HD3SS2522RHU [TI]

带 DFP 控制器的 10Gbps USB 3.1 Type-C 多路复用器 | RHU | 56 | 0 to 70;
HD3SS2522RHU
型号: HD3SS2522RHU
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

带 DFP 控制器的 10Gbps USB 3.1 Type-C 多路复用器 | RHU | 56 | 0 to 70

控制器 接口集成电路 复用器
文件: 总22页 (文件大小:724K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
HD3SS2522  
ZHCSDQ8 APRIL 2015  
HD3SS2522 具有 DFP 控制器的 USB Type-C SS MUX  
1 特性  
3 说明  
1
符合 USB Type-C 规范 1.0  
模式配置  
仅主机 - 下行端口 (DFP)  
通道配置 (CC)  
HD3SS2522 是一款配有 DFP CC 逻辑的 2:1 USB  
复用器。 根据 USB Type-C 规范,HD3SS2522 用作  
DFPCC 逻辑块通过监视 CC1 CC2 引脚的电压  
来确定何时连接了 USB 端口。 连接 USB 端口  
后,CC 逻辑还将确定电缆方向并相应地配置 USB SS  
复用器。  
USB 端口连接检测  
电缆方向检测  
Type-C 电流模式(默认、中等和高)  
HD3SS2522 通过 VBUS_EN 信号来控制传统电源开  
关,从而为 VBUS 提供 5V 电压。 此外,该器件还可  
提供相应的控制信号,从而为生态系统实现 USB  
Type-C 提供 5V VCONN 电源。  
电源电压:3.3V ± 10%  
用于 USB 3.1 信号传输的 2:1 复用器 (Mux) 解决方  
运行速率高达 10Gbps-3dB 带宽 (BW) 宽达  
8GHz  
该器件具有出色的动态特性,可在信号眼图衰减最小的  
情况下实现高速转换,并且附加抖动极少。 此外,该  
器件在待机模式下具有较低的电流消耗。  
出色动态特性(2.5GHz 时)  
串扰 = -39dB  
断开隔离 = -22dB  
插入损耗 = –1.2dB  
输入回波损耗 = –12dB  
器件信息(1)  
器件型号  
HD3SS2522  
封装  
封装尺寸(标称值)  
WQFN (56)  
11.00mm x 5.00mm  
低功耗:激活模式为 2mW;待机模式为 50μW  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
2 应用  
台式机和笔记本电脑  
USB Type-C DFP 应用  
主板  
4 简化电路原理图  
5V  
VBUS  
VCONN  
VBUS_EN  
VCTL2  
VCTL1  
CC1  
VCC  
DFP  
CC Controller  
CC2  
CRX1  
CTX1  
CRX2  
CTX2  
USB SS MUX  
USB SS Signals  
USB 2.0 Signals  
USB  
Host  
HD3SS2522  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEM6  
 
 
 
