DLPC2607 [TI]

DLP® display controller for DLP2000 (0.2 nHD) DMD;
DLPC2607
型号: DLPC2607
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DLP® display controller for DLP2000 (0.2 nHD) DMD

文件: 总48页 (文件大小:1932K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
DLPC2607 低功耗 DLP® 显示控制器  
1 特性  
DMD 水平和垂直显示图像抖动  
显示图像旋转  
1
支持 0.2 nHD0.24 VGA 和  
0.3 WVGA DMD 的可靠运行  
基于闪存的配置批处理文件  
I/F 睡眠静止图像省电模式  
多模式,24 位输入像素接口:  
支持并行或 BT656 总线协议  
支持从 QVGA WVGA 的输入大小  
支持 1 60Hz 的帧速率  
测试支持:  
内置测试信号生成  
支持边界扫描测试的 JTAG  
支持高达 33.5MHz 的像素时钟  
支持竖排和横排方向  
2 应用范围  
嵌入式移动投影  
支持 81618 24 位总线选项  
支持 3 输入色彩位深选项:  
智能手机  
平板电脑  
摄像机  
RGB888YCrCb888  
RGB666YCrCb666  
RGB5654:2:2 YCrCb  
笔记本电脑  
移动附件  
像素数据处理  
可佩戴(近眼)显示  
电池供电投影仪  
图像大小调整(缩放)  
帧速率转换  
色彩坐标调整  
3 说明  
自动增益控制  
DLPC2607 是一款用于电池 供电显示应用的低功耗  
DLP 数字 控制器中运行。该控制器支持 0.3 WVGA、  
0.24 VGA 0.2 nHD DMD 的可靠运行。DLPC2607  
控制器提供了用于连接系统电子产品和 DMD 的便捷多  
功能接口,从而能够实现小尺寸、低功耗显示器。  
可编程后期色彩校正 (Degamma)  
空间-时间复用(抖动显示)  
视频处理支持:  
色彩空间转换  
4:2:2 4:4:4 色度插值  
场缩放去隔行  
器件信息(1)  
器件型号  
DLPC2607  
封装  
封装尺寸(标称值)  
封装在 176 引脚,0.4mm 焊球间距,极细间距球  
状引脚栅格阵列 (VFBGA) 封装  
VFBGA (176)  
7.00mm × 7.00mm  
支持外部存储器:  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
166MHz 移动 DDR SDRAM  
33.3MHz 串行闪存  
WVGAVGA nHD DMD 显示支持  
DMD 位平面生成和格式化  
可编程位平面显示排序器(控制发光二极管  
(LED) 使能和 DMD 加载)  
76.2MHz 双倍数据速率 (DDR) DMD 接口 (I/F)  
针对微镜的脉宽调制 (PWM):  
断电时的自动 DMD 停止  
DMD 24 位位深  
系统控制:  
器件配置的 I2C 控制  
可编程 Splash 屏幕  
可编程 LED 电流控制  
DMD 电源和微镜驱动器控制  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: DLPS030  
 
 
 
