DLPA2000DYFFR [TI]

DLP® PMIC/LED driver for DLP2010 (0.2 WVGA) DMD | YFF | 56 | -10 to 85;
DLPA2000DYFFR
型号: DLPA2000DYFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® PMIC/LED driver for DLP2010 (0.2 WVGA) DMD | YFF | 56 | -10 to 85

集成电源管理电路
文件: 总58页 (文件大小:1911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
DLPA2000 电源管理和 LED/灯驱动器 IC  
1 特性  
LED 电压,LED 电流  
光传感器(用于白点修正)  
内部基准电压  
1
高效 RGB LED/灯驱动器,在小型芯片级封装中集  
成了降压/升压直流/直流转换器、DMD 电源、DPP  
内核电源、1.8V 负载开关以及测量系统  
外部(热敏电阻)温度传感器  
三个用于通道选择的低阻抗(27°C 时典型值为  
30mΩ)金属氧化物半导体场效应晶体管  
(MOSFET) 开关  
监控和保护电路  
热模警告和热关断  
低电池电压警告  
每个通道具有独立的 10 位电流控制  
可编程的电池欠压闭锁 (UVLO)  
负载开关 UVLO  
针对 DLPA2000 嵌入式应用的最大 LED 电流为  
750mA  
过流和欠压保护  
片上电机驱动器  
DLPA2000 芯片级球栅阵列 (DSBGA) 封装  
DMD 调节器  
56 0.4mm 间距  
仅需一个电感器  
裸片尺寸:3.280mm × 3.484mm ± 0.03mm  
VOFS10V  
VBIAS18V  
2 应用  
VRST–14V  
DLP™显示投影仪  
当禁用时对接地 (GND) 被动放电  
DLP™移动传感  
DPP 1.1V 内核电源  
具有集成开关 FET 的同步降压转换器  
支持高达 600mA 的输出电流  
3 说明  
DLPA2000 是一款专用于 DLP2010 DLP2010NIR  
数字微镜器件 (DMD) PMIC/RGB LED/灯驱动器,  
DLPC3430DLPC3435 DLPC150 数字控制器  
搭配使用。为确保这些芯片组可靠运行,必须搭配  
DLPA2000 使用。  
VLED 降压/升压转换器  
轻负载电流状态下的省电模式  
低阻抗负载开关  
VIN 范围:1.8V 3.6V  
支持高达 200mA 的电流  
器件信息(1)  
当禁用时对接地 (GND) 被动放电  
器件型号  
DLPA2000  
封装  
封装尺寸(标称值)  
DMD 复位信号生成和电源排序  
33MHz 串行外设接口 (SPI)  
用于测量模拟信号的多路复用器  
3.28mm × 3.48mm ±  
0.03mm  
DSBGA (56)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
电池电压  
1. 简化电路原理图  
DC_IN  
Charger  
BAT  
2.3 to 5.5  
V
Projector Module Electronics  
DC Supplies  
1.8  
V
VSPI  
1.1  
1.8  
V
V
1.1  
Reg  
V
Other  
Supplies  
1.8 V  
On/Off  
L3  
SYSPWR  
VDD  
1.8  
V
HDMI  
VLED  
HDMI  
Receiver  
PROJ_ON  
PROJ_ON  
Current  
Sense  
L1  
L2  
VGA  
Triple  
ADC  
Keystone  
Sensor  
GPIO_8 (Normal Park)  
SPI_0  
DLPA2000  
Cal data  
(optional)  
4
FLASH  
4
Front-End  
Chip  
EEPROM  
RED  
GREEN  
BLUE  
SPI_1  
RESETZ  
INTZ  
FLASH,  
SDRAM  
-
-
-
OSD  
AutoLock  
Scaler  
I2C_1  
HOST_IRQ  
PARKZ  
BIAS, RST, OFS  
3
LED_SEL(2)  
CMP_PWM  
-MicroController  
WPC  
Illumination  
Optics  
DLPC3430/  
DLPC3435  
Keypad  
Parallel I/F  
28  
LABB  
CMP_OUT  
eDRAM  
DLP2010  
DMD)  
I2C  
SD Card  
Reader, and  
so forth  
(WVGA  
Thermistor  
Sub-LVDS DATA  
CTRL  
1.8  
1.1  
V
V
VIO  
(optional)  
VCC_INTF  
VCC_FLSH  
VCORE  
18  
Spare R/W  
GPIO  
BT.656  
CVBS  
TVP5151  
Video  
Decoder  
Included in DLP® Chip Set  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: DLPS043  
 
 
 
 
 
 
 
