
IOH = -2 mA  
IOL = 2 mA  
0.8 x VDD  
V
0.2 x VDD  
V
RECEIVER EYE CHARACTERISTICS  
Minimum data eye opening (8) (9)  
100  
295  
600 mV  
600 mV  
600 mV  
A1  
Minimum clock eye opening (8) (9)  
Maximum data signal swing (8) (9)  
Maximum data eye closure (8)  
Maximum data eye closure (8)  
A2  
X1  
X2  
0.275  
UI  
UI  
0.4  
20  
Drift between Clock and Data between  
Training Patterns  
| tDRIFT  
|
ps  
CAPACITANCE  
CIN  
Input capacitance LVCMOS  
f = 1 MHz  
f = 1 MHz  
10 pF  
20 pF  
Input capacitance LSIF (low speed  
interface)  
CIN  
Input capacitance HSSI (high speed serial  
interface)  
CIN  
f = 1 MHz  
f = 1 MHz  
20 pF  
10 pF  
COUT  
Output capacitance  
(1) All power supply connections are required to operate the DMD: VDD, VDDA, VOFFSET, VBIAS, and VRESET. All VSS connections are  
required to operate the DMD.  
(2) All voltage values are with respect to the ground pins (VSS).  
(3) To prevent excess current, the supply voltage delta | VDDA VDD | must be less than specified limit.  
(4) To prevent excess current, the supply voltage delta | VBIAS VOFFSET | must be less than specified limit.  
(5) Supply power dissipation based on 3 global resets in 200 µs.  
(6) LVCMOS input specifications are for pin DMD_DEN_ARSTZ.  
(7) LVCMOS output specification is for pins LS_RDATA_A and LS_RDATA_B.  
(8) Refer to 6-11, Receiver Eye Mask (1e-12 BER).  
(9) Defined in Recommended Operating Conditions.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
MAX UNIT  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.7 Switching Characteristics  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Output propagation, Clock to Q (C2Q), rising edge of  
LS_CLK (differential clock signal) input to LS_RDATA  
output.(1)  
CL = 5 pF  
11.1  
11.3  
ns  
ns  
tpd  
CL = 10 pF  
Slew rate, LS_RDATA  
20%-80%, CL <10pF  
0.5  
V/ns  
Output duty cycle distortion, LS_RDATA_A and  
LS_RDATA_B  
50-(C2Q rise - C2Q  
fall )*130e6*100  
40%  
60%  
(1) See Switching Characteristics.  
LS_CLK_P  
1
0
1
0
1
0
1
0
1
0
LS_CLK_N  
1 period  
LS_WDATA_P  
LS_WDATA_N  
Stop (1)  
Start (0)  
tPD  
LS_RDATA_A  
BIST_A  
Acknowledge  
6-2. Switching Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.8 Timing Requirements  
Over operating free-air temperature range and supply voltages (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS  
tr  
tf  
Rise time(1)  
Fall time(1)  
20% to 80% reference points  
25  
25  
ns  
ns  
80% to 20% reference points  
LOW SPEED INTERFACE (LSIF)  
tr  
Rise time(2)  
20% to 80% reference points  
450  
450  
ps  
ps  
ns  
ns  
tf  
Fall time(2)  
80% to 20% reference points  
tW(H)  
tW(L)  
Pulse duration high(3)  
Pulse duration low(3)  
LS_CLK. 50% to 50% reference points  
LS_CLK. 50% to 50% reference points  
3.1  
3.1  
LS_WDATA valid before rising edge of LS_CLK  
(differential)  
tsu  
th  
Setup time(4)  
Hold time(4)  
1.5  
1.5  
ns  
ns  
LS_WDATA valid after rising edge of LS_CLK  
(differential)  
HIGH SPEED SERIAL INTERFACE (HSSI)  
Rise time(5) data  
from A1 to A1 minimum eye height specification  
from A1 to A1 minimum eye height specification  
from A1 to A1 minimum eye height specification  
from A1 to A1 minimum eye height specification  
DCLK. 50% to 50% reference points  
50  
50  
115  
135  
115  
135  
ps  
ps  
ps  
ps  
ns  
ns  
tr  
Rise time(5) clock  
Fall time(5) - data  
50  
tf  
Fall time(5) - clock  
50  
tW(H)  
tW(L)  
Pulse duration high(6)  
Pulse duration low(6)  
0.275  
0.275  
DCLK. 50% to 50% reference points  
(1) See 6-9 for rise time and fall time for LVCMOS.  
(2) See 6-5 for rise time and fall time for LSIF.  
(3) See 6-4 for pulse duration high and low time for LSIF.  
(4) See 6-4 for setup and hold time for LSIF.  
(5) See 6-10 for rise time and fall time for HSSI.  
(6) See 6-12 for pulse duration high and low for HSSI.  
1.255 V  
V
LVDS(max)  
V
V
CM  
ID  
V
LVDS(min)  
0.575 V  
A. See 方程1 and 方程2  
6-3. LSIF Waveform Requirements  
1
VLVDS max = V  
:
; + , × V  
,
;
ID max  
;
:
CM max  
:
2
(1)  
(2)  
1
VLVDS min = V  
:
; F , × V  
,
;
ID max  
;
:
CM min  
:
2
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
t
t
W(H)|  
W(L)|  
LS_CLK_P  
50%  
LS_CLK_N  
t
t
H|  
SU|  
LS_WDATA_P  
50%  
LS_WDATA_N  
t
WINDOW|  
6-4. LSIF Timing Requirements  
V
, V  
, V  
LS_CLK_P LS_CLK_N LS_WDATA_P LS_WDATA_N  
, V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
tr  
tf  
6-5. LSIF Rise, Fall Time Slew  
+
(VIP + VIN)  
2
VCM  
=
œ
LS_CLK_P,  
LS_WDATA_P  
VID  
LS_CLK_N,  
LS_WDATA_N  
LVDS  
Receiver  
VCM  
VIP  
VIN  
6-6. LSIF Voltage Requirements  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
LS_CLK_P  
LS_WDATA_P  
Internal  
Termination  
ESD  
ESD  
(ZIN)  
LVDS  
Receiver  
LS_CLK_N  
LS_WDATA_N  
6-7. LSIF Equivalent Input  
V
IH  
V
T+  
DV  
T
V
Tœ  
V
IL  
DMD_DEN_ARTZ  
Time  
6-8. LVCMOS Input Hysteresis  
DMD_DEN_ARSTZ  
100  
80  
V
IL(AC)  
20  
t
F
t
R
Time  
6-9. LVCMOS Rise, Fall Time Slew Rate  
t
f
V
HSSI(max)  
V
V
ID  
CM  
V
HSSI(min)  
t
r
A. See 方程3 and 方程4 .  
6-10. HSSI Waveform Requirements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
1
; + , × V  
2
VHSSI max = V  
:
,
: ;  
ID max  
;
:
CM max  
(3)  
1
VHSSI min = V  
:
; F , × V  
,
;
ID max  
;
:
CM min  
:
2
(4)  
A2  
A1  
0V  
-A1  
-A2  
X1  
1-X1  
X2 1-X2  
0
1 UI  
6-11. HSSI Eye Characteristics  
t
C|  
t
t
W(H)|  
W(L)|  
DCLK_?P  
50%  
DCLK_?N  
6-12. HSSI CLK Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.9 System Mounting Interface Loads  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
When loads are applied to the electrical and thermal interface areas  
Maximum load to be applied to the electrical interface area(1)  
Maximum load to be applied to the thermal interface area(1)  
When a load is applied to only the electrical interface area  
Maximum load to be applied to the electrical interface area(1)  
Maximum load to be applied to the thermal interface area(1)  
111  
111  
N
N
222  
0
N
N
(1) The load should be uniformly applied in the corresponding areas shown in 6-13.  
Electrical Interface Area  
Thermal Interface Area  
6-13. System Mounting Interface Loads  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.10 Micromirror Array Physical Characteristics  
PARAMETER DESCRIPTION  
VALUE  
1920  
1080  
5.4  
UNIT  
Number of active columns(1)  
