LMP92018CISQX [TI]

Analog System Monitor and Controller; 模拟系统监视器和控制器
LMP92018CISQX
型号: LMP92018CISQX
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Analog System Monitor and Controller
模拟系统监视器和控制器

监视器 控制器
文件: 总34页 (文件大小:1100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LMP92018  
LMP92018 Analog System Monitor and Controller  
Literature Number: SNAS514A  
November 17, 2011  
LMP92018  
Analog System Monitor and Controller  
1.0 General Description  
2.0 Features  
LMP92018 is a complete analog monitoring and control circuit  
which integrates an eight channel 10-bit Analog-to-Digital  
Converter (ADC), four 10-bit Digital-to-Analog Converters  
(DACs), an internal reference, an internal temperature sen-  
sor, a12-bit GPIO port, and a 10MHz SPI interface.  
8 Analog Voltage Monitoring Channels  
10-bit ADC with programmable input MUX  
Internal/External Reference  
Tolerates high-source impedance at lower sampling rates  
4 Programmable Analog Voltage Outputs  
The eight channels of the ADC can be used to monitor rail  
voltages, current sense amplifier outputs, health monitors or  
sensors while the four DACs can be used to control PA (Pow-  
er Amplifier) bias points, control actuators, potentiometers,  
etc.  
Four 10-bit DACs  
Internal/External Reference  
Drives loads up to 1nF  
Voltage Reference  
Both the ADC and DACs can use either the internal 2.5V ref-  
erence or an external reference independently allowing for  
flexibility in system design.  
User-selectable source: external or internal  
Internal Reference 2.5V  
The built-in digital temperature sensor enables accurate  
(±2.5°C) local temperature measurement whose value is cap-  
tured in the user accessible register.  
Temperature Sensor  
±2.5°C Accuracy  
12-bit GPIO Port  
The LMP92018 also includes a 12-bit GPIO port which allows  
for the resources of the microcontroller to be further extended,  
thus providing even more flexibility and reducing the number  
of signal interfacing to the microcontroller.  
Each bit individually programmable  
User-selectable rail  
SPI-Compatible Bus  
Both the GPIO port and the SPI compatible interface have  
independent supply pins enabling the LMP92018 to interface  
with low voltage microcontrollers.  
User-selectable rail  
LLP-36 package (6mm x 6mm, 0.5 mm pitch)  
The LMP92018 is available in a space saving 6mm x 6mm  
LLP 36-pin package and is specified over the full -30°C to  
+85°C temperature range.  
3.0 Applications  
Communication Infrastructure  
System Monitoring and Control  
Industrial Monitoring and Control  
4.0 Block Diagram  
30152336  
National Semiconductor® is a registered trademark of National Semiconductor Corporation.  
© 2011 Texas Instruments Incorporated  
301523  
www.ti.com  
 
 
 
5.0 Typical Application  
30152306  
www.ti.com  
2
 
30152336  
to control bias conditions of external circuits, position of ser-  
vos, etc.  
6.0 Overview  
The LMP92018 has a flexible, feature-rich functionality which  
makes it ideally suited for many analog monitoring and control  
applications, for example, base-station PA subsystems. This  
device provides the analog interface between a pro-  
grammable supervisor, such as a microcontroller, and an  
analog system whose behavior is to be monitored and con-  
trolled by the supervisor.  
6.3 INTERNAL DIGITAL TEMPERATURE SENSOR  
An on-board digital temperature sensor is available to report  
the device's own temperature. The temperature sensor output  
is stored in the internal register for user readback via the SPI  
interface.  
6.4 INTERNAL VOLTAGE REFERENCE SOURCE  
To facilitate the analog monitoring functionality, the device  
contains a single 10-bit ADC preceded by a 8-input multiplex-  
or.  
The user can choose to enable the internal reference of 2.5V  
to use with the ADC and/or DACs. The internal reference  
source can also drive an external load.  
The analog control functionality is served by four 10-bit volt-  
age output DACs.  
6.5 12-BIT GENERAL PURPOSE I/O  
Additional digital monitoring and control can be realized via  
the General Purpose I/O port GPIO[11:0].  
The GPIO port can be used to expand the microcontroller ca-  
pabilities. This port is memory mapped to the internal register,  
which in turn is accessible via the SPI interface. Each bit is  
individually programmable as an input or an output  
Two more blocks are present for added functionality: a local  
temperature sensor and an internal reference voltage gener-  
ator.  
6.6 SPI INTERFACE  
6.1 8-CHANNEL ANALOG SENSE WITH 10-BIT ADC  
The microcontroller communicates with LMP92018 via a pop-  
ular SPI interface. This interface provides the user full access  
to all Data, Status and Control registers of the device.  
The user can monitor up to 8 external voltages with the 10-bit  
ADC and its 8-channel input MUX. Typically these voltages  
will be generated by the analog sensors, instrumentation am-  
plifiers, current sense amplifiers, or simply resistive dividers  
if high potentials need to be measured.  
6.2 PROGRAMMABLE ANALOG CONTROL VOLTAGE  
OUTPUTS  
Four identical individually programmable 10-bit DAC blocks  
are available to generate analog voltages, which can be used  
3
www.ti.com  
 
 
 
 
 
 
 
7.0 Connection Diagram  
30152308  
36–Pin LLP36 (SQA36A)  
Top View  
www.ti.com  
4
 
8.0 Pin Descriptions  
Name  
VDD  
Pin  
1
Function  
Supply rail  
GPIO rail  
ESD Structures  
VGPIO  
4
VIO  
5
SPI rail  
GND  
DAP  
2, 3 14  
*
Device Ground  
Die Attach Pad. For best thermal  
conductivity and best noise immunity  
DAP should be soldered to the PCB pad  
which is connected directly to circuit  
common node (GND).  
IN[7:0]  
35:28  
Analog input  
OUT[3:0]  
DOUT  
10:13  
9
Analog output  
SPI Data Output  
General Purpose Digital I/O. Logic level  
is referenced to VGPIO pin.  
GPIO[11:0]  
15:18; 20:27  
CSB  
SCLK  
DIN  
6
7
SPI Chip Select, Active LO  
SPI Data Clock  
8
SPI Data Input  
DRBYB  
19  
Data Ready, open-drain active LO  
ADC/DAC Voltage Reference Input or  
Output  
REF  
36  
9.0 Ordering Information  
Order Number  
LMP92018CISQ  
LMP92018CISQX  
NS Package Number  
Transport Media  
Tape-and reel: 1000 pieces  
Tape-and reel: 2500 pieces  
SQA36A  
5
www.ti.com  
 