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 27  
7.5 Register Maps......................................................... 29  
Application and Implementation ........................ 41  
8.1 Application Information............................................ 41  
8.2 Typical Projector Application .................................. 41  
8.3 Typical Mobile Sensing Application ....................... 43  
Power Supply Recommendations...................... 46  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 Storage Conditions.................................................... 5  
6.3 ESD Ratings.............................................................. 5  
6.4 Recommended Operating Conditions....................... 5  
6.5 Thermal Information.................................................. 6  
6.6 Electrical Characteristics........................................... 6  
6.7 Motor Driver Timing Requirements......................... 11  
6.8 Data Transmission Timing Requirements............... 12  
6.9 Typical Characteristics............................................ 13  
Detailed Description ............................................ 14  
7.1 Overview ................................................................. 14  
7.2 Functional Block Diagram ....................................... 15  
7.3 Feature Description................................................. 16  
8
9
10 Layout................................................................... 47  
10.1 Layout Guidelines ................................................. 47  
10.2 Layout Example .................................................... 48  
11 器件和文档支持 ..................................................... 49  
11.1 器件支持 ............................................................... 49  
11.2 相关链接................................................................ 49  
11.3 社区资源................................................................ 49  
11.4 ....................................................................... 49  
11.5 静电放电警告......................................................... 49  
11.6 Glossary................................................................ 50  
12 机械、封装和可订购信息....................................... 51  
7
4 修订历史记录  
Changes from Revision A (August 2015) to Revision B  
Page  
修正了器件信息中的封装尺寸的拼写错误,将 3.48mm2 更正为 3.48mm............................................................................... 1  
已添加 在修订版本 A 中添加先前缺失的历史记录标........................................................................................................... 1  
Corrected package family to 'DSBGA' in Pin Functions Diagram, originally labeled as 'DSGBA' ......................................... 3  
Added mechanical package designator YFF to Thermal Information .................................................................................... 6  
Changed layout example to show correct image in Figure 46 ............................................................................................. 48  
Changes from Original (June 2014) to Revision A  
Page  
已更改 将最大电流更改为 750mA........................................................................................................................................... 1  
已添加 移动传感应用 .............................................................................................................................................................. 1  
Added typical Mobile sensing application ............................................................................................................................ 43  
Updated the Power Supply Recommendations to remove information that did not apply to the DLPA2000 ..................... 46  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
5 Pin Configuration and Functions  
YFF PACKAGE  
56-PIN DSBGA  
BOTTOM VIEW  
SW6  
SW5  
SW4  
VLED  
L2  
RLIM  
RLIM  
V6V  
AOUT2  
AOUT1  
VINM  
VINC  
SWC  
H
G
F
RBOT_  
K
PGND  
CM  
BOUT2  
BOUT1  
VCORE  
LS_IN  
DGND  
AGND  
RLIM_  
K
LED_  
SEL1  
LED_  
SEL0  
LS_  
OUT  
PROJ_  
ON  
VLED  
L2  
SENS1  
VSPI  
SENS2  
V2V5  
VINA  
E
D
C
B
A
CMP_  
OUT  
PWM_  
IN  
SPI_  
CLK  
SPI_  
CSZ  
SPI_  
DIN  
SPI_  
DOUT  
PGNDL  
L1  
PGNDL  
L1  
VOFS  
VBIAS  
SWP  
RESET  
Z
CNTR_  
VRST  
REF_  
VRST  
INTZ  
VINR  
VINL  
VINL  
AGND1  
SWN  
PGNDR  
1
2
3
4
5
6
7
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NUMBER  
A1  
VINL  
I
Power supply input for VLED BUCK-BOOST power stage. Connect to system power.  
A2  
AGND1  
VINR  
A3  
GND  
Analog ground. Connect to ground plane.  
A4  
I
I
Power supply input for DMD switch mode power supply (SMPS). Connect to system power.  
Connection for the DMD SMPS-inductor (high-side switch).  
Power ground for DMD SMPS. Connect to ground plane.  
Connection for the DMD SMPS-inductor (low-side switch).  
SWN  
A5  
PGNDR  
SWP  
A6  
GND  
O
A7  
B1  
L1  
O
Connection for VLED BUCK-BOOST inductor.  
B2  
RESETZ  
INTZ  
B3  
O
O
O
I
Reset output to the DLP system (active low). Pin is held low to reset DLP system.  
Interrupt output signal (open drain). Connect to pull-up resistor or short to ground.  
Connection to VRST for fast discharge function.  
B4  
CNTR_VRST  
REF_VRST  
VBIAS  
B5  
B6  
Reference pin for the VRST regulator. Connect to VRST rail through 100-kΩ resistor.  
VBIAS output rail. Connect to ceramic capacitor.  
B7  
O
C1  
C2  
C3  
C4  
C5  
PGNDL  
GND  
Power ground for VLED BUCK-BOOST. Connect to ground plane.  
SPI_CLK  
SPI_CSZ  
SPI_DIN  
I
I
I
Clock input for SPI interface.  
SPI chip select (active low).  
SPI data input.  
Copyright © 2014–2018, Texas Instruments Incorporated  
3
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
SPI_DOUT  
VOFS  
NUMBER  
C6  
O
O
SPI data output.  
C7  
VOFS output rail. Connect to ceramic capacitor.  
D1  
L2  
I
Connection for VLED BUCK-BOOST inductor.  
D2  
VSPI  
D3  
I
O
Power supply input for SPI interface. Connect to system I/O voltage.  
Analog-comparator output.  
CMP_OUT  
PWM_IN  
AGND  
D4  
D5  
I
Reference voltage input for analog comparator.  
Analog ground. Connect to ground plane.  
D6  
GND  
VINA  
D7  
POWER Power supply input for sensitive analog circuitry.  
E1  
VLED  
O
VLED BUCK-BOOST converter output pin.  
E2  
SENS1  
SENS2  
PROJ_ON  
DGND  
V2V5  
E3  
I
Input signal from light sensor.  
E4  
I
I
Input signal from temperature sensor.  
E5  
Input signal to enable or disable the IC and DLP projector.  
Digital ground. Connect to ground plane.  
E6  
GND  
O
E7  
Internal supply filter pin for digital logic; typical 2.5 V.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Kelvin sense connection to top side of LED current sense resistor.  
SW4  
F1  
O
RLIM_K  
F2  
I
For best accuracy, route this trace directly to the top of the current sense resistor and  
separate it from the normal trace from the current sense resistor to the RLIM pins.  
LED_SEL1  
LED_SEL0  
BOUT1  
F3  
F4  
F5  
F6  
F7  
G1  
I
I
Digital input to the RGB STROBE DECODER.  
Digital input to the RGB STROBE DECODER.  
Motor driver B phase output1.  
O
I
LS_IN  
Load switch.  
LS_OUT  
SW5  
O
O
Load switch.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Connection to LED ‘current sense’ resistor.  
Bottom side of sense resistor is connected to GND.  
RLIM  
G2  
O
RBOT_K  
AOUT1  
BOUT2  
VCORE  
PGNDCM  
SW6  
G3  
G4  
G5  
G6  
G7  
H1  
I
O
Kelvin sense connection to ground side of LED current sense resistor.  
Motor driver A phase output1.  
O
Motor driver B phase output2.  
I
VCORE BUCK converter feedback pin.  
GND  
O
Power ground for VCORE BUCK and motor driver.  
Low-side MOSFET switch for LED cathode. Connect to RGB LED assembly.  
Connection to LED current sense resistor.  
Bottom side of sense resistor is connected to GND.  
RLIM  
H2  
O
V6V  
H3  
H4  
H5  
H6  
H7  
O
O
I
Internal supply filter pin for gate driver circuitry. Typical 6.25 V.  
Motor driver A phase output2.  
AOUT2  
VINM  
VINC  
SWC  
Power supply input for motor driver power stage. Connect to system power.  
Power supply input for VCORE BUCK power stage. Connect to system power.  
Connection for 1.1-V BUCK inductor.  
I
I/O  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–18.0  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
7
UNIT  
V
Input voltage at VINL, VINA, VINR, VINC, VINM  
Ground pins to system ground  
Voltage at SWN  
0.3  
7
V
V
Voltage at SWP, VBIAS  
20  
12  
7
V
Voltage at VOFS  
V
Voltage at V6V, VLED, L1, L2, SWC, SW4, SW5, SW6, INTZ, PROJ_ON  
Voltage at all pins, unless noted otherwise  
Source current RESETZ, CMP_OUT  
Source current SPI_DOUT  
V
3.6  
1
V
mA  
mA  
mA  
mA  
5.5  
1
Sink current RESETZ, CMP_OUT  
Sink current SPI_DOUT, INTZ  
5.5  
Peak output current  
Internally limited  
Internally limited by thermal  
shutdown  
Continuous total power dissipation  
Operating junction temperature  
TJ  
–30  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 Storage Conditions  
applicable before the DMD is installed in the final product.  
MIN  
MAX  
UNIT  
ENVIRONMENTAL  
Tstg  
DMD Storage Temperature  
–65  
150  
°C  
6.3 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V(ESD) Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
Full functional and parametric performance  
2.7  
3.6  
3.6  
1.8  
6
Input voltage range at VINL, VINA, VINR, VINC  
VINM  
,
V
6
Extended operating range, limited parametric  
performance  
2.3  
Voltage range at VSPI  
1.65  
–10  
–10  
3.6  
85  
V
TA  
TJ  
Operational ambient temperature  
Operational junction temperature  
°C  
°C  
120  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.5 Thermal Information  
DLPA2000  
YFF (DSBGA)  
56 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance(2)  
45  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) Estimated when mounted on high K JEDEC board per JESD 51-7 with thickness of 1.6 mm, 4 layers, size of 76.2 mm × 114.3 mm, and  
2-oz. copper for top and bottom plane. Actual thermal impedance will depend on PCB used in the application.  
6.6 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted) (see  
(1)(2)  
)
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLIES  
INPUT VOLTAGE  
Input voltage range  
2.7  
2.3  
3.6  
3.6  
3
6
V
6
VI  
VINA, VINR, VINL, VINC  
Extended input voltage range(1)  
Low-battery warning threshold  
Hysteresis  
VINA falling  
VINA rising  
V
VLOW_BAT  
100  
mV  
Undervoltage lockout threshold  
Hysteresis  
VINA falling (through 5-bit trim function)  
VINA rising  
2.3  
2.5  
4.5  
V
mV  
V
Vhys(UVLO)  
VSTARTUP  
100  
Startup voltage  
VBIAS, VOFS, VRST; loaded with 2 mA  
INPUT CURRENT  
IQ  
ACTIVE mode  
Motor current excluded  
15  
900  
10  
mA  
µA  
µA  
ISTD  
IIDLE  
STANDBY mode  
IDLE mode  
INTERNAL SUPPLIES  
VV6V  
Internal supply, analog  
6.25  
100  
2.5  
V
nF  
V
CLDO_V6V  
VV2V5  
Filter capacitor for V6V LDO  
Internal supply, logic  
CLDO_V2V5 Filter capacitor for V2V5 LDO  
2.2  
µF  
DMD REGULATOR  
Switch E (from VINR to SWN)  
1000  
320  
RDS(ON)  
MOSFET ON-resistance  
Forward voltage drop  
mΩ  
Switch F (from SWP to PGNDR)  
Switch G(2) (from SWP to VBIAS  
VINR = 5 V, VSWP = 2 V, IF = 100 mA  
)
1.3  
1.3  
VFW  
V
Switch H (from SWP to VOFS  
)
VINR = 5 V, VSWP = 2 V, IF = 100 mA  
VIN = 2.9 V; COUT = 110 nF  
Not tested in production  
tDIS  
tPG  
ILIMIT  
L
Rail discharge time  
Power-good timeout  
Switch current limit  
Inductor value  
40  
µs  
ms  
mA  
µH  
6
312  
10  
VOFS REGULATOR  
Output voltage  
10  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–2%  
2%  
VOFS  
VIN = 3.6 V, IOUT = 0 to 2 mA  
–19  
35  
V/A  
VINA, VINL, VINR, VINC 2.7 to 6.0 V, IOUT  
2 mA  
=
DC line regulation  
mV/V  
VRIPPLE  
IOUT  
Output ripple  
VIN = 3.6 V, IOUT = 2 mA, COUT = 440 nF(3)  
375  
mVpp  
mA  
Output current  
0
3
(1) Fully functional but limited parametric performance  
(2) Including rectifying diode  
(3) To reduce ripple the COUT can be increased. VRIPPLE is inversely proportional to COUT  
.
6
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)  
)
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Power-good threshold  
(fraction of nominal output  
voltage)  
VOFS rising  
VOFS falling  
86%  
PG  
66%  
100  
RDIS  
Output discharge resistor  
Active when rail is disabled  
Ω
Recommended value (output capacitors for  
VOFS/VBIAS must be equal)  
110  
100  
220  
nF  
COUT  
Output capacitor  
tDISCHARGE < 40 µs at 2.9 V  
110  
nF  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)  
)
PARAMETER  
VBIAS REGULATOR  
TEST CONDITIONS  
MIN  
TYP  
Output voltage  
18  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–2%  
2%  
VBIAS  
VIN = 3.6 V, IOUT = 0 to 2 mA  
–14  
18  
V/A  
VINA, VINL, VINR, VINC 2.7 to 6 V,  
IOUT = 2 mA  
DC line regulation  
mV/V  
mVpp  
VIN = 3.6 V, IOUT = 2 mA, COUT = 440 nF  
VRIPPLE  
IOUT  
Output ripple  
375  
(3)  
(see  
)
Output current  
0
4
mA  
Power-good threshold  
(fraction of nominal output  
voltage)  
VBIAS rising  
86%  
66%  
100  
PG  
VBIAS falling  
RDIS  
Output discharge resistor  
Active when rail is disabled  
Ω
Recommended value (output capacitors for  
VOFS / VBIAS must be equal)  
110  
100  
220  
COUT  
Output capacitor  
nF  
tDISCHARGE < 40 µs at 2.9 V  
110  
3%  
VRST REGULATOR  
Output voltage  
–14  
V
DC output voltage accuracy  
DC load regulation  
IOUT = 2 mA  
–3%  
VRST  
VIN = 3.6 V, IOUT = 0 to 2 mA  
13  
V/A  
VINA, VINL, VINR, VINC 2.7 to 6 V,  
IOUT = 2 mA  
DC line regulation  
Output ripple  
–21  
mV/V  
VIN = 3.6 V, IOUT = 2 mA, COUT = 440 nF  
VRIPPLE  
375  
500  
mVpp  
(3)  
(see  
)
VREF_VRST Reference voltage  
mV  
mA  
IOUT  
Output current  
0
4
VRST rising  
90%  
90%  
±150  
220  
Power-good threshold (fraction of  
nominal output voltage)  
PG  
VRST falling  
RDIS  
COUT  
Output discharge resistor  
Output capacitor  
Active when rail is disabled  
Ω
110  
100  
nF  
tDISCHARGE < 70 µs at VBAT 2.7 V  
110  
LED DRIVER  
VLED BUCK-BOOST  
Output voltage range  
1.2  
5.5  
3.5  
5.5  
7
VLED  
V
Default output voltage  
Output overvoltage protection  
Fault detection threshold  
Switch current limit  
SW4, SW5, SW6 in OPEN position  
Clamps buck-boost output  
3.5  
VOVP  
V
V
A
VLED_OVP  
ISW  
Triggers VLED_OVP interrupt  
5.4  
4.0  
4.5  
Switch A (from VINL to L1)  
Switch B (from L1 to PGNDL)  
Switch C (from L2 to PGNDL)  
Switch D (from L2 to VLED)  
50  
50  
RDS(ON)  
MOSFET ON-resistance  
mΩ  
50  
50  
ƒSW  
Switching frequency  
Output capacitance  
2.25  
2 × 22  
MHz  
µF  
COUT  
RGB STROBE CONTROLLER SWITCHES  
RDS(ON)  
ILEAK  
Drain-source ON-resistance  
OFF-state leakage current  
SW4, SW5, SW6  
VDS = 5.0 V  
30  
75  
1
mΩ  
µA  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)  
)
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LED CURRENT CONTROL  
Vf  
LED forward voltage  
4.8  
V
VIN 2.3 V, VLED 4.8 V  
RLIM = 100 mΩ, 0.1%, TA = 25°C (see  
register settings)  
25  
Current at minimum code 0x00Ch for SWx  
IDAC[9:0].  
DLPA2000 LED currents  
mA  
VIN 2.3 V, VLED 4.8 V  
RLIM = 100 mΩ, 0.1%, TA = 25°C (see  
register settings)  
ILED  
750  
Current at maximum code 0x307h for  
SWx_IDAC[9:0].  
DC current accuracy, SW4, 5, 6  
Transient LED current limit range  
RLIM = 100 mΩ  
25  
130  
mA  
mA  
ILIM[3:0] = 0000 at RLIM = 100 mΩ  
ILIM[3:0] = 1111 at RLIM = 100 mΩ  
1500  
ILED from 5% to 95%, ILED = 300 mA,  
Transient current limit disabled  
Not tested in production  
trise  
Current rise time  
50  
µs  
1.1-V REGULATOR  
VCORE (BUCK)  
VIN  
Input voltage  
2.3  
6
V
V
Nominal fixed output voltage  
1.1  
VOUT  
0 mA IOUT 600 mA at VIN > 2.5 V  
VOUT = 1.1 V  
DC output voltage accuracy  
–1.5%  
1.5%  
d
Maximum duty cycle  
100%  
380  
Low-side MOSFET on-resistance  
High-side MOSFET on-resistance  
Output current  
185  
240  
300  
1
mΩ  
mΩ  
mA  
A
RDS(ON)  
VIN = 3.6 V, TJ = 27ºC  
VIN > 2.3 V  
480  
IOUT  
600  
ILIMIT  
Switch current limit  
Time to ramp from 10% to 90% of VOUT  
VIN = 3.6 V  