Number of active rows(1)  
M
micromirrors  
micromirrors  
μm  
N
Micromirror (pixel) pitch (1)  
Micromirror active array width(1)  
Micromirror active array height(1)  
Micromirror active border(2)  
P
Micromirror pitch × number of active columns  
Micromirror pitch × number of active rows  
Pond of micromirror (POM)  
10.368  
5.832  
20  
mm  
mm  
micromirrors/side  
(1) See 6-14.  
(2) The structure and qualities of the border around the active array includes a band of partially functional micromirrors referred to as the  
Pond Of Micromirrors (POM). These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state  
but still require an electrical bias to tilt toward the OFF state.  
Off-State  
Light Path  
0
1
2
3
Active Micromirror Array  
N x P  
M x N Micromirrors  
Nœ 4  
Nœ 3  
Nœ 2  
Nœ 1  
M x P  
P
Incident  
Illumination  
Light Path  
P
P
Pond Of Micromirrors (POM) omitted for clarity.  
Details omitted for clarity.  
Not to scale.  
P
6-14. Micromirror Array Physical Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.11 Micromirror Array Optical Characteristics  
PARAMETER  
Micromirror tilt angle (1) (2) (3) (4)  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
Landed state  
15.6  
18.4  
degrees  
Micromirror crossover time (5)  
Micromirror switching time (6)  
Typical performance  
Typical performance  
Gray 10 Screen (9)  
Gray 10 Screen (9)  
White Screen  
1
3
μs  
6
Bright pixel(s) in active area (8)  
0
1
4
0
0
Bright pixel(s) in the POM (10)  
Dark pixel(s) in the active area (11)  
Adjacent pixel(s) (12)  
Image  
micromirrors  
performance(7)  
Any Screen  
Unstable pixel(s) in active area (13)  
Any Screen  
(1) Measured relative to the plane formed by the overall micromirror array.  
(2) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different  
devices.  
(3) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some  
system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field  
reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result  
in colorimetry variations, system efficiency variations or system contrast variations.  
(4) When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of  
the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State  
direction. A binary value of 0 results in a micromirror landing in the OFF State direction. See 6-15.  
(5) The time required for a micromirror to nominally transition from one landed state to the opposite landed state.  
(6) The minimum time between successive transitions of a micromirror.  
(7) Conditions of Acceptance: All DMD image quality returns will be evaluated using the following projected image test conditions:  
Test set degamma shall be linear.  
Test set brightness and contrast shall be set to nominal.  
The diagonal size of the projected image shall be a minimum of 60 inches.  
The projections screen shall be 1X gain.  
The projected image shall be inspected from a 8 foot minimum viewing distance.  
The image shall be in focus during all image quality tests.  
(8) Bright pixel definition: A single pixel or mirror that is stuck in the ON position and is visibly brighter than the surrounding pixels.  
(9) Gray 10 screen definition: All areas of the screen are colored with the following settings:  
Red = 10/255  
Green = 10/255  
Blue = 10/255  
(10) POM definition: Rectangular border of off-state mirrors surrounding the active area.  
(11) Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels.  
(12) Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster.  
(13) Unstable pixel definition: A single pixel or mirror that does not operate in sequence with parameters loaded into memory. The unstable  
pixel appears to be flickering asynchronously with the image.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Off-State  
Light Direction  
Incident  
Light Direction  
B
Tilted Rotation  
Axis  
Tilted Mirror  
On-State  
Mirror  
Landed Edge  
Landed Edge  
Tilt Angle  
Off-State  
Mirror  
B
View B-B  
On-State Mirror - Tilted Position  
Landed Edge  
A
A
Tilt Angle  
Tilted Mirror  
Landed Edge  
View A-A  
Off-State Mirror - Tilted Position  
6-15. Micromirror Landed Orientation and Tilt  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
6.12 Window Characteristics  
DESCRIPTION(1)  
MIN  
TYP MAX  
Corning Eagle XG  
1.5119  
Window material  
Window refractive index  
At wavelength 546.1 nm  
Minimum within the wavelength range 420 nm to  
680 nm. Applies to all angles 0° to 30° AOI (2)  
97%  
97%  
Window transmittance, single-pass  
through both surfaces and glass  
Average over the wavelength range 420 nm to 680  
nm. Applies to all angles 30° to 45° AOI (2)  
(1) See 7.5 for more information.  
(2) Angle of incidence (AOI) is the angle between an incident ray and the normal to a reflecting or refracting surface.  
6.13 Chipset Component Usage Specification  
Reliable function and operation of the DLP471NE DMD requires that it be used in conjunction with the other  
components of the applicable DLP chipset, including those components that contain or implement TI DMD  
control technology. TI DMD control technology consists of the TI technology and devices used for operating or  
controlling a DLP DMD.  
备注  
TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system  
operating conditions exceeding limits described previously.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DLP471NE  
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
7 Detailed Description  
7.1 Overview  
The DMD is a 0.47-inch diagonal spatial light modulator which consists of an array of highly reflective aluminum  
micromirrors. The DMD is an electrical input, optical output micro-optical-electrical-mechanical system  
(MOEMS). The fast switching speed of the DMD micromirrors combined with advanced DLP image processing  
algorithms enables frame rates of up to 240Hz to be displayed. The electrical interface is low voltage differential  
signaling (LVDS). The DMD consists of a two-dimensional array of 1-bit CMOS memory cells. The array is  
organized in a grid of M memory cell columns by N memory cell rows. Refer to the 7.2. The positive or  
negative deflection angle of the micromirrors can be individually controlled by changing the address voltage of  
underlying CMOS addressing circuitry and micromirror reset signals (MBRST).  
