PCI4410APDV [TI]

IC PCMCIA BUS CONTROLLER, PQFP208, PLASTIC, LQFP-208, Bus Controller;
PCI4410APDV
型号: PCI4410APDV
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IC PCMCIA BUS CONTROLLER, PQFP208, PLASTIC, LQFP-208, Bus Controller

时钟 PC 驱动 外围集成电路 驱动器
文件: 总198页 (文件大小:992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁ ꢂꢃ ꢃ ꢄ ꢅꢆ ꢇ ꢈ ꢉ ꢊ ꢀꢋ ꢌ  
ꢀꢁ ꢁ ꢍ ꢎꢏ ꢍ ꢐꢏ ꢑ ꢈ ꢁꢂ ꢁ ꢒ ꢐ ꢓꢎꢒ ꢔꢔꢕ ꢎ  
Data Manual  
2000  
PCI Bus Solutions  
SCPS059  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products  
or to discontinue any product or service without notice, and advise customers to obtain the latest  
version of relevant information to verify, before placing orders, that information being relied on  
is current and complete. All products are sold subject to the terms and conditions of sale supplied  
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,  
and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the  
time of sale in accordance with TI’s standard warranty. Testing and other quality control  
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing  
of all parameters of each device is not necessarily performed, except those mandated by  
government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and  
operating safeguards must be provided by the customer to minimize inherent or procedural  
hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not  
warrant or represent that any license, either express or implied, is granted under any patent right,  
copyright, mask work right, or other intellectual property right of TI covering or relating to any  
combination, machine, or process in which such semiconductor products or services might be  
or are used. TI’s publication of information regarding any third party’s products or services does  
not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  
Contents  
Section  
Title  
Page  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1  
1.1  
1.2  
1.3  
1.4  
1.5  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
2
3
Terminal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1  
Feature/Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1  
3.1  
3.2  
3.3  
3.4  
Power-Supply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Clamping Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Peripheral Component Interconnect (PCI) Interface . . . . . . . . . . . . . . 32  
3.4.1  
3.4.2  
PCI Bus Lock (LOCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Loading Subsystem Identification . . . . . . . . . . . . . . . . . . . . . 33  
3.5  
PC Card Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
3.5.8  
3.5.9  
3.5.10  
3.5.11  
3.5.12  
PC Card Insertion/Removal and Recognition . . . . . . . . . . . 33  
P C Power Switch Interface (TPS2211) . . . . . . . . . . . . . . . . 34  
2
Zoomed-Video Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Ultra Zoomed Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
D3_STAT Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Internal Ring Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Integrated Pullup Resistors for PC Card Interface . . . . . . . 37  
SPKROUT and CAUDPWM Usage . . . . . . . . . . . . . . . . . . . 37  
LED Socket Activity Indicators . . . . . . . . . . . . . . . . . . . . . . . . 38  
PC Card-16 Distributed DMA Support . . . . . . . . . . . . . . . . . 38  
PC Card-16 PC/PCI DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
3.6  
3.7  
Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
3.6.1  
3.6.2  
3.6.3  
3.6.4  
Serial Bus-Interface Implementation . . . . . . . . . . . . . . . . . . . 311  
Serial Bus-Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Serial Bus EEPROM Application . . . . . . . . . . . . . . . . . . . . . . 313  
Accessing Serial Bus Devices Through Software . . . . . . . . 315  
Programmable Interrupt Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
PC Card Functional and Card Status Change Interrupts . 316  
Interrupt Masks and Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
Using Parallel IRQ Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 318  
Using Parallel PCI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 318  
iii  
3.7.5  
3.7.6  
Using Serialized IRQSER Interrupts . . . . . . . . . . . . . . . . . . . 318  
SMI Support in the PCI4410A Device . . . . . . . . . . . . . . . . . . 319  
3.8  
Power-Management Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
3.8.7  
3.8.8  
3.8.9  
3.8.10  
Clock-Run Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
CardBus PC Card Power Management . . . . . . . . . . . . . . . . 319  
16-Bit PC Card Power Management . . . . . . . . . . . . . . . . . . . 320  
Suspend Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
Requirements for Suspend Mode . . . . . . . . . . . . . . . . . . . . . 321  
Ring Indicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
PCI Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
CardBus Bridge Power Management . . . . . . . . . . . . . . . . . . 323  
ACPI Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
Master List of PME Context Bits and Global Reset-Only  
Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324  
4
PC Card Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . 41  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
PCI Class Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Cache Line Size Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.10 Header Type Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.11 BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
4.12 CardBus Socket/ExCA Base Address Register . . . . . . . . . . . . . . . . . . 47  
4.13 Capability Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4.14 Secondary Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.15 PCI Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.16 CardBus Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.17 Subordinate Bus Number Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.18 CardBus Latency Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
4.19 Memory Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410  
4.20 Memory Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411  
4.21 I/O Base Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411  
4.22 I/O Limit Registers 0, 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412  
4.23 Interrupt Line Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412  
4.24 Interrupt Pin Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413  
4.25 Bridge Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414  
4.26 Subsystem Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415  
4.27 Subsystem ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415  
4.28 PC Card 16-Bit I/F Legacy-Mode Base Address Register . . . . . . . . . 415  
4.29 System Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416  
iv  
4.30 General Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419  
4.31 General Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419  
4.32 Multifunction Routing Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420  
4.33 Retry Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421  
4.34 Card Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422  
4.35 Device Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423  
4.36 Diagnostic Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424  
4.37 Socket DMA Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425  
4.38 Socket DMA Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426  
4.39 Capability ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427  
4.40 Next-Item Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427  
4.41 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 428  
4.42 Power Management Control/Status Register . . . . . . . . . . . . . . . . . . . . 429  
4.43 Power Management Control/Status Register Bridge Support  
Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430  
4.44 Power Management Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430  
4.45 General-Purpose Event Status Register . . . . . . . . . . . . . . . . . . . . . . . . 431  
4.46 General-Purpose Event Enable Register . . . . . . . . . . . . . . . . . . . . . . . 432  
4.47 General-Purpose Input Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433  
4.48 General-Purpose Output Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434  
ExCA Compatibility Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
5
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
ExCA Identification and Revision Register . . . . . . . . . . . . . . . . . . . . . . 54  
ExCA Interface Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ExCA Power Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ExCA Interrupt and General Control Register . . . . . . . . . . . . . . . . . . . 58  
ExCA Card Status-Change Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
ExCA Card Status-Change-Interrupt Configuration Register . . . . . . . 510  
ExCA Address Window Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 511  
ExCA I/O Window Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512  
ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers . . . . 513  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers . . . . 513  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers . . . . . 514  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers . . . . 514  
5.13 ExCA Memory Windows 04 Start-Address Low-Byte Registers . . . 515  
5.14 ExCA Memory Windows 04 Start-Address High-Byte Registers . . . 516  
5.15 ExCA Memory Windows 04 End-Address Low-Byte Registers . . . . 517  
5.16 ExCA Memory Windows 04 End-Address High-Byte Registers . . . 518  
5.17 ExCA Memory Windows 04 Offset-Address Low-Byte Registers . . 519  
5.18 ExCA Memory Windows 04 Offset-Address High-Byte Registers . 520  
5.19 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers . . . 521  
5.20 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers . . . 521  
5.21 ExCA I/O Card Detect and General Control Register . . . . . . . . . . . . . 522  
5.22 ExCA Global Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523  
5.23 ExCA Memory Windows 04 Page Register . . . . . . . . . . . . . . . . . . . . 523  
v
6
7
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Socket Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Socket Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Socket Present State Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Socket Force Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Socket Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Socket Power Management Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Distributed DMA (DDMA) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
DMA Current Address/Base Address Register . . . . . . . . . . . . . . . . . . . 72  
DMA Page Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
DMA Current Count/Base Count Register . . . . . . . . . . . . . . . . . . . . . . . 73  
DMA Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
DMA Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DMA Request Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DMA Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DMA Master Clear Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
DMA Multichannel/Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
8
OHCI-Lynx Controller Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . 81  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
PCI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
PCI Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
PCI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Class Code and Revision ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Latency Timer and Class Cache Line Size Register . . . . . . . . . . . . . . 85  
Header Type and BIST Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Open HCI Registers Base Address Register . . . . . . . . . . . . . . . . . . . . 86  
8.10 TI Extension Base Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
8.11 PCI Subsystem Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
8.12 PCI Power Management Capabilities Pointer Register . . . . . . . . . . . . 88  
8.13 Interrupt Line and Interrupt Pin Registers . . . . . . . . . . . . . . . . . . . . . . . 89  
8.14 MIN_GNT and MAX_LAT Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8.15 PCI OHCI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810  
8.16 Capability ID and Next Item Pointer Registers . . . . . . . . . . . . . . . . . . . 810  
8.17 Power Management Capabilities Register . . . . . . . . . . . . . . . . . . . . . . 811  
8.18 Power Management Control and Status Register . . . . . . . . . . . . . . . . 812  
8.19 Power Management Extension Register . . . . . . . . . . . . . . . . . . . . . . . . 813  
8.20 PCI Miscellaneous Configuration Register . . . . . . . . . . . . . . . . . . . . . . 814  
8.21 Link Enhancement Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815  
8.22 Subsystem Access Identification Register . . . . . . . . . . . . . . . . . . . . . . 816  
8.23 GPIO Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817  
Open HCI Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
9
9.1  
9.2  
OHCI Version Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
GUID ROM Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
vi  
9.3  
9.4  
9.5  
9.6  
9.7  
9.8  
9.9  
Asynchronous Transmit Retries Register . . . . . . . . . . . . . . . . . . . . . . . 96  
CSR Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
CSR Compare Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
CSR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Configuration ROM Header Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Bus Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Bus Options Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
9.10 GUID High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910  
9.11 GUID Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 910  
9.12 Configuration ROM Mapping Register . . . . . . . . . . . . . . . . . . . . . . . . . . 911  
9.13 Posted Write Address Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 911  
9.14 Posted Write Address High Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 912  
9.15 Vendor ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 912  
9.16 Host Controller Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 913  
9.17 Self ID Buffer Pointer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914  
9.18 Self ID Count Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914  
9.19 Isochronous Receive Channel Mask High Register . . . . . . . . . . . . . . 915  
9.20 Isochronous Receive Channel Mask Low Register . . . . . . . . . . . . . . . 916  
9.21 Interrupt Event Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917  
9.22 Interrupt Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919  
9.23 Isochronous Transmit Interrupt Event Register . . . . . . . . . . . . . . . . . . 920  
9.24 Isochronous Transmit Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 921  
9.25 Isochronous Receive Interrupt Event Register . . . . . . . . . . . . . . . . . . . 922  
9.26 Isochronous Receive Interrupt Mask Register . . . . . . . . . . . . . . . . . . . 923  
9.27 Fairness Control Register (Optional Register) . . . . . . . . . . . . . . . . . . . 923  
9.28 Link Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924  
9.29 Node Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925  
9.30 PHY Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926  