,
TSS  
Soft-start time  
250  
µs  
COUT  
L
Output capacitance  
Nominal Inductance  
10  
µF  
µH  
2.2  
LOAD SWITCH  
VIN  
Input voltage range  
LS_IN  
1.8  
3.6  
V
P-channel MOSFET on-  
resistance  
RDS(ON)  
VIN = 1.8 V, over full temperature range  
385  
505  
mΩ  
Output capacitor  
Ceramic  
Ceramic  
4.7  
5
10  
20  
12  
µF  
COUT  
ESR of output capacitor  
500  
mΩ  
MEASUREMENT SYSTEM (AFE)  
AFE_GAIN[1:0] = 01  
AFE_GAIN[1:0] = 10  
AFE_GAIN[1:0] = 11  
1.0  
9.5  
18  
G
Amplifier gain (PGA)  
V/V  
mV  
PGA, AFE_CAL_DIS = 1  
Not tested in production  
–1  
1
1.5  
15  
VOFS  
Input referred offset voltage  
Comparator  
Not tested in production  
–1.5  
To 1% of final value  
(not tested in production)  
tsettle  
Settling time  
µs  
To 0.1% of final value  
(not tested in production)  
52  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted) (see (1)(2)  
)
PARAMETER  
TEST CONDITIONS  
Not tested in production  
MIN  
TYP  
ƒsample  
Sampling rate  
19  
kHz  
LOGIC LEVELS AND TIMING CHARACTERISTICS  
IO = 0.5-mA sink current  
(RESETZ, CMP_OUT)  
0
0
0.3  
0.3 × VSPI  
2.5  
VOL  
Output low-level  
V
IO = 5-mA sink current  
(SPI_DOUT, INTZ)  
IO = 0.5-mA source current  
(RESETZ, CMP_OUT)  
1.3  
VOH  
Output high-level  
Input low-level  
V
IO = 5-mA source current  
(SPI_DOUT)  
0.7 × VSPI  
VSPI  
PROJ_ON, LED_SEL0, LED_SEL1  
SPI_CSZ, SPI_CLK, SPI_DIN  
PROJ_ON, LED_SEL0, LED_SEL1  
SPI_CSZ, SPI_CLK, SPI_DIN  
VIO = 3.3 V, any input pin  
0
0
0.4  
VIL  
V
V
0.3 × VSPI  
1.2  
VIH  
Input high-level  
0.7 × VSPI  
VSPI  
0.5  
IBIAS  
Input bias current  
µA  
ms  
PROJ_ON,  
(not tested in production)  
1
tDEGLITCH  
Deglitch time  
LED_SEL0, LED_SEL1 pins  
(not tested in production)  
300  
ns  
INTERNAL OSCILLATOR  
Oscillator frequency  
Frequency accuracy  
THERMAL SHUTDOWN  
9
MHz  
ƒOSC  
TA = –30 to 85°C  
–10%  
10%  
Thermal warning (HOT threshold)  
120  
10  
TWARN  
°C  
°C  
Hysteresis  
Thermal shutdown (TSD  
threshold)  
150  
15  
TSHTDWN  
Hysteresis  
MOTOR DRIVER  
POWER SUPPLY  
VINM  
IM  
H-BRIDGE FETS  
Operating motor supply voltage  
2
6
V
Operating motor current  
500(4)  
mA  
VV2V5 = 2.5 V, VM = 3 V, IO = 200 mA,  
TJ = 25°C  
RDS(ON)  
HS + LS FET on resistance  
1.9  
2.1  
Ω
IOFF  
Off-state leakage current  
±200  
nA  
MOTOR DRIVER PROTECTION CIRCUITS  
Overcurrent protection trip level  
per A-out or B-out pin  
IOCP  
0.53  
150  
1.16  
180  
A
tTSD  
Thermal shutdown temperature  
Die temperature  
160  
°C  
(4) Power dissipation and thermal limits must be observed  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
6.7 Motor Driver Timing Requirements  
The table lists the timing numbers to drive the motor voltages correctly, while Figure 2 shows the timing sequences.  
NUMBER  
MIN  
MAX  
300  
200  
200  
300  
200  
300  
300  
300  
160  
160  
188  
188  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
2
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
tR  
tF  
Delay time, xPHASE high to xOUT1 low  
Delay time, xPHASE high to xOUT2 high  
Delay time, xPHASE low to xOUT1 high  
Delay time, xPHASE low to xOUT1 low  
Delay time, xENBL high to xOUTx high  
Delay time, xENBL high to xOUTx low  
Output enable time  
3
4
5
6
7
8
Output disable time  
9
Delay time, xINx high to xOUTx high  
Delay time, xINx low to xOUTx low  
Output rise time  
10  
11  
12  
30  
30  
Output fall time  
x
x
x
x
Figure 2. Bridge Control  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
6.8 Data Transmission Timing Requirements  
VBAT = 3.6 ± 5%, TA = 25 ºC, CL = 10 pF (unless otherwise noted)  
MIN  
0
NOM  
MAX  
UNIT  
MHz  
ns  
ƒCLK  
tCLKL  
tCLKH  
tt  
Serial clock frequency  
36  
Pulse width low, SPI_CLK, 50% level  
Pulse width high, SPI_CLK, 50% level  
Transition time, 20% to 80% level, all signals  
SPI_CSZ falling to SPI_CLK rising, 50% level  
SPI_CLK falling to SPI_CSZ rising, 50% level  
SPI_DIN data setup time, 50% level  
SPI_DIN data hold time, 50% level  
SPI_DOUT data setup time(1), 50% level  
SPI_DOUT data hold time(1), 50% level  
SPI_CLK falling to SPI_DOUT data valid, 50% level  
SPI_CSZ rising to SPI_DOUT HiZ  
10  
10  
0.2  
8
ns  
4
1
ns  
tCSCR  
tCFCS  
tCDS  
tCDH  
tiS  
ns  
ns  
7
6
ns  
ns  
10  
0
ns  
tiH  
ns  
tCFDO  
tCSZ  
13  
6
ns  
ns  
(1) The DPPxxxx processors send and receive data on the falling edge of the clock.  
SPI_CSZ  
(SS)  
tCSCR  
tCLKL  
tCLKH  
tCFCS  
SPI_CLK  
(SCLK)  
tCDS  
tCDH  
SPI_DIN  
(MOSI)  
tCFDO  
tiH  
tCSZ  
tiS  
SPI_DOUT  
(MISO)  
HiZ  
HiZ  
Figure 3. SPI Timing Diagram  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
6.9 Typical Characteristics  
The maximum output current of the buck-boost is a function of input voltage (VIN) and output voltage (VLED). The relationship  
between VIN, VLED, and MAX ILED is shown in Figure 4. Note that VLED is the output of the buck-boost regulator, which includes  
the voltage drop across the sense resistor RLIM (100 mΩ typical), internal strobe control switch  
(75 mΩ max), and the forward voltage of the LED.  
Gamma Curves  
0.8  
0.6  
0.4  
0.2  
0
2
3
4
5
6
VIN(V)  
D001  
2.3 V < VLED < 4.8 V  
Figure 4. Maximum LED Output Current as a Function of  
Input Voltage (VIN) and Buck-Boost Output Voltage (VLED  
)
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DLPA2000 is a power management and LED driver IC optimized for DLP video and data display systems  
and meant for use in either embedded or accessory projector applications. DLPA2000 is part of the chipset  
comprising of either DLP2010 (0.2 WVGA) DMD and DLPC3430/DLPC3435 controller or the DLP2010NIR (0.2  
WVGA NIR) DMD and DLPC150 controller. The DLPA2000 contains a complete LED driver including high  
efficiency power convertors. The DLPA2000 can supply up to 750 mA per LED. Integrated high-current switches  
are included for sequentially selecting R, G, and B LEDs. The DLPA2000 also contains three regulated DC  
supplies for the DMD reset circuitry: VBIAS, VRST and VOFS, as well as a regulated DC supply of 1.1 V and a load  
switch for the 1.8 V to support the DLPC3430 or DLPC3435 controller. The DLPA2000 also contains a motor  
driver which can be used to drive the focus lens motor. The DLPA2000 has a SPI used for setting the  
configuration. Using SPI, currents can be set independently for each LED with 10-bit resolution. Other features  
included are the generation of the system reset, power sequencing, input signals for sequentially selecting the  
active LED, IC self-protections, and an analog MUX for routing analog information to an external ADC.  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.2 Functional Block Diagram  
VINA  
V2V5  
REFERENCE  
SYSTEM  
VREF  
VLED  
From system power  
LDO_V2V5  
LDO_V6V  
2.2µ  
1µ  
UVLO  
V6V  
VREF  
VLED_OVP  
100n  
LOW_BAT  
VREF  
VINL  
From system power  
AGND  
A
AGND1  
SET_LOW_BAT_USB  
L1  
1µ  
B
PGNDL  
2.2µ  
VLED  
AFE_GAIN [1:0]  
AFE_SEL[3:0]  
BUCK-BOOST  
C
VINA/3  
VLED/3  
SW4  
AFE  
L2  
PWM_IN  
From host  
SW5  
SW6  
RLIM_K  
VREF  
D
CMP_OUT  
VLED  
22µ  
To host  
MUX  
22µ  
SW4  
SENS1  
From light sensor  
SW5  
SW6  
SENS2  
RGB  
STROBE  
DECODER  
From temperature sensor  
RLIM  
VINR  
RLIM  
From system power  
RLIM_K  
RBOT_K  
E
10µ  
SWN  
REF_VRST  
SWP  
VRST  
MOTOR DRIVER  
Full H-Bridge  
VINM  
From system power  
100k  
220n  
Aout1  
Aout2  
10µ  
H
CNTR_VRST  
G
F
DMD  
RESET  
REGULATORS  
Bout1  
Bout2  
220n  
220n  
PGNDR  
VBIAS  
VOFS  
Full H-Bridge  
VBIAS  
VOFS  
VINC  
From system power  
2.2uH  
SWC  
Vout DCDC1 (0.9-1.2V @ 450mA)  
VCORE  
BUCK  
10µF  
PGNDC/PGNDM  
VCORE  
LS_IN  
from any 1.8V-3.3V supply  
LS_OUT  
to system load  
Load Switch  
10mF  
V2V5  
PROJ_ON  
LED_SEL0  
LED_SEL1  
RESETZ  
From host  
From host  
From host  
To system  
0.1u  
DIGITAL  
CORE  
VSPI  
SPI_CSZ  
SPI_CLK  
SPI_DIN  
VIO (depends on DPP requirements)  
5k  
From host  
From host  
INTZ  
To DPP (optional)  
From host  
From host  
SPI  
DGND  
SPI_DOUT  
To host  
A. Pin names refer to DLPA2000 pinout  
B. Pins connected to ‘system power’ can be locally decoupled with the capacity as indicated in the block diagram. At  
least adequate decoupling capacity (50 μF or more) should be connected at the location the supply is entering the  
board.  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 DMD Regulators  
DLPA2000 contains three switch-mode power supplies that power the DMD. These rails are VOFS, VBIAS, and  
VRST. After pulling the PROJ_ON pin high, the DMD is first initialized followed by a power-up of the VOFS line  
after a small delay of less than 10 ms followed by VBIAS and VRST with an additional delay of 145 ms. The LED  
driver and STROBE DECODER circuit can only be enabled after all three rails are enabled. There are two  
power-down sequences, the normal power-down timing initiated after pulling the PROJ_ON pin low, and a fast  
power-down mode where if any one of the rails encounters a fault such as an output short, all three rails are  
discharged simultaneously. The detailed power-up and power-down diagrams are shown in Figure 5 and  
Figure 6.  
5 ms (min)  
System Power  
(VINx)  
10 ms  
25 ms  
PROJ_ON  
DMD_EN  
in register 0x01h  
V2V5  
Stop Regulating  
VBIAS  
VBIAS  
Pad DMD_EN  
by DPP through  
VOFS  
SPI write  
VRST  
Stop Regulating  
VRST  
10 ms  
DMD  
initialization  
by DPP  
10 ms  
145 ms  
10 ms  
VCORE  
LS_OUT (1.8 V)  
VLED  
INTZ  
Startup DPP  
RESETZ  
ACTIVE1  
OFF  
STANDBY  
ACTIVE2  
OFF  
STATE  
Figure 5. Power Sequence Normal Shutdown Mode  
NOTE  
All values are typical (unless otherwise noted).  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
Feature Description (continued)  
Fault Condition  
5 ms (min)  
System Power  
(VINx)  
PROJ_ON  
DMD_EN  
in register 0x01h  
V2V5  
Stop Regulating  
VBIAS  
VBIAS Delay  
VBIAS  
Pad DMD_EN  
by DPP through  
VOFS  
VOFS  
Delay  
SPI write  
VRST  
VRST Delay  
10 ms  
DMD  
initialization  
by DPP  
10 ms  
145 ms  
Stop Regulating  
VRST  
10 ms  
VCORE  
LS_OUT (1.8V)  
VLED  
INTZ  
Startup DPP  
RESETZ  
RESETZ Delay  
STANDBY  
ACTIVE1  
OFF  
STANDBY  
ACTIVE2  
STATE  
A. If the FAULT condition happens and its associated interrupt is masked in the interrupt mask register (0Dh), the INTZ  
does not go low, but all other timing shown in the diagram is unaffected.  
Figure 6. Power Sequence Fault Shutdown Mode  
NOTE  
All values are typical (unless otherwise noted).  
7.3.2 RGB Strobe Decoder  
DLPA2000 contains RGB color-sequential circuitry that is composed of three NMOS switches, the LED driver,  
the strobe decoder, and the LED current control. The NMOS switches are connected to the terminals of the  
external LED package and turn the currents through the LEDs on and off. Package connections are shown in  
Figure 7 and Figure 10 and the corresponding switch map is in Table 1.  
The LED_SEL[1:0] signals typically receive a rotating code switching from RED to GREEN to BLUE and then  
back to RED. When the LED_SEL[1:0] input signals select a specific color, the NMOSFETs are controlled based  
on the color selected, and a 10-bit current control DAC for this color is selected that provides a control current to  
the RGB LEDs' feedback control network.  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Feature Description (continued)  
VLED  
SW4  
SW5  
SW6  
R
G
B
SW4  
SW5  
SW6  
RLIM  
RLIM_K  
RLIM  
RBOT_K  
Figure 7. Switch Connection for a Common-Anode LED Assembly  
Table 1. Switch Positions for Common Anode RGB LEDs (MAP = 0)  
Common Anode  
LED_SEL[1:0]  
0x00h  
SW6  
Open  
Open  
Open  
Closed  
SW5  
Open  
Open  
Closed  
Open  
SW4  
Open  
Closed  
Open  
Open  
IDAC INPUT  
N/A  
0x01h  
SW4_IDAC[9:0]  
SW5_IDAC[9:0]  
SW6_IDAC[9:0]  
0x02h  
0x03h  
The switching of the three NMOS switches is controlled such that switches are returned to the open position first  
before the closed connections are made (break before make). The dead time between opening and closing  
switches is controlled through the BBM register. Switches that already are in the closed position (and are to  
remain in the closed state according to the SWCNTRL register) are not opened during the BBM delay time.  
BBM dead time  
SW6  
SW4  
SW5  
SW6  
SW4  
TIME  
Figure 8. BBM Timing (See Register 0Bh in Figure 27)  
7.3.3 LED Current Control  
DLPA2000 provides time-sequential circuitry to drive three LEDs with independent current control. A system  
based on a common anode LED configuration is shown in Figure 10 and consists of a buck-boost converter,  
which provides the voltage to drive the LEDs, three switches connected to the cathodes of the LEDs, an RLIM  
resistor used to sense the LED current, and a current DAC to control the LED current. The voltage measured at  
the pin V(RLIM_K) is used by the regulator loop.  
The STROBE DECODER controls the switch positions as described in the previous section (RGB Strobe  
Decoder). With all switches in the open position, the buck-boost output assumes an output voltage of 3.5 V.  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
For a common-anode RGB LED configuration, the buck-boost output voltage (VLED) assumes a value such that  
the voltage drop across the sense resistor equals:  
(SW4_IDAC[9:0]Ivalue + ILED) × RLIM  
(1)  
The exact value of VLED depends on the current setting and the voltage drop across the LED but is limited to  
5.4 V. When the STROBE decoder switches from SW4 to SW5, the buck-boost assumes a new output voltage  
such that the sense voltage equals:  
(SW5_IDAC[9:0]Ivalue + ILED) × RLIM  
(SW6_IDAC[9:0]Ivalue + ILED) × RLIM  
(2)  
(3)  
The relationship between VIN, VLED, and MAX ILED is shown in Figure 4.  
7.3.4 Calculating Inductor Peak Current  
To properly configure the DLPA2000 device, a 2.2-µH inductor must be connected between pin L1 and pin L2.  
The peak current for the inductor in steady state operation can be calculated.  
Equation 4 shows how to calculate the peak current I1 in step down mode operation, and Equation 5 shows how  
to calculate the peak current I2 in boost mode operation. VIN1 is the maximum input voltage, VIN2 is the minimum  
input voltage, f is the switching frequency (2.25 MHz), and L the inductor value (2.2 µH).  
VOUT  
VIN1 - VOUT  
IOUT  
0.8  
(
)
I1 =  
+
2ì VIN1 ì f ìL  
(4)  
V
V
- V  
VOUT ìIOUT  
(
)
IN2  
OUT IN2  
I2 =  
+
0.8ì V  
2ì VOUT ì f ìL  
IN2  
(5)  
The critical current value for selecting the right inductor is the higher value of I1 and I2. Also consider that load  
transients and error conditions may cause higher inductor currents. This needs to be accounted for when  
selecting an appropriate inductor. Internally the switching current is limited to a maximum of 4 A.  
7.3.5 LED Current Accuracy  
The LED drive current is controlled by a current digital-to-analog converter (DAC) and can be set independently  
for switch SW4, SW5, and SW6. The DAC is trimmed at a current of 750 mA for the DLPA2000 at code: 0x307h.  
The DLPA2000 current step size is 0.95 mA.  
First order gain-error of the DAC can be neglected, but an offset current error must be taken into account. This  
offset error differs depending on the used RLIM and will be ±25 mA for the DLPA2000 for a 100-mΩ current sense  
resistor.  
The max current of the DLPA2000 (SWx_IDAC[9:0] = 0x307h) is regulated to 750 mA. At the lowest setting  
(SWx_IDAC[9:0] = 0x001h) the current is regulated to 14 mA for the DLPA2000. For this current setting  
(0x001h), the absolute current error results into a large relative error; however, this is not a typical operating  
point.  
Be aware that the LED current setting not only depends on the accuracy of the RLIM resistor, but also strongly  
depends on the added resistance of PCB traces and soldering quality. Due to the low value of the current sense  
resistor RLIM, any extra introduced resistance (for example several mΩ) will result in a noticeable different LED  
current.  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
 