 
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 USB Type-C DFP Typical Application..................... 12  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements................................................ 7  
7.7 Switching Characteristics.......................................... 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 16  
12 器件和文档支持 ..................................................... 17  
12.1 ....................................................................... 17  
12.2 静电放电警告......................................................... 17  
12.3 术语表 ................................................................... 17  
13 机械、封装和可订购信息....................................... 17  
8
5 修订历史记录  
日期  
修订版本  
注释  
2015 4 月  
*
首次发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
6 Pin Configuration and Functions  
RHU Package  
Top View  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
NC  
NC  
B0p  
B0p  
2
3
A0p  
A0p  
B0n  
B0n  
A0n  
A0n  
B1p  
B1p  
4
VCC  
VCC  
B1n  
B1n  
5
A1p  
A1p  
C0p  
C0p  
6
A1n  
A1n  
C0n  
C0n  
7
SS_SEL_IN  
SS_SEL_IN  
C1p  
C1p  
8
SS_Oen_IN  
SS_Oen_IN  
C1n  
C1n  
9
CC_Oen_IN  
CC_Oen_IN  
VCC  
VCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
RSVD  
RSVD  
GND  
GND  
Thermal PAD  
CC_OUT  
CC_OUT  
RSVD  
RSVD  
CC1  
CC1  
CC_SEL_IN  
CC_SEL_IN  
VCC  
VCC  
RSVD  
RSVD  
VCC  
VCC  
CC2  
CC2  
MODE_LED  
MODE_LED  
SS_OEn_OUT/VBUSEnPol  
SS_OEn_OUT/VBUSEnPol  
VBUS_FAULT#  
VBUS_FAULT#  
GND  
GND  
VCONN_FAULT#  
VCONN_FAULT#  
CC_OEn_OUT/VconnEnPol  
CC_OEn_OUT/VconnEnPol  
CC_IN  
CC_IN  
RSVD  
RSVD  
CC_SEL_OUT  
CC_SEL_OUT  
RST  
RST  
SS_SEL_OUT  
SS_SEL_OUT  
GPIO2  
GPIO2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A0p  
NO.  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Port A0, High Speed Positive Signal  
A0n  
3
Port A0, High Speed Negative Signal  
Port A1, High Speed Positive Signal  
Port A1, High Speed Negative Signal  
Port B0, High Speed Positive Signal  
Port B0, High Speed Negative Signal  
Port B1, High Speed Positive Signal  
Port B1, High Speed Negative Signal  
Port C0, High Speed Positive Signal  
Port C0, High Speed Negative Signal  
Port C1, High Speed Positive Signal  
Port C1, High Speed Negative Signal  
A1p  
5
A1n  
6
B0p  
48  
47  
46  
45  
44  
43  
42  
41  
18  
B0n  
B1p  
B1n  
C0p  
C0n  
C1p  
C1n  
CC_IN  
Selected CC signal back to the device as input - connect to CC_OUT pin  
Copyright © 2015, Texas Instruments Incorporated  
3
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
11  
12  
19  
9
CC_OUT  
I/O  
Selected CC signal as output - connect to CC_IN pin  
CC Signal select pin input – Connect to CC_SEL_OUT  
CC Signal select pin output – Connect to CC_SEL_IN  
Active Low CC MUX Enable input – connect to CC_OEn_OUT  
CC_SEL_IN  
CC_SEL_OUT  
CC_OEn_IN  
I
O
I
Active Low CC MUX Enable output – connect to CC_OEn. The pin is also sampled  
upon reset to set the polarity of the VCTRL1 and VCTRL2.  
0 = VCTRL1/2 polarity is active high.  
CC_OEn_OUT /  
VconnEnPol  
32  
I/O  
1 = VCTRL1/2 polarity is active low.  
CC1  
37  
I/O  
I/O  
G
USB Type-C configuration channel for position 1  
USB Type-C configuration channel for position 2  
Ground  
CC2  
35  
33 , 39, 53  
28  
GND  
GPIO1  
GPIO2  
I/O  
I/O  
GPIO or SCL for FW update  
29  
GPIO or SDA for FW update  
IMODE1  
IMODE2  
Low  
Current Mode  
Default  
Low  
IMODE1  
IMODE2  
26  
27  
I
Low  
High  
Mid (1.5 A)  
Reserved  
High (3A)  
High  
High  
Low  
High  
MODE_LED  
NC  
15  
O
High when UFP attach detected  
1, 24, 49, 50, 51,  
54, 55, 56  
Not connected  
RST  
30  
I
I/O  
I
CC Controller Reset  
Reserved  
RSVD  
10, 25, 31, 36, 38  
8
SS_OEn_IN  
Active Low SS MUX Enable input – connect to SS_OEn_OUT  
Active Low SS MUX Enable output – connect to SS_OEn_IN. The pin is also sampled  
upon reset to set the polarity of the VBUS_EN.  
0 = VBUS_EN polarity is active high.  
SS_OEn_OUT /  
VBUSEnPol  
34  
I/O  
1 = VBUS_EN polarity is active low.  
SS_SEL_IN  
7
I
SS Port select pin input – Connect to SS_SEL_OUT  
SS Port select pin output – Connect to SS_SEL_IN  
SS_SEL_OUT  
20  
O
Active low: Low when UFP attach detected. Open drain output. This signal drives  
