DRV3220QPHPRQ1 [TI]

具有增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器 | PHP | 48 | -40 to 125;
DRV3220QPHPRQ1
型号: DRV3220QPHPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有增强保护功能的汽车类 12V 和 24V 电池三相栅极驱动器 | PHP | 48 | -40 to 125

电池 栅极驱动 驱动器
文件: 总31页 (文件大小:866K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
DRV3220-Q1 Three-Phase Automotive Gate Driver With Enhanced Protection,  
Diagnostics, and Monitoring  
1 Features  
2 Applications  
1
AEC-Q100 Qualified for Automotive Applications:  
Automotive Motor-Control Applications  
Device Temperature Grade 1: –40°C to  
+125°C Ambient Operating Temperature  
Electrical Power Steering (EPS, EHPS)  
Electrical Brake and Brake Assist  
Transmission  
Three-Phase Bridge Driver for Motor Control  
Suitable for 12-V and 24-V Applications  
Integrated Boost Converter, Gate Drive to 4.75 V  
Drives 6 Separate N-Channel Power MOSFETs  
Strong 1-A Gate Drive for High-Current FETs  
Programmable Dead Time  
Pumps  
Industrial Motor-Control Applications  
3 Description  
The DRV3220-Q1 bridge driver is dedicated to  
automotive three-phase brushless DC motor control  
applications. The device provides six dedicated  
drivers for standard-level N-channel MOSFET  
transistors. A boost converter with an integrated FET  
provides the overdrive voltage, allowing full control on  
the power stages even for low battery voltage down  
to 4.75 V. The strong driver strength is suitable for  
high-current applications and programmable to limit  
peak output current.  
PWM Frequency up to 20 kHz  
Supports 100% Duty Cycle Operation  
Short-Circuit Protection  
VDS-Monitoring (Adjustable Detection Level)  
Overvoltage and Undervoltage Protection  
Overtemperature Warning and Shut Down  
Sophisticated Failure Detection and Handling  
Through SPI  
The device incorporates robust FET protection and  
system monitoring functions like a Q&A watchdog  
and voltage monitors for I/O supplies and ADC  
reference voltages. Integrated internal diagnostic  
functions can be accessed and programmed through  
an SPI interface.  
System Supervision  
Q&A Watchdog  
I/O Supply Monitoring  
ADREF Monitoring  
Programmable Internal Fault Diagnostics  
Sleep Mode Function  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
Thermally-Enhanced 48-Pin HTQFP PowerPAD™  
IC Package (7-mm × 7-mm Body)  
DRV3220-Q1  
HTQFP (48)  
7.00 mm × 7.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Application Diagram  
3.3 V, 5 V  
12 V, 24 V  
DRV3220-Q1  
Driver  
PWM  
(3× or 6× pins)  
/
M
FETs  
Controller  
SPI  
Protection  
Diagnostics  
S/D  
//  
Paths  
ADC  
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
Table of Contents  
7.4 Register Maps......................................................... 17  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application ................................................. 20  
8.3 System Example ..................................................... 20  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
Features.................................................................. 1  
8
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 7  
6.6 Serial Peripheral Interface Timing Requirements ... 11  
6.7 Typical Characteristics............................................ 12  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Programming........................................................... 14  
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 22  
11 Device and Documentation Support ................. 23  
11.1 Documentation Support ........................................ 23  
11.2 Receiving Notification of Documentation Updates 23  
11.3 Community Resources.......................................... 23  
11.4 Trademarks........................................................... 23  
11.5 Electrostatic Discharge Caution............................ 23  
11.6 Glossary................................................................ 23  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
February 2017  
*
Initial release.  
2
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
 