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.6 Transient Current Limiting  
Typically the forward voltages of the green and blue diodes are close to each other (about 3 V to 4 V). However,  
the forward voltage of the red diode is significantly lower (1.8 V to 2.5 V). This can lead to a current spike in the  
red diode when the strobe controller switches from green or blue to red because VLED is initially at a higher  
voltage than required to drive the RED diode. DLPA2000 provides transient current limiting for each switch to  
limit the current in the LEDs during the transition. The transient current limit value is controlled through the  
ILIM[3:0] bits in the IREG register. The same register also contains three bits to select which switch employs the  
transient current limiting feature. In a typical application, the transient current limit will only apply to the RED  
diode, and the ILIM[3:0] value will typically be set approximately 10% higher than the DC regulation current. The  
effect that the transient current limit has on the LED current is shown in Figure 9.  
1500  
1200  
900  
600  
300  
0
1500  
1200  
900  
600  
300  
0
Current overshoot due to  
initially too high buck-boost  
output voltage  
Transient current  
limit active  
TIME  
TIME  
LED current with transient current limit.  
Red LED current without transient current limit. The  
current overshoots because the buck-boost voltage  
starts at the (higher) level of the green or blue LED.  
Figure 9. RED LED Current With and Without Transient Current Limit  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
VLED  
BUCK-BOOST  
VLED  
FB  
SW4LIM_EN  
SW4  
I-LED  
0
ILIM [3:0]  
VDAC  
E/A  
1
SW5LIM_EN  
SW5  
I-LED  
0
E/A  
1
SW6LIM_EN  
SW6  
I-LED  
0
LED_SEL [1:0]  
MAP  
STROBE  
DECODER  
RLIM  
E/A  
1
SW4_IDAQ [9:0]  
RLIM_K  
SW5_IDAQ [9:0]  
SW6_IDAQ [9:0]  
IDAC  
I-DAC  
200  
RLIM  
RBOT_K  
Figure 10. LED Driver Block Diagram  
7.3.7 1.1-V Regulator (Buck Converter)  
The buck converter creates a voltage of 1.1 V, and due to its switching nature, an output ripple with a frequency  
of approximately 2.25 MHz occurs on its output. This ripple is strongly dependent on the decoupling capacitor at  
the output in combination with the inductor. The magnitude of the ripple can be calculated with Equation 6.  
VCORE  
1 -  
«
÷
V
1
INC  
DVCORE = VCORE  
ì
ì
+ ESR  
L ì f  
8 ì COUT ì f  
(6)  
21  
The best way to minimize this ripple is to select a capacitor with a very-low ESR.  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.3.8 Motor Driver  
Two control modes are available in the DLPA2000: IN/IN mode and PHASE/ENABLE mode. IN/IN mode is  
selected if the MODE pin is driven low or left unconnected; PHASE/ENABLE mode is selected if the MODE pin is  
driven to logic high. Table 2 and Table 3 show the logic for these modes.  
The main difference between both modes is that to change the rotation direction for IN/IN mode, both xIN1 and  
xIN2 signals must change polarity, while for PHASE/ENABLE mode, the PHASE signal must be held high while  
the PHASE signal is used to change rotation direction for a DC motor. In case a stepper motor is used, the  
sequence of OUT1 and OUT2 determines the rotation direction.  
The motor position is changed by using the internal, register-generated, control signals AIN1 and AIN2 (register  
0F[123:122] in combination with BIN1 and BIN2 (register 0F[121:120].  
Table 2. IN/IN Mode (See Figure 31)  
MD_MODE  
BIT 124 REG 0Fh  
FUNCTION  
(DC MOTOR)  
xIN1  
xIN2  
xOUT1  
xOUT2  
0
0
0
0
0
0
1
1
0
1
0
1
Z
L
Z
H
L
Coast  
Reverse  
Forward  
Brake  
H
L
L
Table 3. PHASE/ENABLE Mode (See Figure 31)  
MD_MODE  
BIT 124 REG 0Fh  
xIN1  
(ENABLE)  
xIN2  
(PHASE)  
FUNCTION  
(DC MOTOR)  
xOUT1  
xOUT2  
1
1
1
0
1
1
X
1
0
L
L
L
H
L
Brake  
Reverse  
Forward  
H
7.3.8.1 Motor Driver Overcurrent Protection  
An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this  
analog current limit persists for a longer period of time than the overcurrent deglitch time, all FETs in the H-  
bridge will be disabled. After approximately 1 ms, the bridge will be re-enabled automatically.  
7.3.9 Measurement System  
The measurement system is composed of a 10:1 analog multiplexer (MUX), a programmable-gain amplifier, and  
a comparator. It works together with the DPP processor to provide:  
White-point correction (WPC) by independently adjusting the RGB LED currents after measuring the  
brightness of each color with an external light sensor  
A measurement of the:  
Battery voltage  
LED forward voltage  
Exact LED current  
Temperature as derived by measuring the voltage across an external thermistor  
Figure 11 shows a block diagram of the measurement system.  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
AFE_GAIN [1:0]  
AFE_SEL[3:0]  
From host  
VINA/3  
VLED/3  
SW4  
AFE  
PWM_IN  
SW5  
CMP_OUT  
MUX  
To host  
From light sensor  
SENS1  
SENS2  
From temperature sensor  
Figure 11. Block Diagram of the Measurement System  
Table 4. Recommended Configuration of the AFE for Different Input Selections  
RECOMMENDED GAIN SETTING  
AFE-GAIN[1:0]  
RECOMMENDED SETTING OF  
AFE_CAL_DIS BIT  
AFE_SEL[3:0]  
SELECTED INPUT  
0x00h  
0x01h  
0x02h  
0x03h  
SENS2  
VLED  
0x01h (1x)  
0x01h (1x)  
0x01h (1x)  
0x01h (1x)  
Setting has no effect on measurement.  
Setting has no effect on measurement.  
Setting has no effect on measurement.  
Setting has no effect on measurement.  
VINA  
SENS1  
Set to 1 if sense voltage is >100 mV.  
Otherwise set to 0 (default).  
0x04h  
0x05h  
0x06h  
0x07h  
RLIM_K  
SW4  
0x03h (18x)  
0x02h (9.5x)  
0x02h (9.5x)  
0x02h (9.5x)  
Set to 1 if sense voltage is >200 mV.  
Otherwise set to 0 (default).  
Set to 1 if sense voltage is >200 mV.  
Otherwise set to 0 (default).  
SW5  
Set to 1 if sense voltage is >200 mV.  
Otherwise set to 0 (default).  
SW6  
0x08h  
0x09h  
No connect  
VREF  
N/A  
N/A.  
0x01h (1x)  
Setting has no effect on measurement.  
7.3.10 Protection Circuits  
DLPA2000 has several protection circuits to protect the IC and system from damage due to excessive power  
consumption, die temperature, or over-voltages. These circuits are described in the following sections.  
7.3.10.1 Thermal Warning (HOT) and Thermal Shutdown (TSD)  
DLPA2000 continuously monitors the junction temperature and issues a HOT interrupt if temperature exceeds  
the HOT threshold. If the temperature continues to increase above the thermal shutdown threshold, all rails are  
disabled and the TSD bit in the INT register is set. After the temperature drops below its threshold, the system  
recovers and waits for the DPP to resend the DMD_EN bit.  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Thermal Shutdown  
Threshold  
Hysteresis  
Hysteresis  
Thermal warning  
Threshold  
Temperature  
HOT  
(Internal Signal)  
TSD  
(Internal Signal)  
Available Time for Controlled  
Shutdown of System  
Figure 12. Definition of the Thermal Shutdown and Hot-Die Temperature Warning  
7.3.10.2 Low Battery Warning (BAT_LOW) and Undervoltage Lockout (UVLO)  
If the battery voltage drops below the BAT_LOW threshold (typically 3.0 V) the BAT_LOW interrupt is issued, but  
normal operation continues. After the battery drops below the undervoltage threshold which has a default  
hardcoded value of 2.3 V (this UVLO voltage can be changed through register 09h from 2.3 V to 4.5 V), the  
UVLO interrupt is issued, all rails are powered down in sequence, the DMD_EN bit is reset, and the part enters  
STANDBY mode. The power rails cannot be re-enabled before the input voltage recovers to >2.4 V. To re-enable  
the rails, the PROJ_ON pin must be toggled. The undervoltage threshold is programmable from 2.3 V to 4.5 V in  
31 steps.  
The UVLO shutdown process will protect the DMD by allowing time for the mirrors to park, then doing a fast  
discharge of VOFS, VRST, and VBIAS. This protection occurs even in the case of sudden battery removal from the  
projector, as long as the bulk capacitance on the battery voltage (VINx) keeps this voltage above 2.3 V for as long  
as needed for VOFS, VRST, and VBIAS to discharge to the required safe levels as shown in the DMD data sheet.  
VOFS, VRST, and VBIAS discharge times depend on the load capacitance on each regulator. When for instance  
every supply is decoupled using a capacitor of 0.5 µF, VINx should stay above 2.3 V for at least 100 µs after the  
battery is suddenly removed. During this time, the mirrors can be placed in a safe position and VOFS, VRST, and  
VBIAS can be discharged.  
NOTE  
As required by the DMD data sheet, LS_OUT must stay above 1.65 V until VOFS, VRST  
,
and VBIAS have discharged to their required safe levels.  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
VINA  
Hysteresis  
BAT_LOW Threshold  
Hysteresis  
UVLO Threshold  
ACTIVE  
BAT LOW  
(Internal Signal)  
INACTIVE  
ACTIVE  
200-µs  
deglitch  
UVLO  
INACTIVE  
(Internal Signal)  
Programmable Deglitch Time1  
A. This time is programmable from 0 to 100 µs.  
Figure 13. UVLO is Asserted When the Input Supply Drops Below the UVLO Threshold  
7.3.10.3 DMD Regulator Fault (DMD_FLT)  
The DMD regulator is continuously monitored to check if the output rails are in regulation and if the inductor  
current increases as expected during a switching cycle. If either one of the output rails drops out of regulation (for  
example, due to a shorted output) or the inductor current does not increase as expected during a switching cycle  
(due to a disconnected inductor), the DMD_FLT interrupt bit is set in the INT register, the DMD_EN bit is reset,  
and the DMD regulator is shut down. Resetting the DMD_EN bit also causes the LED driver to power down. To  
restart the system, the PROJ_ON pin must be toggled. In case the interrupt is masked, it is sufficient to set the  
DMD_EN bit to restart the system.  
7.3.10.4 V6V Power-Good (V6V_PGF) Fault  
The LED driver regulation loop requires the V6V rail for proper operation. The rail is continuously monitored and  
should the output drop below the power-good threshold, the V6V_PGF bit is set. The VLED buck-boost is then  
disabled and attempts to restart automatically.  
7.3.10.5 VLED Overvoltage (VLED_OVP) Fault  
If the buck-boost output voltage rises above 5.4 V, the VLED_OVP interrupt is set but the buck-boost regulator is  
not turned off. A typical condition to cause this fault is an open LED.  
7.3.10.6 VLED Power Save Mode  
In normal PWM operation, the efficiency of the VLED buck-boost converter dramatically reduces for LED currents  
below 100 mA. In this case, the power save mode allows high converting efficiency at low output currents by  
skipping pulses in the switcher’s gate driver control.  
7.3.10.7 V1V8 PG Failure  
If for any reason the voltage on the LS_OUT drops below approximately 1.3 V, then VOFS, VBIAS, and VRST  
immediately go into fast shut down. Holding off power down to do mirror parking is not included since 1.3 V is too  
low to wait for this. Reactivating can only be done by toggling the PROJ_ON off and on again.  
7.3.10.8 Interrupt Pin (INTZ)  
The interrupt pin is used to signal events and fault conditions to the host processor. Whenever a fault or event  
occurs in the IC, the corresponding interrupt bit is set in the INT register, and the open-drain output is pulled low.  
The INTZ pin is released (returns to HiZ state) and fault bits are cleared when the INT register is read by the  
host.  
However, if a failure persists, the corresponding INT bit remains set and the INTZ pin is pulled low again after a  
maximum of 32 µs.  
Copyright © 2014–2018, Texas Instruments Incorporated  
25  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Interrupt events include fault conditions such as power-good faults, over-voltage, over-temperature shutdown,  
and UVLO. For all interrupt conditions see the interrupt register on Figure 28.  
The MASK register is used to mask events from generating interrupts, that is, from pulling the INTZ pin low. The  
MASK settings affect the INTZ pin only and have no impact on protection and monitor circuits themselves. When  