9.31 Isochronous Cycle Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927  
9.32 Asynchronous Request Filter High Register . . . . . . . . . . . . . . . . . . . . . 928  
9.33 Asynchronous Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . 930  
9.34 Physical Request Filter High Register . . . . . . . . . . . . . . . . . . . . . . . . . . 931  
9.35 Physical Request Filter Low Register . . . . . . . . . . . . . . . . . . . . . . . . . . 933  
9.36 Physical Upper Bound Register (Optional Register) . . . . . . . . . . . . . . 933  
9.37 Asynchronous Context Control Register . . . . . . . . . . . . . . . . . . . . . . . . 934  
9.38 Asynchronous Context Command Pointer Register . . . . . . . . . . . . . . 935  
9.39 Isochronous Transmit Context Control Register . . . . . . . . . . . . . . . . . . 936  
9.40 Isochronous Transmit Context Command Pointer Register . . . . . . . . 937  
9.41 Isochronous Receive Context Control Register . . . . . . . . . . . . . . . . . . 937  
9.42 Isochronous Receive Context Command Pointer Register . . . . . . . . 939  
9.43 Isochronous Receive Context Match Register . . . . . . . . . . . . . . . . . . . 940  
10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.1 Absolute Maximum Ratings Over Operating Temperature Ranges . 101  
10.2 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
vii  
10.3 Electrical Characteristics Over Recommended Operating Conditions  
(unless otherwise noted) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges  
of Supply Voltage and Operating Free-Air Temperature . . . . . . . . . . . 104  
10.5 PCI Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature . . . . . . . . . . . . . . . . . . . . 104  
11 Mechanical Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
List of Illustrations  
Figure  
21  
22  
23  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Title  
Page  
PCI-to-CardBus Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PCI-to-PC Card (16-Bit) Terminal Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 22  
MicroStar BGAt Ball Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PCI4410A System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3-State Bidirectional Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
TPS2211 Terminal Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
TPS2211 Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Zoomed-Video Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Sample Application of SPKROUT and CAUDPWM . . . . . . . . . . . . . . . . . . 38  
Two Sample LED Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Serial EEPROM Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Serial Bus Start/Stop Conditions and Bit Transfers . . . . . . . . . . . . . . . . . . 312  
310 Serial Bus-Protocol Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
311 Serial Bus Protocol Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
312 Serial Bus Protocol Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
313 EEPROM Interface Doubleword Data Collection . . . . . . . . . . . . . . . . . . . . 313  
314 EEPROM Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315  
315 IRQ Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318  
316 Suspend Functional Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320  
317 Signal Diagram of Suspend Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321  
318 RI_OUT Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322  
51  
52  
61  
ExCA Register Access Through I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ExCA Register Access Through Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Accessing CardBus Socket Registers Through PCI Memory . . . . . . . . . . 61  
viii  
List of Tables  
Table  
Title  
Page  
21  
22  
23  
CardBus And 16-Bit PC Card Signal Names by PDV Terminal Number  
CardBus And 16-Bit PC Card Signal Names by GHK Terminal Number 26  
CardBus PC Card Signal Names Sorted Alphabetically to GHK/PDV  
Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
24  
24  
16-Bit PC Card Signal Names Sorted Alphabetically to GHK/PDV  
Terminal Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
25  
26  
27  
28  
29  
Power Supply Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
PC Card Power Switch Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
PCI System Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
PCI Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
PCI Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
210 Multifunction and Miscellaneous Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 215  
211 16-Bit PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . . . 216  
212 16-Bit PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . . . . 217  
213 CardBus PC Card Interface System Terminals . . . . . . . . . . . . . . . . . . . . . . 218  
214 CardBus PC Card Address and Data Terminals . . . . . . . . . . . . . . . . . . . . . 219  
215 CardBus PC Card Interface Control Terminals . . . . . . . . . . . . . . . . . . . . . . 220  
216 IEEE1394 PHY/Link Interface Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
217 Zoomed-Video Interface Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
31  
32  
33  
34  
35  
36  
37  
38  
39  
PC Card Card-Detect and Voltage-Sense Connections . . . . . . . . . . . . . . 34  
Integrated Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Distributed DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
PC/PCI Channel Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
I/O Addresses Used for PC/PCI DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
Registers and Bits Loadable Through Serial EEPROM . . . . . . . . . . . . . . . 314  
Interrupt Mask and Flag Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316  
PC Card Interrupt Events and Description . . . . . . . . . . . . . . . . . . . . . . . . . . 317  
310 SMI Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319  
311 Power-Management Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323  
41  
42  
43  
44  
45  
46  
47  
48  
PCI Configuration Registers (Functions 0 and 1) . . . . . . . . . . . . . . . . . . . . 41  
Bit-Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Secondary Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Bridge Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414  
System Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417  
General Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419  
ix  
49  
General Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419  
410 Multifunction Routing Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 420  
411 Retry Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421  
412 Card Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422  
413 Device Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423  
414 Diagnostic Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424  
415 Socket DMA Register 0 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425  
416 Socket DMA Register 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426  
417 Power Management Capabilities Register Description . . . . . . . . . . . . . . . 428  
418 Power Management Control/Status Register Description . . . . . . . . . . . . . 429  
419 Power Management Control/Status Register Bridge Support Extensions  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430  
420 General-Purpose Event Status Register Description . . . . . . . . . . . . . . . . . 431  
421 General-Purpose Event Enable Register Description . . . . . . . . . . . . . . . . 432  
422 General-Purpose Input Register Description . . . . . . . . . . . . . . . . . . . . . . . . 433  
423 General-Purpose Output Register Description . . . . . . . . . . . . . . . . . . . . . . 434  
51  
52  
53  
54  
55  
56  
57  
58  
59  
ExCA Registers and Offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ExCA Identification and Revision Register Description . . . . . . . . . . . . . . . 54  
ExCA Interface Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . 55  
ExCA Power Control Register 82365SL Support Description . . . . . . . . . 56  
ExCA Power Control Register 82365SL-DF Support Description . . . . . . 57  
ExCA Interrupt and General Control Register Description . . . . . . . . . . . . 58  
ExCA Card Status-Change Register Description . . . . . . . . . . . . . . . . . . . . 59  
ExCA Card Status-Change-Interrupt Configuration Register Description 510  
ExCA Address Window Enable Register Description . . . . . . . . . . . . . . . . 511  
510 ExCA I/O Window Control Register Description . . . . . . . . . . . . . . . . . . . . . 512  
511 ExCA Memory Windows 04 Start-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516  
512 ExCA Memory Windows 04 End-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518  
513 ExCA Memory Windows 04 Offset-Address High-Byte Registers  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520  
514 ExCA I/O Card-Detect and General Control Register Description . . . . . . 522  
515 ExCA Global Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 523  
61  
62  
63  
64  
65  
66  
67  
71  
72  
73  
74  
CardBus Socket Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Socket Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Socket Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Socket Present State Register Description . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Socket Force Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Socket Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Socket Power Management Register Description . . . . . . . . . . . . . . . . . . . 68  
Distributed DMA Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
DMA Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
DMA Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
DMA Mode Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
x
75  
81  
82  
83  
84  
85  
86  
87  
88  
89  
DMA Multichannel/Mask Register Description . . . . . . . . . . . . . . . . . . . . . . 76  
Bit-Field Access Tag Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
PCI Configuration Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
PCI Command Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
PCI Status Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Class Code and Revision ID Register Description . . . . . . . . . . . . . . . . . . . 85  
Latency Timer and Class Cache Line Size Register Description . . . . . . . 85  
Header Type and BIST Register Description . . . . . . . . . . . . . . . . . . . . . . . . 86  
Open HCI Registers Base Address Register Description . . . . . . . . . . . . . 86  
TI Extension Base Address Register Description . . . . . . . . . . . . . . . . . . . . 87  
810 PCI Subsystem Identification Register Description . . . . . . . . . . . . . . . . . . 88  
811 Interrupt Line and Interrupt Pin Registers Description . . . . . . . . . . . . . . . . 89  
812 MIN_GNT and MAX_LAT Registers Description . . . . . . . . . . . . . . . . . . . . 89  
813 Capability ID and Next Item Pointer Registers Description . . . . . . . . . . . . 810  
814 Power Management Capabilities Register Description . . . . . . . . . . . . . . . 811  
815 Power Management Control and Status Register Description . . . . . . . . . 812  
816 Power Management Extension Register Description . . . . . . . . . . . . . . . . . 813  
817 PCI Miscellaneous Configuration Register Description . . . . . . . . . . . . . . . 814  
818 Link Enhancement Control Register Description . . . . . . . . . . . . . . . . . . . . 815  
819 Subsystem Access Identification Register Description . . . . . . . . . . . . . . . 816  
820 GPIO Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 817  
91  
92  
93  
94  
95  
96  
97  
98  
99  
Open HCI Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
OHCI Version Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
GUID ROM Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Asynchronous Transmit Retries Register Description . . . . . . . . . . . . . . . . 96  
CSR Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Configuration ROM Header Register Description . . . . . . . . . . . . . . . . . . . . 98  
Bus Options Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Configuration ROM Mapping Register Description . . . . . . . . . . . . . . . . . . . 911  
Posted Write Address Low Register Description . . . . . . . . . . . . . . . . . . . . 911  
910 Posted Write Address High Register Description . . . . . . . . . . . . . . . . . . . . 912  
911 Host Controller Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . 913  
912 Self ID Count Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 914  
913 Isochronous Receive Channel Mask High Register Description . . . . . . . 915  
914 Isochronous Receive Channel Mask Low Register Description . . . . . . . . 916  
915 Interrupt Event Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917  
916 Interrupt Mask Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 919  
917 Isochronous Transmit Interrupt Event Register Description . . . . . . . . . . . 920  
918 Isochronous Receive Interrupt Event Register Description . . . . . . . . . . . 922  
919 Fairness Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923  
920 Link Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924  
921 Node Identification Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 925  
922 PHY Control Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926  
923 Isochronous Cycle Timer Register Description . . . . . . . . . . . . . . . . . . . . . . 927  
xi  
924 Asynchronous Request Filter High Register Description . . . . . . . . . . . . . 928  
925 Asynchronous Request Filter Low Register Description . . . . . . . . . . . . . . 930  
926 Physical Request Filter High Register Description . . . . . . . . . . . . . . . . . . . 931  
927 Physical Request Filter Low Register Description . . . . . . . . . . . . . . . . . . . 933  
928 Asynchronous Context Control Register Description . . . . . . . . . . . . . . . . . 934  
929 Asynchronous Context Command Pointer Register Description . . . . . . . 935  
930 Isochronous Transmit Context Control Register Description . . . . . . . . . . 936  
931 Isochronous Receive Context Control Register Description . . . . . . . . . . . 938  
932 Isochronous Receive Context Match Register Description . . . . . . . . . . . . 940  
xii  
1 Introduction  
The Texas Instruments PCI4410A device is an integrated single-socket PC Card controller and IEEE 1394 Open HCI  
host controller. This high-performance integrated solution provides the latest in both PC Card and IEEE 1394  
technology.  
1.1 Description  
The PCI4410A device is a dual-function PCI device compliant with the PCI Local Bus Specification. Function 0  
provides the independent PC Card socket controller compliant with the PC Card Standard. The PCI4410A device  
provides features that make it the best choice for bridging between the PCI bus and PC Cards, and supports either  
16-bit or CardBus PC Cards in the socket, powered at 5 V or 3.3 V, as required.  
All card signals are buffered internally to allow hot insertion and removal without external buffering. The PCI4410A  
device is compatible with the register of the Intel 82365SLDF and 82365SL ExCA controllers. The PCI4410A  
internal data-path logic allows the host to access 8-, 16-, and 32-bit cards using full 32-bit PCI cycles for maximum  
performance. Independent buffering and a pipeline architecture provide an unsurpassed performance level with  
sustained bursting. The PCI4410A device can be programmed to accept posted writes to improve bus utilization.  