 
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
目录  
7.2 Functional Block Diagram ....................................... 23  
7.3 Feature Description................................................. 23  
7.4 Programming........................................................... 25  
Application and Implementation ........................ 27  
8.1 Application Information............................................ 27  
8.2 Typical Application ................................................. 27  
Power Supply Recommendations...................... 32  
9.1 System Power Considerations................................ 32  
9.2 System Power-Up and Power-Down Sequence ..... 32  
9.3 System Power I/O State Considerations ............... 34  
9.4 Power-Up Initialization Sequence ........................... 34  
9.5 Power-Good (PARK) Support ................................ 35  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 5  
Specifications....................................................... 12  
6.1 Absolute Maximum Ratings .................................... 12  
6.2 ESD Ratings............................................................ 12  
6.3 Recommended Operating Conditions..................... 12  
6.4 Thermal Information................................................ 13  
6.5 Typical Current and Power Dissipation................... 13  
6.6 I/O Characteristics................................................... 14  
6.7 Internal Pullup and Pulldown Characteristics ........ 14  
6.8 Parallel I/F Frame Timing Requirements ................ 15  
6.9 Parallel I/F General Timing Requirements.............. 15  
8
9
10 Layout................................................................... 36  
10.1 Layout Guidelines ................................................. 36  
10.2 Layout Example .................................................... 42  
11 器件和文档支持 ..................................................... 43  
11.1 器件支持................................................................ 43  
11.2 社区资源................................................................ 44  
11.3 ....................................................................... 44  
11.4 静电放电警告......................................................... 44  
11.5 术语表 ................................................................... 44  
12 机械、封装和可订购信息....................................... 44  
12.1 封装选项附录......................................................... 45  
6.10 Parallel I/F Maximum Parallel Interface Horizontal  
Line Rate.................................................................. 16  
6.11 BT.656 I/F General Timing Requirements ............ 17  
6.12 100- to 120-Hz Operational Limitations ................ 17  
6.13 Flash Interface Timing Requirements .................. 18  
6.14 DMD Interface Timing Requirements ................... 18  
6.15 mDDR Memory Interface Timing Requirements .. 19  
Detailed Description ............................................ 23  
7.1 Overview ................................................................. 23  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (May 2017) to Revision E  
Page  
已更改 将标题从“DLPC2607 DLP PICO 处理器 2607 ASIC”更改为“DLPC2607 低功耗 DLP® 显示控制器”.......................... 1  
Added ZVB Package Bottom View ........................................................................................................................................ 5  
Changed to "Add external pullup or pulldown resistors as needed to these signals to avoid floating inputs" ...................... 5  
Changed PAD1000 to DLPA1000 .......................................................................................................................................... 5  
Changed to "Establish this setting" ....................................................................................................................................... 5  
Changed "low a minimum" to "low to a minimum" ................................................................................................................ 5  
Changed "Should be pulled up to" to "Pull up to" .................................................................................................................. 5  
Changed "Unused inputs should be pulled down" to "Pull unused inputs" ........................................................................... 6  
Added DMD INTERFACE pin descriptions ........................................................................................................................... 7  
Added SDRAM INTERFACE pin descriptions ....................................................................................................................... 8  
Changed "It should be connected" to "Connect". .................................................................................................................. 9  
Changed globally "Should be left open or unconnected for typical use." to "Leave open or unconnected for typical  
use." ..................................................................................................................................................................................... 10  
Changed globally "An external pullup should not be applied to this pin..." to "Do not apply an external pullup to this  
pin..."..................................................................................................................................................................................... 10  
Swapped all values under IOH and IOL ................................................................................................................................. 14  
Changed "that should be applied" to "can safely be applied" ............................................................................................. 14  
Changed "that should be applied" to "can safely be applied" ............................................................................................. 14  
Changed "OHand OL" to VOH and VOL to clarify meaning.................................................................................................... 14  
Changed "VCCIO =" to "VCCIO (V)" ................................................................................................................................... 14  
Changed "MAX Supported" to "Maximum Parallel Interface" .............................................................................................. 16  
2
版权 © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
修订历史记录 (接下页)  
Changed Changed "BT.565" to "BT.656" ............................................................................................................................ 17  
Added link to ITU-R BT.656 specification ............................................................................................................................ 17  
Changed "NOTE:" to "The table below" ............................................................................................................................... 17  
Deleted "Note that" ............................................................................................................................................................... 17  
Changed fclock min................................................................................................................................................................. 18  
Changed tp_clkper min and max .............................................................................................................................................. 18  
Changed "should support" to "supports" ............................................................................................................................. 25  
Changed "Thus, those pins should be tied" to "Tie these pins" .......................................................................................... 26  
Changed "1.8-, 2.5-, or 3.3-V" to "1.8 V, 2.5 V, or 3.3 V" .................................................................................................... 26  
Changed "the ASIC only supports periodic sources" to "the ASIC supports periodic sources only" .................................. 27  
Changed "multi media" to "multimedia" ............................................................................................................................... 27  
Changed Device Functional Modes to System Functional Modes and moved to correct position ..................................... 27  
Added Reference to TSTPT_6 for Crystal nominal frequency ............................................................................................. 28  
Changed "ASIC, and the PLL_REFCLK_O pins hould be left unconnected" to "ASIC. Leave the PLL_REFCLK_O  
pins unconnected" ............................................................................................................................................................... 29  
Changed "The benefit of an oscillator is that it can be made to provide a spread-spectrum clock that reduces EMI."  
to "An oscillator that provides a spread-spectrum clock reduces EMI."............................................................................... 29  
Changed "can only accept" to "accepts" ............................................................................................................................. 29  
Added kHz ........................................................................................................................................................................... 29  
Changed several items in Table 7 ....................................................................................................................................... 29  
Changed " the ODM’s own risk" to "the risk of the ODM" ................................................................................................... 29  
Changed " Layout guidelines should be followed" to "Follow the layout guidelines" .......................................................... 29  
Changed "To complete DLP system . . . is requiered" to "The DLP system requires" ........................................................ 29  
Changed "The optical engine that has the LED packages and the DMD mounted to it is typically supplied by an  
optical OEM who specializes in designing optics for DLP projectors." to "An optical OEM that specializes in  
designing optics for DLP projectors typically supplies the optical engine that has the LED packages and the DMD  
mounted to it." ...................................................................................................................................................................... 29  
Deleted "Note that" .............................................................................................................................................................. 30  
Changed "this allows these inputs to be driven high" to "This protection allows the device to drive these inputs high" ..... 30  
Changed .............................................................................................................................................................................. 30  
Changed "All I/O power should remain" to "Ensure that all I/O power remains" ................................................................. 32  
Changed "is defined" to "operates as" ................................................................................................................................ 35  
Changed "should alert" to "alerts" ........................................................................................................................................ 35  
Changed "Note that the reference clock should continue to run and RESET should remain" to "The reference clock  
continues to run. RESET remains" ...................................................................................................................................... 35  
Changed "At a minimum, VDD_PLL power and VSS_PLL ground pins should be isolated" to "Isolate VDD_PLL  
power and VSS_PLL ground pins" ...................................................................................................................................... 36  
Changed "It is important that the quiet ground and power are treated like analog signals" to "The ground and power  
domains are analog signals, and should be treated as such to achieve minimum noise.".................................................. 36  
Changed "The power and ground traces should be as short as possible" to "Ensure that the power and ground  
traces are as short as possible" ........................................................................................................................................... 36  
Changed "and should not be expected" to "so do not expect them" ................................................................................... 37  
Changed "they should be" to "ensure they are" .................................................................................................................. 37  
Changed "should be split" to "Split the" ............................................................................................................................... 37  
Changed "In addition, the SPICLK trace . . . should be" to "Make the SPICLK trace" ........................................................ 37  
Changed "should be split" to "Split the" ............................................................................................................................... 37  
Changed "In addition, the SPIDOUT trace . . . should be" to "Make the SPIDOUT trace".................................................. 37  
版权 © 2013–2019, Texas Instruments Incorporated  
3
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
修订历史记录 (接下页)  
Changed "The SPIDIN .... should be split" to "Make the SPDIN" ....................................................................................... 37  
Changed "on their way back" to "on the return" .................................................................................................................. 37  
Changed "They should then share" to "Make sure they share" .......................................................................................... 37  
Changed "Variation from these recommendations may also work, but should be confirmed with PCB signal integrity  
analysis or lab measurements" to "Make sure to confirm any variation from these recommendations with PCB signal  
integrity analysis or lab measurements" .............................................................................................................................. 37  
Changed PCB Design table to itemized list ........................................................................................................................ 38  
Changed "should take" to "takes" ........................................................................................................................................ 40  
Changed "should take" to "takes" ........................................................................................................................................ 40  
Changed "should" to "must" ................................................................................................................................................ 40  
Changed "The pair should also be terminated" to "Terminate the pair" .............................................................................. 41  
Changed "Specifically ... should be terminated" to "Terminate" .......................................................................................... 41  
Changed "Specifically ... should be terminated" to "Terminate" .......................................................................................... 41  
Changed "kept" to "maintained to a length of" .................................................................................................................... 41  
Changed "should" to "does" ................................................................................................................................................ 41  
Changes from Revision C (November 2015) to Revision D  
Page  
Removed table 'Compatible SPI Serial Flash Devices' from Serial Flash Interface since listed devices are end of life.  
