ONET2804TLPY [TI]

具有 RSSI 的 28Gbps 低功耗 4 通道限幅跨阻放大器 | Y | 0 | -40 to 100;
ONET2804TLPY
型号: ONET2804TLPY
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 RSSI 的 28Gbps 低功耗 4 通道限幅跨阻放大器 | Y | 0 | -40 to 100

放大器
文件: 总29页 (文件大小:907K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ONET2804TLP  
ZHCSGK6 JULY 2017  
ONET2804TLP  
低功耗 28 Gbps4 通道限幅 TIA  
1 特性  
3 说明  
1
4 通道多速率操作:高达 28Gbps  
ONET2804TLP 器件是一款用于并行光互联的高增  
益、限幅互阻抗放大器 (TIA),数据速率高达  
28Gbps。此器件与 750μm 间距光电二极管阵列结合  
使用,可将光信号转换为差分输出电压。由内部电路提  
供光电二极管反向偏置电压并感测提供给各光电二极管  
的平均光电流。  
电源为 3V 时的功耗:每通道 90mW  
差动互阻抗:7.5kΩ  
带宽:17.5GHz  
输入噪声:2μArms  
输入过载电流:3.2mAPP  
可编程输出电压  
该器件可配合引脚控制或两线制串口使用,从而实现对  
输出幅值、增益、带宽和输入阈值的控制。  
可调增益和带宽  
每通道的接收信号强度指示器 (RSSI)  
通道之间的隔离(仅限于裸片):40 dB  
单电源:2.8V 3.3V  
ONET2804TLP 具有 17.5GHz 带宽、7.5kΩ 增益、  
2µArms 输入参考噪声和每通道的接收信号强度指示器  
(RSSI)。通道间的 40dB 隔离可降低接收器中的串扰。  
增耗垫控制或 2 线控制  
片上滤波电容器  
该器件需要单个 2.8V 3.3V 电源,每通道典型功耗  
90mW,差分输出幅度为 300 mVPP。该器件工作温  
度范围为 –40°C +100°C,采用裸片形式,通道间  
距为 750μm。  
运行温度范围:–40°C +100°C  
裸片尺寸:3250μm × 1450μm,通道间距为  
750μm  
器件信息(1)  
2 应用  
器件型号  
封装  
封装尺寸(标称值)  
100G 以太网光发射器  
ONET2804TLP  
采用叠片封装的裸片 3250µm × 1450µm  
ITU OTL4.4  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
具有内部重定时功能的 CFP2CFP4 QSFP28  
模块  
LP38690 的  
眼图  
VCC  
330 pF  
RSSI  
RRSSI  
GND  
GND  
Photodiode  
FILTER1  
0.1 F  
OUT1+  
OUT1-  
OUT+  
OUT-  
IN1  
1 CHANNEL of 4  
0.1 F  
FILTER1  
GND  
GND  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBAS796  
 