Function 1 of the PCI4410A device is compatible with IEEE 1394a-2000 and the latest 1394 open host controller  
interface (OHCI) specifications. The chip provides the IEEE 1394 link function and is compatible with data rates of  
100, 200, and 400 Mbits/s. Deep FIFOs are provided to buffer 1394 data and accommodate large host bus latencies.  
The PCI4410A device provides physical write posting and a highly tuned physical data path for SBP-2 performance.  
Multiple-cache line burst transfers, advanced internal arbitration, and bus-holding buffers on the PHY/Link interface  
are other features that make the PCI4410A device the best-in-class 1394 OHCI solution.  
The PCI4410A device provides an internally buffered zoomed-video (ZV) path. This reduces the design effort of PC  
board manufacturers to add a ZV-compatible solution and ensures compliance with the CardBus loading  
specifications.  
Various implementation-specific functions and general-purpose inputs and outputs are provided through eight  
multifunction terminals. These terminals present a system with options in PC/PCI DMA, PCI LOCK and parallel  
interrupts, PC Card activity indicator LEDs, and other platform-specific signals. ACPI-compliant general-purpose  
events can be programmed and controlled through the multifunction terminals, and an ACPI-compliant programming  
interface is included for the general-purpose inputs and outputs.  
The PCI4410A device is compliant with the latest PCI Bus Power Management Specification, and provides several  
low-power modes that enable the host power system to further reduce power consumption. The PC Card (CardBus)  
Controller and IEEE 1394 Host Controller Device Class Specifications required for Microsoft OnNowt power  
management are supported. Furthermore, an advanced complementary metal-oxide semiconductor (CMOS)  
process achieves low system power consumption.  
Unused PCI4410A device inputs must be pulled to a valid logic level using a 43-kresistor.  
11  
1.2 Features  
The PCI4410A device supports the following features:  
Ability to wake from D3  
and D3  
hot cold  
Fully compatible with the Intel 430TX (Mobile Triton II) chipset  
A 208-pin low-profile QFP (PDV) or 209-ball MicroStar BGA ball grid array (GHK) package  
3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments  
Mix-and-match 5-V/3.3-V 16-bit PC Cards and 3.3-V CardBus Cards  
Single PC Card or CardBus slot with hot insertion and removal  
Burst transfers to maximize data throughput on the PCI bus and the CardBus bus  
Parallel PCI interrupts, parallel ISA IRQ and parallel PCI interrupts, serial ISA IRQ with parallel PCI  
interrupts, and serial ISA IRQ and PCI interrupts  
Serial EEPROM interface for loading subsystem ID and subsystem vendor ID  
Pipelined architecture allows greater than 130 Mbit/s sustained throughput from CardBus-to-PCI and from  
PCI-to-CardBus  
Interface to parallel single-slot PC Card power-switch interfaces like the TI TPS2211 device  
Up to five general-purpose I/Os  
Programmable output select for CLKRUN  
Five PCI memory windows and two I/O windows available to the 16-bit PC Card socket  
Two I/O windows and two memory windows available to the CardBus socket  
Exchangeable Card Architecture (ExCA) compatible registers are mapped in memory and I/O space  
Compatibility with Intel 82365SL-DF and 82365SL registers  
Distributed DMA (DDMA) and PC/PCI DMA  
16-bit DMA on the PC Card socket  
Ring indicate, SUSPEND, PCI CLKRUN, and CardBus CLKRUN  
Socket-activity LED pins  
PCI bus lock (LOCK)  
Advanced submicron, low-power CMOS technology  
Internal ring oscillator  
OHCI link function designed to IEEE 1394 Open Host Controller Interface (OHCI) Specification  
Implements PCI burst transfers and deep FIFOs to tolerate large host latency  
Supports physical write posting of up to three outstanding transactions  
OHCI link function is compliant with IEEE 1394-1995 and compatible with IEEE 1394a-2000  
Supports serial bus data rates of 100, 200, and 400 Mbits/s  
Provides bus-hold buffers on the PHY-Link I/F for low-cost single-capacitor isolation  
12  
1.3 Related Documents  
Advanced Configuration and Power Interface (ACPI) Specification (Revision 2.0)  
PCI Bus Power Management Interface Specification (Revision 1.1)  
PCI Bus Power Management Interface Specification for PCI to CardBus Bridges (Revision 1.1)  
PCI Local Bus Specification (Revision 2.2)  
PCI Mobile Design Guide (Revision 1.0)  
PCI14xx Implemenation Guide for D3 Wake-Up  
PC Card Standard, Release 7  
PC 98/99  
Serialized IRQ Support for PCI Systems (Revision 6)  
Serial Bus Protocol 2 (SBP-2)  
1394 Open Host Controller Interface Specification (Revision 1.0)  
P1394 Standard for a High-Performance Serial Bus (IEEE 1394-1995)  
IEEE Standard for a High-Performance Serial Bus—Amendment 1 (IEEE 1394a-2000)  
1.4 Trademarks  
MicroStar BGA, OHCI-Lynx, and TI are trademarks of Texas Instruments.  
Microsoft OnNow is a trademark of Microsoft Corporation.  
Intel is a trademark of Intel Corporation.  
Maxim is a trademark of Maxim Integrated Products, Inc.  
Other trademarks are the property of their respective owners.  
1.5 Ordering Information  
ORDERING NUMBER  
PCI4410A  
NAME  
VOLTAGE  
PACKAGE  
208-pin LQFP  
209-ball PBGA  
PC Card controller  
3.3-V, 5-V tolerant I/Os  
13  
14  
2 Terminal Descriptions  
The PCI4410A device is packaged in either a 209-ball GHK MicroStar BGAt or a 208-terminal PDV package. The  
PCI4410A device is a single-socket CardBus bridge with integrated OHCI link. Figure 21 is a terminal diagram of  
the PDV package with PCI-to-CardBus signal names. Figure 22 is a terminal diagram of the PDV package with  
PCI-to-PC Card signal names. Figure 23 is a terminal diagram of the GHK package.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
ZV_Y(6)  
ZV_Y(5)  
ZV_Y(4)  
ZV_Y(3)  
GND  
ZV_Y(2)  
ZV_Y(1)  
ZV_Y(0)  
ZV_VSYNC  
ZV_HREF  
RSVD  
INTB  
INTA  
VCC  
LED_SKT  
RSVD  
VPPD1  
VPPD0  
SUSPEND  
MFUNC6  
MFUNC5  
MFUNC4  
GRST  
MFUNC3  
MFUNC2  
VCCI  
SPKROUT  
MFUNC1  
MFUNC0  
RI_OUT/PME  
GND  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
VCC  
AD7  
C/BE0  
AD8  
AD9  
AD10  
VCCP  
AD11  
GND  
CTRDY  
CIRDY  
CFRAME  
CC/BE2  
CAD17  
GND  
CAD18  
CAD19  
CVS2  
CAD20  
CRST  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
CAD21  
CAD22  
VCC  
CREQ  
CAD23  
CC/BE3  
VCCCB  
CAD24  
CAD25  
CAD26  
GND  
CVS1  
CINT  
CSERR  
CAUDIO  
CSTSCHG  
CCLKRUN  
CCD2  
VCC  
CAD27  
CAD28  
CAD29  
CAD30  
CRSVD  
CAD31  
LPS  
PHY_LREQ  
VCC  
PHY_CLK  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
PHY_DATA0  
VCCL  
PHY_DATA1  
GND  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
AD12  
AD13  
AD14  
AD15  
C/BE1  
Figure 21. PCI-to-CardBus Terminal Diagram  
21  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
ZV_Y(6)  
ZV_Y(5)  
ZV_Y(4)  
ZV_Y(3)  
GND  
ZV_Y(2)  
ZV_Y(1)  
ZV_Y(0)  
ZV_VSYNC  
ZV_HREF  
RSVD  
INTB  
INTA  
VCC  
LED_SKT  
RSVD  
VPPD1  
VPPD0  
SUSPEND  
MFUNC6  
MFUNC5  
MFUNC4  
GRST  
MFUNC3  
MFUNC2  
VCCI  
SPKROUT  
MFUNC1  
MFUNC0  
RI_OUT/PME  
GND  
AD0  
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
VCC  
AD7  
C/BE0  
AD8  
AD9  
AD10  
VCCP  
AD11  
GND  
ADDR22  
ADDR15  
ADDR23  
ADDR12  
ADDR24  
GND  
ADDR7  
ADDR25  
VS2  
ADDR6  
RESET  
ADDR5  
ADDR4  
VCC  
INPACK  
ADDR3  
REG  
VCCCB  
ADDR2  
ADDR1  
ADDR0  
GND  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
VS1  
READY(IREQ)  
WAIT  
BVD2(SPKR)  
BVD1(STSCHG/RI)  
WP(IOIS16)  
CD2  
VCC  
DATA0  
DATA8  
DATA1  
DATA9  
DATA2  
DATA10  
LPS  
PHY_LREQ  
VCC  
PHY_CLK  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
PHY_DATA0  
VCCL  
PHY_DATA1  
GND  
AD12  
AD13  
AD14  
AD15  
C/BE1  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
Figure 22. PCI-to-PC Card (16-Bit) Terminal Diagram  
22  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
Figure 23. MicroStar BGAt Ball Diagram  
Table 21 shows the terminal assignments for the 208-terminal PDV CardBus and 16-bit PC Card signal names.  
Table 22 shows the terminal assignments for the 209-ball GHK CardBus and 16-bit PC Card signal names.  
Table 23 shows the CardBus PC Card signal names, sorted alphabetically to the GHK/PDV terminal numbers.  
Table 24 shows the 16-bit PC Card signal names, sorted alphabetically to the GHK/PDV terminal numbers.  
23  
Table 21. CardBus and 16-Bit PC Card Signal Names by PDV Terminal Number  
TERM.  
NO.  