Replaced with new suggested devices as well as Table 4 which lists minimum performance specifications to  
determine flash device compatibility..................................................................................................................................... 26  
封装信息 中添加了“MSL 峰值温度” ................................................................................................................................... 45  
Changes from Revision B (January 2014) to Revision C  
Page  
添加了 ESD 额定值 表、热性能信息 表、特性 说明 部分、器件功能模式应用和实施 部分、电源建议 部分、布局  
部分、器件和文档支持 部分以及机械、封装和可订购信息 部分............................................................................................. 1  
Changes from Revision A (December 2013) to Revision B  
Page  
删除了产品预览横幅 ............................................................................................................................................................... 1  
Changes from Original (December 2013) to Revision A  
Page  
Corrected columns for IOH and IOL in I/O Characteristics ..................................................................................................... 14  
Updated B38 I/O Type value for VOH (min) in I/O Characteristics ....................................................................................... 14  
Added additional table notes to I/O Characteristics ............................................................................................................ 14  
Added table note to Internal Pullup and Pulldown Characteristics ...................................................................................... 14  
Corrected device reference to DLPC2607 in the notes for mDDR Memory Interface Timing Requirements ..................... 19  
4
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
5 Pin Configuration and Functions  
ZVB Package  
176-Pin NFBGA  
Bottom View  
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 101112131415  
(1)  
Pin Functions  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
DEVICE INITIALIZATION AND REFERENCE CLOCK(1)  
DLPC2607 power-on reset. Self-configuration starts when a low-to-high  
transition is detected on this pin. All ASIC power and clocks must be stable  
before this reset is de-asserted (hysteresis buffer). Note that the following  
seven signals tri-state while RESET is asserted: DMD_PWR_EN,  
LEDDVR_ON, LED_SEL_0,LED_SEL_1, SPICLK, SPIDOUT, SPICSZ0  
Add external pullup or pulldown resistors as needed to these signals to avoid  
floating inputs.  
RESETZ  
J14  
VCC18  
I1  
Async  
Reference clock crystal input. If an external oscillator is used in place of a  
crystal, then use this pin as the oscillator Input.  
PLL_REFCLK_I  
PLL_REFCLK_O  
K15  
J15  
I4  
N/A  
N/A  
VCC18 (filter)  
Reference clock crystal return. If an external oscillator is used in place of a  
crystal, then leave this pin unconnected (floating).  
O14  
FLASH INTERFACE(2)  
SPICLK  
A4  
B4  
A5  
C6  
O24  
I2  
N/A  
Clock for the external SPI device or devices  
SPIDIN  
SPICLK  
SPICLK  
SPICLK  
Serial data input from the external SPI device or devices  
Chip select 0 output for the external SPI flash device. Active low  
Chip select 1 output for the external SPI DLPA1000 device. Active low  
SPICSZ0  
O24  
O24  
VCC_ FLSH  
SPICSZ1  
Serial data output to the external SPI device or devices. This pin sends  
address and control information as well as data when programming  
SPIDOUT  
C5  
O24  
SPICLK  
MAIN VIDEO DATA AND CONTROL  
DMD park control (active low) is set high to enable typical operation.  
Establish this setting prior to releasing RESET, or within 500 µs after  
releasing RESET. It should be set low to a minimum of 500 µs before any  
power is to be removed from the DLPC2607 (hysteresis buffer).  
PARK  
B8  
VCC_ INTF  
I3  
Async  
LED enable (active high input). A logic low on this signal forces  
LED_ENABLE  
DBIC_CSZ  
SCL  
A11  
B10  
A10  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
I3  
I3  
Async  
SCL  
N/A  
LEDDRV_ON low and LED_SEL(1:0) = b00. These signals are enabled 100  
ms after LED_ENABLE transitions from low to high (hysteresis buffer).  
Unused/reserved: Pull up to VCC_INTF.  
I2C clock (hysteresis buffer) bidirectional, open-drain signal. An external  
pullup is required. No I2C activity is permitted for a minimum of 100 ms after  
PARK and RESET are set high.  
B38  
I2C data (hysteresis buffer) bidirectional, open-drain signal. An external  
pullup is required.  
SDA  
C10  
VCC_ INTF  
B38  
SCL  
(1) Each device connected to the serial peripheral interface (SPI) bus must be operated off VCC_FLSH  
(2) Each device connected to the SPI bus must be operated off VCC_FLSH  
Copyright © 2013–2019, Texas Instruments Incorporated  
5
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
(1)  
Pin Functions  
(continued)  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
General purpose I/O 4 (hysteresis buffer). Primary usage is to indicate when  
auto-initialization is complete (also referred to as INIT-DONE, which is when  
GPIO4 transitions high then low following release of RESET) and to flag a  
detected error condition in the form of a logic high, pulsed Interrupt flag  
subsequent to INIT-DONE.  
GPIO4_INTF  
C9  
VCC_ INTF  
VCC_ INTF  
B34  
Async  
Async  
General purpose I/O 5 (hysteresis buffer). For applications that use focus  
motor control with a sensor, this pin is an input that is connected to the motor  
position sensor. For applications that use non-focus motor control with a  
sensor, configure this pin with an output at logic 0 and left unconnected.  
GPIO5_INTF  
B9  
B34  
MAIN VIDEO DATA AND CONTROL  
PARALLEL RGB MODE  
BT.656 I/F MODE  
(3)  
(3)  
PCLK (Hysteresis)  
PDM_CVS_TE  
VSYNC_WE  
HSYNC_CS  
DATEN_CMD  
PDATA[0]  
D13  
H15  
H14  
H13  
G15  
G14  
G13  
F15  
F14  
F13  
E15  
E14  
E13  
D15  
D14  
C15  
C14  
C13  
B15  
B14  
A15  
A14  
B13  
A13  
C12  
B12  
A12  
C11  
B11  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
VCC_ INTF  
I3  
B34  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
I3  
N/A  
ASYNC  
ASYNC  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
Pixel clock  
Pixel clock  
(4)  
(5)  
Parallel data mask  
Unused  
Unused(5)  
(6)  
Vsync  
(6)  
(5)  
Hsync  
Unused  
Unused  
(6)  
(5)  
Data valid  
(7)  
(7)  
Data  
Data0  
Data1  
Data2  
Data3  
Data4  
Data5  
Data6  
Data7  
(7)  
(7)  
PDATA[1]  
Data  
(7)  
(7)  
(7)  
(7)  
(7)  
(7)  
(7)  
PDATA[2]  
Data  
(7)  
PDATA[3]  
Data  
(7)  
PDATA[4]  
Data  
(7)  
PDATA[5]  
Data  
(7)  
PDATA[6]  
Data  
(7)  
PDATA[7]  
Data  
(7)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
(5)  
PDATA[8]  
Data  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
(7)  
PDATA[9]  
Data  
(7)  
PDATA[10]  
PDATA[11]  
PDATA[12]  
PDATA[13]  
PDATA[14]  
PDATA[15]  
PDATA[16]  
PDATA[17]  
PDATA[18]  
PDATA[19]  
PDATA[20]  
PDATA[21]  
PDATA[22]  
PDATA[23]  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
(7)  
Data  
Unused(5)  
(7)  
(5)  
Data  
Unused  
(3) Pixel clock capture edge is software programmable.  
(4) Data mask is optional for parallel bus operation. If unused, pull to ground through a resistor.  
(5) Pull unused inputs to ground through an external resistor.  
(6) VSYNC, HSYNC, and data valid polarity is software programmable.  
(7) PDATA(23:0) bus mapping is pixel format and source mode dependent.  
6
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
(1)  
Pin Functions  
(continued)  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
DMD INTERFACE  
DMD_D0  
NO.  
POWER  
TYPE  
M15  
N14  
M14  
N15  
P13  
P14  
P15  
R15  
R12  
N11  
P11  
R11  
N10  
P10  
R10  
N13  
R13  
DMD_DCLK  
DMD Data Pins. DMD Data pins are double data rate (DDR) signals that are  
clocked on both edges of DMD_DCLK.  
DMD_D1  
All 15 DMD data signals are use to interface to the WVGA and VGA DMDs;  
however, only 12 of the 15 are used to interface to an nHD DMD.  
The standard nHD interconnect is to utilize pins DMD_D(11:0). However,  
DMD_D(14:3) must be used to interface to the nHD DMD when the I2C  
programmable option to reverse the bit-order of the DMD interface pins is  
selected (DMD Bus Swap Control, I2C: 0xA7).  
DMD_D2  
DMD_D3  
DMD_D4  
DMD_D5  
DMD_D6  
DMD_D7  
DMD_D8  
DMD_D9  
DMD_D10  
DMD_D11  
DMD_D12  
DMD_D13  
DMD_D14  
DMD_DCLK  
DMD_LOADB  
VCC18  
O58  
N/A  
DMD Data Clock (DDR)  
DMD_DCLK  
DMD Data Load Signal (active low). This signal requires an external pullup to  
VCC18.  
DMD_SCTRL  
R14  
P12  
L13  
K13  
M13  
DMD_DCLK  
DMD_DCLK  
DMD Data Serial Control Signal  
DMD Data Toggle Rate Control  
DMD_TRC  
DMD_DAD_BUS  
DMD_DAD_STRB  
DMD_DAD_OEZ  
DMD_SAC_CLK DMD DAD Bus Data  
DMD_SAC_CLK DMD DAD Bus Strobe  
Async  
DMD Reset Driver Output Enable (active low). To properly park the DMD,  
this signal requires a 30-kΩ to 100-kΩ external pullup resistor connected to  
VCC18.  
DMD_SAC_BUS  
DMD_SAC_CLK  
L15  
L14  
DMD_SAC_CLK DMD SAC Bus Data  
N/A DMD SAC Bus Clock  
Copyright © 2013–2019, Texas Instruments Incorporated  
7
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
(1)  
Pin Functions  
(continued)  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
SDRAM INTERFACE  
MEM0_CLK_P  
MEM0_CLK_N  
MEM0_A0  
D1  
E1  
P1  
R3  
R1  
R2  
A1  
B1  
A2  
B2  
D2  
A3  
P2  
B3  
D3  
M3  
P3  
P4  
R4  
R5  
J3  
O74  
O74  
N/A  
mDDR memory, Differential Memory Clock  
mDDR memory, Multiplexed Row, and Column Address  
mDDR memory, Bank Select  
MEM0_A1  
MEM0_A2  
MEM0_A3  
MEM0_A4  
MEM0_A5  
MEM0_A6  
MEM0_A7  
MEM0_A8  
MEM0_A9  
O64  
MEM_CLK  
MEM0_A10  
MEM0_A11  
MEM0_A12  
MEM0_BA0  
MEM0_BA1  
MEM0_RASZ  
MEM0_CASZ  
MEM0_WEZ  
MEM0_CSZ  
MEM0_CKE  
MEM0_LDQS  
MEM0_LDM  
MEM0_DQ0  
MEM0_DQ1  
MEM0_DQ2  
MEM0_DQ3  
MEM0_DQ4  
MEM0_DQ5  
MEM0_DQ6  
MEM0_DQ7  
MEM0_UDQS  
MEM0_UDM  
MEM0_DQ8  
MEM0_DQ9  
MEM0_DQ10  
MEM0_DQ11  
MEM0_DQ12  
MEM0_DQ13  
MEM0_DQ14  
MEM0_DQ15  
mDDR memory, Row Address Strobe (active low)  
mDDR memory, Column Address Strobe (active low)  
mDDR memory, Write Enable (active low)  
mDDR memory, Chip Select (active low)  
VCC18  
C1  
J2  
mDDR memory, Clock Enable (active high)  
mDDR memory, Lower Byte, R/W Data Strobe  
mDDR memory, Lower Byte, Write Data Mask  
B64  
O64  
N/A  
J1  
MEM0_LDQS  
N1  
M2  
M1  
L3  
B64  
MEM0_LDQS  
mDDR memory, Lower Byte, Bidirectional R/W Data  
L2  
K2  
L1  
K1  
G1  
H1  
H2  
G2  
H3  
F3  
F1  
E2  
F2  
E3  
B64  
O64  
N/A  
mDDR memory, Upper Byte, R/W Data Strobe  
mDDR memory, Upper Byte, Write Data Mask  
MEM0_UDQS  
B64  
MEM0_UDQS  
mDDR memory, Upper Byte, Bidirectional R/W Data  
8
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
(1)  
Pin Functions  
(continued)  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
O14  
LED DRIVER INTERFACE  
General-purpose I/O 1 (output only). If the DLPA1000 is not used, then this  
output must be used as the red LED PWM signal used to control the LED  
current.(8) If the DLPA1000 is used, then this output can be used as a  
general purpose output controlled by the WPC processor.  
GPIO1_RPWM  
GPIO2_GPWM  
N8  
P9  
Async  
Async  
General-purpose I/O 2 (output only). If the DLPA1000 is not used, then this  
output must be used as the green LED PWM signal used to control the LED  
current.(8) If the DLPA1000 is used, then this output can be used as a  
general purpose output controlled by the WPC processor.  
O14  
General-purpose I/O 3 (output only). If the DLPA1000 is not used, then this  
output must be used as the blue LED PWM signal used to control the LED  
current.(8) If the DLPA1000 is used, then this output can be used as a  
general-purpose output controlled by the WPC processor.  
GPIO3_BPWM  
LED_SEL_0  
R8  
R6  
O14  
O14  
Async  
Async  
LED enable SELECT. Controlled by programmable DMD sequence timing  
(hysteresis buffer).  
LED_SEL(1:0)  
Selected LED  
None  
00  
01  
10  
11  
VCC18  
Red  
Green  
LED_SEL_1  
N6  
O14  
Async  
Blue  
These outputs should be input directly to the DLPA1000 if used. If the  
DLPA1000 is not used, then a decode circuit is required to decode the  
selected LED enable.  
LED driver enable. Active-high output control to external LED driver logic  
(master enable). It is driven high 100 ms after LED_ENABLE is driven high  
and driven low immediately when either LED_ENABLE or PARK is driven  
low.  
LEDDRV_ON  
P7  
O14  
O14  
Async  
Async  
DMD power regulator enable (active high). This is an active-high output that  
should be used to control DMD VOFFSET, VBIAS, and VRESET voltages.  
DMD_PWR_EN is driven high when the PARK input signal is set high.  
However, DMD_PWR_EN is held high for 500 µs after the PARK input signal  
is set low before it is driven low. TI recommends a weak external pulldown  
resistor to keep this signal at a known state during power-up reset.  
DMD_PWR_EN  
K14  
WHITE POINT CORRECTION LIGHT SENSOR I/F  
Successive approximation ADC comparator output (DLPC2607 input).  
Assumes a successive approximation ADC is implemented with either a light  
sensor or thermocouple or both feeding one input of an external comparator  
and the other side of the comparator driven from the CMP_PWM pin of the  
ASIC. If this function is not used, pull it down to ground (hysteresis buffer).  
CMP_OUT  
A6  
I1  
Async  
Successive approximation comparator pulse-width modulation input.  
Supplies a PWM signal to drive the successive approximation ADC  
Comparator used in light-to-voltage light sensor applications. If this function  
is not used, leave it unconnected.  
VCC_ 18  
CMP_PWM  
B7  
P5  
O14  
Async  
Async  
Power control signal for the WPC light sensor and other analog support  
circuits using the DLPC2607 ADC. Alternately, it provides general purpose  
I/O to the WPC microprocessor internal to the DLPC2607 device. If not used,  
leave it unconnected (hysteresis buffer).  
GPIO0_CMPPWR  
B14  
I3  
Manufacturing test enable signal. Connect directly to ground on the PCB for  
typical operation. Includes weak internal pulldown.  
HWTEST_EN  
JTAGTDI  
A9  
P6  
VCC _INTF  
VCC _18  
N/A  
JTAG, serial data in. Includes weak internal pullup. (When JTAGRSTZ is  
held low, this input can be used as ICP/ WPC debug port RXD.)  
JTAGTCK  
I1  
JTAGTCK  
JTAGTMS  
JTAGTDO  
N5  
N7  
R7  
N/A  
JTAG, serial data clock. Includes weak internal pullup.  
JTAG, test mode select. Includes weak internal pullup.  
JTAG, serial data out  
JTAGTCK  
JTAGTCK  
O14  
I1  
JTAG, RESET (active low). Includes weak internal pullup. This signal must  
be tied to ground, through an external 15-kΩ resistor, for typical operation.  
JTAGRSTZ  
P8  
ASYNC  
(8) The DLPA1000 is not available for initial DLPC2607 design applications. When the DLPA1000 is not used, all LED PWM signals are  
forced high when LEDDRV_ON = 0, software LED control is disabled, or the sequence stops.  
Copyright © 2013–2019, Texas Instruments Incorporated  
9
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
(1)  
Pin Functions  
(continued)  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
TEST AND DEBUG INTERFACES  
Test pin 0 – Sampled as an input test mode selection control upon release of  
RESET, and then driven as an output. Includes weak internal pulldown.(9)  
Normal use: Reserved for test output (ICP/ WPC debug port TXD). Leave  
open or unconnected for typical use.  
Alternative use: If focus motor control is used, use this pin as the motor  
driver chip enable. Do not apply an external pullup to this pin to avoid putting  
the DLPC2607 device in a test mode.  
TSTPT_0  
TSTPT_1  
TSTPT_2  
TSTPT_3  
B6  
A8  
C7  
B5  
VCC18  
B18  
Async  
Async  
Async  
Async  
Test pin 1 – Sampled as an input test mode selection control upon release of  
RESET, and then driven as an output. Includes weak internal pulldown.(9)  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
Alternative use: If focus motor control is used, use this pin as the motor  
driver data bit1 (LSB). Do not apply an external pullup to this pin to avoid  
putting the DLPC2607 device in a test mode.  
VCC18  
VCC18  
VCC18  
B18  
B18  
B18  
Test pin 2 – Sampled as an input test mode selection control upon release of  
RESET, and then driven as an output. Includes weak internal pulldown.(9)  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
Alternative use: If focus motor control is used, use this pin as the motor  