 
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 13  
7.5 Programming........................................................... 13  
7.6 Register Maps......................................................... 15  
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Applications ................................................ 21  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 DC Electrical Characteristics .................................... 6  
6.5 AC Electrical Characteristics..................................... 6  
6.6 Timing Requirements................................................ 7  
6.7 Typical Characteristics: General ............................... 8  
6.8 Typical Characteristics: Eye Diagrams ................... 10  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 12  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 27  
11.1 接收文档更新通知 ................................................. 27  
11.2 社区资源................................................................ 27  
11.3 ....................................................................... 27  
11.4 静电放电警告......................................................... 27  
11.5 Glossary................................................................ 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
日期  
修订版本  
注意  
2017 7 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
5 Pin Configuration and Functions  
ONET2804TLP Bond Pad Assignment: Y Package  
76-Pad Die  
Top View  
76 75 74 73 72 71 70 69 68 67 66 65 64  
59  
56  
55 54  
53 52  
51 50 49 48  
63 62 61  
60  
58 57  
47  
VCCO1  
VCCO2  
VCCI2  
1
2
3
4
5
6
46  
45  
44  
43  
42  
41  
VCCO4  
VCCO3  
VCCI3  
VCC14  
NC  
VCCI1  
I2CENA  
AMPL  
TRSH  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
7
8
40  
39  
SCL  
SDA  
RATE  
GAIN  
RSSI1  
RSSI2  
RSSI4  
RSSI3  
9
38  
37  
10  
19 20 21  
23 24  
28 29 30 31 32  
36  
11 12 13 14 15 16 17 18  
22  
25 26 27  
33 34 35  
Bond Pad Functions  
PAD  
I/O  
DESCRIPTION  
NAME  
NO.  
2-wire interface address programming pin. Leave this pad open for a default address of 0001100.  
Grounding this pad changes the first address bit to a 1 (0001101).  
ADR0  
ADR1  
54  
53  
Digital input  
Digital input  
2-wire interface address programming pin. Leave this pad open for a default address of 0001100.  
Grounding this pad changes the second address bit to a 1 (0001110).  
3-state input for amplitude control of all four channels.  
VCC: 500-mVPP differential output swing  
Open: 300-mVPP differential output swing (default)  
GND: 250-mVPP differential output swing  
AMPL  
6
Digital input  
FILTER1  
FILTER2  
FILTER3  
FILTER4  
12, 14  
19, 21  
26, 28  
33, 35  
FILTERx is the bias voltage for the photodiode cathode.  
These pads are biased to VCC – 100 mV.  
Analog  
output  
3-state input for gain control of all four channels.  
VCC: Minimum transimpedance  
Open: Default transimpedance  
GAIN  
8
Digital input  
GND: Medium transimpedance  
11, 15, 18,  
22, 25, 29,  
32, 36, 47,  
48, 51, 52,  
55, 56, 59,  
60, 63, 64,  
67, 68, 71,  
72, 75, 76  
Circuit ground. All GND pads are connected on the die.  
Bonding all pads is recommended, except for pads 11, 15, 18, 22, 25, 29, 32, and 36.  
GND  
Supply  
Copyright © 2017, Texas Instruments Incorporated  
3
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
Bond Pad Functions (continued)  
PAD  
I/O  
DESCRIPTION  
NAME  
NO.  
2-wire control option. Leave the pad unconnected for pad control of the device.  
Two-wire control can be enabled by applying a high signal to the pad.  
I2CENA  
5
Digital input  
IN1  
IN2  
IN3  
IN4  
13  
20  
27  
34  
Analog  
input  
INx is the data input to corresponding TIA channel (connect to photodiode anode)  
16, 17, 23,  
24, 30, 31,  
42, 61, 62, connection  
69  
No  
NC  
Do not connect  
Used to reset the 2-wire state machine and registers.  
Leave open for normal operation and set low to reset the 2-wire interface.  
NRESET  
70  
Digital input  
OUT1–  
OUT2–  
OUT3–  
OUT4–  
OUT1+  
OUT2+  
OUT3+  
OUT4+  
73  
65  
57  
49  
74  
66  
58  
50  
Analog  
output  
Inverted CML data output for channel x. On-chip, 50-Ω, back-terminated to VCC  
.
Analog  
output  
Noninverted CML data output for channel x. On-chip, 50-Ω, back-terminated to VCC  
.
3-state input for bandwidth control of all four channels.  
VCC: Increase the bandwidth  
Open: 21-GHz bandwidth (default)  
GND: Reduce the bandwidth  
RATE  
7
Digital input  
RSSI1  
RSSI2  
RSSI3  
RSSI4  
SCL  
9
Indicates the strength of the received signal (RSSI) for channel x if the photodiode is biased from  
FILTERx. The analog output current is proportional to the input data amplitude. Connect to an  
external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSIx pad  
does not exceed VCC – 0.65 V. If the RSSI feature is not used, leave these pads open.  
10  
37  
38  
40  
Analog  
output  
Digital input 2-wire interface serial clock input. Includes a 10-kΩ pullup resistor to VCC  
.
Digital  
input/output  
SDA  
39  
2-wire interface serial data input. Includes a 10-kΩ pullup resistor to VCC.  
3-state input for the threshold control.  
VCC: Crossing point shifted down  
Open: No threshold adjustment (default)  
GND: Crossing point shifted up  
TRSH  
41  
Digital input  
VCCI1  
VCCI2  
VCCI3  
VCCI4  
VCCO1  
VCCO2  
VCCO3  
VCCO4  
4
3
Supply  
Supply  
2.8 V to 3.47 V supply voltage for the input TIAx stage.  
44  
43  
1
2
2.8 V to 3.47 V supply voltage for the AGCx and CMLx amplifiers.  
45  
46  
4
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply voltage(1)  
Voltage(1)  
VCCIx, VCCOx  
–0.3  
4
V
FILTERx, OUTx+, OUTx–, RSSIx, SCL, SDA, I2CENA, ICC_ADJ,  
AMPL, RATE, GAIN, TRSH, ADR1, ADR0, and NRESET  
–0.3  
4
V
INx  
–0.7  
–8  
5
8
mA  
mA  
mA  
°C  
Average input current  
FILTERx  
Continuous current at outputs OUTx+, OUTx–  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–8  
8
125  
150  
–65  
°C  
(1) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
All pins except INx  
INx pins  
Human-body model (HBM), per  
V(ESD)  
Electrostatic discharge  
V
ANSI/ESDA/JEDEC JS-001(1)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
3.47  
2.7  
UNIT  
V
VCC  
Supply voltage  
2.8  
3.3  
I(INx)  
Average input current  
mA  
°C  
nH  
pF  
V
TA  
Operating backside die temperature  
Wire-bond inductance at the FILTERx and INx pins  
Photodiode capacitance  
–40  
100  
L(FILTER), L(IN)  
0.3  
0.1  
C(PD)  
VIH  
Digital input high voltage  
Digital input low voltage  
3-state input high voltage  
3-state input low voltage  
SDA, SCL  
SDA, SCL  
2
VIL  
0.8  
0.4  
V
VCC – 0.4  
V
V
Copyright © 2017, Texas Instruments Incorporated  
5
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
6.4 DC Electrical Characteristics  
over recommended operating conditions with VOD = 300 mVPP (unless otherwise noted); typical values are at VCC = 3.3 V and  
TA = 25°C  
TEST  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
VCC  
Supply voltage  
2.8  
22  
3.3  
3.47  
42  
V
A
A
C
C
A
C
C
A
A
A
A
Per channel, 30-μAPP input, 27°C  
ICC  
Supply current  
Per channel, 30-μAPP input, maximum 85°C  
Per channel, 30-μAPP input, maximum 100°C  
Per channel, 30-μAPP input, 27°C  
30  
36  
mA  
73  
139  
P(RX)  
Receiver power dissipation  
Per channel, 30-μAPP input, maximum 85°C  
Per channel, 30-μAPP input, maximum 100°C  
99  
118  
0.85  
50  
mW  
VIN  
Input bias voltage  
Output resistance  
Photodiode bias voltage(2)  
RSSI gain  
0.75  
40  
0.98  
60  
V
Ω
ROUT  
Single-ended to VCC  
V(FILTER)  
A(RSSI_IB)  
2.8  
3.2  
V
Resistive load to GND(3)  
0.49  
0.5  
0.54  
2.5  
A/A  
RSSIx feature output offset  
current (no light)  
0
µA  
A
(1) Test levels: (A) 100% tested at 25°C. Overtemperature limits set by characterization and simulation. (B) Limits set by characterization  
and simulation. (C) Typical value only for information.  
(2) Regulated voltage is typically 100 mV lower than VCC  
.
(3) The RSSIx output is a current output that requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended  
application by choosing the external resistor; however, for proper operation, ensure that the voltage at RSSIx does not exceed  
VCC – 0.65 V.  
6.5 AC Electrical Characteristics  
over recommended operating conditions with VOD = 300 mVPP (unless otherwise noted); typical values are at VCC = 3.3 V and  
TA = 25°C  
TEST  
PARAMETER  
TEST CONDITIONS  
25-μAPP input signal  
25-μAPP input signal(2)  
MIN  
TYP  
MAX  
UNIT  
LEVEL(1)  
Z21  
Small-signal transimpedance  
–3-dB bandwidth  
7.5  
17.5  
30  
kΩ  
GHz  
kHz  
μA  
C
C
C
C
f(3dB-H)  
f(3dB-L)  
iN(IN)  
Low-frequency, –3-dB bandwidth  
Input-referred RMS noise  
CPD = 0.1 pF, 28-GHz BT4 filter(3)  
2
35 µAPP < iIN < 250 µAPP  
(27.95 Gbps, PRBS9 pattern)  
2
2
4
C
C
C
250 µAPP < iIN < 500 µAPP  
(27.95 Gbps, PRBS9 pattern)  
DJ  
Deterministic jitter  
psPP  
500 µAPP < iIN < 2900 µAPP  
(27.95 Gbps, PRBS9 pattern)  
VOD  
Differential output voltage  
Crosstalk  
500-mVPP setting  
Between adjacent channels, up to 20 GHz(4)  
250  
500  
–40  
1
700  
mVPP  
dB  
C
C
C
C
RSSIx response time  
Power-supply rejection ratio  
μs  
PSRR  
f < 10 MHz(5)  
–15  
dB  
(1) Test levels: (A) 100% tested at 25°C. Overtemperature limits set by characterization and simulation. (B) Limits set by characterization  
and simulation. (C) Typical value only for information.  
(2) The small-signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed photodiode  
capacitance is 0.1 pF and the bond-wire inductance is 0.3 nH. The small-signal bandwidth strongly depends on environmental  
parasitics. Careful attention to layout parasitics and external components is necessary to achieve optimal performance.  
(3) Input-referred RMS noise is (RMS output noise) / (gain at 100 MHz).  
(4) Die only, no wire bonds.  
(5) PSRR is the differential output amplitude divided by the voltage ripple on the supply. No input current at INx.  
6
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
kHz  
µs  
fSCK  
tBUF  
SCK clock frequency  
400  
Bus free time between START and STOP conditions  
1.3  
0.6  
Hold time after repeated START condition. After this period, the first clock  
pulse is generated.  
tHDSTA  
µs  
tLOW  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tR  
Low period of the SCK clock  
High period of the SCK clock  
Setup time for a repeated START condition  
Data hold time  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
Data setup time  
100  
Rise time of both SDA and SCK signals  
Fall time of both SDA and SCK signals  
Setup time for STOP condition  
300  
300  
tF  
tSUSTO  
0.6  
Copyright © 2017, Texas Instruments Incorporated  
7
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
6.7 Typical Characteristics: General  
typical operating condition is at VCC = 3.3 V, TA = 25°C, and VOD = 300 mVPP (unless otherwise noted)  
10000  
9500  
9000  
8500  
8000  
7500  
7000  
6500  
6000  
8000  
7500  
7000  
6500  
6000  
5500  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
0
0
200  
400  
600  
800  
1000  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Input Current (uA)  
Temperature (èC)  
D001  
D002  
Figure 1. Transimpedance vs Input Current  
Figure 2. Small-Signal Transimpedance vs Ambient  
Temperature  
10  
5
20  
16  
12  
8
0
-5  
-10  
-15  
-20  
-25  
-30  
4
0
10M  
100M  
1G  
10G  
100G  
-40  
-20  
0
20  
40  
60  
80  
100  
Frequency (Hz)  
Temperature (èC)  
D003  
D004  
Figure 3. Gain vs Frequency  
(Test Fixture Loss De-Embedded)  
Figure 4. Small-Signal Bandwidth vs Ambient Temperature  
(Test Fixture Loss De-Embedded)  
300  
16  
14  
12  
10  
8
275  
250  
225  
200  
175  
150  
125  
100  
75  
6
4
2
50  
0
0
50 100 150 200 250 300 350 400 450 500  
100 200 300 400 500 600 700 800 900 1000 1100  
Input Current (mA)  
Average Input Current (mA)  
D005  
D006  
Figure 5. Differential Output Voltage vs Input Current  
Figure 6. Deterministic Jitter vs Input Current  
8
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
Typical Characteristics: General (continued)  
typical operating condition is at VCC = 3.3 V, TA = 25°C, and VOD = 300 mVPP (unless otherwise noted)  
1.77  
1.74  
1.71  
1.68  
1.65  
1.62  
1.59  
1.56  
1.53  
1.5  
1500  
1250  
1000  
750  
500  
250  
0
Vout = 300 mVpp  
Vout = 500 mVpp  
1.47  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
0
250 500 750 1000 1250 1500 1750 2000 2250 2500  
Temperature (èC)  
Average Input Current (mA)  
D007  
D009  
Figure 7. Input-Referred Noise vs Ambient Temperature  
Figure 8. RSSIx Output Current vs Average Input Current  
Copyright © 2017, Texas Instruments Incorporated  
9
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
6.8 Typical Characteristics: Eye Diagrams  
typical operating condition is at VCC = 3.3 V, TA = 25°C, and VOD = 500 mVPP (unless otherwise noted)  
27.95 Gbps  
27.95 Gbps  
Figure 10. Output Eye-Diagram, 500-µAPP Input Current  
Figure 9. Output Eye-Diagram, 30-µAPP Input Current  
27.95 Gbps  
27.95 Gbps  
Figure 11. Output Eye-Diagram, 1.5-mAPP Input Current  
Figure 12. Output Eye-Diagram, 2.5-mAPP Input Current  
10  
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
7 Detailed Description  
7.1 Overview  
The Functional Block Diagram section shows a simplified block diagram for one channel of the ONET2804TLP.  
The ONET2804TLP consists of the signal path, supply filters, a control block for dc input bias, automatic gain  
control (AGC) and received signal strength indication (RSSI), an analog reference block and a two-wire serial  
interface and control logic block.  
The signal path consists of a transimpedance amplifier (TIA) stage, a voltage amplifier, and a current-mode logic  
(CML) output buffer. The on-chip filter circuit provides a filtered VCC for the PIN photodiode and for the  
transimpedance amplifier. The RSSI provides the bias for the TIA stage and control for the AGC.  
The DC input bias circuit and automatic gain control use internal low-pass filters to cancel the DC current on the  
input and to adjust the transimpedance amplifier gain. Furthermore, circuitry is provided to monitor the received  
signal strength.  
The output amplitude, gain, bandwidth, and input threshold can be globally controlled through pin settings or  
each channel can be individually controlled through the two-wire interface.  
7.2 Functional Block Diagram  
VCCO1  
To Output Stages  
To TIA Stages  
1 Channel of 4  
VCCI1  
GND  
AGC and  
RSSI  
FILTER1  
RSSI1  
Detection  
VCC  
RF  
Voltage Amplifier  
with Selectable  
Bandwidth  
50 50 ꢀ  
OUT1+  
OUT1-  
IN1  
Gain  
Stage  
CML Output  
Buffer  
TIA  
DC Offset  
Cancellation  
VCC  
10 kꢀ  
10 kꢀ  
8 Bit Register  
Settings  
BW/AMP  
Gain/Thres  
Settings  
Settings  
SDA  
SCL  
SDA  
SCL  
8 Bit Register  
8 Bit Register  
8 Bit Register  
8 Bit Register  
I2CENA  
I2CENA  
NRESET  
ADR0  
NRESET  
ADR0  
2-Wire Control  
Individual Channel Control  
ADR1  
ADR1  
AMPL  
RATE  
GAIN  
TRSH  
AMPL  
RATE  
GAIN  
TRSH  
Pin Control  
Global for all 4 Channels  
Band-Gap, Analog References  
Power-On  
Reset  
2-Wire Interface and Control Logic  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Signal Path  
The first stage of the signal path is a transimpedance amplifier that converts the photodiode current into a  
voltage. If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of a  
nonlinear AGC circuit to limit the signal amplitude.  
The second stage is a limiting voltage amplifier that provides additional limiting gain and converts the single-  
ended input voltage into a differential data signal. The output stage provides CML outputs with an on-chip, 50-Ω  
termination to VCC  
.
The TIA has adjustable gain, amplitude, bandwidth, and input threshold that can be globally controlled through  
pad settings or each channel can be individually controlled through the two-wire interface. The default mode of  
operation is pad control where the state (open, high, or low) of the AMPL, BW, GAIN, and TRSH pads sets the  
respective parameter. To enable two-wire control, set the I2CENA pad high and the functionality of each channel  
can be controlled individually through the two-wire interface.  
7.3.2 Gain Adjustment  
The gain of all TIAs can be adjusted using the GAIN pad (pad 8) in pad control mode. Gain is set to default if the  
pad is left open. Gain is reduced by approximately 4 dB if the pad is tied to ground, and reduced by  
approximately 8 dB if the pad is tied to VCC. In two-wire control mode, the gain of each channel can be adjusted  
from minimum to default. Gain is controlled with the GAIN[1:0] bits in registers 2, 8, 14, and 20 for channels 1, 2,  
3, and 4, respectively.  
7.3.3 Amplitude Adjustment  
The output amplifier of all buffers can be adjusted using the AMPL pad (pad 6) in pad control mode. The  
amplitude is set to 300 mVPP differential if the pad is left open, 250 mVPP if the pad is tied to ground, and 450  
mVPP if the pad is tied to VCC voltage (recommended mode of operation). In two-wire control mode, the amplitude  
of each channel can be adjusted from 0 mVPP to 600 mVPP. The amplitude is controlled with the AMPL[3:0] bits  
in registers 1, 7, 13, and 19 for channels 1, 2, 3, and 4, respectively.  
7.3.4 Rate Select  
The small-signal bandwidth can be adjusted using the RATE pad (pad 7) in pad control mode. Bandwidth is  
typically 20 GHz if the pad is left open. Bandwidth is reduced by approximately 0.4 GHz if the pad is tied to  
ground, and increased by approximately 0.4 GHz if the pad is tied to VCC. In two-wire control mode, the  
bandwidth of each channel can be adjusted up or down using the RATE[3:0] register settings in registers 1, 7,  
13, and 19 for channels 1, 2, 3, and 4, respectively.  
7.3.5 Threshold Adjustment  
The TIAs have DC offset cancellation to maintain a 50% crossing point; however, the crossing point can be  
adjusted using the TRSH pad (pad 41) in pad control mode. No threshold adjustment is applied if the pad is left  
open. The crossing point is shifted up approximately 12% if the pad is tied to ground, and is shifted down by  
approximately 12% if the pad is tied to VCC. In two-wire control mode, the crossing point can be adjusted up or  
down using the TH[3:0] register settings in registers 2, 8, 14, and 20 for channels 1, 2, 3, and 4, respectively.  
7.3.6 Filter Circuitry  
The FILTERx pins provide a regulated and filtered VCC for a PIN photodiode bias. The supply voltages for the  
transimpedance amplifier have on-chip capacitors but external filter capacitors are recommended to be used as  
well for best performance. The input stage has a separate VCC supply (VCCIx) that is not connected on-chip to the  
supply of the limiting and CML stages (VCCOx).  
7.3.7 AGC and RSSI  
The voltage drop across the regulated photodiode FET is monitored by the bias and RSSI control circuit block in  
the case where a PIN diode is biased using the FILTERx pins.  
12  
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
Feature Description (continued)  
If the DC input current exceeds a certain level then this current is partially cancelled by means of a controlled  
current source. This cancellation keeps the transimpedance amplifier stage within sufficient operating limits for  
optimum performance.  
The automatic gain control circuitry adjusts the voltage gain of the AGC amplifier to ensure limiting behavior of  
the complete amplifier.  
Finally, this circuit block senses the current through the FILTERx FET and generates a mirrored current that is  
proportional to the input signal strength. The mirrored currents are available at the RSSIx outputs and can be  
sunk to ground (GND) using an external resistor. For proper operation, ensure that the voltage at the RSSIx pad  
does not exceed VCC – 0.65 V.  
7.4 Device Functional Modes  
The device has two functional modes of operation: pad control mode and two-wire interface control mode.  
7.4.1 Pad Control  
The default mode of operation is pad control and the amplitude is recommended to be increased to the  
450 mVPP setting by bonding AMPL (pad 6) to VCC. If further adjustment is desired as described previously, then  
the RATE (pad 7), GAIN (pad 8), and TRSH (pad 41) control pads and can be bonded to either ground (GND) or  
VCC  
.
7.4.2 Two-Wire Interface Control  
To enable two-wire interface, the I2CENA (pad 5) control pad must be bonded to VCC. In this mode of operation,  
pad control is not functional and all control is initiated through the two-wire interface as described in the  
Programming section.  
7.5 Programming  
The ONET2804TLP uses a two-wire serial interface for digital control. For example, the two circuit inputs (SDA  
and SCK) are driven by the serial data and serial clock from a microcontroller. Both inputs include 10-kΩ pullup  
resistors to VCC. For driving these inputs, an open-drain output is recommended. The two-wire interface allows  
write access to the internal memory map to modify control registers and read access to read out control and  
status signals. The ONET2804TLP is a slave device only, which means that the device cannot initiate a  
transmission, but always relies on the availability of the SCK signal for the duration of the transmission. The  
master device provides the clock signal as well as the START and STOP commands. The device is  
recommended to be used on a bus with only one master. The protocol for a data transmission is as follows:  
1. START command  
2. 7-bit slave address (0001100) followed by an eighth bit that is the data direction bit (R/W). A zero indicates a  
write operation and a 1 indicates a read operation.  
3. 8-bit register address  
4. 8-bit register data word  
5. STOP command  
Regarding timing, the ONET2804TLP is I2C compatible. Figure 13 illustrates the typical timing and Figure 14  
illustrates a complete data transfer. Parameters for Figure 13 are defined in the Timing Requirements table.  
Copyright © 2017, Texas Instruments Incorporated  
13  
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
Programming (continued)  
SDA  
tR  
tF  
tHDSTA  
tBUF  
tLOW  
tHIGH  
SCK  
P
S
S
P
tHDSTA  
tHDDAT  
tSUDAT  
tSUSTA  
tSUSTO  
Figure 13. I2C Timing Diagram  
Write Sequence  
1
1
1
8
1
8
1
1
7
S
Slave Address  
Wr  
A
Register Address  
A
Data Byte  
A
P
Read Sequence  
1
1
1
8
1
1
1
1
8
1
1
7
7
S
Slave Address  
Wr  
A
Register Address  
A
S
Slave Address  
Rd  
A
Data Byte  
N
P
Legend  
S
Start Condition  
Write Bit (bit value = 0)  
Read Bit (bit value = 1)  
Acknowledge  
Wr  
Rd  
A
Not Acknowledge  
Stop Condition  
N
P
Figure 14. Data Transfer  
7.5.1 Bus Idle  
Both the SDA and SCK lines remain high.  
7.5.2 Start Data Transfer  
A change in the state of the SDA line from high to low when the SCK line is high defines a START condition (S).  
Each data transfer is initiated with a START condition.  
7.5.3 Stop Data Transfer  
A change in the state of the SDA line from low to high when the SCK line is high defines a STOP condition (P).  
Each data transfer is terminated with a STOP condition; however, to continue communication on the bus, the  
master can generate a repeated START condition and address another slave without first generating a STOP  
condition.  
14  
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
Programming (continued)  
7.5.4 Data Transfer  
Only one data byte can be transferred between a START and a STOP condition. The receiver acknowledges the  
transfer of data.  
7.5.5 Acknowledge  
Each receiving device, when addressed, is obliged to generate an acknowledge bit. The transmitter releases the  
SDA line and a device that acknowledges must pull down the SDA line during the acknowledge clock pulse in  
such a way that the SDA line is stable low during the high period of the acknowledge clock pulse. Setup and hold  
times must be taken into account. When a slave-receiver does not acknowledge the slave address, the data line  
must be left high by the slave. The master can then generate a STOP condition to abort the transfer. If the slave-  
receiver does acknowledge the slave address but some time later in the transfer cannot receive any more data  
bytes, the master must abort the transfer. This requirement is indicated by the slave generating a not  
acknowledge on the first subsequent byte. The slave leaves the data line high and the master generates the  
STOP condition.  
7.6 Register Maps  
Table 1 lists the registers for the ONET2804TLP.  
Table 1. Register Map  
REGISTER  
NAME  
REGISTER DATA  
ADDRESS  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
7
6
PD  
5
4
3
2
1
0
Register 0  
Register 1  
Register 2  
Register 3  
Register 4  
Register 5  
Register 6  
Register 7  
Register 8  
Register 9  
Register 10  
Register 11  
Register 12  
Register 13  
Register 14  
Register 15  
Register 16  
Register 17  
Register 18  
Register 19  
Register 20  
Register 21  
Register 22  
Register 23  
Register 24  
Register 25  
RESET  
RATE3  
PD  
RESERVED RESERVED RESERVED RESERVED RESERVED  
PWRITE  
AMP0  
TH0  
RATE2  
DIS  
RATE1  
GAIN1  
RATE0  
GAIN0  
AMP3  
TH3  
AMP2  
TH2  
AMP1  
TH1  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RATE3  
PD  
RATE2  
DIS  
RATE1  
GAIN1  
RATE0  
GAIN0  
AMP3  
TH3  
AMP2  
TH2  
AMP1  
TH1  
AMP0  
TH0  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RATE3  
PD  
RATE2  
DIS  
RATE1  
GAIN1  
RATE0  
GAIN0  
AMP3  
TH3  
AMP2  
TH2  
AMP1  
TH1  
AMP0  
TH0  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RATE3  
PD  
RATE2  
DIS  
RATE1  
GAIN1  
RATE0  
GAIN0  
AMP3  
TH3  
AMP2  
TH2  
AMP1  
TH1  
AMP0  
TH0  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED  
Copyright © 2017, Texas Instruments Incorporated  
15  
 