SIGNAL NAME  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
CARDBUS  
16-BIT  
PHY_DATA7  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
GND  
1
PHY_DATA7  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
GND  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
FRAME  
IRDY  
FRAME  
IRDY  
87  
88  
VPPD0  
VPPD1  
RSVD  
VPPD0  
VPPD1  
RSVD  
2
3
V
V
CC  
89  
CC  
4
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
TRDY  
DEVSEL  
STOP  
PERR  
SERR  
PAR  
90  
LED_SKT  
LED_SKT  
5
91  
V
V
CC  
CC  
6
92  
INTA  
INTA  
7
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
93  
INTB  
INTB  
8
94  
RSVD  
RSVD  
9
95  
ZV_HREF  
ZV_VSYNC  
ZV_Y(0)  
ZV_Y(1)  
ZV_Y(2)  
GND  
ZV_HREF  
ZV_VSYNC  
ZV_Y(0)  
ZV_Y(1)  
ZV_Y(2)  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
C/BE1  
AD15  
AD14  
AD13  
AD12  
GND  
C/BE1  
AD15  
AD14  
AD13  
AD12  
GND  
96  
97  
98  
99  
V
V
CC  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
CC  
PHY_RSVD  
PHY_RSVD  
REQ  
PHY_RSVD  
PHY_RSVD  
REQ  
ZV_Y(3)  
ZV_Y(4)  
ZV_Y(5)  
ZV_Y(6)  
ZV_Y(7)  
ZV_UV(0)  
ZV_UV(2)  
ZV_UV(1)  
ZV_UV(4)  
GND  
ZV_Y(3)  
ZV_Y(4)  
ZV_Y(5)  
ZV_Y(6)  
ZV_Y(7)  
ZV_UV(0)  
ZV_UV(2)  
ZV_UV(1)  
ZV_UV(4)  
GND  
AD11  
AD11  
V
V
CCP  
CCP  
GNT  
GNT  
AD10  
AD9  
AD10  
AD9  
AD31  
AD31  
AD30  
AD30  
AD8  
AD8  
AD29  
AD29  
C/BE0  
AD7  
C/BE0  
AD7  
GND  
GND  
AD28  
AD28  
V
V
CC  
CC  
AD27  
AD27  
AD6  
AD6  
AD26  
AD26  
AD5  
AD5  
ZV_UV(3)  
ZV_UV(6)  
ZV_UV(5)  
ZV_SCLK  
ZV_UV(3)  
ZV_UV(6)  
ZV_UV(5)  
ZV_SCLK  
AD25  
AD25  
AD4  
AD4  
AD24  
AD24  
AD3  
AD3  
C/BE3  
IDSEL  
C/BE3  
IDSEL  
AD2  
AD2  
AD1  
AD1  
V
V
CC  
CC  
V
CC  
V
CC  
AD0  
AD0  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
ZV_SDATA  
ZV_PCLK  
VCCD0  
VCCD1  
CCD1  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
ZV_SDATA  
ZV_PCLK  
VCCD0  
VCCD1  
CD1  
AD23  
AD22  
AD21  
AD23  
AD22  
AD21  
GND  
GND  
RI_OUT/PME  
MFUNC0  
MFUNC1  
SPKROUT  
RI_OUT/PME  
MFUNC0  
MFUNC1  
SPKROUT  
V
CCP  
V
CCP  
AD20  
PRST  
PCLK  
GND  
AD20  
PRST  
PCLK  
GND  
V
V
CCI  
CCI  
MFUNC2  
MFUNC3  
GRST  
MFUNC2  
MFUNC3  
GRST  
CAD0  
DATA3  
AD19  
AD18  
AD17  
AD16  
C/BE2  
AD19  
AD18  
AD17  
AD16  
C/BE2  
CAD2  
DATA11  
GND  
MFUNC4  
MFUNC5  
MFUNC6  
SUSPEND  
MFUNC4  
MFUNC5  
MFUNC6  
SUSPEND  
GND  
CAD1  
DATA4  
CAD4  
DATA12  
DATA5  
CAD3  
24  
Table 21. CardBus and 16-Bit PC Card Signal Names by PDV Terminal Number (Continued)  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
SIGNAL NAME  
CARDBUS  
16-BIT  
WP(IOIS16)  
CD2  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
CAD6  
CAD5  
CRSVD  
CAD7  
DATA13  
DATA6  
DATA14  
DATA7  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
CTRDY  
CIRDY  
CFRAME  
CC/BE2  
CAD17  
GND  
ADDR22  
ADDR15  
ADDR23  
ADDR12  
ADDR24  
GND  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
CCLKRUN  
CCD2  
V
V
CC  
CC  
CAD27  
CAD28  
CAD29  
CAD30  
CRSVD  
CAD31  
LPS  
DATA0  
DATA8  
DATA1  
DATA9  
DATA2  
DATA10  
LPS  
V
V
CC  
CC  
CAD8  
DATA15  
CE1  
CC/BE0  
CAD9  
CAD18  
CAD19  
CVS2  
ADDR7  
ADDR25  
VS2  
ADDR10  
V
V
CCCB  
CCCB  
CAD10  
CAD11  
CAD13  
GND  
CE2  
CAD20  
CRST  
ADDR6  
RESET  
ADDR5  
ADDR4  
OE  
PHY_LREQ  
PHY_LREQ  
IORD  
CAD21  
CAD22  
V
CC  
V
CC  
GND  
PHY_CLK  
PHY_CLK  
CAD12  
CAD15  
CAD14  
CAD16  
CC/BE1  
CRSVD  
CPAR  
ADDR11  
IOWR  
V
V
CC  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
PHY_CTL(0)  
PHY_CTL(1)  
LINKON  
CC  
CREQ  
INPACK  
ADDR3  
REG  
ADDR9  
ADDR17  
ADDR8  
ADDR18  
ADDR13  
CAD23  
CC/BE3  
PHY_DATA0  
PHY_DATA0  
V
V
V
CCL  
V
CCL  
CCCB  
CCCB  
CAD24  
CAD25  
CAD26  
GND  
ADDR2  
ADDR1  
ADDR0  
GND  
PHY_DATA1  
GND  
PHY_DATA1  
GND  
V
V
CC  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
CC  
CBLOCK  
CPERR  
CSTOP  
CGNT  
ADDR19  
ADDR14  
ADDR20  
WE  
CVS1  
VS1  
CINT  
READY(IREQ)  
WAIT  
CSERR  
CAUDIO  
CDEVSEL  
ADDR21  
BVD2(SPKR)  
BVD1  
(STSCHG/RI)  
156  
CCLK  
ADDR16  
183  
CSTSCHG  
25  
Table 22. CardBus and 16-Bit PC Card Signal Names by GHK Terminal Number  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CARDBUS  
16-BIT  
PHY_DATA6  
GND  
CARDBUS  
16-BIT  
PHY_LREQ  
DATA1  
A4  
A5  
PHY_DATA6  
GND  
E8  
E9  
PHY_LREQ  
CAD29  
H14  
H15  
CAD13  
GND  
IORD  
GND  
BVD1  
(STSCHG/RI)  
A6  
LINKON  
LINKON  
E10  
CSTSCHG  
H17  
CAD11  
CAD10  
OE  
A7  
A8  
V
CC  
V
CC  
E11  
E12  
E13  
E14  
E17  
E18  
E19  
F1  
GND  
GND  
H18  
H19  
J1  
CE2  
CAD30  
CCD2  
CINT  
DATA9  
CREQ  
INPACK  
VS2  
V
V
CCCB  
CCCB  
A9  
CD2  
CVS2  
AD31  
AD30  
AD29  
GND  
AD31  
AD30  
AD29  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B5  
READY(IREQ)  
ADDR2  
CFRAME  
CDEVSEL  
CSTOP  
ADDR23  
ADDR21  
ADDR20  
ADDR19  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_DATA2  
PHY_CTL(1)  
LPS  
J2  
CAD24  
J3  
V
V
V
V
J5  
CCCB  
CCCB  
CBLOCK  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_DATA2  
PHY_CTL(1)  
LPS  
J6  
AD28  
CC/BE0  
CAD9  
CAD8  
AD28  
CE1  
CC  
CC  
CAD20  
ADDR6  
J14  
J15  
J17  
J18  
J19  
K1  
GND  
GND  
F2  
ADDR10  
DATA15  
CTRDY  
ADDR22  
PHY_DATA3  
PHY_DATA0  
PHY_CLK  
DATA2  
F3  
PHY_DATA3  
PHY_DATA0  
PHY_CLK  
CRSVD  
F5  
V
CC  
V
CC  
B6  
F6  
CAD7  
AD27  
AD26  
AD25  
AD24  
C/BE3  
CRSVD  
CAD5  
CAD6  
CAD3  
CAD4  
IDSEL  
DATA7  
AD27  
B7  
F7  
B8  
F8  
K2  
AD26  
B9  
V
CC  
V
CC  
F9  
CAD28  
DATA8  
K3  
AD25  
B10  
B11  
B12  
B13  
B14  
B15  
C5  
CSERR  
WAIT  
F10  
F11  
F12  
F13  
F14  
F15  
F17  
F18  
F19  
G1  
CCLKRUN  
CVS1  
WP(IOIS16)  
VS1  
K5  
AD24  
CAD25  
ADDR1  
K6  
C/BE3  
DATA14  
DATA6  
DATA13  
DATA5  
DATA12  
IDSEL  
CC/BE3  
CAD22  
REG  
CRST  
RESET  
K14  
K15  
K17  
K18  
K19  
L1  
ADDR4  
CC/BE2  
CPERR  
ADDR12  
ADDR14  
WE  
CAD19  
ADDR25  
ADDR24  
PHY_DATA5  
PHY_DATA1  
PHY_CTL(0)  
DATA10  
CAD17  
CGNT  
PHY_DATA5  
PHY_DATA1  
PHY_CTL(0)  
CAD31  
V
CC  
V
CC  
C6  
CRSVD  
CC/BE1  
ADDR18  
ADDR8  
C7  
L2  
V
CC  
V
CC  
C8  
V
CC  
V
CC  
L3  
AD23  
AD21  
AD22  
CAD1  
GND  
AD23  
AD21  
AD22  
DATA4  
GND  
C9  
CAD27  
DATA0  
G2  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
CAD16  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
ADDR17  
ADDR13  
ADDR9  
L5  
C10  
C11  
C12  
C13  
C14  
C15  
D1  
CAUDIO  
CAD26  
BVD2(SPKR)  
ADDR0  
G3  
L6  
G5  
L14  
L15  
L17  
L18  
L19  
M1  
M2  
M3  
M5  
M6  
M14  
M15  
CAD23  
ADDR3  
G6  
CAD21  
ADDR5  
G14  
G15  
G17  
G18  
G19  
H1  
CAD2  
CAD0  
CCD1  
DATA11  
DATA3  
CD1  
CAD18  
ADDR7  
CPAR  
CIRDY  
ADDR15  
PHY_DATA7  
ADDR16  
GND  
CAD14  
PHY_DATA7  
CCLK  
CAD15  
IOWR  
V
CCP  
V
CCP  
D19  
E1  
CAD12  
ADDR11  
AD20  
PRST  
GND  
AD20  
PRST  
GND  
GND  
GNT  
GNT  
E2  
PHY_RSVD  
PHY_RSVD  
PHY_DATA4  
PHY_RSVD  
PHY_RSVD  
PHY_DATA4  
H2  
REQ  
REQ  
E3  
H3  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PCLK  
PCLK  
E6  
H5  
V
V
CC  
ZV_SDATA  
CC  
ZV_SDATA  
E7  
V
CCL  
V
CCL  
H6  
26  
Table 22. CardBus and 16-Bit PC Card Signal Names by GHK Terminal Number (Continued)  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
CARDBUS 16-BIT  
TERM.  
NO.  
TERM.  
NO.  
TERM.  
NO.  