an interrupt is masked, the event causing the interrupt still sets the corresponding bit in the INT register.  
However, it does not pull the INTZ pin low.  
7.3.10.9 SPI  
DLPA2000 provides a 4-wire SPI port that supports high-speed serial data transfers up to 33.3 MHz. Support  
includes register and data buffer write and read operations. The SPI_CSZ input serves as the active low chip  
select for the SPI port. The SPI_CSZ input must be forced low in order to write or read registers and data  
buffers. When SPI_CSZ is forced high, the data at the SPI_DIN input is ignored, and the SPI_DOUT output is  
forced to a high-impedance state. The SPI_DIN input serves as the serial data input for the port; the SPI_DOUT  
output serves as the serial data output. The SPI_CLK input serves as the serial data clock for both the input and  
output data. Data is latched at the SPI_DIN input on the rising edge of SPI_CLK, while data is clocked out of the  
SPI_DOUT output on the falling edge of SPI_CLK. Figure 14 shows the SPI port protocol. Byte 0 is referred to as  
the command byte, where the most significant bit is the write/not read bit. For the W/nR bit, a 1 indicates a write  
operation, while a 0 indicates a read operation. The remaining seven bits of the command byte are the register  
address targeted by the write or read operation. The SPI port supports write and read operations for multiple  
sequential register addresses through the implementation of an auto-increment mode. As shown in Figure 14,  
the auto-increment mode is invoked by simply holding the SPI_CSZ input low for multiple data bytes. The  
register address is automatically incremented after each data byte transferred, starting with the address specified  
by the command byte. After reaching address 0x7Fh the address pointer jumps back to 0x00h.  
Set SPI_CSZ = 1 here to write/read one register location  
Hold SPI_CSZ = 0 to enable auto-increment mode  
SPI_CSZ  
SPI_DIN  
Header  
Register Data (write)  
Byte0  
Byte1  
Byte2  
Byte3  
ByteN  
Register Data (read)  
Data for A[6:0]  
Data for A[6:0] + 1  
SPI_DOUT  
SPI_CLK  
Data for A[6:0] + (N – 2)  
Byte 0  
Byte 1  
W/nR  
W/nR  
SPI_DIN  
A6 A5 A4 A3 A2 A1 A0 N7 N6 N5 N4 N3 N2 N1 N0  
Set high for write, low for read  
Register Address  
SPI_CLK  
Figure 14. SPI Protocol  
7.3.11 Password Protected Registers  
Register addresses 0x11h through 0x27h can be read-accessed the same way as any other register, but are  
protected against accidental write operations through the PASSWORD register (address 0x10h). To write to a  
protected register, follow these steps:  
1. Write data 0xBAh to register address 0x10h.  
2. Write data 0xBEh to register address 0x10h.  
Both writes must be consecutive, that is, there must be no other read or write operation in between sending the  
two bytes. After the password has been successfully written, registers 0x11h through 0x27h are unlocked and  
can be write accessed using the regular SPI protocol. They remain unlocked until any byte other than 0xBAh is  
written to the PASSWORD register or the part is power cycled.  
To check if the registers are unlocked, read back the PASSWORD register. If the data returned is 0x00h, the  
registers are locked. If the PASSWORD register returns 0x01h, the registers are unlocked.  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.4 Device Functional Modes  
Table 5. Modes of Operation  
MODE  
DESCRIPTION  
This is the lowest-power mode of operation. All power functions are turned off, registers are reset to their default values, and  
the IC does not respond to SPI commands. RESETZ pin is pulled low. The IC will enter OFF mode whenever the PROJ_ON  
pin is low.  
OFF  
The DMD regulators and LED power (VLED) are turned off, but the IC does respond to the SPI. The device enters STANDBY  
mode whenever PROJ_ON is set high or DMD_EN(1) bit is set to 0 using the SPI interface after PROJ_ON is already high.  
The device also enters STANDBY mode when a fault condition is detected(2). (See Protection Circuits).  
STANDBY  
The DMD supplies are enabled but LED power (VLED) is disabled. PROJ_ON pin must be high, DMD_EN bit must be set to 1,  
and VLED_EN(3) bit is set to 0.  
ACTIVE1  
ACTIVE2  
DMD supplies and LED power are enabled. PROJ_ON pin must be high and DMD_EN and VLED_EN bits must both be set to  
1.  
(1) Settings can be done through Reg01h [9] and Reg2E [119].  
(2) Power-good faults, over-voltage, overtemperature shutdown, and undervoltage lockout.  
(3) Settings can be done through Reg47h [60], bit is named VLED_EN_SET  
.
Table 6. Device State as a Function of Control-Pin  
Status  
PROJ_ON PIN  
STATE  
LOW  
OFF  
STANDBY  
ACTIVE1  
ACTIVE2  
HIGH  
(Device state depends on DMD_EN and VLED_EN  
bits and whether there are any fault conditions.)  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
POWERDOWN  
Valid power source connected  
VRST = OFF  
VBIAS = OFF  
VOFS = OFF  
VLED = OFF  
PROJ_ON = low  
OFF  
SPI interface disabled  
PWR_EN = low  
RESETZ = low  
All registers set to default values  
PROJ_ON = low  
PROJ_ON = high  
VRST = OFF  
VBIAS = OFF  
VOFS = OFF  
DMD_EN = 0  
||  
VLED = OFF  
FAULT = 1  
STANDBY  
SPI interface enabled  
PWR_EN = high  
RESETZ = high (but is low if entered  
state due to UVLO detection)  
DMD_EN = 1  
FAULT = 0  
&
VRST = ON  
VBIAS = ON  
VOFS = ON  
ACTIVE 1  
VLED = OFF  
SPI interface enabled  
PWR_EN = high  
RESETZ = high  
VLED_EN = 1  
VLED_EN = 0  
VRST = ON  
VBIAS = ON  
VOFS = ON  
VLED = ON  
ACTIVE 2  
SPI interface enabled  
PWR_EN = high  
RESETZ = high  
A. || = OR, & = AND.  
B. FAULT = Undervoltage on any supply (except LS_OUT), thermal shutdown, or UVLO detection.  
C. UVLO detection, per the diagram, causes the DLPA2000 to go into the standby state. This is not the lowest power  
state. If lower power is desired, PROJ_ON should be set low.  
D. DMD_EN register bit can be reset or set by SPI writes. DMD_EN defaults to 0 when PROJ_ON goes from low to high  
and then the DPP ASIC software automatically sets it to 1. Also, FAULT = 1 causes the DMD_EN register bit to be  
reset.  
E. PWR_EN is a signal internal to the PAD200x. This signal turns on the VCORE regulator and the load switch that  
drives pin LS_OUT.  
Figure 15. State Diagram  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.5 Register Maps  
Table 7. Register Description  
ADDRESS  
REGISTER  
DEFAULT  
NAME  
TABLE  
DESCRIPTION  
(HEX)  
USER CONFIGURATION DEFINITIONS  
R
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
CHIP ID  
CHIPENABLE  
IREG  
Figure 16  
Chip revision register; DLPA2000  
B3  
0F  
30  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Figure 17  
Enable register  
Figure 18  
Transient-current limit settings  
Regulation current MSB, SW4  
Regulation current LSB, SW4  
Regulation current MSB, SW5  
Regulation current LSB, SW5  
Regulation current MSB, SW6  
Regulation current LSB, SW6  
Switch ON/OFF control (direct mode)  
AFE (MUX) control  
SW4MSB  
SW4LSB  
SW5MSB  
SW5LSB  
SW6MSB  
SW6LSB  
SWCNTRL  
AFE  
Figure 19  
Table 12, Table 13  
Figure 21  
0
0
Figure 22, Table 16  
Figure 23  
0
0
Figure 24, Table 19  
Figure 25  
0
0
Figure 26  
0
BBM  
Figure 27, Table 22  
Figure 28, Table 23  
Figure 29, Table 24  
Break before make timing  
Interrupt register  
0
INT  
0
R/W  
INT MASK  
Interrupt mask register  
DFh  
Timing register VOFS, VBIAS, VRST, and  
RESETZ  
R/W  
R/W  
0x0E  
0x0F  
TIMING  
Figure 30, Table 26  
Figure 31, Table 27  
7
0
MOTOR CTRL  
Motor control register  
USER PROTECTED DEFINITION  
R/W  
R/W  
0x10  
0x11  
PASSWORD  
SYSTEM  
Figure 32  
Figure 33  
Password register  
0
0
System configuration register  
USER EEPROM SCRATCH PAD DEFINITION  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
BYTE0  
BYTE1  
BYTE2  
BYTE3  
BYTE4  
BYTE5  
BYTE6  
BYTE7  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
User EEPROM, Byte0  
User EEPROM, Byte1  
User EEPROM, Byte2  
User EEPROM, Byte3  
User EEPROM, Byte4  
User EEPROM, Byte5  
User EEPROM, Byte6  
User EEPROM, Byte7  
0
0
0
0
0
0
0
0
7.5.1 Chip Revision Register  
Figure 16. Chip Revision Register, Address = 00h, HEX = B3  
7
6
5
4
3
2
1
0
CHIP ID [7:0]  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 8. Chip Revision Register Field Descriptions  
BIT  
7:4  
3:0  
FIELD  
TYPE  
RESET  
1011  
0011  
DESCRIPTION  
R
R
CHIPID<3:0>  
REVID<3:0>  
CHIP ID  
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5.2 Enable Register  
Figure 17. Enable Register, Address = 01h, HEX = 0F  
7
6
5
4
3
2
1
0
CHIPENABLE [15:8]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Enable Register Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
0000  
DESCRIPTION  
15:12  
USER_GPO<3:0>  
VLED_POWER_SAVE_MODE_DIS  
Power save mode is used to improve efficiency at light load.  
11  
R/W  
1
FAST_SHUTDOWN_EN  
Applicable only during a fault condition.  
Shutdown timing is defined by register 0Eh (see Figure 7).  
CHIPENABLE  
10  
R/W  
1
9
8
R/W  
R/W  
1
1
DMD_EN  
VLED_EN  
7.5.3 Transient-Current Limit Settings  
Figure 18. Transient-Current Limit Settings, Address = 02h, HEX = 30  
7
6
5
4
3
2
1
0
IREG [23:16]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 10. Transient-Current Limit Settings Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
23  
RSVD  
0
Not used  
IREG_ILIM<3:0>  
0000  
RLIM = 100 mΩ  
130 mA  
150 mA  
172 mA  
192 mA  
220 mA  
275 mA  
330 mA  
440 mA  
550 mA  
660 mA  
770 mA  
880 mA  
990 mA  
1160 mA  
1330 mA  
1500 mA  
0001  
0010  
0011  
0100  
0101  
0110  
22:19 IREG  
R/W  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
SW6LIM_EN  
Transient current-limit enable for SW6  
0 – Transient current-limit is disabled  
1 – Transient current-limit is enabled  
18  
SW6LIM_EN  
R/W  
0
30  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
BIT  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
Table 10. Transient-Current Limit Settings Field Descriptions (continued)  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SW5LIM_EN  
Transient current-limit enable for SW5  
0 – Transient current-limit is disabled  
1 – Transient current-limit is enabled  
17  
16  
SW5LIM_EN  
R/W  
0
0
SW4LIM_EN  
Transient current-limit enable for SW4  
0 – Transient current-limit is disabled  
1 – Transient current-limit is enabled  
SW4LIM_EN  
R/W  
7.5.4 Regulation Current MSB, SW4  
Figure 19. Regulation Current MSB, SW4, Address = 03h, HEX = 00  
7
6
5
4
3
2
1
0
SW4MSB [31:24]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 11. Regulation Current MSB, SW4 Field Descriptions(1)  
BIT  
FIELD  
TYPE  
R/W  
R/W  
RESET  
0000  
0000  
DESCRIPTION  
31:26  
25:24  
TBD  
SW4MSB  
SW4_IDAC<9:8>  
(1) The DLPA2000 can use up to code 0x0FFh for SW4_IDAC[9:0].  
7.5.5 Regulation Current LSB, SW4  
Figure 20. Regulation Current LSB, SW4, Address = 04h, HEX = 00  
7
6
5
4
3
2
1
0
SW4LSB [39:32]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 12. Regulation Current LSB, SW4 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
39:32  
SW4LSB  
R/W  
00000000 SW4_IDAC<7:0>  
Table 13. Regulation Current LSB, SW4 Bit Definitions  
DLPA2000(1)(2)  
SW4_IDAC[9:0]  
0x000h  
LED CURRENT  
0 mA  
SW4_IDAC[9:0]  
0x100h  
LED CURRENT  
257 mA  
SW4_IDAC[9:0]  
0x200h  
LED CURRENT  
500 mA  
0x00Ch  
25 mA  
26 mA  
...  
0x101h  
0x102h  
...  
258 mA  
259 mA  
...  
0x201h  
0x202h  
...  
501 mA  
502 mA  
...  
0x00Dh  
...  
0x0FEh  
255 mA  
256 mA  
0x1FEh  
0x1FFh  
498 mA  
499 mA  
0x306h  
0x307h  
749 mA  
750 mA  
0x0FFh  
(1) Values shown are for a typical DLPA2000 unit at T = 25°C. Typical step size is 0.95 mA for RLIM = 100 mΩ.  
(2) The DLPA2000 can use up to code 0x307h for SW4_IDAC[9:0].  
Copyright © 2014–2018, Texas Instruments Incorporated  
31  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5.6 Regulation Current MSB, SW5  
Figure 21. Regulation Current MSB, SW5, Address = 05h, HEX = 00  
7
6
5
4
3
2
1
0
SW5MSB [47:40]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 14. Regulation Current MSB, SW5 Field Descriptions(1)  
