LME49726 [TI]

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器;
LME49726
型号: LME49726
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器

放大器 运算放大器
文件: 总29页 (文件大小:1227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
LME49726 High Current, Low Distortion, Rail-to-Rail Output  
Audio Operational Amplifier  
Check for Samples: LME49726  
1
FEATURES  
APPLICATIONS  
2
Rail-to-Rail Output  
Portable Audio Amplification  
Easily Drives 2kLoads to within 4mV of Each  
Power Supply Voltage Rail  
Preamplifiers and Multimedia  
Equalization and Crossover Networks  
Line Drivers and Receivers  
Active Filters  
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
High Output Drive (>300mA)  
DAC I–V Converter Gain Stage  
ADC Front-End Signal Conditioning  
Available in VSSOP Exposed-DAP Package  
KEY SPECIFICATIONS  
DESCRIPTION  
The LME49726 is a low distortion, low noise rail-to-  
rail output audio operational amplifier optimized and  
fully specified for high performance, high fidelity  
applications. The LME49726 delivers superior audio  
Power Supply Voltage Range: 2.5 to 5.5 V  
Quiescent Current per Amplifier  
mA (Typ)  
at 5V: 0.7  
THD+N, AV = 1, fIN = 1kHz, RL = 10k:  
signal  
amplification  
for  
outstanding  
audio  
performance. The LME49726 has a very low THD+N  
to easily satisfy demanding audio applications. To  
ensure that the most challenging loads are driven  
without compromise, the LME49726 provides output  
current greater than 300mA at 5V. Further, dynamic  
range is maximized by an output that drives 2k  
loads to within 4mV of either power supply voltage.  
(VOUT = 3.5VP-P, VDD = 5.0V): 0.00008 % (Typ)  
(VOUT = 1.5VP-P, VDD = 2.5V): 0.00002 % (Typ)  
Equivalent Input Noise (f = 10k): 8.3 nV/Hz  
(Typ)  
Slew Rate: ±3.7 V/μs (Typ)  
Gain Bandwidth Product: 6.25 MHz (Typ)  
Open Loop Gain (RL = 10k): 120 dB (Typ)  
Input Bias Current: 0.2 pA (Typ)  
Input Offset Voltage: 0.5 mV (Typ)  
PSRR (DC): 104 dB (Typ)  
The LME49726 has a supply range of 2.5V to 5.5V.  
Over this supply range the LME49726’s input circuitry  
maintains excellent common-mode and power supply  
rejection, as well as maintaining its low input bias  
current. The LME49726 is unity gain stable.  
160.0  
140.0  
120.0  
100.0  
80.0  
0.80  
0.75  
0.70  
0.65  
0.60  
60.0  
40.0  
0.55  
0.50  
20.0  
0.0  
10  
100  
1000  
10000  
100000  
1.25 1.50 1.75  
2.25 2.50 2.75  
2.00  
FREQUENCY (Hz)  
POWER SUPPLY (Vs)  
Figure 1. Input Voltage Noise vs Frequency  
VDD = 3V  
Figure 2. Supply Current vs Supply Voltage  
per Amplifier, RL = No Load, AV = –1  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008–2013, Texas Instruments Incorporated  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
Typical Connections  
R
V
IN  
R
1
2
R
2
R
1
V
IN  
V
DD  
V
DD  
V
R
-
OUT  
V
OUT  
-
V
DD  
/2  
+
+
L
V
DD  
/2  
V
EE  
Figure 3. Inverting Configuration Split Supplies  
Connection Diagram  
Figure 4. Inverting Configuration Single Supplies  
1
8
OUTPUTA  
V
DD  
2
7
6
5
OUTPUTB  
INVERTING INPUT A  
3
NON-INVERTING INPUT A  
INVERTING INPUT B  
4
V
SS  
NON-INVERTING INPUT B  
Figure 5. See Package Number DGN0008A  
2
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS(1)(2)(3)  
Power Supply Voltage  
Storage Temperature  
Input Voltage  
Output Short Circuit(4)  
Power Dissipation  
ESD Rating(5)  
VS = VSS-VDD  
6V  
65°C to 150°C  
(VSS) – 0.7V to (VDD) + 0.7V  
Continuous  
Internally Limited  
2000V  
ESD Rating(6)  
200V  
Junction Temperature  
Thermal Resistance  
150°C  
θJA (DGN0008A)  
72°C/W  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All  
voltages are measured with respect to the ground pin, unless otherwise specified.  
(2) The Electrical Characteristics tables list specifications under the listed Recommended Operating Conditions except as otherwise  
modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not  
ensured.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings,  
whichever is lower.  
(5) Human body model, applicable std. JESD22-A114C.  
(6) Machine model, applicable std. JESD22-A115-A.  
OPERATING RATINGS(1)  
Temperature Range  
TMIN  
TA TMAX  
40°C TA 125°C  
2.5V VS 5.5V  
Supply Voltage Range  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All  
voltages are measured with respect to the ground pin, unless otherwise specified.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS (VDD = 5.0V and VDD = 2.5V)  