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
7.6.1 Register Descriptions  
This section describes the circuit functionality based on the register settings. Table 2 defines the various register  
bit field types used in this document.  
Table 2. Register Bit Field Types  
SYMBOL  
DESCRIPTION  
ACCESS, READ ACTION, WRITE VALUE  
Read-only  
R
R/W  
W
Read  
Read, write, or both  
Write  
Read-write  
Write-only  
7.6.2 Register 0: Control Settings (address = 00h) [reset = 0h]  
Figure 15. Register 0  
7
6
5
4
3
2
1
0
RESET  
W-0h  
PD  
RESERVED  
R-Xh  
RESERVED  
R-Xh  
RESERVED  
R-Xh  
RESERVED  
R-Xh  
RESERVED  
R-Xh  
PWRITE  
R/W-0h  
R/W-0h  
Table 3. Register 0 Field Descriptions  
Bit  
Field  
Type Reset  
Description  
7
RESET  
W
0h  
Reset registers bit.  
1 = Resets all registers to default values  
0 = Normal operation  
6
PD  
R/W  
0h  
Power-down bit.  
1 = Power down all channels (ICC is approximately 4 mA)  
0 = Normal operation  
5-1  
0
Reserved  
PWRITE  
R
Undefined  
0h  
Reserved. Read-only.  
R/W  
Parallel write mode bit.  
1 = Parallel write enabled (write register value to all channels)  
0 = Serial write  
7.6.3 Register 1: Amplitude and Rate for Channel 1 (address = 01h) [reset = 0h]  
Figure 16. Register 1  
7
6
5
4
3
2
1
0
RATE3  
R/W-0h  
RATE2  
R/W-0h  
RATE1  
R/W-0h  
RATE0  
R/W-0h  
AMP3  
R/W-0h  
AMP2  
R/W-0h  
AMP1  
R/W-0h  
AMP0  
R/W-0h  
Table 4. Register 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RATE[3 :0]  
R/W  
0h  
Rate adjustments bits for channel 1.  
0000 = 21 GHz (default)  
0111 = BW decrease of approximately 0.4 GHz  
1111 = BW increase of approximately 0.4 GHz  
All others: Do not use  
R/W  
0h  
Amplitude adjustment bits for channel 1.  
Table 5 lists the bit settings for AMP[3:0].  
3-0  
AMP[3:0]  
16  
Copyright © 2017, Texas Instruments Incorporated  
 
