DRV8702QRHBTQ1 [TI]

汽车类 47V、H 桥智能栅极驱动器 | RHB | 32 | -40 to 125;
DRV8702QRHBTQ1
型号: DRV8702QRHBTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 47V、H 桥智能栅极驱动器 | RHB | 32 | -40 to 125

栅极驱动 驱动器
文件: 总64页 (文件大小:2107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
DRV870x-Q1 H 桥栅极驱动器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
DRV870x-Q1 器件是一款小型单通道 H 桥栅极驱动  
它使用四个外部 N 通道 MOSFET旨在驱动一个  
双向有刷直流电机。  
– 器件温度等140°C +125°C 环境工作  
温度范围  
功能安全型  
PH/EN、独立 H 桥或 PWM 接口允许轻松连接到控制  
器电路。内部传感放大器提供可调的电流控制。集成的  
电荷泵可提供 100% 占空比支持而且可用于驱动外  
部反向电池开关。  
– 可帮助进DRV8702-Q1 DRV8703-Q1 功能安  
全系统设计的文档  
• 单通H 桥栅极驱动器  
– 驱动四个外N MOSFET  
– 支100% 脉宽调(PWM) 占空比  
• 工作电源电压范围5.5V 45V  
• 三个控制接口选项  
独立半桥模式支持半桥共享能够以具有成本效益的方  
式顺序控制多个直流电机。这款栅极驱动器内置有相应  
的电路能够使用关断时间固定PWM 电流斩波来调  
节绕组电流。  
PH/EN、独H PWM  
• 用于配置的串行接(DRV8703-Q1)  
• 智能栅极驱动架构  
DRV870x-Q1 器件采用了智能栅极驱动技术因此无  
需任何外部栅极组件电阻器和齐纳二极管),同时可  
为外部 FET 提供保护。智能栅极驱动架构可优化死区  
时间以避免出现任何击穿问题在通过可编程压摆率控  
制技术降低电磁干(EMI) 方面带来了灵活性而且可  
防止任何栅极短路问题。此外该架构中还包括主动和  
被动下拉特性可防止任dv/dt 栅极导通。  
– 可调压摆率控制  
• 每H 桥独立控制  
• 支1.8V3.3V 5V 逻辑输入  
• 电流分流放大器  
• 集PWM 电流调节功能  
• 低功耗睡眠模式  
• 保护特性  
器件信息(1)  
封装尺寸标称值)  
器件型号  
DRV8702-Q1  
DRV8703-Q1  
封装  
– 电源欠压锁(UVLO)  
– 电荷泵欠(CPUV) 锁定  
– 过流保(OCP)  
VQFN (32)  
5.00mm × 5.00mm  
– 栅极驱动器故(GDF)  
– 热关(TSD)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 监视器计时(DRV8703-Q1)  
– 故障调节输(nFAULT)  
5.5 to 45 V  
DRV870x-Q1  
2 应用  
PH/EN or PWM  
Gate  
Drive  
nSLEEP  
H-Bridge Gate Driver  
• 电动车窗升降器、天窗、座椅、滑动门、后备箱和  
尾门  
• 继电器更换  
FETs  
M
VREF  
Sense Output  
Shunt Amplifier  
Current  
Sense  
nFAULT  
Current Regulation  
Protection  
– 应用报告SLVA837  
TI 设计TIDUCQ9  
• 有刷直流泵  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDR9  
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 41  
7.6 Register Maps...........................................................43  
8 Application and Implementation..................................49  
8.1 Application Information............................................. 49  
8.2 Typical Application.................................................... 49  
9 Power Supply Recommendations................................54  
9.1 Bulk Capacitance Sizing........................................... 54  
10 Layout...........................................................................55  
10.1 Layout Guidelines................................................... 55  
10.2 Layout Example...................................................... 55  
11 Device and Documentation Support..........................56  
11.1 Documentation Support.......................................... 56  
11.2 Related Links.......................................................... 56  
11.3 接收文档更新通知................................................... 56  
11.4 支持资源..................................................................56  
11.5 Trademarks............................................................. 56  
11.6 静电放电警告...........................................................56  
11.7 术语表..................................................................... 56  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 5  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................8  
6.4 Thermal Information....................................................8  
6.5 Electrical Characteristics.............................................8  
6.6 SPI Timing Requirements......................................... 13  
6.7 Switching Characteristics..........................................13  
6.8 Typical Characteristics..............................................15  
7 Detailed Description......................................................20  
7.1 Overview...................................................................20  
7.2 Functional Block Diagram.........................................21  
7.3 Feature Description...................................................23  
7.4 Device Functional Modes..........................................41  
Information.................................................................... 56  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision D (December 2018) to Revision E (January 2021)  
Page  
• 添加了功能安全项目符号.................................................................................................................................... 1  
Changes from Revision C (August 2018) to Revision D (December 2018)  
Page  
• 更改了首页删除了第二项说明......................................................................................................................... 1  
• 删除了栅极驱动电流图........................................................................................................................................1  
Added SL2 pin to the continous shunt amplifier input pin voltage...................................................................... 7  
Added SL2 pin to the continous shunt amplifier input pin voltage...................................................................... 7  
Changed IN1 to IN1/PH and IN2 to IN2/EN .......................................................................................................8  
Changed MODE typical pulldown resistance .....................................................................................................8  
Added MODE typical pullup resistance.............................................................................................................. 8  
Changed Wording in VDS Configuration section .............................................................................................52  
Changes from Revision B (March 2017) to Revision C (August 2018)  
Page  
• 更改了部分......................................................................................................................................1  
Changed the type of the SL2 pin from O to I in the Pin Functions table.............................................................5  
Changed SPI parameter name conventions.....................................................................................................13  
Changed the VDS(OCP) from 0.86 V to 0.96 V in the OCP Threshold Voltage graph.........................................15  
Changed the I(CHOP) equation in the Current Regulation and Current Chopping Configuration sections.........25  
Changed the current equation in the Amplifier Output (SO) section.................................................................26  
Changed the description of the WD_EN bit in the IDRIVE and WD Field Descriptions table...........................43  
Changes from Revision A (November 2016) to Revision B (March 2017)  
Page  
Changed the maximum voltage for AVDD from 5.7 to 5.75 in the Absolute Maximum Ratings table.............. 14  
Changed maximum VSP value for GAIN_CS = 00 and GAIN_CS = 10 for the DRV8703-Q1 amplifier gain  
parameter in the Electrical Characteristics table.............................................................................................. 14  
Added the R(VDRAIN) note to the External Components table........................................................................... 23  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Changed one resistor value from 32 kΩto 65 kΩin the MODE Pin Block Diagram ......................................24  
Changed what happens when a fault condition is no longer present in the Overcurrent Protection (OCP)  
section.............................................................................................................................................................. 37  
Deleted AV × from tthe I(CHOP) equation in the Current Chopping Configuration section.............................. 52  
Changes from Revision * (October 2016) to Revision A (November 2016)  
Page  
• 已发布完整版数据表........................................................................................................................................... 1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
5 Pin Configuration and Functions  
GND  
IN1/PH  
IN2/EN  
GND  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GL2  
SL2  
SN  
SP  
Thermal  
Pad  
IDRIVE  
VDS  
GL1  
SH1  
GH1  
GND  
GND  
nSLEEP  
Not to scale  
5-1. DRV8702-Q1 RHB Package With Wettable Flanks 32-Pin VQFN Top View  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
GND  
IN1/PH  
IN2/EN  
SDO  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GL2  
SL2  
SN  
SP  
Thermal  
Pad  
nSCS  
GL1  
SH1  
GH1  
GND  
SDI  
SCLK  
nSLEEP  
Not to scale  
5-2. DRV8703-Q1 RHB Package With Wettable Flanks 32-Pin VQFN Top View  
Pin Functions  
PIN  
NO.  
DRV8702-Q1 DRV8703-Q1  
TYPE(1)  
DESCRIPTION  
NAME  
Analog regulator. This pin is the 5-V analog supply regulator. Bypass this pin to  
ground with a 6.3-V, 1-µF ceramic capacitor.  
AVDD  
CPH  
14  
30  
31  
12  
14  
30  
31  
12  
PWR  
PWR  
PWR  
PWR  
Charge-pump switching node. Connect a 0.1-µF X7R capacitor rated for the  
supply voltage (VM) between the CPH and CPL pins.  
Charge-pump switching node. Connect a 0.1-µF X7R capacitor rated for the  
supply voltage (VM) between the CPH and CPL pins.  
CPL  
Logic regulator. This pin is the regulator for the 3.3-V logic supply. Bypass this  
pin to ground with a 6.3-V, 1-µF ceramic capacitor.  
DVDD  
GH1  
GH2  
GL1  
18  
26  
20  
24  
1
18  
26  
20  
24  
1
O
High-side gate. Connect this pin to the high-side FET gate.  
High-side gate. Connect this pin to the high-side FET gate.  
Low-side gate. Connect this pin to the low-side FET gate.  
Low-side gate. Connect this pin to the low-side FET gate.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
Device ground. Connect this pin to the system ground.  
O
O
GL2  
O
GND  
GND  
GND  
GND  
GND  
GND  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
13  
17  
4
13  
17  
7
9
Current setting pin for the gate drive. The resistor value or voltage forced on  
this pin sets the gate-drive current. For more information see the 8.2.2.2  
section.  
IDRIVE  
IN1/PH  
5
2
I
I
Input control pins. The logic of this pin is dependent on the MODE pin. This pin  
is connected to an internal pulldown resistor.  
2
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
PIN  
NO.  
TYPE(1)  
DESCRIPTION  
NAME  
DRV8702-Q1 DRV8703-Q1  
Input control pins. The logic of this pin is dependent on the MODE pin. This pin  
is connected to an internal pulldown resistor.  
IN2/EN  
3
3
I
I
Mode control pin. Pull this pin to logic low to use H-bridge operation. Pull this  
pin to logic high for independent half-bridge operation. This pin is connected to  
an internal resistor divider. Operation of this pin is latched on power up or when  
exiting sleep mode. This pin is connected to an internal pullup and pulldown  
resistors.  
MODE  
11  
11  
NC  
32  
32  
7
NC  
I
No connect. No internal connection.  
SPI clock. This pin is for the SPI clock signal. This pin is connected to an  
internal pulldown resistor.  
SCLK  
SPI input. This pin is for the SPI input signal. This pin is connected to an  
internal pulldown resistor.  
SDI  
6
4
I
SPI output. This pin is for the SPI output signal. This pin is an open-drain  
output that requires an external pullup resistor.  
SDO  
OD  
SH1  
SH2  
SL2  
SN  
19  
25  
23  
22  
19  
25  
23  
22  
I
I
I
I
High-side source. Connect this pin to the high-side FET source.  
High-side source. Connect this pin to the high-side FET source  
Low-side source. Connect this pin to the low-side FET source.  
Shunt-amplifier negative input. Connect this pin to the current-sense resistor.  
Shunt-amplifier output. The voltage on this pin is equal to the SP voltage times  
AV plus an offset. Place no more than 1 nF of capacitance on this pin.  
SO  
16  
21  
29  
27  
6
16  
21  
29  
27  
O
SP  
I
Shunt-amplifier positive input. Connect this pin to the current-sense resistor.  
Charge-pump output. Connect a 16-V, 1-µF ceramic capacitor between this pin  
and the VM pin.  
VCP  
VDRAIN  
VDS  
PWR  
I
I
High-side FET drain connection. This pin is common for the two H-bridges.  
VDS monitor setting pin. The resistor value or voltage forced on this pin sets  
the VDS monitor threshold. For more information see the 8.2.2.3 section.  
28  
15  
Power supply. Connect this pin to the motor supply voltage. Bypass this pin to  