BIT  
FIELD  
TYPE  
R/W  
R/W  
RESET  
0000  
0000  
DESCRIPTION  
47:42  
41:40  
TBD  
SW5MSB  
SW5_IDAC<9:8>  
(1) The DLPA2000 can use up to code 0x0FFh for SW5_IDAC[9:0].  
7.5.7 Regulation Current LSB, SW5  
Figure 22. Regulation Current LSB, SW5, Address = 06h, HEX = 00  
7
6
5
4
3
2
1
0
SW5LSB [55:48]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 15. Regulation Current LSB, SW5 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
55:48  
SW5LSB  
00000000 SW5_IDAC<7:0>  
Table 16. Regulation Current LSB, SW5 Bit Definitions  
DLPA2000(1)(2)  
SW5_IDAC[9:0]  
0x000h  
LED CURRENT  
0 mA  
SW5_IDAC[9:0]  
0x100h  
LED CURRENT  
257 mA  
SW5_IDAC[9:0]  
0x200h  
LED CURRENT  
500 mA  
0x00Ch  
25 mA  
26 mA  
...  
0x101h  
0x102h  
...  
258 mA  
259 mA  
...  
0x201h  
0x202h  
...  
501 mA  
502 mA  
...  
0x00Dh  
...  
0x0FEh  
255 mA  
256 mA  
0x1FEh  
0x1FFh  
498 mA  
499 mA  
0x306h  
0x307h  
749 mA  
750 mA  
0x0FFh  
(1) Values shown are for a typical DLPA2000 unit at T = 25°C. Typical step size is 0.95 mA for RLIM = 100 mΩ.  
(2) The DLPA2000 can use up to code 0x307h for SW5_IDAC[9:0].  
32  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.5.8 Regulation Current MSB, SW6  
Figure 23. Regulation Current MSB, SW6, Address = 07h, HEX = 00  
7
6
5
4
3
2
1
0
SW6MSB [63:56]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 17. Regulation Current MSB, SW6 Field Descriptions(1)  
BIT  
FIELD  
Type  
R/W  
R/W  
Reset  
0000  
0000  
Description  
63:58  
57:56  
TBD  
SW6MSB  
SW6_IDAC<9:8>  
(1) The DLPA2000 can use up to code 0x0FFh for SW6_IDAC[9:0].  
7.5.9 Regulation Current LSB, SW6  
Figure 24. Regulation Current LSB, SW6, Address = 08h, HEX = 00  
7
6
5
4
3
2
1
0
SW6LSB [71:64]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 18. Regulation Current LSB, SW6 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
71:64  
SW6LSB  
00000000 SW6_IDAC<7:0>  
Table 19. Regulation Current LSB, SW6 Bit Definitions  
DLPA2000(1)(2)  
SW6_IDAC[9:0]  
0x000h  
LED CURRENT  
0 mA  
SW6_IDAC[9:0]  
0x100h  
LED CURRENT  
257 mA  
SW6_IDAC[9:0]  
0x200h  
LED CURRENT  
500 mA  
0x00Ch  
25 mA  
26 mA  
...  
0x101h  
0x102h  
...  
258 mA  
259 mA  
...  
0x201h  
0x202h  
...  
501 mA  
502 mA  
...  
0x00Dh  
...  
0x0FEh  
255 mA  
256 mA  
0x1FEh  
0x1FFh  
498 mA  
499 mA  
0x306h  
0x307h  
749 mA  
750 mA  
0x0FFh  
(1) Values shown are for a typical DLPA2000 unit at T = 25°C. Typical step size is 0.95 mA for RLIM = 100 mΩ.  
(2) The DLPA2000 can use up to code 0x307h for SW6_IDAC[9:0].  
Copyright © 2014–2018, Texas Instruments Incorporated  
33  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5.10 Switch On/Off Control (Direct Mode)  
Figure 25. Switch On/Off Control (Direct Mode), Address = 09h, HEX = 00  
7
6
5
4
3
2
1
0
SWCNTRL [79:72]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 20. Switch On/Off Control (Direct Mode) Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
SW6 (controls switch 6 if direct mode  
(see reg 11h) is enabled)  
79  
R/W  
0
0
0
00000  
00001  
.....  
11110  
11111  
2.3 V (minimum value – default value)  
2.37 V  
Step approximately 70 mV  
4.43 V  
SW5 (controls switch 5 if direct mode  
(see reg 11h) is enabled)  
78  
R/W  
SWCNTRL  
SW4 (controls switch 4 if direct mode  
(see reg 11h) is enabled)  
77  
R/W  
R/W  
4.5 V (maximum value)  
76:72  
00000  
UVLO_TRIM<4:0>  
7.5.11 AFE (MUX) Control  
Figure 26. AFE (MUX) Control, Address = 0Ah, HEX = 00  
7
6
5
4
3
2
1
0
AFE [87:80]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 21. AFE (MUX) Control Field Descriptions  
BIT  
87  
FIELD  
TYPE  
R/W  
RESET  
00  
DESCRIPTION  
AFE_EN  
86  
R/W  
R/W  
R/W  
00  
00  
00  
AFE_CAL_DIS  
AFE_GAIN<1:0>  
AFE_SEL<3:0>  
AFE  
85:84  
83:80  
7.5.12 Break Before Make (BBM) Timing  
Figure 27. BBM Timing, Address = 0Bh, HEX = 00  
7
6
5
4
3
2
1
0
BBM [95:88]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 22. BBM Timing Field Descriptions(1)  
BIT  
FIELD  
TYPE  
R/W  
RESET  
00000000  
DESCRIPTION  
95:88 BBM  
BBM_DELAY<7:0>  
0x00 – 0 ns  
0x40 – 7326 ns  
0x41 – 7437 ns  
0x42 – 7548 ns  
...  
0x80 – 14430 ns 0xC0 – 21534 ns  
0x81 – 14541 ns 0xC1 – 21645 ns  
0x82 – 14652 ns 0xC2 – 21756 ns  
0x01 – 333 ns  
0x02 – 444 ns  
...  
...  
...  
0x3E – 7104 ns  
0x3F – 7215 ns  
0x7E – 14208 ns 0xBE – 21312 ns 0xFE – 28416 ns  
0x7F – 14319 ns 0xBF – 21423 ns 0xFF – 28527 ns  
(1) It takes 333 to 444 ns to turn off the switches from the time a change occurs on LED_SEL[1:0].  
34  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.5.13 Interrupt Register  
Figure 28. Interrupt Register, Address = 0Ch, HEX = 00  
7
6
5
4
3
2
1
0
INT [103:96]  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 23. Interrupt Register Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
103  
VLED_OVP  
VLED buck_boost overvoltage fault interrupt (normal operation  
R
R
R
0
0
0
resumes)  
0 – No fault  
1 – Buck_boost output is above OVP threshold  
102  
101  
IREG_PG_FAULT  
V6V power-good fault interrupt (normal operation resumes)  
0 – No fault  
1 – V6V is not in regulation  
PROJ_ON_INT  
Proj_On interrupt (part enters OFF mode)  
0 – Pin is pulled high, normal mode  
1 – Pin is pulled low, alerts the DPP that the DMD regulator is  
about to shut down.  
100  
DMD_FAULT  
DMD regulator fault (part enters STANDBY mode and DMD_EN  
bit is cleared)  
0 – No fault  
R
0
1 – The inductor current is not increasing at the correct rate,  
likely to be caused by an open inductor.  
Or, one of the regulator outputs has dropped below the power-  
good threshold, likely to be caused by a short.  
INT  
99  
98  
UVLO  
UVLO interrupt (sensed at VINA pin), DMD bit is cleared.  
0 – Battery voltage is above the UVLO threshold.  
1 – Battery voltage has dropped below the UVLO threshold.  
R
R
0
0
BAT_LOW_WARN  
Low battery warning interrupt (sensed at VINA pin, normal  
operation resumes)  
0 – Battery voltage is above the low-battery threshold  
1 – Battery voltage has dropped below the low-battery threshold  
97  
96  
TS_WARN  
Thermal warning interrupt (normal operation resumes)  
0 – Die temperature is in normal operating range  
1 – Die temperature is above the HOT threshold  
Or, part has not cooled down enough to recover from HOT.  
R
R
0
0
TS_WARN  
Thermal Warning Interrupt (normal operation resumes)  
0 – Die temperature is in normal operating range  
1 – Die temperature is above the HOT threshold  
Or, part has not cooled down enough to recover from HOT.  
Copyright © 2014–2018, Texas Instruments Incorporated  
35  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5.14 Interrupt Mask Register  
Figure 29. Interrupt Mask Register, Address = 0Dh, HEX = DF  
7
6
5
4
3
2
1
0
INT MASK [111:104]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 24. Interrupt Mask Register Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
111  
1
VLED BUCK_BOOST  
Overvoltage fault interrupt mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
110  
109  
108  
107  
106  
105  
104  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
0
1
1
1
1
1
IREG_PG_FAULT_MASK  
0 – Interrupt is not masked  
1 – Interrupt is masked  
PROJ_ON interrupt mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
DMD_REGULATOR fault mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
INT MASK  
UVLO_MASK  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Low battery warning mask (sensed at VINA pin)  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Thermal shutdown interrupt mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
Thermal warning interrupt mask  
0 – Interrupt is not masked  
1 – Interrupt is masked  
36  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.5.15 Timing Register VOFS, VBIAS, VRST, and RESETZ  
Figure 30. Timing Register VOFS, VBIAS, VRST, and RESETZ, Address = 0Eh, HEX = 07  
7
6
5
4
3
2
1
0
TIMING [119:112]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 25. Timing Register VOFS, VBIAS, VRST, and RESETZ Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
0000  
DESCRIPTION  
119:116  
VOFS/RESETZ_DELAY<3:0> (for values see minimum and  
maximum delay)  
TIMING  
115:112  
R/W  
0111  
VBIAS/VRST_DELAY<3:0> (for values see minimum and  
maximum delay)  
Table 26. Timing Register VOFS, VBIAS, VRST, and RESETZ Bit Definitions  
FIELD NAME  
BIT  
BIT DEFINITION  
Minimum Delay (μs)  
Maximum Delay (μs)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
4.0  
8.0  
4.4  
8.9  
16.0  
32.0  
64.0  
128.0  
256.0  
512.0  
6.2  
17.8  
35.5  
71.1  
142.2  
284.4  
569.0  
7.1  
TIMING  
[119:112]  
12.4  
24.9  
49.8  
99.5  
199.1  
398.3  
1024.2  
14.2  
28.4  
56.9  
113.8  
227.6  
455.2  
1138.0  
Copyright © 2014–2018, Texas Instruments Incorporated  
37  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5.16 Motor Control Register  
Figure 31. Motor Control Register, Address = 0Fh, HEX = 00(1)  
7
6
5
4
3
2
1
0
MOTOR CTRL [127:120]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
(1) VINM can be left floating if the motor controller is not used.  
Table 27. Motor Control Register Field Descriptions  
BIT  
127  
126  
125  
124  
123  
122  
121  
120  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
0
0
0
0
0
0
0
0
TBD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TBD  
MD_EN  
MD_MODE  
MD_AIN1  
MD_AIN2  
MD_BIN1  
MD_BIN2  
MOTOR CTRL  
7.5.17 Password Register  
Figure 32. Password Register, Address = 10h, HEX = 00  
7
6
5
4
3
2
1
0
PASSWORD [135:128]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Password Register Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
135:128 PASSWORD  
00000000 USER PASSWORD (0xBAh + 0xBEh) disable (0x00h).  
Once set, register 11h can be written.  
7.5.18 System Configuration Register  
Figure 33. System Configuration Register, Address = 11h, HEX = 00  
7
6
5
4
3
2
1
0
SYSTEM [143:136]  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 29. System Configuration Register Field Descriptions  
BIT  
143:139  
138  
FIELD  
TYPE  
R/W  
RESET  
00000  
DESCRIPTION  
TBD  
R/W  
0
EEPROM_PROGRAM  
Program scratch pad values to EEPROM  
SYSTEM  
137  
136  
R/W  
0
DIRECT_MODE  
Allows direct control of switches through SW CONTROL  
REGISTER  
R/W  
0
TBD  
38  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
7.5.19 User EEPROM, BYTE0  
Figure 34. User EEPROM, BYTE0, Address = 20h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE0 [7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 30. User EEPROM, BYTE0 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
7:0  
BYTE0  
00000000 USER BYTE 0  
7.5.20 User EEPROM, BYTE1  
Figure 35. User EEPROM, BYTE1, Address = 21h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE1 [15:8]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 31. User EEPROM, BYTE1 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
15:8  
BYTE1  
00000000 USER BYTE 1  
7.5.21 User EEPROM, BYTE2  
Figure 36. User EEPROM, BYTE2, Address = 22h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE2 [23:16]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 32. User EEPROM, BYTE2 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
23:16  
BYTE2  
00000000 USER BYTE 2  
7.5.22 User EEPROM, BYTE3  
Figure 37. User EEPROM, BYTE3, Address = 23h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE3 [31:24]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 33. User EEPROM, BYTE3 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
31:24  
BYTE3  
00000000 USER BYTE 3  
Copyright © 2014–2018, Texas Instruments Incorporated  
39  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
7.5.23 User EEPROM, BYTE4  
Figure 38. User EEPROM, BYTE4, Address = 24h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE4 [39:32]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 34. User EEPROM, BYTE4 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
39:32  
BYTE4  
00000000 USER BYTE 4  
7.5.24 User EEPROM, BYTE5  
Figure 39. User EEPROM, BYTE5, Address = 25h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE5 [47:40]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 35. User EEPROM, BYTE5 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