The DLP 0.471080p chipset is comprised of the DLP471NE DMD, DLPC7540 display controller, and the  
DLPA100 power management and motor driver. To ensure reliable operation, the DLP471NE DMD must always  
be used with the DLP display controller and the power management and motor driver specified in the chipset.  
7.2 Functional Block Diagram  
Channel A Interface  
Control  
Control  
Column Read/Write  
Bit Lines  
(0,0)  
Word  
Lines  
Voltages  
Voltage  
Generators  
Micromirror  
Array  
Row  
(M-1,N-1)  
Bit Lines  
Control  
Column Read/Write  
Control  
Channel B Interface  
.
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
7.3 Feature Description  
7.3.1 Power Interface  
The DMD requires 4 DC voltages: 1.8 V source, VOFFSET, VRESET, and VBIAS. In a typical configuration, 3.3 V is  
created by the DLPA100 power management and motor driver and is used on the DMD board to create the 1.8  
V. The TI voltage regulator TPS65145 takes in the 3.3 V and outputs VOFFSET, VRESET, VBIAS  
.
7.3.2 Timing  
The data sheet specifies timing at the device pin. For output timing analysis, the tester pin electronics and its  
transmission line effects must be considered. Timing reference loads are not intended to be precise  
representations of any particular system environment or depiction of the actual load presented by a production  
test. TI recommends that system designers use IBIS or other simulation tools to correlate the timing reference  
load to a system environment. Use the specified load capacitance value for characterization and measurement  
of AC timing signals only. This load capacitance value does not indicate the maximum load the device is capable  
of driving.  
7.4 Device Functional Modes  
DMD functional modes are controlled by the DLPC7540 display controller. See the DLPC7540 display controller  
data sheet or contact a TI applications engineer.  
7.5 Optical Interface and System Image Quality Considerations  
TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment  
optical performance involves making trade-offs between numerous component and system design parameters.  
Optimizing system optical performance and image quality strongly relate to optical system design parameter  
trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical  
performance is contingent on compliance to the optical system operating conditions described in the following  
sections.  
7.5.1 Numerical Aperture and Stray Light Control  
TI recommends that the light cone angle defined by the numerical aperture of the illumination optics is the same  
as the light cone angle defined by the numerical aperture of the projection optics. This angle must not exceed  
the nominal device micromirror tilt angle unless appropriate apertures are added in the illumination and/or  
projection pupils to block out flat-state and stray light from the projection lens. The micromirror tilt angle defines  
DMD capability to separate the "ON" optical path from any other light path, including undesirable flat-state  
specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such  
as prism or lens surfaces. If the numerical aperture exceeds the micromirror tilt angle, or if the projection  
numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle (and  
vice versa), contrast degradation and objectionable artifacts in the display border and/or active area could occur.  
7.5.2 Pupil Match  
TIs optical and image quality specifications assume that the exit pupil of the illumination optics is nominally  
centered within 2° of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable  
artifacts in the display border and/or active area, which may require additional system apertures to control,  
especially if the numerical aperture of the system exceeds the pixel tilt angle.  
7.5.3 Illumination Overfill  
The active area of the device is surrounded by an aperture on the inside DMD window surface that masks  
structures of the DMD chip assembly from normal view, and is sized to anticipate several optical operating  
conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window  
aperture opening and other surface anomalies that may be visible on the screen. Design the illumination optical  
system to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the  
average flux level in the active area. Depending on the particular system optical architecture, overfill light may  
have to be further reduced below the suggested 10% level in order to be acceptable.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
7.6 Micromirror Array Temperature Calculation  
Array  
TP2  
2X 11.75  
TP5  
TP4  
2X 16.10  
TP3  
Window Aperture  
Window Edge  
(4 surfaces)  
TP3 (TP2)  
TP5  
TP4  
TP1  
4.5  
16.1  
TP1  
7-1. DMD Thermal Test Points  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Micromirror array temperature cannot be measured directly, therefore it must be computed analytically from  
measurement points on the outside of the package, the package thermal resistance, the electrical power, and  
the illumination heat load. The relationship between array temperature and the reference ceramic temperature  
(thermal test TP1 in 7-1) is provided by the following equations:  
TARRAY = TCERAMIC + (QARRAY × RARRAY-TO-CERAMIC  
)
(5)  
(6)  
QARRAY = QELECTRICAL + QILLUMINATION  
where  
TARRAY = Computed array temperature (°C)  
TCERAMIC = Measured ceramic temperature (°C) (TP1 location)  
RARRAY-TO-CERAMIC = Thermal resistance of package specified in 6.5 from array to ceramic TP1 (°C/Watt)  
QARRAY = Total DMD power on the array (W) (electrical + absorbed)  
QELECTRICAL = Nominal electrical power (W)  
QINCIDENT = Incident illumination optical power (W)  
QILLUMINATION = (DMD average thermal absorptivity × QINCIDENT) (W)  
DMD average thermal absorptivity = 0.40  
The electrical power dissipation of the DMD is variable and depends on the voltages, data rates, and operating  
frequencies. A nominal electrical power dissipation to use when calculating array temperature is 2.5 W. The  
absorbed power from the illumination source is variable and depends on the operating state of the micromirrors  
and the intensity of the light source. The equations shown above are valid for a single chip or multichip DMD  
system. It assumes an illumination distribution of 83.7% on the active array, and 16.3% on the array border.  