CARDBUS  
16-BIT  
ZV_PCLK  
VCCD0  
VCCD1  
AD19  
CARDBUS  
16-BIT  
ZV_UV(6)  
ZV_SCLK  
TRDY  
M17  
M18  
M19  
N1  
ZV_PCLK  
VCCD0  
VCCD1  
AD19  
P18  
P19  
R1  
ZV_UV(6)  
ZV_SCLK  
TRDY  
STOP  
SERR  
AD14  
U14  
U15  
V5  
ZV_Y(1)  
ZV_Y(5)  
AD12  
ZV_Y(1)  
ZV_Y(5)  
AD12  
R2  
STOP  
V6  
V
V
CCP  
CCP  
N2  
AD18  
AD18  
R3  
SERR  
V7  
AD7  
AD7  
N3  
AD17  
AD17  
R6  
AD14  
V8  
AD4  
AD4  
N5  
IRDY  
IRDY  
R7  
AD10  
AD10  
V9  
AD1  
AD1  
N6  
AD16  
AD16  
R8  
AD6  
AD6  
V10  
V11  
V12  
V13  
V14  
V15  
W4  
MFUNC1  
GRST  
VPPD0  
INTA  
MFUNC1  
GRST  
VPPD0  
INTA  
N14  
N15  
N17  
N18  
N19  
P1  
ZV_UV(1)  
ZV_UV(5)  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
C/BE2  
ZV_UV(1)  
ZV_UV(5)  
ZV_UV(7)  
ZV_MCLK  
ZV_LRCLK  
C/BE2  
R9  
GND  
GND  
R10  
R11  
R12  
R13  
R14  
R17  
R18  
R19  
T1  
V
CCI  
V
CCI  
MFUNC6  
LED_SKT  
ZV_Y(0)  
ZV_Y(4)  
ZV_UV(0)  
ZV_UV(4)  
GND  
MFUNC6  
LED_SKT  
ZV_Y(0)  
ZV_Y(4)  
ZV_UV(0)  
ZV_UV(4)  
GND  
ZV_VSYNC  
ZV_Y(3)  
C/BE1  
GND  
ZV_VSYNC  
ZV_Y(3)  
C/BE1  
GND  
P2  
FRAME  
FRAME  
W5  
P3  
V
CC  
V
CC  
W6  
AD9  
AD9  
P5  
PERR  
PERR  
W7  
V
CC  
V
CC  
P6  
DEVSEL  
AD13  
DEVSEL  
AD13  
PAR  
PAR  
W8  
AD3  
AD3  
P7  
T19  
U5  
ZV_Y(7)  
AD15  
ZV_Y(7)  
AD15  
W9  
AD2  
AD2  
P8  
AD8  
AD8  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
MFUNC0  
MFUNC3  
SUSPEND  
MFUNC0  
MFUNC3  
SUSPEND  
P9  
RI_OUT/PME  
MFUNC2  
MFUNC5  
RSVD  
RI_OUT/PME  
MFUNC2  
MFUNC5  
RSVD  
U6  
AD11  
AD11  
P10  
P11  
P12  
P13  
P14  
P15  
U7  
C/BE0  
C/BE0  
U8  
AD5  
AD5  
V
CC  
V
CC  
U9  
AD0  
AD0  
ZV_HREF  
ZV_Y(2)  
ZV_Y(6)  
ZV_HREF  
ZV_Y(2)  
ZV_Y(6)  
RSVD  
RSVD  
U10  
U11  
U12  
SPKROUT  
MFUNC4  
VPPD1  
SPKROUT  
MFUNC4  
VPPD1  
GND  
GND  
ZV_UV(2)  
ZV_UV(2)  
P17  
ZV_UV(3)  
ZV_UV(3)  
U13  
INTB  
INTB  
27  
Table 23. CardBus PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV GHK  
PDV GHK  
PDV  
167  
132  
148  
191  
181  
153  
183  
157  
179  
165  
48  
GHK  
F12  
K14  
F18  
B8  
PDV GHK  
AD0  
73  
72  
U9  
V9  
CAD11  
CAD12  
CAD13  
CAD14  
CAD15  
CAD16  
CAD17  
CAD18  
CAD19  
CAD20  
CAD21  
CAD22  
CAD23  
CAD24  
CAD25  
CAD26  
CAD27  
CAD28  
CAD29  
CAD30  
CAD31  
CAUDIO  
C/BE0  
140  
143  
141  
145  
144  
146  
161  
163  
164  
166  
168  
169  
172  
175  
176  
177  
187  
188  
189  
190  
192  
182  
64  
H17  
G19  
H14  
G17  
G18  
G14  
B15  
C14  
B14  
A14  
C13  
B13  
C12  
A11  
B11  
C11  
C9  
CRST  
PHY_CLK  
PHY_CTL(0)  
PHY_CTL(1)  
PHY_DATA0  
PHY_DATA1  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
PHY_DATA7  
PHY_LREQ  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PRST  
196  
197  
198  
200  
202  
204  
205  
206  
207  
208  
1
B7  
C7  
F7  
AD1  
CRSVD  
CRSVD  
CRSVD  
CSERR  
CSTOP  
CSTSCHG  
CTRDY  
CVS1  
AD2  
71  
W9  
W8  
V8  
AD3  
70  
B6  
AD4  
69  
B10  
E18  
E10  
A16  
F11  
E13  
P6  
C6  
F6  
AD5  
68  
U8  
R8  
V7  
AD6  
67  
B5  
AD7  
65  
E6  
AD8  
63  
P8  
C5  
A4  
AD9  
62  
W6  
R7  
U6  
V5  
CVS2  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AD27  
AD28  
AD29  
AD30  
AD31  
CAD0  
CAD1  
CAD2  
CAD3  
CAD4  
CAD5  
CAD6  
CAD7  
CAD8  
CAD9  
CAD10  
61  
DEVSEL  
FRAME  
GND  
D1  
E8  
59  
44  
P2  
194  
2
57  
6
E1  
E3  
56  
P7  
GND  
22  
J5  
3
F5  
55  
R6  
U5  
N6  
N3  
N2  
N1  
M2  
L5  
GND  
38  
M5  
4
G6  
E2  
54  
GND  
58  
W5  
R9  
5
42  
GND  
74  
7
F3  
41  
F9  
GND  
100  
110  
126  
142  
162  
178  
203  
18  
P14  
R19  
L15  
H15  
A15  
E11  
A5  
8
F2  
40  
E9  
GND  
9
G5  
F1  
39  
A8  
GND  
10  
11  
35  
C8  
GND  
H6  
G3  
G2  
H5  
H3  
M3  
H2  
P9  
33  
C10  
U7  
GND  
12  
13  
15  
16  
36  
17  
75  
89  
94  
51  
78  
49  
86  
47  
14  
30  
46  
66  
91  
115  
134  
150  
32  
L6  
GND  
31  
L3  
C/BE1  
53  
W4  
GND  
27  
K5  
C/BE2  
43  
P1  
GNT  
H1  
26  
K3  
C/BE3  
28  
K6  
GRST  
IDSEL  
INTA  
82  
V11  
L1  
25  
K2  
CBLOCK  
CC/BE0  
CC/BE1  
CC/BE2  
CC/BE3  
CCD1  
151  
136  
147  
160  
173  
123  
185  
156  
184  
155  
159  
154  
180  
158  
149  
152  
171  
E19  
J14  
F19  
F13  
B12  
L19  
A9  
29  
REQ  
24  
K1  
92  
V13  
U13  
N5  
RI_OUT/PME  
RSVD  
23  
J6  
INTB  
93  
P12  
P13  
R3  
U10  
R2  
W12  
R1  
G1  
L2  
21  
J3  
IRDY  
45  
RSVD  
20  
J2  
LED_SKT  
LINKON  
LPS  
90  
R12  
A6  
SERR  
19  
J1  
199  
193  
76  
SPKROUT  
STOP  
124  
127  
125  
129  
128  
131  
130  
133  
135  
137  
139  
L18  
L14  
L17  
K18  
K19  
K15  
K17  
J19  
J17  
J15  
H18  
CCD2  
F8  
CCLK  
D19  
F10  
E17  
E14  
F15  
A10  
C15  
G15  
F14  
E12  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
PAR  
W10  
V10  
P10  
W11  
U11  
P11  
R11  
T1  
SUSPEND  
TRDY  
CCLKRUN  
CDEVSEL  
CFRAME  
CGNT  
77  
80  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
81  
83  
P3  
CINT  
84  
W7  
W13  
M14  
J18  
F17  
CIRDY  
CPAR  
85  
52  
CPERR  
CREQ  
PCLK  
37  
M6  
PERR  
50  
P5  
28  
Table 23. CardBus PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number  
(Continued)  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
170  
186  
195  
138  
174  
121  
122  
79  
GHK  
A13  
B9  
PDV GHK  
PDV GHK  
PDV GHK  
V
V
V
V
V
V
V
34  
60  
M1  
V6  
ZV_SDATA  
ZV_UV(0)  
ZV_UV(1)  
ZV_UV(2)  
ZV_UV(3)  
ZV_UV(4)  
ZV_UV(5)  
ZV_UV(6)  
ZV_UV(7)  
119  
106  
108  
107  
111  
109  
113  
112  
116  
M15  
R17  
N14  
P15  
P17  
R18  
N15  
P18  
N17  
ZV_VSYNC  
ZV_Y(0)  
ZV_Y(1)  
ZV_Y(2)  
ZV_Y(3)  
ZV_Y(4)  
ZV_Y(5)  
ZV_Y(6)  
ZV_Y(7)  
96  
97  
V14  
R13  
U14  
W15  
V15  
R14  
U15  
W16  
T19  
CC  
CCP  
CC  
CCP  
A7  
VPPD0  
87  
V12  
U12  
W14  
N19  
N18  
M17  
P19  
98  
CC  
H19  
A12  
M18  
M19  
R10  
E7  
VPPD1  
88  
99  
CCCB  
CCCB  
ZV_HREF  
ZV_LRCLK  
ZV_MCLK  
ZV_PCLK  
ZV_SCLK  
95  
101  
102  
103  
104  
105  
VCCD0  
VCCD1  
118  
117  
120  
114  
V
V
CCI  
201  
CCL  
29  
Table 24. 16-Bit PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
73  
72  
71  
70  
69  
68  
67  
65  
63  
62  
61  
59  
57  
56  
55  
54  
GHK  
U9  
V9  
PDV GHK  
PDV GHK  
PDV GHK  
AD0  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
ADDR19  
ADDR20  
ADDR21  
ADDR22  
ADDR23  
ADDR24  
ADDR25  
137  
143  
160  
149  
152  
158  
156  
146  
148  
151  
153  
155  
157  
159  
161  
164  
J15  
G19  
F13  
G15  
F14  
C15  
D19  
G14  
F18  
E19  
E18  
E17  
A16  
E14  
B15  
B14  
DEVSEL  
FRAME  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GNT  
48  
44  
P6  
P2  
PHY_DATA2  
PHY_DATA3  
PHY_DATA4  
PHY_DATA5  
PHY_DATA6  
PHY_DATA7  
PHY_LREQ  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
204  
205  
206  
207  
208  
1
F6  
B5  
E6  
C5  
A4  
D1  
E8  
E3  
F5  
G6  
E2  
F3  
F2  
G5  
F1  
H6  
AD1  
AD2  
W9  
W8  
V8  
6
E1  
AD3  
22  
J5  
AD4  
38  
M5  
W5  
R9  
AD5  
U8  
R8  
V7  
58  
AD6  
74  
194  
2
AD7  
100  
110  
126  
142  
162  
178  
203  
18  
P14  
R19  
L15  
H15  
A15  
E11  
A5  
AD8  
P8  
3
AD9  
W6  
R7  
U6  
V5  
4
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
5
7
8
P7  
9
R6  
U5  
H1  
10  
11  
GRST  
82  
V11  
BVD1  
(STSCHG/RI)  
AD16  
42  
N6  
183  
E10  
IDSEL  
29  
L1  
PHY_RSVD  
12  
G3  
AD17  
41  
40  
N3  
N2  
BVD2(SPKR)  
C/BE0  
C/BE1  
C/BE2  
C/BE3  
CD1  
182  
64  
C10  
U7  
INPACK  
INTA  
171  
92  
E12  
V13  
U13  
N5  
PHY_RSVD  
PHY_RSVD  
PHY_RSVD  
PRST  
13  
15  
G2  
H5  
AD18  
AD19  
39  
N1  
53  
W4  
P1  
INTB  
93  
16  
H3  
AD20  
35  
M2  
L5  
43  
IRDY  
45  
36  
M3  
AD21  
33  
28  
K6  
IORD  
141  
144  
90  
H14  
G18  
R12  
A6  
READY(IREQ)  
REG  
180  
173  
17  
A10  
B12  
H2  
AD22  
32  
L6  
123  
185  
136  
139  
187  
189  
191  
124  
127  
129  
131  
133  
188  
190  
192  
125  
128  
130  
132  
135  
L19  
A9  
IOWR  
AD23  
31  
L3  
CD2  
LED_SKT  
LINKON  
LPS  
REQ  
AD24  
27  
K5  
CE1  