47:40  
BYTE5  
00000000 USER BYTE 5  
7.5.25 User EEPROM, BYTE6  
Figure 40. User EEPROM, BYTE6, Address = 26h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE6 [55:48]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 36. User EEPROM, BYTE6 Field Descriptions  
BIT  
FIELD  
TYPE  
R/W  
RESET  
DESCRIPTION  
55:48  
BYTE6  
00000000 USER BYTE 6  
7.5.26 User EEPROM, BYTE7  
Figure 41. User EEPROM, BYTE7, Address = 27h, HEX = 00  
7
6
5
4
3
2
1
0
BYTE7 [63:56]  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset.  
Table 37. User EEPROM, BYTE7 Field Descriptions  
BIT  
FIELD  
TYPE  
RESET  
DESCRIPTION  
63:56  
BYTE7  
R
00000000 USER BYTE 7  
40  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
A DLPC343x controller can be used with a DLP2010 (0.2 WVGA) DMD or DLP3010 (0.3 720p) DMD to provide a  
compact, reliable, high-efficiency display solution for many different video display applications. The DMDs are  
spatial light modulators which reflect incoming light from an illumination source to one of two directions with the  
primary direction being into collection optics within a projection lens. The projection lens sends the light to the  
destination needed for the application. Each application is derived primarily from the optical architecture of the  
system and the format of the pixel data being input into the DLPC343x.  
In display applications using the DLP2010 DMD or DLP3010 DMD, the DLPA2000 provides all needed analog  
functions including the analog power supplies and the RGB LED driver to provide a robust and efficient display  
solution. Display applications of interest include pico-projectors embedded in display devices like smart phones,  
tablets, cameras, and camcorders. Other applications include wearable (near-eye) displays, battery-powered  
mobile accessories, interactive displays, low latency gaming displays, and digital signage.  
Alternately, a DLPC150 controller can be used with a DLP2010 or DLP2010NIR DMD. Applications of interest  
when using the DLPC150 controller include machine vision systems, spectrometers, skin analysis, medical  
systems, material identification, chemical sensing, infrared projection, and compressive sensing. In a  
spectroscopy application the DLPC150 controller and DLP2010NIR DMD are often combined with a single  
element detector to replace expensive InGaAs array-based detector designs. In this application the DMD acts as  
a wavelength selector reflecting specific wavelengths of light into the single point detector.  
8.2 Typical Projector Application  
A common application when using DLPA2000 with DLP2010 DMD and DLPC3430 controller is for creating a  
pico-projector embedded in a handheld product. For example, a pico-projector may be embedded in a smart  
phone, a tablet, a camera, or camcorder. The DLPC3430 in the pico-projector embedded module typically  
receives images from a host processor within the product as shown in Figure 42. DLPA2000 provides power  
supply sequencing and controls the LED currents as required by the application.  
DC_IN  
Charger  
BAT  
2.3 to 5.5 V  
Projector Module Electronics  
DC Supplies  
1.8 V  
VSPI  
1.1 V  
1.8 V  
1.1 V  
Reg  
1.8 V  
Other  
Supplies  
On/Off  
L3  
SYSPWR  
1.8 V  
VDD  
HDMI  
VLED  
HDMI  
Receiver  
PROJ_ON  
PROJ_ON  
Current  
Sense  
L1  
L2  
VGA  
GPIO_8 (Normal Park)  
Triple  
ADC  
Keystone  
Sensor  
DLPA2000  
Cal data  
(optional)  
4
SPI_0  
SPI_1  
FLASH  
4
Front-End  
Chip  
- OSD  
- AutoLock  
- Scaler  
EEPROM  
RED  
GREEN  
BLUE  
RESETZ  
INTZ  
FLASH,  
SDRAM  
I2C_1  
HOST_IRQ  
PARKZ  
BIAS, RST, OFS  
3
LED_SEL(2)  
CMP_PWM  
-MicroController  
WPC  
Illumination  
Optics  
DLPC3430/  
Keypad  
DLPC3435  
Parallel I/F  
28  
LABB  
CMP_OUT  
eDRAM  
DLP2010  
DMD)  
I2C  
SD Card  
Reader, and  
so forth  
(WVGA  
Thermistor  
Sub-LVDS DATA  
CTRL  
1.8 V  
1.1 V  
VIO  
(optional)  
VCC_INTF  
VCC_FLSH  
VCORE  
18  
Spare R/W  
GPIO  
BT.656  
CVBS  
TVP5151  
Video  
Decoder  
Included in DLP® Chip Set  
GND  
Figure 42. Typical Embedded Setup Using DLPA2000  
Copyright © 2014–2018, Texas Instruments Incorporated  
41  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Typical Projector Application (continued)  
8.2.1 Design Requirements  
A pico-projector is created by using a DLP chipset comprised of DLP2010 (0.2 WVGA) DMD, DLPC3430, or  
DLPC3435 controller and DLPA2000 PMIC/LED driver. The DLPC3430 or DLPC3435 does the digital image  
processing, the DLPA2000 provides the needed analog functions for the projector, and DMD is the display  
device for producing the projected image.  
In addition to the three DLP chips in the chipset, other chips may be needed. At a minimum, a flash part is  
needed to store the software and firmware to control the DLPC3430 or DLPC3435.  
The illumination light that is applied to the DMD is typically from red, green, and blue LEDs. These are often  
contained in three separate packages, but sometimes more than one color of LED die may be in the same  
package to reduce the overall size of the pico-projector.  
When connecting the DLPC3430 or DLPC3435 to the host processing to receive images, a parallel interface is  
used. While using the parallel interface, I2C should be connected to the host processor for sending commands to  
the DLPC3430 or DLPC3435.  
The only power supplies needed external to the projector are the battery (SYSPWR) and a regulated 1.8-V  
supply. The entire pico-projector can be turned on and off by using a single signal called PROJ_ON. When  
PROJ_ON is high, the projector turns on and begins displaying images. When PROJ_ON is set low, the projector  
turns off and draws just microamps of current on SYSPWR. When PROJ_ON is set low, the 1.8-V supply can  
continue to be left at 1.8 V and used by other non-projector sections of the product. If PROJ_ON is low, the  
DLPA2000 will not draw current on the 1.8-V supply.  
8.2.2 Detailed Design Procedure  
For connecting together the DLP2010, DLPC3430 or DLPC3435, and DLPA2000, see the reference design  
schematic. When a circuit board layout is created from this schematic, a very small circuit board is possible. An  
example small board layout is included in the reference design database. Layout guidelines should be followed to  
achieve a reliable projector.  
The optical engine that has the LED packages and the DMD mounted to it is typically supplied by an optical  
OEM who specializes in designing optics for DLP projectors.  
A miniature stepper motor can optionally be added to the optical engine for creating a motorized focus. Direct  
control and driving of the motor can be done by the DLPA2000, and software commands sent over I2C to the  
DLPC3430 or DLPC3435 are available to move the motor to the desired position.  
42  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
Typical Projector Application (continued)  
8.2.3 Application Curve  
As the LED currents that are driven time-sequentially through the red, green, and blue LEDs are increased, the  
brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white  
screen lumens changes with LED currents is as shown in Figure 43. For the LED currents shown, it is assumed  
that the same current amplitude is applied to the red, green, and blue LEDs.  
SPACE  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
100  
200  
300  
400  
500  
600  
700  
Current (mA)  
D001  
Figure 43. Luminance vs Current  
8.3 Typical Mobile Sensing Application  
A typical embedded system application using the DLPC150 controller and the DLPC2010NIR is shown in  
Figure 44. In this configuration, the DLPC150 controller supports a 24-bit parallel RGB input, typical of LCD  
interfaces, from an external source or processor. The DLPC150 controller processes the digital input image and  
converts the data into the format needed by the DLP2010NIR. The DLP2010NIR steers light by setting specific  
micromirrors to the on position, directing light to the detector, while unwanted micromirrors are set to the off  
position, directing light away from the detector. The microprocessor sends binary images to the DLP2010NIR to  
steer specific wavelengths of light into the detector. The microprocessor uses an analog-to-digital converter to  
sample the signal received by the detector into a digital value. By sequentially selecting different wavelengths of  
light and capturing the values at the detector, the microprocessor can then plot a spectral response to the light.  
Copyright © 2014–2018, Texas Instruments Incorporated  
43  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
Typical Mobile Sensing Application (continued)  
0/F5:  
.-@  
/NGVMKV  
($)&XT&+$+&B  
<TZKV&  
9GSGMKRKSX  
'$,&B  
'$'&B  
;XNKV  
?YUUQOKW  
'$'#B  
>KM  
B5:  
?D?<C>  
<>;6F;:  
;S%;LL  
B00  
'$,&B  
'$,?&B  
8?F5:  
B810  
<>;6F;:  
A?.  
&')$"     
/1ꢀ  
&')$"  #  
<>;6F;:  
?<5Fꢀ  
>10  
0KXKIXTV  
-0/  
&*&  
28-?4  
/YVVKSX  
?KSWK  
?<5F'  
&*&  
>1?1@E  
5:@E  
28-?4"&  
?0>-9  
(,*1/01/*+22/1  
<->7E  
4;?@F5>=  
@>53F5:  
5QQYROSGXOTS&  
;UXOIW  
.5-?"&>?@"&;2?  
)
810F?18ꢁ(  
/9<F<C9  
&')%!#  
@>53F;A@&ꢁ(  
7K[UGJ  
/9<F;A@  
<GVGQQKQ&>3.&5%2&ꢁ(,  
?0&  
/GVJ  
08<(ꢀ'ꢀ:5>  
ꢁCB3-  
090  
@NKVROWXTV  
5(/  
?YH#8B0?&0-@-  
8<?0>&/@>8  
'$,?&B  
'$'&B  
B5;  
.QYKXTTXN  
B//F5:@2  
B//F28?4  
B/;>1  
<VTPKIXOTS&  
;UXOIW  
:5>&  
0KXKIXTV  
$&%ꢀ3ꢀ$.0-,ꢁ+1  
08<\&/NOU&?KX  
Figure 44. Typical Application Diagram  
8.3.1 Design Requirements  
All applications using the DLP 0.2-inch WVGA chipset require the:  
DLPC150 controller, and  
DLPA2000 PMIC, and  
DLP2010 or DLP2010NIR DMD  
components for operation. The system also requires an external parallel flash memory device loaded with the  
DLPC150 configuration and support firmware. DLPC150 does the digital image processing and formats the data  
for the DMD. DLPA2000 PMIC provides the needed analog functions for the DLPC150 and DLP2010 or  
DLP2010NIR. The chipset has several system interfaces and requires some support circuitry. The following  
interfaces and support circuitry are required:  
DLPC150 system interfaces:  
Control interface  
Trigger interface  
Input data interface  
Illumination interface  
DLPC150 support circuitry and interfaces:  
Reference clock  
PLL  
Program memory flash interface  
DMD interfaces:  
DLPC150 to DMD digital data  
DLPC150 to DMD control interface  
DLPC150 to DMD micromirror reset control interface  
44  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
Typical Mobile Sensing Application (continued)  
8.3.2 Detailed Design Procedure  
8.3.2.1 Dlpc150 System Interfaces  
The 0.2-inch WVGA chipset supports a 16-bit or 24-bit parallel RGB interface for image data transfers from  
another device. There are two primary output interfaces: Illumination driver control interface and sync outputs.  
8.3.2.1.1 Control Interface  
The 0.2-inch WVGA chipset supports I2C commands through the control interface. The control interface allows  
another master processor to send commands to the DLPC150 controller to query system status or perform  
realtime operations, such as LED driver current settings.  
8.3.3 Application Curve  
In a reflective spectroscopy application, a broadband light source illuminates a sample and the reflected light  
spectrum is dispersed onto the DLP2010NIR. A microprocessor in conjunction with the DLPC150 controls  
individual DLP2010NIR micromirrors to reflect specific wavelengths of light to a single point detector. The  
microprocessor uses an analog-to-digital converter to sample the signal received by the detector into a digital  
value. By sequentially selecting different wavelengths of light and capturing the values at the detector, the  
microprocessor can then plot a spectral response to the light. This systems allows the measurement of the  
collected light and derive the wavelengths absorbed by the sample. This process leads to the absorption  
spectrum shown in Figure 45.  
Figure 45. Sample DLPC150 Based Spectrometer Output  
Copyright © 2014–2018, Texas Instruments Incorporated  
45  
 