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
Table 5. AMP[3:0] Bit Settings  
BITS  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
AMPLITUDE ADJUSTMENT (mVPP  
)
BITS  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AMPLITUDE ADJUSTMENT (mVPP)  
0 (default)  
50  
250  
300  
350  
400  
450  
500  
550  
600  
100  
150  
200  
250  
300  
350  
7.6.4 Register 2: Threshold and Gain for Channel 1 (address = 02h) [reset = 0h]  
Figure 17. Register 2  
7
6
5
4
3
2
1
0
PD  
DIS  
GAIN1  
R/W-0h  
GAIN0  
R/W-0h  
TH3  
TH2  
TH1  
TH0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 6. Register 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PD  
R/W  
0h  
Power-down bit for channel 1.  
1 = Power down channel 1  
0 = Normal operation  
6
DIS  
R/W  
R/W  
0h  
0h  
Disable output buffer for channel 1.  
1 = Disable channel 1 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 1.  
00 = Default  
5-4  
GAIN[1:0]  
TH[3:0]  
01 = Do not use  
10 = Medium (–4 dB)  
11 = Minimum (–8 dB)  
R/W  
0h  
Threshold adjustment bits for channel 1.  
0000 = Zero shift  
0001 = Minimum positive shift  
0111 = Maximum positive shift  
1000 = Zero shift  
3-0  
1001 = Minimum negative shift  
1111 = Maximum negative shift  
Copyright © 2017, Texas Instruments Incorporated  
17  
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
7.6.5 Register 7: Amplitude and Rate for Channel 2 (address = 07h) [reset = 0h]  
Figure 18. Register 7  
7
6
5
4
3
2
1
0
RATE3  
R/W-0h  
RATE2  
R/W-0h  
RATE1  
R/W-0h  
RATE0  
R/W-0h  
AMP3  
R/W-0h  
AMP2  
R/W-0h  
AMP1  
R/W-0h  
AMP0  
R/W-0h  
Table 7. Register 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RATE[3:0]  
R/W  
0h  
Rate adjustments bits for channel 2.  
0000 = 21 GHz (default)  
0111 = BW decreases by approximately 0.4 GHz  
1111 = BW increases by approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 2.  
Table 5 lists the bit settings for AMP[3:0].  
3-0  
AMP[3:0]  
7.6.6 Register 8: Threshold and Gain for Channel 1 (address = 08h) [reset = 0h]  
Figure 19. Register 8  
7
6
5
4
3
2
1
0
PD  
DIS  
GAIN1  
R/W-0h  
GAIN0  
R/W-0h  
TH3  
TH2  
TH1  
TH0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 8. Register 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PD  
R/W  
0h  
Power-down bit for channel 2.  
1 = Power down channel 2  
0 = Normal operation  
6
DIS  
R/W  
R/W  
0h  
0h  
Disable output buffer for channel 2.  
1 = Disable channel 2 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 2.  
00 = Default  
5-4  
GAIN[1:0]  
TH[3:0]  
01 = Do not use  
10 = Medium (–4 dB)  
11 = Minimum (–8 dB)  
R/W  
0h  
Threshold adjustment bits for channel 2.  
0000 = Zero shift  
0001 = Minimum positive shift  
0111 = Maximum positive shift  
1000 = Zero shift  
3-0  
1001 = Minimum negative shift  
1111 = Maximum negative shift  
18  
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
7.6.7 Register 13: Amplitude and Rate for Channel 3 (address = 0Dh) [reset = 0h]  
Figure 20. Register 13  
7
6
5
4
3
2
1
0
RATE3  
R/W-0h  
RATE2  
R/W-0h  
RATE1  
R/W-0h  
RATE0  
R/W-0h  
AMP3  
R/W-0h  
AMP2  
R/W-0h  
AMP1  
R/W-0h  
AMP0  
R/W-0h  
Table 9. Register 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RATE[3:0]  
R/W  
0h  
Rate adjustments bits for channel 3.  
0000 = 21 GHz (default)  
0111 = BW decreases by approximately 0.4 GHz  
1111 = BW increases by approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 3.  
Table 5 lists the bit settings for AMP[3:0].  
3-0  
AMP[3:0]  
7.6.8 Register 14: Threshold and Gain for Channel 3 (address = 0Eh) [reset = 0h]  
Figure 21. Register 14  
7
6
5
4
3
2
1
0
PD  
DIS  
GAIN1  
R/W-0h  
GAIN0  
R/W-0h  
TH3  
TH2  
TH1  
TH0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 10. Register 14 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PD  
R/W  
0h  
Power-down bit for channel 3.  
1 = Power down channel 3  
0 = Normal operation  
6
DIS  
R/W  
R/W  
0h  
0h  
Disable output buffer for channel 3.  
1 = Disable channel 3 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 3.  
00 = Default  
5-4  
GAIN[1:0]  
TH[3:0]  
01 = Do not use  
10 = Medium (–4 dB)  
11 = Minimum (–8 dB)  
R/W  
0h  
Threshold adjustment bits for channel 3.  
0000 = Zero shift  
0001 = Minimum positive shift  
0111 = Maximum positive shift  
1000 = Zero shift  
3-0  
1001 = Minimum negative shift  
1111 = Maximum negative shift  
Copyright © 2017, Texas Instruments Incorporated  
19  
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
7.6.9 Register 19: Amplitude and Rate for Channel 4 (address = 13h) [reset = 0h]  
Figure 22. Register 19  
7
6
5
4
3
2
1
0
RATE3  
R/W-0h  
RATE2  
R/W-0h  
RATE1  
R/W-0h  
RATE0  
R/W-0h  
AMP3  
R/W-0h  
AMP2  
R/W-0h  
AMP1  
R/W-0h  
AMP0  
R/W-0h  
Table 11. Register 19 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RATE[3:0]  
R/W  
0h  
Rate adjustments bits for channel 4.  
0000 = 21 GHz (default)  
0111 = BW decreases by approximately 0.4 GHz  
1111 = BW increases by approximately 0.4 GHz  
R/W  
0h  
Amplitude adjustment bits for channel 4.  
Table 5 lists the bit settings for AMP[3:0].  
3-0  
AMP[3:0]  
7.6.10 Register 20: Threshold and Gain for Channel 4 (address = 14h) [reset = 0h]  
Figure 23. Register 20  
7
6
5
4
3
2
1
0
PD  
DIS  
GAIN1  
R/W-0h  
GAIN0  
R/W-0h  
TH3  
TH2  
TH1  
TH0  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
R/W-0h  
Table 12. Register 20 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PD  
R/W  
0h  
Power-down bit for channel 4.  
1 = Power down channel 4  
0 = Normal operation  
6
DIS  
R/W  
R/W  
0h  
0h  
Disable output buffer for channel 4.  
1 = Disable channel 4 output buffer  
0 = Normal operation  
Gain adjustment bits for channel 4.  
00 = Default  
5-4  
GAIN[1:0]  
TH[3:0]  
01 = Do not use  
10 = Medium (–4 dB)  
11 = Minimum (–8 dB)  
R/W  
0h  
Threshold adjustment bits for channel 4.  
0000 = Zero shift  
0001 = Minimum positive shift  
0111 = Maximum positive shift  
1000 = Zero shift  
3-0  
1001 = Minimum negative shift  
1111 = Maximum negative shift  
20  
Copyright © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Figure 24 shows the ONET2804TLP being used in a fiber optic receiver application with four channels running at  
25 Gbps each and with pin control. Figure 27 illustrates the device being used with two-wire control. The  
ONET2804TLP converts the electrical current generated by the PIN photodiode into a differential output voltage.  
The FILTERx inputs provide a DC bias voltage for the PIN that is low-pass filtered. The photodiode must be  
connected to the FILTERx pads for the bias circuit to function correctly because the voltage drop across the  
photodiode FET is sensed and used by the bias circuit.  
The RSSIx outputs are used to mirror the photodiode output current and can be connected via resistors to GND.  
The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for  
proper operation of the ONET2804TLP, ensure that the voltage at RSSIx never exceeds VCC – 0.65 V. If the  
RSSIx outputs are not used when using the internal PD bias, then leave these outputs open.  
The OUTx+ and OUTx– pins are internally terminated by 50-Ω pullup resisters to VCC. The outputs must be AC  
coupled (for example, by using 0.1-µF capacitors) to the succeeding device.  
8.2 Typical Applications  
8.2.1 Pad Control Application  
VCC  
VCC  
AMPL  
RATE  
TRSH  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
GAIN  
RSSI1  
RSSI2  
RSSI4  
RSSI3  
Substrate  
750 m Pitch  
Photodiode Array  
Figure 24. Basic Application Circuit with Pad Control  
Copyright © 2017, Texas Instruments Incorporated  
21  
 