The sample calculation for a typical projection application is as follows:  
QINCIDENT = 25 W (measured)  
TCERAMIC = 55.0°C (measured)  
(7)  
(8)  
QELECTRICAL = 2.5 W  
(9)  
QARRAY = 2.5 W + (0.40 × 25 W) = 12.5 W  
(10)  
(11)  
TARRAY = 55.0°C + (12.5 W × 0.8°C/W) = 65.0°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DLP471NE  
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
7.7 Micromirror Landed-On/Landed-Off Duty Cycle  
7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle  
The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the percentage of time that an  
individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the  
OFF state.  
For example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the ON state 100% of the time  
(and in the OFF state 0% of the time); whereas 0/100 would indicate that the pixel is in the OFF state 100% of  
the time. Likewise, 50/50 indicates that the pixel is ON for 50% of the time (and OFF for 50% of the time).  
Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other  
state (OFF or ON) is considered negligible and is thus ignored.  
Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages)  
always add to 100.  
7.7.2 Landed Duty Cycle and Useful Life of the DMD  
Knowing the long-term average landed duty cycle (of the end product or application) is important because  
subjecting all (or a portion) of the DMD micromirror array (also called the active array) to an asymmetric landed  
duty cycle for a prolonged period of time can reduce the DMD useful life.  
Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed  
duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed  
duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly  
asymmetrical.  
7.7.3 Landed Duty Cycle and Operational DMD Temperature  
Operational DMD temperature and landed duty cycle interact to affect DMD useful life, and this interaction can  
be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD useful life. This is  
quantified in the de-rating curve shown in 6-1. The importance of this curve is that:  
All points along this curve represent the same useful life.  
All points above this curve represent lower useful life (and the further away from the curve, the lower the  
useful life).  
All points below this curve represent higher useful life (and the further away from the curve, the higher the  
useful life).  
In practice, this curve specifies the maximum operating DMD temperature for a given long-term average landed  
duty cycle.  
7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application  
During a given period of time, the landed duty cycle of a given pixel follows from the image content being  
displayed by that pixel.  
For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel  
operates under a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the  
pixel operates under a 0/100 landed duty cycle.  
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an  
incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in 7-1.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
7-1. Grayscale Value and Landed Duty Cycle  
GRAYSCALE VALUE  
LANDED DUTY CYCLE  
0%  
10%  
20%  
30%  
40%  
50%  
60%  
70%  
80%  
90%  
100%  
0/100  
10/90  
20/80  
30/70  
40/60  
50/50  
60/40  
70/30  
80/20  
90/10  
100/0  
Accounting for color rendition (but still ignoring image processing) requires knowing both the color intensity (from  
0% to 100%) for each constituent primary color (red, green, and/or blue) for the given pixel as well as the color  
cycle time for each primary color, where color cycle timeis the total percentage of the frame time that a  
given primary must be displayed in order to achieve the desired white point.  
Use 方程12 to calculate the landed duty cycle of a given pixel during a given time period  
Landed Duty Cycle = (Red_Cycle_% × Red_Scale_Value) + (Green_Cycle_% × Green_Scale_Value) + (Blue_Cycle_% (12)  
×
Blue_Scale_Value)  
where  
Red_Cycle_%, represents the percentage of the frame time that red is displayed to achieve the desired white  
point  
Green_Cycle_% represents the percentage of the frame time that green is displayed to achieve the desired  
white point  
Blue_Cycle_%, represents the percentage of the frame time that blue is displayed to achieve the desired  
white point  
For example, assume that the red, green, and blue color cycle times are 30%, 50%, and 20% respectively (in  
order to achieve the desired white point), then the landed duty cycle for various combinations of red, green, blue  
color intensities would be as shown in 7-2 and 7-3.  
7-2. Example Landed Duty Cycle for Full-Color,  
Color Percentage  
CYCLE PERCENTAGE  
RED  
GREEN  
BLUE  
30%  
50%  
20%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
7-3. Example Landed Duty Cycle for Full-Color  
SCALE VALUE  
GREEN  
0%  
LANDED DUTY  
CYCLE  
RED  
0%  
BLUE  
0%  
0/100  
30/70  
50/50  
20/80  
6/94  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
0%  
100%  
0%  
0%  
12%  
0%  
0%  
35%  
0%  
7/93  
60%  
0%  
0%  
18/82  
70/30  
50/50  
80/20  
13/87  
25/75  
24/76  
100/0  
100%  
0%  
100%  
100%  
0%  
100%  
100%  
0%  
100%  
12%  
35%  
35%  
0%  
60%  
60%  
100%  
0%  
12%  
100%  
100%  
The last factor to account for in estimating the landed duty cycle is any applied image processing. Within the  
DLPC7540 controller, the gamma function affects the landed duty cycle.  
Gamma is a power function of the form Output_Level = A × Input_LevelGamma, where A is a scaling factor that is  
typically set to 1.  
In the DLPC7540 controller, gamma is applied to the incoming image data on a pixel-by-pixel basis. A typical  
gamma factor is 2.2, which transforms the incoming data as shown in 7-2.  
100  
90  
80  
Gamma = 2.2  
70  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
Input Level (%)  
70  
80  
90 100  
D002  
7-2. Example of Gamma = 2.2  
From 7-2, if the gray scale value of a given input pixel is 40% (before gamma is applied), then gray scale  
value is 13% after gamma is applied. Therefore, it can be seen that since gamma has a direct impact on the  
displayed gray scale level of a pixel, it also has a direct impact on the landed duty cycle of a pixel.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Consideration must also be given to any image processing which occurs before the DLPC7540 controllers.  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application is derived  