 
Table of Contents  
1.0 General Description ......................................................................................................................... 1  
2.0 Features ........................................................................................................................................ 1  
3.0 Applications .................................................................................................................................... 1  
4.0 Block Diagram ................................................................................................................................ 1  
5.0 Typical Application ........................................................................................................................... 2  
6.0 Overview ........................................................................................................................................ 3  
6.1 8-CHANNEL ANALOG SENSE WITH 10-BIT ADC ....................................................................... 3  
6.2 PROGRAMMABLE ANALOG CONTROL VOLTAGE OUTPUTS .................................................... 3  
6.3 INTERNAL DIGITAL TEMPERATURE SENSOR .......................................................................... 3  
6.4 INTERNAL VOLTAGE REFERENCE SOURCE ........................................................................... 3  
6.5 12-BIT GENERAL PURPOSE I/O ............................................................................................... 3  
6.6 SPI INTERFACE ...................................................................................................................... 3  
7.0 Connection Diagram ........................................................................................................................ 4  
8.0 Pin Descriptions .............................................................................................................................. 5  
9.0 Ordering Information ........................................................................................................................ 5  
10.0 Absolute Maximum Ratings ............................................................................................................. 7  
11.0 Operating Conditions (Note 1, Note 2) ............................................................................................... 7  
12.0 Electrical Characteristics ................................................................................................................ 7  
13.0 SPI Interface Timing Diagram ........................................................................................................ 11  
14.0 Typical Performance Characteristics .............................................................................................. 12  
15.0 Instruction Set ............................................................................................................................. 14  
15.1 TEMPERATURE SENSOR CONFIGURE ................................................................................ 14  
15.2 REFERENCE CONFIGURE ................................................................................................... 14  
15.3 DAC CONFIGURE ............................................................................................................... 15  
15.4 UPDATE ALL DACs ............................................................................................................. 15  
15.5 GENERAL CONFIGURATION ............................................................................................... 15  
15.6 GPIO CONFIGURE .............................................................................................................. 16  
15.7 STATUS ............................................................................................................................. 16  
15.8 GPI STATE ......................................................................................................................... 16  
15.9 GPO DATA .......................................................................................................................... 17  
15.10 VENDOR ID ....................................................................................................................... 17  
15.11 VERSION/STEPPING ......................................................................................................... 17  
15.12 DAC DATA REGISTER ACCESS ......................................................................................... 18  
15.13 ADC INPUT MUX SELECT DATA READ COMMAND .............................................................. 18  
15.14 TEMPERATURE SENSOR OUTPUT REGISTER ................................................................... 19  
15.15 NOOP — No Operation ....................................................................................................... 19  
16.0 Functional Description ................................................................................................................. 20  
16.1 ANALOG SENSE SUBSYSTEM ............................................................................................. 20  
16.1.1 Sampling and Conversion ............................................................................................ 20  
16.1.2 Sampling Transient ..................................................................................................... 20  
16.1.3 Conversion Sequence ................................................................................................. 20  
16.1.4 ADC Reference Selection ............................................................................................ 21  
16.2 PROGRAMMABLE ANALOG OUTPUT SUBSYSTEM ............................................................... 22  
16.2.1 DAC Core .................................................................................................................. 22  
16.2.2 DAC Reference Selection ............................................................................................ 22  
16.3 DIGITAL TEMPERATURE SENSOR ....................................................................................... 24  
16.4 INTERNAL VOLTAGE REFERENCE SOURCE ........................................................................ 25  
16.5 GENERAL PURPOSE DIGITAL I/O ........................................................................................ 26  
16.6 SERIAL INTERFACE ............................................................................................................ 27  
16.6.1 SPI Write ................................................................................................................... 27  
16.6.2 SPI Read ................................................................................................................... 27  
16.6.3 SPI Daisy Chain ......................................................................................................... 28  
17.0 Application Circuit Example ........................................................................................................... 29  
18.0 Physical Dimensions .................................................................................................................... 30  
www.ti.com  
6
10.0 Absolute Maximum Ratings (Note  
11.0 Operating Conditions (Note 1, Note  
1, Note 2)  
2)  
If Military/Aerospace specified devices are required,  
please contact the Texas Instruments Sales Office/  
Distributors for availability and specifications.  
Operating Ambient Temperature  
VDD Voltage Range  
VIO Voltage Range  
VGPIO Voltage Range  
DAC Output Load C  
θJA  
−40°C to 125°C  
4.75V to 5.25V  
1.8V to VDD  
1.8V to VDD  
0nF to 1nF  
VDD Relative to GND  
VIO Relative to GND  
VGPIO Relative to GND  
Voltage between any 2 pins (Note 3)  
Current in or out of any pin (Note 3)  
Current through VDD  
−0.3V to 6.0V  
−0.3V to VDD  
−0.3V to VDD  
6.0V  
25.2°C/W  
2.4°C/W  
θJC  
5mA  
For Soldering specifications:  
32mA, TA = 125°C  
44mA, TA = 85°C  
See  
product  
folder  
at  
www.national.com  
and  
www.national.com/ms/MS-SOLDERING.pdf.  
Current through VGPIO  
Current through GND  
20mA, TA = 125°C  
54mA, TA = 125°C  
66mA, TA = 85°C  
Junction Temperature  
+150°C  
Storage Temperature Range  
−65°C to +150°C  
ESD Susceptibility(Note 4)  
Human Body Model  
Machine Model  
2500V  
200V  
Charged Device Model  
1500V  
12.0 Electrical Characteristics  
Unless otherwise noted, these specifications apply for VDD=4.75V to 5.25V, REF=VDD, TA=25°C. Boldface limits are over the  
temperature range of −30°C TA 85°C unless otherwise noted. DAC input code range 12 to 1012. DAC output CL = 200 pF  
unless otherwise noted.  
Symbol  
ADC CHARACTERISTICS  
Resolution with No Missing  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
10  
10  
Bits  
Codes  
DNL  
INL  
Differential Non-Linearity  
Integral Non-Linearity  
Offset Error  
−0.9  
−1  
+1  
1
LSB  
OE  
−2  
+2  
OEDRIFT  
OEMTCH  
GE  
Offset Error Temperature Drift  
Offset Error Match (Note 9)  
Gain Error  
0.001  
0.001  
LSB/°C  
LSB  
−1  
−2  
1
2
GEDRIFT  
GEMTCH  
SINAD  
THD  
Gain Error Temperature Drift  
Gain Error Match (Note 9)  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
LSB/°C  
LSB  
−1  
58  
1
10 kHz Sine Wave  
10 kHz Sine Wave, up to 5th harmonic  
10 kHz Sine Wave  
dB  
dBc  
dB  
−69  
70  
SFDR  
Offset Error change with VDD  
Gain Error change with VDD  
−150  
−150  
PSRR  
Power Supply Rejection Ratio  
DAC CHARACTERISTICS  
Resolution  
10  
10  
10  
Bits  
Bits  
Monotonicity  
RL = 100k  
RL = 100k  
RL = 100k  
RL = 100k  
DNL  
INL  
Differential Non-Linearity  
−0.5  
−2  
+0.5  
+2  
LSB  
Integral Non-Linearity  
OE  
Offset Error(Note 6)  
10  
mV  
OEDRIFT  
Offset Error Temperature Drift  
1
µV/°C  
VDD = 5.25V, REF=5, RL = 100k,  
CODE=3FFh  
FSE  
GE  
Full-Scale Error  
-0.4  
+0.3  
+0.2  
%FS  
RL = 100k  
Gain Error(Note 7)  
−0.2  
7
www.ti.com  
 