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
5 Pin Configuration and Functions  
PHP PowerPAD™ Package  
48-Pin HTQFP  
Top View  
GLS3  
SLS3  
GHS3  
SHS3  
VSH  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NU  
2
NU  
3
NU  
4
ADREF  
VCC5  
NU  
5
SHS2  
GHS2  
SLS2  
GLS2  
TEST  
GLS1  
SLS1  
6
Thermal  
Pad  
7
GNDA  
VCC3  
SDI  
8
9
10  
11  
12  
SDO  
SCLK  
VDDIO  
Not to scale  
Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
GLS3  
SLS3  
GHS3  
SHS3  
VSH  
PWR  
PWR  
PWR  
PWR  
HVI_A  
PWR  
PWR  
PWR  
PWR  
HVI_A  
Gate low-side 3, connected to gate of external power MOSFET.  
2
Source low-side 3, connected to external power MOSFET for gate discharge and VDS monitoring.  
Gate high-side 3, connected to gate of external power MOSFET.  
3
4
Source high-side 3, connected to external power MOSFET for gate discharge and VDS monitoring.  
Sense high-side, sensing VS connection of the external power MOSFETs for VDS monitoring.  
Source high-side 2, connected to external power MOSFET gate discharge and VDS monitoring.  
Gate high-side 2, connected to gate of external power MOSFET.  
5
6
SHS2  
GHS2  
SLS2  
GLS2  
TEST  
7
8
Source low-side 2, connected to external power MOSFET for gate discharge and VDS monitoring.  
Gate low-side 2, connected to gate of external power MOSFET.  
9
10  
Test mode input, during normal application connected to ground.  
(1) Description of pin type: GND = Ground; HVI_A = High-voltage input analog; HVI_D = High-voltage input digital; LVI_A = Low-voltage  
input analog; LVO_A = Low-voltage output analog; LVO_D = Low-voltage output digital; NC = No connect; PWR = Power output; Supply  
= Supply input  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
NAME  
GLS1  
SLS1  
GHS1  
SHS1  
VS  
PWR  
PWR  
Gate low-side 1, connected to gate of external power MOSFET.  
Source low-side 1, connected to external power MOSFET for gate discharge and VDS monitoring.  
Gate high-side 1, connected to gate of external power MOS transistor.  
Source high-side 1, connected to external power MOS transistor for gate discharge and VDS.  
Power-supply voltage (externally protected against reverse battery connection).  
Analog ground.  
PWR  
PWR  
Supply  
GND  
GNDA  
ERR  
LVO_D  
HVI_D  
HVI_A  
Supply  
PWR  
Error (low active), Error pin to indicate detected error.  
DRVOFF  
RVSET  
BOOST  
SW  
Driver OFF (high active), secondary bridge driver disable.  
VDDIO / ADREF OV/UV configuration resister.  
Boost output voltage, used as supply for the gate drivers.  
Boost converter switching node connected to external coil and external diode.  
SPI chip select.  
NCS  
HVI_D  
Boost GND to set current limit. Boost switching current goes through this pin through external resistor to  
ground.  
23  
GNDLS_B  
GND  
24  
25  
26  
27  
28  
EN  
VDDIO  
SCLK  
SDO  
SDI  
HVI_D  
Supply  
HVI_D  
LVO_D  
HVI_D  
Enable (high active) of the device.  
I/O supply voltage, defines the interface voltage of digital I/O, for example, SPI.  
SPI clock.  
SPI data output.  
SPI data input.  
VCC3 regulator, for internal use only. TI recommends an external decoupling capacitor of 0.1 µF.  
External load < 100 µA.  
29  
VCC3  
LVO_A  
30  
31  
GNDA  
NU  
GND  
Analog ground.  
Not used. Leave this pin open.  
VCC5 regulator, for internal use only. Recommended external decoupling capacitor 1 µF. External load  
< 100 µA.  
32  
VCC5  
LVO_A  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
ADREF  
NU  
LVI_A  
ADC reference of MCU. Connect to VDDIO  
Not used. Leave this pin open.  
NU  
Not used. Leave this pin open.  
NU  
Not used. Leave this pin open.  
NU  
Not used. Connect this pin to ground.  
Not used. Connect this pin to ground.  
Not used. Connect this pin to ground.  
Not used. Connect this pin to ground.  
Not used. Connect this pin to ground.  
Not used. Connect this pin to ground.  
High-side input 3, digital input to drive the HS3.  
Input HS 2, digital input to drive the HS2.  
Input HS 1, digital input to drive the HS1.  
Low-side input 3, digital input to drive the LS3.  
Input LS 2, digital input to drive the LS2.  
Input LS 1, digital input to drive the LS1.  
NU  
NU  
NU  
NU  
NU  
IHS3  
IHS2  
IHS1  
ILS3  
ILS2  
ILS1  
HVI_D  
HVI_D  
HVI_D  
HVI_D  
HVI_D  
HVI_D  
4
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
POS  
MIN  
MAX  
UNIT  
2.1  
VS, VSH  
VS  
–0.3  
60  
V
Negative voltages with minimum serial resistor 5 Ω,  
TA = 25°C  
2.1a  
–5  
–2.5  
–5  
V
V
V
V
Negative voltages with minimum serial resistor 5 Ω,  
TA = 105°C  
2.1c  
2.1b  
2.1d  
DC voltage  
Negative voltages with minimum serial resistor 10 Ω,  
TA = 25°C  
VSH  
Negative voltages with minimum serial resistor 10 Ω,  
TA = 105°C  
–2.5  
2.2A Gate high-side voltage  
2.2B Source high-side voltage  
GHSx  
SHSx  
–9  
–9  
70  
70  
V
V
Gate-source high-side voltage  
difference  
GHSx-  
SHSx  
Externally driven, internal limited, see position 5.4 in  
Electrical Characteristics  
2.3  
–0.3  
15  
V
2.4  
2.5  
Gate low-side voltage  
GLSx  
SLSx  
–9  
–9  
20  
7
V
V
Source low-side voltage  
Gate-source low-side voltage  
difference  
GLSx-  
SLSx  
Externally driven, internal limited, see position 5.5 in  
Electrical Characteristics  
2.6  
–0.3  
15  
V
2.7  
2.9  
Boost converter  
BOOST, SW  
VDDIO  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
70  
60  
60  
60  
60  
V
V
V
V
V
2.9a Analog input voltage  
2.11  
ADREF  
RVSET  
2.10 Digital input voltage  
ILSx,IHSx, EN, DRVOFF, SCLK, NCS, SDI  
Difference between GNDA and  
GNDLS_B  
2.13  
GNDA, GNDLS_B  
–0.3  
–250  
–0.3  
0.3  
250  
6
V
V/µs  
V
2.20 Maximum slew rate of SHSx pins, SRSHS  
Analog and digital output  
voltages  
2.21  
ERR, SDO, RO  
2.22 Unused pins (connect to GND)  
TEST  
VCC5  
VCC3  
–0.3  
–0.3  
–0.3  
0.3  
6
V
V
V
2.24  
Internal supply voltage  
2.25  
3.6  
2.21  
Forced input and output current  
A
ERR, SDO, RO  
–10  
10  
80  
mA  
mA  
2.24  
A
(3)  
Short-to-ground current, IVCC5  
Internal current limit  
2.26 Short-to-ground current, IVCC3  
Limited by VCC5  
80  
mA  
nC  
nC  
2.27  
VS = 12 V, ƒPWM = 20 kHz, 6 FETs ON/OFF per PWM cycle  
VS = 24 V, ƒPWM = 20 kHz, 6 FETs ON/OFF per PWM cycle  
200(4)  
100(4)  
Driver FET total gate charge (per  
FET), Qgmax  
2.28  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to network ground terminal, unless specified otherwise.  
(3) IVCC5 is not specifying VCC5 output current capability for external load. The allowed external load on VCC5 is specified at position 3.18  
in Recommended Operating Conditions.  
(4) The maximum value also depends on PCB thermal design, modulation scheme, and motor operation time.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
Absolute Maximum Ratings (continued)  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
POS  
MIN  
–40  
–55  
MAX  
150  
UNIT  
°C  
2.14 Operating virtual junction temperature, TJ  
2.15 Storage temperature, Tstg  
165  
°C  
6.2 ESD Ratings  
POS  
VALUE UNIT  
±2000  
All pins  
2.17  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Pins 4, 6, and 14  
All pins  
±4000  
Electrostatic  
discharge  
V(ESD)  
V
2.18  
2.19  
±500  
Corner pins (1, 12, 13, 24, 25, 36, 37,  
and 48)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
POS  
MIN  
NOM  
MAX UNIT  
Full device functionality. Operation at VS = 4.75 V  
only when coming from higher VS. Minimum VS  
for startup = 4.85 V  
Supply voltage, normal voltage  
operation  
3.1  
VVS  
4.75  
40  
V
Logic functional (during battery cranking after  
coming from full device functionality)  
3.2  
VVSLO  
VVDDIO  
VCC3  
Supply voltage, logic operation  
Supply voltage for digital I/Os  
Internal supply voltage  
4
2.97  
3(1)  
40  
5.5  
3.3  
V
V
V
3.3  
VS > 4 V, external load current <100 µA,  
decoupling capacitor typical 0.1 µF  
3.14  
VS > 6 V, external load current < 100 µA,  
decoupling capacitor typical 1 µF  
3.17  
VCC5  
Internal supply voltage  
5.15  
5.45  
22  
V
Boost converter enabled, see and for SHSx/SLSx  
connections. EN_GDBIAS = 1  
3.6A  
3.61A  
mA  
mA  
VS quiescent current normal  
operation (boost converter  
enabled, drivers not switching)  
IVSn  
Boost converter enabled, see and for SHSx/SLSx  
connections. EN_GDBIAS = 0  
22.3  
3.6B  
4.75 V < VS < 20 V, TA = 25°C to 125°C  
4.75 V < VS < 20 V, TA = –40°C  
20 < VS < 40 V, TA = 25°C to 125°C  
20 < VS < 40 V, TA = –40°C  
9
10  
BOOST pin quiescent current  
normal operation (drivers not  
switching)  
3.62B  
3.6C  
IBOOSTn  
mA  
mA  
9.5  
3.6C1  
10.5  
VS quiescent additional current  
normal operation because of  
RVSET thermal voltage output  
enabled (boost converter  
3.61B  
IVSn  
THERMAL_RVSET_EN = 1  
0.6  
enabled, drivers not switching)  
Excluding FET gate charge current. 20-kHz all  
gate drivers switching at the same time.  
EN_GDBIAS = 1  
3.6D  
4
BOOST pin additional load  
current because of switching gate  
drivers  
IBOOST,sw  
mA  
Excluding FET gate charge current. 20-kHz all  
gate drivers switching at the same time.  
EN_GDBIAS = 0  
3.61D  
5.4  
VS quiescent current shutdown  
(sleep mode) 1  
VS = 14 V, no operation, TJ < 25°C, EN = Low,  
total leakage current on all supply connected pins  
3.75  
IVSq_1  
IVSq_2  
20  
30  
µA  
µA  
VS quiescent current shutdown  
(sleep mode) 2  
VS = 14 V, no operation, TJ < 85°C, EN = Low,  
total leakage current on all supply connected pins  
3.75a  
3.15  
3.18  
3.16  
3.19  
3.4  
IVCC3  
IVCC5  
CVCC3  
CVCC5  
D
VCC3 output current  
Intended for MCU ADC input  
Intended for MCU ADC input  
0
0
100  
100  
µA  
µA  
µF  
µF  
VCC5 output current  
VCC3 decoupling capacitance  
VCC5 decoupling capacitance  
Duty cycle of bridge drivers  
PWM switching frequency  
0.075  
0.5  
0%  
0
0.1  
1
0.2  
1.5  
100%  
22(1)  
3.5  
ƒPWM  
kHz  
(1) Maximum PWM allowed also depends on maximum operating temperature, FET gate charge current, VS supply voltage, modulation  
scheme, and PCB thermal design.  
6
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
 