VBUS power switch.  
VBUS_EN  
21  
O
VBUS_FAULT#  
VCC  
16  
I
VBUS Fault signal in from VBUS Power switch. Active low.  
3.3V Power  
4 , 13, 14, 40, 52  
P
I
VCONN_FAULT#  
VCTRL1  
17  
22  
23  
VCONN Fault signal in from VCONN switches. Active low.  
Active low open drain control output for VCONN switch for CC1  
Active low open drain control output for VCONN switch for CC1  
O
O
VCTRL2  
4
Copyright © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.4  
–0.4  
–0.4  
MAX  
UNIT  
Power supply voltage range, VCC  
4
Differential I/O (High bandwidth signal path, AxP/N, BxP/N, CxP/N)  
Control Pins and Single Ended I/Os including CC1 and CC2  
2.4  
V
Voltage Range  
VCC + 0.4  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.6  
VCC  
0.8  
1.6  
2
UNIT  
V
VCC  
Supply voltage  
3.3  
VIH  
Input high voltage  
Input low voltage  
Differential voltage  
Common voltage  
Control/Status pins  
2
V
VIL  
Control/Status pins  
–0.1  
0
V
VI/O(Diff)  
VI/O(CM)  
Switch I/O diff voltage  
Switch I/O common mode voltage  
VPP  
V
0
CC_OUT, CC_IN, and selected CC pin for  
configuration  
VI/O  
Input / output voltage  
0
VCC  
V
VIN  
TA  
Input voltage  
Selected CC pin for VCONN  
HD3SS2522RHU  
0
0
5.5  
70  
V
Operating free-air temperature  
°C  
7.4 Thermal Information  
HD3SS2521A  
RHU  
THERMAL METRIC(1)  
UNIT  
56 PINS  
31.6  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.9  
8.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
8.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2015, Texas Instruments Incorporated  
5
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Supply current  
I(STANDBY) Standby current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC = 3.6 V,  
SS_OEn, CC_OEn = GND  
ICC  
0.6  
1
mA  
VCC = 3.3 V, SS_OEN, CC_OEn =  
VCC  
15  
µA  
V
VBUS_FAULT#, VCONN_FAULT#, IMODE1, IMODE2, RST, RSVD, GPIO1, GPIO2  
Positive-going input threshold  
voltage  
VIT+  
0.45 x VCC  
0.75 x VCC  
Negative-going input threshold  
voltage  
VIT-  
0.25 x VCC  
0.55 x VCC  
V
Vhys  
RPULL  
CI  
nput voltage hysteresis (VIT+ – VIT–  
)
VCC = 3 V  
0.3  
20  
1
V
Pullup: VIN = GND,  
Pulldown: VIN = VCC, VCC = 3 V  
Pullup/pulldown resistor  
35  
5
50  
kΩ  
pF  
nA  
Input capacitance  
VIN = GND or VCC  
VIN = GND or VCC, VCC = 3 V,  
Pullup/Pulldown disabled  
ILGK  
High-impedance leakage current  
±50  
VCTRL1, VCTRL2, VBUS_EN  
(1)  
VOL  
Low-level output voltage  
IOL(max) = 6 mA  
GND + 0.3  
V
MODE_LED  
VOH  
(1)  
High-level output voltage  
Low-level output voltage  
IOH(max) = –6 mA  
VCC – 0.3  
V
V
(1)  
VOL  
IOL(max) = 6 mA  
GND + 0.3  
AxP/N, BxP/N, CxP/N  
VCC = 3.6 V, VIN = 0 V, VOUT = 2 V  
(ILKG on open outputs Port B and C)  
130  
4
µA  
µA  
ILGK  
High-impedance leakage current  
VCC = 3.6 V, VIN = 0 V, VOUT = 2 V  
(ILKG on open outputs Port A)  
CC1, CC2  
VCC = 3.6 V, VIN = 0 V,  
VOUT = 0 V to 4 V  
ILGK  
High-impedance leakage current  
1
µA  
(1) The maximum total current, IOH(max) and IOL(max), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop  
specified.  
6
Copyright © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
AxP/N, BxP/N, CxP/N HIGH-BANDWIDTH SIGNAL PATH  
tPD  
Switch Propagation Delay  
SS_SEL_IN -to-Switch tON  
SS_SEL_IN -to-Switch tOFF  
RSC and RL = 50 Ω  
85  
250  
250  
ps  
ns  
ns  
tON  
tOFF  
70  
70  
RSC and RL = 50 Ω  
50%  
HS_SEL_IN/SS_SEL_IN90%  
90%  
10%  
VOUT  
tON  
tOFF  
Figure 1. Select to Switch tON and tOFF  
Copyright © 2015, Texas Instruments Incorporated  
7
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
VCC  
50 O  
50 O  
Ax(p)  
Bx/Cx(p)  
Bx/Cx(p)  
Ax(p)  
50 O  
50 O  
Bx/Cx(n)  
Ax(n)  
Ax(n)  
Bx/Cx(n)  
SEL  
Cx/Bx (p)  
50%  
50%  
Cx/Bx (n)  
Ax (p)  
50%  
50%  
Ax (n)  
tP1  
tP2  
Inter-pair skew  
tPD = Max(tp1, tp2)  
tSK(O) = Difference between tPD for any two pairs of outputs  
t1  
t2  
t3  
t4  
DCx/DBx/DAx (p)  
50%  
Cx/Bx/Ax (n)  
Cx/Bx/Ax (p)  
tSK(O)  
Cx/Bx/Ax (n)  
Intra-pair skew  
tSK(b-b) = 0.5 X |(t4 t t3) + (t1 t t2)|  
(1) Measurements based on an ideal input with zero intra-pair skew on the input, i.e. the input at A to B/C or the input at  
B/C to A  