ground with a 0.1-µF ceramic plus a 10-µF (minimum) capacitor.  
VM  
28  
15  
PWR  
I
Current set reference input. The voltage on this pin sets the driver chopping  
current.  
VREF  
Watchdog fault indication pin. This pin is pulled logic low when a watchdog fault  
condition occurs. This pin is an open-drain output that requires an external  
pullup resistor.  
nWDFLT  
9
OD  
Fault indication pin. This pin is pulled logic low when a fault condition occurs.  
This pin is an open-drain output that requires an external pullup resistor.  
nFAULT  
nSCS  
10  
10  
5
OD  
I
SPI chip select. This pin is the select and enable for SPI. This pin is active low.  
Device sleep mode. Pull this pin to logic low to put device into a low-power  
sleep mode with the FETs in high impedance (Hi-Z). This pin is connected to an  
internal pulldown resistor.  
nSLEEP  
8
8
I
(1) I = input, O = output, PWR = power, NC = no connect, OD = open-drain output  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
10  
MAX  
47  
UNIT  
V
Power supply voltage  
VM  
Charge pump voltage  
VCP, CPH  
CPL  
VVM + 12  
VVM  
V
Charge pump negative switching pin  
Internal logic regulator voltage  
Internal analog regulator voltage  
Drain pin voltage  
V
DVDD  
3.8  
V
AVDD  
5.75  
47  
V
VDRAIN  
VM VDRAIN  
V
Voltage difference between supply and VDRAIN  
10  
V
IN1, IN2, nSLEEP, nFAULT, VREF, IDRIVE,  
VDS, MODE, nSCS, SCLK, SDI, SDO,  
nWDFLT  
Control pin voltage  
5.75  
V
0.3  
High-side gate pin voltage  
GH1, GH2  
GL1, GL2  
SH1, SH2  
SH1, SH2  
SP, SL2  
SN  
VVM + 12  
12  
V
V
0.3  
0.3  
1.2  
2  
Low-side gate pin voltage  
Continuous phase-node pin voltage  
Pulsed 10-µs phase-node pin voltage  
VVM + 1.2  
VVM + 2  
1.2  
V
V
V
0.5  
0.3  
1  
Continuous shunt amplifier input pin voltage  
0.3  
V
Pulsed 10-µs shunt amplifier input pin voltage  
Shunt amplifier output pin voltage  
SP, SL2  
SO  
1.2  
V
5.75  
V
0.3  
0
Shunt amplifier output pin current  
SO  
5
mA  
Maximum current, limit current with external  
series resistor  
VDRAIN  
2
mA  
2  
Open-drain output current  
Gate pin source current  
nFAULT, SDO, nWDFLT  
GH1, GL1, GH2, GL2  
GH1, GL1, GH2, GL2  
0
0
10  
250  
500  
150  
150  
mA  
mA  
mA  
°C  
Gate pin sink current  
0
Operating junction temperature, TJ  
Storage temperature, Tstg  
40  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
Corner pins (1, 8, 9, 16, 17, 24, 25,  
and 32)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
MIN  
5.5  
MAX  
UNIT  
V
VVM  
Power supply voltage  
VM  
45  
5.25  
3.6  
VCC  
Logic-level input voltage  
0
V
VVREF  
f(PWM)  
IAVDD  
IDVDD  
ISO  
Current Shunt Amplifier Reference Voltage  
Applied PWM signal (IN1/IN2)  
AVDD external load current  
VREF  
0.3(1)  
V
IN1, IN2  
100  
30(2)  
30(2)  
5
kHz  
mA  
mA  
mA  
°C  
DVDD external load current  
Shunt-amplifier output-current loading  
Operating ambient temperature  
SO  
TA  
125  
40  
(1) Operational at VVREF = 0 to approximately 0.3 V, but accuracy is degraded.  
(2) Power dissipation and thermal limits must be observed.  
6.4 Thermal Information  
DRV870x-Q1  
THERMAL METRIC(1)  
RHB (VQFN)  
32 PINS  
32.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
19.6  
6.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
6.8  
ψJB  
RθJC(bot)  
1.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, AVDD, DVDD)  
Gate drivers functional  
5.5  
4.5  
5.5  
45  
45  
VVM  
VM operating voltage  
V
Logic functional  
IVM  
VM operating supply current  
VM sleep mode supply current  
VVM = 13.5 V; nSLEEP=1  
nSLEEP = 0, VVM = 13.5 V, TA = 25°C  
nSLEEP = 0, VVM = 13.5 V, TA = 125°C(1)  
2-mA load  
7.5  
12  
mA  
µA  
14  
I(SLEEP)  
25  
3
2.9  
4.7  
4.6  
3.3  
3.2  
5
3.5  
3.5  
5.3  
5.3  
VDVDD  
Internal logic regulator voltage  
Internal logic regulator voltage  
V
V
30-mA load, VVM = 13.5 V  
2-mA load  
VAVDD  
30-mA load, VVM = 13.5 V  
5
CHARGE PUMP (VCP, CPH, CPL)  
VVM = 13.5 V; IVCP = 0 to 12 mA  
VVM = 8 V; IVCP = 0 to 10 mA  
VVM = 5.5 V; IVCP = 0 to 8 mA  
VVM > 13.5 V  
22.5  
13.7  
8.9  
12  
23.5  
14  
24.5  
14.8  
9.5  
VVCP  
VCP operating voltage  
V
9.1  
IVCP  
Charge-pump current capacity  
8 V < VVM < 13.5 V  
10  
mA  
5.5 V < VVM < 8 V  
8
CONTROL INPUTS (IN1/PH, IN2/EN, nSLEEP, MODE, nSCS, SCLK, SDI)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIL  
VIH  
Vhys  
IIL  
Input logic-low voltage  
Input logic-high voltage  
Input logic hysteresis  
Input logic-low current  
Input logic-high current  
0
0.8  
1.5  
100  
5  
5.25  
V
mV  
µA  
µA  
VIN = 0 V  
VIN = 5 V  
5
IIH  
70  
IN1/PH, IN2/EN, nSLEEP, nSCS, SCLK,  
SDI  
RPD  
Pulldown resistance  
64  
100  
173  
kΩ  
RPD  
RPU  
Pulldown resistance  
Pullup Resistance  
MODE  
MODE  
65  
26  
kΩ  
kΩ  
CONTROL OUTPUTS (nFAULT, WDFAULT, SDO)  
VOL  
IOZ  
Output logic-low voltage  
IO = 2 mA  
0.1  
2
V
Output high-impedance leakage  
5V pullup voltage  
-2  
µA  
FET GATE DRIVERS (GH1, GH2, SH1, SH2, GL1, GL2)  
VVM > 13.5 V; VGSH with respect to SHx  
10.5  
10.5  
11.5  
6.8  
4
High-side VGS gate drive (gate-to-  
source)  
VGSH  
VVM = 8 V; VGSH with respect to SHx  
VVM = 5.5 V; VGSH with respect to SHx  
VVM > 10.5 V  
5.7  
3.4  
V
V
Low-side VGS gate drive (gate-to-  
source)  
VGSL  
VVM < 10.5 V  
V
VM 2  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
10  
20  
50  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
70  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SRC_ High-side peak source current  
mA  
(VVM = 5.5V)  
HS)  
100  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
145  
190  
240  
20  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
40  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
90  
120  
170  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SNK_ High-side peak sink current  
mA  
(VVM = 5.5V)  
HS)  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
250  
330  
420  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
10  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
20  
40  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
55  
75  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SRC_ Low-side peak source current  
mA  
(VVM = 5.5V)  
LS)  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
115  
145  
190  
20  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
40  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
85  
115  
160  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SNK_ Low-side peak sink current  
mA  
(VVM = 5.5V)  
LS)  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
235  
300  
360  
10  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
20  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
50  
70  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SRC_ High-side peak source current  
mA  
(VVM = 13.5V)  
HS)  
105  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
155  
210  
260  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
20  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
40  
95  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
130  
185  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SNK_ High-side peak sink current  
mA  
(VVM = 13.5V)  
HS)  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
265  
350  
440  
10  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
R(IDRIVE) < 1kto GND (DRV8702) or  
IDRIVE = 3b000 (DRV8703)  
R(IDRIVE) = 33kto GND (DRV8702) or  
IDRIVE = 3b001 (DRV8703)  
20  
R(IDRIVE) = 200kto GND (DRV8702) or  
IDRIVE = 3b010 (DRV8703)  
45  
60  
90  
IDRIVE = 3b011 (DRV8703)  
IDRIVE = 3b100 (DRV8703)  
IDRIVE(SRC_ Low-side peak source current  
mA  
(VVM = 13.5V)  
LS)  
R(IDRIVE) > 2Mto GND (DRV8702) or  
IDRIVE = 3b101 (DRV8703)  
130  
180  
225  
20  
R(IDRIVE) = 68kto AVDD (DRV8702) or  
IDRIVE = 3b110 (DRV8703)  
R(IDRIVE) = 1kto AVDD (DRV8702) or  
IDRIVE = 3b111 (DRV8703)  
R(IDRIVE) < 1kΩto GND (DRV8702-Q1) or  
IDRIVE = 3b000 (DRV8703-Q1)  
R(IDRIVE) = 33 kΩto GND (DRV8702-Q1)  
or IDRIVE = 3b001 (DRV8703-Q1)  
40  
R(IDRIVE) = 200 kΩto GND (DRV8702-  
Q1) or IDRIVE = 3b010 (DRV8703-Q1)  
95  
125  
180  
IDRIVE = 3b011 (DRV8703-Q1)  
IDRIVE = 3b100 (DRV8703-Q1)  
IDRIVE(SNK_ Low-side peak sink current  
mA  
(VVM = 13.5V)  
LS)  
R(IDRIVE) > 2 MΩto GND (DRV8702-Q1)  
or IDRIVE = 3b101 (DRV8703-Q1)  
260  
350  
430  
R(IDRIVE) = 68 kΩto AVDD (DRV8702-  
Q1) or IDRIVE = 3b110 (DRV8703-Q1)  
R(IDRIVE) = 1 kΩto AVDD (DRV8702-Q1)  
or IDRIVE = 3b111 (DRV8703-Q1)  
Source current after tDRIVE  
Sink current after tDRIVE  
GHx  
10  
40  
IHOLD  
FET holding current  
mA  
mA  
kΩ  
750  
1000  
150  
150  
ISTRONG  
FET holdoff strong pulldown  
FET gate holdoff resistor  
GLx  
Pulldown GHx to SHx  
Pulldown GLx to GND  
R(OFF)  
CURRENT SHUNT AMPLIFIER AND PWM CURRENT CONTROL (SP, SN, SO, VREF)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VVREF  
RVREF  
AV  
VREF input rms voltage  
For current internal chopping  
0.3(2)  
3.6  
V
DRV8702-Q1 and DRV8703-Q1  
VREF_SCL = 00 (100%)  
1
MΩ  
VREF input impedance  
DRV8703-Q1 VREF_SCL = 2b01, 2’  
b10 or 2b11  
175  
19.8  
10  
kΩ  
Amplifier gain (DRV8702-Q1)  
60 < VSP < 225 mV; VSN = GND  
19.3  
9.75  
20.3  
V/V  
GAIN_CS = 00; 10 < VSP < 450 mV; VSN  
= GND  
10.25  
GAIN_CS = 01; 60 < VSP < 225 mV; VSN  
= GND  
19.3  
38.4  
73  
19.8  
39.4  
78  
20.3  
40.4  
AV  
Amplifier gain (DRV8703-Q1)  
V/V  
GAIN_CS = 10; 10 < VSP < 112 mV; VSN  
GND  
=
GAIN_CS = 11; 10 < VSP < 56 mV; VSN  
GND  
=
81  
10  
VIO  
Input-referred offset  
VSP = VSN = GND  
5
10  
mV  
µV/°C  
µA  
VIO(DRIFT) Drift offset(2)  
VSP = VSN = GND  
ISP  
SP input current  
VSP = 100 mV; VSN = GND  
20  
VSO  
C(SO)  
SO pin output voltage range  
Allowable SO pin capacitance  
AV × Vio  
4.5  
1
V
nF  
PROTECTION CIRCUITS  
VM falling; UVLO2 report  
VM rising; UVLO2 recovery  
5.25  
5.4  
5.45  
5.65  
4.5  
V(UVLO2) VM undervoltage lockout  
V
V(UVLO1)  
Logic undervoltage lockout  
V
Vhys(UVLO) VM undervoltage hysteresis  
Rising to falling threshold  
VCP falling; CPUV report  
100  
mV  
VVM + 1.5  
V(CP_UV)  
Charge pump undervoltage  
V
VVM  
1.55  
+
VCP rising; CPUV recovery  
Vhys(CP_UV) CP undervoltage hysteresis  
Rising to falling threshold  
R(VDS) < 1 kΩto GND  
R(VDS) = 33 kΩto GND  
R(VDS) = 200 kΩto GND  
R(VDS) > 2 MΩto GND  
R(VDS) = 68 kΩto AVDD  
R(VDS) < 1 kΩto AVDD  
VDS_LEVEL = 3b000  
VDS_LEVEL = 3b001  
VDS_LEVEL = 3b010  
VDS_LEVEL = 3b011  
VDS_LEVEL = 3b100  
VDS_LEVEL = 3b101  
VDS_LEVEL = 3b110  
VDS_LEVEL = 3b111  
50  
mV  
0.06  
0.12  
0.24  
0.48  
0.96  
Disabled  
0.06  
0.145  
0.17  
0.2  
Overcurrent protection trip level, VDS  
of each external FET (DRV8702-Q1)  
VDS(OCP)  
V
High side FETs: VDRAIN SHx  
Low side FETs: SHx SP/SL2  
Overcurrent protection trip level, VDS  
of each external FET (DRV8703-Q1)  
High-side FETs: VDRAIN SHx  
VDS(OCP)  
V
V
0.12  
0.24  
0.48  
0.96  
Low-side FETs: SHx SP/SL2  
Overcurrent protection trip level,  
VSP(OCP)  
VSP with respect to GND  
0.8  
1
1.2  
measured by sense amplifier  
T(OTW)  
TSD  
Thermal warning temperature(1)  
Thermal shutdown temperature(1)  
Thermal shutdown hysteresis(1)  
Die temperature TJ  
Die temperature TJ  
Die temperature TJ  
120  
150  
135  
145  
°C  
°C  
°C  
Thys  
20  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Over recommended operating conditions unless otherwise noted. Typical limits apply for TA = 25°C and VVM = 13.5 V  
PARAMETER  
TEST CONDITIONS  
Positive clamping voltage  
Negative clamping voltage  
MIN  
16.3  
1  
TYP  
MAX  
UNIT  
17  
17.8  
VC(GS)  
Gate-drive clamping voltage  
V
0.7  
0.5  
(1) Ensured by design and characterization data.  
(2) Operational at VVREF = 0 to approximately 0.3 V, but accuracy is degraded.  
6.6 SPI Timing Requirements  
MIN  
100  
50  
NOM  
MAX  
UNIT  
t(CLK)  
Minimum SPI clock period  
Clock high time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t(CLKH)  
t(CLKL)  
t(SU_SDI)  
t(HD_SDI)  
Clock low time  
50  
SDI input data setup time  
SDI input data hold time  
20  
30  
t(HD_SDO) SDO output hold time  
t(SU_SCS) SCS setup time  
t(HD_SCS) SCS hold time  
40  
50  
50  
t(HI_SCS)  
SCS minimum high time before SCS active low  