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
Recommended Operating Conditions (continued)  
POS  
MIN  
NOM  
MAX UNIT  
3.8  
3.9  
TJ  
Junction temperature  
–40  
150  
125  
°C  
°C  
Operating ambient free-air  
temperature  
TA  
With proper thermal connection  
–40  
6.4 Thermal Information  
DRV3220-Q1  
THERMAL METRIC(1)  
PHP (HTQFP)  
UNIT  
48 PINS  
25.7  
10.3  
6
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.9  
RθJC(bot)  
0.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
4.4  
ADREF / VDDIO  
4.4.3  
4.4.4  
4.4.4a  
4.4.5  
4.4.5a  
4.4.7  
4.4.7a  
4.4.8  
4.4.8a  
IADREF  
ADREF bias current  
ADREF = 3.3 V, pin to ground  
300  
3.894  
5.9  
µA  
V
V
V
V
V
V
V
V
ADREF: 3.3-V setting by RVSET resistor  
ADREF: 5-V setting by RVSET resistor  
ADREF: 3.3-V setting by RVSET resistor  
ADREF: 5-V setting by RVSET resistor  
VDDIO: 3.3-V setting by RVSET resistor  
VDDIO: 5-V setting by RVSET resistor  
VDDIO: 3.3-V setting by RVSET resistor  
VDDIO: 5-V setting by RVSET resistor  
3.696 3.795  
5.6 5.75  
2.706 2.805  
4.1 4.25  
3.696 3.795  
5.6 5.75  
2.706 2.805  
Vovadref  
Overvoltage threshold, ADREF  
2.904  
4.4  
Vuvadref  
Vovvddio  
Vuvvddio  
Undervoltage threshold, ADREF  
Overvoltage threshold, VDDIO  
Undervoltage threshold, VDDIO  
3.894  
5.9  
2.904  
4.4  
4.1  
4.25  
150  
VDDIO = 3.3 V; ADREF = 3.3-V mode;  
STAT6 bit[3:0] = 4’b0001  
4.4.10 RRVSET33  
4.4.11 RRVSET53  
4.4.12 RRVSET35  
4.4.13 RRVSET55  
135  
165  
56.5  
16.5  
5.65  
kΩ  
kΩ  
kΩ  
kΩ  
VDDIO = 5 V; ADREF = 3.3-V mode; STAT6  
bit[3:0] = 4’b0100  
46  
51  
15  
RVSET resistance  
VDDIO = 3.3 V; ADREF = 5-V mode; STAT6  
bit[3:0] = 4’b1000  
13.5  
VDDIO = 5 V; ADREF = 5-V mode; STAT6  
bit[3:0] = 4’b0010  
4.6  
5.1  
4.4.30 RRVSETopen  
4.4.31 RRVSETshort  
4.4.32 VRVSETn40  
4.4.33 VRVSET25  
4.4.34 VRVSET125  
Open  
650  
RVSET resistor error detection  
RVSET output voltage  
kΩ  
Short  
1.5  
1.82  
–40°C TJ, THERMAL_RVSET_EN = 1  
25°C TJ, THERMAL_RVSET_EN = 1  
125°C TJ, THERMAL_RVSET_EN = 1  
1.67 1.745  
1.445 1.535  
1.085 1.195  
1.625  
1.305  
V
VCC3 / VCC5 REGULATORS  
4.4.14 VCC3  
VCC3 regulator output voltage  
VS > 4 V  
VS > 4 V  
3
3.15  
2.85  
3.3  
3
V
V
VCC3 regulator undervoltage  
threshold  
4.4.15 VCC3UV  
2.7  
VCC3 regulator overvoltage  
threshold(2)  
4.4.16 VCC3OV  
VS > 4 V  
3.3  
3.45  
3.6  
V
(1) Product life time depends on VS voltage, PCB thermal design, modulation scheme, and motor operation time. The product is designed  
for 12-V and 24-V battery system.  
(2) ADREF / VDDIO overvoltage and undervoltage is set by RVSET.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
5.15  
4.6  
TYP  
MAX  
5.45  
5.45  
UNIT  
4.4.17 VCC5_1  
4.4.18 VCC5_2  
VCC5 regulator output voltage 1 VS > 6 V  
5.3  
V
VCC5 regulator output voltage 2 6 V > VS > 4.75 V  
V
VCC5 regulator undervoltage  
VS > 4.75 V  
4.4.19 VCC5UV  
4.4.20 VCC5OV  
4.3  
4.6  
V
V
threshold  
VCC5 regulator overvoltage  
VS > 4.75 V  
5.45  
5.6  
5.75  
threshold  
5.  
GATE DRIVER  
Gate-source voltage low, high-  
side/low-side driver  
5.1  
5.2  
5.3  
VGS,low  
RGSp  
Active pulldown, Iload = –2 mA  
0
0.2  
330  
4
V
Passive gate-source resistance  
Vgs 200 mV  
110  
220  
2
kΩ  
kΩ  
Semi-active gate-source  
resistance  
RGSsa  
In sleep mode, VGS > 2 V  
Gate driven low by gate driver,  
CURR1, 3 = 01, SPI configurable  
Gate driven low by gate driver(2)  
,
5.3b  
5.3c  
5.3d  
5.3f  
IGSL01  
IGSL00  
IGSL10  
IGSH01  
IGSH00  
IGSH11  
IGSHsd  
TYP × 0.65  
TYP × 0.1  
TYP × 0.65  
TYP × 0.65  
TYP × 0.1  
TYP × 0.65  
2
0.65  
0.15  
1.1  
TYP × 1.35  
TYP × 1.9  
TYP × 1.35  
TYP × 1.35  
TYP × 1.9  
TYP × 1.35  
70  
A
A
Low-side driver pullup/pulldown  
current  
CURR1, 3 = 00, SPI configurable  
Gate driven low by gate driver,  
CURR1, 3 = 11, SPI configurable  
A
Gate driven low by gate driver,  
CURR0, 2 = 01, SPI configurable  
0.65  
0.15  
1.1  
A
High-side driver pullup/pulldown Gate driven low by gate driver(2)  
,
5.3g  
5.3h  
5.3i  
A
current  
CURR0, 2 = 00, SPI configurable  
Gate driven low by gate driver,  
CURR0, 2 = 11, SPI configurable  
A
High-side/low-side driver  
shutdown current  
30  
mA  
5.4  
5.5  
VGS,HS,high  
VGS,LS,high  
High-side output voltage  
Low-side output voltage  
Iload = –2 mA; 4.75 V < VS < 40 V  
Iload = –2 mA  
9
9
13.4  
13.4  
V
V
After ILx/IHx rising edge, Cload = 10 nF,  
CURR1, 3 = 10, VGS = 1 V  
5.27  
tDon  
Propagation on delay time  
Accuracy of dead time  
100  
200  
200  
350  
ns  
5.31  
5.32  
5.32a  
Adt  
If not disabled in CFG1  
–15%  
–5  
15%  
5
IHSxlk_1  
IHSxlk_2  
EN = L, SHSx = 1.5 V, TJ < 125°C  
EN = L, SHSx = 1.5 V, 125°C < TJ < 150°C  
µA  
µA  
Source leak current, total  
leakage current of source pins  
–40  
40  
ILx/IHx falling edge to VGS,LS,high(VGS,HS,high) –  
1 V Ciss = 10 nF, CURR1,3 = 10,  
5.29  
5.30  
tDoff  
Propagation off delay time(3)  
100  
350  
50  
ns  
ns  
Propagation off delay time  
difference(3)  
LSx to LSy and HSx to HSy Cload = 10 nF,  
CURR1,3 = 10, VGS,LS,high(VGS,HS,high) – 1 V  
tDoffdiff  
Difference between propagation For each gate driver in each channel:  
5.30a  
tDon_Doff_diff  
on delay time and propagation  
Cload = 10 nF, CURR1, 3 = 10, VGS = 1 V  
(rising), VGS,LS,high(VGS,HS,high) – 1 V (falling)  
150  
ns  
off delay time(3)  
Propagation off (EN) deglitch  
time(3)  
5.30c  
5.30d  
5.30e  
tENoff  
tSD  
After falling edge on EN  
After falling edge on EN  
After rising edge on DRVOFF  
2.5  
6
12  
24  
10  
µs  
µs  
µs  
Time until gate drivers initiate  
shutdown(3)  
12  
Time until gate drivers initiate  
shutdown(3)  
tSDDRV  
(3) Ensured by characterization.  