 
Symbol  
Parameter  
Conditions  
RL = 100k  
Min  
Typ  
1.4  
7
Max  
Units  
GEDRIFT  
Gain Error Temperature Drift  
ppm/° C  
IOUT = 200 µA  
IOUT = 1mA  
IOUT = 200 µA  
IOUT = 1mA  
RL = 100k  
ZCO  
FSO  
Zero Code Output  
mV  
V
31  
4.975  
4.975  
4.975  
Full Scale Output at code 3FFh  
Output Short Circuit Current  
(Source) (Note 5)  
VDD = 5V, OUT = 0V,  
Input Code =3 FFh  
IOS  
IOS  
−67  
76  
Output Short Circuit Current  
(Sink) (Note 5)  
VDD = 5V, OUT = DREF,  
Input Code = 000h  
mA  
pF  
TA = 85° C  
10  
Continuous Output Current per  
Channel (to prevent damage)  
IO  
CL  
TA = 125° C  
6.5  
Maximum Load Capacitance  
DC Output Impedance  
1000  
1.7  
RL = 2k or ∞  
Enabled  
ROUT  
Disabled  
>20  
MΩ  
ANALOG INPUT CHARACTERISTICS  
VIN  
FS Input Range  
REF  
+1  
V
ILEAK  
ADC in HOLD or Power Down  
µA  
−1  
In Acquisition mode  
In Conversion mode  
33  
3
CINA  
Input Capacitance  
pF  
V
REFERENCE CHARACTERISTICS  
ADC Reference Input Range  
2.5  
2.5  
VDD  
VDD  
DAC Reference Input Range  
DAC Reference Input Resistance  
DAC Reference Input Current  
50  
kΩ  
µA  
125  
1
ADC Reference Current, during  
conversion, average value  
IVREF(ADC)  
IVREF(PD)  
External Reference, REF = VDD  
µA  
REF pin Current in Powerdown  
REF Output Voltage  
10  
µA  
V
2.5  
Internal Reference Tolerance  
REF Output Temperature Drift  
REF Output Maximum Current  
REF Output Load Regulation  
REF Output Rail Regulation  
–0.15  
0.15  
–0.6  
%
17  
1
ppm/°C  
mA  
%
±0.04  
%
4.75VVDD5.25V  
TEMPERATURE SENSOR  
Resolution  
0.0625  
°C  
°C  
Temperature Error (Note 9)  
DIGITAL INPUT CHARACTERISTICS (GPIO[11:0])  
−40°C to +125°C  
−2.5  
+2.5  
VIH  
Input HIGH Voltage  
0.7x VGPIO  
V
0.3x  
VGPIO  
VIL  
Input LO Voltage  
Hysteresis  
250  
±0.005  
4
mV  
µA  
pF  
IIND  
Digital Input Current  
Input Capacitance  
±1  
CIND  
DIGITAL INPUT CHARACTERISTICS (CSB, DIN, SCLK)  
VIH  
VIL  
Input HIGH Voltage  
Input LO Voltage  
Hysteresis  
0.7 x VIO  
V
V
0.3 x VIO  
±1  
250  
mV  
µA  
IIND  
Digital Input Current  
±0.005  
www.ti.com  
8
Symbol  
Parameter  
Input Capacitance  
Conditions  
Min  
Typ  
Max  
Units  
CIND  
4
pF  
DIGITAL OUTPUT CHARACTERISTICS (GPIO[11:0])  
IOUT = 200 µA  
0.01  
0.07  
0.4  
0.4  
VOL  
Output LO Voltage  
V
V
IOUT = 1.6 mA  
VGPIO = VDD = 5V  
IOUT = 200µA  
VGPIO-0.2  
VGPIO-0.5  
VOH  
Output HI Voltage  
IOUT = 1.6 mA  
VGPIO = VDD = 5V  
TRI-STATE Output Leakage  
Current  
IOZH, IOZL  
COUT  
VGPIO=VDD  
±5  
µA  
pF  
Output Capacitance  
4
DIGITAL OUTPUT CHARACTERISTICS (DOUT)  
IOUT = 200 µA  
0.01  
0.07  
0.4  
0.6  
V
V
VOL  
Output LO Voltage  
IOUT = 1.6 mA  
VIO = 3.3V  
IOUT = 200 µA  
VIO-0.2  
VIO-0.5  
VOH  
Output HI Voltage  
V
IOUT = 1.6 mA  
VIO = 3.3V  
TRI-STATE Output Leakage  
Current  
IOZH, IOZL  
COUT  
VGPIO = 1.8V =VDD  
±5  
µA  
pF  
Output Capacitance  
4
DIGITAL OUTPUT CHARACTERISTICS (DRDYB)  
IOUT = 1.6 mA  
VOH_MAX  
Maximum Output HI Voltage  
VIO-0.5  
µA  
V
VIO = 3.3V to VDD  
VOL  
Output LO Voltage  
Force 0V or VDD  
0.01  
5
POWER SUPPLY CHARACTERISTICS  
VDD  
VGPIO  
VIO  
Supply Voltage Range  
GPIO Rail Range  
SPI Rail Range  
4.75  
1.8  
5.5  
VDD  
VDD  
V
1.8  
Supply Current, Conversion  
Mode  
IDD  
4
mA  
OUT[3:0] pins RL = ∞  
OUT[3:0] pins RL = ∞  
Power Consumption, Conversion  
Mode  
PWRCONV  
21  
mW  
Supply Current, Power-Down  
Mode  
IPD  
50  
µA  
V
VPOR  
Power-On Reset (Note 8)  
1.9  
2.7  
AC ELECTRICAL CHARACTERISTICS  
tTRACK  
tHOLD  
t8+9×t1  
15×t1  
ADC Track Time  
ADC Hold Time  
Dictated by SPI bus activity  
Dictated by SPI bus activity  
µs  
µs  
25%FS to 75%FS code change,  
RL = 2K, CL = 200 pF  
ts  
DAC Settling Time (Note 9)  
20  
µs  
tCONV  
Temperature Conversion Time  
25.85  
ms  
SPI TIMING CHARACTERISTICS  
SPI Clock Period during ADC  
data access  
t1  
t1  
178  
178  
12500  
5000  
ns  
ns  
SPI Clock Period during  
Temperature Sensor access  
SPI Clock Period for all  
transactions not involving ADC or  
Temperature Sensor  
t1  
tr  
100  
ns  
SCLK Rise Time  
2
ns  
9
www.ti.com  
Symbol  
Parameter  
SCLK Fall Time  
Conditions  
Min  
Typ  
Max  
2
Units  
ns  
tf  
t2  
t3  
SCLK HIGH Time  
SCLK LOW Time  
8
8
ns  
ns  
CSB set-up time to SCLK falling  
edge  
t4  
5
ns  
t5  
t6  
DIN Set-up time  
5
4
ns  
ns  
DIN Hold time  
CSB hold time after 24th falling  
edge of SCLK  
t7  
t8  
10  
ns  
ns  
CSB High Pulse Width  
30  
10  
5
CL=30pF, VIO=1.8  
DOUT hold time after SCLK  
Rising Edge  
tDH  
ns  
CL=30pF, 3VVIO5.25V  
DOUT Delay after SCLK Rising  
Edge  
tDD  
t11  
tDOZ  
tZDO  
CL=30pF  
40  
ns  
ns  
ns  
ns  
SCLK Delay after CSB Rising  
Edge  
3
5
CSB Rising Edge to DOUT TRI-  
STATE  
4
10  
14  
CSB Falling Edge to DOUT  
active  
sink/source 200uA, CL=150pF  
Note 1: “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability  
and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in  
the Recommended Operating Conditions is not implied. The recommended Operating Conditions indicate conditions at which the device is functional and the  
device should not be operated beyond such conditions.  
Note 2: All voltages are measured with respect to GND = 0V, unless otherwise specified.  
Note 3: When the input voltage (VIN) at any pin exceeds power supplies (VIN < GND or VIN > VDD), the current at that pin must not exceed 5mA, and the  
voltage (VIN) at that pin relative to any other pin must not exceed 6.0V. See Pin Descriptions for additional details of input circuit structures.  
Note 4: The Human Body Model (HBM) is a 100 pF capacitor charged to the specified voltage then discharged through a 1.5k resistor into each pin. The Machine  
Model (MM) is a 200 pF capacitor charged to specified voltage then discharged directly into each pin. The Charged Device Model (CDM) is a specified circuit  
characterizing an ESD event that occurs when a device acquires charge through some triboelectric (frictional) or electrostatic induction process and then abruptly  
touches a grounded object or surface.  
Note 5: Indicates the typical internal short circuit current limit. Sustained operation at this level will lead to device damage.  
Note 6: DAC Offset is the y-intercept of the straight line defined by DAC output at code 0d12 and 0d1011points of the measured transfer characteristic.  
Note 7: DAC Gain Error is the difference in slope of the straight line defined by DAC output at code 0d12 and 0d1011 points of transfer characteristic, and that  
of the ideal characteristic.  
Note 8: During the power up the supply rail must ramp up beyond VPOR MIN for the device to acquire default state. After the supply rail has reached the nominal  
level, the rail can drop as low as VPOR MAX for the current state to be maintained.  
Note 9: Device Specification is guaranteed by characterization and is not tested in production.  
www.ti.com  
10  
 