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
Typical Applications (continued)  
8.2.1.1 Design Requirements  
Table 13. Design Parameters  
PARAMETER  
Input voltage  
Output voltage  
VALUE  
3.3 V  
300 mVPP  
8.2.1.2 Detailed Design Procedure  
The ONET2804TLP is designed to be used in conjunction with a 750-μm pitch photodiode array or individual  
photodiodes and assembled into a receiver optical subassembly (ROSA). The TIA is typically mounted on a  
ceramic substrate with etched connections for VCC, RSSIx, and 100-Ω differential transmission lines for the  
output voltage. The photodiode converts the optical input signal into a current that is supplied to the TIA through  
wire bonds. The TIA then converts the input current into a voltage and further amplifies the signal. TI  
recommends setting the output amplitude to the 300-mVPP level by leaving AMPL (pad 6) floating.  
The ROSA is typically mounted on a printed circuit board (PCB) with 100-Ω differential transmission lines and RF  
connectors [such as GPPO® or 2.4-mm subminiature version A (SMA) connectors]. When measuring the output  
from the ROSA mounted on the PCB, the frequency dependent loss of the transmission lines affects the  
frequency response. The loss can be de-embedded from the measurement to determine the actual frequency  
response at the output of the ROSA.  
8.2.1.3 Application Curves  
10  
5
10  
5
0
0
-5  
-5  
-10  
-15  
-20  
-25  
-30  
-10  
-15  
-20  
-25  
-30  
100  
1000  
10000  
40000  
100  
1000  
10000  
40000  
Frequency (MHz)  
Frequency (MHz)  
D015  
D014  
Figure 25. Gain vs Frequency (Without De-Embedding)  
Figure 26. Gain vs Frequency (With De-Embedding)  
22  
Copyright © 2017, Texas Instruments Incorporated  
 