8
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
6.  
BOOST CONVERTER  
Boost output voltage excluding  
switching ripple and response  
delay.  
6.1  
VBOOST  
VBOOSTOV  
IBOOST  
BOOST – VS voltage  
14  
64  
15  
16.5  
70  
V
V
Boost output voltage overvoltage  
with respect GND  
6.1b  
6.2  
67.5  
External load current including external  
MOSFET gate charge current  
BOOST – VS > VBOOSTUV  
Output current capability  
40  
mA  
BOOST – VS > VBOOSTUV; ensured by  
characterization(4)  
6.3  
1.8  
2.5  
3
ƒBOOST  
Switching frequency  
MHz  
BOOST – VS > VBOOSTUV; VS < 6 V; ensured  
6.31  
6.4  
1.1  
7
3
8
(4)  
by characterization  
VBOOSTUV  
VBOOSTUV2  
Undervoltage shutdown level  
BOOST – VS voltage  
BOOST – GND voltage  
V
V
Undervoltage condition that  
device may enter RESET state  
6.4a  
10  
Filter time for undervoltage  
detection  
6.5  
tBCSD  
5
6
200  
100  
µs  
mV  
ns  
Voltage at GNDLS_B pin at  
VGNDLS_B,off which boost FET switches off  
because of current limit  
6.7  
110  
150  
Delay of the GNDLS_B current  
limit comparator  
6.7a  
tSW,off  
Specified by design  
6.8  
6.9  
6.9a  
7.  
ISW,fail  
Internal second-level current limit GNDLS_B = 0 V  
S 6; ISW = VGNDLS_B,off / 0.33 Ω  
840  
1600  
1.5  
2
mA  
Ω
V
0.25  
Rdson_BSTfet  
Rdson resistance boost FET  
VS < 6; ISW= VGNDLS_B,off / 0.33 Ω  
Ω
DIGITAL INPUTS  
All digital inputs NCS, DRVOFF, ILSx, IHSx,  
SDI  
7.1  
INL  
Input low threshold  
VDDIO × 0.3  
0.7  
V
7.1a  
7.1b  
ENH  
ENL  
EN input high threshold  
EN input low threshold  
VS > 4 V  
VS > 4 V  
2.7  
V
V
All digital inputs NCS, DRVOFF, ILSx, IHSx,  
SDI  
7.2  
7.3  
INH  
Input high threshold  
VDDIO × 0.7  
0.3  
V
V
All digital inputs EN, NCS, DRVOFF, ILSx,  
IHSx, SDI, VDDIO = 5 V  
0.4  
Inhys  
Input hysteresis  
All digital inputs EN, NCS, DRVOFF, ILSx,  
IHSx, SDI, VDDIO = 3.3 V  
7.3a  
7.4  
0.2  
0.3  
V
Rpd,EN  
Input pulldown resistor at EN pin EN  
140  
200  
360  
5
kΩ  
ms  
Power-up time after EN pin high  
7.4a  
tdeg,ENon  
ERR = L H  
from sleep mode to active mode  
Input pullup resistance  
7.5  
7.6  
Rpullup  
NCS, DRVOFF  
200  
100  
280  
140  
400  
200  
kΩ  
kΩ  
Rpulldown  
Input pulldown resistance  
ILSx, IHSx, SDI , SCLK Input voltage = 0.1 V  
ILSx, IHSx, SDI, SCLK Input voltage =  
VDDIO  
7.6a  
8.  
Rpulldown  
Input pulldown current  
4
50  
µA  
DIGITAL OUTPUTS  
All digital outputs: SDO, I = ±2 mA; VDDIO in  
functional range(5)  
8.1  
OH1  
OL1  
Output high voltage 1  
VDDIO × 0.9  
V
V
All digital outputs: SDO, I = ±2 mA; VDDIO in  
functional range  
8.2  
Output low voltage 1  
VDDIO × 0.1  
8.1  
8.2  
9.  
OH2  
OL2  
Output high voltage 2  
Output low voltage 2  
ERR I = –0.2 mA; VDDIO in functional range  
ERR I = +0.2 mA; VDDIO in functional range  
VDDIO × 0.9  
0.1  
V
V
VDDIO × 0.1  
2
VDS, VGS, MONITORING  
VSCTH VDS short-circuit threshold range If not disabled in CFG1  
9.1  
V
(4) During startup when BOOST – VS < VBOOSTUV , ƒBOOST is typically 1.25 MHz.  
(5) All digital outputs have a push-pull output stage between VDDIO and ground.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
Electrical Characteristics (continued)  
over operating temperature TJ = –40°C to 150°C and recommended operating conditions, VS = 4.75 V to 40 V(1), ƒPWM < 20  
kHz (unless otherwise noted)  
POS  
PARAMETER  
TEST CONDITIONS  
0.1-V to 0.5-V threshold setting  
0.6-V to 2-V threshold setting  
MIN  
TYP  
MAX  
UNIT  
–50  
50  
mV  
9.2  
Avds  
Accuracy of VDS monitoring  
–10%  
10%  
Only rising edge of VDS comparators are  
filtered  
9.3  
tVDS  
Detection filter time  
5
µs  
9.4  
Vgserr+_1  
Vgserr–  
tVGS  
VGS error detection 1  
VGS error detection  
Detection filter time  
Detection mask time  
STAT7, IHSx (ILSx) = H  
STAT7, IHSx (ILSx) = L  
CFG6[5:4]  
7
8.5  
2
V
V
9.5  
9.6  
1.0  
2.5  
µs  
µs  
9.6a  
10.  
tVGSm  
CFG6[2:0]  
THERMAL SHUTDOWN  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
12.  
Tmsd0  
Tmsd1  
Tmsd2  
Thmsd  
tTSD1  
tTSD2  
Thermal recovery  
Specified by characterization  
Specified by characterization  
Specified by characterization  
Specified by characterization  
Specified by characterization  
Specified by characterization  
130  
140  
170  
153  
165  
195  
40  
178  
190  
220  
°C  
°C  
°C  
°C  
µs  
µs  
Thermal warning  
Thermal global reset  
Thermal shutdown×2 hysteresis  
Thermal warning filter time  
Thermal shutdown×2 filter time  
40  
45  
50  
12  
2.5  
6
VS MONITORING  
Overvoltage shutdown level  
Programmable CFG5 mode1, 12-V/24-V  
mode  
12.1  
VVS,OVoff0  
VVS,OVoff1  
VVS, OVon1  
VVS,OVoff2  
VVS, OVon2  
VVS,OVoff3  
VVS, OVon3  
VVS,UVoff  
29  
27.5  
26.5  
32  
38  
30.5  
29.5  
35  
V
V
V
V
V
V
V
V
V
range(6)  
12.1a  
12.1b  
12.1c  
12.1d  
12.1e  
12.1f  
12.2  
Overvoltage shutdown level(6)  
29-V threshold setting  
29  
28  
Recovery level form overvoltage  
shutdown(6)  
Overvoltage shutdown level(6)  
29-V threshold setting  
33-V threshold setting  
33.5  
32.5  
38  
Recovery level form overvoltage  
shutdown(6)  
Overvoltage shutdown level(6)  
33-V threshold setting  
31  
34  
38-V threshold setting  
36.5  
35.5  
4.5  
39.5  
38.5  
4.75  
4.85  
Recovery level form overvoltage  
shutdown(6)  
Undervoltage shutdown level(6)  
38-V threshold setting  
37  
VS is falling from higher voltage than 4.75 V  
Minimum VS for device startup  
Recovery level form  
12.2a  
VVS,UVon  
4.6  
undervoltage shutdown(6)  
Filter time for  
12.3  
tVS,SHD  
overvoltage/undervoltage  
shutdown  
5
6
µs  
(6) Shutdown signifies predriver shutdown, not VCC3/VCC5 regulator shutdown.  
10  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
 