(2) Inter-pair skew is measured from lane to lane on the same channel, e.g. C0 to C1  
(3) Intra-pair skew is defined as the relative difference from the p and n signals of a single lane  
Figure 2. Propagation Delay and Skew  
8
Copyright © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
7.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
AxP/N, BxP/N, CxP/N  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Inter-pair output skew  
(channel-channel)  
tSK(O)  
20  
8
ps  
RSC and RL = 50 Ω  
tSK(b-b)  
CON  
Inter-pair output skew (bit-bit)  
Outputs ON capacitance  
Outputs OFF capacitance  
ps  
pF  
pF  
VIN = 0 V, outputs open, switch ON  
VIN = 0 V, outputs open, switch OFF  
1.5  
1
COFF  
VCC = 3.3 V, VCM = 0.5 V – 1.5 V,  
IO = –8 mA  
RON  
Output ON resistance  
5
8
2
Ω
On resistance match between  
channels  
VCC = 3.3 V; –0.35 V VIN 1.2 V;  
IO = –8 mA  
ΔRON  
Ω
On resistance match between pairs  
of the same channel  
0.7  
1.15  
On resistance flatness  
R(FLAT_ON)  
RL  
VCC = 3.3 V; –0.35 V VIN 1.2 V  
Ω
[RON(MAX) – RON(MIN)  
]
f = 2.5 GHz  
f = 4 GHz  
f = 2.5 GHz  
f = 4 GHz  
f = 2.5 GHz  
f = 4 GHz  
f = 2.5 GHz  
f = 4 GHz  
At 3 dB  
–12  
–11  
–39  
–35  
–22  
–19  
–1.1  
–1.5  
6
Differential input return loss  
(VCM = 0 V)  
dB  
XTALK  
Differential crosstalk (VCM = 0 V)  
Differential off-isolation (VCM = 0 V)  
dB  
dB  
OIRR  
Differential insertion loss  
(VCM = 0 V)  
IL  
dB  
BW  
Bandwidth  
GHz  
Copyright © 2015, Texas Instruments Incorporated  
9
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
HD3SS2522 is a 10-Gbps USB mux with Configuration Channel (CC) logic with DFP support. The HD3SS2522  
presents itself as a DFP according to the USB Type-C Spec. The CC logic block monitors the CC1 and CC2 pin  
voltages to determine when a USB port has been attached. Once a USB port has been attached, the CC logic  
also determines the orientation of the cable and configures the USB SS mux accordingly.  
The device provides an VBUS_EN signal to control legacy power switch to provide 5 V to VBUS. The device also  
provides IOs needed to support 5 V VCONN sourcing for ecosystems implementing USB Type-C.  
Excellent dynamic characteristics of the device allow high speed switching with minimum attenuation to the  
signal eye diagram and little added jitter. The device also has low current consumption in Standby mode.  
8.2 Functional Block Diagram  
5V  
VBUS  
VCONN  
CC_OEn_OUT  
CC_OEn_IN  
CC1  
CC2  
SS_OEn_OUT  
SS_OEn_IN  
CC_OUT  
DFP  
CC  
CC_IN  
Controller  
CC_SEL_OUT  
CC_SEL_IN  
SS_SEL_OUT  
SS_SEL_IN  
MODE_LED  
CRX1  
VCC  
CTX1  
USB SS  
MUX  
CRX2  
CTX2  
USB SS Signals  
USB  
Host  
HD3SS2522  
USB 2.0 Signals  
10  
Copyright © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
8.3 Feature Description  
8.3.1 Adaptive Common Mode Tracking for USB 3.1 MUX  
The device provides an integrated USB 3.1 2:1 passive MUX. The MUX provides adaptive common mode  
tracking allowing RX and TX channels to have different common mode voltage. This feature allows simpler  
system implementation.  
8.3.2 DFP-to-UFP Attach/Detach Detection  
The HD3SS2522 monitors the CC lines as a Type-C DFP port. When the device senses that one of the CC has  
a resistance to GND, it detects that an UFP is attached. The device provides an emulated ID signal (VBUS_EN)  
in the event of a UFP attach.  
The device also monitors specified pull down resistor according to Type-C specifications to determine if an active  
cable is attached. In the event of active cable detection, HD3SS2522 provides necessary control signals for  
VCONN switches that provide 5-V VCONN power to appropriate CC pin.  
8.3.3 Plug Orientation/Cable Twist Detection  
According to USB Type-C specifications plug can be inserted into a receptacle in either one of two orientations.  
HD3SS2522 monitors for a pull-down resistors from an attached UFP port determining the MUX orientation.  
8.3.4 VBUS Fault  
HD3SS2522 does not take any action in case of a VBUS fault. VBUS fault needs to be handled by legacy power  
management implementations.  
8.3.5 VCONN Fault  
If a VCONN fault is determined by the external power switch and fed into the device through VCONN_FAULT  