400  
6.7 Switching Characteristics  
Over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VM, AVDD, DVDD)  
t(SLEEP)  
t(wu)  
Sleep time  
nSLEEP = low to sleep mode  
nSLEEP = high to output change  
VM > UVLO2 to output transition  
100  
1
µs  
ms  
ms  
Wake-up time  
Turn on time  
ton  
1
CHARGE PUMP (VCP, CPH, CPL)  
fS(VCP) Charge-pump switching frequency  
VM > UVLO2  
200  
400  
500  
700  
kHz  
ns  
CONTROL INPUTS (IN1, IN2, nSLEEP, MODE, nSCS, SCLK, SDI, PH, EN)  
tpd Propagation delay IN1, IN2 to GHx or GLx  
FET GATE DRIVERS (GH1, GH2, SH1, SH2, GL1, GL2)  
Observed t(DEAD) depends on  
IDRIVE setting  
t(DEAD)  
Output dead time (DRV8702-Q1)  
240  
120  
240  
480  
ns  
TDEAD = 2b00; Observed t(DEAD)  
depends on IDRIVE setting  
TDEAD = 2b01; Observed t(DEAD)  
depends on IDRIVE setting  
t(DEAD)  
Output dead time (DRV8703-Q1)  
ns  
µs  
TDEAD = 2b10; Observed t(DEAD)  
depends on IDRIVE setting  
TDEAD = 2b11; Observed t(DEAD)  
depends on IDRIVE setting  
960  
2.5  
t(DRIVE)  
Gate drive time  
CURRENT SHUNT AMPLIFIER AND PWM CURRENT CONTROL (SP, SN, SO, VREF)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Over recommended operating conditions unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSP = VSN = GND to VSP = 240 mV,  
VSN = GND, AV= 10; C(SO) = 200 pF  
0.5  
1
VSP = VSN = GND to VSP = 120 mV,  
VSN = GND, AV= 20; C(SO) = 200 pF  
tS  
Settling time to ±1%(1)  
µs  
VSP = VSN = GND to VSP = 60 mV,  
VSN = GND, AV= 40; C(SO) = 200 pF  
2
VSP = VSN = GND to VSP = 30 mV,  
VSN = GND, AV= 80; C(SO) = 200 pF  
4
toff  
PWM off-time (DRV8702-Q1)  
PWM off-time (DRV8703-Q1)  
PWM blanking time  
25  
25  
µs  
µs  
µs  
TOFF = 00  
TOFF = 01  
TOFF = 10  
TOFF = 11  
50  
toff  
100  
200  
2
t(BLANK)  
PROTECTION CIRCUITS  
t(UVLO) VM UVLO falling deglitch time  
t(OCP)  
VM falling; UVLO report  
10  
4
µs  
µs  
Overcurrent deglitch time  
Overcurrent retry time  
3.7  
2.8  
4.3  
3.2  
t(RETRY)  
3
ms  
10  
20  
50  
100  
64  
WD_DLY = 2b00  
WD_DLY = 2b01  
WD_DLY = 2b10  
WD_DLY = 2b11  
t(WD)  
Watchdog time out (DRV8703-Q1)  
Watchdog timer reset period  
ms  
µs  
t(RESET)  
SPI  
t(SPI_READY) SPI read after power on  
VM > VUVLO1  
CL = 20 pF  
5
10  
30  
ms  
ns  
SDO output data delay time, CLK  
high to SDO valid  
td(SDO)  
ta  
SCS access time, SCS low to SDO  
out of high impedance  
10  
10  
ns  
ns  
SCS disable time, SCS high to SDO  
high impedance  
tdis  
(1) Ensured by design  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
6.8 Typical Characteristics  
8.4  
8.1  
7.8  
7.5  
7.2  
6.9  
6.6  
6.3  
8.4  
8.1  
7.8  
7.5  
7.2  
6.9  
6.6  
6.3  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
TA = -40èC  
TA = 25èC  
TA = 125èC  
-50  
-25  
0
25  
50  
75  
100  
125  
5
10  
15  
20  
25  
30  
Supply Voltage (V)  
35  
40  
45  
Temperature (èC)  
D002  
D001  
6-2. Supply Current vs Temperature  
6-1. Supply Current vs Supply Voltage (VM)  
21  
21  
19  
17  
15  
13  
11  
9
TA = -40èC  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
TA = 25èC  
19  
TA = 125èC  
17  
15  
13  
11  
9
7
7
5
10  
15  
20  
Supply Voltage (V)  
25  
30  
35  
40  
45  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
D003  
D004  
6-3. Sleep Current vs Supply Voltage (VM)  
6-4. Sleep Current vs Temperature  
3.4  
5.1  
TA = -40èC  
TA = 25èC  
TA = 125èC  
3.35  
5.05  
5
3.3  
3.25  
3.2  
4.95  
4.9  
TA = -40èC  
3.15  
3.1  
TA = 25èC  
TA = 125èC  
5
10  
15  
20  
Supply Voltage (V)  
25  
30  
35  
40  
45  
5
10  
15  
20  
Supply Voltage (V)  
25  
30  
35  
40  
45  
D005  
D006  
2-mA load  
2-mA load  
6-5. DVDD Regulator  
6-6. AVDD Regulator  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
3.26  
3.24  
3.22  
3.2  
5.1  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
3.18  
3.16  
3.14  
3.12  
3.1  
TA = -40èC  
TA = 25èC  
TA = 125èC  
TA = -40èC  
TA = 25èC  
TA = 125èC  
3.08  
5
10  
15  
20  
25  
30  
Supply Voltage (V)  
35  
40  
45  
5
10  
15  
20  
25  
30  
Supply Voltage (V)  
35  
40  
45  
50  
D007  
D008  
30-mA load  
30-mA load  
6-7. DVDD Regulator  
6-8. AVDD Regulator  
10  
9.98  
9.96  
9.94  
9.92  
9.9  
19.9  
19.84  
19.78  
19.72  
19.66  
19.6  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D010  
D009  
19.8-V/V gain  
10-V/V gain  
6-10. Amplifier Gain  
6-9. Amplifier Gain  
40  
79  
78.8  
78.6  
78.4  
78.2  
78  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
39.8  
39.6  
39.4  
39.2  
39  
77.8  
77.6  
77.4  
77.2  
77  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D012  
D011  
78-V/V gain  
39.4-V/V gain  
6-12. Amplifier Gain  
6-11. Amplifier Gain  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
0.1  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.18  
0.17  
0.16  
0.15  
0.14  
0.13  
0.12  
0.11  
0.1  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
0.03  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D013  
D014  
VDS(OCP) = 0.06 V  
VDS(OCP) = 0.12 V  
6-13. OCP Threshold Voltage  
6-14. OCP Threshold Voltage  
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
0.27  
0.26  
0.25  
0.24  
0.23  
0.22  
0.21  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D015  
D016  
VDS(OCP) = 0.17 V  
VDS(OCP) = 0.24 V  
6-15. OCP Threshold Voltage  
6-16. OCP Threshold Voltage  
0.51  
0.505  
0.5  
1
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 45 V  
0.495  
0.49  
0.485  
0.48  
0.475  
0.47  
0.465  
0.46  
0.455  
0.45  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D017  
D018  
VDS(OCP) = 0.48 V  
VDS(OCP) = 0.96 V  
6-17. OCP Threshold Voltage  
6-18. OCP Threshold Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
300  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
250  
200  
150  
100  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D019  
D020  
VVM = 5.5 V  
VVM = 5.5 V  
6-19. High-Side Source Current  
6-20. High-Side Sink Current  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D022  
D021  
VVM = 5.5 V  
VVM = 5.5 V  
6-22. Low-Side Sink Current  
6-21. Low-Side Source Current  
350  
300  
250  
200  
150  
100  
50  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D023  
D024  
VVM = 13.5 V  
VVM = 13.5 V  
6-23. High-Side Source Current  
6-24. High-Side Sink Current  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
300  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
3'b111  
3'b110  
3'b101  
3'b100  
3'b011  
3'b010  
250  
200  
150  
100  
50  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Temperature (èC)  
Temperature (èC)  
D025  
D026  
VVM = 13.5 V  
VVM = 13.5 V  
6-25. Low-Side Source Current  
6-26. Low-Side Sink Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
DRV87002-Q1 and DRV87003-Q1 are single H-bridge drivers, also referred to as gate controllers. The drivers  
control four external NMOS FETs used to drive a bi-directional brushed-DC motors. The devices can also  
operate in independent half bridge mode to drive two single directional brushed-DC motors.  
The devices can support supply voltages from 5.5 V to 45 V and have a low power sleep mode enabled through  
the nSLEEP pin. There are three options for the interface modes including a configurable PH/EN, independent  
H-bridge control, or PWM interface. This allows easy interfacing to the controller circuit.  
DRV87002-Q1 and DRV87003-Q1 include Smart Gate Drive technology which offers a combination of protection  
features and gate-drive configurability to improve design simplicity and bring a new level of intelligence to motor  
systems. The gate-drive strength, or gate-drive current can be adjusted through the driver itself to optimize for  
different FETs and applications without the need for external resistors. Smart Gate Drive significantly reduces the  
component count of discrete motor-driver systems by integrating the required FET drive circuitry into a single  
device. The peak current can be adjusted through the IDRIVE pin for DRV8702-Q1 and through SPI for  
DRV8703-Q1. Both the high-side and low-side FETs are driven with a gate source voltage (VGS) of 10.5 V  
(nominal) when the VM voltage is more than 13.5 V. At lower VM voltages, the VGS is reduced. The high-side  
gate drive voltage is generated using a doubler-architecture charge pump that regulates to the VM + 10.5 V.  
The inrush or start up current and running current can be limited through a built in fixed time-off current chopping  
scheme. The chopping current level is set through the sense resistor by setting a voltage on the VREF pin. See  
the current regulation section for more information. A shunt-amplifier is also included in the devices to provide  
accurate current measurements to the system controller. The SO pin outputs a voltage that is approximately 20  
times the voltage across the sense resistor on the DRV8702-Q1 device. For the DRV8703-Q1, this gain is  
configurable.  
The DRV870x-Q1 device also has protection features beyond traditional discrete implementations including:  
undervoltage lockout (UVLO), overcurrent protection (OCP), gate driver faults, and thermal shutdown (TSD).  
The device integrates a spread spectrum clocking feature for both the internal digital oscillator and internal  
charge pump. This feature combined with output slew rate control minimizes the radiated emissions from the  
device.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.2 Functional Block Diagram  
VM  
0.1 F  
10 µF  
(minimum)  
VM  
VM  
VM  
Gate Driver  
VVCP  
Power  
VDRAIN  
GH1  
1 µF  
VCP  
HS  
LS  
CPH  
Charge Pump  
SH1  
GL1  
VGLS  
0.1 µF  
CPL  
DVDD  
3.3-V LDO  
Logic  
1 µF  
VM  
BDC  
AVDD  
5-V LDO  
Gate Driver  
VVCP  
1 µF  
VGLS LDO  
GH2  
SH2  
GL2  
SL2  
HS  
LS  
VGLS  
IN1/PH  
IN2/EN  
nSLEEP  
Current Regulation  
Control Inputs  
SP  
MODE  
+
AV  
R(SENSE)  
IDRIVE  
SN  
SO  
œ
RIDRIVE  
VDS  
RVDS  
VREF  
Output  
nFAULT  
PAD  
PAD  
PAD  
7-1. DRV8702-Q1 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
VM  
0.1 F  
10 µF  
(minimum)  
VM  
VM  
VM  
Power  
1 µF  
VCP  
VDRAIN  
GH1  
Gate Driver  
VVCP  
CPH  
Charge Pump  
HS  
LS  
0.1 µF  
CPL  
SH1  
GL1  
VGLS  
DVDD  
3.3-V LDO  
1 µF  
Logic  
AVDD  
5-V LDO  
VM  
BDC  
Gate Driver  
VVCP  
1 µF  
VGLS LDO  
GH2  
HS  
LS  
IN1/PH  
IN2/EN  
SH2  
GL2  
VGLS  
SL2  
Control Inputs  
nSLEEP  
Current Regulation  
SP  
MODE  
Outputs  
nFAULT  
AV  
R(SENSE)  
+
-
SN  
SO  
nWDFLT  
VREF  
SCLK  
SDI  
SPI  
SDO  
nSCS  
PAD  
Copyright © 2017, Texas Instruments Incorporated  
PAD  
PAD  
7-2. DRV8703-Q1 Functional Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3 Feature Description  
7-1 and 7-2 list the recommended external components for the device.  
7-1. External Components  
COMPONENT  
C(VM1)  
PIN 1  
VM  
PIN 2  
GND  
RECOMMENDED  
0.1-µF ceramic capacitor rated for VM  
10-µF electrolytic capacitor rated for VM  
16-V, 1-µF ceramic capacitor  
0.1-µF X7R capacitor rated for VM  
6.3-V, 1-µF ceramic capacitor  
6.3-V, 1-µF ceramic capacitor  
For resistor sizing, see the 8.2 section  
For resistor sizing, see the 8.2 section  
10 kΩ  
C(VM2)  
VM  
GND  
C(VCP)  
VCP  
VM  
C(SW)  
CPH  
CPL  
C(DVDD)  
C(AVDD)  
R(IDRIVE)  
R(VDS)  
DVDD  
AVDD  
IDRIVE  
VDS  
GND  
GND  
GND  
GND  
(1)  
R(nFAULT)  
R(nWDFLT)  
R(SENSE)  
VCC  
nFAULT  
nWDFLT  
SN or GND  
VM  
(1)  
VCC  
10 kΩ  
SP  
Optional low-side sense resistor  
100-Ωseries resistor  
(2)  
R(VDRAIN)  
VDRAIN  
(1) The VCC pin is not a pin on the DRV870x-Q1, but a VCC supply voltage pullup is required for open-drain outputs nFAULT. These pins  
can be pulled up to either AVDD or DVDD.  
(2) The R(VDRAIN) resistor should be used between the VDRAIN and VM pins to minimize current to the VDRAIN pin if no external reverse  
battery protection is implemented on the VDRAIN pin.  
7-2. External Gates  
COMPONENT  
Q(HS1)  
GATE  
GH1  
GL1  
DRAIN  
SOURCE  
RECOMMENDED  
VM  
SH1  
Supports FETs up to 200 nC at 40 kHz  
PWM  
Q(LS1)  
SH1  
VM  
SP or GND  
SH2  
Q(HS2)  
GH2  
GL2  
For more information, see 8  
Q(LS2)  
SH2  
SP or GND  
7.3.1 Bridge Control  
The DRV870x-Q1 device is controlled using a configurable input interface. The 7.3.1.1 section provides the  