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
6.6 Serial Peripheral Interface Timing Requirements  
POS  
13  
MIN NOM MAX UNIT  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
13.9  
ƒSPI  
tSPI  
thigh  
tlow  
tsucs  
td1  
SPI clock (SCLK) frequency  
SPI clock period(2)  
High time: SCLK logic high duration(2)  
Low time: SCLK logic low duration(2)  
Setup time NCS: time between falling edge of NCS and rising edge of SCLK(2)  
Delay time: time delay from falling edge of NCS to data valid at SDO(3)  
Setup time at SDI: setup time of SDI before the rising edge of SCLK(2)  
Delay time: time delay from falling edge of SCLK to data valid at SDO(3)  
Hold time: time between the falling edge of SCLK and rising edge of NCS(2)  
SPI transfer inactive time (time between two transfers)(2)  
Tri-state delay time: time between rising edge of NCS and SDO in tri-state(2)  
4(1)  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
250  
90  
90  
tSPI / 2  
60  
60  
tsusi  
td2  
30  
0
thcs  
45  
13.10 thlcs  
13.11 ttri  
250  
30  
(1) The maximum SPI clock tolerance is ±10%.  
(2) Ensured by characterization.  
(3) Ensured by characterization.  
NCS  
thcs  
thlcs  
tsucs  
SCLK  
tsucs  
thigh  
tlow  
SDI  
tsusi  
tsusi  
SDO  
td1  
td2  
ttri  
td1  
Figure 1. SPI Timing Parameters  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
6.7 Typical Characteristics  
45  
20  
19.5  
19  
VS = 36 V  
VS = 14 V  
VS = 4.75 V  
VS = 36 V  
VS = 14 V  
VS = 4.75 V  
40  
35  
30  
25  
20  
15  
10  
5
18.5  
18  
17.5  
17  
0
16.5  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
D001  
D002  
Figure 2. VS Quiescent Current Shutdown  
Figure 3. VS Quiescent Current Shutdown  
12  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
7 Detailed Description  
7.1 Overview  
The DRV3220-Q1 is designed to control 3-phase brushless DC motors in automotive applications using pulse-  
width modulation. Three high-side and three low-side gate drivers can be switched individually with low  
propagation delay. The input logic prevents simultaneous activation of the high-side and low-side driver of the  
same channel. A configuration and status register can be accessed through a SPI communication interface.  
7.2 Functional Block Diagram  
Battery voltage  
5  
22 µH  
1 F  
Controller  
GNDLS_B  
330 mꢀ  
6x VDS Monitor  
VSH  
Safety and Diagnostic  
- Overtemperature  
- Overvoltage,  
+
œ
Undervoltage  
- Watch dog  
3 Phase Gate Driver  
3 × PowerStage  
Rgate  
ERR  
- Clock Monitoring  
- Overtemperature  
Detection  
- Short Circuit  
- Shoot-through  
Protection  
GHSx(1)  
SHSx(1)  
VDDIO  
ADREF  
BLDC  
Motor  
- VDS/VGS Monitoring  
- Dead Time Control  
GLSx(1)  
SLSx(1)  
Rgate  
Level  
shift  
VDDIO  
RVSET  
EN  
NCS  
SCLK  
SDI  
Control Logic  
- Program Gate Current  
- Program Gain  
- Sleep Mode Control  
SDO  
Power Supply  
IHSx, ILSx  
DRVOFF  
Bridge Driver  
Reference and Bias  
Digital  
VCC5  
VCC3  
Bandgap,  
Bias, Oscillator  
Safety Relevant  
1 F  
0.1 F  
Copyright © 2017, Texas Instruments Incorporated  
(1) x = 1, 2, 3  
(2) y = 1, 2, 3  
(3) An external reference voltage (VCC5 or VCC3) cannot be used for ADREF voltage.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
7.3 Programming  
7.3.1 SPI  
The SPI slave interface is used for serial communication with the external SPI master (external MCU). The SPI  
communication starts with the NCS falling edge and ends with NCS rising edge. The NCS high level keeps the  
SPI slave interface in reset state, and the SDO output in tri-state.  
7.3.1.1 Address Mode Transfer  
The address mode transfer is an 8-bit protocol. Both SPI slave and SPI master transmit the MSB first.  
1
2
3
4
5
6
7
8
NCS  
SCLK  
SDI  
R7  
D7  
R6  
D6  
R5  
D5  
R4  
D4  
R3  
D3  
R2  
D2  
R1  
D1  
R0  
D0  
X
X
SDO  
NOTE: SPI master (MCU) and SPI slave (DRV3220-Q1) sample received data on the falling SCLK edge and transmit on the  
rising SCLK edge.  
Figure 4. Single 8-Bit SPI Frame/Transfer  
After the NCS falling edge, the first word of 7 bits are address bits followed by the RW bit. During first address  
transfer, the device returns the STAT1 register on SDO.  
Each complete 8-bit frame will be processed. If NCS goes high before a multiple of 8 bits is transferred, the bits  
are ignored.  
7.3.1.1.1 SPI Address Transfer Phase  
Figure 5. SPI Address Transfer Phase Bits  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
RW  
ADDR [6:0] Register address  
RW Read and write access  
RW = 0: Read access. The SPI master performs a read access to selected register. During  
following SPI transfer, the device returns the requested register read value on SDO, and  
device interprets SDI bits as a next address transfer.  
RW = 1: Write access. The master performs a write access on the selected register. The  
slave updates the register value during next SPI transfer (if followed immediately) and  
returns the current register value on SDO.  
7.3.1.2 SPI Data Transfer Phase  
14  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
Figure 6. SPI Data Transfer Phase Bits  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
DATA7  
DATA6  
DATA5  
DATA4  
ADDR3  
DATA2  
DATA1  
DATA0  
DATA [7:0] Data value for write access (8-Bit).  
The table shows data value encoding scheme during a write access It is possible to mix the  
two access modes (write and read access) during one SPI communication sequence (NCS =  
0). The SPI communication can be terminated after single 8-bit SPI transfer by asserting  
NCS = 1. Device returns STAT1 register (for the very first SPI transfer after power-up) or  
current register value that was addressed during SPI Transfer Address Phase.  
7.3.1.3 Device Data Response  
Figure 7. Device Data Response Bits  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Function  
REG7  
REG6  
REG5  
REG4  
REG3  
REG2  
REG1  
REG0  
REG [7:0] Internal register value. All unused bits are set to 0.  
Figure 8 shows a complete 16-bit SPI frame. Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14  
show the frame examples.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
NCS  
SCLK  
SDI  
R7  
D7  
R6  
D6  
R5  
D5  
R4  
D4  
R3  
D3  
R2  
D2  
R1  
D1  
R0  
D0  
R7  
D7  
R6  
D6  
R5  
D5  
R4  
D4  
R3  
D3  
R2  
D2  
R1  
D1  
R0  
D0  
X
X
SDO  
8-bit SPI Transfer  
8-bit SPI Transfer  
16-bit SPI Frame  
SPI Master (MCU) and SPI slave (DRV3220-Q1) sample received data on the rising SCLK edge, and transmit data  
on the falling SCLK edge  
Figure 8. 16-Bit SPI Frame  
NCS  
ADDR1, RW = 1 (WR)  
1st Transfer  
WR DATA1  
2nd Transfer  
ADDR2, RW = 0 (RD)  
3rd Transfer  
SDI  
Zero Vector  
SDO  
Status Flags  
Response to Transfer 1  
Status Flags  
Response to Transfer 3  
Figure 9. Write Access Followed by Read Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 0 (RD)  
—Zero Vector“  
Zero Vector  
3rd Transfer  
Status Flags  
Response to Transfer 1  
Status Flags  
Response to Transfer 3  
SDO  
Figure 10. Read Access Followed by Read Access  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DRV3220-Q1  
 