pin, HD3SS2522 will latch it off until the cable is unplugged if there is a fault that does not clear within 5 ms.  
Which is a sufficient amount of time to charge the 10-µF inrush capacitance.  
8.4 Device Functional Modes  
8.4.1 Unattached.DFP State  
In this state, the HD3SS2522 as a DFP port is waiting to detect the presence of a UFP. The device injects pull-  
up currents to both of the CC lines.  
8.4.2 Attached.DFP State  
When HD3SS2522 is in the Attached.DFP state, the port is attached and operating as a DFP. The device  
continues to monitor the CC pins to make sure the appropriate pin is within vRd range specified by Type-C  
specification. The device source current on one of the this CC pins and monitor its voltage. The port advertises  
one of the three levels of VBUS power capability as specified in Type-C spec according to GPIO pins IMODE1  
and IMODE2.  
The device controls the VCONN power switches to apply VCONN to the unused CC pin if the voltage on the  
unused CC pin is within the vRa range as specified in Type-C specification.  
Copyright © 2015, Texas Instruments Incorporated  
11  
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The HD3SS2522 is a high speed switch with integrated DFP CC controller. The HD3SS2522 can be  
implemented in any USB Type-C DFP applications in conjunction with VBUS and VCONN switches.  
9.2 USB Type-C DFP Typical Application  
This section depicts the typical Type-C system with a USB Host or Hub. The Type C receptacle in this system is  
a DFP only providing VBUS and VCONN upon the connection of UFP device. The HD3SS2522 DFP CC  
controller determines the UFP attachment and provides VBUS and VCONN based upon the Type-C specification  
state diagram and timing definition.  
VBUS Switch  
VBUS  
5V  
Vconn Switch  
5V  
Vconn Switch  
CC1  
CC2  
CC_OUT  
CC Pull-up Resistor value  
per Type C Specification  
Current Advertisement  
definition  
CC Switch  
CC_SEL  
CC_IN  
VCTRL2  
USB Host/  
Hub  
Type C  
Receptacle  
DigitalLogic  
VCTRL1  
VBUS_EN  
SS_EN  
SS_SEL  
TX1  
RX1  
TX  
RX  
2:1 High  
Speed switch  
TX2  
RX2  
HD3SS2522  
D+  
D-  
This Figure represents high level block diagram of the Type C DFP implementation not a circuit level implementation.  
Figure 3. USB Type-C DFP  
12  
Copyright © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
USB Type-C DFP Typical Application (continued)  
9.2.1 Design Requirements  
For this design example, use the parameters shown in Table 1.  
Table 1. Design Parameters  
PARAMETER  
VCC  
VALUE  
3.3 V  
AxP/N, BxP/N, CxP/N VCM Voltage  
CC_IN, CC_OUT, CC1, CC2  
Control Pin Vmax for Low  
Control Pin Vmax for High  
0 V – 2 V  
0 V –3.3 V  
0.8 V  
2 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 USB Type-C Current Advertising  
HD3SS2522 can be used to advertise USB Type-C current in conjunction with pull up resistors to CC1 and CC2  
pins. These pull up resistors must meet the Type C spec requirements. The IMODE1 and IMODE2 setting must  
match the CC resistor configuration for the current mode: default, mid or high.  
9.2.2.2 VCONN and VBUS Power Switch Control  
VCTRL1# and VCTRL2# are outputs from the HD3SS2522 CC controller to enable or disable the VCONN switch  
based upon the orientation detection, audio accessory termination Ra detection, and/or fault condition.  
VBUS_EN is an output from the HD3SS2522 CC controller to enable VBUS switch. Upon detection of UFP  
attachment, the VBUS_EN is asserted to enable VBUS switch.  
9.2.2.3 Firmware Upgradability  
If necessary, the CC controller firmware (FW) can be updated via GPIO1, GPIO2 and SYS_COM_REQ. Contact  
Texas Instruments for further assistance with upgrading the FW.  
9.2.3 USB Type-C DFP Circuit Schematics with a Type C Receptacle  
The schematics below depicts the circuit level implementation of the Type C system with HD3SS2522 and a DFP  
only Type C connector. The system should select a power switch that complies with the Type C specification and  
application requirements. The power switch can be controlled by the HD3SS2522. See the Detailed Design  
Procedure section of the datasheet for design details.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
 