full H-bridge state . These tables do not consider the current control built into the DRV870x-Q1 device. Positive  
current is defined in the direction of SH1 SH2. The logic operation set by the MODE pin is latched on power-  
up or when exiting sleep mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
VM  
VM  
1
2
3
1
Reverse drive  
Forward drive  
2
Slow decay (brake)  
High-Z (coast)  
Slow decay (brake)  
High-Z (coast)  
1
1
3
SH2  
SH2  
SH1  
SH1  
2
3
2
3
7-3. Bridge Control  
7.3.1.1 Logic Tables  
7-3, 7-4, and 7-5 are the device logic tables. An X denotes a dont care input or output.  
7-3. DRV870x-Q1 PH and EN Control Interface (MODE = 0)  
nSLEEP  
IN1/PH  
IN2/EN  
GH1  
GL1  
SH1  
Hi-Z  
L
GH2  
GL2  
SH2  
Hi-Z  
L
AVDD/DVDD  
Disabled  
Enabled  
DESCRIPTION  
0
1
1
1
X
X
0
1
X
0
1
1
X
0
0
1
X
X
0
1
0
X
Sleep mode H bridge disabled Hi-Z  
Brake low-side slow decay  
1
1
1
L
0
H
Enabled  
Reverse (Current SH2 SH1)  
Forward (Current SH1 SH2)  
0
H
1
L
Enabled  
7-4. DRV870x-Q1 Independent PWM Control Interface (MODE = 1)  
nSLEEP  
IN1/PH  
IN2/EN  
GH1  
GL1  
SH1  
Hi-Z  
X
GH2  
GL2  
SH2  
Hi-Z  
L
AVDD/DVDD  
Disabled  
Enabled  
DESCRIPTION  
Sleep mode H bridge disabled Hi-Z  
Half-bridge 2 low side on  
Half-bridge 2 high side on  
Half-bridge 1 low side on  
Half-bridge 1 high side on  
0
1
1
1
1
X
X
X
0
X
0
X
X
X
X
X
X
0
1
1
X
X
X
1
0
H
Enabled  
X
X
0
1
L
X
X
X
Enabled  
1
1
0
H
X
X
X
Enabled  
7-5. DRV870x-Q1 Standard PWM Control Interface (MODE = Hi-Z)  
nSLEEP  
IN1/PH  
IN2/EN  
GH1  
GL1  
SH1  
Hi-Z  
Hi-Z  
L
GH2  
GL2  
SH2  
Hi-Z  
Hi-Z  
H
AVDD/DVDD  
Disabled  
Enabled  
DESCRIPTION  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
X
0
0
1
0
X
X
0
1
0
0
X
Sleep mode H bridge disabled Hi-Z  
Coast H bridge disabled Hi-Z  
Reverse (Current SH2 SH1)  
Forward (Current SH1 SH2)  
Brake low-side slow decay  
0
0
1
0
Enabled  
0
H
1
L
Enabled  
1
L
1
L
Enabled  
7.3.2 MODE Pin  
The MODE pin of the device determines the control interface and latches on power-up or when exiting sleep  
mode. 7-4 shows an overview of the internal circuit of the MODE pin.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
DVDD  
+
œ
1.35 V  
Digital  
Core  
26 k  
MODE  
+
65 kꢀ  
œ
0.75 V  
7-4. MODE Pin Block Diagram  
7-6 lists the different control interfaces that can be set via MODE pin at power-up or when exiting sleep mode.  
7-6. MODE Pin Configuration  
MODE  
CONTROL INTERFACE  
0
1
PH or EN  
Independent half-bridge  
PWM  
Hi-Z  
During the device power-up sequence, the DVDD pin is enabled first. Then the MODE pin latches. Finally the  
AVDD pin is enabled. For setting PWM control interface, TI does not recommended connecting the MODE pin to  
the AVDD pin. Instead the MODE pin should be connected to an external 5-V or 3.3-V supply or to the DVDD pin  
if not driven by an external microcontroller (MCU).  
7.3.3 nFAULT Pin  
The nFAULT pin has an open-drain output and should be pulled up to a 5-V or 3.3-V supply. When a fault is  
detected, the nFAULT line is logic low.  
Output  
nFAULT  
7-5. nFAULT Block Diagram  
For a 3.3-V pullup the nFAULT pin can be tied to the DVDD pin with a resistor (refer to the 8 section). For a 5-  
V pullup an external 5-V supply should be used. TI does not recommended connecting the nFAULT pin to the  
AVDD pin.  
7.3.4 Current Regulation  
The maximum current through the motor winding is regulated by a fixed off-time PWM current regulation or  
current chopping. When an H-bridge is enabled in forward or reverse drive, current rises through the winding at a  
rate dependent on the DC voltage and inductance of the winding. When the current hits the current chopping  
threshold, the bridge enters a brake (low-side slow decay) mode until the toff time expires.  
备注  
Immediately after the current is enabled, the voltage on the SP pin is ignored for a period (t(BLANK)  
)
before enabling the current-sense circuitry.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
The PWM chopping current is set by a comparator that compares the voltage across a current-sense resistor  
connected to the SP pin, multiplied by a factor of AV, with a reference voltage from the VREF pin. The factor AV  
is the shunt-amplifier gain, which is 19.8 V/V for the DRV8702-Q1 device or configurable to 10, 19.8, 39.4, or 78  
V/V for the DRV8703-Q1 device.  
Use 方程1 to calculate the chopping current (ICHOP).  
VVREF - V ì AV  
AV ì R(SENSE)  
IO  
I(CHOP)  
=
(1)  
For example, if a 50-mΩ sense resistor and a VREF value of 3.3 V are selected, the full-scale chopping current  
is 3.28 A. The AV is 19.8 V/V and VIO is assumed to be 50 mV in this example.  
For DC motors, current regulation is used to limit the start-up and stall current of the motor. If the current  
regulation feature is not needed, it can be disabled by tying the VREF pin directly to the AVDD pin. If the  
independent PWM control-interface mode (MODE pin is 1) is selected for operation, the device does not perform  
PWM current regulation or current chopping.  
7.3.5 Amplifier Output (SO)  
The SO pin on the DRV870x-Q1 device outputs an analog voltage equal to the voltage across the SP and SN  
pins multiplied by AV. The SO voltage is only valid for forward or reverse drive. Use 方程式 2 to calculate the  
approximate current for the H-bridge.  
VSO - V ì AV  
AV ì R(SENSE)  
IO  
I =  
(2)  
When the SP and SN voltages are 0 V, the SO pin outputs the amplifier offset voltage times the amplifier gain,  
Vio × Av. When SP minus SN is greater than 0 V, the SO pin outputs the sum of the amplifier offset voltage and  
the sense resist or voltage, times the amplifier gain, (Vio + Vrsense) × Av. No capacitor is required on the SO pin.  
AVDD  
AV  
VIO × AV  
SP-SN (V)  
7-6. Current Sense Amplifier Output  
If the voltage across the SP and SN pins exceeds 1 V, then the DRV870x-Q1 device flags an overcurrent  
condition.  
The SO pin can source up to 5 mA of current. If the pin is shorted to ground, or if this pin drives a higher current  
load, the output functions as a constant-current source. The output voltage is not representative of the H-bridge  
current in this state.  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
I(CHOP)  
Drive  
Brake and Slow Decay  
tOFF  
Drive  
Brake and Slow Decay  
tOFF  
t(DRIVE)  
t(DRIVE)  
(Vio+Vrsense) x AV  
(Vio+Vrsense) x AV  
VVREF  
7-7. Current Sense Amplifier and Current Chopping Operation  
During brake mode (slow decay), current is circulated through the low-side FETs. Because current is not flowing  
through the sense resistor, the SO pin does not represent the motor current.  
7.3.5.1 SO Sample and Hold Operation  
The DRV8703-Q1 device allows the shunt amplifier to operate in a sample and hold configuration. To enable this  
mode, set the SH_EN bit high through the SPI. In this mode, the shunt amplifier output is disabled to the  
Hi-Z state whenever the driver is in a brake mode. Place an external capacitor on this pin.  
I(CHOP)  
Drive  
Brake and Slow Decay  
tOFF  
Drive  
Brake and Slow Decay  
tOFF  
t(DRIVE)  
t(DRIVE)  
(Vio+Vrsense) x AV  
(Vio+Vrsense) x AV  
VVREF  
SO Output Hi-Z  
SO Output Hi-Z  
7-8. Sample and Hold Operation  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.6 PWM Motor Gate Drivers  
The DRV870x-Q1 device has gate drivers for a single H-bridge with external NMOS FETs. 7-9 shows a block  
diagram of the predrive circuitry.  
VGHS  
VM  
GH1  
R(OFF)  
IN1/PH  
SH1  
Predrive  
VGLS  
IN2/EN  
GL1  
nSLEEP  
BDC  
R(OFF)  
Logic  
VGHS  
VM  
GH2  
SH2  
R(OFF)  
Predrive  
VGLS  
GL2  
R(OFF)  
SP  
SN  
R(SENSE)  
7-9. Predrive Block Diagram  
Gate drivers inside the DRV870x-Q1 device directly drive N-Channel MOSFETs, which drive the motor current.  
The high-side gate drive is supplied by the charge pump, while an internal regulator generates the low-side gate  
drive.  
The peak drive current of the gate drivers is adjustable through the IDRIVE pin for DRV8702-Q1 device or the  
IDRIVE register for the DRV8703-Q1 device. Peak source currents can be set to the values listed in the FET  
gate drivers section of the 6.5 table. The peak sink current is approximately two times the peak source  
current. Adjusting the peak current changes the output slew rate, which also depends on the FET input  
capacitance and gate charge.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Fast switching times can cause extra noise on the VM and GND pins. This additional noise can occur specifically  
because of a relatively slow reverse-recovery time of the low-side body diode, when the body diode conducts  
reverse-bias momentarily, similar to shoot-through. Slow switching times can cause excessive power dissipation  
because the external FETs have a longer turn on and turn off time.  
When changing the state of the output, the peak current (IDRIVE) is applied for a short period (t(DRIVE)), to charge  
the gate capacitance. After this time, a weak current source (IHOLD) is used to keep the gate at the desired state.  
When selecting the gate drive strength for a given external FET, the selected current must be high enough to  
charge fully and discharge the gate during t(DRIVE), or excessive power is dissipated in the FET.  
During high-side turn on, the low-side gate is pulled low with a strong pulldown (ISTRONG). This pulldown  
prevents the low-side FET QGS from charging and keeps the FET off, even when fast switching occurs at the  
outputs.  
The gate-driver circuits include enforcement of a dead time in analog circuitry, which prevents the high-side and  
low-side FETs from conducting at the same time. When the switching FETs are on, this handshaking prevents  
the high-side or low-side FET from turning on until the opposite FET turns off.  
t(DRIVE)  
IHOLD  
IDRIVE(SNK)  
High-side  
gate drive  
current  
ISTRONG  
ISTRONG  
High-side  
VGS  
tDRIVE  
IHOLD  
IHOLD  
Low-side  
gate drive  
current  
IDRIVE(SNK)  
ISTRONG  
Low-side  
VGS  
7-10. Gate Driver Output to Control External FETs  
7.3.6.1 Miller Charge (QGD  
)
When a FET gate turns on, the following capacitances must be charged:  
Gate-to-source charge, QGS  
Gate-to-drain charge, QGD (Miller charge)  
Remaining QG  
The FET output is slewing primarily during the QGD charge.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
24 V  
25  
20  
10  
8
D
VGHS  
6
15  
10  
5
G
GHx  
Predrive  
4
SHx  
2
S
10  
20  
30  
40  
50  
QGS  
QGD  
Gate Charge (nC)  
7-11. FET Gate Charging Profile  
7.3.7 IDRIVE Pin (DRV8702-Q1 Only)  
The rise and fall times of the H-bridge output (SHx pins) can be adjusted by setting the IDRIVE resistor value or  
forcing a voltage onto the IDRIVE pin. The FET gate voltage ramps faster if a higher IDRIVE setting is selected.  
The ramp of the FET gate directly affects the rise and fall times of the H-bridge output.  
Tying the IDRIVE pin to ground selects the lowest drive setting of 10-mA source and 20-mA sink. Leaving this  
pin open selects the drive setting of 155-mA high side and 130-mA low side for source current, and 265-mA high  
side, 260-mA low side for sink current, at a VM voltage of 13.5 V. For a detailed list of IDRIVE configurations,  
see 7-7.  
+
œ
4.9 V  
3.7 V  
2.5 V  
AVDD  
+
190 kΩ  
œ
IDRIVE  
+
310 kΩ  
Digital  
Core  
œ
+
œ
1.3 V  
0.1 V  
+
œ
7-12. IDRIVE Pin Internal Circuitry  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7-7. DRV8702-Q1 IDRIVE Settings  
SOURCE CURRENT  
SINK CURRENT  
IDRIVE  
RESISTANCE  
IDRIVE  
VOLTAGE  
CIRCUIT  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 5.5 V  
VVM = 13.5 V  
IDRIVE  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
GND  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
< 1 kΩto GND  
IDRIVE  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 40 mA  
Low-side: 40 mA  
33 kΩ± 5% to  
GND  
RIDRIVE  
IDRIVE  
High-side: 50 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 45 mA  
High-side: 90 mA  
Low-side: 85 mA  
High-side: 95 mA  
Low-side: 95 mA  
200 kΩ± 5% to  
GND  
RIDRIVE  
IDRIVE  
High-side: 145 mA High-side: 155 mA High-side: 250 mA High-side: 265 mA  
Low-side: 115 mA Low-side: 130 mA Low-side: 235 mA Low-side: 260 mA  
> 2 MΩto GND,  
Hi-Z  
AVDD  
High-side: 190 mA High-side: 210 mA High-side: 330 mA High-side: 350 mA  