The following specifications apply for the circuit shown in Figure 1. VDD = 5.0V and VDD = 2.5V, VSS = 0.0V, VCM = VDD/2, RL =  
10k, CLOAD = 20pF, fIN = 1kHz, BW = 20–20kHz, and TA = 25°C, unless otherwise specified.  
LME49726  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Typical(1)  
Limit(2)  
AV = –1, VOUT = 3.5Vp-p, VDD = 5V  
RL = 600Ω  
RL = 2kΩ  
0.0008  
0.0002  
0.00008  
%
%
%
RL = 10kΩ  
THD+N  
Total Harmonic Distortion + Noise  
AV = –1, VOUT = 1.5Vp-p, VDD = 2.5V  
RL = 600Ω  
RL = 2kΩ  
RL = 10kΩ  
0.001  
0.0008  
0.0002  
%
%
%
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
6.25  
3.7  
5.0  
2.5  
MHz (min)  
AV = +1, RL = 10kΩ  
V/μs (min)  
AV = 1V step  
ts  
Settling time  
0.1% error range  
0.001% error range  
800  
1.2  
ns  
μs  
μVRMS  
(max)  
eN  
Equivalent Input Noise Voltage  
fBW = 20Hz to 20kHz (A-weighted)  
0.7  
1.25  
f = 10kHz  
8.3  
10  
nV/Hz  
nV/Hz  
eN  
Equivalent Input Noise Density  
f = 1kHz  
f = 100Hz  
24  
nV/Hz  
IN  
Current Noise Density  
Input Offset Voltage  
f = 1kHz  
0.75  
0.5  
pA/Hz  
VOS  
VIN = VDD/2, VO = VDD/2, AV = 1  
2.25  
85  
mV (max)  
Average Input Offset Voltage Drift vs  
Temperature  
ΔVOS/ΔTemp  
40°C TA 85°C  
1.2  
μV/°C  
PSRR  
ISOCH-CH  
IB  
Power Supply Rejection Ratio  
Channel-to-Channel Isolation  
Input Bias Current  
2.5 to 5.5V, VCM = 0, VDD/2  
fIN = 1kHz  
104  
94  
dB (min)  
dB  
VCM = VDD/2  
±0.2  
pA  
Input Bias Current Drift vs  
Temperature  
ΔIOS/ΔTemp  
IOS  
–40°C TA 85°C  
35  
nA/°C  
pA  
Input Offset Current  
VCM = VDD/2  
±0.2  
VDD–1.6  
VSS+0.1  
VIN-CM  
Common-Mode Input Voltage Range  
V (min)  
CMRR  
1/f  
Common Mode Rejection Ratio  
1/f Corner Frequency  
0.1V < VDD – 1.6V  
95  
2
80  
dB (min)  
kHz  
AVOL  
Open-Loop Voltage Gain  
VOUT = VDD/2  
120  
100  
dB (min)  
VDD–0.004  
VSS +0.004  
V (min)  
V (max)  
RL = 2kto VDD/2  
VOUTSWING  
Maximum Output Voltage Swing  
VDD –0.33  
VSS+0.33  
V (min)  
V (max)  
RL = 16to VDD/2  
VOUT = 5V, VDD = 5V  
VOUT = 2.5V, VDD = 2.5V  
IOUT = 0mA, VDD = 5V  
IOUT = 0mA, VDD = 2.5V  
350  
160  
0.7  
mA  
mA  
IOUT  
Output Current  
1.1  
1.0  
mA (max)  
mA (max)  
IS  
Quiescent Current per Amplifier  
0.64  
(1) Typical values represent most likely parametric norms at TA = +25ºC, and at the Recommended Operation Conditions at the time of  
product characterization and are not ensured.  
(2) Datasheet min/max specification limits are specified by test or statistical analysis.  
4
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
THD+N vs Output Voltage  
VDD = 1.25V, VSS = –1.25V, RL = 600  
AV = –1, f = 1kHz, BW = 22–22kHz  
THD+N vs Frequency  
VDD = 1.25V, VSS = –1.25V, RL = 600Ω  
VO = 1.5VP-P, BW = 22–80kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 6.  
Figure 7.  
THD+N vs Output Voltage  
THD+N vs Frequency  
VDD = 1.25V, VSS = –1.25V, RL = 10kΩ  
VDD = 1.25V, VSS = –1.25V, RL = 10kΩ  
AV = –1, f = 1kHz, BW = 22–22kHz  
VO = 1VP-P, BW = 22–80kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
10  
100  
1k  
10k  
100k  
0.1  
1
10  
0.01  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 8.  
Figure 9.  
THD+N vs Output Voltage  
THD+N vs Frequency  
VDD = 2.50V, VSS = –2.50V, RL = 600Ω  
VDD = 2.50V, VSS = –2.50V, RL = 600Ω  
AV = –1, f = 1kHz, BW = 22–22kHz  
VO = 3.5VP-P, BW = 22–80kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 10.  
Figure 11.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Output Voltage  
VDD = 2.50V, VSS = –2.50V, RL = 10kΩ  
AV = –1, f = 1kHz, BW = 22–22kHz  
THD+N vs Frequency  
VDD = 2.50V, VSS = –2.50V, RL = 10kΩ  
VO = 1VP-P, BW = 22–80kHz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
0.00001  
10  
100  
1k  
10k  
100k  
10  
1
0.01  
0.1  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 12.  
Figure 13.  
THD+N vs Output Voltage  
THD+N vs Frequency  
VDD = 2.75V, VSS = –2.75V, RL = 600Ω  
VDD = 2.75V, VSS = –2.75V, RL = 600Ω  
AV = –1, f = 1kHz, BW = 22–22kHz  
VO = 3.5VP-P, BW = 22–80kHz  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.0001  
0.0001  
0.01  
0.1  
1
10  
10  
100  
1k  
10k  
100k  
OUTPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 14.  
Figure 15.  
THD+N vs Output Voltage  
THD+N vs Frequency  
VDD = 2.75V, VSS = –2.75V, RL = 10kΩ  
VDD = 2.75V, VSS = –2.75V, RL = 10kΩ  
AV = –1, f = 1kHz, BW = 22–22kHz  
VO = 3.5VP-P, BW = 22–80kHz  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
0.0001  
0.0001  
0.00001  
10  
100  
1k  
10k  
100k  
10  
1
0.01  
0.1  