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
8.2.2 Two-Wire Control Application  
VCC  
VCC  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
SCL  
SDA  
RSSI4  
RSSI3  
RSSI1  
RSSI2  
Substrate  
750 m Pitch  
Photodiode Array  
Figure 27. Basic Application Circuit with Two-Wire Control  
8.2.2.1 Design Requirements  
Table 14 lists the design requirements for this application.  
Table 14. Design Parameters  
PARAMETER  
I2CENA pin voltage  
Output voltage  
VALUE  
3.3 V  
300 mVPP  
8.2.2.2 Detailed Design Procedure  
As described in the Detailed Design Procedure section on the pad control application, TI generally recommends  
setting the output voltage of the device to the 300-mVPP setting. The output voltage setting can be controlled by  
bonding specific device pads as detailed in the Pad Control Application section, but can alternatively be  
controlled using the device I2C interface. To set the output amplitude via the I2C interface, the I2CENA pad must  
be connected to VCC, which enables the I2C control and disables pad control. The output amplitude can then be  
set to the 300-mVPP mode by writing the value 0110 to bits[3:0] of the amplitude control registers for each  
channel as described in the Register Maps section. Requirements to operate the I2C interface are detailed in the  
Programming section.  
9 Power Supply Recommendations  
The ONET2804TLP is designed to operate from an input supply voltage range between 2.8 V and 3.47 V. There  
are a total of eight power-supply pads (VCCI[4:1] and VCCO[4:0]) that must be connected for proper operation.  
VCCI[4:1] are used to supply power to the input transimpedance amplifier stages and VCCO[4:1] are used to  
supply power to the voltage amplifiers and output buffers. Each amplifier is powered up separately but there are  
some common internal connections for support circuitry (such as the two-wire interface). Therefore, if only one  
channel is being evaluated, all eight supply pads must be connected. Use two single-layer ceramic (SLC)  
capacitors in the range of 270 pF to 680 pF for power-supply decoupling. VCCI1, VCCI2, VCCO1, and VCCO2  
should be bonded to one capacitor and VCCI3, VCCI4, VCCO3, and VCCO4 should be bonded to the other  
capacitor; see Figure 24 and Figure 27 for reference.  
Copyright © 2017, Texas Instruments Incorporated  
23  
 