 
 
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
NCS  
ADDR1, RW = 1 (WR)  
WR DATA1  
2nd Transfer  
ADDR2, RW = 1 (WR)  
3rd Transfer  
WR DATA2  
4th Transfer  
SDI  
1st Transfer  
SDO  
Status Flags  
Response to Transfer 1  
Status Flags  
Response to Transfer 3  
Figure 11. Write Access Followed by Write Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 1 (WR)  
2nd Transfer  
WR DATA2  
3rd Transfer  
Zero Vector  
Status Flags  
Status Flags  
Response to Transfer 1  
Response to Transfer 2  
SDO  
Figure 12. Read Access Followed by Write Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 0 (RD)  
2nd Transfer  
ADDR3, RW = 1 (WR)  
3rd Transfer  
WR DATA3  
4th Transfer  
SDO  
Status Flags  
Response to Transfer 1  
Response to Transfer 2  
Response to Transfer 3  
Figure 13. Read Access Followed by Read Access Followed by Write Access  
NCS  
SDI  
ADDR1, RW = 0 (RD)  
1st Transfer  
ADDR2, RW = 0 (RD)  
2nd Transfer  
ADDR3, RW = 0 (RD)  
3rd Transfer  
Zero Vector  
SDO  
Status Flags  
Response to Transfer 1  
Response to Transfer 2  
Response to Transfer 3  
Figure 14. Read Access Followed by Read Access Followed by Read Access  
16  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
7.4 Register Maps  
Table 1. Register Address Map and Summary Table  
Reset Event(2)  
(bit wide exception)  
CRC  
Check  
Address Name  
Reset Value  
Access State(1)  
Section  
W/R : D,  
A([6:3])  
0×01  
Configuration register 0 (CFG0)  
8'h3F  
Yes  
RST1-4  
Go  
R : A(7,[2:0], SF  
W/R: D  
R: A, SF  
0×02  
0×04  
0×05  
0×06  
0×07  
0×08  
0×09  
Configuration register 1 (CFG1)  
8'h3F  
8'h00  
8'h00  
8'h00  
8'h00  
8'hC0  
8'h80  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
RST1  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
W/R: D  
R: A, SF  
HS 1/2/3 drive register (CURR0) ON  
LS 1/2/3 drive register (CURR1) ON  
HS 1/2/3 drive register (CURR2) OFF  
LS 1/2/3 drive register (CURR3) OFF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
W/R: D  
R: A, SF  
Safety/error configuration register  
(SECR1)  
W/R: D  
R: A, SF  
Safety function configuration register  
(SFCR1)  
RST1-3  
0×0A  
0×0B  
0×0C  
0×0D  
0×0E  
Status register 0 (STAT0)  
Status register 1 (STAT1)  
Status register 2 (STAT2)  
Status register 3 (STAT3)  
Status register 4 (STAT4)  
8'h00  
8'h80  
8'h00  
8'h03  
8'h00  
No  
No  
No  
No  
No  
R: D, A, SF  
R: D, A, SF  
R: D, A, SF  
R: D, A, SF  
R: D, A, SF  
RST1-4  
RST1-3  
RST1-3  
RST1-3  
RST1-3  
Go  
Go  
Go  
Go  
Go  
RST1-3  
(Bit[4]:RST1)  
0×0F  
Status register 5 (STAT5)  
8'h03  
No  
R: D, A, SF  
Go  
0×10  
0×11  
Status register 6 (STAT6)  
Status register 7 (STAT7)  
8'h00  
8'h00  
No  
No  
R: D, A, SF  
R: D, A, SF  
RST1-3  
RST1-4  
Go  
Go  
RST1-4  
(Bit[0]:RST1)  
0×12  
0×13  
Status register 8 (STAT8)  
8'h00  
8'h00  
No  
No  
R: D, A, SF  
R: D, A, SF  
Go  
RST1-3  
(Bit[3:1]:RST1)  
Safety error status  
(SAFETY_ERR_STAT)  
Go  
Go  
0×14  
0×15  
0×16  
Status register 9 (STAT9)  
Reserved 1  
8'h00  
8'h00  
8'h00  
No  
No  
No  
R: D, A, SF  
W/R: D, A, SF  
W/R: D, A, SF  
RST1-3  
RST1-3  
RST1-3  
Reserved 2  
SPI transfer write CRC register  
(SPIWR_CRC)  
0×1E  
0×1F  
0×20  
8'h00  
8'hFF  
8'h01  
No  
No  
No  
W/R: D, A, SF  
R: D, A, SF  
RST1-3  
RST1-3  
RST1-3  
Go  
Go  
Go  
SPI transfer read CRC register  
(SPIRD_CRC)  
W/R: D  
R: A, SF  
SAFETY_CHECK_CTRL register (  
SFCC1)  
W/R: D, A  
R: SF  
0×21  
0×22  
CRC control register (CRCCTL)  
8'h00  
N/A  
No  
No  
RST1-3  
RST1-3  
Go  
Go  
W/R: D  
R: A, SF  
CRC calculated check sum register  
(CRCCALC)  
0×23  
0×24  
Reserved 3  
8'h00  
8'h00  
No  
No  
W/R: D, A, SF  
R: D, A, SF  
RST1-3  
RST1-3  
HS/LS read back (RB0)  
Go  
Go  
Go  
Go  
W/R: D, A  
R: SF  
0×25  
0×26  
0×27  
HS/LS count control (RB1)  
HS/LS count (RB2)  
8'h00  
8'h00  
8'hAB  
No  
No  
RST1-4  
RST1-4  
RST1-4  
R: D, A, SF  
W/R: D  
R: A, SF  
Configuration register 3 (CFG3)  
Yes  
(1) W/R: Write and Read access possible, W: Write access possible, R: Read access possible  
D: DIAGNOSITC STATE, A: ACTIVE STATE, SF: SAFE STATE, SY: STANDBY STATE, R: RESET  
(2) RST1: Power up, RST2: System clock error detected by clock monitor RST3: VCC3 UV/OV or from other state to RESET, RST4: LBIST  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback 17  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
Register Maps (continued)  
Table 1. Register Address Map and Summary Table (continued)  
Reset Event(2)  
(bit wide exception)  
CRC  
Check  
Address Name  
Reset Value  
Access State(1)  
Section  
Go  
W/R: D  
R: A, SF  
0×28  
0×29  
0×2A  
0×2B  
0×2C  
0×2D  
Configuration register 4 (CFG4)  
8'h00  
Yes  
Yes  
No  
RST1-4  
W/R: D  
R: A, SF  
Configuration register 5 (CFG5)  
CSM unlock (CSM_UNLOCK1)  
CSM unlock (CSM_UNLOCK2)  
Reserved 4  
8'hAB  
RST1-3  
RST1-4  
RST1-4  
RST1-4  
RST1-3  
Go  
W/R: D  
R: A, SF  
8'h00  
Go  
W/R: D  
R: A, SF  
8'h3F  
No  
Go  
W/R: D  
R: A, SF  
8'h00  
Yes  
Yes  
W/R: D  
R: SF, A  
Safety BIST control register 1  
(SAFETY_BIST_CTL1)  
8'h00  
Go  
Go  
0×2E  
0×2F  
SPI test register (SPI_TEST)  
Reserved 5  
8'h00  
8'h00  
No  
No  
W/R: D, A, SF  
W/R: D, A, SF  
RST1-4  
RST1-3  
W/R: D  
R: SF, A  
RST1-3  
(Bit[5]:RST1)  
Safety BIST control register 2  
(SAFETY_BIST_CTL2)  
0×30  
0×31  
0×32  
8'h00  
8'h02  
8'h08  
Yes  
Yes  
Yes  
Go  
Go  
Go  
W/R: D  
R: SF, A  
Watch dog timer configuration register  
(WDT_WIN1_CFG)  
RST1-4  
RST1-4  
W/R: D  
R: SF, A  
Watch dog timer configuration register  
(WDT_WIN2_CFG)  
W/R: D  
R: SF, A  
Watch dog timer TOKEN register  
(WDT_TOKEN_FDBCK)  
0×33  
0×34  
0×35  
0×36  
0×37  
8'h04  
8'h40  
8'h00  
8'hC0  
8'hEC  
Yes  
No  
RST1  
Go  
Go  
Go  
Go  
Go  
Watch dog timer TOKEN register  
(WDT_TOKEN_VALUE)  
R: D, SF, A  
W/R: D, A, SF  
R: D, A, SG  
RST1-4  
RST1-4  
RST1-4  
RST1-4  
Watch dog timer ANSWER register  
(WDT_ANSWER)  
No  
Watch dog timer status register  
(WDT_STATUS)  
No  
W/R: D  
R: SF, A  
Watch dog failure detection configuration  
register (WD_FAIL_CFG)  
Yes  
W/R: D  
R: A, SF  
0×38  
0×39  
Configuration register 6 (CFG6)  
Configuration register 7 (CFG7)  
8'h10  
8'h13  
Yes  
Yes  
RST1-4  
RST1-4  
Go  
Go  
Go  
W/R : D  
R : A, SF  
W/R : D  
R : A, SF  
0×3A  
0×3B  
Configuration register 8 (CFG8)  
Reserved 6  
8'h20  
0
Yes  
RST1-4  
18  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DRV3220-Q1 is a predriver for automotive applications featuring three-phase brushless DC-motor control.  
Because this device has a boost regulator for charging high-side gates, it can handle gate charges of 250 nC. A  
boost converter allows full control on the power-stages even for a low battery voltage down to 4.75 V.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
8.2 Typical Application  
8.2.1 Three-Phase Motor Drive-Device for Automotive Application  
From MCU  
PGND  
VBAT  
10 (3)  
5
2
ë{I  
37  
bÜ  
{[{3  
Rgate  
bÜ 38  
Q3LS  
Q3HS  
D[{3  
{I{3  
DI{3  
GNDA  
SLS2  
D[{2  
{I{2  
DI{2  
Dbꢀ!  
SLS1  
D[{1  
{I{1  
GHS1  
1
3
bÜ  
bÜ  
36  
35  
Rgate  
4
16  
8
2.2 mF  
PGND  
ë//3  
29  
10  
32  
Rgate  
0.1 µF  
1 µF  
DRV3220-Q1(1)  
Q2LS  
Q2HS  
9
BLDC  
Motor  
Çꢁ{Ç (Dbꢀ)  
ë//5  
6
Rgate  
7
30  
12  
11  
14  
13  
2.2 mF  
PGND  
ꢁww  
17  
19  
To MCU  
Rgate  
Q1LS  
Q1HS  
wë{ꢁÇ  
ꢁb  
Rgate  
From TPS6538x-Q1,  
connect to ENDRV  
24  
2.2 mF  
PGND  
330 mꢀ  
D1(5)  
MCU SPI  
10 µF  
5 (3)  
L1(4)  
22 µH  
1 F  
0.1 µF  
0.1 µF  
Copyright © 2017, Texas Instruments Incorporated  
(1) This schematic of the DRV3220-Q1 48-pin HTQFP does not provide a true representation of physical pin locations.  
(2) Use same supply from the TPS6538x as the supply used for the MCU IO.  
(3) Resistor not required for reverse protected battery.  
(4) L1 = B82442A1223K000 INDUCTOR, SMT, 22 uH, 10%, 480 mA). The maximum inductor current must be more than  
VGNDLS_B / 330 mΩ.  
(5) D1 = SS28 (DIODE, SMT, SCHOTTKY, 80 V, 2 A). A fast recovery diode is recommended.  
(6) QxHS, QxLS = IRFS3004PBF (HEXFET, N-CHANNEL, POWER MOSFET, D2PACK)  
(7) Rgate = Must be adjust based on system requirement such as EMI, Slew rate, and power  
Figure 15. Typical Application Diagram  
8.3 System Example  
Figure 16 shows a typical system example for an electric power-steering system.  
20  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
FR  
Flexray  
CAN  
CAN  
IGN  
VBAT  
BOOST  
CAN  
Supply  
CAN  
FR  
OUT  
OUT  
EN  
EN  
WakeUp  
Relay Driver  
Voltage  
Monitoring  
VBAT  
µC IO  
Supply  
Preregulator  
KL30  
3 × PowerStage  
NHET  
Charge  
Pump  
µC Core  
Supply  
- Input Capture  
- Input Capture  
VSH  
Vds  
Mon  
Bandgap  
Ref 2  
GHSx  
SHSx  
SPR  
Switch  
Motor  
Protected  
Sensor  
Supply  
- PWM  
Bridge  
Driver  
Voltage  
Monitoring  
3 × IHSx  
3 × ILSx  
GLSx  
SLSx  
Sensors  
WD  
OFF  
Reset /  
Enable  
nRESET  
nERROR  
SPI  
x = [1..3]  
ADC1  
ADC2  
µC ERROR  
Monitor  
Q&A  
Watchdog  
Diagnose  
and Config  
SPI  
SPI  
Error Monitoring:  
- VDS Monitoring  
- Shoot-through  
- Voltage Monitoring on  
VBAT, VBOOST, and  
internal supplies.  
- Temperature Warning  
- And so forth  
Tj Over  
Temp  
shutdown  
Ta/Tj Over  
Temp  
shutdown  
Bridge Error  
Monitoring  
Diagnose  
and Config  
INT  
TPS6538x-Q1  
TMS570  
DRV3220-Q1  
Analog Sensor Signal  
Digital Sensor Signal  
Power Supply  
Bridge Driver  
Networks  
Copyright © 2017, Texas Instruments Incorporated  
Safety Diagnostics  
Figure 16. Typical System – Electrical Power Steering Example  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DRV3220-Q1  
DRV3220-Q1  
SLVSDM3 FEBRUARY 2017  
www.ti.com  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range of 4.75 V to 40 V. The protection circuit  
must be placed for protection against reverse supply connection.  
10 Layout  
10.1 Layout Guidelines  
Use the following guidelines when designing a PCB for the DRV3220-Q1:  
In addition to the GND pins, the DRV3220-Q1 makes an electrical connection to GND through the  
PowerPAD. Always check that the PowerPAD has been properly soldered (see PowerPAD™ Thermally  
Enhanced Package [SLMA002]).  
The VS bypass capacitors should be placed close to the power supply terminals. See the VS box in Figure 17  
Place the VCC5 and VCC5 bypass capacitors close to the corresponding pins with a low impedance path to  
the ground plane pin (pin 16). See the VCC3 VCC5 bypass box in Figure 17.  
AGND should all be tied to the ground plane through a low impedance trace or copper fill.  
Add stitching vias to reduce the impedance of the GND path from the top to bottom side.  
Try to clear the space around and below the DRV3220-Q1 to allow for better heat spreading from the  
PowerPAD.  
Keep the BOOST components close to the device and current loops small. See the BOOST boxes in  
Figure 17.  
Place the GNDLS_B resistor close to the device pin. See the GNDLS_B box in Figure 17.  
10.2 Layout Example  
BOOST  
Bypass  
SENSE  
SENSE  
SENSE  
BOOST  
L
BOOST  
D
VS  
VCC3  
VCC5  
Bypass  
Figure 17. Layout Schematic  
22  
Submit Documentation Feedback  
Copyright © 2017, Texas Instruments Incorporated  
Product Folder Links: DRV3220-Q1  
 