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 16.  
Figure 17.  
6
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VDD = 1.25V, VSS = –1.25V, VRIPPLE = 200mVP-P  
Input terminated, BW = 22–80kHz  
PSRR– vs Frequency  
VDD = 1.25V, VSS = –1.25V, VRIPPLE = 200mVP-P  
Input terminated, BW = 22–80kHz  
0
-10  
-20  
-30  
-40  
-50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18.  
Figure 19.  
PSRR+ vs Frequency  
PSRR– vs Frequency  
VDD = 2.50V, VEE = –2.50V, VRIPPLE = 200mVP-P  
VDD = 2.50V, VSS = –2.50V, VRIPPLE = 200mVP-P  
Input terminated, BW = 22–80kHz  
Input terminated, BW = 22–80kHz  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20.  
Figure 21.  
PSRR+ vs Frequency  
PSRR– vs Frequency  
VDD = 2.75V, VSS = –2.75V, VRIPPLE = 200mVP-P  
Input terminated, BW = 22–80kHz  
VDD = 2.75V, VSS = –2.75V, VRIPPLE = 200mVP-P  
Input terminated, BW = 22–80kHz  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 22.  
Figure 23.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Output Voltage vs Supply Voltage  
RL = 600, AV = –1  
f = 1kHz, THD+N = 1%, BW = 22–80kHz  
Output Voltage vs Supply Voltage  
RL = 10k, AV = –1  
f = 1kHz, THD+N = 1%, BW = 22–80kHz  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
4.0  
2.5  
3.0  
3.5  
4.5  
5.0  
5.5  
4.0  
POWER SUPPLY (Vs)  
POWER SUPPLY (Vs)  
Figure 24.  
Figure 25.  
Crosstalk vs Frequency  
VDD = 2.50V, VSS = –2.50V, RL = 10kΩ  
CMRR vs Frequency  
AV = –1, f = 1kHz, BW = 80kHz  
VDD = 2.5V, VSS = –2.5V, VRIPPLE = 200mVP-P  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26.  
Figure 27.  
Input Voltage Noise vs Frequency  
VDD = 5V  
160.0  
140.0  
120.0  
100.0  
80.0  
60.0  
40.0  
20.0  
0.0  
10  
100  
1000  
10000  
100000  
FREQUENCY (Hz)  
Figure 28.  
8
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
APPLICATION INFORMATION  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by LME49726 is below the capabilities of all commercially  
available equipment. This makes distortion measurements just slightly more difficult than simply connecting a  
distortion meter to the amplifier's inputs and outputs. The solution. however, is quite simple: an additional  
resistor. Adding this resistor extends the resolution of the distortion measurement equipment.  
The LME49726's low residual is an input referred internal error. As shown in Figure 29, adding the 10resistor  
connected between athe amplifier's inverting and non-inverting inputs changes the amplifier's noise gain. The  
result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain  
is unaltered, the feedback available to correct distortion errors is reduced by 101. To ensure minimum effects on  
distortion measurements, keep the value of R1 low as shown in Figure 29.  
This technique is verified by duplicating the measurements with high closed loop gain and/or making the  
measurements at high frequencies. Doing so, produces distortion components that are within measurement  
equipment capabilities. This datasheet's THD+N and IMD values were generated using the above described  
circuit connected to an Audio Precision System Two Cascade.  
R
2
R
1
1 k  
1 k  
-
R
3
LME49726  
+
10  
Distortion Signal Gain = 1 + (R2/R3)  
Analyzer Input  
Generator Output  
Audio Precision  
System Two  
Cascade  
Figure 29. THD+N and IMD Distortion Test Circuit  
OPERATING RATINGS AND BASIC DESIGN GUIDELINES  
The LME49726 has a supply voltage range from +2.5V to +5.5V single supply or ±1.25 to ±2.75V dual supply.  
Bypassed capacitors for the supplies should be placed as close to the amplifier as possible. This will help  
minimize any inductance between the power supply and the supply pins. In addition to a 10μF capacitor, a 0.1μF  
capacitor is also recommended in CMOS amplifiers.  
The amplifier's inputs lead lengths should also be as short as possible. If the op amp does not have a bypass  
capacitor, it may oscillate.  
BASIC AMPLIFIER CONFIGURATIONS  
The LME49726 may be operated with either a single supply or dual supplies. Figure 2 shows the typical  
connection for a single supply inverting amplifier. The output voltage for a single supply amplifier will be centered  
around the common-mode voltage, VCM. Note, the voltage applied to the VCM insures the output stays above  
ground. Typically, the VCM should be equal to VDD/2. This is done by putting a resistor divider circuit at this node,  
see Figure 30.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LME49726  
 
