OPA211IDRGT [TI]

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package; 1.1nV / A ???? Hz的噪声,低功耗,小型精密运算放大器DFN- 8封装
OPA211IDRGT
型号: OPA211IDRGT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.1nV/√Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
1.1nV / A ???? Hz的噪声,低功耗,小型精密运算放大器DFN- 8封装

运算放大器 放大器电路 光电二极管
文件: 总37页 (文件大小:1750K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
1.1nV/Hz Noise, Low Power, Precision  
Operational Amplifier in Small DFN-8 Package  
1
FEATURES  
DESCRIPTION  
23  
LOW VOLTAGE NOISE: 1.1nV/Hz at 1kHz  
The OPA211 series of precision operational  
amplifiers achieves very low 1.1nV/Hz noise density  
with a supply current of only 3.6mA. This series also  
offers rail-to-rail output swing, which maximizes  
dynamic range.  
INPUT VOLTAGE NOISE:  
80nVPP (0.1Hz to 10Hz)  
THD+N: –136dB (G = 1, f = 1kHz)  
OFFSET VOLTAGE: 125µV (max)  
OFFSET VOLTAGE DRIFT: 0.35µV/°C (typ)  
LOW SUPPLY CURRENT: 3.6mA/Ch (typ)  
UNITY-GAIN STABLE  
The extremely low voltage and low current noise,  
high speed, and wide output swing of the OPA211  
series make these devices an excellent choice as a  
loop filter amplifier in PLL applications.  
GAIN BANDWIDTH PRODUCT:  
80MHz (G = 100)  
45MHz (G = 1)  
In precision data acquisition applications, the  
OPA211 series of op amps provides 700ns settling  
time to 16-bit accuracy throughout 10V output swings.  
This ac performance, combined with only 125µV of  
offset and 0.35µV/°C of drift over temperature, makes  
the OPA211 ideal for driving high-precision 16-bit  
analog-to-digital converters (ADCs) or buffering the  
output of high-resolution digital-to-analog converters  
(DACs).  
SLEW RATE: 27V/µs  
16-BIT SETTLING: 700ns  
WIDE SUPPLY RANGE:  
±2.25V to ±18V, +4.5V to +36V  
RAIL-TO-RAIL OUTPUT  
The OPA211 series is specified over  
a wide  
OUTPUT CURRENT: 30mA  
dual-power supply range of ±2.25V to ±18V, or for  
single-supply operation from +4.5V to +36V.  
DFN-8 (3mm × 3mm), MSOP-8, AND SO-8  
The OPA211 is available in the small DFN-8 (3mm ×  
3mm), MSOP-8, and SO-8 packages. A dual version,  
the OPA2211, is available in the DFN-8 (3mm ×  
3mm) or an SO-8 PowerPAD™ package. This series  
of op amps is specified from TA = –40°C to +125°C.  
APPLICATIONS  
PLL LOOP FILTER  
LOW-NOISE, LOW-POWER SIGNAL  
PROCESSING  
16-BIT ADC DRIVERS  
DAC OUTPUT AMPLIFIERS  
ACTIVE FILTERS  
LOW-NOISE INSTRUMENTATION AMPS  
ULTRASOUND AMPLIFIERS  
PROFESSIONAL AUDIO PREAMPLIFIERS  
LOW-NOISE FREQUENCY SYNTHESIZERS  
INFRARED DETECTOR AMPLIFIERS  
HYDROPHONE AMPLIFIERS  
GEOPHONE AMPLIFIERS  
INPUT VOLTAGE NOISE DENSITY vs FREQUENCY  
100  
10  
MEDICAL  
1
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PowerPAD is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2009, Texas Instruments Incorporated  
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS(1)  
Over operating free-air temperature range (unless otherwise noted).  
VALUE  
UNIT  
V
Supply Voltage  
VS = (V+) – (V–)  
40  
(V–) – 0.5 to (V+) + 0.5  
±10  
Input Voltage  
V
Input Current (Any pin except power-supply pins)  
Output Short-Circuit(2)  
Operating Temperature  
Storage Temperature  
mA  
Continuous  
(TA)  
(TA)  
(TJ)  
–55 to +150  
–65 to +150  
200  
°C  
°C  
°C  
V
Junction Temperature  
Human Body Model (HBM)  
ESD Ratings  
3000  
Charged Device Model (CDM)  
1000  
V
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not supported.  
(2) Short-circuit to VS/2 (ground in symmetrical dual supply setups), one amplifier per package.  
PACKAGE/ORDERING INFORMATION(1)  
PACKAGE  
DESIGNATOR  
PACKAGE  
MARKING  
PRODUCT  
PACKAGE-LEAD  
SINGLE  
SHUTDOWN  
DUAL  
Standard Grade  
DFN-8 (3mm × 3mm)  
MSOP-8  
ü
ü
ü
ü
DRG  
DGK  
OBDQ  
OBCQ  
OPA211AI  
A TI OPA  
211  
SO-8  
ü
D
DFN-8 (3mm × 3mm)  
SO-8 PowerPAD  
ü
ü
DRG  
DDA  
OBHQ  
OPA2211AI  
A TI OPA  
2211  
High Grade  
DFN-8 (3mm × 3mm)  
MSOP-8  
ü
ü
ü
ü
DRG  
DGK  
OBDQ  
OBCQ  
OPA211I  
TI OPA  
211  
SO-8  
ü
D
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
2
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
PIN CONFIGURATIONS  
OPA211  
SO-8  
OPA211  
MSOP-8  
NC(1)  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC(1)  
V+  
NC(1)  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
Shutdown(3)  
V+  
OUT  
NC(1)  
OUT  
NC(1)  
OPA211  
DFN-8 (3mm × 3mm)  
OPA2211  
DFN-8 (3mm × 3mm)  
NC(1)  
1
2
3
4
8
7
6
5
Shutdown(3)  
V+  
V+  
OUT A  
-IN A  
+IN A  
V-  
1
2
3
4
8
7
6
5
-IN  
+IN  
V-  
OUT B  
-IN B  
+IN B  
A
OUT  
B
NC(1)  
Pad(2)  
Pad(2)  
OPA2211  
SO-8 PowerPAD  
OUT A  
1
2
3
4
8
7
6
5
V+  
A
-IN A  
+IN A  
V-  
OUT B  
-IN B  
+IN B  
B
Pad(2)  
(1) NC denotes no internal connection.  
(2) Exposed thermal die pad on underside; connect thermal die pad to V–. Soldering the thermal pad improves heat  
dissipation and provides specified performance.  