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
3P3V_VCC  
Place near the part  
C4  
0.1uF  
C5  
C1  
0.1uF  
C2  
0.1uF  
C3  
0.1uF  
0.1uF  
10V  
10V  
3P3V_VCC  
U1  
48  
47  
CTX2P  
CTX2N  
B0P  
B0N  
Connect to  
Type USB3  
TX/RX pins  
C
USB3_TX0N  
USB3_TX0P  
2
3
A0P  
A0N  
Connect to  
USB3 Host  
44  
43  
CTX1N  
CTX1P  
C0P  
C0N  
46  
45  
CRX2P  
CRX2N  
3P3V  
B1P  
B1N  
USB3_RX0N  
USB3_RX0P  
5
6
A1P  
A1N  
42  
41  
CRX1P  
CRX1N  
C1P  
C1N  
SS_SEL  
7
SS_SEL  
SS_SEL_IN  
SS_SEL_OUT  
CC2  
20  
35  
37  
Connect to  
Type CC pins  
and VCONN  
switch  
CC2  
CC1  
C
11  
18  
3P3V  
CC_OUT  
CC_IN  
3P3V  
CC1  
CC_OE#  
SS_OE#  
9
8
R8  
R7  
R13  
R14  
100K  
100K  
NC, 100K  
NC, 100K  
CC_OE#_IN  
SS_OE#_IN  
Configured for  
Active Low  
Vconn_EN and  
VBUS_EN  
3P3V  
3P3V  
12  
19  
CC_SEL_IN  
32  
34  
CC_OE#_OUT/VConnEnPol  
SS_OE#_OUT/VBUSEnPol  
Optional LED  
for debug  
purposes  
CC_SEL_OUT  
Pull-up or pull-down  
resistor based upon  
current configuration  
26  
27  
IMODE1  
IMODE2  
IMODE1  
IMODE2  
LED  
Green  
R9  
D3  
Connect to VBUS  
switch control signal  
MODE_LED  
660R  
15  
28  
29  
25  
21  
ID  
MODE_LED  
GPIO1  
GPIO2  
VBUS_EN  
Add headers  
for field  
upgradability  
GPIO1  
GPIO2  
SYS_COM_REQ  
22  
23  
VCTRL1#  
VCTRL2#  
VCTRL1#  
VCTRL2#  
Connect to VCONN  
switch control signal  
SYS_COM_REQ  
VCONN_FAULT#  
VBUS_FAULT#  
17  
16  
VCONN_FAULT#  
VBUS_FAULT#  
Connect to Vconn/VBUS switch  
for fault condition detection  
R10  
100K  
RST  
30  
RST  
57  
PAD  
Resets CC Control  
logic  
HD3SS2522  
VBUS  
J3  
TypeC Connector Pin Mapping  
A4  
A9  
B4  
B9  
VBUS1  
VBUS2  
VBUS3  
VBUS4  
C8  
10uF  
GND  
A1  
A2  
A3  
GND  
B12  
B11  
B10  
A5  
B5  
CC1  
CC2  
CC1  
CC2  
SSTXP1  
SSTXP2  
SSRXP1  
SSRXP2  
A8  
B8  
CSBU1  
CSBU2  
SBU1  
SBU2  
SSTXN1  
SSTXN2  
SSRXN1  
SSRXN2  
USB2_N0  
USB2_P0  
A7  
A6  
DN1  
DP1  
VBUS A4  
B9 VBUS  
B6  
B7  
DP2  
DN2  
CC1  
DP1  
DN1  
A5  
A6  
A7  
B8 SBU2  
B7 DN2  
B6 DP2  
B5 CC2  
B4 VBUS  
A2  
A3  
CTX1P  
CTX1N  
SSTXP1  
SSTXN1  
A11  
A10  
CRX2P  
CRX2N  
SSRXP2  
SSRXN2  
B2  
B3  
CTX2N  
CTX2P  
SSTXP2  
SSTXN2  
8
7
6
5
4
3
2
1
SBU1 A8  
VBUS A9  
Shield8  
B11  
B10  
CRX1P  
CRX1N  
Shield7 SSRXP1  
Shield6 SSRXN1  
Shield5  
A1  
A12  
B1  
Shield4  
Shield3  
Shield2  
Shield1  
GND0  
GND1  
GND2  
GND3  
SSRXN2  
SSRXN1  
B3 SSTXN2  
SSTXN1  
A10  
A11  
A12  
B12  
USB_TypeC_Receptacle_  
SSRXP2  
SSRXP1  
B2 SSTXP2  
SSTXP1  
GND  
B1 GND  
Figure 4. Example Schematics With a Type-C Receptacle  
14  
Copyright © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
10 Power Supply Recommendations  
The HD3SS2522 does not have any special requirement for power supply as long as it is within the  
recommended range. The device also does not have any special reset requirement.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Critical Routes  
The high speed differential signals must be routed with great care to minimize signal quality degradation between  
the connector and the source or sink of the high speed signals by following the guidelines provided in this  
document. Depending on the configuration schemes, the speed of each differential pair can reach a maximum  
speed of 10 Gbps. These signals are to be routed first before other signals with highest priority.  
Each differential pair should be routed together with controlled differential impedance of 85 to 90-Ω and 50-Ω  
common mode impedance. Keep away from other high speed signals. The number of vias should be kept to  
minimum. Each pair should be separated from adjacent pairs by at least 3 times the signal trace width. Route  
all differential pairs on the same group of layers (Outer layers or inner layers) if not on the same layer. No 90  
degree turns on any of the differential pairs. If bends are used on high speed differential pairs, the angle of  
the bend should be greater than 135 degrees.  
Length matching:  
Keep high speed differential pairs lengths within 5 mil of each other to keep the intra-pair skew minimum.  
The inter-pair matching of the differential pairs is not as critical as intra-pair matching. The SSTX and  
SSRX pairs do not have to match while they need to be routed as short as possible.  
Keep high speed differential pair traces adjacent to ground plane.  