J14  
H18  
C9  
199  
193  
76  
RESET  
167  
75  
F12  
P9  
AD25  
26  
K3  
CE2  
F8  
RI_OUT/PME  
AD26  
25  
K2  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
MFUNC0  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
OE  
W10 RSVD  
89  
P12  
P13  
R3  
AD27  
24  
K1  
E9  
77  
V10  
P10  
W11  
U11  
P11  
R11  
H17  
T1  
RSVD  
94  
AD28  
23  
J6  
B8  
80  
SERR  
51  
AD29  
21  
J3  
L18  
L14  
K18  
K15  
J19  
F9  
81  
SPKROUT  
STOP  
78  
U10  
R2  
AD30  
20  
J2  
83  
49  
AD31  
19  
J1  
84  
SUSPEND  
TRDY  
86  
W12  
R1  
ADDR0  
ADDR1  
ADDR2  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
177  
176  
175  
172  
169  
168  
166  
163  
147  
145  
C11  
B11  
A11  
C12  
B13  
C13  
A14  
C14  
F19  
G17  
85  
47  
140  
52  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
14  
G1  
PAR  
30  
L2  
A8  
PCLK  
37  
M6  
P5  
46  
P3  
C8  
PERR  
50  
66  
W7  
W13  
M14  
J18  
F17  
A13  
L17  
K19  
K17  
K14  
J17  
PHY_CLK  
PHY_CTL(0)  
PHY_CTL(1)  
PHY_DATA0  
PHY_DATA1  
196  
197  
198  
200  
202  
B7  
91  
C7  
115  
134  
150  
170  
F7  
B6  
C6  
210  
Table 24. 16-Bit PC Card Signal Names Sorted Alphabetically to GHK/PDV Terminal Number (Continued)  
TERM. NO.  
TERM. NO.  
TERM. NO.  
TERM. NO.  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
SIGNAL NAME  
PDV  
186  
195  
138  
174  
121  
122  
79  
GHK  
B9  
PDV GHK  
PDV GHK  
PDV GHK  
V
V
V
V
VPPD0  
VPPD1  
VS1  
87  
88  
V12  
U12  
F11  
E13  
B10  
F15  
F10  
W14  
N19  
N18  
ZV_PCLK  
ZV_SCLK  
ZV_SDATA  
ZV_UV(0)  
ZV_UV(1)  
ZV_UV(2)  
ZV_UV(3)  
ZV_UV(4)  
ZV_UV(5)  
ZV_UV(6)  
120  
114  
119  
106  
108  
107  
111  
109  
113  
112  
M17  
P19  
M15  
R17  
N14  
P15  
P17  
R18  
N15  
P18  
ZV_UV(7)  
ZV_VSYNC  
ZV_Y(0)  
ZV_Y(1)  
ZV_Y(2)  
ZV_Y(3)  
ZV_Y(4)  
ZV_Y(5)  
ZV_Y(6)  
ZV_Y(7)  
116  
96  
N17  
V14  
R13  
U14  
W15  
V15  
R14  
U15  
W16  
T19  
CC  
A7  
CC  
H19  
A12  
M18  
M19  
R10  
E7  
179  
165  
181  
154  
184  
95  
97  
CCCB  
CCCB  
VS2  
98  
VCCD0  
VCCD1  
WAIT  
99  
WE  
101  
102  
103  
104  
105  
V
V
V
V
WP(IOIS16)  
ZV_HREF  
ZV_LRCLK  
ZV_MCLK  
CCI  
201  
34  
CCL  
CCP  
CCP  
M1  
118  
117  
60  
V6  
211  
The terminals are grouped in tables by functionality, such as PCI system function and power-supply function (see  
Table 25 through Table 217). The terminal numbers also are listed for convenient reference.  
Table 25. Power-Supply Terminals  
TERMINAL  
NUMBER  
DESCRIPTION  
NAME  
PDV  
GHK  
6, 22, 38, 58, 74,  
100, 110, 126,  
142, 162, 178,  
203  
A5, A15, E1, E11,  
H15, J5, L15, M5, Device ground terminals  
P14, R9, W5  
GND  
14, 30, 46, 66,  
91, 115, 134,  
150, 170, 186,  
195  
A7, A13, B9, F17,  
G1, J18, L2, M14, Power-supply terminal for core logic (3.3 V)  
P3, W7, W13  
V
CC  
138, 174  
79  
A12, H19  
R10  
Clamp voltage for PC Card interface. Matches card signaling environment, 5 V or 3.3 V.  
V
CCCB  
Clamp voltage for miscellaneous I/O signals (MFUNC, GRST, and SUSPEND)  
Clamp voltage for 1394 link function  
V
CCI  
201  
E7  
V
CCL  
Clamp voltage for PCI interface, ZV interface, SPKROUT, INTA, INTB LED_SKT,  
VCCD0, VCCD1, VPPD0, VPPD1  
34, 60  
M1, V6  
V
CCP  
Table 26. PC Card Power-Switch Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
VCCD0  
VCCD1  
121  
122  
M18  
M19  
O
O
Logic controls to the TPS2211 PC Card power-switch interface to control AVCC  
Logic controls to the TPS2211 PC Card power-switch interface to control AVPP  
VPPD0  
VPPD1  
87  
88  
V12  
U12  
Table 27. PCI System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
Global reset. When global reset is asserted, GRST causes the PCI4410A device to place all output buffers  
in a high-impedance state and reset all internal registers. When GRST is asserted, the device is completely  
in its default state. For systems that require wake-up from D3, GRST normally is asserted only during initial  
boot. PRST should be asserted following initial boot so that PME context is retained when transitioning from  
D3 to D0. For systems that do not require wake-up from D3, GRST should be tied to PRST.  
GRST  
82  
V11  
I
When the SUSPEND mode is enabled, the device is protected from GRST, and the internal registers are  
preserved. All outputs are placed in a high-impedance state, but the contents of the registers are preserved.  
PCI bus clock. PCLK provides timing for all transactions on the PCI bus. All PCI signals are sampled at the  
rising edge of PCLK.  
PCLK  
PRST  
37  
36  
M6  
M3  
I
I
PCI bus reset. When the PCI bus reset is asserted, PRST causes the PCI4410A device to place all output  
buffers in a high-impedance state and reset internal registers. When PRST is asserted, the device is  
completely nonfunctional. After PRST is deasserted, the PCI4410A device is in a default state.  
When SUSPEND and PRST are asserted, the device is protected from PRST clearing the internal registers.  
All outputs are placed in a high-impedance state, but the contents of the registers are preserved.  
212  
Table 28. PCI Address and Data Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
AD31  
AD30  
AD29  
AD28  
AD27  
AD26  
AD25  
AD24  
AD23  
AD22  
AD21  
AD20  
AD19  
AD18  
AD17  
AD16  
AD15  
AD14  
AD13  
AD12  
AD11  
AD10  
AD9  
19  
20  
21  
23  
24  
25  
26  
27  
31  
32  
33  
35  
39  
40  
41  
42  
54  
55  
56  
57  
59  
61  
62  
63  
65  
67  
68  
69  
70  
71  
72  
73  
J1  
J2  
J3  
J6  
K1  
K2  
K3  
K5  
L3  
L6  
L5  
M2  
N1  
N2  
N3  
N6  
U5  
R6  
P7  
V5  
U6  
R7  
W6  
P8  
V7  
R8  
U8  
V8  
W8  
W9  
V9  
U9  
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the primary  
interface. During the address phase of a primary bus PCI cycle, AD31AD0 contain a 32-bit address or other  
destination information. During the data phase, AD31AD0 contain data.  
I/O  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
PCI bus commands and byte enables. These signals are multiplexed on the same PCI terminals. During the  
address phase of a primary bus PCI cycle, C/BE3C/BE0 define the bus command. During the data phase,  
this 4-bit bus is used as byte enables. The byte enables determine which byte paths of the full 32-bit data  
bus carry meaningful data. C/BE0 applies to byte 0 (AD7AD0), C/BE1 applies to byte 1 (AD15AD8), C/BE2  
applies to byte 2 (AD23AD16), and C/BE3 applies to byte 3 (AD31AD24).  
28  
43  
53  
64  
K6  
P1  
W4  
U7  
C/BE3  
C/BE2  
C/BE1  
C/BE0  
I/O  
I/O  
PCI bus parity. In all PCI bus read and write cycles, the PCI4410A device calculates even parity across the  
AD31AD0 and C/BE3C/BE0 buses. As an initiator during PCI cycles, the PCI4410A device outputs this  
parity indicator with a one-PCLK delay. As a target during PCI cycles, the calculated parity is compared to  
the initiators parity indicator. A compare error results in the assertion of a parity error (PERR).  
PAR  
52  
T1  
213  
Table 29. PCI Interface Control Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
PCI device select. The PCI4410A device asserts DEVSEL to claim a PCI cycle as the target device. As a PCI  
48  
44  
P6  
P2  
I/O initiator on the bus, the PCI4410A device monitors DEVSEL until a target responds. If no target responds  
before timeout occurs, the PCI4410A device terminates the cycle with an initiator abort.  
DEVSEL  
PCI cycle frame. FRAME is driven by the initiator of a bus cycle. FRAME is asserted to indicate that a bus  
I/O transaction is beginning, and data transfers continue while this signal is asserted. When FRAME is  
deasserted, the PCI bus transaction is in the final data phase.  
FRAME  
PCI bus grant. GNT is driven by the PCI bus arbiter to grant the PCI4410A device access to the PCI bus after  
18  
29  
45  
H1  
L1  
N5  
I
I
the current data transaction has completed. GNT may or may not follow a PCI bus request, depending on the  
PCI bus parking algorithm.  