(3) Shutdown function:  
Device enabled: (V–) VSHUTDOWN (V+) – 3V  
Device disabled: VSHUTDOWN (V+) – 0.35V  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS: VS = ±2.25V to ±18V  
BOLDFACE limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, RL = 10kconnected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.  
Standard Grade  
OPA211AI, OPA2211AI  
High Grade  
OPA211I(1)  
PARAMETER  
OFFSET VOLTAGE  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
Input Offset Voltage  
OPA211  
VOS  
VS = ±15V  
VS = ±15V  
±30  
±50  
0.35  
0.1  
±125  
±150  
1.5  
1
±20  
±50  
µV  
µV  
OPA2211  
Drift  
dVOS/dT  
0.15  
0.85  
0.5  
3
µV/°C  
µV/V  
µV/V  
vs Power Supply  
PSRR  
VS = ±2.25V to ±18V  
0.1  
Over Temperature  
3
INPUT BIAS CURRENT  
Input Bias Current  
Over Temperature  
OPA211  
IB  
VCM = 0V  
±60  
±25  
±175  
±50  
±20  
±125  
nA  
±200  
±250  
±100  
±150  
±200  
nA  
nA  
nA  
nA  
OPA2211  
Offset Current  
IOS  
VCM = 0V  
±75  
Over Temperature  
NOISE  
±150  
Input Voltage Noise  
Input Voltage Noise Density  
en  
f = 0.1Hz to 10Hz  
f = 10Hz  
80  
2
80  
2
nVPP  
nV/Hz  
nV/Hz  
nV/Hz  
pA/Hz  
pA/Hz  
f = 100Hz  
f = 1kHz  
1.4  
1.1  
3.2  
1.7  
1.4  
1.1  
3.2  
1.7  
Input Current Noise Density  
In  
f = 10Hz  
f = 1kHz  
INPUT VOLTAGE RANGE  
Common-Mode Voltage Range  
VCM  
V
S ±5V  
(V–) + 1.8  
(V–) + 2  
114  
(V+) – 1.4  
(V+) – 1.4  
(V–) + 1.8  
(V–) + 2  
114  
(V+) – 1.4  
(V+) – 1.4  
V
V
VS < ±5V  
Common-Mode Rejection Ratio  
CMRR  
V
S ±5V, (V–) + 2V VCM (V+) – 2V  
120  
120  
120  
120  
dB  
dB  
VS < ±5V, (V–) + 2V VCM (V+) – 2V  
110  
110  
INPUT IMPEDANCE  
Differential  
20k || 8  
109 || 2  
20k || 8  
109 || 2  
|| pF  
|| pF  
Common-Mode  
OPEN-LOOP GAIN  
Open-Loop Voltage Gain  
AOL  
(V–) + 0.2V VO (V+) – 0.2V,  
RL = 10kΩ  
114  
130  
114  
130  
dB  
AOL  
(V–) + 0.6V VO (V+) – 0.6V,  
RL = 600Ω  
110  
114  
110  
114  
dB  
Over Temperature  
OPA211  
AOL  
AOL  
AOL  
(V–) + 0.6V VO (V+) – 0.6V,  
110  
103  
100  
110  
103  
dB  
dB  
dB  
IO 15mA  
OPA211  
(V–) + 0.6V VO (V+) – 0.6V,  
15mA IO 30mA  
OPA2211 (per channel)  
(V–) + 0.6V VO (V+)–0.6V,  
IO 15mA  
FREQUENCY RESPONSE  
Gain-Bandwidth Product  
GBW  
SR  
G = 100  
G = 1  
80  
45  
80  
45  
MHz  
MHz  
V/µs  
ns  
Slew Rate  
27  
27  
Settling Time, 0.01%  
0.0015% (16-bit)  
tS VS = ±15V, G = –1, 10V Step, CL = 100pF  
VS = ±15V, G = –1, 10V Step, CL = 100pF  
G = –10  
400  
700  
500  
400  
700  
500  
ns  
Overload Recovery Time  
Total Harmonic Distortion + Noise  
ns  
THD+N  
G = +1, f = 1kHz,  
VO = 3VRMS, RL = 600Ω  
0.000015  
–136  
0.000015  
–136  
%
dB  
(1) Shaded cells indicate different specifications from standard-grade version of device.  
4
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
ELECTRICAL CHARACTERISTICS: VS = ±2.25V to ±18V (continued)  
BOLDFACE limits apply over the specified temperature range, TA = –40°C to +125°C.  
At TA = +25°C, RL = 10kconnected to midsupply, VCM = VOUT = midsupply, unless otherwise noted.  
Standard Grade  
OPA211AI, OPA2211AI  
High Grade  
OPA211I(1)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
Voltage Output  
VOUT  
RL = 10k, AOL 114dB  
RL = 600, AOL 110dB  
IO < 15mA, AOL 110dB  
(V–) + 0.2  
(V–) + 0.6  
(V–) + 0.6  
(V+) – 0.2  
(V+) – 0.6  
(V+) – 0.6  
(V–) + 0.2  
(V–) + 0.6  
(V–) + 0.6  
(V+) – 0.2  
(V+) – 0.6  
(V+) – 0.6  
V
V
V
Short-Circuit Current  
ISC  
CLOAD  
ZO  
+30/–45  
+30/–45  
mA  
pF  
Capacitive Load Drive  
Open-Loop Output Impedance  
SHUTDOWN  
See Typical Characteristics  
5
See Typical Characteristics  
5
f = 1MHz  
Shutdown Pin Input Voltage(2)  
Device disabled (shutdown)  
Device enabled  
(V+) – 0.35  
(V+) – 0.35  
V
V
(V+) – 3  
(V+) – 3  
Shutdown Pin Leakage Current  
Turn-On Time(3)  
1
2
3
1
1
2
3
1
µA  
µs  
µs  
µA  
Turn-Off Time(3)  
Shutdown Current  
POWER SUPPLY  
Specified Voltage  
Shutdown (disabled)  
20  
20  
VS  
IQ  
±2.25  
±18  
4.5  
6
±2.25  
±18  
4.5  
6
V
Quiescent Current  
(per channel)  
IOUT = 0A  
3.6  
3.6  
mA  
mA  
Over Temperature (per channel)  
TEMPERATURE RANGE  
Specified Range  
Operating Range  
Thermal Resistance  
OPA211  
TA  
TA  
–40  
–55  
+125  
+150  
–40  
–55  
+125  
+150  
°C  
°C  
SO-8  
θ
150  
200  
65  
150  
200  
65  
°C/W  
°C/W  
°C/W  
°C/W  
JA  
MSOP-8  
θ
JA  
(4)  
DFN-8 (3mm × 3mm)  
θ
JA  
θ
20  
20  
JP  
(4)  
OPA2211  
SO-8 PowerPAD  
θ
θ
52  
2
52  
2
°C/W  
°C/W  
°C/W  
°C/W  
JA  
θ
JP  
(4)  
DFN-8 (3mm × 3mm)  
65  
10  
65  
10  
JA  
θ
JP  
(2) When disabled, the output assumes a high-impedance state.  
(3) See Typical Characteristic graphs, Figure 41 through Figure 43.  
(4) Typical θJA specification is based on the use of a high-k board.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): OPA211 OPA2211  
 