 
 
 
 
 
 
 
 
13.0 SPI Interface Timing Diagram  
30152309  
30152310  
30152311  
30152312  
11  
www.ti.com  
 
14.0 Typical Performance Characteristics  
ADC: DNL  
ADC: INL  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
OUTPUT CODE  
OUTPUT CODE  
30152361  
30152360  
DAC: DNL  
DAC: INL  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
256  
512  
INPUT CODE  
768  
1024  
0 1002003004005006007008009001000  
INPUT CODE  
30152365  
30152364  
ADC: DNL vs. Temperature  
ADC: INL vs. Temperature  
0.5  
0.5  
Min INL  
Max INL  
Min DNL  
Max DNL  
0.4  
0.3  
0.4  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-30  
-10  
10  
30  
50  
70  
90  
-30  
-10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30152363  
30152362  
www.ti.com  
12  
 
DAC: DNL vs Temperature  
DAC: INL vs Temperature  
0.5  
0.4  
0.5  
0.4  
Min DNL  
Max DNL  
Min INL  
Max INL  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-30  
-10  
10  
30  
50  
70  
90  
-30  
-10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
30152366  
30152367  
OUTx Output Load Regulation  
20  
Temperature Sensor Error  
1.5  
1.0  
0.5  
0.0  
-0.5  
15  
10  
5
0
-5  
-10  
-15  
-20  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-40 -20  
0
20 40 60 80 100 120  
DAC OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
30152368  
30152371  
Internal Reference Output  
Temperature Drift  
15  
10  
5
0
-5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
30152370  
13  
www.ti.com  
15.0 Instruction Set  
The following is a complete listing of the instruction set supported by the LMP92018. Where applicable the default state or register  
content is indicated in bold type.  
The digital interface (SPI) protocol is described in Section 16.6 SERIAL INTERFACE. The interface timing diagram is in Section 13.0  
SPI Interface Timing Diagram  
NOTE: the tables in following sections detail the data transfers of 2 subsequent SPI frames . The FRAME 1 column shows  
the user input into pin DIN of the device. The FRAME 2 column in the device output at DOUT.  
15.1 TEMPERATURE SENSOR CONFIGURE  
A single bit, TSS, controls the mode of operation of the internal temperature sensor. The bit can be set and tested via the SPI  
transactions shown in the following table. The internal temperature sensor is described in Section 16.3 DIGITAL TEMPERATURE  
SENSOR.  
FRAME 1: DIN  
Payload  
15:1  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
0
23  
15:1  
0
Bit→  
READ  
WRITE  
1
0
0010000  
0010000  
x
x
1
0
0010000  
0010000  
000000000000000  
000000000000000  
TSS  
0
000000000000000  
TSS  
x
Don't Care  
1: Temperature Sensor in Continuous Conversion Mode  
TSS  
0: Temperature Sensor In One Shot Mode  
15.2 REFERENCE CONFIGURE  
The internal reference mode of operation is controlled by a 3 bit sequence, CREF. The sequence can be set and tested via the  
SPI transactions shown in the following table. The reference block is described in Section 16.4 INTERNAL VOLTAGE REFERENCE  
SOURCE.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:3  
2:0  
23  
15:3  
2:0  
Bit→  
READ  
WRITE  
1
0
0010001  
0010001  
x
x
1
0
0010001  
0010001  
0000000000000  
0000000000000  
CREF  
000  
0000000000000  
CREF  
x
Don't care  
Reference Mode Selector  
000: AREF external, DREF internal  
001: AREF and DREF internal; REF pin is internally  
disconnected  
010: AREF and DREF external  
CREF 011: AREF internal, DREF external  
100: Deep Sleep  
101: AREF and DREF internal; REF driven by internal  
reference  
110: Deep Sleep  
111: Deep Sleep  
www.ti.com  
14  
 
 
 