Do not route differential pairs over any plane split.  
ESD components on the high speed differential lanes should be placed nearest to the connector in a pass  
through manner without stubs on the differential path.  
For ease of routing, the P and N connection of the USB3.1 differential pairs to the HD3SS2522 pins can be  
swapped.  
11.1.2 General Routing/Placement Rules  
Route all high-speed signals first on un-routed PCB. The stub on USB2 D+ and D- pairs should not exceed  
3.5 mm.  
Follow 20H rule (H is the distance to ref-plane) for separation of the high speed trace from the edge of the  
plane  
Minimize parallelism of high speed clocks and other periodic signal traces to high speed lines  
All differential pairs should be routed on the top or bottom layer (microstrip traces) if possible or on the same  
group of layers. Vias should only be used in the breakout region of the device to route from the top to bottom  
layer when necessary. Avoid using vias in the main region of the board at all cost. Use a ground reference via  
next to signal via. Distance between ground reference via and signal need to be calculated to have similar  
impedance as traces.  
All differential signals should not be routed over plane split. Changing signal layers is preferable to crossing  
plane splits.  
Use of and proper placement of stitching caps when split plane crossing is unavoidable to account for high-  
frequency return current path  
Route differential traces over a continuous plane with no interruptions.  
Do not route differential traces under power connectors or other interface connectors, crystals, oscillators, or  
any magnetic source.  
Route traces away from etching areas like pads, vias, and other signal traces. Try to maintain a 20 mil keep-  
out distance where possible.  
Decoupling caps should be placed next to each power terminal on the HD3SS2522. Care should be taken to  
minimize the stub length of the trace connecting the capacitor to the power pin.  
Avoid sharing vias between multiple decoupling caps.  
Copyright © 2015, Texas Instruments Incorporated  
15  
HD3SS2522  
ZHCSDQ8 APRIL 2015  
www.ti.com.cn  
Layout Guidelines (continued)  
Place vias as close as possible to the decoupling cap solder pad.  
Widen VCC/GND planes to reduce effect of static and dynamic IR drop.  
The VBUS traces/planes must be wide enough to carry max current for the application.  
11.2 Layout Example  
B0p  
B0n  
B1p  
B1n  
C0p  
C0n  
C1p  
C1n  
A0p  
A0n  
To USB  
Host/Hub  
To TypeC  
Connector  
A1p  
A1n  
Thermal PAD  
Figure 5. Layout  
16  
版权 © 2015, Texas Instruments Incorporated  
HD3SS2522  
www.ti.com.cn  
ZHCSDQ8 APRIL 2015  
12 器件和文档支持  
12.1 商标  
All trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Oct-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
HD3SS2522RHU  
HD3SS2522RHUR  
PREVIEW  
ACTIVE  
WQFN  
WQFN  
RHU  
RHU  
56  
56  
250  
TBD  
Call TI  
NIPDAU  
Call TI  
0 to 70  
0 to 70  
2000 RoHS & Green  
Level-3-260C-168 HR  
HD3S2522  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
RHU0056A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.15  
4.85  
A
B
PIN 1 INDEX AREA  
11.15  
10.85  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
2.4 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
21  
28  
20  
29  
SYMM  
57  
8.4 0.1  
2X 9.5  
1
48  
0.30  
0.18  
52X 0.5  
PIN 1 ID  
56X  
56  
49  
0.1  
C A B  
0.5  
0.3  
56X  
0.05  
4219076/A 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHU0056A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.4)  
SEE SOLDER MASK  
DETAIL  
SYMM  
49  
56  
56X (0.6)  
56X (0.24)  
1
48  
52X (0.5)  
(R0.05) TYP  
(8.4)  
(
0.2) TYP  
VIA  
SYMM  
(10.8)  
57  
4X (1.28)  
2X (3.95)  
29  
20  
21  
28  
2X (0.95)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219076/A 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHU0056A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.63) TYP  
49  
56  
56X (0.6)  
56X (0.24)  
1
48  
52X (0.5)  
(R0.05) TYP  
5X (1.28)  
(0.64)  
57  
SYMM  
(10.8)  
12X (1.08)  
12X  
(1.06)  
20  
29  
21  
28  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 10X  
EXPOSED PAD 57  
68% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219076/A 01/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021,德州仪器 (TI) 公司  