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
INPUT VOLTAGE NOISE DENSITY  
vs FREQUENCY  
INPUT CURRENT NOISE DENSITY  
vs FREQUENCY  
100  
10  
1
100  
10  
1
0.1  
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 1.  
Figure 2.  
THD+N RATIO vs OUTPUT VOLTAGE AMPLITUDE  
THD+N RATIO vs FREQUENCY  
0.1  
-60  
0.001  
-100  
VS = ±15V  
VOUT = 3VRMS  
0.01  
-80  
Measurement BW = 80kHz  
G = 11  
0.001  
0.0001  
-100  
-120  
-140  
-160  
0.0001  
0.00001  
0.001  
-120  
-140  
-100  
-120  
-140  
G = 11  
RL = 600W  
G = -1  
G = 1  
G = 1  
RL = 600W  
VS = ±15V  
RL = 600W  
1kHz Signal  
RL = 5kW  
0.00001  
0.000001  
Measurement BW = 80kHz  
G = -1  
0.01 0.1  
1
10  
100  
10  
100  
1k  
10k 20k  
Output Voltage Amplitude (VRMS  
)
Frequency (Hz)  
Figure 3.  
THD+N RATIO vs FREQUENCY  
Figure 4.  
CHANNEL SEPARATION vs FREQUENCY  
-80  
-90  
VS = ±15V  
VS = ±15V  
VOUT = 3VRMS  
VIN = 3.5VRMS  
G = 1  
Measurement BW > 500kHz  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
RL = 600W  
G = 11  
RL = 600W  
0.0001  
RL = 2kW  
G = -1  
G = 1  
RL = 600W  
RL = 5kW  
RL = 5kW  
0.00001  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Figure 6.  
Figure 5.  
6
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
 
 
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
POWER-SUPPLY REJECTION RATIO  
vs FREQUENCY (Referred to Input)  
0.1Hz TO 10Hz NOISE  
160  
140  
120  
100  
80  
-PSRR  
+PSRR  
60  
40  
20  
0
Time (1s/div)  
1
10  
100  
1k  
10k 100k  
1M  
10M 100M  
Frequency (Hz)  
Figure 7.  
Figure 8.  
COMMON-MODE REJECTION RATIO  
vs FREQUENCY  
OPEN-LOOP OUTPUT IMPEDANCE  
vs FREQUENCY  
140  
120  
100  
80  
10k  
1k  
100  
60  
10  
1
40  
20  
0
0.1  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (Hz)  
Frequency (Hz)  
Figure 9.  
Figure 10.  
GAIN AND PHASE vs FREQUENCY  
NORMALIZED OPEN-LOOP GAIN vs TEMPERATURE  
140  
120  
100  
80  
180  
5
RL = 10kW  
4
3
135  
90  
45  
0
Phase  
2
300mV Swing From Rails  
200mV Swing From Rails  
1
60  
0
-1  
-2  
-3  
-4  
-5  
40  
Gain  
20  
0
-20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
Frequency (Hz)  
Temperature (°C)  
Figure 11.  
Figure 12.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): OPA211 OPA2211  
 
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
OFFSET VOLTAGE PRODUCTION DISTRIBUTION  
OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
Offset Voltage Drift (mV/°C)  
Offset Voltage (mV)  
Figure 13.  
Figure 14.  
IB AND IOS CURRENT vs TEMPERATURE  
OFFSET VOLTAGE vs COMMON-MODE VOLTAGE  
200  
150  
100  
50  
2000  
1500  
1000  
500  
+IB  
IOS  
0
0
-50  
-100  
-150  
-200  
-500  
-1000  
-1500  
-2000  
-IB  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
(V-)+1.0 (V-)+1.5 (V-)+2.0  
(V+)-1.5 (V+)-1.0 (V+)-0.5  
Ambient Temperature (°C)  
VCM (V)  
Figure 15.  
Figure 16.  
VOS WARMUP  
INPUT OFFSET CURRENT vs SUPPLY VOLTAGE  
12  
10  
8
100  
80  
20 Typical Units Shown  
5 Typical Units Shown  
60  
6
40  
4
20  
2
0
0
-2  
-4  
-6  
-8  
-10  
-12  
-20  
-40  
-60  
-80  
-100  
0
10  
20  
30  
40  
50  
60  
2.25  
4
6
8
10  
12  
14  
16  
18  
Time (s)  
VS (±V)  
Figure 17.  
Figure 18.  
8
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
INPUT OFFSET CURRENT vs COMMON-MODE VOLTAGE  
100  
VS = 36V  
INPUT BIAS CURRENT vs SUPPLY VOLTAGE  
150  
100  
50  
3 Typical Units Shown  
75  
50  
3 Typical Units Shown  
Unit 1  
Unit 2  
25  
0
0
Unit 3  
-25  
-50  
-75  
-100  
-50  
-100  
-150  
Common-Mode Range  
-IB  
+IB  
1
5
10  
15  
20  
25  
30  
35  
2.25  
4
6
8
10  
12  
14  
16  
18  
VCM (V)  
VS (±V)  
Figure 19.  
INPUT BIAS CURRENT vs COMMON-MODE VOLTAGE  
Figure 20.  
QUIESCENT CURRENT vs TEMPERATURE  
6
5
4
3
2
1
0
150  
-IB  
VS = 36V  
3 Typical Units Shown  
+IB  
100  
50  
Unit 1  
Unit 2  
0
-50  
-100  
-150  
Unit 3  
Common-Mode Range  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
Temperature (°C)  
1
5
10  
15  
20  
25  
30  
35  
VCM (V)  
Figure 21.  
Figure 22.  
QUIESCENT CURRENT vs  
SUPPLY VOLTAGE  
NORMALIZED QUIESCENT CURRENT  
vs TIME  
0.05  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
Average of 10 Typical Units  
0
60 120 180 240 300 360 420 480 540 600  
Time (s)  
0
4
8
12  
16  
20  
24  
28  
32  
36  
VS (V)  
Figure 23.  
Figure 24.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): OPA211 OPA2211  
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
SHORT-CIRCUIT CURRENT  
vs TEMPERATURE  
SMALL-SIGNAL STEP RESPONSE  
(100mV)  
60  
50  
G = -1  
CL = 10pF  
40  
30  
Sourcing  
CF  
20  
5.6pF  
10  
RI  
RF  
0
604W  
604W  
-10  
-20  
-30  
-40  
-50  
-60  
+18V  
OPA211  
-18V  
CL  
Sinking  
Time (0.1ms/div)  
-75 -50 -25  
0
25 50 75 100 125 150 175 200  
Temperature (°C)  
Figure 25.  
Figure 26.  
SMALL-SIGNAL STEP RESPONSE  
(100mV)  
SMALL-SIGNAL STEP RESPONSE  
(100mV)  
G = +1  
RL = 600W  
G = -1  
CL = 100pF  
CL = 10pF  
CF  
5.6pF  
+18V  
OPA211  
-18V  
RI  
RF  
604W  
604W  
+18V  
OPA211  
-18V  
RL  
CL  
CL  
Time (0.1ms/div)  
Time (0.1ms/div)  
Figure 27.  
Figure 28.  
SMALL-SIGNAL STEP RESPONSE  
(100mV)  
SMALL-SIGNAL OVERSHOOT  
vs CAPACITIVE LOAD (100mV Output Step)  
60  
50  
40  
30  
20  
10  
0
G = +1  
RL = 600W  
G = +1  
CL = 100pF  
G = -1  
+18V  
OPA211  
-18V  
G = 10  
RL  
CL  
Time (0.1ms/div)  
0
200  
400  
600  
800  
1000 1200 1400  
Capacitive Load (pF)  
Figure 29.  
Figure 30.  
10  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
 