primarily from the optical architecture of the system and the format of the data coming into the DLPC7540  
controller. The high tilt pixel in the bottom-illuminated DMD increases brightness performance and enables a  
smaller system footprint for thickness constrained applications. Typical applications using the DLP471NE include  
smart projectors and enterprise projectors.  
DMD power-up and power-down sequencing is strictly controlled by the DLPC7540 through the TPS65145  
PMIC. Refer to 9 for power-up and power-down specifications. To ensure reliable operation, the DLP471NE  
DMD must always be used with DLPC7540 controller, a DLPA100 PMIC/Motor driver and aTPS65145 PMIC.  
8.2 Typical Application  
The DLP471NE DMD combined with DLPC7540 digital controller and a power management device provides full  
HD (1920x1080) resolution for bright, colorful display applications. A typical display system using laser phosphor  
illumination combines the DLP471NE DMD, DLPC7540 display controller, TPS65145 voltage regulator and  
DLPA100 PMIC and motor driver. 8-1 shows a system block diagram for this configuration of the DLP 0.47”  
Full HD chipset and additional system components needed. See 8-2, a block diagram showing the system  
components needed along with the lamp configuration of the DLP 0.47Full HD chipset. The components  
include the DLP471NE DMD, DLPC7540 display controller and the DLPA100 PMIC and motor driver and a  
TPS65145 PMIC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Laser  
Driver  
CTRL Signals  
1.15V  
12V  
TPS56121  
Core 1.15V  
Voltage Reg.  
DLPC7540  
1.8V  
1.21V  
3.3V  
12 V  
DLPC7540  
DLPA100  
(Controller  
Voltages)  
3.3V  
}
LMR33630C  
3.3V  
TPS65145  
12V  
5V  
PW Motor Drive  
Fans (3x)  
Flash  
CTRL  
(SPI)  
ADDR  
DATA  
CW Motor Drive  
Fans (3x)  
23  
16  
DLPA100  
(Filter wheel)  
12V  
1.15V  
1.21V  
1.8V  
CW_INDEX1  
3.3V  
Vref  
CW_INDEX2  
40 MHz  
Vref  
GND  
2 Port HSSI  
DMD LS-interface  
36  
GND  
FE CTRL  
(I2C)  
HDMI  
Front End  
(VbyOneTM)  
DLP471NE  
.47" 1080p  
S451 HSSI  
DMD  
VOFFSET  
VbyOneTM  
TPS65145  
DMD  
Voltages  
3.3V  
VRESET  
VBIAS  
30 Bit Data  
18  
DLPC7540  
Controller  
3D L/R  
GPIO  
1.8V  
12V  
3.3V  
LMR33630C  
1.8V  
Temp  
2
Tilt (& Roll)  
Sensor  
TMP411  
I2C  
(2x)  
IR Rx  
USB2.0 OTG  
USB 2.0  
GPIO  
USB2.0  
Mux  
DB Drive Data  
Dynamic Black  
Actuators (2X)  
USB  
Camera  
DLP Chipset Components  
TI Components  
3rd Party Components  
8-1. Typical Full HD Laser Phosphor Application Diagram  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
CTRL Signals  
Lamp  
Ballast  
1.15V  
12V  
TPS56121  
Core 1.15V  
Voltage Reg.  
DLPC7540  
1.8V  
DLPC7540  
1.21V  
12 V  
3.3V  
LMR33630C  
3.3V  
TPS65145  
12V  
DLPA100  
(Controller  
Voltages)  
3.3V  
}
5V  
Flash  
PW Motor Drive  
Fans (3x)  
ADDR  
DATA  
23  
16  
1.15V  
1.21V  
1.8V  
CTRL (SPI)  
3.3V  
CW_INDEX1  
Vref  
40 MHz  
GND  
GND  
2 Port HSSI  
DMD LS-interface  
36  
FE CTRL  
(I2C)  
VbyOneTM  
HDMI  
Front End  
(VbyOneTM)  
DLP471NE  
.47" 1080p  
S451 HSSI  
DMD  
VOFFSET  
TPS65145  
DMD  
Voltages  
3.3V  
VRESET  
VBIAS  
30 Bit Data  
18  
DLPC7540  
Controller  
3D L/R  
GPIO  
1.8V  
12V  
3.3V  
LMR33630C  
1.8V  
Temp  
2
Tilt (& Roll)  
Sensor  
TMP411  
I2C  
(2x)  
IR Rx  
USB2.0 OTG  
USB 2.0  
GPIO  
USB2.0  
Mux  
DB Drive Data  
Dynamic Black  
Actuators (2X)  
USB  
Camera  
DLP Chipset Components  
TI Components  
3rd Party Components  
8-2. Typical Full HD Lamp Application Diagram  
8.2.1 Design Requirements  
Other core components of the display system include an illumination source, an optical engine for the  
illumination and projection optics, other electrical and mechanical components, and software. The type of  
illumination used and desired brightness has a major effect on the overall system design and size.  
The display system uses the DLP471NE as the core imaging device and contains a 0.47-inch array of  
micromirrors. The DLPC7540 controller is the digital interface between the DMD and the rest of the system,  
taking digital input from front end receiver and driving the DMD over a high-speed interface. The DLPA100 PMIC  
serves as a voltage regulator for the controller, and color filter wheel and phosphor wheel motor control. The  
TPS65145 provide the DMD reset, offset and bias voltages. The LMR33630C provides the 1.8-V power to the  
DLP471NE.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
8.2.2 Detailed Design Procedure  
For a complete DLP system, an optical module or light engine is required that contains the DLP471NE DMD,  
associated illumination sources, optical elements, and necessary mechanical components.  
To ensure reliable operation, the DMD must always be used with DLPC7540 display controller and the  
TPS65145 PMIC and DLPA100. Refer to PCB Design Requirements for TI DLP TRP Digital Micromirror Devices  
for the DMD board design and manufacturing handling of the DMD sub assemblies.  
8.2.3 Application Curves  
In a typical projector application, the luminous flux on the screen from the DMD depends on the optical design of  
the projector. The efficiency and total power of the illumination optical system and the projection optical system  
determines the overall light output of the projector. The DMD is inherently a linear spatial light modulator, so its  
efficiency just scales the light output. 8-3 describes the relationship of laser input optical power to light output  
for a laser-phosphor illumination system, where the phosphor is not at its thermal quenching limit. .  
1
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
0.35  
0.3  
0.3  
0.35  
0.4  
0.45  
0.5  
0.55  
0.6  
0.65  
0.7  
Normalized Laser Power  
0.75  
0.8  
0.85  
0.9  
0.95  
1
norm  
8-3. Normalized Light Output vs. Normalized Laser Power for Laser Phosphor Illumination  
8.3 Temperature Sensor Diode  
The DMD features a built-in thermal diode that measures the temperature at one corner of the die outside the  
micromirror array. The thermal diode can be interfaced with the TMP411 temperature sensor as shown in 8-4.  
The software application contains functions to configure the TMP411 to read the DLP471NE DMD temperature  
sensor diode. This data can be leveraged by the customer to incorporate additional functionality in the overall  