GNT  
IDSEL  
IRDY  
Initialization device select. IDSEL selects the PCI4410A device during configuration space accesses. IDSEL  
can be connected to one of the upper 24 PCI address lines on the PCI bus.  
PCI initiator ready. IRDY indicates the PCI bus initiators ability to complete the current data phase of the  
I/O transaction. A data phase is completed on a rising edge of PCLK, when both IRDY and TRDY are asserted.  
Until IRDY and TRDY are both sampled asserted, wait states are inserted.  
PCI parity error indicator. PERR is driven by a PCI device to indicate that calculated parity does not match  
I/O PAR when PERR is enabled through bit 6 (PERR_EN) of the command register (PCI offset 04h, see  
Section 4.4).  
50  
17  
P5  
H2  
PERR  
REQ  
O
PCI bus request. REQ is asserted by the PCI4410A device to request access to the PCI bus as an initiator.  
PCI system error. SERR is an output that is pulsed from the PCI4410A device when enabled through bit 8  
(SERR_EN) of the command register (PCI offset 04h, see Section 4.4) indicating a system error has  
occurred. The PCI4410A device need not be the target of the PCI cycle to assert this signal. When SERR  
is enabled in the command register, this signal also pulses, indicating that an address parity error has occurred  
on a CardBus interface.  
51  
R3  
O
SERR  
PCI cycle stop signal. STOP is driven by a PCI target to request the initiator to stop the current PCI bus  
49  
47  
R2  
R1  
I/O transaction. STOP is used for target disconnects and is commonly asserted by target devices that do not  
support burst data transfers.  
STOP  
TRDY  
PCI target ready. TRDY indicates the primary bus targets ability to complete the current data phase of the  
I/O transaction. A data phase is completed on a rising edge of PCLK, when both IRDY and TRDY are asserted.  
Until both IRDY and TRDY are asserted, wait states are inserted.  
214  
Table 210. Multifunction and Miscellaneous Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
DESCRIPTION  
NAME  
INTA  
INTB  
92  
93  
90  
V13  
U13  
R12  
O
O
O
Parallel PCI interrupt. INTA  
Parallel PCI interrupt. INTB  
LED_SKT  
PC Card socket activity LED indicator. LED_SKT provides an output indicating PC Card socket activity.  
Multifunction terminal 0. MFUNC0 can be configured as parallel PCI interrupt INTA, GPI0, GPO0, socket  
MFUNC0  
76  
W10 I/O activity LED output, ZV switching outputs, CardBus audio PWM, GPE, or a parallel IRQ. See  
Section 4.32, Multifunction Routing Register, for configuration details.  
Multifunction terminal 1. MFUNC1 can be configured as GPI1, GPO1, socket activity LED output, ZV  
switching outputs, CardBus audio PWM, GPE, or a parallel IRQ. See Section 4.32, Multifunction Routing  
Register, for configuration details.  
MFUNC1  
77  
V10  
P10  
I/O  
Serial data (SDA). When VCCD0 and VCCD1 are high after a PCI reset, the MFUNC1 terminal provides  
the SDA signaling for the serial bus interface. The two-terminal serial interface loads the subsystem  
identification and other register defaults from an EEPROM after a PCI reset. See Section 3.6.1, Serial  
Bus Interface Implementation, for details on other serial bus applications.  
Multifunction terminal 2. MFUNC2 can be configured as PC/PCI DMA request, GPI2, GPO2, ZV  
MFUNC2  
MFUNC3  
80  
81  
I/O switching outputs, CardBus audio PWM, GPE, RI_OUT, or a parallel IRQ. See Section 4.32,  
Multifunction Routing Register, for configuration details.  
Multifunction terminal 3. MFUNC3 can be configured as a parallel IRQ or the serialized interrupt signal  
IRQSER. See Section 4.32, Multifunction Routing Register, for configuration details.  
W11 I/O  
Multifunction terminal 4. MFUNC4 can be configured as PCI LOCK, GPI3, GPO3, socket activity LED  
output, ZV switching outputs, CardBus audio PWM, GPE, RI_OUT, or a parallel IRQ. See Section 4.32,  
Multifunction Routing Register, for configuration details.  
MFUNC4  
MFUNC5  
83  
U11  
I/O  
Serial clock (SCL). When VCCD0 and VCCD1 are high after a PCI reset, the MFUNC4 terminal provides  
the SCL signaling for the serial bus interface. The two-terminal serial interface loads the subsystem  
identification and other register defaults from an EEPROM after a PCI reset. See Section 3.6.1, Serial  
Bus Interface Implementation, for details on other serial bus applications.  
Multifunction terminal 5. MFUNC5 can be configured as PC/PCI DMA grant, GPI4, GPO4, socket activity  
84  
P11  
I/O LED output, ZV switching outputs, CardBus audio PWM, GPE, or a parallel IRQ. See Section 4.32,  
Multifunction Routing Register, for configuration details.  
Multifunction terminal 6. MFUNC6 can be configured as a PCI CLKRUN or a parallel IRQ. See  
Section 4.32, Multifunction Routing Register, for configuration details.  
MFUNC6  
85  
75  
R11  
P9  
I/O  
Ring indicate out and power-management event output. Terminal provides an output for ring-indicate  
or PME signals.  
RI_OUT/PME  
O
Speaker output. SPKROUT is the output to the host system that can carry SPKR or CAUDIO through  
78  
86  
U10  
O
I
the PCI4410A device from the PC Card interface. SPKROUT is driven as the exclusive-OR combination  
of card SPKR//CAUDIO inputs.  
SPKROUT  
SUSPEND  
Suspend. SUSPEND protects the internal registers from clearing when the GRST or PRST signal is  
asserted. See Section 3.8.4, Suspend Mode, for details.  
W12  
215  
Table 211. 16-Bit PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
ADDR25  
ADDR24  
ADDR23  
ADDR22  
ADDR21  
ADDR20  
ADDR19  
ADDR18  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
ADDR13  
ADDR12  
ADDR11  
ADDR10  
ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
164  
161  
159  
157  
155  
153  
151  
148  
146  
156  
158  
152  
149  
160  
143  
137  
145  
147  
163  
166  
168  
169  
172  
175  
176  
177  
B14  
B15  
E14  
A16  
E17  
E18  
E19  
F18  
G14  
D19  
C15  
F14  
G15  
F13  
G19  
J15  
G17  
F19  
C14  
A14  
C13  
B13  
C12  
A11  
B11  
C11  
O
PC Card address. 16-bit PC Card address lines. ADDR25 is the most significant bit.  
ADDR0  
DATA15  
DATA14  
DATA13  
DATA12  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
135  
132  
130  
128  
125  
192  
190  
188  
133  
131  
129  
127  
124  
191  
189  
187  
J17  
K14  
K17  
K19  
L17  
C8  
A8  
F9  
I/O  
PC Card data. 16-bit PC Card data lines. DATA15 is the most significant bit.  
J19  
K15  
K18  
L14  
L18  
B8  
E9  
C9  
216  
Table 212. 16-Bit PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
Battery voltage detect 1. BVD1 is generated by 16-bit memory PC Cards that include batteries. BVD1  
is used with BVD2 as an indication of the condition of the batteries on a memory PC Card. Both BVD1  
and BVD2 are high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak  
and should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change-Interrupt Configuration  
Register, for enable bits. See Section 5.5, ExCA Card Status-Change Register, and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD1  
(STSCHG/RI)  
183  
E10  
I
Status change. STSCHG is used to alert the system to a change in the READY, write protect, or  
battery voltage dead condition of a 16-bit I/O PC Card.  
Ring indicate. RI is used by 16-bit modem cards to indicate a ring detection.  
Battery voltage detect 2. BVD2 is generated by 16-bit memory PC Cards that include batteries. BVD2  
is used with BVD1 as an indication of the condition of the batteries on a memory PC Card. Both BVD1  
and BVD2 are high when the battery is good. When BVD2 is low and BVD1 is high, the battery is weak  
and should be replaced. When BVD1 is low, the battery is no longer serviceable and the data in the  
memory PC Card is lost. See Section 5.6, ExCA Card Status-Change-Interrupt Configuration  
Register, for enable bits. See Section 5.5, ExCA Card Status-Change Register, and Section 5.2,  
ExCA Interface Status Register, for the status bits for this signal.  
BVD2  
(SPKR)  
182  
C10  
I
Speaker. SPKR is an optional binary audio signal available only when the card and socket have been  
configured for the 16-bit I/O interface. The audio signals from cards A and B are combined by the  
PCI4410A device and are output on SPKROUT.  
DMA request. BVD2 can be used as the DMA request signal during DMA operations to a 16-bit  
PC Card that supports DMA. The PC Card asserts BVD2 to indicate a request for a DMA operation.  
Card detect 1 and Card detect 2. CD1 and CD2 are connected internally to ground on the PC Card.  
When a PC Card is inserted into a socket, CD1 and CD2 are pulled low. For signal status, see  
Section 5.2, ExCA Interface Status Register.  
123  
185  
L19  
A9  
CD1  
CD2  
I
136  
139  
J14  
H18  
Card enable 1 and card enable 2. CE1 and CE2 enable even- and odd-numbered address bytes. CE1  
enables even-numbered address bytes, and CE2 enables odd-numbered address bytes.  
CE1  
CE2  
O
Input acknowledge. INPACK is asserted by the PC Card when it can respond to an I/O read cycle  
at the current address.  
INPACK  
IORD  
171  
141  
E12  
H14  
I
DMA request. INPACK can be used as the DMA request signal during DMA operations from a 16-bit  
PC Card that supports DMA. If it is used as a strobe, the PC Card asserts this signal to indicate a  
request for a DMA operation.  
I/O read. IORD is asserted by the PCI4410A device to enable 16-bit I/O PC Card data output during  
host I/O read cycles.  
O
DMA write. IORD is used as the DMA write strobe during DMA operations from a 16-bit PC Card that  
supports DMA. The PCI4410A device asserts IORD during DMA transfers from the PC Card to host  
memory.  
I/O write. IOWR is driven low by the PCI4410A device to strobe write data into 16-bit I/O PC Cards  
during host I/O write cycles.  
144  
140  
G18  
H17  
O
O
IOWR  
OE  
DMA read. IOWR is used as the DMA write strobe during DMA operations from a 16-bit PC Card that  
supports DMA. The PCI4410A device asserts IOWR during transfers from host memory to the PC  
Card.  
Output enable. OE is driven low by the PCI4410A device to enable 16-bit memory PC Card data  
output during host memory read cycles.  
DMA terminal count. OE is used as terminal count (TC) during DMA operations to a 16-bit PC Card  
that supports DMA. The PCI4410A device asserts OE to indicate TC for a DMA write operation.  
217  
Table 212. 16-Bit PC Card Interface Control Terminals (Continued)  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
Ready. The ready function is provided by READY when the 16-bit PC Card and the host socket are  
configured for the memory-only interface. READY is driven low by the 16-bit memory PC Cards to indicate  
that the memory card circuits are busy processing a previous write command. READY is driven high when  
the 16-bit memory PC Card is ready to accept a new data-transfer command.  