 
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
LARGE-SIGNAL STEP RESPONSE  
LARGE-SIGNAL STEP RESPONSE  
G = +1  
CL = 100pF  
G = -1  
CL = 100pF  
RL = 600W  
RF = 0W  
RL = 600W  
RF = 100W  
Note: See the  
Applications Information  
section, Input Protection.  
Time (0.5ms/div)  
Time (0.5ms/div)  
Figure 31.  
Figure 32.  
LARGE-SIGNAL POSITIVE SETTLING TIME  
(10VPP, CL = 100pF)  
LARGE-SIGNAL POSITIVE SETTLING TIME  
(10VPP, CL = 10pF)  
1.0  
0.8  
0.010  
1.0  
0.8  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.008  
0.006  
0.004  
0.002  
0
0.6  
0.6  
0.4  
0.4  
16-Bit Settling  
16-Bit Settling  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
(±1/2 LSB = ±0.00075%)  
(±1/2 LSB = ±0.00075%)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
Figure 33.  
Figure 34.  
LARGE-SIGNAL NEGATIVE SETTLING TIME  
(10VPP, CL = 100pF)  
LARGE-SIGNAL NEGATIVE SETTLING TIME  
(10VPP, CL = 10pF)  
1.0  
0.8  
1.0  
0.8  
0.010  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0.008  
0.006  
0.004  
0.002  
0
0.6  
0.6  
0.4  
0.4  
16-Bit Settling  
16-Bit Settling  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
(±1/2 LSB = ±0.00075%)  
(±1/2 LSB = ±0.00075%)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
0
100 200 300 400 500 600 700 800 900 1000  
Time (ns)  
Figure 35.  
Figure 36.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
NEGATIVE OVERLOAD RECOVERY  
POSITIVE OVERLOAD RECOVERY  
G = -10  
G = -10  
VIN  
10kW  
VOUT  
1kW  
0V  
VOUT  
OPA211  
VIN  
10kW  
1kW  
VOUT  
OPA211  
VIN  
0V  
VOUT  
VIN  
Time (0.5ms/div)  
Time (0.5ms/div)  
Figure 37.  
Figure 38.  
OUTPUT VOLTAGE vs OUTPUT CURRENT  
NO PHASE REVERSAL  
20  
15  
0°C  
Output  
+85°C  
+125°C  
-55°C  
10  
5
+125°C  
0
+150°C  
0°C  
-5  
+18V  
OPA211  
-10  
-15  
-20  
Output  
+85°C  
37VPP  
-18V  
(±18.5V)  
0.5ms/div  
0
10  
20  
30  
40  
50  
60  
70  
IOUT (mA)  
Figure 39.  
TURN-OFF TRANSIENT  
Figure 40.  
TURN-ON TRANSIENT  
20  
15  
20  
15  
Shutdown Signal  
10  
10  
Output Signal  
5
5
0
0
Output Signal  
-5  
-5  
-10  
-15  
-20  
-10  
-15  
-20  
Shutdown Signal  
VS = ±15V  
VS = ±15V  
Time (2ms/div)  
Time (2ms/div)  
Figure 41.  
Figure 42.  
12  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
TYPICAL CHARACTERISTICS (continued)  
At TA = +25°C, VS = ±18V, and RL = 10k, unless otherwise noted.  
TURN-ON/TURN-OFF TRANSIENT  
20  
15  
1.6  
Shutdown Signal  
1.2  
10  
0.8  
5
0.4  
0
0
Output  
-5  
-0.4  
-0.8  
-1.2  
-1.6  
-10  
-15  
-20  
VS = ±15V  
Time (100ms/div)  
Figure 43.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
negative output voltage swing. With the OPA211  
The OPA211 and OPA2211 are unity-gain stable,  
series, power-supply voltages do not need to be  
precision op amps with very low noise. Applications  
equal. For example, the positive supply could be set  
with noisy or high-impedance power supplies require  
to +25V with the negative supply at –5V or  
decoupling capacitors close to the device pins. In  
vice-versa.  
most cases, 0.1µF capacitors are adequate.  
Figure 44 shows a simplified schematic of the  
OPA211. This die uses a SiGe bipolar process and  
contains 180 transistors.  
The common-mode voltage must be maintained  
within the specified range. In addition, key  
parameters are assured over the specified  
temperature range, TA  
=
–40°C to +125°C.  
Parameters that vary significantly with operating  
voltage or temperature are shown in the Typical  
Characteristics.  
OPERATING VOLTAGE  
OPA211 series op amps operate from ±2.25V to  
±18V  
supplies  
while  
maintaining  
excellent  
performance. The OPA211 series can operate with as  
little as +4.5V between the supplies and with up to  
+36V between the supplies. However, some  
applications do not require equal positive and  
V+  
Pre-Output Driver  
OUT  
IN+  
IN-  
V-  
Figure 44. OPA211 Simplified Schematic  
14  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
INPUT PROTECTION  
NOISE PERFORMANCE  
The input terminals of the OPA211 are protected from  
excessive differential voltage with back-to-back  
diodes, as shown in Figure 45. In most circuit  
applications, the input protection circuitry has no  
consequence. However, in low-gain or G = 1 circuits,  
fast ramping input signals can forward bias these  
diodes because the output of the amplifier cannot  
respond rapidly enough to the input ramp. This effect  
is illustrated in Figure 32 of the Typical  
Characteristics. If the input signal is fast enough to  
create this forward bias condition, the input signal  
current must be limited to 10mA or less. If the input  
signal current is not inherently limited, an input series  
resistor can be used to limit the signal input current.  
This input series resistor degrades the low-noise  
performance of the OPA211, and is discussed in the  
Noise Performance section of this data sheet.  
Figure 46 shows total circuit noise for varying source  
impedances with the op amp in  
a unity-gain  
configuration (no feedback resistor network, and  
therefore no additional noise contributions). Two  
different op amps are shown with total circuit noise  
calculated. The OPA211 has very low voltage noise,  
making it ideal for low source impedances (less than  
2k). A similar precision op amp, the OPA227, has  
somewhat higher voltage noise but lower current  
noise. It provides excellent noise performance at  
moderate source impedance (10kto 100k). Above  
100k, a FET-input op amp such as the OPA132  
(very low current noise) may provide improved  
performance. The equation in Figure 46 is shown for  
the calculation of the total circuit noise. Note that en =  
voltage noise, In = current noise, RS = source  
impedance, k = Boltzmann’s constant = 1.38 × 10–23  
J/K, and T is temperature in degrees Kelvin.  
Figure 45 shows an example implementing  
current-limiting feedback resistor.  
a
VOLTAGE NOISE SPECTRAL DENSITY  
vs SOURCE RESISTANCE  
RF  
10k  
EO  
-
1k  
RS  
OPA227  
OPA211  
OPA211  
Output  
100  
RI  
+
Input  
Resistor Noise  
10  
EO2 = en2 + (in RS)2 + 4kTRS  
Figure 45. Pulsed Operation  
1
100  
1k  
10k  
100k  
1M  
Source Resistance, RS (W)  
SHUTDOWN  
The shutdown (enable) function of the OPA211 is  
referenced to the positive supply voltage of the  
operational amplifier. A valid high disables the op  
amp. A valid high is defined as (V+) – 0.35V of the  
positive supply applied to the shutdown pin. A valid  
low is defined as (V+) – 3V below the positive supply  
pin. For example, with VCC at ±15V, the device is  
enabled at or below 12V. The device is disabled at or  
above 14.65V. If dual or split power supplies are  
used, care should be taken to ensure the valid high  
or valid low input signals are properly referred to the  
positive supply voltage. This pin must be connected  
to a valid high or low voltage or driven, and not left  
open-circuit. The enable and disable times are  
provided in the Typical Characteristics section (see  
Figure 41 through Figure 43). When disabled, the  
output assumes a high-impedance state.  
Figure 46. Noise Performance of the OPA211 and  
OPA227 in Unity-Gain Buffer Configuration  
BASIC NOISE CALCULATIONS  
Design of low-noise op amp circuits requires careful  
consideration of  
a
variety of possible noise  
contributors: noise from the signal source, noise  
generated in the op amp, and noise from the  
feedback network resistors. The total noise of the  
circuit is the root-sum-square combination of all noise  
components.  
The resistive portion of the source impedance  
produces thermal noise proportional to the square  
root of the resistance. This function is plotted in  
Figure 46. The source impedance is usually fixed;  
consequently, select the op amp and the feedback  
resistors to minimize the respective contributions to  
the total noise.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): OPA211 OPA2211  
 