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
R
1
R
2
V
DD  
V
DD  
-
V
OUT  
R
3
V
CM  
+
R
4
Figure 30. Single Supply Inverting Op Amp  
Figure 31 shows the typical connection for a dual supply inverting amplifier. The output voltage is centered on  
zero.  
R
R
2
1
V
IN  
V
DD  
-
V
OUT  
+
V
SS  
Figure 31. Dual Supply Inverting Configuration  
Figure 32 shows the typical connection for the Buffer Amplifier or also called a Voltage Follower. The Buffer is a  
unity gain stable amplifier.  
V
DD  
V
OUT  
-
V
IN  
+
Figure 32. Unity-Gain Buffer Configuration  
10  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
 
 
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
Typical Applications  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Figure 33. NAB Preamp  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Figure 34. NAB Preamp Voltage Gain vs Frequency  
R
R
V2  
-
1/2 LME49726  
V0  
R
V1  
+
R
VO = V1–V2  
Figure 35. Balanced to Single Ended Converter  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
R
V1  
+
V2  
1/2 LME49726  
V0  
R
R
R
-
V3  
V4  
R
R
VO = V1 + V2 V3 V4  
Figure 36. Adder/Subtracter  
Figure 37. Sine Wave Oscillator  
R1  
11k  
C1  
C2  
0.01 mF 0.01 mF  
V1  
+
1/2 LME49726  
V0  
R2  
22k  
-
Illustration is f0 = 1 kHz  
Figure 38. Second Order High Pass Filter  
(Butterworth)  
12  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
C1  
0.022 mF  
R1  
R2  
10k  
10k  
V1  
+
1/2 LME49726  
V0  
C2  
0.011 mF  
-
Illustration is f0 = 1 kHz  
Figure 39. Second Order Low Pass Filter  
(Butterworth)  
R2  
10k  
C1  
R1  
C1  
R2  
R1  
10k  
16k  
0.01 mF  
16k  
0.01 mF  
-
-
-
R
G
1/2 LME49726  
V
BP  
1/2 LME49726  
V
LP  
1/2 LME49726  
V
HP  
10k  
V
+
+
IN  
+
R0  
R2  
556  
10k  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
Figure 40. State Variable Filter  
R5  
C1  
20k  
10 mF  
R2  
R3  
R4  
20k  
10k  
20k  
R1  
20k  
D1  
1S1588  
V
IN  
-
-
1/2 LME49726  
1/2 LME49726  
V0 = V  
IN  
+
+
D2  
1S1588  
R6  
15k  
R7  
6.2k  
Figure 41. AC/DC Converter  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
3.41R1  
51k  
R1  
15k  
R1  
15k  
-
V01  
1/2 LME49726  
+
0.707R1  
10k  
V
I
-
1/2 LME49726  
V02  
+
R1  
R1  
15k  
15k  
3.41R1  
51k  
Figure 42. 2 Channel Panning Circuit (Pan Pot)  
R2  
V
CC  
R1  
R3  
V1  
-
10k  
1/2 LME49726  
Q1  
+
R7  
33  
R9  
10k  
V0  
R5  
10k  
BIAS  
R8  
33  
Q2  
R6  
10k  
-V  
EE  
Figure 43. Line Driver  
14  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
BOOST-BASS-CUT  
R1  
R2  
R1  
11k  
100k  
11k  
V1  
C1  
C1  
0.05 mF  
0.05 mF  
R3  
11k  
-
1/2 LME49726  
V0  
C2  
0.005 mF  
R5  
+
R5  
3.6k  
3.6k  
R4  
500k  
BOOST-TREBLE-CUT  
Illustration is:  
fL = 32 Hz, fLB = 320 Hz  
fH =11 kHz, fHB = 1.1 kHz  
Figure 44. Tone Control  
Figure 45.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
Av = 35 dB  
En = 0.33 μV  
S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
@f = 1 kHz  
Figure 46.  
R4  
10k  
R3  
10k  
V1  
R
+
1/2 LME49726  
-
R2  
-
1/2 LME49726  
V0  
10k  
R5  
R1  
200  
+
10k  
-
R6  
R7  
1/2 LME49726  
10k  
10k  
V2  
R
+
Illustration is:  
V0 = 101(V2 V1)  
Figure 47. Balanced Input Mic Amp  
16  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
Figure 48.  
fo (Hz)  
C1  
C2  
R1  
R2  
32  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
3.3μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
64  
125  
1.5μF  
250  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
500  
1k  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
At volume of change = ±12 dB Q = 1.  
LME49726 Bill of Materials  
Description  
Designator  
Part Number  
Manufacturer  
Quantity/Brd  
Ceramic Capacitor 0.1uF, 10%,  
50V 0805 SMD  
AVX  
C1, C2, C5–C8  
C9, C11  
08055C104KAT2A  
T491A225K020AT  
T491B106K020AT  