Low-side: 145 mA Low-side: 180 mA Low-side: 300 mA Low-side: 350 mA  
68 kΩ± 5% to  
IDRIVE  
AVDD  
AVDD  
High-side: 240 mA High-side: 260 mA High-side: 420 mA High-side: 440 mA  
Low-side: 190 mA Low-side: 225 mA Low-side: 360 mA  
< 1 kΩto AVDD  
IDRIVE  
Low-side:430 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.8 Dead Time  
The dead time (t(DEAD)) is measured as the time when the SHx pin is in the Hi-Z state between turning off one of  
the H-bridge FETs and turning on the other. For example, the output is Hi-Z between turning off the high-side  
FET and turning on the low-side FET.  
The dead time consists of an inserted digital dead time and FET gate slewing. The DRV8702-Q1 device has a  
digital dead time of approximately 240 ns. The DRV8703-Q1 device has programmable dead-time options of  
120, 240, 480, 960 ns. In addition to this digital dead time, the output is Hi-Z as long as the voltage across the  
GLx pin to ground or GHx pin to SHx pin is less than the FET threshold voltage.  
The total dead time is dependent on the IDRIVE resistor setting because a portion of the FET gate ramp (GHx  
and GLx pins) includes the observable dead time.  
7.3.9 Propagation Delay  
The propagation delay time (tPD) is measured as the time between an input edge to an output change. This time  
is composed of two parts: an input deglitcher and output slewing delay. The input deglitcher prevents noise on  
the input pins from affecting the output state.  
The gate drive slew rate also contributes to the delay time. For the output to change state during normal  
operation, one FET must first be turned off. The FET gate is ramped down according to the IDRIVE resistor  
selection, and the observed propagation delay ends when the FET gate falls below the threshold voltage.  
7.3.10 Overcurrent VDS Monitor  
The gate-driver circuit monitors the VDS voltage of each external FET when it is driving current. When the  
voltage monitored is greater than the OCP threshold voltage (VDS(OCP)) after the OCP deglitch time has expired,  
an OCP condition is detected. The VDS(OCP) voltage can be adjusted by changing the resistor (RVDS) on the VDS  
pin of the DRV8702-Q1 device. The DRV8703-Q1 device provides VDS(OCP) voltage levels by setting the VDS  
register.  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
VM  
VDRAIN  
GH1  
+
High-Side  
VDS OCP  
Monitor 1  
SH1  
GL1  
œ
+
Low-Side  
VDS OCP  
Monitor 1  
BDC  
+
GH2  
High-Side  
VDS OCP  
Monitor 2  
œ
SH2  
GL2  
œ
+
Low-Side  
VDS OCP  
Monitor 2  
SL2  
SP  
œ
R(SENSE)  
SN  
7-13. VDS(OCP) Block Diagram  
The VDS voltage on the high-side FET is measured across the VDRAIN to SHx pins. The low-side VDS monitor  
on half-bridge 1 measures the VDS voltage across the SH1 to SP pins. The low-side VDS monitor on half-bridge  
2 measures the VDS voltage across the SH2 to SL2 pins. Ensure that the SP pin is always connected to the  
source of the low-side FET of half-bridge 1, even when the sense amplifier is not used.  
7.3.11 VDS Pin (DRV8702-Q1 Only)  
The VDS pin on the DRV8702-Q1 device is used to select the VDS threshold voltage for overcurrent detection.  
Tying the VDS pin to ground selects the lowest setting of 0.06 V. Leaving this pin open selects the setting of  
0.48 V. Tying the VDS pin to the AVDD the pin disables the VDS monitor. For a detailed list of VDS  
configurations, see 7-8.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
+
œ
4.9 V  
3.7 V  
2.5 V  
AVDD  
+
190 kΩ  
œ
VDS  
+
310 kΩ  
Digital  
Core  
œ
+
œ
1.3 V  
0.1 V  
+
œ
7-14. VDS Block Diagram  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7-8. VDS Pin Resistor Setting  
OVERCURRENT  
TRIP LEVEL  
VDS RESISTANCE  
VDS VOLTAGE  
CIRCUIT  
(VDS(OCP)  
)
VDS  
GND  
0.06 V  
< 1 kΩto GND  
33 kΩ± 5% to GND  
200 kΩ± 5% to GND  
> 2 MΩto GND, Hi-Z  
68 kΩ± 5% to AVDD  
< 1 kΩto AVDD  
VDS  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
0.12 V  
0.24 V  
0.48 V  
0.96 V  
RIDRIVE  
VDS  
RIDRIVE  
VDS  
AVDD  
VDS  
AVDD  
Disabled  
VDS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.12 Charge Pump  
A charge pump is integrated to supply the gate drive voltage of a high-side NMOS (VGSH). The charge pump  
requires a capacitor between the VM and VCP pins. Additionally, a low-ESR ceramic capacitor is required  
between the CPH and CPL pins. When the VM voltage is below 13.5 V, this charge pump functions as a doubler  
and generates a VVCP equal to 2 × VVM 1.5 V if unloaded. When the VM voltage is more than 13.5 V, the  
charge pump regulates VVCP such that it is equal to VVM + 10.5 V.  
VM  
1 F  
VCP  
CPH  
VM  
Charge  
Pump  
0.1 F  
CPL  
7-15. Charge Pump Block Diagram  
7.3.13 Gate Drive Clamp  
A clamping structure limits the gate-drive output voltage to the VC(GS) voltage to protect the power FETs from  
damage. The positive voltage clamp is realized using a series of diodes. The negative voltage clamp uses the  
body diodes of the internal predriver FET.  
VGHS  
VM  
I(REVERSE)  
GHx  
VGS > VC  
IC  
SHx  
Predriver  
VGLS  
VGS negative  
GLx  
R(SENSE)  
PGND  
7-16. Gate Drive Clamp  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.14 Protection Circuits  
The DRV870x-Q1 device is protected against VM undervoltage, charge-pump undervoltage, overcurrent, gate-  
driver shorts, and overtemperature events.  
7.3.14.1 VM Undervoltage Lockout (UVLO2)  
If the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (VUVLO2), all FETs in the  
H-bridge are disabled, the charge pump is disabled, and the nFAULT pin is driven low. The VM_UVFL bit of the  
DRV8703-Q1 device is set. The operation resumes when the VM voltage rises above the UVLO2 threshold. The  
nFAULT pin is released after the operation resumes but the VM_UVFL bit on the DRV8703-Q1 device remains  
set until cleared by writing to the CLR_FLT bit.  
The SPI settings on the DRV8703-Q1 device are not reset by this fault even though the output drivers are  
disabled. The settings are maintained and internal logic remains active until the VM voltage falls below the logic  
undervoltage threshold (VUVLO1).  
7.3.14.2 Logic Undervoltage (UVLO1)  
If the voltage on the VM pin falls below the logic undervoltage threshold voltage (VUVLO1), the internal logic is  
reset. The operation resumes when the VM voltage rises above the UVLO1 threshold. The nFAULT pin is logic  
low during this state because it is pulled low when the VM undervoltage condition occurs. Decreasing the VM  
voltage below this undervoltage threshold resets the SPI settings.  
7.3.14.3 VCP Undervoltage Lockout (CPUV)  
If the voltage on the VCP pin falls below the threshold voltage of the charge-pump undervoltage (CPUV) lockout,  
all FETs in the H-bridge are disabled and the nFAULT pin is driven low. The DRV8703-Q1 the VCP_UVFL bit is  
set. The operation resumes when the VCP voltage rises above the CPUV threshold. The nFAULT pin is released  
after the operation resumes but the VCP_UVFL bit on the DRV8703-Q1 device remains set until cleared by  
writing to the CLR_FLT bit.  
7.3.14.4 Overcurrent Protection (OCP)  
Overcurrent is sensed by monitoring the VDS voltage drop across the external FETs. If the voltage across a  
driven FET exceeds the VDS(OCP) level for longer than the OCP deglitch time, an OCP event is recognized. All  
FETs in the H-bridge are disabled, and the nFAULT pin is driven low. The OCP bit of the DRV8703-Q1 device is  
set. The drive re-enables after the t(RETRY) time has passed. The nFAULT pin becomes high again after the retry  
time.  
If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes  
and the nFAULT pin goes high. The OCP bit on the DRV8703-Q1 remains set until cleared by writing to the  
CLR_FLT bit. In addition to this FET VDS monitor, an overcurrent condition is detected if the voltage at the SP  
pin exceeds VSP(OCP) and the nFAULT pin is driven low. The OCP bit in the DRV8703-Q1 device is set.  
7.3.14.5 Gate Driver Fault (GDF)  
The GHx and GLx pins are monitored such that if the voltage on the external FET gate does not increase or  
decrease after the t(DRIVE) time, a gate driver fault is detected. This fault occurs if the GHx or GLx pins are  
shorted to the GND, SHx, or VM pin. Additionally, a gate-driver fault occurs if the selected IDRIVE setting is not  
sufficient to turn on the external FET. All FETs in the H-bridge are disabled, and the nFAULT pin is driven low.  
The GDF bit of the DRV8703-Q1 device is set. The driver re-enables after the OCP retry period (t(RETRY)) has  
passed. The nFAULT pin is released after the operation has resumed but the GDF bit on the DRV8703-Q1  
device remains set until cleared by writing to the CLR_FLT bit.  
7.3.14.6 Thermal Shutdown (TSD)  
If the die temperature exceeds the TSD temperature, all FETs in the H-bridge are disabled, the charge pump  
shuts down, the AVDD regulator is disabled, and the nFAULT pin is driven low. The OTSD bit of the DRV8703-  
Q1 device is set as well. After the die temperature falls below TSD Thys temperature, device operation  
automatically resumes. The nFAULT pin is released after the operation resumes, but the OTSD bit on the  
DRV8703-Q1 device remains set until cleared by writing to the CLR_FLT bit.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.14.7 Watchdog Fault (WDFLT, DRV8703-Q1 Only)  
An MCU watchdog function can be enabled to ensure that the external controller that is instructing the  
DRV8703-Q1 device is active and in a known state. The SPI watchdog must be enabled by writing a 1 to the  
WD_EN bit through the SPI (disabled by default, bit is 0). When the watchdog is enabled, an internal timer starts  
to count down to an interval set by the WD_DLY bits. The register address 0x00 must be read by the MCU within  
the interval set by the WD_DLY bit to reset the watchdog. If the timer is allowed to expire, the nWDFLT pin is  
enabled. When the nWDFLT pin is enabled the following occurs:  
The nWDFLT pin goes low for 64 µs.  
The nFAULT pin is asserted.  
The WD_EN bit is cleared.  
The drivers are disabled.  
The WDFLT bit remains asserted, and operation is halted until the CLR_FLT bit has been written to 1.  
7-9 lists the fault responses of the device under the fault conditions.  
7-9. Fault Response  
FAULT  
CONDITION  
H-BRIDGE  
CHARGE PUMP  
AVDD  
DVDD  
RECOVERY  
VM undervoltage  
(UVLO)  
V
VM V(UVLOx)  
V
VM V(UVLOx)  
Disabled  
Disabled  
Disabled  
Operating  
(5.45 V, max)  
(5.65 V, max)  
VCP undervoltage  
(CPUV)  
V
VCP V(CP_UV)  
V
VCP V(CP_UV)  
Disabled  
Operating  
Operating  
Operating  
(VVM + 1.5, typ)  
(VVM + 1.5, typ)  
External FET overload  
(OCP)  
VDS VDS(OCP)  
Disabled  
Disabled  
Disabled  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Disabled  
Operating  
Operating  
Operating  
Operating  
t(RETRY)  
V
SP VSN > 1 V  
Gate driver fault  
(GDF)  
Gate voltage unchanged after  
t(DRIVE)  
t(RETRY)  
Watchdog fault  
(WDFLT)  
Watchdog timer expires  
CLR_FLT bit  
Thermal shutdown  
(TSD)  
T
J TSD Thys  
(Thys is typically 20°C)  
T
J TSD (150°C, min)  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.14.8 Reverse Supply Protection  
The circuit in 7-17 can be implemented to help protect the system from reverse supply conditions. This circuit  
requires the following additional components:  
NMOS FET  
NPN BJT  
Diode  
10-kΩresistor  
43-kΩresistor  
VM  
43 k  
10 kΩ  
0.1 µF  
1 µF  
+
Bulk  
10 µF (min)  
0.1 µF  
CP1  
CP2  
VCP  
VM  
GH1  
SH1  
GL1  
BDC  
GH2  
SH2  
GL2  
SP  
SN  
R(SENSE)  
7-17. Reverse Supply Protection  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.3.15 Hardware Interface  
The DRV8702-Q1 hardware interface allows the device to be configured without a SPI, however not all of the  
functionality is configurable like the DRV8703-Q1 device. The following configuration settings are fixed for the  
hardware-interface device option:  
The toff value is set to 25 µs.  
Current regulation is enabled  
The VREF pin voltage is not scaled internally (100%).  
The shunt amplifier has a fixed gain of 19.8 V/V.  
7.3.15.1 IDRIVE (6-level input)  
The voltage or resistance on the IDRIVE pin sets the peak source and peak sink IDRIVE setting as listed in 表  
7-10.  
7-10. DRV8702-Q1 IDRIVE Settings  