相关型号:

HD3SS2522RHUR

带 DFP 控制器的 10Gbps USB 3.1 Type-C 多路复用器 | RHU | 56 | 0 to 70
TI

HD3SS3202

2 通道 10Gbps 2:1/1:2 USB 3.1 差分多路复用器/多路信号分离器
TI

HD3SS3202IRSVR

2 通道 10Gbps 2:1/1:2 USB 3.1 差分多路复用器/多路信号分离器 | RSV | 16 | -40 to 85
TI

HD3SS3202IRSVT

2 通道 10Gbps 2:1/1:2 USB 3.1 差分多路复用器/多路信号分离器 | RSV | 16 | -40 to 85
TI

HD3SS3202RSVR

2 通道 10Gbps 2:1/1:2 USB 3.1 差分多路复用器/多路信号分离器 | RSV | 16 | 0 to 70
TI

HD3SS3202RSVT

2 通道 10Gbps 2:1/1:2 USB 3.1 差分多路复用器/多路信号分离器 | RSV | 16 | 0 to 70
TI

HD3SS3212

USB 3.1 两通道差分 2:1/1:2 10Gbps 多路复用器/多路信号分离器
TI

HD3SS3212-Q1

汽车类双通道差动 2:1 和 1:2 USB3.2 多路复用器和多路信号分离器
TI

HD3SS3212IRKSR

USB 3.1 两通道差分 2:1/1:2 10Gbps 多路复用器/多路信号分离器 | RKS | 20 | -40 to 85
TI

HD3SS3212IRKST

USB 3.1 两通道差分 2:1/1:2 10Gbps 多路复用器/多路信号分离器 | RKS | 20 | -40 to 85
TI

HD3SS3212RKSR

USB 3.1 两通道差分 2:1/1:2 10Gbps 多路复用器/多路信号分离器 | RKS | 20 | 0 to 70
TI

HD3SS3212RKSRQ1

汽车类双通道差动 2:1 和 1:2 USB3.2 多路复用器和多路信号分离器 | RKS | 20 | -40 to 105
TI