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
Figure 46 depicts total noise for varying source  
impedances with the op amp in unity-gain  
Therefore, the lowest noise op amp for a given  
application depends on the source impedance. For  
low source impedance, current noise is negligible and  
voltage noise generally dominates. For high source  
impedance, current noise may dominate.  
a
configuration (no feedback resistor network, and  
therefore no additional noise contributions). The  
operational amplifier itself contributes both a voltage  
noise component and a current noise component.  
The voltage noise is commonly modeled as a  
time-varying component of the offset voltage. The  
current noise is modeled as the time-varying  
component of the input bias current and reacts with  
the source resistance to create a voltage component  
of noise.  
Figure 47 illustrates both inverting and noninverting  
op amp circuit configurations with gain. In circuit  
configurations with gain, the feedback network  
resistors also contribute noise. The current noise of  
the op amp reacts with the feedback resistors to  
create additional noise components. The feedback  
resistor values can generally be chosen to make  
these noise sources negligible. The equations for  
total noise are shown for both configurations.  
Noise in Noninverting Gain Configuration  
Noise at the output:  
R2  
2
2
R2  
R1  
R2  
R1  
2
EO  
R1  
=
1 +  
en2 + e12 + e22 + (inR2)2 + eS2 + (inRS)2 1 +  
EO  
R2  
Where eS = Ö4kTRS  
e1 = Ö4kTR1  
´
= thermal noise of RS  
1 +  
R1  
RS  
R2  
R1  
´
= thermal noise of R1  
VS  
e2 = Ö4kTR2 = thermal noise of R2  
Noise in Inverting Gain Configuration  
Noise at the output:  
R2  
2
R2  
2
EO  
2
=
1 +  
en2 + e12 + e22 + (inR2)2 + eS  
R1  
R1 + RS  
EO  
RS  
R2  
Where eS = Ö4kTRS  
´
= thermal noise of RS  
= thermal noise of R1  
R1 + RS  
VS  
R2  
e1 = Ö4kTR1  
´
R1 + RS  
e2 = Ö4kTR2 = thermal noise of R2  
For the OPA211 series op amps at 1kHz, en = 1.1nV/ÖHz and in = 1.7pA/ÖHz.  
Figure 47. Noise Calculation in Gain Configurations  
16  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
TOTAL HARMONIC DISTORTION  
MEASUREMENTS  
Audio Precision System Two distortion/noise  
analyzer, which greatly simplifies such repetitive  
measurements. The measurement technique can,  
however, be performed with manual distortion  
measurement instruments.  
OPA211 series op amps have excellent distortion  
characteristics. THD + Noise is below 0.0002% (G =  
+1, VOUT = 3VRMS) throughout the audio frequency  
range, 20Hz to 20kHz, with a 600load.  
ELECTRICAL OVERSTRESS  
The distortion produced by OPA211 series op amps  
is below the measurement limit of many commercially  
available distortion analyzers. However, a special test  
circuit illustrated in Figure 48 can be used to extend  
the measurement capabilities.  
Designers often ask questions about the capability of  
an operational amplifier to withstand electrical  
overstress. These questions tend to focus on the  
device inputs, but may involve the supply voltage pins  
or even the output pin. Each of these different pin  
functions have electrical stress limits determined by  
the voltage breakdown characteristics of the  
particular semiconductor fabrication process and  
specific circuits connected to the pin. Additionally,  
internal electrostatic discharge (ESD) protection is  
built into these circuits to protect them from  
accidental ESD events both before and during  
product assembly.  
Op amp distortion can be considered an internal error  
source that can be referred to the input. Figure 48  
shows a circuit that causes the op amp distortion to  
be 101 times greater than that normally produced by  
the op amp. The addition of R3 to the otherwise  
standard noninverting amplifier configuration alters  
the feedback factor or noise gain of the circuit. The  
closed-loop gain is unchanged, but the feedback  
available for error correction is reduced by a factor of  
101, thus extending the resolution by 101. Note that  
the input signal and load applied to the op amp are  
the same as with conventional feedback without R3.  
The value of R3 should be kept small to minimize its  
effect on the distortion measurements.  
It is helpful to have a good understanding of this  
basic ESD circuitry and its relevance to an electrical  
overstress event. See Figure 49 for an illustration of  
the ESD circuits contained in the OPA211 (indicated  
by the dashed line area). The ESD protection circuitry  
involves several current-steering diodes connected  
from the input and output pins and routed back to the  
internal power-supply lines, where they meet at an  
absorption device internal to the operational amplifier.  
This protection circuitry is intended to remain inactive  
during normal circuit operation.  
Validity of this technique can be verified by  
duplicating measurements at high gain and/or high  
frequency where the distortion is within the  
measurement capability of the test equipment.  
Measurements for this data sheet were made with an  
R1  
R2  
SIG. DIST.  
R1  
R2  
R3  
GAIN GAIN  
1
101  
¥
1kW  
10W  
11W  
R3  
OPA211  
VOUT  
11  
101 100W 1kW  
R2  
R1  
Signal Gain = 1+  
R2  
Distortion Gain = 1+  
R1 II R3  
Generator  
Output  
Analyzer  
Input  
Audio Precision  
System Two(1)  
Load  
with PC Controller  
(1) For measurement bandwidth, see Figure 3, Figure 4, and Figure 5.  
Figure 48. Distortion Test Circuit  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): OPA211 OPA2211  
 