15.3 DAC CONFIGURE  
The individual DACs can be enabled by setting a corresponding bit in the 4–bit CDAC word. The CDAC word can be set and tested  
via the SPI transactions shown in the following table. The DAC block is described in Section 16.2 PROGRAMMABLE ANALOG  
OUTPUT SUBSYSTEM.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:4  
3:0  
23  
15:4  
3:0  
Bit→  
READ  
WRITE  
1
0
0011000  
0011000  
x
x
1
0
0011000  
0011000  
000000000000  
000000000000  
CDAC  
0000  
000000000000  
CDAC  
x
Don't care  
1: enables DAC corresponding to bit position  
CDAC 0: disables corresponding DAC  
e.g. CDAC=[0101] enables DAC2 and DAC0  
15.4 UPDATE ALL DACs  
All 4 DAC channels' outputs can be simultaneously set to the same level corresponding to a 10–bit DDATA code. The sequence  
in the following table provides a WRITE only functionality. The DAC block is described in Section 16.2 PROGRAMMABLE ANALOG  
OUTPUT SUBSYSTEM.  
FRAME 1: DIN  
FRAME 2: DOUT  
Payload  
11:2  
0000000000 00  
Command  
22:16  
Payload  
11:2  
Command  
22:16  
23  
15:12  
1:0  
23  
15:12  
1:0  
Bit→  
WRITE  
0
0011001  
0000  
DDATA  
00  
0
0011001  
0000  
x
Don't care  
DDATA will be loaded into all all DACs' input registers  
simultaneously. DDATA is a 10–bit unsigned integer.  
DDATA  
15.5 GENERAL CONFIGURATION  
The device can indicate to the new ADC conversion data availability via the DRDYB pin. This functionality is enabled by setting  
the internal DRDY bit. The bit can be set and tested via the SPI transactions shown in the following table. Details of the DRDYB  
pin functionality are described in Section 16.1.3 Conversion Sequence and Section 16.3 DIGITAL TEMPERATURE SENSOR  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:1  
0
23  
15:1  
0
Bit→  
READ  
WRITE  
1
0
0011110  
0011110  
x
x
1
0
0011110  
0011110  
000000000000000  
000000000000000  
DRDY  
0
000000000000000  
DRDY  
x
Don't Care  
1: Disables the DRDYB pin function  
DRDY  
0: Enables the DRDYB pin function  
15  
www.ti.com  
 
 
 
15.6 GPIO CONFIGURE  
Individual bits of the general purpose digital I/O port can be configured to drive (output), or sense (input) only. Setting a corre-  
sponding bit in the 12–bit CGPIO word will enable that pin to drive. The sequences in the following table provide a READ and  
WRITE capability for the internal CGPIO register. The GPIO block is described in Section 16.5 GENERAL PURPOSE DIGITAL I/  
O.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:12  
11:0  
23  
15:12  
11:0  
Bit→  
READ  
WRITE  
1
0
0011111  
0011111  
x
x
1
0
0011111  
0011111  
0000  
0000  
CGPIO  
0000  
CGPIO  
000000000000  
x
Don't Care  
1: sets corresponding GPIO pin as output  
0: sets corresponding GPIO pin as input  
e.g. CGPIO=[000011110000] enables GPIO[7:4] pins as  
outputs, all other GPIO pins are inputs  
CGPIO  
15.7 STATUS  
Internal bit, RDY, indicates when the device has completed its power-up sequence. The RDY bit can be tested via the SPI trans-  
action shown in the following table.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
0100000  
23  
15:1  
0
23  
15:1  
0
Bit→  
READ  
1
0100000  
x
x
1
000000000000000  
RDY  
x
Don't Care  
Internal Power On Reset circuit sets this bit  
RDY 1: device ready  
0: device not ready  
15.8 GPI STATE  
The logic state present at the GPIO pins of the device is always reported in the SGPI register. The SGPI register contents can be  
tested via the SPI transaction shown in the following table. The GPIO block is described in Section 16.5 GENERAL PURPOSE  
DIGITAL I/O.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:12  
11:0  
23  
15:12  
11:0  
Bit→  
READ  
1
0110000  
x
x
1
0110000  
0000  
SGPI  
x
Don't Care  
Each bit Indicates the state at the corresponding GPIO  
pins of the device  
SGPI  
www.ti.com  
16  
 
 
 
15.9 GPO DATA  
The GPIO pins configured to drive, will drive the state indicated in the CGPO register. The CGPO register can be set or tested via  
the SPI transactions shown in the following table. The GPIO block is described in Section 16.5 GENERAL PURPOSE DIGITAL I/  
O.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:12  
11:0  
23  
15:12  
11:0  
Bit→  
READ  
WRITE  
1
0
0110001  
0110001  
x
x
1
0
0110001  
0110001  
0000  
0000  
CGPO  
12'b0  
0000  
CGPO  
x
Don't Care  
Each bit will be forced at the corresponding GPIO pin of  
CGPO the device. Bits corresponding to GPIO pins configured as  
inputs will be ignored. CGPO[11:0]=0x000  
15.10 VENDOR ID  
The 16–bit ID sequence is factory set, and can only be tested via the SPI transaction shown in the table below.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:0  
23  
15:0  
Bit→  
READ  
1
1000000  
x
1
1000000  
ID  
x
Don't Care  
ID  
Vendor ID number. National Semiconductor ID = 0x0028.  
15.11 VERSION/STEPPING  
Version and Stepping words are factory set and can only be tested via the SPI transaction shown in the table below.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
Command  
22:16  
23  
15:4  
3:0  
23  
15:4  
3:0  
Bit→  
READ  
1
1000001  
x
x
1
1000001  
VER  
STEP  
x
Don't Care  
VER Indicates the device version number. VER=0x000  
STEP Indicates stepping number. STEP = 0x0  
17  
www.ti.com  
 
 
 
15.12 DAC DATA REGISTER ACCESS  
Each DAC's input data register, DDATA, is individually addressable, and its contents can be updated without affecting remaining  
3 DACs. The content of each DDATA can be tested and set via the SPI transactions shown in the following table. The DAC block  
is described in Section 16.2 PROGRAMMABLE ANALOG OUTPUT SUBSYSTEM.  
FRAME 1: DIN  
FRAME 2: DOUT  
Command Payload  
Command  
23 22:18 17:16  
Payload  
11:2  
15:12  
1:0  
23  
22:18  
17:16  
15:12  
11:2  
1:0  
Bit→  
READ  
WRITE  
1
0
10100  
10100  
ADR  
ADR  
x
x
x
1
0
10100  
10100  
ADR  
ADR  
0000  
0000  
DDATA  
10'b0  
00  
00  
0000  
DDATA  
00  
x
Don't Care  
DAC address:  
00: DAC0  
ADR 01: DAC1  
10: DAC2  
11: DAC3  
DAC input data. DDATA is a 10–bit unsigned integer.  
DDATA=0x000  
DDATA  
15.13 ADC INPUT MUX SELECT DATA READ COMMAND  
The selection of the analog input, and the read-back of the ADC conversion result are completed by the SPI transaction shown in  
the following table. The ADC block is described in Section 16.1 ANALOG SENSE SUBSYSTEM.  
FRAME 1: DIN  
FRAME 2: DOUT  
Payload  
Command  
23 22:19 18:16  
1100 ADR  
Payload  
11:2  
Command  
15:12  
1:0  
23 22:19 18:16  
15:12  
11:2  
1:0  
Bit→  
READ  
1
x
x
x
1
1100  
ADR  
0000  
ADATA  
00  
x
Don't Care  
ADC Input Address:  
000: IN0  
001: IN1  
010: IN2  
ADR 011: IN3  
100: IN4  
101: IN5  
110: IN6  
111: IN7  
ADATA ADC output Data. ADATA is a 10–bit unsigned integer.  
www.ti.com  
18  
 