driver data bit2. Do not apply an external pullup to this pin to avoid putting  
the DLPC2607 device in a test mode.  
Test Pin 3 – Sampled as an input test mode selection control upon release of  
RESET, and then driven as an output. Includes weak internal pulldown.(9)  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
Alternative use: If focus motor control is used, use this pin as the motor  
driver motor driver data bit3. Do not apply an external pullup to this pin to  
avoid putting the DLPC2607 device in a test mode.  
Test pin 4 – Sampled as an input test mode selection control upon release of  
RESET, and then driven as an output. Includes weak internal pulldown.(9)  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
Alternative use: If focus motor control is used, use this pin as the motor  
driver data bit4 (MSB). Do not apply an external pullup to this pin to avoid  
putting the DLPC2607 device in a test mode.  
TSTPT_4  
A7  
VCC18  
B18  
Async  
(9)  
(10)  
Without External Pullup  
With External Pullup  
Disables auto-initialization and  
facilitates flash programming via  
I2C of a blank flash  
Enables auto-initialization from flash  
Test pin 5 – Sampled as an input test mode selection control upon release of  
RESET and then driven as an output. Includes weak internal pulldown.(9)  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
TSTPT_5  
C8  
VCC18  
B18  
Async  
Alternative use: Not yet defined. Do not apply an external pullup to this pin to  
avoid putting the DLPC2607 device in a test mode.  
Test pin 6 and PLL REFCLK frequency selection – Sampled as an input test  
mode selection control upon release of RESET and then driven as an output.  
Includes a weak internal pulldown.(9)  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
Alternative use: Not yet defined.  
This pin is sampled upon de-assertion of RESTZ to determine REFCLK  
frequency selection. DLPC2607 I2C address is set corresponding to the  
sampled input value as follows:  
TSTPT_6  
N9  
VCC18  
B18  
Async  
(9)  
(10)  
Without External Pullup  
With External Pullup  
PLL assumes REFCLK = 8.33  
MHz  
PLL assumes REFCLK = 16.67 MHz  
(9) If operation does not call for an external pullup and there is no external logic that might overcome the weak internal pulldown resistor,  
then this I/O can be left open or unconnected for typical operation. If operation does not call for an external pullup, but there is external  
logic that might overcome the weak internal pulldown resistor, then TI recommends an external pulldown resistor to ensure a logic low.  
(10) External pullup resistor must be 15 kΩ or less.  
10  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
(1)  
Pin Functions  
(continued)  
PIN  
I/O  
CLOCK SYSTEM  
DESCRIPTION  
NAME  
NO.  
POWER  
TYPE  
Test pin 7 and I2C address selection – Sampled as an input test mode  
selection control upon release of RESET, and then driven as an output.  
Includes weak internal pulldown.  
Normal use: Reserved for test output. Leave open or unconnected for typical  
use.  
Alternative use: Not yet defined.  
This pin is sampled upon deassertion of RESET to determine I2C address  
selection. DLPC2607 I2C address is set corresponding to the sampled input  
value as follows:  
TSTPT_7  
R9  
VCC18  
B18  
Async  
(9)  
(10)  
Without External Pullup  
With External Pullup  
I2C slave Write Address = x36  
I2C slave Read Address = x37  
I2C slave Write Address = x3A  
I2C slave Read Address = x3B  
POWER AND GROUND(11)  
D5, D9,  
F4, F12,  
VDD10  
J4, J12,  
M6, M8,  
M11  
1-V core logic power supply  
VDD_PLL  
H12  
1-V power supply for the internal PLL  
C4, D8,  
E4, G3,  
K3, K12,  
L4, M5,  
M9,  
1.8-V power supply for all I/O other than the host, video interface, and SPI  
flash buses  
VCC18  
M12, N4,  
N12  
VCC_FLSH  
VCC_INTF  
D6  
1.8-V, 2.5-V, or 3.3-V power supply for SPI flash bus I/O  
1.8-V, 2.5-V, or 3.3-V power supply for all I/Os on the host or video interface  
(includes I2C, PDATA, video syncs, PARK, and LED_ENABLE pins)  
D11,  
E12  
D4, D7,  
D10,  
D12, G4,  
G12, H4,  
K4, L12,  
M4, M7,  
M10  
GND  
Common ground  
Analog ground return for the PLL (This must be connected to the common  
ground GND through a ferrite.)  
RTN_PLL  
Reserved  
J13  
C2, C3,  
N2, N3  
No connects. Other signals can be routed through the ball on these pins  
(versus going around them) to ease routing if desired  
(11) 134 total signal I/O pins, 38 total power or ground pins, and 4 total reserved pins  
Copyright © 2013–2019, Texas Instruments Incorporated  
11  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–30  
MAX  
1.32  
1.32  
2.75  
3.6  
UNIT  
VDD10  
VDD_PLL  
VCC18  
Voltage(2)  
V
VCC_FLSH  
VCC_INTF  
3.6  
(3)  
VI 1.8 V, 2.5 V, 3.3 V  
3.6  
TJ  
Operating junction temperature  
Operating ambient temperature  
Storage temperature  
105  
85  
ºC  
ºC  
°C  
(4) (5)  
TA  
–30  
Tstg  
–40  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to GND and are at the device not at the power supply.  
(3) Applies to external input and bidirectional buffers.  
(4) TI strongly recommends I/O simulations (using IBIS models) for operation near the extremes of the supported ambient operating  
temperature range to ensure that the PCB design provides acceptable signal integrity.  
(5) The operating ambient temperature range assumes zero forced air flow, a JEDEC JESD51 junction-to-ambient thermal resistance value  
at zero forced air flow (RθJA at 0 m/s), a JEDEC JESD51 standard test card and environment, along with minimum and maximum  
estimated power dissipation across process, voltage, and temperature. Thermal conditions vary by application, which impacts RθJA  
.
Thus, maximum operating ambient temperature varies by application.  
(a) TA_min = TJ_min – (PD_min × RθJA) = –30°C – (0.0 W × 64.96°C/W) = –30°C  
(b) TA_min = TJ_min – (PD_min × RθJA) = 105°C – (0.3 W × 64.96°C/W) = 85°C  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.95  
0.95  
1.71  
1.71  
2.375  
3.135  
1.71  
2.375  
3.135  
–0.3  
0
NOM  
1
MAX UNIT  
VDD10  
1-V supply voltage, core logic  
1.05  
1.05  
V
V
V
V
V
V
V
V
V
V
V
µs  
VDD_PLL  
VCC18  
Analog voltage for PLL  
1
1.8-V supply voltage (for all non-flash and host interface signals)  
1.8-V LVCMOS  
Configuration and control I/O supply voltage  
1.8  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.89  
1.89  
VCC_FLSH  
2.5-V LVCMOS  
2.625  
(variable)  
3.3-V LVCMOS  
1.8-V LVCMOS  
3.465  
1.89  
VCC_INTF Pixel interface supply voltage (variable)  
2.5-V LVCMOS  
3.3-V LVCMOS  
2.625  
3.465  
VI  
Input voltage  
VCCIO(1) + 0.3  
VCCIO(1)  
VO  
Output voltage  
tRAMP  
Power supply ramp time  
10  
(1) VCCIO represents the actual supply voltage applied to the corresponding I/O.  
12  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
DLPC2607  
THERMAL METRIC(1)  
ZVB (NFBGA)  
176 PINS  
19.52  
UNIT  
RθJC  
RθJA  
Junction-to-case thermal resistance  
ºC/W  
ºC/W  
Junction-to-air thermal resistance (with no forced airflow)  
64.96  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report (SPRA953).  
6.5 Typical Current and Power Dissipation  
over operating free-air temperature range (unless otherwise noted)  
WVGA APPLICATIONS  
nHD APPLICATIONS  
TYPICAL  
VOLTAGE (V)  
SUPPLY  
TYPICAL CURRENT  
TYPICAL POWER  
(mW)  
TYPICAL CURRENT  
TYPICAL POWER  
(mW)  
(mA)  
(mA)  
(1) (2) (3)  
I/F Sleep Mode Disabled  
VCC_INTF  
VCC_FLSH(4)  
VCC18  
1.8  
2.5  
1.8  
1
0
0
0.1  
0
0
0.1  
0
0
28.2  
2.8  
39  
50.8  
2.8  
22.7  
2.8  
37.7  
40.9  
2.8  
VDD_PLL  
VDD10  
1
39.0  
92.7  
37.7  
81.5  
Total  
(1) (2) (3)  
I/F Sleep Mode Enabled  
VCC_INTF  
VCC_FLSH  
VCC18(4)  
1.8  
2.5  
1.8  
1
0
0
0.1  
0
0
0.1  
0
0
27  
48.6  
2.8  
22.5  
2.8  
29.3  
40.4  
2.8  
VDD_PLL  
2.8  
30.6  
VDD10  
1
30.6  
82.1  
29.3  
72.6  
Total  
(1) I/F sleep is a programmable parameter that can be set to save power in free-run, sequencer mode when displaying still images on the  
DMD. When I/F sleep is enabled, any images applied to the input bus to the DLPC2607 device are ignored.  
(2) Power for both I/F sleep mode disabled and I/F sleep mode enabled was measured while transferring a full 864 × 480 landscape image  
at periodic 30 frames per second. The image was a 12 × 6 color checkerboard.  
(3) All measurements were taken on a TI internal reference design board at 25°C ambient.  
(4) VCC_FLSH power was 0 at the time of the measurement because flash accesses are limited when the ASIC is being configured.  
Copyright © 2013–2019, Texas Instruments Incorporated  
13  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
6.6 I/O Characteristics  
Voltage and current characteristics for each I/O type signal listed previously in the DLPC2607 table are summarized in I/O  
Characteristics. All inputs and outputs are LVCMOS.(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(9)  
VCCIO  
(NOM)  
(V)  
VIL  
(min)  
(V)  
VIH  
(MAX)  
(V)  
IIN  
(MAX)  
(µA)  
VOH  
(MIN)  
(V)  
VOL  
(MAX)  
(V)  
IOH  
(MIN)  
(mA)  
IOL  
(MIN)  
(mA)  
ITS  
(MAX)  
(µA)  
VIL (MAX)  
(V)  
VIH (MIN)  
(V)  
I/O TYPE  
DESCRIPTION  
I1  
Input (STD)  
1.8  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
1.8  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.5  
0.5  
0.7  
0.8  
0.5  
0.7  
0.8  
0.5  
1.2  
1.2  
1.7  
2
3
3
±10  
±10  
±10  
±10  
±10  
±10  
±10  
±10  
I2  
I3  
Input (FLSH)  
3.6  
3.6  
3
1.2  
1.7  
2
Input (INTF)  
3.6  
3.6  
3
I4  
Input (REFCLK)  
1.2  
1× output (STD/  
REFCLK)  
O14  
1.8  
1.25  
0.4  
2.58  
2.89  
±10  
1.8  
2.5  
3.3  
1.8  
1.8  
1.25  
1.7  
0.4  
0.7  
2.58  
6.2  
2.89  
6.3  
±10  
±10  
±10  
±10  
±10  
O24  
1× output (FLSH)  
2.4  
0.4  
5.29  
6.41  
4
9.38  
5.78  
4
O58  
2× output (DMD)  
1× output (MEM)  
1.25  
1.53  
0.4  
O64(10)  
0.19  
1× output (MEM  
DIFF)(11)  
O74(10)  
1.8  
1.8  
1.8  
1.53  
1.25  
1.25  
0.19  
0.4  
4
4
±10  
±10  
±10  
1× bidirectional  
(STD) output  
B14  
–0.3  
–0.3  
0.5  
0.5  
1.2  
1.2  
3
3
±10  
±10  
2.58  
5.15  
2.89  
5.72  
2× bidirectional  
(STD) output  
B18(12)  
0.4  
1.8  
2.5  
3.3  
1.8  
2.5  
3.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.5  
0.7  
0.8  
0.5  
0.7  
0.8  
1.2  
1.7  
2
3
±10  
±10  
±10  
±10  
±10  
±10  
1.25  
1.7  
0.4  
0.7  
0.4  
0.4  
0.7  
0.4  
2.58  
6.2  
2.89  
6.3  
±10  
±10  
±10  
±10  
±10  
±10  
1× bidirectional  
(INTF) output  
B34  
3.6  
3.6  
3
2.4  
5.29  
5.15  
12.4  
10.57  
9.38  
5.72  
12.7  
18.68  
1.2  
1.7  
2.0  
2.4  
2× bidirectional  
(INTF) output  
B38  
3.6  
3.6  
1.7  
1.25  
1× bidirectional  
(MEM) output  
B64(10)  
1.8  
–0.3  
0.57  
1.19  
2.2  
±10  
1.53  
0.19  
4
4
±10  
(1) Pin PLL_REFCLK_I is a crystal oscillator input pin and is not tested during VIH/VIL testing.  
(2) VIL(min) is the absolute minimum voltage that can safely be applied to each corresponding pin.  
(3) VOH(max) is the maximum voltage that can safely be applied to each corresponding pin.  
(4) Input leakage current with no internal pullup or pulldown. VIN = 0 or VIN = VCCIO where VCCIO = I/O supply voltage  
(5) IOH = – rated current  
(6) IOL = + rated current  
(7) VOH = VOH(max)  
(8) VOL = VOL(max)  
(9) Tri-state output leakage current. VIN = 0 or VIN = VCCIO where VCCIO = I/O supply voltage  
(10) O64, O74, and B64 buffers are tested to only 100 µA for IOH/IOL due to tester limitations.  
(11) The O74 mDDR differential clock (CK) output is simply a pair of single-ended drivers driven by a true and complementary signal.  
(12) B18 buffers are not tested for IIH  
.
6.7 Internal Pullup and Pulldown Characteristics  
The resistance depends on the supply voltage level applied to the I/O.(1)  
(2)  
VCCIO (V)  
3.3  
MIN  
N/A  
33  
MAX  
N/A  
UNIT  
Weak pullup resistance  
2.5  
89  
kΩ  
kΩ  
1.8  
50.3  
17.8  
37  
157.3  
79.6  
109  
3.3  
Weak pulldown resistance  
2.5  
1.8  
51.8  
184.1  
(1) The description column of identifies whether the corresponding signal includes an internal pullup or pulldown resistor.  
(2) Due to tester limitations, only the 1.8-V pullup resistors are measured and no pulldown resistors are measured.  
14  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
6.8 Parallel I/F Frame Timing Requirements  
MIN  
MAX  
UNIT  
tp_vsw  
tp_vbp  
Pulse duration – VSYNC_WE high  
50% reference points  
50% reference points  
1
lines  
Vertical back porch – Time from the leading edge of VSYNC_WE  
to the leading edge HSYNC_CS for the first active line.(1)  
2
lines  
Vertical front porch – Time from the leading edge of the  
HSYNC_CS following the last active line in a frame to the leading  
edge of VSYNC_WE.(1)  
tp_vfp  
50% reference points  
50% reference points  
1
lines  
Total vertical blanking – Time from the leading edge of HSYNC_CS  
following the last active line of one frame to the leading edge of  
HSYNC_CS for the first active line in the next frame. This is equal  
to the sum of Vertical back porch (tp_vbp) + Vertical front porch  
(tp_vfp).  
tp_tvb  
12  
lines  
tp_hsw  
tp_hbp  
tp_hfp  
tp_thh  
Pulse duration – HSYNC_CS high  
50% reference points  
50% reference points  
4
4
128  
PCLKs  
PCLKs  
Horizontal back porch – Time from rising edge of HSYNC_CS to  
rising edge of DATAEN_CMD.  
Horizontal front porch – Time from falling edge of DATAEN_CMD  
to rising edge of HSYNC_CS.  
50% reference points  
50% reference points  
8
PCLKs  
Total horizontal blanking – Sum of horizontal front and back  
porches  
(2)PCLKs  
(1) The programmable parameter vertical sync line delay (I2C: 0x23) must be set such that:  
6 – Vertical front porch (tp_vfp)’ (min 0) Vertical sync line delay Vertical back porch (tp_vbp) – 2 (max 15). The default value for vertical  
sync line delay is set to 5; thus, only a vertical back porch less than 7 requires potential action.  
(2) Total horizontal blanking is driven by the max line rate for a given source, which is a function of resolution and orientation. See Parallel  
I/F Maximum Parallel Interface Horizontal Line Rate for max line rate for each source and display combination. tp_thb = Roundup [(1000  
x ƒclock)/ LR] – APPL where ƒclock = Pixel clock rate in MHz, LR = Line rate in kHz, and the number of active pixels per (horizontal) line is  
APPL. If tp_thb is calculated to be less than tp_hbp + tp_hfp, then the pixel clock rate is too low, or the line rate is too high, and one or both  
must be adjusted.  
6.9 Parallel I/F General Timing Requirements  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tp_clkper  
tp_clkjit  
tp_wh  
Clock frequency, PCLK  
1
33.5  
Clock period, PCLK  
50% reference points  
Max ƒclock  
29.85  
1000  
(1)  
(1)  
Clock jitter, PCLK  
Pulse-duration low, PCLK  
Pulse-duration high, PCLK  
Setup time – HSYNC_CS, DATEN_CMD, PDATA (23:0)  
50% reference points  
50% reference points  
10  
10  
ns  
ns  
tp_wl  
tp_su  
50% reference points  
3
ns  
(2)  
valid before the active edge of PCLK  
Hold time – HSYNC_CS, DATEN_CMD, PDATA (23:0)  
valid after the active edge of PCLK  
tp_h  
tt  
50% reference points  
3
ns  
ns  
(2)  
Transition time – All signals  
20% to 80% reference points  
0.2  
4
(1) Clock jitter (in ns) should be calculated using this formula: Jitter = (1 / ƒclock – 28.35 ns). Setup and hold times must be met during clock  
jitter.  
(2) See Figure 2.  
Copyright © 2013–2019, Texas Instruments Incorporated  
15  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
6.10 Parallel I/F Maximum Parallel Interface Horizontal Line Rate  
LANDSCAPE FORMAT  
PORTRAIT FORMAT  
PARALLEL BUS  
DMD  
RESOLUTION (H×V)  
MAX LINE RATE  
(kHz)  
RESOLUTION (HxV)  
MAX LINE RATE  
(kHz)  
SOURCE  
(1)  
(2)  
NSTC  
720 × 240  
17  
20  
17  
17  
25  
30  
34  
34  
34  
34  
34  
34  
34  
34  
32  
39  
32  
32  
48  
50  
50  
44  
42  
40  
37  
37  
37  
37  
Not supported  
Not supported  
N/A  
N/A  
22  
27  
42  
45  
45  
51  
53  
56  
56  
56  
56  
56  
N/A  
N/A  
42  
52  
79  
74  
66  
66  
66  
66  
66  
66  
66  
66  
(1)  
(2)  
PAL  
720 × 288  
(2)  
(2)  
QVGA  
320 × 240  
240 × 320  
(2)  
(2)  
QWVGA  
427 × 240  
240 × 427  
(2)  
(2)  
nHD  
640 × 360  
360 × 640  
(2)  
(2)  
3:2 VGA  
640 × 430  
430 × 640  
(2)  
(2)  
4:3 VGA  
640 × 480  
480 × 640  
0.3 WVGA and  
0.24 VGA diamond  
(2)  
(2)  
WVGA-720  
WVGA-752  
WVGA-800  
WVGA-852  
WVGA-853  
WVGA-854  
WVGA-864  