 
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
RF  
+VS  
+V  
OPA211  
RI  
ESD Current-  
Steering Diodes  
-In  
Out  
Op-Amp  
Core  
+In  
Edge-Triggered ESD  
Absorption Circuit  
RL  
ID  
(1)  
VIN  
-V  
-VS  
(1) VIN = +VS + 500mV.  
Figure 49. Equivalent Internal ESD Circuitry and Its Relation to a Typical Circuit Application  
An ESD event produces short duration,  
a
Figure 49 depicts a specific example where the input  
voltage, VIN, exceeds the positive supply voltage  
(+VS) by 500mV or more. Much of what happens in  
the circuit depends on the supply characteristics. If  
+VS can sink the current, one of the upper input  
steering diodes conducts and directs current to +VS.  
Excessively high current levels can flow with  
increasingly higher VIN. As a result, the datasheet  
specifications recommend that applications limit the  
input current to 10mA.  
high-voltage pulse that is transformed into a short  
duration, high-current pulse as it discharges through  
a semiconductor device. The ESD protection circuits  
are designed to provide a current path around the  
operational amplifier core to prevent it from being  
damaged. The energy absorbed by the protection  
circuitry is then dissipated as heat.  
When an ESD voltage develops across two or more  
of the amplifier device pins, current flows through one  
or more of the steering diodes. Depending on the  
path that the current takes, the absorption device  
may activate. The absorption device has a trigger, or  
threshold voltage, that is above the normal operating  
voltage of the OPA211 but below the device  
breakdown voltage level. Once this threshold is  
exceeded, the absorption device quickly activates  
and clamps the voltage across the supply rails to a  
safe level.  
If the supply is not capable of sinking the current, VIN  
may begin sourcing current to the operational  
amplifier, and then take over as the source of positive  
supply voltage. The danger in this case is that the  
voltage can rise to levels that exceed the operational  
amplifier absolute maximum ratings. In extreme but  
rare cases, the absorption device triggers on while  
+VS and –VS are applied. If this event happens, a  
direct current path is established between the +VS  
and –VS supplies. The power dissipation of the  
absorption device is quickly exceeded, and the  
extreme internal heating destroys the operational  
amplifier.  
When the operational amplifier connects into a circuit  
such as that illustrated in Figure 49, the ESD  
protection components are intended to remain  
inactive and not become involved in the application  
circuit operation. However, circumstances may arise  
where an applied voltage exceeds the operating  
voltage range of a given pin. Should this condition  
occur, there is a risk that some of the internal ESD  
protection circuits may be biased on, and conduct  
current. Any such current flow occurs through  
steering diode paths and rarely involves the  
absorption device.  
Another common question involves what happens to  
the amplifier if an input signal is applied to the input  
while the power supplies +VS and/or –VS are at 0V.  
Again, it depends on the supply characteristic while at  
0V, or at a level below the input signal amplitude. If  
the supplies appear as high impedance, then the  
operational amplifier supply current may be supplied  
by the input source via the current steering diodes.  
This state is not a normal bias condition; the amplifier  
18  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
most likely will not operate normally. If the supplies  
are low impedance, then the current through the  
steering diodes can become quite high. The current  
level depends on the ability of the input source to  
deliver current, and any resistance in the input path.  
DFN packages are physically small, and have a  
smaller routing area, improved thermal performance,  
and improved electrical parasitics. Additionally, the  
absence of external leads eliminates bent-lead  
issues.  
The DFN package can be easily mounted using  
standard printed circuit board (PCB) assembly  
techniques. See Application Note QFN/SON PCB  
Attachment (SLUA271) and Application Report Quad  
Flatpack No-Lead Logic Packages (SCBA017), both  
available for download at www.ti.com.  
THERMAL CONSIDERATIONS  
A primary issue with all semiconductor devices is  
junction temperature (TJ). The most obvious  
consideration is assuring that TJ never exceeds the  
absolute maximum rating specified for the device.  
However, addressing device thermal dissipation has  
benefits beyond protecting the device from damage.  
Even modest increases in junction temperature can  
The exposed leadframe die pad on the bottom of  
the package must be connected to V–. Soldering  
the thermal pad improves heat dissipation and  
enables specified device performance.  
decrease  
temperature-related  
op  
amp  
errors  
performance,  
and  
can accumulate.  
Understanding the power generated by the device  
within the specific application and assessing the  
thermal effects on the error tolerance lead to a better  
DFN LAYOUT GUIDELINES  
The exposed leadframe die pad on the DFN package  
should be soldered to a thermal pad on the PCB. A  
mechanical drawing showing an example layout is  
attached at the end of this data sheet. Refinements to  
this layout may be necessary based on assembly  
process requirements. Mechanical drawings located  
at the end of this data sheet list the physical  
dimensions for the package and pad. The five holes  