SOURCE CURRENT  
SINK CURRENT  
VVM = 13.5 V  
IDRIVE  
RESISTANCE  
IDRIVE VOLTAGE  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 5.5 V  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
GND  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
< 1 kΩto GND  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 40 mA  
Low-side: 40 mA  
33 kΩ± 5% to  
GND  
High-side: 50 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 45 mA  
High-side: 90 mA  
Low-side: 85 mA  
High-side: 95 mA  
Low-side: 95 mA  
200 kΩ± 5% to  
GND  
High-side: 145 mA  
Low-side: 115 mA  
High-side: 155 mA  
Low-side: 130 mA  
High-side: 250 mA  
Low-side: 235 mA  
High-side: 265 mA  
Low-side: 260 mA  
> 2 MΩto GND,  
Hi-Z  
High-side: 190 mA  
Low-side: 145 mA  
High-side: 210 mA  
Low-side: 180 mA  
High-side: 330 mA  
Low-side: 300 mA  
High-side: 350 mA  
Low-side: 350 mA  
68 kΩ± 5% to  
AVDD  
High-side: 240 mA  
Low-side: 190 mA  
High-side: 260 mA  
Low-side: 225 mA  
High-side: 420 mA  
Low-side: 360 mA  
High-side: 440 mA  
Low-side:430 mA  
< 1 kΩto AVDD  
7.3.15.2 VDS (6-Level Input)  
This input controls the VDS monitor trip voltage as listed in 7-11.  
7-11. DRV8702-Q1 VDS Settings  
OVERCURRENT TRIP LEVEL  
VDS RESISTANCE  
VDS VOLTAGE  
(VDS(OCP)  
0.06 V  
0.12 V  
0.24 V  
0.48 V  
0.96 V  
)
GND  
0.7 V ± 5%  
2 V ± 5%  
3 V ± 5%  
4 V ± 5%  
AVDD  
< 1 kΩto GND  
33 kΩ± 5% to GND  
200 kΩ± 5% to GND  
> 2 MΩto GND, Hi-Z  
68 kΩ± 5% to AVDD  
< 1 kΩto AVDD  
Disabled  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.4 Device Functional Modes  
The DRV870x-Q1 device is active unless the nSLEEP pin is brought low. In sleep mode, the charge pump is  
disabled, the H-bridge FETs are disabled to the Hi-Z state, and the AVDD and DVDD regulators are disabled.  
备注  
The t(SLEEP) time must elapse after a falling edge on the nSLEEP pin before the device is in sleep  
mode. The DRV870x-Q1 device is brought out of sleep mode automatically if the nSLEEP pin is  
brought high.  
The t(WAKE) time must elapse before the outputs change state after wakeup.  
On the DRV8703-Q1 device, the SPI settings are reset when coming out of UVLO or exiting sleep mode.  
While the nSLEEP pin is brought low, all external H-bridge FETs are disabled. The high-side gate pins, GHx, are  
pulled to the output node, SHx, by an internal resistor and the low-side gate pins, GLx, are pulled to ground.  
When the VM voltage is not applied and during the power-on time (ton) the outputs are disabled using weak  
pulldown resistors between the GHx and SHx pins and the GLx and GND pins.  
备注  
The MODE pin controls the device-logic operation for phase and enable, independent half-bridge, or  
PWM input modes. This operation is latched on power up or when exiting sleep mode.  
7.5 Programming  
7.5.1 SPI Communication  
7.5.1.1 Serial Peripheral Interface (SPI)  
The SPI (DRV8703-Q1 only) is used to set device configurations, operating parameters, and read out diagnostic  
information. The DRV8703-Q1 SPI operates in slave mode. The SPI input data (SDI) word consists of a 16-bit  
word, with a 5-bit command, 3 don't care bits, and 8 bits of data. The SPI output data (SDO) word consists of 8-  
bit register data and the first 8 bits are dont cares.  
A valid frame has to meet following conditions:  
The clock polarity (CPOL) must be set to 0.  
The clock phase (CPHA) must be set to 0.  
The SCLK pin must be low when the nSCS pin goes low and when the nSCS pin goes high.  
No SCLK signal can occur when the nSCS signal is in transition.  
The SCLK pin must be low when the nSCS pin goes high.  
The nSCS pin should be taken high for at least 500 ns between frames.  
When the nSCS pin is asserted high, any signals at the SCLK and SDI pins are ignored, and the SDO pin is  
in the high impedance state.  
Full 16 SCLK cycles must occur.  
Data is captured on the falling edge of the clock and data is driven on the rising edge of the clock.  
The most-significant bit (MSB) is shifted in and out first  
For a write command, if the data word sent to the SDI pin is less than or more than 16 bits, a frame error  
occurs and the data word is ignored.  
For a write command, the existing data in the register being written to is shifted out on the SDO pin following  
the 5-bit command data  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.5.1.2 SPI Format  
The SDI input-data word is 16 bits long and consists of the following format:  
1 read or write bit, W (bit 15)  
4 address bits, A (bits 14 through 11)  
3 don't care bits, X (10 through 8)  
8 data bits, D (7:0)  
The SDO output-data word is 16 bits long and the first 8 bits are dont care bits. The data word is the content of  
the register being accessed.  
For a write command (W0 = 0), the response word on the SDO pin is the data currently in the register being  
written to.  
For a read command (W0 = 1), the response word is the data currently in the register being read.  
7-12. SDI Input Data Word Format  
R/W  
B15  
W0  
ADDRESS  
DON'T CARE  
DATA  
B14  
A3  
B13  
A2  
B12  
A1  
B11  
A0  
B10  
X
B9  
X
B8  
X
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
7-13. SDO Output Data Word Format  
DON'T CARE  
DATA  
B15  
X
B14  
X
B13  
X
B12  
X
B11  
X
B10  
X
B9  
X
B8  
X
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
B0  
D0  
nSCS  
SCLK  
SDI  
X
Z
X
Z
MSB  
LSB  
SDO  
LSB  
MSB  
Capture  
Point  
Propagate  
Point  
7-18. SPI Transaction  
The SCLK pin should be low at power-up of the device for reliable SPI transaction. If the SCLK pin cannot be  
guaranteed to be low at power-up, TI recommends performing a dummy SPI-read transaction (of any register)  
after power-up to ensure reliable subsequent transactions. Data read from this dummy read transaction should  
be discarded.  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.6 Register Maps  
7-14. DRV8703-Q1 Memory Map  
Register  
7
Access  
Type  
Address  
(Hex)  
6
5
4
3
2
1
0
Name  
FAULT Status  
VDS and GDF  
Main  
FAULT  
WDFLT  
GDF  
OCP  
L1_GDF  
LOCK  
VM_UVFL  
H2_VDS  
VCP_UVFL  
L2_VDS  
IN1/PH  
OTSD  
H1_VDS  
IN2/EN  
OTW  
R
0
1
2
3
4
5
H2_GDF  
L2_GDF  
H1_GDF  
L1_VDS  
CLR_FLT  
R
RESERVED  
RW  
RW  
RW  
RW  
IDRIVE and WD  
VDS  
TDEAD  
WD_EN  
VDS  
WD_DLY  
DIS_H2_VDS  
VREF_SCL  
IDRIVE  
SO_LIM  
DIS_L2_VDS  
SH_EN  
DIS_H1_VDS  
DIS_L1_VDS  
Config  
TOFF  
CHOP_IDS  
GAIN_CS  
7-15. Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
7.6.1 Status Registers  
The status registers are used to report warning and fault conditions. Status registers are read only registers.  
7-16 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 表  
7-16 should be considered as reserved locations and the register contents should not be modified.  
7-16. Status Registers Summary Table  
Address  
0x00h  
Register Name  
FAULT status  
Section  
Go  
0x01h  
VDS and GDF status  
Go  
7.6.2 FAULT Status Register (address = 0x00h)  
FAULT status is shown in 7-19 and described in 7-17.  
Return to Summary Table.  
Read only  
7-19. FAULT Status Register  
7
6
5
4
3
2
1
0
FAULT  
R-0b  
WDFLT  
R-0b  
GDF  
R-0b  
OCP  
R-0b  
VM_UVFL  
R-0b  
VCP_UVFL  
R-0b  
OTSD  
R-0b  
OTW  
R-0b  
7-17. FAULT Status Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
FAULT  
R
0b  
Logic OR of the FAULT status register excluding the OTW bit  
Watchdog time-out fault  
6
5
4
3
2
1
WDFLT  
GDF  
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
Indicates gate drive fault condition  
OCP  
Indicates VDS monitor overcurrent fault condition  
Indicates VM undervoltage lockout fault condition  
Indicates charge-pump undervoltage fault condition  
Indicates overtemperature shutdown  
VM_UVFL  
VCP_UVFL  
OTSD  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7-17. FAULT Status Field Descriptions (continued)  
Bit  
Field  
Type  
Default  
Description  
0
OTW  
R
0b  
Indicates overtemperature warning  
7.6.3 VDS and GDF Status Register Name (address = 0x01h)  
VDS and GDF status is shown in 7-20 and described in 7-18.  
Return to Summary Table.  
Read only  
7-20. VDS and GDF Status Register  
7
6
5
4
3
2
1
0
H2_GDF  
R-0b  
L2_GDF  
R-0b  
H1_GDF  
R-0b  
L1_GDF  
R-0b  
H2_VDS  
R-0b  
L2_VDS  
R-0b  
H1_VDS  
R-0b  
L1_VDS  
R-0b  
7-18. VDS and GDF Status Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
H2_GDF  
R
0b  
Indicates gate drive fault on the high-side FET of half-bridge 2  
Indicates gate drive fault on the low-side FET of half-bridge 2  
Indicates gate drive fault on the high-side FET of half-bridge 1  
Indicates gate drive fault on the low-side FET of half-bridge 1  
6
5
4
3
L2_GDF  
H1_GDF  
L1_GDF  
H2_VDS  
R
R
R
R
0b  
0b  
0b  
0b  
Indicates VDS monitor overcurrent fault on the high-side FET of  
half-bridge 2  
2
1
0
L2_VDS  
H1_VDS  
L1_VDS  
R
R
R
0b  
0b  
0b  
Indicates VDS monitor overcurrent fault on the low-side FET of  
half-bridge 2  
Indicates VDS monitor overcurrent fault on the high-side FET of  
half-bridge 1  
Indicates VDS monitor overcurrent fault on the low-side FET of  
half-bridge 1  
7.6.4 Control Registers  
The control registers are used to configure the device. Control registers are read and write capable.  
7-19 lists the memory-mapped registers for the status registers. All register offset addresses not listed in 表  
7-19 should be considered as reserved locations and the register contents should not be modified.  
7-19. Status Registers Summary Table  
Address  
0x02h  
0x03h  
0x04h  
0x05h  
Register Name  
Main control  
Section  
Go  
IDRIVE and WD control  
VDS control  
Go  
Go  
Config control  
Go  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.6.5 Main Control Register Name (address = 0x02h)  
Main control is shown in 7-21 and described in 7-20.  
Return to Summary Table.  
Read and write  
7-21. Main Control Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-00b  
LOCK  
IN1/PH  
R/W-0b  
IN2/EN  
R/W-0b  
CLR_FLT  
R/W-0b  
R/W-011b  
7-20. Main Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
RESERVED  
R/W  
00b  
Reserved  
5-3  
LOCK  
R/W  
011b  
Write 110b to lock the settings by ignoring further register  
changes except to address 0x02h. Writing any sequence other  
than 110b has no effect when unlocked.  
Write 011b to this register to unlock all registers. Writing any  
sequence other than 011b has no effect when locked.  
2
1
0
IN1/PH  
R/W  
R/W  
R/W  
0b  
0b  
0b  
This bit is ORed with the IN1/PH pin  
This bit is ORed with the IN2/EN pin  
Write a 1 to this bit to clear the fault bits  
IN2/EN  
CLR_FLT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.6.6 IDRIVE and WD Control Register Name (address = 0x03h)  
IDRIVE and WD control is shown in 7-22 and described in 7-21.  
Return to Summary Table.  
Read and write  
7-22. IDRIVE and WD Register  
7
6
5
4
3
2
1
0
TDEAD  
WD_EN  
R/W-0b  
WD_DLY  
R/W-00b  
IDRIVE  
R/W-111b  
R/W-00b  
7-21. IDRIVE and WD Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
TDEAD  
R/W  
00b  
Dead time  
00b = 120 ns  
01b = 240 ns  
10b = 480 ns  
11b = 960 ns  
5
WD_EN  
R/W  
R/W  
0b  
Enables or disables the watchdog time (disabled by default)  
4-3  
WD_DLY  
00b  
Watchdog timeout delay (if WD_EN = 1)  
00b = 10 ms  
01b = 20 ms  
10b = 50 ms  
11b = 100 ms  
2-0  
IDRIVE  
R/W  
111b  
Sets the peak source current and peak sink current of the gate  
drive. 7-22 lists the bit settings.  
7-22. IDRIVE Bit Settings  
Source Current  
Sink Current  
Bit Value  
VVM = 5.5 V  
VVM = 13.5 V  
VVM = 5.5 V  
VVM = 13.5 V  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 10 mA  
Low-side: 10 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 20 mA  
Low-side: 20 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 40 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 40 mA  
High-side: 50 mA  
Low-side: 45 mA  
High-side: 90 mA  
Low-side: 85 mA  
High-side: 95 mA  
Low-side: 95 mA  
High-side: 70 mA  
Low-side: 55 mA  
High-side: 70 mA  
Low-side: 60 mA  
High-side: 120 mA  
Low-side: 115 mA  
High-side: 130 mA  
Low-side: 125 mA  
High-side: 100 mA  
Low-side: 75 mA  
High-side: 105 mA  
Low-side: 90 mA  
High-side: 170 mA  
Low-side: 160 mA  
High-side: 185 mA  
Low-side: 180 mA  
High-side: 145 mA  
Low-side: 115 mA  