CRCW08050000Z0EA  
2
Tantalum Capacitor 2.2uF,10%,  
20V, A-size  
Kemet  
Kemet  
Vishay  
Not Stuff  
Tantalum Capacitor 10uF,10%,  
20V, B-size  
C3, C4  
2
6
R1, R4, R6, R9, R13,  
R14  
Resistor 0, 1/8W 1% 0805 SMD  
Header, 2-Pin  
JP1, JP2, JP3, JP4  
JP5  
HDR1X2  
Header 2  
Header 3  
Vishay  
4
1
4
Header, 3-Pin  
HDR1X3  
Resistor 10k, 1/8W 1% 0805 SMD  
R2, R3, R7, R8  
CRCW080510K0FKEA  
Texas  
Instruments  
Dual Rail-to-Rail Op Amp  
U1  
LME49726  
OPEN N/A  
1
0
Resistor 100meg/open  
1/8W 0805 SMD  
R5, R10, R11, R12  
N/A  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
LME49726 Board Circuit  
18  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
LME49726 Demo Board Views  
Figure 49. Top Silkscreen  
Figure 50. Top Layer  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LME49726  
LME49726  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
www.ti.com  
Figure 51. Bottom Layer  
20  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: LME49726  
LME49726  
www.ti.com  
SNAS432C NOVEMBER 2008REVISED APRIL 2013  
REVISION HISTORY  
Rev  
Date  
Description  
1.0  
11/05/08  
05/25/10  
07/14/11  
Initial release.  
1.01  
1.02  
Increased Operating Temperature Range.  
Added curves 30038602 and 03 and input text edits.  
Re-released the D/S to the WEB after adding curves 30038602 and  
03 .  
1.03  
C
07/19/11  
04/04/13  
Changed layout of National Data Sheet to TI format.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LME49726  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LME49726MY/NOPB  
LME49726MYX/NOPB  
ACTIVE  
ACTIVE  
HVSSOP  
HVSSOP  
DGN  
DGN  
8
8
1000 RoHS & Green  
3500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
ZA3  
ZA3  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LME49726MY/NOPB  
HVSSOP DGN  
8
8
1000  
3500  
178.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
LME49726MYX/NOPB HVSSOP DGN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Oct-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LME49726MY/NOPB  
LME49726MYX/NOPB  
HVSSOP  
HVSSOP  
DGN  
DGN  
8
8
1000  
3500  
208.0  
367.0  
191.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGN0008A  
PowerPADTM VSSOP - 1.1 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE PACKAGE  
C
5.05  
4.75  
TYP  
A
0.1 C  
SEATING  
PLANE  
PIN 1 INDEX AREA  
6X 0.65  
8
1
2X  
3.1  
2.9  
1.95  
NOTE 3  
4
5
0.38  
8X  
0.25  
3.1  
2.9  
0.13  
C A B  
B
NOTE 4  
0.23  
0.13  
SEE DETAIL A  
EXPOSED THERMAL PAD  
4
5
0.25  
GAGE PLANE  
2.0  
1.7  
9
1.1 MAX  
8
0.15  
0.05  
1
0.7  
0.4  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1.88  
1.58  
4218836/A 11/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-187.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGN0008A  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(2)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(1.88)  
SOLDER MASK  
DEFINED PAD  
SYMM  
8X (1.4)  
(R0.05) TYP  
8
8X (0.45)  
1
(3)  
NOTE 9  
SYMM  
9
(2)  
(1.22)  
6X (0.65)  
5
4
(
0.2) TYP  
VIA  
SEE DETAILS  
(0.55)  
(4.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 15X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4218836/A 11/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGN0008A  
PowerPADTM VSSOP - 1.1 mm max height  
SMALL OUTLINE PACKAGE  
(1.88)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
(R0.05) TYP  
8X (1.4)  
8
1
8X (0.45)  
(2)  
BASED ON  
SYMM  
0.125 THICK  
STENCIL  
6X (0.65)  
5
4
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
(4.4)  
SOLDER PASTE EXAMPLE  
EXPOSED PAD 9:  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE: 15X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.10 X 2.24  
1.88 X 2.00 (SHOWN)  
1.72 X 1.83  
0.125  
0.15  
0.175  
1.59 X 1.69  
4218836/A 11/2019  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