system design such as adjusting illumination, fan speeds, etc. All communication between the TMP411 and the  
DLPC7540 controller happens over the I2C interface. The TMP411 connects to the DMD via pins outlined in 表  
5-1.  
If the temp sensor is not used, TEMP_N and TEMP_P pins should be left unconnected (NC).  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
3.3V  
R1  
R2  
TMP411  
DLP471NE  
SCL  
VCC  
D+  
R3  
R5  
TEMP_P  
SDA  
ALERT  
THERM  
GND  
C1  
R4  
R6  
D-  
TEMP_N  
GND  
A. Details omitted for clarity.  
B. See the TMP411 datasheet for system board layout recommendation.  
C. See the TMP411 datasheet and the TI reference design for suggested component values for R1, R2, R3, R4, and C1.  
D. R5 = 0 Ω. R6 = 0 Ω. Place 0-Ωresistors close to the DMD package pins.  
8-4. TMP411 Sample Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
9 Power Supply Recommendations  
The following power supplies are all required to operate the DMD:  
VSS  
VBIAS  
VDD  
VOFFSET  
VRESET  
DMD power-up and power-down sequencing is strictly controlled by the DLP display controller.  
CAUTION  
For reliable operation of the DMD, the following power supply sequencing requirements must be  
followed. Failure to adhere to any of the prescribed power-up and power-down requirements may  
affect device reliability. See the DMD power supply sequencing requirements in 9-1.  
VBIAS, VDD, VOFFSET, and VRESET power supplies must be coordinated during power-up and power-  
down operations. Failure to meet any of the below requirements will result in a significant reduction  
in the DMD reliability and lifetime. Common ground VSS must also be connected.  
9-1. Power Supply Sequence Requirements  
SYMBOL  
PARAMETER  
Delay requirement  
DESCRIPTION  
MIN  
TYP  
MAX UNIT  
tDELAY1  
from VOFFSET power up to VBIAS power up  
1
2
ms  
from VBIAS and VRESET powered on and stable to  
DMD_EN_ARSTZ going high  
tDELAY2  
tDELAY3  
Delay requirement  
Delay requirement  
20  
50  
µs  
µs  
from VOFFSET, VBIAS, and VRESET power down to  
when VDD and VDDA can power down  
9.1 DMD Power Supply Power-Up Procedure  
During power-up, VDD must always start and settle before VOFFSET plus tDELAY1 specified in 9-1, VBIAS, and  
VRESET voltages are applied to the DMD.  
During power-up, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-up, there is no requirement for the relative timing of VRESET with respect to VBIAS  
.
Power supply slew rates during power-up are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1 .  
During power-up, LVCMOS input pins must not be driven high until after VDD has settled at operating voltage  
listed in 6.4.  
9.2 DMD Power Supply Power-Down Procedure  
During power-down, VDD must be supplied until after VBIAS, VRESET, and VOFFSET are discharged to within the  
specified limit of ground. See 9-1.  
During power-down, it is a strict requirement that the voltage difference between VBIAS and VOFFSET must be  
within the specified limit shown in 6.4.  
During power-down, there is no requirement for the relative timing of VRESET with respect to VBIAS  
.
Power supply slew rates during power-down are flexible, provided that the transient voltage levels follow the  
requirements specified in 6.1, in 6.4, and in 9-1.  
During power-down, LVCMOS input pins must be less than specified in 6.4.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
Note A  
Note J  
...  
VDD and VDDA  
VSS  
VSS  
Note H  
tDELAY3  
...  
...  
Note B  
V < Specification  
VOFFSET  
Note D  
tDELAY1  
VBIAS  
VSS  
VSS  
Note C  
V < Specification  
VRESET  
Note E  
...  
Note F  
tDELAY2  
Note G  
...  
DMD_EN_ARSTZ  
VSS  
Time  
A. See 5 for the Pin Functions Table.  
B. To prevent excess current, the supply voltage difference |VBIAS VOFFSET| must be less than the specified limit in 6.4.  
C. To prevent excess current, the supply difference |VBIAS VRESET| must be less than the specified limit in the 6.4.  
D. VBIAS must power up after VOFFSET has powered up, per the Delay1 specification in 9-1.  
E. VRESET, VOFFSET and VBIAS ramps must start after VDD and VDDA are powered up and stable.  
F. After the DMD micromirror park sequence is complete, the DLP controller software initiates a hardware power-down that activates  
DMD_EN_ARSTZ and disables VBIAS, VRESET and VOFFSET  
.
G. Under power-loss conditions where emergency DMD micromirror park procedures are being enacted by the DLP controller hardware  
DMD_EN_ARSTZ goes low.  
H. VDD must remain high until after VOFFSET, VBIAS, VRESET go low, per Delay2 specification in 9-1.  
I.  
To prevent excess current, the supply voltage delta |VDDA VDD| must be less than specified limit in 6.4.  
J. Not to scale. Details are omitted for clarity.  
9-1. DMD Power Supply Requirements  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
10 Layout  
10.1 Layout Guidelines  
The DLP471NE DMD is part of a chipset that is controlled by the DLPC7540 display controller in conjunction  
with theTPS65145 PMIC and the DLPA100 power and motor controller. These guidelines are targeted at  
designing a PCB board with the DLP471NE DMD. The DMD board is a high-speed multi-layer PCB, with  
primarily high-speed digital logic including double data rate 3.2 Gbps and 250 Mbps differential data buses run to  
the DMD. TI recommends that full or mini power planes are used for VOFFSET, VRESET, and VBIAS. Solid planes  
are required for ground (VSS). The target impedance for the PCB is 50 Ω±10% with exceptions listed in 10-1.  
TI recommends a 10 layer stack-up as described in 10-2. TI recommends manufacturing the PCB with a high  
quality FR-4 material.  
10.2 Impedance Requirements  
TI recommends a target impedance for the PCB of 50 Ω ±10% for all signals. The exceptions are listed in 表  
10-1.  
10-1. Special Impedance Requirements  
Signal Type  
Signal Name  
Impedance ()  
DMD_HSSI0_N_(07),  
DMD_HSSI0_P_(07),  
DMD_HSSI1_N_(07),  
DMD_HSSI1_P_(07),  
DMD_HSSI0_CLK_N,  
DMD_HSSI0_CLK_P,  
DMD_HSSI1_CLK_N,  
DMD_HSSI1_CLK_P  
100-differential (50-single  
DMD High Speed Data Signals  
ended)  
DMD_LS0_WDATA_N,  
DMD_LS0_WDATA_P,  
DMD_LS0_CLK_N,  
DMD_LS0_CLK_P  
DMD Low Speed Interface  
Signals  
100-differential (50-single  
ended)  
10.3 Layers  
The layer stack-up and copper weight for each layer is shown in 10-2.  