High-side: 155 mA  
Low-side: 130 mA  
High-side: 250 mA  
Low-side: 235 mA  
High-side: 265 mA  
Low-side: 260 mA  
High-side: 190 mA  
Low-side: 145 mA  
High-side: 210 mA  
Low-side: 180 mA  
High-side: 330 mA  
Low-side: 300 mA  
High-side: 350 mA  
Low-side: 350 mA  
High-side: 240 mA  
Low-side: 190 mA  
High-side: 260 mA  
Low-side: 225 mA  
High-side: 420 mA  
Low-side: 360 mA  
High-side: 440 mA  
Low-side: 430 mA  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.6.7 VDS Control Register Name (address = 0x04h)  
VDS control is shown in 7-23 and described in 7-23.  
Return to Summary Table.  
Read and write  
7-23. VDS Control Register  
7
6
5
4
3
2
1
0
SO_LIM  
R/W-0b  
VDS  
DIS_H2_VDS  
R/W-0b  
DIS_L2_VDS  
R/W-0b  
DIS_H1_VDS  
R/W-0b  
DIS_L1_VDS  
R/W-0b  
R/W-111b  
7-23. VDS Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7
SO_LIM  
R/W  
0b  
0b = Default operation  
1b = SO output is voltage-limited to 3.6 V  
6-4  
VDS  
R/W  
111b  
Sets the VDS(OCP) monitor for each FET  
000b = 0.06 V  
001b = 0.145 V  
010b = 0.17 V  
011b = 0.2 V  
100b = 0.12 V  
101b = 0.24 V  
110b = 0.48 V  
111b = 0.96 V  
3
2
1
0
DIS_H2_VDS  
DIS_L2_VDS  
DIS_H1_VDS  
DIS_L1_VDS  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
Disables the VDS monitor on the high-side FET of half-bridge 2  
(enabled by default)  
Disables the VDS monitor on the low-side FET of half-bridge 2  
(enabled by default)  
Disables the VDS monitor on the high-side FET of half-bridge 1  
(enabled by default)  
Disables the VDS monitor on the low-side FET of half-bridge 1  
(enabled by default)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
7.6.8 Config Control Register Name (address = 0x05h)  
Config control is shown in 7-24 and described in 7-24.  
Return to Summary Table.  
Read and write  
7-24. Config Control Register  
7
6
5
4
3
2
1
0
TOFF  
CHOP_IDS  
R/W-0b  
VREF_SCL  
R/W-00b  
SH_EN  
R/W-0b  
GAIN_CS  
R/W-01b  
R/W-00b  
7-24. Config Control Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
7-6  
TOFF  
R/W  
00b  
Off time for PWM current chopping  
00b = 25 µs  
01b = 50 µs  
10b = 100 µs  
11b = 200 µs  
5
CHOP_IDS  
VREF_SCL  
R/W  
R/W  
0b  
Disables current regulation (enabled by default)  
4-3  
00b  
Scale factor for the VREF input  
00b = 100%  
01b = 75%  
10b = 50%  
11b = 25%  
2
SH_EN  
R/W  
R/W  
0b  
Enables sample and hold operation of the shunt amplifier  
(disabled by default)  
1-0  
GAIN_CS  
01b  
Shunt amplifier gain setting  
00b = 10 V/V  
01b = 19.8 V/V  
10b = 39.4 V/V  
11b = 78 V/V  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The DRV870x-Q1 device is used in brushed-DC, solenoid, or relay-control applications. The following typical  
application can be used to configure the DRV870x-Q1 device.  
8.2 Typical Application  
This application features the DRV8702-Q1 device.  
VM  
+
VM  
0.1 µF  
Bulk  
0.1 µF 1 µF  
+
Bulk  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
GND  
GL2  
SL2  
SN  
IN1/PH  
IN2/EN  
GND  
BDC  
10 m  
SP  
GND  
(PAD)  
IDRIVE  
VDS  
GL1  
SH1  
GH1  
GND  
200 kΩ  
0 Ω  
GND  
nSLEEP  
VM  
+
Bulk  
VM  
R1  
R2  
10 kΩ  
1 µF  
1 µF  
Copyright © 2017, Texas Instruments Incorporated  
8-1. DRV8702-Q1 Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
REFERENCE  
EXAMPLE VALUE  
Nominal supply voltage  
14 V  
VM  
Supply voltage range  
FET part number  
7 V to 35 V  
CSD18502Q5B  
52 nC (typical)  
8.4 nC (typical)  
100 to 300 ns  
15 A  
FET total gate charge  
FET gate-to-drain charge  
Target FET gate rise time  
Motor current chopping level  
Qg  
Qgd  
tr  
I(CHOP)  
8.2.2 Detailed Design Procedure  
8.2.2.1 External FET Selection  
The DRV8702-Q1 FET support is based on the charge-pump capacity and PWM-output frequency. For a quick  
calculation of FET driving capacity, use 方程式 3 when drive and brake (slow decay) are the primary modes of  
operation.  
IVCP  
Qg <  
f(PWM)  
(3)  
where  
fPWM is the maximum desired PWM frequency to be applied to the DRV8702-Q1 inputs or the current  
chopping frequency, whichever is larger.  
IVCP is the charge-pump capacity, which depends on the VM voltage.  
The internal current chopping frequency is at most equal to the PWM frequency as shown in 方程4.  
1
f(PWM)  
<
toff + t(BLANK)  
(4)  
For example, if the VM voltage of a system is 7 V (IVCP = 8 mA) and uses a maximum PWM frequency of 40  
kHz, then the DRV8702-Q1 device will support FETs with a Qg up to 200 nC.  
If the application requires a forced fast decay (or alternating between drive and reverse drive), use 方程式 5 to  
calculate the maximum FET driving capacity.  
IVCP  
Qg <  
2 ì f(PWM)  
(5)  
8.2.2.2 IDRIVE Configuration  
The IDRIVE current is selected based on the gate charge of the FETs. The IDRIVE pin must be configured so  
that the FET gates are charged entirely during the t(DRIVE) time. If the selected IDRIVE current is too low for a  
given FET, then the FET may not turn on completely. TI recommends adjusting these values in-system with the  
required external FETs and motor to determine the best possible setting for any application.  
For FETs with a known gate-to-drain charge (Qgd) and desired rise time (tr), the IDRIVE current can be selected  
based on the 方程6.  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
Qgd  
tr  
IDRIVE  
>
(6)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
If the gate-to-drain charge is 2.3 nC and the desired rise time is around 100 to 300 ns, use 方程式 7 to calculate  
the minimum IDRIVE (IDRIVE1) and 方程8 to calculate the maximum IDRIVE (IDRIVE2).  
IDRIVE1 = 8.4 nC / 100 ns = 84 mA  
IDRIVE2 = 8.4 nC / 300 ns = 28 mA  
(7)  
(8)  
Select a value for IDRIVE between 28 and 84 mA. An IDRIVE value of approximately 50 mA for the source  
(approximately 100 mA sink) was selected for this application. This value requires a 200-kΩ resistor from the  
IDRIVE pin to ground.  
8.2.2.3 VDS Configuration  
The VDS monitor threshold voltage, VDS(OCP), is configured based on the maximum current, IVDS, and RDS(on) of  
the FETs. The drain to source voltage, VDSFET, is the maximum current, IVDS, multiplied by the RDS(on) of the  
FET.  
The VDS pin of the DRV8702-Q1 selects the VDS monitor trip threshold, VDS(OCP). The VDS bits in the VDS  
register of the DRV8703-Q1 selects the VDS(OCP) voltage. Use 方程9 to calculate the trip current.  
VDSFET  
IVDS  
>
RDS(on)  
(9)  
If the RDS(on) of the FET is 1.8 mΩ and the desired maximum current is less than 100 A, the VDSFET voltage is  
equal to 180 mV as shown in 方程10.  
For this example, select a value for the VDS(OCP) that is less than 180 mV. A VDS(OCP) value of 0.12 V was  
selected for this application.  
To set the VDS(OCP) to 0.12 V, use the SPI (DRV8703-Q1 Only) or place a 33k resistor at the VDS pin to ground  
(DRV8702-Q1 Only).  
The VDS pin can configured to select other VDS(OCP) threshold voltages. See the 7.3.11 section for more  
information on VDS operation.  
VDSFET= IVDS × RDS(on) = 100 A × 1.8 mΩ= 180 mV  
(10)  
8.2.2.4 Current Chopping Configuration  
The chopping current is set based on the sense resistor value and the analog voltage at the VREF pin. Use 方程  
11 to calculate the current (I(CHOP)). The amplifier gain, AV, is 19.8 V/V for the DRV8702-Q1 and VIO is  
typically 5 mV (input referred).  
VVREF - V ì AV  
AV ì R(SENSE)  
IO  
I(CHOP)  
=
(11)  
For example, if the desired chopping current is 15 A, select a value of 10 mΩ for R(SENSE). The value of VVREF  
must therefore be 2.975 V. Add a resistor divider from the AVDD (5 V) pin to set the VVREF at approximately  
2.975 V. Select a value of 13 kΩfor R2 and 19.1 kΩfor R1 (the VREF resistor).  
If current chopping is not required, the sense resistor can be removed and the source of the low side FET can be  
connected to ground.  
SN and SP should be connected to the source of the low side FET and VREF should be connected to AVDD  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
8.2.3 Application Curves  
10-mA source  
20-mA sink  
10-mA source  
20-mA sink  
8-2. SH1 Fall Time  
8-3. SH1 Rise Time  
8-5. Current Profile on Motor Startup Without  
8-4. Current Profile on Motor Startup With  
Regulation  
Regulation  
8-6. Current Regulating at 2.25 A on Motor Startup  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
9 Power Supply Recommendations  
The DRV8702-Q1 device is designed to operate with an input voltage supply (VM) rangefrom 5.5 V to 45 V. A  
0.1-µF ceramic capacitor rated for VM must be placed as close to the DRV8702-Q1 device as possible. Also, a  
bulk capacitor valued at least 10 µF must be placed on the VM pin.  
Additional bulk capacitance is required to bypass the external H-bridge FETs.  
9.1 Bulk Capacitance Sizing  
Bulk capacitance sizing is an important factor in motor drive system design. It is beneficial to have more bulk  
capacitance, while the disadvantages are increased cost and physical size.  
The amount of local capacitance needed depends on a variety of factors including:  
The highest current required by the motor system.  
The capacitance of the power supply and the ability of the power supply to source current.  
The amount of parasitic inductance between the power supply and motor system.  
The acceptable voltage ripple.  
The type of motor used (brushed DC, brushless DC, and stepper).  
The motor braking method.  
The inductance between the power supply and motor drive system limits the rate that current can change from  
the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands  
or dumps from the motor with a change in voltage. When sufficient bulk capacitance is used, the motor voltage  
remains stable, and high current can be quickly supplied.  
The data sheet provides a recommended value, but system-level testing is required to determine the appropriate  
sized bulk capacitor.  
Parasitic Wire  
Inductance  
Motor Drive System  
Power Supply  
VM  
+
Motor  
Driver  
+
œ
GND  
Local  
Bulk Capacitor  
IC Bypass  
Capacitor  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Example Setup of Motor Drive System With External Power Supply  
The voltage rating for bulk capacitors should be higher than the operating voltage to provide a margin for cases  
when the motor transfers energy to the supply.  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
The VM pin should be bypassed to ground using a low-ESR ceramic bypass capacitor with a recommended  
value of 0.1 µF rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick  
trace or ground-plane connection to the GND pin of the device. The VM pin must also be bypassed to ground  
using a bulk capacitor rated for VM. This capacitor can be electrolytic and must be at least 10 µF.  
A low-ESR ceramic capacitor must be placed between the CPL and CPH pins. A value of 0.1 µF rated for VM is  
recommended. Place this capacitor as close to the pins as possible. A low-ESR ceramic capacitor must be  
placed in between the VM and VCP pins. A value of 1 µF rated for 16 V is recommended. Place this component  
as close to the pins as possible.  
Bypass the AVDD and DVDD pins to ground with ceramic capacitors rated for 6.3 V. Place these bypassing  
capacitors as close to the pins as possible.  
Use separate traces to connect the SP and SN pins to the R(SENSE) resistor.  
10.2 Layout Example  
Bulk  
D
D
D
D
G
S
S
S
1 µF  
SH2  
S
D
0.1 µF  
0.1 µF  
RSENSE  
S
S
G
D
D
D
1
2
3
4
5
6
7
8
24 GL2  
GND  
23  
IN1/PH  
IN2/EN  
GND  
SL2  
22  
SN  
GND  
21  
SP  
20  
IDRIVE  
VDS  
GL1  
(PAD)  
19  
SH1  
S
S
S
G
D
D
D
D
GND  
18  
17  
GH1  
GND  
nSLEEP  
1 µF  
1 µF  
Bulk  
SH1  
D
G
D
D
D
S
S
S
10-1. DRV8702-Q1 Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Automotive Relay Replacement Application Note  
Texas Instruments, DRV8702-Q1 EVM Users Guide  
Texas Instruments, DRV8703-Q1 EVM Users Guide  
Texas Instruments, Small Footprint Motor Driver Sunroof Module Design Guide  
Texas Instruments, Relay Replacement for Brushed DC Motor Drive in Automotive Applications application  
report  
Texas Instruments, Understanding IDRIVE and TDRIVE in TI Smart Gate Drivers  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
11-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
DRV8702-Q1  
DRV8703-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
 