LME49726MY

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier
NSC

LME49726MY/NOPB

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器 | DGN | 8 | -40 to 85
TI

LME49726MYX

High Current, Low Distortion, Rail-to-Rail Output Audio Operational Amplifier
NSC

LME49726MYX/NOPB

具有 350mA 输出电流的 2 通道 6.25MHz RRO 低失真音频运算放大器 | DGN | 8 | -40 to 85
TI

LME49740

Quad High Performance, High Fidelity Audio Operational Amplifier
NSC

LME49740

LME49740 Quad High-Performance, High-Fidelity Audio Operational Amplifier
TI

LME49740MA/NOPB

Quad High Performance, High Fidelity Audio Operational Amplifier 14-SOIC -40 to 85
TI

LME49740MAX/NOPB

Quad High Performance, High Fidelity Audio Operational Amplifier 14-SOIC -40 to 85
TI

LME49740NA/NOPB

Quad High Performance, High Fidelity Audio Operational Amplifier 14-PDIP -40 to 85
TI

LME49743

Quad High Performance, High Fidelity Audio Operational Amplifier
NSC

LME49743

LME49743 Quad High Performance, High Fidelity Audio Operational Amplifier
TI

LME49743MT

Quad High Performance, High Fidelity Audio Operational Amplifier
NSC