720 × 480  
480 × 720  
(2)  
(2)  
752 × 480  
480 × 752  
(2)  
(2)  
800 × 480  
480 × 800  
(2)  
(2)  
852 × 480  
480 × 852  
(2)  
(2)  
853 × 480  
480 × 853  
(2)  
(2)  
854 × 480  
480 × 854  
(2)  
(2)  
864 × 480  
480 × 864  
(1)  
(2)  
NSTC  
720 × 240  
Not supported  
Not supported  
(1)  
(2)  
PAL  
720 × 288  
(2)  
QVGA  
320 × 240  
427 × 240  
640 × 360  
240 × 320  
(2)  
QWVGA  
240 × 427  
(2)  
nHD  
360 × 640  
(2)  
(2)  
3:2 VGA  
640 × 430  
430 × 640  
(2)  
(2)  
4:3 VGA  
640 × 480  
480 × 640  
0.2 nHD Manhattan  
(2)  
(2)  
WVGA-720  
WVGA-752  
WVGA-800  
WVGA-852  
WVGA-853  
WVGA-854  
WVGA-864  
720 × 480  
480 × 720  
(2)  
(2)  
752 × 480  
480 × 752  
(2)  
(2)  
800 × 480  
480 × 800  
(2)  
(2)  
852 × 480  
480 × 852  
(2)  
(2)  
853 × 480  
480 × 853  
(2)  
(2)  
854 × 480  
480 × 854  
(2)  
(2)  
864 × 480  
480 × 864  
(1) NTSC and PAL are assumed to be interlaced sources  
(2) Not supported for 100- to 120-Hz operation  
16  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
6.11 BT.656 I/F General Timing Requirements  
The DLPC2607 ASIC input interface supports the industry standard BT.656 parallel video interface. See the appropriate ITU-  
R BT.656 specification for detailed interface timing requirements. Map the BT.656 data bits to the DLPC2607 PDATA bus as  
(1)  
shown in Figure 3.  
MIN  
MAX UNIT  
ƒclock  
tp_clkper  
tp_clkjit  
tp_wh  
Clock frequency, PCLK  
Clock period, PCLK  
Clock jitter, PCLK(2)  
1
33.5  
MHz  
ns  
50% reference points  
Maximum ƒclock  
29.85  
1000  
(2)  
(2)  
Pulse duration low, PCLK  
Pulse duration high, PCLK  
50% reference points  
50% reference points  
10  
10  
ns  
ns  
tp_wl  
Setup time – HSYNC, DATEN, PDATA(23:0) valid  
before the active edge of PCLK  
tp_su  
50% reference points  
3
ns  
Hold time – HSYNC, DATEN, PDATA(23:0) valid  
after the active edge of PCLK  
tp_h  
tt  
50% reference points  
3
ns  
ns  
Transition time – All signals  
20% to 80% reference points  
0.2  
4
(1) The BT.656 I/F accepts 8-bit per color, 4:2:2 YCb/Cr data encoded per the industry standard though PDATA(7:0) on the active edge of  
PCLK (that is, programmable) as shown in Figure 2.  
(2) Clock jitter should be calculated using this formula: Jitter = (1 / ƒclock – 28.35 ns). Setup and hold times must be met during clock jitter.  
6.12 100- to 120-Hz Operational Limitations  
The table below assumes that a front-end device ahead of the DLPC2607 device converts all 3-D sources to the 3-D format  
defined previously and provides any needed left-eye or right-eye selection control directly to the 3-D glasses (that is, the  
DLPC2607 device does not control the glasses). The DLPC2607 device includes a double buffer frame memory, which  
causes the displayed image to be delayed one frame relative to its input. This requires left or right eye-frame shutter control  
to be inverted prior to being sent to the glasses.  
MIN FRAME NOM FRAME MAX FRAME  
MIN TVB  
(tp_tvb)  
(LINES)  
MAX LINE  
RATE  
(kHz)  
MIN LINE  
RATE  
(kHz)  
(1)  
MIN CLOCK  
RATE  
RESOLUTION  
(APPL x ALPF)  
SOURCE  
RATE  
(Hz)  
RATE  
(Hz)  
RATE  
(Hz)  
(MHz)  
(2)  
nHD  
640 × 360  
427 × 240  
320 × 240  
640 × 360  
427 × 240  
320 × 240  
99  
99  
100  
100  
100  
120  
120  
120  
101  
101  
12  
12  
12  
12  
12  
12  
48  
32  
32  
48  
32  
32  
(1)  
(1)  
(1)  
(1)  
(1)  
(2)  
(2)  
(2)  
(2)  
(2)  
WQVGA  
QVGA  
nHD  
99  
101  
118.8  
118.8  
118.8  
121.2  
121.2  
121.2  
WQVGA  
QVGA  
(1) Use the following equation to determine the minimum line rate for a given application. The application cannot be supported if the  
calculated minimum line rate exceeds the maximum line rate defined elsewhere in this table;  
Line_Rate_min (kHz) = Frame_Rate_max (Hz) × [ALPF + TVB] /1000  
Where: TVB = Total vertical blanking (in lines)  
ALPF = Active lines per frame  
Frame_Rate_max = Max frame rate including all expected wander  
(2) The following equation should be used to determine the minimum pixel clock rate for a given application. The application cannot be  
supported if the calculated minimum pixel clock rate exceeds the max pixel clock rate defined in Parallel I/F General Timing  
Requirements.  
Pixel_Clock_min (MHz) = Line_Rate_max (kHz) × (APPL + 12) / 1000  
Where: APPL = Active pixels per line  
Line_Rate_max = Max line rate including all expected wander  
Copyright © 2013–2019, Texas Instruments Incorporated  
17  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
6.13 Flash Interface Timing Requirements  
The DLPC2607 ASIC flash memory interface consists of a SPI flash serial interface at 33.3 MHz (nominal).  
(1) (2)  
MIN  
MAX  
UNIT  
MHz  
ns  
ƒclock  
tp_clkper Clock period, SPI_CLK  
Clock frequency, SPI_CLK(3)  
33.3266  
29.994  
10  
33.34  
50% reference points  
50% reference points  
50% reference points  
20% to 80% reference points  
50% reference points  
50% reference points  
50% reference points  
30.006  
tp_wh  
tp_wl  
tt  
Pulse duration low, SPI_CLK  
ns  
Pulse duration high, SPI_CLK  
10  
ns  
Transition time – all signals  
0.2  
4
1
ns  
tp_su  
tp_h  
Setup time – SPI_DIN valid before SPI_CLK falling edge  
Hold time – SPI_DIN valid after SPI_CLK falling edge  
10  
ns  
0
ns  
tp_clqv  
SP_ICLK clock low to output valid time – SPIDOUT and  
SPI_CSZ  
ns  
ns  
tp_clqx  
SPI_CLK clock low output hold time – SPI_DOUT and  
SPI_CSZ  
50% reference points  
–1  
(1) Standard SPI protocol is to transmit data on the falling edge of SPI_CLK and capture data on the rising edge. The DLPC2607 device  
does transmit data on the falling edge, but it captures data on the falling edge rather than the rising edge. This provides support for SPI  
devices with long clock-to-Q timing. The DLPC2607 device hold capture timing is set to facilitate reliable operation with standard  
external SPI protocol devices.  
(2) With the above output timing, the DLPC2607 device provides the external SPI device 14-ns input set-up and 14-ns input hold relative to  
the rising edge of SPI_CLK.  
(3) This range includes the 200 ppm of the external oscillator (but no jitter).  
6.14 DMD Interface Timing Requirements  
The DLPC2607 ASIC DMD interface consists of a 76.19-MHz (nominal) DDR output-only interface with LVCMOS signaling.  
(1)  
(see  
)
MIN  
76.175  
13.122  
6.2  
MAX UNIT  
ƒclock  
tp_clkper  
tp_wh  
tp_wl  
tt  
Clock frequency, DMD_DCLK and DMD_SAC_CLK(2)  
Clock period, DMD_DCLK and DMD_SAC_CLK  
Pulse duration low, DMD_DCLK and DMD_SAC_CLK  
Pulse duration high, DMD_DCLK and DMD_SAC_CLK  
Transition time – all signals  
76.206  
MHz  
ns  
50% reference points  
50% reference points  
50% reference points  
20% to 80% reference points  
13.128  
ns  
6.2  
ns  
0.3  
2
ns  
Output setup time – DMD_D(14:0),  
tp_su  
DMD_SCTRL, DMD_LOADB and DMD_TRC  
50% reference points  
1.5  
ns  
ns  
relative to both rising and falling edges of DMD_DCLK(3) (4)  
Output hold time – DMD_D(14:0),  
DMD_SCTRL,DMD_LOADB and DMD_TRC  
signals relative to both rising and falling edges of  
DMD_DCLK(3) (4)  
tp_h  
50% reference points  
1.5  
DMD data skew – DMD_D(14:0),  
tp_d1_skew DMD_SCTRL, DMD_LOADB, and DMD_TRC  
50% reference points  
50% reference points  
50% reference points  
0.2  
0.2  
0.2  
ns  
ns  
ns  
signals relative to each other(5)  
Clock skew – DMD_DCLK and DMD_SAC_CLK relative to each  
tp_clk_skew  
other  
DAD/SAC data skew - DMD_SAC_BUS,  
tp_d2_skew DMD_DRC_OEZ(6), DMD_DRC_BUS,  
and DMD_DRC_STRB signals relative to DMD_SAC_CLK  
(1) Assumes a 30-Ω series termination for all DMD interface signals (except DAD_DMD_OEZ)  
(2) This range includes the 200 ppm of the external oscillator (but no jitter).  
(3) Assumes minimum DMD setup time = 1 ns and minimum DMD hold time = 1 ns  
(4) Output setup and hold numbers already account for controller clock jitter. Only routing skew and DMD setup/hold must be considered in  
system timing analysis.  
(5) Assumes DMD data routing skew = 0.1 ns max  
(6) DMD_DAD_OEZ requires a 30- to 100-kΩ external pullup resistor connected to VCC18 to achieve proper timing.  
18  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
6.15 mDDR Memory Interface Timing Requirements  
The DLPC2607 controller mDDR memory interface consists of a 16-bit wide, mDDR interface (that is, LVCMOS signaling)  
(1) (2) (3)  
operated at 133.33 MHz (nominal). (see  
)
MIN  
7500  
2700  
2700  
2700  
2700  
–2870  
MAX  
UNIT  
ps  
tCYCLE  
tCH  
Cycle-time reference  
CK high pulse width(4)  
CK low pulse width(4)  
DQS high pulse width(4)  
DQS low pulse width(4)  
ps  
tCL  
ps  
tDQSH  
tDQSL  
tWAC  
tQAC  
ps  
ps  
CK to address and control outputs active  
CK to DQS output active  
2870  
200  
ps  
ps  
tDAC  
DQS to DQ and DM output active  
Input (read) DQS and DQ skew(5)  
–1225  
1225  
1000  
ps  
tDQSRS  
ps  
(1) This includes the 200 ppm of the external oscillator (but no jitter).  
(2) Output setup and hold numbers already account for controller clock jitter. Only routing skew and memory setup/hold must be considered  
in system timing analysis.  
(3) Assumes a 30-Ω series termination on all signal lines.  
(4) CK and DQS pulse duration specifications for the DLPC2607 assume it is interfacing to a 166-MHz mDDR device. Even though these  
memories are only operated at 133.33 MHz, according to memory vendors, the rated tCK specification (that is 6 ns) can be applied to  
determine minimum CK and DQS pulse duration requirements to the memory.  
(5) Note that DQS must be within the tDQSRS read data-skew window, but need not be centered.  
1 Frame  
tp_vsw  
VSYNC_WE  
(This diagram assumes the VSYNC  
active edge is the Rising edge)  
tp_vbp  
tp_vfp  
HSYNC_CS  
DATAEN_CMD  
1 Line  
tp_hsw  
HSYNC_CS  
(This diagram assumes the HSYNC  
active edge is the Rising edge)  
tp_hbp  
tp_hfp  
DATAEN_CMD  
PDATA(23/15:0)  
PCLK  
P
n-2  
P
n-1  
P0  
P1  
P2  
P3  
Pn  
Figure 1. Parallel I/F Frame Timing  
Copyright © 2013–2019, Texas Instruments Incorporated  
19  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
tp_clkper  
tp_wh  
tp_wl  
PCLK  
tp_h  
tp_su  
Figure 2. Parallel and BT.656 I/F General Timing  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDATA (7:0) of the Input Pixel data bus  
Bus Assignment Mapping  
Y
7
Y
6
Y
5
Y
4
Y
3
Y
2
Y
1
Y
0
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Data bit mapping on the pins of the ASIC  
Figure 3. DLPC2607 PDATA Bus – BT.656 I/F Mode Bit Mapping (YCrCb 4:2:2 Source)  
tclkper  
SPI_CLK  
twh  
twl  
(ASIC Output)  
tp_su  
tp_h  
SPI_DIN  
(ASIC Inputs)  
tp_clqv  
SPI_DOUT, SPI_CS(1:0)  
(ASIC Outputs)  
tp_clqx  
Figure 4. Flash I/F Timing  
20  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
tp_d1_skew  
DMD_D(14:0)  
DMD_SCTRL  
DMD_TRC  
DMD_LOADB  
tp_h  
tp_su  
DMD_DCLK  
tp_wl  
tp_wh  
tclk_skew  
DMD_SAC_CLK  
tp_d2_skew  
DMD_SAC_BUS  
DMD_DAD_OEZ  
DMD_DAD_BUS  
DMD_DAD_STRB  
Figure 5. DMD I/F Timing  
tCYCLE  
MEM0_CK_P  
MEM0_CK_N  
tCH  
tCL  
MEM0_ADDRS(12:0)  
MEM0_BA(1:0)  
MEM0_RASZ  
MEM0_CASZ  
MEM0_WEZ  
MEM0_CSZ  
tWAC  
tWAC  
MEM0_CKE  
Figure 6. mDRR Memory Address and Control Timing  
Copyright © 2013–2019, Texas Instruments Incorporated  
21  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
tCYCLE  
MEM0_CK_P  
MEM0_CK_N  
tCH  
tCL  
tQAC  
(tDQSCK)  
tCYCLE  
tDQSH  
tDQSL  
MEM0_xDQS  
tDAC  
MEM0_xDQ(7:0)  
MEM0_xDQ(15:8)  
tDAC  
MEM0_xDM  
Figure 7. mDRR Memory Write Dtat Timing  
tCYCLE  
MEM0_xDQS  
MEM0_xDQ(first)  
MEM0_xDQ(last)  
tDQSH  
tDQSL  
tDQSRS  
MEM0xDQ(7:0)  
Data Valid Window  
Figure 8. mDDR Memory Read Data Timing  
22  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
7 Detailed Description  
7.1 Overview  
The DLPC2607 is the display controller for the 0.3-WVGA, 0.24-VGA and 0.2-nHD DMDs. Both the controller  
and the DMD must be used in conjunction with each other for reliable operation of the DMD. The DLPC2607  
display controller provides interfaces and data/image processing functions that are optimized for small form factor  
and low power display applications. Applications include pico projectors, smart projectors, screen less display,  
interactive display, wearable displays and many more. In typical systems a separate applications processor is  
used to provide various multimedia functionality (such as video decoder, HDMI receiver, VGA, SD card, or USB  
I/F chip).  
7.2 Functional Block Diagram  
DLPC2607  
Pixel  
Data  
I/F  
16  
Frame  
Memory  
Controller  
Mobile  
DDR  
DRAM  
Front End  
Processing  
Vector Graphics  
Processing  
24  
DDR  
DMD  
Formatting  
Clocks  
& Resets  
Display  
Control  
Configuration  
Control  
PLL  
DDR  
SPI  
I2C  
Crystal  
or  
Osc  
LED  
Driver  
Serial  
Flash  
0.3 WVGA  
0.2 nHD, or  
0.24 VGA  
DMD  
Host  
Controller  
7.3 Feature Description  
7.3.1 Parallel Bus Interface  
The parallel bus interface complies with standard graphics interface protocol, which includes a vertical sync  
signal (VSYNC_WE), horizontal sync signal (HSYNC_CS), optional data valid signal (DATAEN_CMD), a 24-bit  
data bus (PDATA), and a pixel clock (PCLK). The user can program the polarity of both syncs and the active  
edge of the clock. Figure 1 shows the relationship of these signals. The data valid signal (DATAEN_CMD) is  
optional in that the DLPC2607 device provides auto-framing parameters that can be programmed to define the  
data valid window based on pixel and line counting relative to the horizontal and vertical syncs.  
Copyright © 2013–2019, Texas Instruments Incorporated  
23  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
Feature Description (continued)  
In addition to these standard signals, an optional side-band signal (PDM_CVS_TE) is available, which allows the  
user to stop the periodic frame updates without losing the displayed image. When PDM_CVS_TE is active, it acts  
as a data mask and does not allow the source image to be propagated to the display. A programmable PDM  
polarity parameter determines if it is active high or active low. This parameter defaults to make PDM_CVS_TE  
active high. Therefore, if this function is not desired, tie it to a logic low on the PCB. PDM_CVS_TE is restricted  
to change only during vertical blanking. Note that VSYNC_WE must remain active at all times (in Lock-to-VSYNC  
mode) or the display sequencer stops and causes the LEDs to be shut off.  
The parallel bus interface supports six data transfer formats:  
16-bit RGB565  
18-bit RGB666  
18-bit 4:4:4 YCrCb666  
24-bit RGB888  
24-bit 4:4:4 YCrCb888  
16-bit 4:2:2 YCrCb (standard sampling assumed to be Y0Cb0, Y1Cr0, Y2Cb2, Y3Cr2, Y4Cb4, Y5Cr4, …)  
Figure 9 shows the required PDATA(23:0) bus mapping for these six data transfer formats.  
Parallel Bus Mode œ 4:4:4 RGB and YCrCb Sources  
PDATA(15:0) œ 565 Mapping to 888  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDATA(15:0) of the Input Pixel data bus  
Bus Assignment Mapping  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
RGB Data bit mapping on the ASIC  
4:4:4 YCrCb Data bit mapping on the ASIC  
PDATA(17:0) œ 666 Mapping to 888  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDATA(17:0) of the Input Pixel data bus  
Bus Assignment Mapping  
R5  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
G0  
B5  
B4  
B3  
B2  
B1  
B0  
RGB Data bit mapping on the ASIC  
4:4:4 YCrCb Data bit mapping on the ASIC  
Cr  
5
Cr  
4
Cr  
3
Cr  
2
Cr  
1
Cr  
0
Y
5
Y
4
Y
3
Y
2
Y
1
Y
0
Cb  
5
Cb  
4
Cb  
3
Cb  
2
Cb  
1
Cb  
0
PDATA(23:0) œ 888 Mapping  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDATA(23:0) of the Input Pixel data bus  
Bus Assignment Mapping  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RGB Data bit mapping on the ASIC  
4:4:4 YCrCb Data bit mapping on the ASIC  
Cr  
7
Cr  
6
Cr  
5
Cr  
4
Cr  
3
Cr  
2
Cr  
1
Cr  
0
Y
7
Y
6
Y
5
Y
4
Y
3
Y
2
Y
1
Y
0
Cb  
7
Cb  
6
Cb  
5
Cb  
4
Cb  
3
Cb  
2
Cb  
1
Cb  
0
Parallel Bus Mode - 16-bit YCrCb 4:2:2 Source  
PDATA(23:0) œ Cr/CbY880 Mapping  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PDATA(23:0) of the Input Pixel data bus  
Bus Assignment Mapping  
Cr/  
Cb  
7
Cr/  
Cb  
6
Cr/  
Cb  
5
Cr/  
Cb  
4
Cr/  
Cb  
3
Cr/  
Cb  
2
Cr/  
Cb  
1
Cr/  
Cb  
0
Y
7
Y
6
Y
5
Y
4
Y
3
Y
2
Y
1
Y
0
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
Data bit mapping on the pins of the ASIC  
Figure 9. PDATA Bus – Parallel I/F Mode Bit Mapping  