in the landing pattern are optional, and are intended  
for use with thermal vias that connect the leadframe  
die pad to the heatsink area on the PCB.  
understanding  
of  
system  
performance  
and  
thermal-dissipation needs. For dual-channel products,  
the worst-case power resulting from both channels  
must be determined. Products with a thermal pad  
(DFN and PowerPAD devices) provide the best  
thermal conduction away from the junction; see the  
Thermal Resistance from Junction to Pad parameter  
(θJP) in the Electrical Characteristics section. The use  
of packages with a thermal pad improves thermal  
dissipation. The device achieves its optimal  
performance through careful board and system  
design that considers characteristics such as board  
thickness, metal layers, component spacing, airflow,  
and board orientation. Refer to these application  
notes (available for download at www.ti.com) for  
additional details: SZZA017A, SCBA017, and  
SPRA953A. For unusual loads and signals, see  
SBOA022.  
Soldering the exposed pad significantly improves  
board-level reliability during temperature cycling, key  
push, package shear, and similar board-level tests.  
Even with applications that have low-power  
dissipation, the exposed pad must be soldered to the  
PCB to provide structural integrity and long-term  
reliability.  
DFN PACKAGE  
The OPA211 is offered in an DFN-8 package (also  
known as SON). The DFN package is a QFN  
package with lead contacts on only two sides of the  
bottom of the package. This leadless package  
maximizes board space and enhances thermal and  
electrical characteristics through an exposed pad.  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
GENERAL POWERPAD DESIGN  
CONSIDERATIONS  
example thermal land pattern mechanical drawing  
is attached to the end of this data sheet.  
3. Additional vias may be placed anywhere along  
the thermal plane outside of the thermal pad area  
to help dissipate the heat generated by the  
OPA2211 SO-8. These additional vias may be  
larger than the 13-mil diameter vias directly under  
the thermal pad. They can be larger because  
they are not in the thermal pad area to be  
soldered; thus, wicking is not a problem.  
The OPA2211 is available in a thermally-enhanced  
SO-8 PowerPAD package. This package is  
constructed using a downset leadframe upon which  
the die is mounted, as Figure 50(a) and Figure 50(b)  
illustrate. This arrangement results in the lead frame  
being exposed as a thermal pad on the underside of  
the package, as shown in Figure 50(c). This thermal  
pad has direct thermal contact with the die; thus,  
excellent thermal performance is achieved by  
providing a good thermal path away from the thermal  
pad.  
4. Connect all holes to the internal plane that is at  
the same voltage potential as the V– pin.  
5. When connecting these holes to the internal  
plane, do not use the typical web or spoke via  
connection methodology. Web connections have  
a high thermal resistance connection that is  
useful for slowing the heat transfer during  
soldering operations. This configuration makes  
the soldering of vias that have plane connections  
easier. In this application, however, low thermal  
resistance is desired for the most efficient heat  
transfer. Therefore, the holes under the OPA2211  
The PowerPAD package allows for both assembly  
and thermal management in one manufacturing  
operation. During the surface-mount solder operation  
(when the leads are being soldered), the thermal pad  
must be soldered to a copper area underneath the  
package. Through the use of thermal paths within this  
copper area, heat can be conducted away from the  
package into either  
a ground plane or other  
heat-dissipating device. Soldering the PowerPAD to  
the printed circuit board (PCB) is always required,  
even with applications that have low power  
dissipation. This technique provides the necessary  
thermal and mechanical connection between the lead  
frame die pad and the PCB.  
PowerPAD  
package  
should  
make  
their  
connection to the internal plane with a complete  
connection around the entire circumference of the  
plated-through hole.  
6. The top-side solder mask should leave the  
terminals of the package and the thermal pad  
area with its six holes exposed. The bottom-side  
solder mask should cover the holes of the  
thermal pad area. This masking prevents solder  
from being pulled away from the thermal pad  
area during the reflow process.  
The PowerPAD must be connected to the most  
negative supply voltage on the device (V–).  
1. Prepare the PCB with a top-side etch pattern.  
There should be etching for the leads as well as  
etch for the thermal pad.  
2. Place recommended holes in the area of the  
thermal pad. Ideal thermal land size and thermal  
via patterns for the SO-8 DDA package can be  
seen in the technical brief, PowerPAD  
7. Apply solder paste to the exposed thermal pad  
area and all of the IC terminals.  
8. With these preparatory steps in place, simply  
place the OPA2211 SO-8 IC in position and run  
the chip through the solder reflow operation as  
any standard surface-mount component. This  
preparation results in a properly installed part.  
Thermally-Enhanced  
Package  
(SLMA002),  
available for download at www.ti.com. These  
holes should be 13 mils (0,33mm) in diameter.  
Keep them small, so that solder wicking through  
the holes is not a problem during reflow. An  
20  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
 