10-2. Layer Stack-Up  
LAYER  
NO.  
LAYER NAME  
COPPER WT. (oz.)  
COMMENTS  
DMD and escapes. Two data input connectors. Top components including  
power generation and two data input connectors. Low frequency signals  
routing. Should have a copper fill (GND) plated up to 1 oz.  
Side A DMD, primary  
components, power mini-  
planes  
0.5 oz. (before  
plating)  
1
2
3
Ground  
0.5  
0.5  
Solid ground plane (net GND) reference for signal layers #1, 3  
High speed signal layer. High speed differential data buses from input  
connector to DMD  
Signal (high frequency)  
4
5
6
7
Ground  
Power  
Power  
Ground  
0.5  
0.5  
0.5  
0.5  
Solid ground plane (net GND) reference for signal layers #3, #5  
Primary split power planes for 1.8 V, 3.3 V, 10 V, 14 V, 18 V  
Primary split power planes for 1.8 V, 3.3 V, 10 V, 14V, 18V.  
Solid ground plane (net GND) reference for signal layer #8  
High Speed Signal layer. High speed differential data buses from input  
connector to DMD  
8
9
Signal (high frequency)  
Ground  
0.5  
0.5  
Solid ground plane (net GND) reference for signal layers #8, 10  
Side B secondary  
components, power mini-  
planes  
0.5 oz. (before  
plating)  
Discrete components if necessary. Low frequency signals routing. Should  
have copper fill plated up to 1 oz.  
10  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
10.4 Trace Width, Spacing  
Unless otherwise specified, TI recommends that all signals follow the 0.005/0.015(trace-width/spacing)  
design rule. Use an analysis of impedance and stack-up requirements to determine and calculate actual trace  
widths.  
Maximized the width of all voltage signals as space permits. Follow the width and spacing requirements listed in  
10-3.  
10-3. Special Trace Widths, Spacing Requirements  
MINIMUM TRACE  
WIDTH (MIL)  
SIGNAL NAME  
MINIMUM TRACE SPACING (MIL)  
LAYOUT REQUIREMENT  
GND  
MAXIMIZE  
5
Maximize trace width to connecting pin as a minimum  
Create mini planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary with multiple  
vias.  
VDD  
40  
40  
15  
15  
Create mini planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary with multiple  
vias.  
VDDA  
Create mini-planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary.  
VOFFSET  
VRESET  
VBIAS  
40  
40  
40  
15  
15  
15  
Create mini-planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary.  
Create mini-planes on layers 1 and 10 as needed. Connect  
to devices on layers 1 and 10 as necessary.  
10.5 Power  
TI strongly discourages signal routing on power planes or on planes adjacent to power planes. If signals must be  
routed on layers adjacent to power planes, they must not cross splits in power planes to prevent EMI and  
preserve signal integrity.  
Connect all internal digital ground (GND) planes in as many places as possible. Connect all internal ground  
planes with a minimum distance between connections of 0.5. Extra vias may not required if there are sufficient  
ground vias due to normal ground connections of devices.  
Connect power and ground pins of each component to the power and ground planes with at least one via for  
each pin. Minimize trace lengths for component power and ground pins. (ideally, less than 0.100).  
Ground plane slots are strongly discouraged.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DLP471NE  
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
10.6 Trace Length Matching Recommendations  
10-4 and 10-5 describe recommended signal trace length matching requirements. Follow these guidelines  
to avoid routing long traces over large areas of the PCB:  
Match the trace lengths so that longer signals route in a serpentine pattern  
Minimize the number of turns.  
Ensure that the turn angles no sharper than 45 degrees.  
10-1 shows an example of the HSSI signal pair routing.  
Signals listed in 10-4 are specified fro data rate operation at up to 3.2 Gbps. Minimize the layer changes for  
these signals. Minimize the number of vias. Avoid sharp turns and layer switching while minimizing the lengths.  
When layer changes are necessary, place GND vias around the signal vias to provide a signal return path. The  
distance from one pair of differential signals to another must be at least 2 times the distance within the pair.  
10-4. HSSI High Speed DMD Data Signals  
SIGNAL NAME  
DMD_HSSI0_N(0...7),  
REFERENCE SIGNAL  
ROUTING SPECIFICATION  
UNIT  
DMD_HSSI0_CLK_N,  
DMD_HSSI_CLK_P  
±0.25  
inch  
DMD_HSSI0_P(0...7)  
DMD_HSSI1_N(0...7),  
DMD_HSSI1_P(0...7)  
DMD_HSSI0_CLK_N,  
DMD_HSSI_CLK_P  
±0.25  
inch  
DMD_HSSI0_CLK_P  
Intra-pair P  
DMD_HSSI1_CLK_P  
Intra-pair N  
±0.05  
±0.01  
inch  
inch  
10-5. Other Timing Critical Signals  
SIGNAL NAME  
Constraints  
Routing Layers  
LS_CLK_P, LS_CLK_N  
LS_WDATA_P,  
LS_WDATA_N  
Intra-pair (P to N)  
Matched to 0.01 inches  
Signal-to-signal  
Layers 3, 8  
LS_RDATA_A  
Matched to +/- 0.25 inches  
10-1. Example HSSI PCB Routing  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
11 Device and Documentation Support  
11.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Device Support  
11.2.1 Device Nomenclature  
DLP471NE xc FYN  
Package  
TI Internal Numbering  
Device Descriptor  
11-1. Part Number Description  
11.2.2 Device Markings  
The device marking includes both human-readable information and a 2-dimensional matrix code. The human-  
readable information is described in 11-2. The 2-dimensional matrix code is an alpha-numeric string that  
contains the DMD part number, Part 1 and Part 2 of the serial number.  
Example:  
TI Internal Numbering  
DMD Part Number  
Part 2 of Serial Number  
(7 characters)  
Part 1 of Serial Number  
(7 characters)  
2-Dimension Matrix Code  
(Part Number and Serial Number)  
11-2. DMD Marking Locations  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DLP471NE  
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
11.3 Documentation Support  
11.3.1 Related Documentation  
The following documents contain additional information related to the chipset components used with the DMD.  
DLPC7540 Display Controller Data Sheet  
TPS65145 Data Sheet  
DLPA100 Power and Motor Driver Data Sheet  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
DLP® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.8 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DLP471NE  
 