7.3.2 100- to 120-Hz 3-D Display Operation  
The DLPC2607 device supports 100- to 120-Hz 3-D display operation, but is limited to a narrow set of  
configurations. 3-D operation is limited to:  
0.2-nHD DMDs only  
24  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
Feature Description (continued)  
nHD, WQVGA and QVGA source resolutions  
Parallel bus interface only (all pixel formats are supported)  
Landscape source and display orientation only  
Non-interlaced video-graphics only  
100-Hz ±1% or 120-Hz ±1% source frame rates  
Unpacked, full resolution, frame sequential, 3-D format (that is each 100- or 120-Hz source frame contains a  
single, full resolution, eye frame separated by VSYNCs, where an eye frame contains image data for a single  
left or right eye; not both)  
Minimum line rates that satisfy the high frame rates  
To support 3-D operation, run the DLPC2607 device in Lock-to-VSYNC mode with 1× frame rate multiplication  
(that is, no frame rate multiplication). Each DMD frame is displayed at the source frame rate in the order it is  
received.  
Because of the high frame rate of the source, the source line rate must be much higher than typical, but still  
cannot exceed the rates defined in Parallel I/F Maximum Parallel Interface Horizontal Line Rate. The minimum  
line rate is limited by the maximum frame rate and minimum total vertical blanking (TVB). 100- to 120-Hz  
Operational Limitations provides a summary of the line rate range assuming the minimum TVB.  
7.4 Programming  
7.4.1 Serial Flash Interface  
The DLPC2607 device uses an external SPI serial flash memory device for configuration support. The minimum  
required size depends on the desired minimum number of sequences, CMT tables, and splash options while the  
maximum supported is 16 Mb. Table 1 provides the list of the configuration options.  
Table 1. Serial Flash Support Features by Density(1)  
QUANTITY OF FEATURES THAT CAN BE SUPPORTED  
TARGET  
OPTICAL TEST  
SPLASH  
SCREENS  
STANDARD  
SPLASH  
SCREENS  
SERIES  
DATA  
SECTOR  
DLP DISPLAY  
FLASH  
DENSITY (Mb)  
UNIT DATA ODM DATA  
CMT TABLES PER  
SEQUENCE  
SEQUENCES  
(3)  
SECTOR  
SECTOR  
(2)  
4 Mb  
8 Mb  
0
0
1
1
3
4
1
1
1
1
1
1
1
1
1
16  
16  
16  
7
7
7
16 Mb  
(1) All rows in this table have passed DVT at TI.  
(2) Assumes individual DLP display sequences are limited to 5 KB each  
(3) An equal number of CMT tables are required for each sequence (CMT tables define the DeGamma Curve). The DLPC2607 device uses  
a single SPI, employing SPI mode 0 protocol, operating at a frequency of 33.3 MHz. It supports two independent SPI chip selects.  
However, the primary flash must be connected to SPI chip select 0 (SPICS0) because the auto-initialization routine is always executed  
from the device connected to this chip select. The auto-initialization routine executed from flash consists of the following:  
(a) The DLPC2607 device first uploads the size and location of the auto-initialization routine from address range 0x0000 through 0x0007  
of the serial flash memory connected to SPICS0.  
(b) The DLPC2607 device then uploads the actual auto-initialization routine to its ICP program memory from the serial flash memory  
connected to SPICS0.  
(c) The DLPC2607 device then executes an auto-init routine, which includes uploading default control parameter values, uploading  
mailbox memory contents, turning on the sequence and LEDs, and then enabling the display.  
(d) Upon completion of the auto-initialization routine, the DLPC2607 signals INIT DONE with GPIO4_INTF.  
The DLPC2607 device supports any flash device that is compatible with these modes of operation. However, the  
DLPC2607 device does not support the Normal (slow) Read Opcode, and thus cannot automatically adapt  
protocol and clock rate based on the flash’s electronic signature ID. The flash instead uses a fixed SPI clock and  
assumes certain attributes of the flash have been ensured by PCB design. The DLPC2607 device also assumes  
the flash supports address auto-incrementing for all read operations. Table 2 and Table 3 list the specific  
instruction OpCode and timing compatibility requirements for a DLPC2607 device compatible flash.  
Copyright © 2013–2019, Texas Instruments Incorporated  
25  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
Table 2. SPI Flash Instruction OpCode and Timing Compatibility Requirements  
SPI FLASH COMMAND  
Fast READ (single output)  
All others  
OPCODE (hex)  
0x0B  
ADDRESS BYTES  
DUMMY BYTES  
MIN CLOCK RATE  
33.3 MHz  
3
1
Can vary  
Can vary  
Can vary  
33.3 MHz  
Table 3. SPI Flash Key Timing Parameter Compatibility Requirements  
MIN  
MAX  
UNIT  
ns  
Minimum chip select high time  
Minimum output hold time  
Maximum output valid time  
Minimum data in setup time  
Minimum data in hold time  
300  
0
ns  
9
5
5
ns  
ns  
ns  
The DLPC2607 device does not have any specific page, block, or sector size requirements, except that  
programming with the I2C interface requires the use of page mode programming. However, if the user would like  
to use a portion of the serial flash for storing external data (such as calibration data) with the I2C interface, then  
the minimum sector size must be considered as it drives minimum erase size. Note that use of serial flash for  
storing external data may impact the number of features that can be supported.  
NOTE  
The DLPC2607 device does not drive the HOLD (active low hold) or WP (active low write  
protect) pins on the flash device. Tie these pins to a logic high on the PCB with an  
external pullup.  
The DLPC2607 device supports 1.8 V, 2.5 V, or 3.3 V serial flash devices. Some suggested devices would  
include the W25Q16DWSSIG or MX25U4035. If a different flash device is used, Table 4 lists the minimum  
performance specifications necessary.  
Table 4. Specifications of Compatible SPI Serial Flash Devices  
SPI Flash Timing Parameter  
Minimum Chip Select High Time  
Minimum Output Hold Time  
Maximum Output Valid Time  
Minimum Data in Setup Time  
Minimum Data in Hold Time  
Minimum Clock Rate  
MIN  
MAX  
300ns  
0ns  
9ns  
5ns  
5ns  
33.3MHz  
7.4.2 Serial Flash Programming  
The flash can be programmed through the DLPC2607 device over I2C (for directions, see the DLPC2607  
Software Programmer's Guide, DLPU013) or by driving the SPI pins of the flash directly while the DLPC2607  
device I/O are tri-stated. SPICLK, SPIDOUT, and SPICZ0 I/O can be tri-stated by holding RESET in a logic-low  
state while power is applied. Note that SPICSZ1 is not tri-stated by this same action.  
26  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DLPC2607 controller supports reliable operation of .3-WVGA, .24-VGA and .2-nHD DMDs and must be  
always used with the DMD to provide a reliable display solution for various data and video display applications.  
The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two  
directions, with the primary direction being into a projection or collection optic. Each application is derived  
primarily from the optical architecture of the system and the format of the data coming into the DLPC2607.  
Applications of interest include accessory projectors, projectors embedded in display devices like notebooks,  
laptops, tablets, and set top box. Other applications include wearable (near-eye or head mounted) displays,  
interactive display and low latency gaming display.  
8.2 Typical Application  
Figure 10 shows a typical accessory projector application. For this application, the DLPC2607 device is  
controlled by a separate control processor (typically a MSP430) and the image data is received from a TVP5151  
video decoder device. For this application, the ASIC supports periodic sources only. A common application when  
using DLPC2607 controller is for creating an accessory Pico projector for a smartphone, tablets or any other  
display source. The DLPC2607 in the accessory Pico projector typically receives images from a host processor  
or a multimedia processor.  
Figure 10. Typical Standalone Projector System Block Diagram  
8.2.1 System Functional Modes  
The application system has two functional modes (ON/OFF) controlled by a single pin PROJ_ON:  
When pin PROJ_ON is set high, the projector automatically powers up and an image is projected from the  
Copyright © 2013–2019, Texas Instruments Incorporated  
27  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
Typical Application (continued)  
DMD.  
When pin PROJ_ON is set low, the projector automatically powers down to save power.  
8.2.2 Design Requirements  
8.2.2.1 Reference Clock  
The device requires an external reference clock to feed its internal PLL. This reference may be supplied by a  
crystal or oscillator. For flexibility, the DLPC2607 device accepts either of two reference clock frequencies (see  
Table 5), but both must have a maximum frequency variation of 200 ppm (including aging, temperature, and trim  
component variation). When a crystal is used, the configuration requires several discrete components, as shown  
in Figure 11.  
PLL_REFCLK_O  
PLL_REFCLK_I  
CL = Crystal load capacitance (Farads)  
CL1 = 2 x (CL - Cstray_pll_refclk_i)  
CL2 = 2 x (CL - Cstray_pll_refclk_o)  
RFB  
RS  
Where:  
Cstray_pll_refclk_i = Sum of package and PCB  
Crystal  
stray capacitance at the crystal pin associated  
with the ASIC pin pll_refclk_i.  
Cstray_pll_refclk_o = Sum of package and PCB  
stray capacitance at the crystal pin associated  
with the ASIC pin pll_refclk_o.  
CL1  
CL2  
Figure 11. Recommended Crystal Oscillator Configuration  
Table 5. Crystal Port Characteristics  
PARAMETER  
NOM  
4.5  
UNIT  
pF  
PLL_REFCLK_I TO GND capacitance  
PLL_REFCLK_O TO GND capacitance  
4.5  
pF  
Table 6. Recommended Crystal Configuration  
PARAMETER  
Crystal circuit configuration  
Crystal type  
RECOMMENDED  
UNIT  
Parallel resonant  
Fundamental (first harmonic)  
Crystal nominal frequency (See TSTPT_6 in the Pin Functions  
table)  
16.667 or 8.333  
±200  
MHz  
PPM  
Crystal frequency tolerance (including accuracy, temperature, aging,  
and trim sensitivity)  
Crystal drive level  
100 max  
80 max  
12  
µW  
Ω
Crystal equivalent series resistance (ESR)  
Crystal load  
pF  
Ω
RS drive resistor (nominal)  
RFB feedback resistor (nominal)  
100  
1
MΩ  
28  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
Table 6. Recommended Crystal Configuration (continued)  
PARAMETER  
RECOMMENDED  
UNIT  
pF  
CL1 external crystal load capacitor  
CL2 external crystal load capacitor  
PCB layout  
See Figure 11  
See Figure 11  
pF  
TI recommends a ground isolation ring around the crystal  
If an external oscillator is used, then the oscillator output must drive the PLL_REFCLK_I pin on the DLPC2607  
ASIC. Leave the PLL_REFCLK_O pins unconnected. An oscillator that provides a spread-spectrum clock  
reduces EMI.  
NOTE  
The DLPC2607 device accepts between 0% to –2% spreading (that is, down spreading  
only) with a modulation frequency between 20 kHz and 65 kHz and a triangular waveform.  
Similar to the crystal option, the oscillator input frequency is limited to 16.667 or 8.333 MHz. To configure the  
DLPC2607 device to accept the 8.333-MHz reference clock option, an external pullup resistor to VCC18 must be  
applied to the TSTPT (6) pin. To configure the DLPC2607 device to accept the 16.667-MHz reference clock  
option, leave the TSTPT (6) pin unconnected.  
It is assumed that the external crystal or oscillator stabilizes within 50 ms after stable power is applied.  
8.2.2.2 mDDR DRAM Compatibility  
The following are the basic SDRAM compatibility requirements for the DLPC2607 SDRAM:  
SDRAM memory type: mDDR  
Size: 128 Mb minimum  
Organization: N × 16-bits wide × 4 banks  
Speed grade tCK: 6-ns max  
CAS latency (CL), tRCD, tRP parameters (clocks): 3, 3, 3  
Burst length options to include: Burst of 4  
Refresh period (full device): 64 ms  
The following mDDR DRAM devices are recommended for use with the DLPC2607 device:  
Table 7. Compatible mDDR DRAM Device Options(1) (2)  
SPEED GRADE tCK  
DVT(3)  
VENDOR  
PART NUMBER  
SIZE (Mb) ORGANIZATION  
CL, tRCD, tRP (Clocks)  
(4) (ns)  
(5)  
(3)  
(3)  
(3)  
(3)  
(3)  
(3)  
No  
Yes  
No  
Elpida  
Elpida  
EDK1216CFBJ-60-F  
128  
256  
256  
256  
256  
256  
8 M × 16  
16 M × 16  
16 M × 16  
16 M × 16  
16 M × 16  
16 M × 16  
6
6
6
6
6
6
EDD25163HBH-6ELS-F  
(6)  
Samsung  
Samsung  
Micron  
K4X56163PL-FGC6  
Yes  
Yes  
Yes  
K4X56163PN-FGC6  
MT46H16M16LFBF-6IT:H  
H5MS2562JFR-J3M  
Hynix  
(1) The DLPC2607 device does not use partial array self-refresh or temperature-compensated self-refresh options.  
(2) These part numbers reflect Pb-free package.  
(3) All these SDRAM devices appear compatible with the DLPC2607 device, but only those marked with 'yes' in the DVT column have been  
validated on a TI internal reference design board. Those marked with 'no' can be used at the risk of the ODM.  
(4) A 6-ns speed grade corresponds to a 166-MHz mDDR device.  
(5) These devices are EOL and no replacement with the same footprint. Do not use these in new designs.  
(6) The manufacturer has issued an upcoming end of life notice on this device.  
8.2.3 Detailed Design Procedure  
For connecting together the DLPC2607 controller and the DMD, see the reference design schematic. Follow the  
layout guidelines to achieve a reliable projector. The DLP system requires an optical module or light engine. An  
optical OEM that specializes in designing optics for DLP projectors typically supplies the optical engine that has  
the LED packages and the DMD mounted to it.  
Copyright © 2013–2019, Texas Instruments Incorporated  
29  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
8.2.3.1 Hot-Plug Usage  
The DLPC2607 device provides fail-safe I/O on all host interface signals (signals powered by VCC_INTF). This  
protection allows the device to drive these inputs high even when no I/O power is applied.  
Under this condition, the DLPC2607 device does not load the input signal, nor draw excessive current that could  
degrade ASIC reliability. For example, the I2C bus from the host to other components would not be affected by  
powering off VCC_INTF to the DLPC2607 device. Note that TI recommends weak pullups or pulldowns on  
signals feeding back to the host to avoid floating inputs.  
30  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
8.2.3.2 Maximum Signal Transition Time  
Unless otherwise noted, the maximum recommended 20% to 80% rise and fall time to avoid input buffer  
oscillation is 10 ns. This applies to all DLPC2607 device input signals.  
NOTE  
The PARK input signal includes an additional small digital filter that ignores any input-  
buffer transitions caused by a slower rise and fall time for up to 150 ns.  
8.2.3.3 Configuration Control  
The primary configuration control mechanism for the DLPC2607 device is the I2C interface. See the DLPC2607  
Software Programmer's Guide, DLPU004, for details on how to configure and control the DLPC2607.  
8.2.3.4 White Point Correction Light Sensor  
With the addition of a light-to-voltage light sensor (such as a phototransistor) and a voltage comparator circuit,  
the DLPC2607 device supports automatic white point correction and power control.  
8.2.4 Application Curve  
As the LED currents that are driven time-sequentially through the red, green, and blue LEDs are increased, the  
brightness of the projector increases. This increase is somewhat non-linear, and the curve for typical white  
screen lumens changes with LED currents is shown in Figure 12. For the LED currents shown, it is assumed that  
the same current amplitude is applied to the red, green, and blue LEDs.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
500  
1000  
1500  
2000  
2500  
3000  
Current (mA)  
D001  
Figure 12. Luminance vs Current  
As with prior DLP electronics solutions, image data is 100% digital from the DLPC2607 device input port to the  
image projected on to the display screen. The image stays in digital form and is never converted into an analog  
signal. The DLPC2607 device processes the digital input image and converts the data into bit-plane format as  
needed by the DMD. The DMD then reflects light to the screen using binary pulse-width modulation (PWM) for  
each pixel mirror. The viewer’s eyes integrate this light to form brilliant, crisp images.  
Copyright © 2013–2019, Texas Instruments Incorporated  
31  
 