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The DLPA2000 is designed to operate from a 2.3-V to 6-V input voltage supply or battery. To avoid insufficient  
supply current due to line drop, ringing due to trace inductance at the VIN terminal, or supply peak current  
limitations, additional bulk capacitance may be required. In the case ringing that is caused by the interaction with  
the ceramic input capacitors, an electrolytic or tantalum type capacitor may be needed for damping. The amount  
of bulk capacitance required should be evaluated such that the input voltage can remain in specification long  
enough for a proper fast shutdown to occur for the VOFS, VRST, and VBIAS supplies. The shutdown begins when  
the input voltage drops below the programmable UVLO threshold such as when the external power supply or  
battery supply is suddenly removed from the system.  
46  
Copyright © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
10 Layout  
10.1 Layout Guidelines  
As for all chips with switching power supplies, the layout is an important step in the design, especially in the case  
of high peak currents and high switching frequencies. If the layout is not carefully done, the regulators could  
show stability problems as well as EMI problems. Therefore, use wide and short traces for the main current paths  
and for the power ground tracks. Input capacitors, output capacitors, and inductors should be placed as close as  
possible to the IC.  
Figure 46 shows an example layout that has critical parts placed as close as possible to the pins they are  
connected to. Here are recommendations for the following components:  
R1  
is RLIM and is connected via a wide trace and as short as possible to the DLPA2000 and the ground.  
is the big inductor for the VLED that is connected via two wide traces to the pins.  
L1  
C3/C4  
are the decoupling capacitors for the VLED and they are as close as possible placed to the part and  
directly connected to ground.  
L3/C20 are components used for the VCORE BUCK. L3 is placed close to the pin and connected with a wide  
trace to the part. C20 is placed directly beside the inductor and connected to the PGND pin.  
L2  
This inductor is part of the DMD reset regulators and is also placed as close as possible to the  
DLPA2000 using wide PCB traces.  
版权 © 2014–2018, Texas Instruments Incorporated  
47  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
10.2 Layout Example  
Figure 46. Example Layout of DLPA2000  
48  
版权 © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 器件命名规则  
TI = TI LETTERS  
YM = YEAR / MONTH DATE CODE  
LLLL= LOT TRACE CODE  
S
= ASSEMBLY SITE CODE  
=pin 1 Marking  
47. DLPA2000 封装标记(俯视图)  
11.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及申请样片或购买产品的快速访问  
链接。  
38. 相关链接  
器件  
产品文件夹  
单击此处  
样片与购买  
单击此处  
技术文档  
单击此处  
工具和软件  
单击此处  
支持和社区  
单击此处  
DLPA2000  
DLPC3430  
DLPC3435  
DLP2010  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
请单击此处  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
DLP, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
版权 © 2014–2018, Texas Instruments Incorporated  
49  
DLPA2000  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
www.ti.com.cn  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
50  
版权 © 2014–2018, Texas Instruments Incorporated  
DLPA2000  
www.ti.com.cn  
ZHCSCO5B JUNE 2014REVISED FEBRUARY 2018  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
器件插入方向 定位器件时,符号朝上,引脚朝下。  
盖带 盖带不覆盖导孔并且不会从载带移出。  
带结构 - 载带由塑料制成,其结构如上文的电路原理图所示。器件置于载带的压纹区域,并由塑料制成的盖带  
覆盖。  
抗静电放电 (ESD) 塑料 - 载带和盖带使用的材料均为抗静电型。  
材料 - 聚碳酸酯、聚苯乙烯或/和经认证的等效材料(静电消散型/抗静电型)。  
包装方法 - 用胶带将导引带末端固定,然后用防潮袋来包装卷带并热封固定。方形扁平无引脚 (QFN) 器件的包  
装中含有干燥剂和湿度指示剂。  
带盒 - 每个防潮袋均包装到带盒内。  
带盒材料 - 瓦楞纸板  
装运箱 - 如果装运箱内存在间隙,则需要填充缓冲垫之类的填充物。装运箱的尺寸可根据带盒的包装数量进行  
更改。  
版权 © 2014–2018, Texas Instruments Incorporated  
51  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DLPA2000DYFFR  
ACTIVE  
DSBGA  
YFF  
56  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-10 to 85  
PAD2000  
A3  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DLPA2000DYFFR  
DSBGA  
YFF  
56  
3000  
330.0  
12.4  
3.4  
3.75  
0.82  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
14-Feb-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
DSBGA YFF 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
335.0 335.0 25.0  
DLPA2000DYFFR  
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0056  
DSBGA - 0.625 mm max height  
S
C
A
L
E
4
.
2
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
2.4 TYP  
SYMM  
H
G
D: Max = 3.514 mm, Min =3.454 mm  
E: Max = 3.31 mm, Min = 3.25 mm  
F
E
D
C
SYMM  
2.8  
TYP  
0.3  
0.2  
56X  
B
A
0.015  
C A  
B
0.4 TYP  
1
2
3
4
5
6
7
0.4 TYP  
4219481/A 10/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0056  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
56X ( 0.23)  
(0.4) TYP  
2
4
5
6
7
1
A
B
C
D
E
F
SYMM  
G
H
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
0.05 MIN  
(
0.23)  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219481/A 10/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0056  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
56X ( 0.25)  
(R0.05) TYP  
1
2
3
4
5
6
7
A
(0.4)  
TYP  
B
METAL  
TYP  
C
D
E
F
SYMM  
G
H
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219481/A 10/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DLPA2005

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs
TI

DLPA2005ERSLR

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85
TI

DLPA2005ERSLT

DLP® PMIC/LED driver for DLP2010 and DLP2010NIR (0.2 WVGA) DMDs | RSL | 48 | -10 to 85
TI

DLPA200PFC

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA200PFCT

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA200PFP

DMD Micromirror Driver
TI

DLPA200_1

DLP® DLPA200 DMD Micromirror Driver
TI

DLPA300

DLP® driver  for DLP780NE (0.78 1080p), DLP780TE (0.78 4K UHD), DLP800RE (0.80 WUXGA) DM
TI

DLPA3000

DLP® PMIC/LED driver for DLP3010 (0.3 720p) DMD
TI

DLPA3000DPFD

DLP® PMIC/LED driver for DLP3010 (0.3 720p) DMD

| PFD | 100 | 0 to 70
TI

DLPA3000DPFDR

DLP® PMIC/LED driver for DLP3010 (0.3 720p) DMD | PFD | 100 | 0 to 70
TI

DLPA3005

DLP® PMIC/LED driver  for DLP4710 (0.47 1080p) DMD
TI