 
 
 
 
 
 
 
 
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
PACKAGE OUTLINE  
RHB0032N  
VQFN - 0.9 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.05)  
SECTION A-A  
TYPICAL  
A
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
A
A
2X  
SYMM  
33  
3.5  
0.3  
32X  
0.2  
24  
0.1  
C A B  
1
0.05  
C
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4222893/B 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RHB0032N  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222893/B 02/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
DRV8702-Q1, DRV8703-Q1  
ZHCSG08E OCTOBER 2016 REVISED JANUARY 2021  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RHB0032N  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222893/B 02/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DRV8702-Q1 DRV8703-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DRV8702QRHBRQ1  
DRV8702QRHBTQ1  
DRV8703QRHBRQ1  
DRV8703QRHBTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
DRV8702  
NIPDAU | SN  
NIPDAU | SN  
NIPDAU | SN  
DRV8702  
DRV8703  
DRV8703  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DRV8702QRHBRQ1  
DRV8702QRHBTQ1  
DRV8703QRHBRQ1  
DRV8703QRHBTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DRV8702QRHBRQ1  
DRV8702QRHBTQ1  
DRV8703QRHBRQ1  
DRV8703QRHBTQ1  
VQFN  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
RHB  
32  
32  
32  
32  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DRV8703-Q1

具有 SPI 控制功能的汽车类 47V H 桥智能栅极驱动器
TI

DRV8703D-Q1

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器
TI

DRV8703DQRHBRQ1

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8703DQRHBTQ1

具有 SPI 控制功能的汽车类 47V、半桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8703QRHBRQ1

具有 SPI 控制功能的汽车类 47V H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8703QRHBTQ1

具有 SPI 控制功能的汽车类 47V H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8704

60V 双路 H 桥智能栅极驱动器
TI

DRV8704DCP

60V 双路 H 桥智能栅极驱动器 | DCP | 38 | -40 to 85
TI

DRV8704DCPR

60-V dual H-bridge smart gate driver | DCP | 38 | -40 to 85
TI

DRV8705-Q1

具有离线诊断功能的汽车级、40V、H 桥智能栅极驱动器
TI

DRV8705HQRHBRQ1

具有离线诊断功能的汽车级、40V、H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI

DRV8705SQRHBRQ1

具有离线诊断功能的汽车级、40V、H 桥智能栅极驱动器 | RHB | 32 | -40 to 125
TI