 
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Careful attention to assembly parasitics and external components is necessary to achieve optimal performance.  
Minimize the total capacitance on the INx pad by using a low capacitance photodiode (100 fF) and pay  
attention to stray capacitances. Place the photodiode close to the ONET2804TLP die and keep the wire bond  
inductance in the range of 300 pH to 400 pH.  
Use identical termination and symmetrical transmission lines at the AC-coupled differential output pins  
(OUTx+ and OUTx–).  
Use short bond wire connections for the supply pins VCCIx, VCCOx, and GND. Supply voltage filtering is  
provided on-chip but filtering can be improved by using an additional external capacitor.  
The die has backside metal and conductive epoxy must be used to attach the die to ground.  
10.2 Layout Example  
The device dimensions are shown in Figure 28 and Table 15 provides the pad locations. The device is designed  
for wire bonding not flip chip layouts.  
52  
51 50 49  
76 75  
74 73 72 71  
64  
59  
56  
55 54  
53  
48  
47  
62 61  
60  
70 69 68 67 66 65  
63  
58 57  
1
2
3
4
5
6
46  
45  
44  
43  
42  
41  
CHANNEL 1  
CHANNEL 2  
CHANNEL 4  
CHANNEL 3  
7
8
40  
39  
9
38  
37  
10  
19 20 21  
23 24  
28 29 30 31 32  
36  
11 12 13 14 15 16 17 18  
22  
25 26 27  
33 34 35  
3250m  
Figure 28. Device Dimensions and Pad Locations  
Die thickness: 203 µm ± 13 μm  
Pad dimensions: 105 μm × 65 μm  
Die size: 3250 μm ± 40 µm × 1450 μm ± 40 µm  
24  
Copyright © 2017, Texas Instruments Incorporated  
 