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
9 Power Supply Recommendations  
9.1 System Power Considerations  
Table 8 provides a summary of the required power delivery requirements for DLPC2607 for various VCC_FLSH  
and VCC_INTF power options.  
Table 8. Configuration Based Power Supply Requirements  
NOMINAL VOLTAGE  
(V)  
TOTAL SUPPLY  
MARGIN  
ASIC POWER RAIL  
USAGE  
(1)  
(2)  
VCC_INTF  
Video interface I/O  
Flash I/O  
1.8, 2.5, or 3.3  
±5%  
±5%  
±5%  
±5%  
±5%  
(3)  
VCC_FLSH  
1.8, 2.5, or 3.3  
(4)  
VDD_PLL  
Internal PLL  
1
1.8  
1
VCC18  
VDD10  
mDDR and DMD I/O  
ASIC core  
(1) Total supply margin = DC offset budget + AC noise budget  
(2) VCC_INTF is independent of all other supplies.  
(3) VCC_FLSH is independent of all other supplies.  
(4) When possible, TI recommends to use a tighter supply tolerance (±3%) for the power to the PLL in  
order to improve system noise immunity.  
9.2 System Power-Up and Power-Down Sequence  
Although the DLPC2607 device requires an array of power supply voltages, (that is, VDD, VDD_PLL, VCC_18,  
VCC_FLSH, and VCC_INTF), there are no restrictions regarding the relative order of power supply sequencing  
to avoid damaging the DLPC2607 device. This is true for both power-up and power-down scenarios. Similarly  
there is no minimum time between powering-up or powering-down the different supplies feeding the DLPC2607  
device.  
NOTE  
Often, there are power sequencing requirements for devices that share the supplies with  
the DLPC2607 device.  
From a functional standpoint, there is one specific power-sequencing recommendation to ensure proper  
operation. In particular, apply all ASIC power and allow it to reach the minimum specified voltage levels before  
RESET is deasserted to ensure proper power-up initialization is performed. Ensure that all I/O power remains  
applied as long as 1-V core power is applied and RESET is de-asserted.  
NOTE  
When VDD10 core power is applied but I/O power is not applied, additional leakage  
current may be drawn.  
32  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
System Power-Up and Power-Down Sequence (continued)  
Point at which ALL supplies  
VDD10 (1.0 V)  
reach 95% of the their  
specified nominal value.  
VCC_PLL (1.0 V)  
VCC_INTF (1.8 to 3.3 V)  
VCC_FLSH (1.8 to 3.3 V)  
PARKZ must be set high within  
500 µs after RESETZ is released to  
support Auto-initialization  
The TI internal reference design board requires  
VCC18  
(1.8 V)  
VCC18 to remain active for a minimum of  
100 ms after DMD_PWR_EN is de-asserted to  
satisfy DMD power sequence requirements.  
Per DMD  
Power  
Sequencing  
Requirement  
500 µs  
max  
PARKZ  
DMD_PWR_EN  
(ASIC output signal)  
500 ±5 µs  
PARKZ must be set  
low a min of 500 µs  
before any power is  
removed, before  
PLL_REFCLK is  
PLL_REFCLK  
RESETZ  
PLL_REFCLK may be  
active before power is  
applied  
Tstable  
stopped and before  
RESETZ is asserted  
to allow time for the  
DMD mirrors to be  
Parked.  
100 ms min  
GPIO4_INTF will be  
driven high shortly  
after reset is release  
to indicate  
I2C  
(SCL,SDA)  
500 µs  
Min  
0 µs  
500 µs  
Min  
GPIO4_INTF  
(INIT_BUSY)  
Initialization Busy  
The min requirement to set RESETZ = 1 is anytime after  
PLL_REFCLK becomes stable. For external oscillator  
application this is oscillator dependent & for crystal  
applications it is Crystal dependent.  
I2C access CAN start immediately after GPIO4_INTF (INIT_BUSY flag)  
goes low (this should occur within 100ms from the release of RESETZ  
if the Motor Control function is not utilized. If Motor Control is  
utilized it may take several seconds.)  
Figure 13. Power-Up and Power-Down Timing  
Copyright © 2013–2019, Texas Instruments Incorporated  
33  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
9.3 System Power I/O State Considerations  
Note that:  
If VCC18 I/O power is applied when VDD10 core power is not applied, then all mDDR (non-fail-safe) and non-  
mDDR (fail-safe) output signals associated with the VCC18 supply are in a high-impedance state.  
If VCC_INTF or VCC_FLSH I/O power is applied when VDD10 core power is not applied, then all output  
signals associated with these inactive I/O supplies are in a high-impedance state.  
If VDD10 core power is applied but VCC_INTF or VCC_FLSH I/O power is not applied, then all output signals  
associated with these inactive I/O supplies are in a high-impedance state.  
If VDD10 core power is applied but VCC18 I/O power is not applied, then all mDDR (non-fail-safe) and non-  
mDDR (fail-safe) output signals associated with the VCC18 I/O supply are in a high-impedance state.  
However, if driven high externally, only the non-mDDR (fail-safe) output signals remain in a high-impedance  
state, and the mDDR (non fail-safe) signals are shorted to ground through clamping diodes.  
9.4 Power-Up Initialization Sequence  
It is assumed that an external power monitor holds the DLPC2607 device in system reset during power-up. It  
must do this by driving RESET to a logic low state. It should continue to assert system reset until all ASIC  
voltages have reached minimum specified voltage levels, PARK is asserted high, and input clocks are stable.  
During this time, most ASIC outputs are driven to an inactive state and all bidirectional signals are configured as  
inputs to avoid contention. ASIC outputs that are not driven to an inactive state are tri-stated, which includes  
DMD_PWR_EN, LEDDVR_ON, LED_SEL_0, LED_SEL_1, SPICLK, SPIDOUT, and SPICSZ0. After power is  
stable and the PLL_REFCLK clock input to the DLPC2607 device is stable, then RESET should be deactivated  
(set to a logic high). The DLPC2607 device then performs a power-up initialization routine that first locks its PLL,  
followed by loading self configuration data from the external flash. Upon release of RESET, all DLPC2607 device  
I/Os become active. Immediately following the release of RESET, the GPIO4_INTF signal is driven high to  
indicate that the auto-initialization routine is in progress. Upon completion of the auto-initialization routine, the  
DLPC2607 device drives GPIO4_INTF low to signal INITIALIZATION DONE (also known as INIT DONE).  
NOTE  
The host processor can start sending standard I2C commands after GPIO4 (INIT_DONE)  
goes low, or a 100-ms timer expires in the host processor, whichever is earlier,  
irrespective of whether the motor is enabled or not. However, before sending any  
compound I2C commands at power-up, the host processor must wait until GPIO4  
(INIT_DONE) goes low, irrespective of whether the motor control function is enabled or  
not. Due to motor movement, the worst-case time to wait for GPIO4 to go low is when the  
motor control function is enabled and system dependent; it may take several seconds.  
34  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
Power-Up Initialization Sequence (continued)  
An active high pulse on GPIO4_INTF following the initialization  
period will indicate an error condition has been detected. The  
source of the error is reported in the system status.  
RESETZ  
100ms max  
(INIT_BUSY)  
(ERR IRQ)  
GPIO4_INTF  
0ms min  
3us min  
5ms max  
I2C access to DLPC2607 should not start until GPIO4_INTF  
(INIT_BUSY flag) goes low (this should occur within 100 ms  
from the release of RESETZ if the Motor Control function is  
not utilized. However, If Motor Control is utilized this may  
take several seconds.)  
GPIO4_INTF will be driven high within 5 ms  
after reset is release to indicate Auto-  
Initialization is Busy  
I2C traffic  
(SCL,SDA,CSZ)  
Figure 14. Initialization Timeline  
9.5 Power-Good (PARK) Support  
The PARK signal operates as an early warning signal that alerts the controller 500 µs before DC supply voltages  
have dropped below specifications. This allows the controller time to park the DMD, ensuring the integrity of  
future operation. The reference clock continues to run. RESET remains deactivated for at least 500 µs after  
PARK has been deactivated (set to a logic low) to allow the park operation to complete.  
Copyright © 2013–2019, Texas Instruments Incorporated  
35  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Internal ASIC PLL Power  
TI recommends the following guidelines to achieve desired ASIC performance relative to the internal PLL. The  
DLPC2607 device contains one internal PLL, which has a dedicated analog supply (VDD_PLL and VSS_PLL).  
Isolate VDD_PLL power and VSS_PLL ground pins using an RC-filter consisting of two 50-Ω series ferrites and  
two shunt capacitors (to widen the spectrum of noise absorption). TI recommends one 0.1-µF capacitor and that  
the other is a 0.01-µF capacitor. Place all four components as close to the ASIC as possible; it is especially  
important to keep the leads of the high-frequency capacitors as short as possible. Note that the user should  
connect both capacitors across VDD_PLL and VSS_PLL on the ASIC side of the ferrites.  
The PCB layout is critical to PLL performance. The ground and power domains are analog signals, and should  
be treated as such to achieve minimum noise. Therefore, VDD_PLL must be a single trace from the DLPC2607  
device to both capacitors, and then through the series ferrites to the power source. Ensure that the power and  
ground traces are as short as possible, parallel to each other, and as close as possible to each other.  
Signal VIA  
PCB Pad  
VIA to Common Analog  
Digital Board Power Plane  
ASIC Pad  
VIA to Common Analog  
Digital Board Ground Plane  
11  
12  
13  
14  
15  
A
Local  
Decoupling  
for the PLL  
Digital Supply  
G
VDD_  
PLL  
1.0V  
PWR  
Signal  
Signal  
Signal  
Signal  
Signal  
H
J
FB  
FB  
PLL _  
REF  
CLK_O  
VSS_  
PLL  
VDD  
GND  
PLL_  
REF  
CLK_I  
Crystal Circuit  
Signal  
Signal  
K
Figure 15. PLL Filter Layout  
36  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
Layout Guidelines (continued)  
10.1.2 General Handling Guidelines for Unused CMOS-Type Pins  
To avoid potentially damaging current caused by floating CMOS input-only pins, TI recommends to tie unused  
ASIC input pins through a pullup resistor to their associated power supply or a pulldown to ground. For ASIC  
inputs with internal pullup or pulldown resistors, it is unnecessary to add an external pullup or pulldown unless  
specifically recommended.  
NOTE  
Internal pullup and pulldown resistors are weak so do not expect them to drive the  
external line. The DLPC2607 device implements very few internal resistors and these are  
noted in the pin list.  
Never tie unused output-only pins directly to power or ground. These pins can be left open.  
When possible, TI recommends that unused bidirectional I/O pins be configured to their output state such that  
the pin can be left open. If this control is not available and the pins may become an input, then ensure they are  
pulled-up (or pulled-down) using an appropriate, dedicated resistor.  
10.1.3 SPI Signal Routing  
The DLPC2607 device is designed to support two SPI slave devices, specifically, a serial flash and the  
PMD1000. Given this requires routing associated SPI signals to two locations while attempting to operate at 33.3  
MHz, ensure that reflections do not compromise signal integrity. TI recommends the following:  
Split the SPICLK PCB signal trace from the DLPC2607 source to each slave device into separate routes as  
close to the DLPC2607 device as possible. Make the SPICLK trace length to each device equal in total  
length.  
Split the SPIDOUT PCB signal trace from the DLPC2607 source to each slave device into separate routes as  
close to the DLPC2607 device as possible. Make the SPIDOUT trace length to each device equal in total  
length (that is, use the same strategy as SPICLK).  
Make the SPIDIN PCB signal trace from each slave device to the point where they intersect on the return to  
the DLPC2607 device equal in length and as short as possible. Make sure they share a common trace back  
to the DLPC2607 device.  
SPICSZ0 and SPICSZ1 do not require special treatment because they are dedicated signals which drive only  
one device.  
10.1.4 mDDR Memory and DMD Interface Considerations  
High-speed interface waveform quality and timing on the DLPC2607 ASIC (that is, the mDDR memory I/F and  
the DMD interface) depend on the total length of the interconnect system, the spacing between traces, the  
characteristic impedance, etch losses, and how well matched the lengths are across the interface. Thus,  
ensuring positive timing margin requires attention to many factors.  
As an example, the DMD interface system timing margin can be calculated as follows:  
Setup margin = (DLPC2607 output setup) – (DMD input setup) – (PCB routing mismatch) – (PCB SI degradation)  
Hold-time margin = (DLPC2607 output hold) – (DMD input hold) – (PCB routing mismatch) – (PCB SI degradation)  
(1)  
where  
PCB SI degradation is signal integrity degradation due to PCB effects. This includes things such as  
simultaneously switching output (SSO) noise, crosstalk, and inter-symbol interference (ISI) noise.  
(2)  
The DLPC2607 device I/O timing parameters, as well as mDDR and DMD I/O timing parameters, can be found in  
their corresponding data sheets. Similarly, PCB routing mismatch can be easily budgeted and met by controlled  
PCB routing. However, PCB SI degradation is not so straight forward.  
In an attempt to minimize the signal integrity analysis that would otherwise be required, the following PCB design  
guidelines are provided as a reference of an interconnect system that satisfies both waveform quality and timing  
requirements (accounting for both PCB routing mismatch and PCB SI degradation). Make sure to confirm any  
variation from these recommendations with PCB signal integrity analysis or lab measurements.  
Copyright © 2013–2019, Texas Instruments Incorporated  
37  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
Layout Guidelines (continued)  
10.1.5 PCB Design  
Configuration: Asymmetric dual stripline  
Etch thickness (T): 0.5 oz copper  
Single-ended signal impedance: 50 Ω (±10%)  
Single-ended signal impedance: 100-Ω differential (±10%)  
SPACE  
Reference plane 1 is assumed to be a ground plane for proper return path.  
Reference plane 2 is assumed to be the I/O power plane or ground.  
Dielectric FR4, (Er): 4.2 (nominal)  
Signal trace distance to reference plane 1 (H1): 5 mil (nominal)  
Signal trace distance to reference plane 2 (H2): 34.2 mil (nominal)  
Reference Plane 1  
H1  
H2  
W
W
T
Trace  
S
Trace  
Dielectric Er  
H2  
T
Trace  
Trace  
H1  
Reference Plane 2  
Figure 16. PCB Stacking Geometries  
38  
Copyright © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
Layout Guidelines (continued)  
10.1.6 General PCB Routing (Applies to All Corresponding PCB Signals)  
Table 9. PCB Line and Spacing Recommendations(1) (2) (3)  
SINGLE-ENDED  
SIGNALS  
DIFFERENTIAL  
PARAMETER  
APPLICATION  
Escape routing in ball field  
PCB etch – Outer layer data or control  
PCB etch - Inner layer data or control  
PCB etch clocks  
UNIT  
PAIRS  
3
3
mil  
(mm)  
(0.762)  
(0.762)  
7.25  
(0.184)  
4.5  
(0.114)  
mil  
(mm)  
Line width (W)  
4.5  
(0.114)  
4.5  
(0.114)  
mil  
(mm)  
4.5  
(0.114)  
4.5  
(0.114)  
mil  
(mm)  
7.75 [1]  
(0.305)  
mil  
(mm)  
PCB etch data or control  
PCB etch clocks  
N/A  
N/A  
Differential signal pair spacing (S)  
7.75 [1]  
(0.305)  
mil  
(mm)  
3
3
mil  
(mm)  
Escape routing in ball field  
PCB etch – Outer layer data or control  
PCB etch - Inner layer data or control  
PCB etch clocks  
(0.762)  
(0.762)  
7.25  
(0.184)  
4.5  
(0.114)  
mil  
(mm)  
Minimum line spacing to other signals  
(S)  
4.5  
(0.114)  
4.5  
(0.114)  
mil  
(mm)  
11  
(0.279)  
11  
(0.279)  
mil  
(mm)  
Maximum differential pair P-to-N  
length mismatch  
25  
(0.635)  
mil  
(mm)  
Total clock  
N/A  
(1) Spacing may vary to maintain differential impedance requirements.  
(2) The DLPC2607 device only includes one differential signal pair – MEM0_CK_P and MEM0_CK_N.  
(3) These values are merely recommendations to achieve good signal integrity. The OEM is free to apply their own rules as long as they  
maintain good signal integrity.  
These PCB design guidelines are purposefully conservative to minimize potential signal integrity issues. Given  
this device is targeted for low-cost, handheld application, there is a need to be more aggressive with these best  
practices. TI highly recommends to perform a full-board-level signal integrity analysis, if these guidelines cannot  
be followed. The DLPC2607 IBIS models are available for such analysis.  
10.1.7 Maximum, Pin-to-Pin, PCB Interconnects Etch Lengths  
Table 10. Max Pin-to-Pin PCB Interconnect Recommendations(1) (2)  
SIGNAL INTERCONNECT TOPOLOGY  
BUS  
UNIT  
SINGLE BOARD SIGNAL  
ROUTING LENGTH  
MULTI-BOARD SIGNAL  
ROUTING LENGTH  
DMD  
DMD_D(14:0), DMD_DCLK, DMD_TRC, DMD_SCTRL,  
DMD_LOADB, DMD_OEZ DMD_DAD_STRB,  
DMD_DAD_BUS, DMD_SAC_CLK and DMD_SAC_BUS  
4 max  
(101.5 max)  
3.5 max  
(88.91 max)  
inch  
(mm)  
mDDR  
1.5 max  
38.1 max  
inch  
(mm)  
MEM0_DQ(15:8), MEM0_UDM and MEM0_UDQS  
NA  
NA  
mDDR  
1.5 max  
(38.1 max)  
inch  
(mm)  
MEM0_DQ(7:0), MEM0_LDM and MEM0_LDQS  
mDDR  
(1) Max signal routing length includes escape routing.  
(2) Multi-board DMD routing length is more restricted due to the impact of the connector.  
Copyright © 2013–2019, Texas Instruments Incorporated  
39  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
Table 10. Max Pin-to-Pin PCB Interconnect Recommendations() () (continued)  
SIGNAL INTERCONNECT TOPOLOGY  
BUS  
UNIT  
SINGLE BOARD SIGNAL  
MULTI-BOARD SIGNAL  
ROUTING LENGTH  
ROUTING LENGTH  
MEM0_CK_P, MEM0_CK_N, MEM0_A(12:0),  
MEM0_BA(1:0), MEM0_CKE, MEM0_CSZ,  
MEM0_RASZ, MEM0_CASZ and MEM0_WEZ  
2.5 max  
(63.5 max)  
inch  
(mm)  
N/A  
10.1.8 I/F Specific PCB Routing  
Table 11. High-Speed PCB Signal Routing Matching Requirements(1) (2) (3)  
SIGNAL INTERCONNECT TOPOLOGY  
IF  
SINGLE GROUP  
DMD_D(14:0), DMD_TRC,  
DMD_SCTRL, DMD_LOADB,  
DMD_OEZ  
REFERENCE SIGNAL  
MAX MISMATCH  
UNIT  
±500  
(±12.7)  
mil  
(mm)  
DMD_DCLK  
±750  
(±19.05)  
mil  
(mm)  
DMD_DAD_STRB, DMD_DAD_BUS  
DMD_SAC_BUS  
DMD_DCLK  
DMD_SAC_CLK  
DMD_DCLK  
DMD  
±750  
(±19.05)  
mil  
(mm)  
±500  
(±12.7)  
mil  
(mm)  
DMD_SAC_CLK  
±150  
(±3.81)  
mil  
(mm)  
MEM0_CLK_P  
MEM0_CLK_N  
MEM0_LDQS  
MEM0_UDQS  
Read/ Write Data Lower Byte:  
MEM0_LDM and MEM0_DQ(7:0) 38.1 max  
±300  
(±7.62)  
mil  
(mm)  
Read/ Write Data Upper Byte:  
MEM0_UDM and MEM0_DQ(15:8)  
±300  
(±7.62)  
mil  
(mm)  
mDDR:  
Address and control:  
MEM0_A(12:0), MEM0_BA(1:0),  
MEM0_RASZ , MEM0_CASZ,  
MEM0_WEZ, MEM0_CSZ,  
MEM0_CKE  
MEM0_CLK_P/  
MEM0_CLK_N  
±1000  
(±25.4)  
mil  
(mm)  
Data strobes:  
MEM0_LDQS and MEM0_UDQS  
MEM0_CLK_P/  
MEM0_CLK_N  
±300  
(±7.62)  
mil  
(mm)  
(1) These values apply to PCB routing only. They do not include any internal package routing mismatch associated with the DLPC2607  
device, DMD, or mDDR memory.  
(2) DMD data and control lines are DDR, whereas DMD_SAC and DMD_DAD lines are single data rate. Matching the DDR lines is more  
critical and takes precedence over matching single data rate lines.  
(3) mDDR data, mask, and strobe lines are DDR, whereas address and control are single data rate. Matching the DDR lines is more critical  
and takes precedence over matching single data rate lines.  
10.1.9 Number of Layer Changes  
Single-ended signals: Minimize the number of layer changes.  
Differential signals: Individual differential pairs can be routed on different layers, but the signals of a given pair  
must not change layers.  
10.1.10 Stubs  
Avoid stubs.  
40  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
10.1.11 Termination Requirements:  
DMD I/F  
Terminate all DMD I/F signals, with the exception of DMD_OEZ (specifically  
DMD_D(14:0), DMD_DCLK, DMD_TRC, DMD_SCTRL, DMD_LOADB,  
DMD_DAD_STRB, DMD_DAD_BUS, DMD_SAC_CLK, and DMD_SAC_BUS), at the  
source with a 10- to 30-Ω series resistor. TI recommends a 30-Ω series resistor for most  
applications because this minimizes overshoot, undershoot, and reduces EMI; however,  
for systems that must operate below –20°C, it may be necessary to reduce this series  
resistance to avoid narrowing the data eye too much under worse-case PVT conditions.  
TI recommends IBIS simulations for this worse-case scenario.  
mDDR memory I/F  
mDDR differential  
clock  
Terminate each line, specifically MEM0_CK(P:N), at the source with a 30-Ω series  
resistor. Terminate the pair with an external 100-Ω differential termination across the two  
signals as close to the DRAM as possible. (It may be possible to use a 200-Ω differential  
termination at the DRAM to save power while still providing sufficient signal integrity, but  
this has not been validated.)  
mDDR data, strobe, Terminate MEM0_DQ(15:0), MEM0_LDM, MEM0_UDM, MEM0_LDQS, and  
and mask MEM0_UDQS with a 30-Ω series resistor located midway between the two devices.  
mDDR address and Terminate MEM0_A(12:0), MEM0_BA(1:0), MEM0_CKE, MEM0_CSZ, MEM0_RASZ,  
control MEM0_CASZ, and MEM0_WEZ at the source with a 30-Ω series resistor.  
For applications where the routed distance of the mDDR or DMD signal can be maintained to a length of less  
than 0.75 inches, this signal is short enough not be considered a transmission line and does not need a series  
terminating resistor.  
Copyright © 2013–2019, Texas Instruments Incorporated  
41  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
10.2 Layout Example  
Figure 17. PCB Layout Example  
42  
版权 © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.1.2 器件命名规则  
11.1.2.1 器件标记  
TR
DLP  
DPP2607  
2510465-AB  
LLLLLLLL.ZZ  
SSSSSYYWWQQ  
1
SC  
2
3
4
Terminal A1 corner identifier  
标记定义:  
1. DLP 器件名称  
SC:焊球成分  
e1:表示含有 SnAgCu 的无铅焊球  
G8:表示含有锡--(SnAgCu) 的无铅焊球,其中银含量 1.5% 且模压混合物符合 TI 绿色环保定义  
2. TI 器件型号  
AB1 2 位字母数字)=“A对应于 TI 器件零件编号。B是为不合格器件标记保留的。所有不合格器件(包  
括原型和偏差批次样片)均在B标记(紧随 TI 器件型号之后)位置用X字母标记。合格器件的B标记位置留  
空。  
3. LLLLLLLL.ZZ 半导体晶圆的铸造批次代码以及无铅焊锡球标记  
LLLLLLLL:制造批次代码  
ZZ:分批编号  
4. SSSSSYYWWQQ:封装和组装信息  
SSSSS:制造基地  
YYWW:日期代码(YY = :: WW = 周)  
QQ:合格等级选项 工程样片在该字段中以 ES 后缀标记。  
例如,KOREA0914ES 是于 2009 的第 14 个周在韩国构建的工程样片。  
版权 © 2013–2019, Texas Instruments Incorporated  
43  
DLPC2607  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
www.ti.com.cn  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
供电, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
44  
版权 © 2013–2019, Texas Instruments Incorporated  
DLPC2607  
www.ti.com.cn  
ZHCSC07E DECEMBER 2013REVISED MARCH 2019  
12.1 封装选项附录  
12.1.1 封装信息  
工作温度  
器件标记(4)(5)  
(°C)  
(1)  
(2)  
(3)  
可订购器件  
DLPC2607ZVB  
状态  
封装类型  
封装图纸  
引脚  
封装数量  
环保计划  
待定  
/焊球涂层  
致电 TI  
MSL 峰值温度  
ACTIVE  
NFBGA  
ZVB  
176  
260  
Level-3-260C-168 HRS  
-30 85  
(1) 销售状态值定义如下:  
正在供货:建议用于新设计的产品器件。  
限期购买:TI 已宣布器件停产,但购买期限仍有效。  
NRND:不推荐用于新设计。为支持现有客户,器件尚在正常生产,但 TI 不建议在新设计中使用此器件。  
PRE_PROD:未发布的器件,尚未进行生产,未向大众市场供货,也未在网络上供应,未提供样片。  
预览:器件已发布,但尚未生产。可能提供样片,也可能未提供样片。  
停产:TI 已停止生产该器件。  
空白  
(2) 环保计划 - 规划的环保分类包括:无铅 (RoHS),无铅(RoHS 豁免)或绿色(RoHS,无锑/溴)- 欲了解最新供货信息及更多产品内容详情,请访问 http://www.ti.com.cn/productcontent。  
待定:无铅/绿色转换计划尚未确定。  
无铅 (RoHS)TI 所说的无铅是指符合针对所有 6 种物质的现行 RoHS 要求的半导体产品,包括要求铅的重量不超过均质材料总重量的 0.1%。因在设计时就考虑到了高温焊接要求,因此  
TI 的无铅产品适用于指定的无铅作业。  
无铅(RoHS 豁免):该组件在以下两种情况下具有 RoHS 豁免权:1) 芯片和封装之间使用铅基倒装芯片焊接凸点;2) 芯片和引线框架之间使用铅基芯片粘合剂。否则,组件被归为上面定  
义的无铅(符合 RoHS)。  
绿色(RoHS,无锑/溴):TI 定义的绿色表示无铅(符合 RoHS)以及无溴 (Br) 和锑 (Sb) 系阻燃剂(溴或锑的重量不超过均质材料总重量的 0.1%)。  
空白  
(3) MSL,峰值温度-- 湿敏等级额定值(符合 JEDEC 工业标准分类)和峰值焊接温度。  
空白  
(4) 器件上可能还有与徽标、批次跟踪代码或环境分类相关的标记。  
空白  
(5) 括号内将包含多个器件标志。不过,器件上仅显示括号中以“~”隔开的其中一个器件标志。如果某一行缩进,说明该行续接上一行,这两行合在一起表示该器件的完整器件标志。  
重要信息和免责声明:本页面上提供的信息代表 TI 在提供该信息之日的认知和观点。TI 的认知和观点基于第三方提供的信息,TI 不对此类信息的正确性做任何解释或保证。TI 正在致力于  
更好地整合第三方信息。TI 已经并将继续采取合理的措施来提供有代表性且准确的信息,但是可能并未对引入的原料和化学制品进行破坏性测试或化学分析。TI TI 供应商认为某些信息  
属于专有信息,因此可能不会公布其 CAS 编号及其他受限制的信息。  
在任何情况下,TI 对由此类信息产生的责任决不超过本文档中 TI 每年销售给客户的相关 TI 部件的总购买价。  
版权 © 2013–2019, Texas Instruments Incorporated  
45  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  