DLP471NE  
www.ti.com.cn  
ZHCSM84B SEPTEMBER 2020 REVISED MAY 2022  
12.1 Package Option Addendum  
12.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
MSL Peak Temp  
Device Marking(5)  
Orderable Device  
Status (1)  
Pins  
Package Qty  
Eco Plan (2)  
Lead/Ball Finish(4)  
Op Temp (°C)  
(3)  
(6)  
see Device  
Marking section  
DLP471NEA0FYN  
ACTIVE  
CPGA  
FYN  
149  
33  
RoHS & Green  
Call TI  
Call TI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1%  
by weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by  
third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable  
steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain  
information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DLP471NE  
 
 
 
 
 
 
 
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Mar-2022  
TRAY  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
DLP471NEA0FYN  
FYN  
CPGA  
149  
33  
3 x 11  
150  
315 135.9 12190 27.5  
20  
27.45  
Pack Materials-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLP471NEA0FYN

0.47-inch, 1080p, HSSI DLP® digital micromirror device (DMD) | FYN | 149 | 0 to 70
TI

DLP471TE

0.47 英寸 4K UHD HSSI DLP® 数字微镜器件 (DMD)
TI

DLP471TEA0FYN

0.47-inch, 4K UHD, HSSI DLP® digital micromirror device (DMD) | FYN | 149 | 0 to 70
TI

DLP471TP

0.47-inch 4K UHD DLP® digital micromirror device (DMD)
TI

DLP471TPFQQ

0.47-inch 4K UHD DLP® digital micromirror device (DMD) | FQQ | 270 | 0 to 70
TI

DLP480RE

0.48 英寸 WUXGA DLP® 数字微镜器件 (DMD)
TI

DLP480REAAFXG

0.48-inch, WUXGA DLP® digital micromirror device (DMD) | FXG | 257 | 0 to 70
TI

DLP500YX

DLP® 0.50 英寸、2048x1200 阵列、S410 数字微镜器件 (DMD)  
TI

DLP500YXFXK

DLP® 0.50 英寸、2048x1200 阵列、S410 数字微镜器件 (DMD)   | FXK | 257 | 0 to 70
TI

DLP5500

DLP® 0.55 XGA Series 450 DMD
TI

DLP5500AFYA

DLP&reg; 0.55 XGA DMD 149-CPGA
TI

DLP5500BFYA

0.55 XGA Series
TI