DRV3220-Q1  
www.ti.com  
SLVSDM3 FEBRUARY 2017  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
DRV3220-Q1 Applications in 24-V Automotive Systems  
DRV3220-Q1 Negative Voltage Stress on Source Pins  
Electric Power Steering Design Guide with DRV3220-Q1  
PowerPAD™ Thermally Enhanced Package  
Protecting Automotive Motor Drive Systems from Reverse Polarity Conditions  
Q&A Watchdog Timer Configuration for DRV3220-Q1  
TPS653850-Q1 Multirail Power Supply for Microcontrollers in Safety-Relevant Applications  
TPS653853-Q1 Multirail Power Supply for Microcontrollers in Safety-Relevant Applications  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 Trademarks  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2017, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DRV3220-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV3220QPHPRQ1  
ACTIVE  
HTQFP  
PHP  
48  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
DRV3220Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV3220QPHPRQ1  
HTQFP  
PHP  
48  
1000  
330.0  
16.4  
9.6  
9.6  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTQFP PHP 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
DRV3220QPHPRQ1  
1000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PHP 48  
7 x 7, 0.5 mm pitch  
TQFP - 1.2 mm max height  
QUAD FLATPACK  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226443/A  
www.ti.com  
PACKAGE OUTLINE  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
7.2  
6.8  
B
NOTE 3  
37  
48  
PIN 1 ID  
1
36  
7.2  
6.8  
9.2  
TYP  
8.8  
NOTE 3  
12  
25  
13  
24  
A
0.27  
48X  
44X 0.5  
0.17  
0.08  
C A B  
4X 5.5  
1.2 MAX  
C
SEATING PLANE  
SEE DETAIL A  
0.08  
(0.13)  
TYP  
13  
24  
12  
25  
0.25  
(1)  
GAGE PLANE  
5.17  
3.89  
49  
0.75  
0.45  
0.15  
0.05  
0 -7  
A
16  
36  
DETAIL A  
TYPICAL  
1
48  
37  
5.17  
3.89  
4X (0.109) NOTE 5  
4225861/A 4/2020  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MS-026.  
5. Feature may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(
6.5)  
NOTE 10  
(5.17)  
SYMM  
48  
37  
SOLDER MASK  
DEFINED PAD  
48X (1.6)  
1
36  
48X (0.3)  
SYMM  
49  
(5.17)  
(1.1 TYP)  
(8.5)  
44X (0.5)  
12  
25  
(R0.05) TYP  
(
0.2) TYP  
VIA  
METAL COVERED  
BY SOLDER MASK  
13  
24  
(1.1 TYP)  
SEE DETAILS  
(8.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4225861/A 4/2020  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. See technical brief, Powerpad thermally enhanced package,  
Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
10. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PHP0048G  
PowerPADTM HTQFP - 1.2 mm max height  
PLASTIC QUAD FLATPACK  
(5.17)  
BASED ON  
0.125 THICK STENCIL  
SEE TABLE FOR  
SYMM  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
48  
37  
48X (1.6)  
1
36  
48X (0.3)  
(8.5)  
(5.17)  
SYMM  
49  
BASED ON  
0.125 THICK  
STENCIL  
44X (0.5)  
12  
25  
(R0.05) TYP  
METAL COVERED  
BY SOLDER MASK  
24  
13  
(8.5)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
5.78 X 5.78  
5.17 X 5.17 (SHOWN)  
4.72 X 4.72  
0.125  
0.150  
0.175  
4.37 X 4.37  
4225861/A 4/2020  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