OPA211  
OPA2211  
www.ti.com ...................................................................................................................................................... SBOS377GOCTOBER 2006REVISED MAY 2009  
Leadframe (Copper Alloy)  
IC (Silicon)  
Die Attach (Epoxy)  
Leadframe Die Pad  
Thermal  
Pad  
Exposed at Base of the Package  
(Copper Alloy)  
Mold Compound (Plastic)  
(a) Cutaway View: DDA Package (SO-8)  
Thermal  
Pad  
Mold Compound  
(Plastic)  
DDA Package  
(SO-8)  
DRG Package  
(DFN-8)  
Die  
(c) Bottom View  
Terminal  
Leadframe  
(Copper Alloy)  
Exposed at Base of Package  
Die Attach (Epoxy)  
(b) Cutaway View: DRG Package (DFN-8)  
Figure 50. Views of Thermally-Enhanced SO-8 and DFN-8 Packages  
Copyright © 2006–2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): OPA211 OPA2211  
OPA211  
OPA2211  
SBOS377GOCTOBER 2006REVISED MAY 2009...................................................................................................................................................... www.ti.com  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (November, 2008) to Revision G .......................................................................................... Page  
Changed orderable status of OPA2211 device packages to released from product preview throughout document............ 2  
Revised description of NC pin ............................................................................................................................................... 3  
Added Input Offset Voltage, Input Bias Current, Open-Loop Gain, and Thermal Resistance specifications to indicate  
performance for OPA2211 device ......................................................................................................................................... 4  
Corrected Temperature Range parametric symbol location for specified and operating range specifications ..................... 5  
Added footnote (4) to Electrical Characteristics table............................................................................................................ 5  
Updated Figure 3 ................................................................................................................................................................... 6  
Added information to legend in Figure 4................................................................................................................................ 6  
Added Figure 5 ..................................................................................................................................................................... 6  
Added Figure 6 ...................................................................................................................................................................... 6  
Changed title of Figure 12 for clarification............................................................................................................................. 7  
Corrected circuit drawing in Figure 26................................................................................................................................. 10  
Corrected circuit drawing in Figure 27................................................................................................................................. 10  
Changed first paragraph of Total Harmonic Distortion Measurements section................................................................... 17  
Updated Figure 48 ............................................................................................................................................................... 17  
Added Thermal Considerations section............................................................................................................................... 19  
Added General PowerPAD Design Considerations section ................................................................................................ 20  
22  
Submit Documentation Feedback  
Copyright © 2006–2009, Texas Instruments Incorporated  
Product Folder Link(s): OPA211 OPA2211  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
OPA211AID  
ACTIVE  
SOIC  
SOIC  
D
8
8
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
OPA  
211  
A
OPA211AIDG4  
ACTIVE  
D
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
OPA  
211  
A
OPA211AIDGKR  
OPA211AIDGKRG4  
OPA211AIDGKT  
OPA211AIDGKTG4  
OPA211AIDR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
DGK  
DGK  
D
8
8
8
8
8
2500  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU | Call TI Level-2-260C-1 YEAR  
CU NIPDAU Level-2-260C-1 YEAR  
CU NIPDAU | Call TI Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OBCQ  
OBCQ  
OBCQ  
OBCQ  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
2500  
Green (RoHS  
& no Sb/Br)  
OPA  
211  
A
OPA211AIDRG4  
ACTIVE  
SOIC  
D
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
OPA  
211  
A
OPA211AIDRGR  
OPA211AIDRGRG4  
OPA211AIDRGT  
OPA211AIDRGTG4  
OPA211ID  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SON  
SON  
DRG  
DRG  
DRG  
DRG  
D
8
8
8
8
8
8
8
1000  
1000  
250  
250  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
OBDQ  
OBDQ  
OBDQ  
OBDQ  
Green (RoHS  
& no Sb/Br)  
SON  
Green (RoHS  
& no Sb/Br)  
SON  
Green (RoHS  
& no Sb/Br)  
SOIC  
VSSOP  
VSSOP  
Green (RoHS  
& no Sb/Br)  
OPA  
211  
OPA211IDGKR  
OPA211IDGKT  
DGK  
DGK  
2500  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU | Call TI Level-2-260C-1 YEAR  
CU NIPDAU | Call TI Level-2-260C-1 YEAR  
OBCQ  
Green (RoHS  
& no Sb/Br)  
OBCQ  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
OPA211IDR  
OPA211IDRGR  
OPA211IDRGT  
OPA2211AIDDA  
ACTIVE  
SOIC  
SON  
SON  
D
8
8
8
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
OPA  
211  
ACTIVE  
ACTIVE  
DRG  
DRG  
DDA  
3000  
250  
75  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
OBDQ  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
OBDQ  
ACTIVE SO PowerPAD  
ACTIVE SO PowerPAD  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU | Call TI  
OPA  
2211  
A
OPA2211AIDDAR  
DDA  
8
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU | Call TI  
Level-1-260C-UNLIM  
-40 to 125  
OPA  
2211  
A
OPA2211AIDRGR  
OPA2211AIDRGT  
ACTIVE  
ACTIVE  
SON  
SON  
DRG  
DRG  
8
8
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
OBHQ  
Green (RoHS  
& no Sb/Br)  
OBHQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF OPA211 :  
Enhanced Product: OPA211-EP  
NOTE: Qualified Version Definitions:  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
OPA211AIDGKR  
OPA211AIDGKT  
OPA211AIDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
2500  
250  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
6.4  
3.3  
3.3  
5.3  
5.3  
6.4  
3.3  
3.3  
6.4  
3.4  
3.4  
5.2  
3.3  
3.3  
3.4  
3.4  
5.2  
3.3  
3.3  
5.2  
1.4  
1.4  
2.1  
1.1  
1.1  
1.4  
1.4  
2.1  
1.1  
1.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
2500  
1000  
250  
OPA211AIDRGR  
OPA211AIDRGT  
OPA211IDGKR  
OPA211IDGKT  
OPA211IDR  
SON  
DRG  
DRG  
DGK  
DGK  
D
SON  
VSSOP  
VSSOP  
SOIC  
2500  
250  
2500  
3000  
250  
OPA211IDRGR  
OPA211IDRGT  
OPA2211AIDDAR  
SON  
DRG  
DRG  
DDA  
SON  
SO  
Power  
PAD  
2500  
OPA2211AIDRGR  
OPA2211AIDRGT  
SON  
SON  
DRG  
DRG  
8
8
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
OPA211AIDGKR  
OPA211AIDGKT  
OPA211AIDR  
VSSOP  
VSSOP  
SOIC  
DGK  
DGK  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
250  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
367.0  
210.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2500  
1000  
250  
OPA211AIDRGR  
OPA211AIDRGT  
OPA211IDGKR  
OPA211IDGKT  
OPA211IDR  
SON  
DRG  
DRG  
DGK  
DGK  
D
SON  
VSSOP  
VSSOP  
SOIC  
2500  
250  
2500  
3000  
250  
OPA211IDRGR  
OPA211IDRGT  
OPA2211AIDDAR  
OPA2211AIDRGR  
OPA2211AIDRGT  
SON  
DRG  
DRG  
DDA  
DRG  
DRG  
SON  
SO PowerPAD  
SON  
2500  
3000  
250  
SON  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

OPA211MDGKTEP

1.1nV/√Hz NOISE, LOW POWER, PRECISION OPERATIONAL AMPLIFIER
TI

OPA211SHKJ

1.1 nV/√Hz Noise, Low Power, Precision Operational Amplifier
TI

OPA211SHKQ

1.1 nV/√Hz Noise, Low Power, Precision Operational Amplifier
TI

OPA211SKGD1

1.1 nV/√Hz Noise, Low Power, Precision Operational Amplifier
TI

OPA211_08

1.1nV/☆Hz Noise, Low Power, Precision Operational Amplifier in Small DFN-8 Package
TI

OPA211_15

Low Power, Precision Operational Amplifier
TI

OPA2130

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS
TI

OPA2130PA

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS
BB

OPA2130PA

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS
TI

OPA2130UA

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS
BB

OPA2130UA

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS
TI

OPA2130UA/2K5

Low Power, Precision FET-INPUT OPERATIONAL AMPLIFIERS
TI