 
15.14 TEMPERATURE SENSOR OUTPUT REGISTER  
The contents of the internal temperature sensor output register can be tested by the SPI transaction shown in the following table.  
The internal temperature sensor is described in Section 16.3 DIGITAL TEMPERATURE SENSOR.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
22:16  
1110000  
Command  
23  
15:12  
11:0  
23  
22:16  
15:12  
11:0  
Bit→  
READ  
1
x
x
1
1110000  
0000  
TDATA  
x
Don't Care  
Temperature Sensor Output Data. TDATA is a 12–bit  
signed integer.  
TDATA  
15.15 NOOP — No Operation  
NOOP offers no functionality of its own. It is provided as the means of completing the pending READ operation i.e. “pushing out”  
the data requested in the previous transaction.  
FRAME 1: DIN  
Payload  
FRAME 2: DOUT  
Payload  
Command  
23:16  
Command  
23:16  
15:0  
15:0  
Bit→  
NOOP  
00000000  
x
00000000  
16'b0  
x
Don't Care  
19  
www.ti.com  
 
 
16.1.2 Sampling Transient  
16.0 Functional Description  
As noted in Section 16.1.1 Sampling and Conversion the  
charge acquired during TRACK period is maintained through-  
out the conversion process. Since the successive sample  
operations will involve different input potentials an instanta-  
neous current will flow at the beginning of TRACK period. This  
always leads to temporary disturbance of the input potential.  
This current, and resulting disturbance, will vary with the mag-  
nitude of the sampled signal and source impedance ROUT,  
see Figure 1. If ROUT is excessive, and resulting RC time  
constant of the input circuit too long, the preceding sample  
may affect the new sample's accuracy.  
16.1 ANALOG SENSE SUBSYSTEM  
The device is capable of monitoring up to 8 externally applied  
voltages. The system is centered around a 10-bit SAR ADC  
fronted by an 8-input mux.  
16.1.1 Sampling and Conversion  
The external voltage is sampled onto the internal CHOLD ca-  
pacitor during the TRACK period, see Figure 1. Once ac-  
quired, the stored charge is measured using the Successive  
Approximation Register (SAR) method. The timing of the in-  
ternal state machine is governed by the user defined signals  
CSB and SCLK. The sequence of the events is described in  
Section 16.1.3 Conversion Sequence.  
If high ROUT cannot be avoided, another method of improv-  
ing the acquisitin accuracy is to lengthen the TRACK time.  
The ADC TRACK time is fully controlled by the user inputs  
CSB and SCLK, see Figure 2. The time allotted for the  
CHOLD to settle can be arbitrarily adjusted via the length of the  
CSB=High period and the frequency of SCLK, subject to lim-  
itations on CSB and SCLK timing as shown in Section 12.0  
Electrical Characteristics .  
Attention should be paid to the output impedance of the  
sensed voltage source and the capacitance present at the INx  
input of the device (which is dominated by CHOLD during  
TRACK time). The combined circuit's RC limits the bandwidth  
and settling time of the input signal. At maximum SPI bus data  
rate, it is recommended to limit the output resistance ROUT  
of the signal source to assure the accuracy of the conversion.  
16.1.3 Conversion Sequence  
The ADC conversion sequence and output activity are shown  
in Figure 2. The ADC readback occupies 2 SPI frames. The  
first frame is used to issue a read command and connect the  
ADC input to the specified device input pin INx. At the end of  
the first frame, at the rising edge of the CSB, the ADC sam-  
pling capacitor is connected to the signal source, INx, and the  
TRACK period begins. The second frame executes the SAR  
algorithm (the HOLD period) on the acquired sample and  
shifts the resulting data out through the DOUT output. The  
TRACK period extends for 9 SCLK cycles, then the mux dis-  
connects the sampling capacitor from the signal source, and  
the SAR operation begins. The data is shifted out MSB first.  
Once the SAR operation is completed, the ADC powers down  
for the remainder of the second frame.  
During the HOLD period (duration of t HOLD specified in Sec-  
tion 12.0 Electrical Characteristics ) , all mux switches are  
OFF, and the charge captured on CHOLD is measured to pro-  
duce an ADC output code. This charge is never lost during  
the conversion, unless the SCLK is so slow that the charge is  
lost due to the internal capacitor's leakage. Under normal  
conditions the charge stored is modified only during TRACK  
period.  
Below is a typical ADC output code as a function of input volt-  
age at device pin INx, x=0...7:  
If DRDYB output pin functionality is enabled, see Section 15.5  
GENERAL CONFIGURATION, then DRDYB output will be  
low while ADC output data is present at DOUT.  
In the expression above AREF is the reference voltage input  
to the internal ADC. See Section 16.4 INTERNAL VOLTAGE  
REFERENCE SOURCE.  
If the ADC is not in TRACK or HOLD, the internal PD (Power  
Down) signal of the ADC is asserted thus powering down all  
the active circuits of the ADC, and opening all analog input  
mux switches. See the PD period in the Figure 2.  
30152337  
FIGURE 1. ADC During TRACK Period  
www.ti.com  
20  
 
 
 
 
 
30152338  
FIGURE 2. ADC Sequence Diagram  
16.1.4 ADC Reference Selection  
In contrast, the Figure 4 shows the sampling capacitor during  
TRACK period when the internally generated reference is se-  
lected as the reference source of the ADC. In this configura-  
tion ½CHOLD is used to sample the input signal effectively  
attenuating it by a factor of 2. The resulting overall ADC trans-  
fer function becomes:  
By default, the ADC operates from the external reference  
voltage applied at the REF pin of the device. It should be not-  
ed that due to the architecture of the ADC the DC current  
flowing into the REF input is zero during conversion. Howev-  
er, the transient currents ( see IVREF in Section 12.0 Electrical  
Characteristics ) during the HOLD time can be significant. For  
further details of reference source selection see Section 16.4  
INTERNAL VOLTAGE REFERENCE SOURCE  
Selection of the ADC reference source automatically dictates  
the attenuation level of the input signal. Figure 3 shows the  
ADC input configuration during the TRACK period when the  
REF pin is chosen as the source of the reference voltage. The  
entire CHOLD available is used to acquire the signal. The trans-  
fer function of the ADC in this configuration remains as shown  
in Section 16.1.1 Sampling and Conversion  
30152340  
FIGURE 4. ADC Sampling when AREF is Internally  
Supplied  
30152339  
FIGURE 3. ADC Sampling when AREF is Externally  
Supplied  
21  
www.ti.com  
 
 
 