DRV3245AEPHPRQ1

具有精确电流感应和增强保护功能的汽车 0 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 150
TI

DRV3245AQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 125
TI

DRV3245BEPHPRQ1

具有精确电流感应和增强保护功能的汽车 0 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 150
TI

DRV3245BQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 125
TI

DRV3245CQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 125
TI

DRV3245E-Q1

具有精确电流感应和增强保护功能的汽车 0 级 12V 电池三相栅极驱动器单元
TI

DRV3245Q-Q1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元
TI

DRV3245SQPHPRQ1

具有精确电流感应和增强保护功能的汽车 1 级 12V 电池三相栅极驱动器单元 | PHP | 48 | -40 to 150
TI

DRV3255-Q1

具有 4.5A 栅极驱动峰值灌电流的集成式三相 48V 汽车栅极驱动器单元 (GDU)
TI

DRV3255EPAPRQ1

具有 4.5A 栅极驱动峰值灌电流的集成式三相 48V 汽车栅极驱动器单元 (GDU) | PAP | 64 | -40 to 150
TI

DRV3256-Q1

栅极驱动峰值灌电流为 2.5A 的集成式三相 48V 汽车栅极驱动器单元 (GDU)
TI

DRV3256AEPAPRQ1

栅极驱动峰值灌电流为 2.5A 的集成式三相 48V 汽车栅极驱动器单元 (GDU) | PAP | 64 | -40 to 150
TI