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
Layout Example (continued)  
Table 15. Bond Pad Coordinates  
COORDINATES  
(Referenced to Pad 1)  
PAD  
SYMBOL  
VCCO1  
TYPE  
DESCRIPTION  
X (µm)  
0
Y (µm)  
0
1
Supply  
3.3-V supply voltage  
3.3-V supply voltage  
3.3-V supply voltage  
3.3-V supply voltage  
I2C enable  
2
0
–94  
VCCO2  
VCCI2  
VCCI1  
I2CENA  
AMPL  
RATE  
GAIN  
RSSI1  
RSSI2  
GND  
Supply  
3
0
–188  
Supply  
4
0
–282  
Supply  
5
0
–376  
Digital input  
Digital input  
Digital input  
Digital input  
Analog output  
Analog output  
Supply  
6
0
–470  
Amplitude control  
Rate selection  
7
0
–580  
8
0
–704  
Gain control  
9
0
–814  
Receiver signal strength indicator for channel 1  
Receiver signal strength indicator for channel 2  
Circuit ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
0
–908  
180  
290  
400  
510  
620  
720  
829  
929  
1039  
1149  
1259  
1369  
1469  
1580  
1680  
1790  
1900  
2010  
2120  
2239  
2329  
2429  
2539  
2649  
2759  
2869  
3051  
3051  
3051  
3051  
3051  
3051  
3051  
3051  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–1110  
–908  
FILTER1  
IN1  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 1  
TIA input for channel 1  
Bias voltage for photodiode 1  
Circuit ground  
FILTER1  
GND  
NC  
No connection  
No connection  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
FILTER2  
IN2  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 2  
TIA input for channel 2  
Bias voltage for photodiode 2  
Circuit ground  
FILTER2  
GND  
NC  
No connect  
No connect  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
FILTER3  
IN3  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 3  
TIA input for channel 3  
Bias voltage for photodiode 3  
Circuit ground  
FILTER3  
GND  
NC  
No connect  
No connect  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
FILTER4  
IN4  
Analog output  
Analog input  
Analog output  
Supply  
Bias voltage for photodiode 4  
TIA input for channel 4  
Bias voltage for photodiode 4  
Circuit ground  
FILTER4  
GND  
RSSI3  
RSSI4  
SDA  
Analog output  
Analog output  
Digital input/output  
Digital input  
Digital input  
No connect  
Supply  
Receiver signal strength indicator for channel 3  
Receiver signal strength indicator for channel 4  
2-wire data  
–814  
–704  
–579  
SCL  
2-wire clock  
–470  
TRSH  
NC  
Input threshold control (cross-point)  
Do not connect  
–376  
–282  
VCCI4  
VCCI3  
3.3-V supply voltage  
–188  
Supply  
3.3-V supply voltage  
Copyright © 2017, Texas Instruments Incorporated  
25  
ONET2804TLP  
ZHCSGK6 JULY 2017  
www.ti.com.cn  
Layout Example (continued)  
Table 15. Bond Pad Coordinates (continued)  
COORDINATES  
(Referenced to Pad 1)  
PAD  
SYMBOL  
TYPE  
DESCRIPTION  
X (µm)  
3051  
3051  
2888  
2799  
2699  
2599  
2499  
2410  
2322  
2228  
2139  
2050  
1950  
1850  
1750  
1661  
1572  
1477  
1388  
1299  
1199  
1099  
999  
Y (µm)  
–94  
0
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
VCCO3  
Supply  
Supply  
Supply  
Supply  
3.3-V supply voltage  
3.3-V supply voltage  
Circuit ground  
VCCO4  
GND  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
140  
GND  
Circuit ground  
OUT4–  
OUT4+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 4  
Noninverted data output for channel 4  
Circuit ground  
GND  
Supply  
Circuit ground  
ADR1  
ADR0  
GND  
Digital input  
Digital input  
Supply  
2-wire address bit 1 control  
2-wire address bit 0 control  
Circuit ground  
GND  
Supply  
Circuit ground  
OUT3–  
OUT3+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 3  
Noninverted data output for channel 3  
Circuit ground  
GND  
Supply  
Circuit ground  
NC  
No connection  
No connection  
Supply  
Do not connect  
NC  
Do not connect  
GND  
Circuit ground  
GND  
Supply  
Circuit ground  
OUT2–  
OUT2+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 2  
Noninverted data output for channel 2  
Circuit ground  
910  
GND  
Supply  
Circuit ground  
821  
NC  
No connect  
Digital input  
Supply  
Do not connect  
728  
NRESET  
GND  
2-wire negative reset  
Circuit ground  
639  
550  
GND  
Supply  
Circuit ground  
450  
OUT1–  
OUT1+  
GND  
Analog output  
Analog output  
Supply  
Inverted data output for channel 1  
Noninverted data output for channel 1  
Circuit ground  
350  
250  
161  
GND  
Supply  
Circuit ground  
26  
版权 © 2017, Texas Instruments Incorporated  
ONET2804TLP  
www.ti.com.cn  
ZHCSGK6 JULY 2017  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
GPPO is a registered trademark of Gilbert Incorporated.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
24-Apr-2019  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ONET2804TLPY  
ACTIVE  
DIESALE  
Y
0
135  
TBD  
Call TI  
Call TI  
-40 to 100  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2019 德州仪器半导体技术(上海)有限公司  

相关型号:

ONET2804TY

28Gbps 4 通道限幅跨阻放大器 | Y | 0 | -40 to 100
TI

ONET3301PA

155-MBPS TO 3.3-GBPS LIMITING AMPLIFIER
TI

ONET3301PARGT

155-MBPS TO 3.3-GBPS LIMITING AMPLIFIER
TI

ONET3301PARGTR

155-MBPS TO 3.3-GBPS LIMITING AMPLIFIER
TI

ONET3301PARGTRG4

ATM/SONET/SDH SUPPORT CIRCUIT, PQCC16, 3 X 3 MM, 0.50 MM PITCH, GREEN, PLASTIC, QFN-16
TI

ONET3301PARGTT

暂无描述
TI

ONET3301PARGTTG4

ATM/SONET/SDH SUPPORT CIRCUIT, PQCC16, 3 X 3 MM, 0.50 MM PITCH, PLASTIC, QFN-16
TI

ONET4201LD

155-Mbps to 4.25-Gbps LASER DRIVER
TI

ONET4201LDRGER

155-Mbps to 4.25-Gbps LASER DRIVER
TI

ONET4201LDRGERG4

155-Mbps to 4.25-Gbps LASER DRIVER
TI

ONET4201LDRGET

155-Mbps to 4.25-Gbps LASER DRIVER
TI

ONET4201LDRGETG4

155-Mbps to 4.25-Gbps LASER DRIVER
TI