 
16.2 PROGRAMMABLE ANALOG OUTPUT SUBSYSTEM  
User can select the source of the reference input to all DACs.  
This functionality is described in Section 16.2.2 DAC Refer-  
ence Selection  
This subsystem consists of 4 identical DACs whose output is  
a function of the user programmable registers DACx. This  
functionality is described in Section 16.2.1 DAC Core. The  
DAC input registers are individually addressable, as de-  
scribed Section 15.12 DAC DATA REGISTER ACCESS. The  
user can also update all of the DAC input registers to the same  
value with a single SPI command. See Section 15.4 UPDATE  
ALL DACs  
16.2.1 DAC Core  
The DAC core is based on a Resistive String architecture  
which guarantees monotonicity of its transfer function. The  
input data is single-registered, meaning that the OUTx of the  
DAC is updated as soon as the data is updated in the DAC  
input data register at the end of the SPI transaction.  
Each DAC channel can be individually enabled/disabled via  
the SPI interface command. See Section 15.3 DAC CON-  
FIGURE. When a channel is disabled, its output OUTx is in  
HiZ state, but the DAC input register still maintains its data.  
The functional diagram of the DAC Core is shown in Figure 5  
30152341  
FIGURE 5. DAC Block Diagram  
The ideal DAC core transfer function from DATAx to OUTx ,  
x=0...3, can be expressed as:  
from the internal reference generator block. The reference  
block functionality is described in Section 16.4 INTERNAL  
VOLTAGE REFERENCE SOURCE.  
Reference selection automatically forces configuration of the  
DACs' output buffers. If the external reference source, which  
is DREF driven by the REF device pin, is selected then all of  
the DAC output buffers are in 1x configuration, as seen  
inFigure 6. In the external reference mode, each active DAC  
presents a resistive load to the source attached to the device's  
REF pin, see Figure 5 and Figure 9.  
The above expression is subject to non-idealities of the re-  
sistor string and limitations of the output buffer. These limita-  
tions are tabulated in Section 12.0 Electrical Characteristics  
In Figure 5, the PD (Power Down) signal is asserted when the  
given channel is disabled via the SPI command. The PD  
causes the DAC buffer bias currents to shut down, and it  
breaks the current path through the resistive string.  
The overall DAC transfers function remains as shown in Sec-  
tion 16.2.1 DAC Core  
16.2.2 DAC Reference Selection  
All DAC channels operate from the same, user selectable,  
reference source. In Figure 5, DREF input can be supplied by  
the external source, applied to the REF pin of the device, or  
www.ti.com  
22  
 
 
 
 
30152343  
FIGURE 6. DAC Buffer when DREF Externally Supplied  
30152342  
If the internal reference generator is selected to drive the  
DAC's DREF input, then all of the DACs' buffers are auto-  
matically forced into 2x gain configuration as shown in Figure  
7. This results in an overall transfer function of the DACs to  
change to:  
FIGURE 7. DAC Buffer when DREF Internally Supplied  
23  
www.ti.com  
 
 
16.3 DIGITAL TEMPERATURE SENSOR  
In One-Shot mode temperature sensor is inactive until the  
user issues an instruction, via SPI interface, to read the tem-  
perature sensor data. The temperature conversion com-  
mences at the rising edge of CSB following the read  
instruction. After the delay of tCONV, the new temperature data  
is available in the temperature sensor output register. If con-  
figured, the DRDYB output indicates when the temperature  
conversion has been completed, see .  
The local temperature sensor (TS) operates in one of the 2  
possible modes: Continuous or One-Shot. The user selects  
the mode of operation via the SPI instruction, see Sec-  
tion 15.1 TEMPERATURE SENSOR CONFIGURE. The out-  
put of the temperature sensor is a 12 bit signed integer, where  
each LSB represents 0.0625°C. Temperature sensor's output  
code (TDATA) examples are shown in Table 1.  
The SPI instruction for accessing the temperature data is de-  
scribed in Section 15.14 TEMPERATURE SENSOR OUT-  
PUT REGISTER  
TABLE 1. Temperature Readout Examples  
Temperature  
125°C  
TDATA  
In Figure 8 below a One-Shot temperature read transaction  
is shown. The temperature readback occupies 2 SPI frames:  
the first frame is used to issue temperature sensor read in-  
struction, the second frame is used for the data readback. The  
falling edge of the DRDYB signal indicates the instance the  
new temperature data is present in the output register. The  
DRDYB is deasserted by the rising edge of the CSB.  
0111.1101.0000  
0001.1001.0000  
0000.0000.0001  
0000.0000.0000  
1111.1111.1111  
1101.1000.0000  
25°C  
0.0625°C  
0°C  
−0.0625°C  
−40°C  
NOTE: The DRDYB output in One-Shot temperature con-  
version mode is asynchronous to the SCLK of the SPI  
interface. DRDYB functionality is not provided in the  
Continuous mode of the temperature sensor operation.  
In Continuous mode, the temperature sensor operates in the  
background and independently of the SPI bus activity. Sub-  
sequent temperature conversion results are stored in the  
output register which can be accessed by the user via the SPI  
interface.  
30152347  
FIGURE 8. One-Shot Temperature Read Sequence  
www.ti.com  
24  
 
 
 
16.4 INTERNAL VOLTAGE REFERENCE SOURCE  
CREF register is shown in Section 15.2 REFERENCE CON-  
FIGURE. The switch activity due to the CREF content is  
tabulated in Table 2.  
The device has a built in precision 2.5V reference block which  
can be used to provide reference potential to either the ADC  
(AREF) or the DACs (DREF), both at once, or to external load  
via REF pin. The precision reference is always isolated from  
its loads by individual buffers, see Figure 9.  
The modes corresponding to CREF=(100) or (110) or (111)  
are the Deep Sleep modes. In these modes the internal tem-  
perature sensor, the ADC, the DACs, and the reference block  
buffers (but not the 2.5V reference) are powered down.  
The CREF register sets the reference block mode of opera-  
tion. The SPI instruction to update or read contents of the  
30152344  
FIGURE 9. Reference Selector Diagram  
TABLE 2. Reference Selector Functionality  
(1 to CLOSE Switch)  
Switch  
CREF  
000  
001  
010  
011  
100  
101  
110  
111  
A
1
0
1
0
0
0
0
0
B
0
0
1
1
0
0
0
0
C
0
0
0
0
0
1
0
0
D
0
1
0
1
0
1
0
0
E
1
1
0
0
0
1
0
0
25  
www.ti.com  
 
 
 
16.5 GENERAL PURPOSE DIGITAL I/O  
The GPIOx pins can be configured as outputs by setting the  
individual bits in the CGPIO registers. Each bit in CGPIO reg-  
ister enables corresponding output buffer in the GPIOx port.  
See Section 15.6 GPIO CONFIGURE. Once the drive is en-  
abled, the logic state at the outputs is dictated by the contents  
of the CGPO register. See Section 15.9 GPO DATA.  
The GPIO[11:0] port is memory mapped to registers SGPI  
and CGPO. Both registers are accessible through the SPI in-  
terface.  
The SGPI register content reflects at all times the digital state  
at the GPIOx device pins. The format of the read command  
of the General Purpose Digital I/O is shown in Section 15.8  
GPI STATE.  
The functional diagram of the General Purpose Digital I/O is  
shown in Figure 10.  
30152345  
FIGURE 10. General Purpose Digital I/O Diagram  
www.ti.com  
26  
 