相关型号:

DLPC2607ZVB

DLP® display controller for DLP2000 (0.2 nHD) DMD | ZVB | 176 | -30 to 85
TI

DLPC300

DLP® Digital Controller for the DLP3000 DMD
TI

DLPC300ZVB

DLP® Digital Controller for the DLP3000 DMD
TI

DLPC300_15

DLP Digital Controller
TI

DLPC3420

DLP® display controller for DLP160AP (0.16 QnHD) DMD
TI

DLPC3420ZVB

DLP® display controller for DLP160AP (0.16 QnHD) DMD | ZVB | 176 | 0 to 70
TI

DLPC3421

DLP® display controller for DLP160CP (0.16 nHD) DMD
TI

DLPC3421ZVB

DLP® display controller for DLP160CP (0.16 nHD) DMD | ZVB | 176 | 0 to 70
TI

DLPC3426ZVB

DLP® display controller for DLP230NP (0.23 1080p) DMD

| ZVB | 176 | -30 to 85
TI

DLPC3430

DLP® display controller for DLP2010 (0.2 WVGA) DMD
TI

DLPC3430CZVBR

DLP® display controller for DLP2010 (0.2 WVGA) DMD | ZVB | 176 | -30 to 85
TI

DLPC3432

DLP® display controller for DLP230GP (0.23 qHD) DMD
TI