 
16.6 SERIAL INTERFACE  
general format of the 24 bit data stream is shown in Figure  
11. The full Instruction Set is tabulated in Section 15.0 In-  
struction Set.  
The 4-wire interface is compatible with SPI, QSPI and MI-  
CROWIRE, as well as most DSPs. See the Section 13.0 SPI  
Interface Timing Diagram for timing information of the read  
and write sequences. The serial interface uses four signals  
CSB, SCLK, DIN and DOUT.  
A bus transaction is initiated by the falling edge of the CSB.  
Once CSB is low, the input data is sampled at the DIN pin by  
the falling edge of the SCLK, and shifted into the internal shift  
register (FIFO). The output data is put out on the DOUT pin  
on the rising edge of SCLK. At least 24 SCLK cycles are re-  
quired for a valid transfer to occur. If CSB is raised before 24th  
rising edge of the SCLK, the transfer is aborted and preceding  
data ignored. If the CSB is held low after the 24th falling edge  
of the SCLK, the data will continue to flow through the internal  
shift register (FIFO) and out the DOUT pin. When CSB tran-  
sitions high, the internal controller decodes the FIFO contents  
— most recent 24 bits that were received before the rising  
edge of CSB.  
30152349  
FIGURE 11. General SPI Frame Format  
16.6.1 SPI Write  
SPI write operation occupies a single 24–bit frame, as shown  
in Figure 12. Write operation always starts with a leading 0  
(zero) in the 8–bit COMMAND sequence. The format of the  
data transfer and user instruction set is shown in Section 15.0  
Instruction Set.  
While CSB is high, DOUT is in a high-Z state. At the falling  
edge of CSB, DOUT presents the MSB of the data present in  
the shift register. DOUT is updated on every subsequent  
falling edge of SCLK (note — the first DOUT transition will  
happen on the first rising edge AFTER the first falling edge of  
SCLK when CSB is low).  
Note that write operation also produces DOUT activity. The  
DOUT output echoes back the previous frame's COMMAND  
byte, followed by 16 zeros.  
The 24 bits of data contained in the FIFO are interpreted as  
an 8 bit COMMAND word followed by 16 bits of DATA. The  
30152354  
FIGURE 12. SPI Write Transaction  
16.6.2 SPI Read  
Reading of the specific content requires 2 SPI frames, as  
shown in Figure 13. The first frame is used to issue a read  
command, which always begins with RW bit set in the COM-  
MAND byte. The second frame echoes back the first frame's  
COMMAND byte, followed by the 16–bit PAYLOAD contain-  
ing the requested data. Consult Section 15.0 Instruction Set  
for the COMMAND format and returned data alignment within  
PAYLOAD.  
The read operation requires all 4 wires of the SPI interface:  
SCLK, CSB, DIN, DOUT. The simplest read operation occurs  
automatically during any valid transaction on the SPI bus  
since DOUT pin always shifts out the leading 8 bits (COM-  
MAND) of the previous transaction — this is regardless of the  
RW bit setting in the COMMAND byte. This functionality gives  
the user an easy method of verifying the SPI link.  
27  
www.ti.com  
 
 
 
 
 
30152350  
FIGURE 13. SPI Read Transaction  
16.6.3 SPI Daisy Chain  
trary length can be constructed since individual devices do  
not count the data bits shifted in. Instead, they wait to decode  
the contents of their respective shift registers until CSB is  
raised high.  
It is possible to control multiple LMP92018s with a single  
master equipped with one SPI interface. This is accomplished  
by connecting the multiple LMP92018 devices in a Daisy  
Chain. The scheme is depicted in Figure 14. A chain of arbi-  
30152351  
FIGURE 14. SPI Daisy Chain  
A typical bus cycle for this scheme is initiated by the falling  
CSB. After the 24 SCLK cycles new data starts to appear at  
the DOUT pin of the first device in the chain, and starts shifting  
into the second device. After the 72 SCLK cycles following the  
falling CSB edge, all three devices in this example will contain  
new data in their input shift registers. Raising CSB will begin  
the process of decoding data in each device. When in the  
Daisy Chain the full READ and WRITE capability of every de-  
vice is maintained.  
30152352  
FIGURE 15. SPI Daisy Chain Transaction  
A sample of SPI data transfer appropriate for a 3 device Daisy  
Chain is shown in Figure 15.  
www.ti.com  
28  
 
 
 
 
17.0 Application Circuit Example  
30152346  
29  
www.ti.com  
 
18.0 Physical Dimensions inches (millimeters) unless otherwise noted  
LLP-36 Package  
NS Package Number SQA36A  
www.ti.com  
30  
 
Notes  
31  
www.ti.com  
Notes  
TI/NATIONAL INTERIM IMPORTANT NOTICE  
Texas Instruments has purchased National Semiconductor. As of Monday, September 26th, and until further notice, products sold or  
advertised under the National Semiconductor name or logo, and information, support and interactions concerning such products, remain  
subject to the preexisting National Semiconductor standard terms and conditions of sale, terms of use of website, and Notices (and/or  
terms previously agreed in writing with National Semiconductor, where applicable) and are not subject to any differing terms and notices  
applicable to other TI components, sales or websites. To the extent information on official TI and National websites and business social  
networking media, etc., pertains to both TI and National-branded products, both companies' instructions, warnings and limitations in the  
above-referenced terms of use apply.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Communications and Telecom  
Computers and Peripherals  
Audio  
www.ti.com/audio  
amplifier.ti.com  
www.ti.com/communications  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
dataconverter.ti.com Consumer Electronics  
www.dlp.com  
dsp.ti.com  
Energy and Lighting  
Industrial  
www.ti.com/industrial  
www.ti.com/medical  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
www.ti.com/security  
Logic  
Space, Avionics and Defense  
www.ti.com/space-avionics-  
defense  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Transportation and Automotive www.ti.com/automotive  
microcontroller.ti.com Video and Imaging  
www.ti-rfid.com Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright© 2011 Texas Instruments Incorporated  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Transportation and Automotive www.ti.com/automotive  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

LMP92018SQ/NOPB

LMP92018 Analog System Monitor and Controller
TI

LMP92018SQE/NOPB

LMP92018 Analog System Monitor and Controller
TI

LMP92018SQX/NOPB

LMP92018 Analog System Monitor and Controller
TI

LMP92018_15

LMP92018 Analog System Monitor and Controller
TI

LMP92064

Precision Low-Side, 125 kSps Simultaneous Sampling,Current Sensor and Voltage Monitor with SPI
TI

LMP92064SD/NOPB

2V、12 位、快速同步采样 SPI 输出电流/电压监控器 | NHR | 16 | -40 to 105
TI

LMP92064SDE/NOPB

2V、12 位、快速同步采样 SPI 输出电流/电压监控器 | NHR | 16 | -40 to 105
TI

LMP92064SDX/NOPB

2V、12 位、快速同步采样 SPI 输出电流/电压监控器 | NHR | 16 | -40 to 105
TI

LMP92066

具有集成 EEPROM + 输出 ON/OFF 控制功能的双路、温度控制型 DAC
TI

LMP92066PWP

具有集成 EEPROM + 输出 ON/OFF 控制功能的双路、温度控制型 DAC | PWP | 16 | -40 to 125
TI

LMP92066PWPR

具有集成 EEPROM + 输出 ON/OFF 控制功能的双路、温度控制型 DAC | PWP | 16 | -40 to 125
TI

LMP93601

用于热电堆传感器的低噪声、高增益、3 通道 AFE
TI