READY  
(IREQ)  
180  
A10  
I
Interrupt request. IREQ is asserted by a 16-bit I/O PC Card to indicate to the host that a device on the 16-bit  
I /O PC Card requires service by the host software. IREQ is high (deasserted) when no interrupt is  
requested.  
Attribute memory select. REG remains high for all common memory accesses. When REG is asserted,  
access is limited to attribute memory (OE or WE active) and to the I/O space (IORD or IOWR active).  
Attribute memory is a separately accessed section of card memory and generally is used to record card  
capacity and other configuration and attribute information.  
173  
B12  
O
REG  
DMA acknowledge. REG is used as a DMA acknowledge (DACK) during DMA operations to a 16-bit PC  
Card that supports DMA. The PCI4410A device asserts REG to indicate a DMA operation. REG is used  
in conjunction with the DMA read (IOWR) or DMA write (IORD) strobes to transfer data.  
RESET  
WAIT  
167  
181  
F12  
B10  
O
I
PC Card reset. RESET forces a hard reset to a 16-bit PC Card.  
Bus cycle wait. WAIT is driven by a 16-bit PC Card to extend the completion of the memory or I/O cycle  
in progress.  
Write enable. WE is used to strobe memory write data into 16-bit memory PC Cards. WE also is used for  
memory PC Cards that employ programmable memory technologies.  
WE  
154  
F15  
O
DMA terminal count. WE is used as TC during DMA operations to a 16-bit PC Card that supports DMA.  
The PCI4410A device asserts WE to indicate TC for a DMA read operation.  
Write protect. WP applies to 16-bit memory PC Cards. WP reflects the status of the write-protect switch  
on 16-bit memory PC Cards. For 16-bit I/O PC cards, WP is used for the 16-bit port (IOIS16) function.  
I/O is 16 bits. IOIS16 applies to 16-bit I/O PC Cards. IOIS16 is asserted by the 16-bit PC Card when the  
address on the bus corresponds to an address to which the 16-bit PC Card responds, and the I/O port that  
is addressed is capable of 16-bit accesses.  
WP  
(IOIS16)  
184  
F10  
I
DMA request. WP can be used as the DMA request signal during DMA operations to a 16-bit PC Card that  
supports DMA. If used, the PC Card asserts WP to indicate a request for a DMA operation.  
VS1  
VS2  
179  
165  
F11  
E13  
Voltage sense 1 and voltage sense 2. VS1 and VS2, when used in conjunction with each other, determine  
the operating voltage of the PC Card.  
I/O  
Table 213. CardBus PC Card Interface System Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV GHK  
CardBus clock. CCLK provides synchronous timing for all transactions on the CardBus interface. All  
signals except CRST, CCLKRUN, CINT, CSTSCHG, CAUDIO, CCD2, CCD1, CVS2, and CVS1 are  
sampled on the rising edge of CCLK, and all timing parameters are defined with the rising edge of this  
signal. CCLK operates at the PCI bus clock frequency, but it can be stopped in the low state or slowed  
down for power savings.  
CCLK  
156  
D19  
O
CardBus clock run. CCLKRUN is used by a CardBus PC Card to request an increase in the CCLK  
frequency, and by the PCI4410A device to indicate that the CCLK frequency is going to be decreased.  
184  
167  
F10  
F12  
I/O  
O
CCLKRUN  
CRST  
CardBus reset. CRST brings CardBus PC Card-specific registers, sequencers, and signals to a known  
state. When CRST is asserted, all CardBus PC Card signals are placed in a high-impedance state, and  
the PCI4410A device drives these signals to a valid logic level. Assertion can be asynchronous to CCLK,  
but deassertion must be synchronous to CCLK.  
218  
Table 214. CardBus PC Card Address and Data Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
GHK  
CAD31  
CAD30  
CAD29  
CAD28  
CAD27  
CAD26  
CAD25  
CAD24  
CAD23  
CAD22  
CAD21  
CAD20  
CAD19  
CAD18  
CAD17  
CAD16  
CAD15  
CAD14  
CAD13  
CAD12  
CAD11  
CAD10  
CAD9  
192  
190  
189  
188  
187  
177  
176  
175  
172  
169  
168  
166  
164  
163  
161  
146  
144  
145  
141  
143  
140  
139  
137  
135  
133  
130  
131  
128  
129  
125  
127  
124  
C8  
A8  
E9  
F9  
C9  
C11  
B11  
A11  
C12  
B13  
C13  
A14  
B14  
C14  
B15  
G14  
G18  
G17  
H14  
G19  
H17  
H18  
J15  
J17  
J19  
K17  
K15  
K19  
K18  
L17  
L14  
L18  
CardBus address and data. These signals make up the multiplexed CardBus address and data bus on  
the CardBus interface. During the address phase of a CardBus cycle, CAD31CAD0 contain a 32-bit  
address. During the data phase of a CardBus cycle, CAD31CAD0 contain data. CAD31 is the most  
significant bit.  
I/O  
CAD8  
CAD7  
CAD6  
CAD5  
CAD4  
CAD3  
CAD2  
CAD1  
CAD0  
CardBus bus commands and byte enables. CC/BE3CC/BE0 are multiplexed on the same CardBus  
terminals. During the address phase of a CardBus cycle, CC/BE3CC/BE0 define the bus command.  
During the data phase, this 4-bit bus is used as byte enables. The byte enables determine which byte paths  
of the full 32-bit data bus carry meaningful data. CC/BE0 applies to byte 0 (CAD7CAD0), CC/BE1 applies  
to byte 1 (CAD15CAD8), CC/BE2 applies to byte 2 (CAD23CAD16), and CC/BE3 applies to byte 3  
(CAD31CAD24).  
173  
160  
147  
136  
B12  
F13  
F19  
J14  
CC/BE3  
CC/BE2  
CC/BE1  
CC/BE0  
I/O  
I/O  
CardBus parity. In all CardBus read and write cycles, the PCI4410A device calculates even parity across  
the CAD and CC/BE buses. As an initiator during CardBus cycles, the PCI4410A device outputs CPAR  
with a one-CCLK delay. As a target during CardBus cycles, the calculated parity is compared to the  
initiators parity indicator; a compare error results in a parity-error assertion.  
CPAR  
149  
G15  
219  
Table 215. CardBus PC Card Interface Control Terminals  
TERMINAL  
NUMBER  
I/O  
DESCRIPTION  
NAME  
PDV  
182  
151  
GHK  
C10  
E19  
CardBus audio. CAUDIO is a digital input signal from a PC Card to the system speaker. The PCI4410A  
device supports the binary audio mode and outputs a binary signal from the card to SPKROUT.  
CAUDIO  
CBLOCK  
I
I/O  
I
CardBus lock. CBLOCK is used to gain exclusive access to a target.  
123  
185  
L19  
A9  
CCD1  
CCD2  
CardBus detect 1 and CardBus detect 2. CCD1 and CCD2 are used in conjunction with CVS1 and  
CVS2 to identify card insertion and interrogate cards to determine the operating voltage and card type.  
CardBus device select. The PCI4410A device asserts CDEVSEL to claim a CardBus cycle as the  
target device. As a CardBus initiator on the bus, the PCI4410A device monitors CDEVSEL until a target  
responds. If no target responds before timeout occurs, the PCI4410A device terminates the cycle with  
an initiator abort.  
155  
159  
E17  
E14  
I/O  
I/O  
CDEVSEL  
CFRAME  
CardBus cycle frame. CFRAME is driven by the initiator of a CardBus bus cycle. CFRAME is asserted  
to indicate that a bus transaction is beginning, and data transfers continue while this signal is asserted.  
When CFRAME is deasserted, the CardBus bus transaction is in the final data phase.  
CardBus bus grant. CGNT is driven by the PCI4410A device to grant a CardBus PC Card access to  
the CardBus bus after the current data transaction has been completed.  
154  
180  
F15  
A10  
O
I
CGNT  
CINT  
CardBus interrupt. CINT is asserted low by a CardBus PC Card to request interrupt servicing from the  
host.  
CardBus initiator ready. CIRDY indicates the CardBus initiators ability to complete the current data  
phase of the transaction. A data phase is completed on a rising edge of CCLK when both CIRDY and  
CTRDY are asserted. Until both CIRDY and CTRDY are sampled asserted, wait states are inserted.  
158  
C15  
I/O  
CIRDY  
CardBus parity error. CPERR reports parity errors during CardBus transactions, except during special  
cycles. It is driven low by a target two clocks following that data when a parity error is detected.  
152  
171  
F14  
E12  
I/O  
I
CPERR  
CREQ  
CardBus request. CREQ indicates to the arbiter that the CardBus PC Card desires use of the CardBus  
bus as an initiator.  
CardBus system error. CSERR reports address parity errors and other system errors that could lead  
to catastrophic results. CSERR is driven by the card synchronous to CCLK, but deasserted by a weak  
pullup, and may take several CCLK periods. The PCI4410A device can report CSERR to the system  
by assertion of SERR on the PCI interface.  
181  
B10  
I
CSERR  
CardBus stop. CSTOP is driven by a CardBus target to request the initiator to stop the current CardBus  
transaction. CSTOP is used for target disconnects, and is commonly asserted by target devices that  
do not support burst data transfers.  
153  
183  
157  
E18  
E10  
A16  
I/O  
I
CSTOP  
CSTSCHG  
CTRDY  
CardBus status change. CSTSCHG alerts the system to a change in the cards status, and is used as  
a wake-up mechanism.  
CardBus target ready. CTRDY indicates the CardBus targets ability to complete the current data phase  
of the transaction. A data phase is completed on a rising edge of CCLK, when both CIRDY and CTRDY  
are asserted; until this time, wait states are inserted.  
I/O  
CardBus voltage sense 1 and CardBus voltage sense 2. CVS1 and CVS2 are used in conjunction with  
CCD1 and CCD2 to identify card insertion and interrogate cards to determine the operating voltage and  
card type.  
CVS1  
CVS2  
179  
165  
F11  
E13  
I/O  
220  
Table 216. IEEE 1394 PHY/Link Interface Terminals  
TERMINAL  
NUMBER  
PDV GHK  
I/O  
FUNCTION  
NAME  
PHY-link interface control. These bidirectional signals control passage of information between the  
PHY and link. The link can drive these terminals only after the PHY has granted permission,  
following a link request (LREQ).  
PHY_CTL1  
PHY_CTL0  
198  
197  
F7  
C7  
I/O  
1
D1  
A4  
C5  
E6  
B5  
F6  
C6  
B6  
PHY_DATA7  
PHY_DATA6  
PHY_DATA5  
PHY_DATA4  
PHY_DATA3  
PHY_DATA2  
PHY_DATA1  
PHY_DATA0  
208  
207  
206  
205  
204  
202  
200  
PHY-link interface data. These bidirectional signals pass data between the PHY and link. These  
terminals are driven by the link on transmissions and are driven by the PHY on receptions. Only  
DATA1DATA0 are valid for 100-Mbit speed. DATA4DATA0 are valid for 200-Mbit speed and  
DATA7DATA0 are valid for 400-Mbit speed.  
I/O  
196  
194  
B7  
E8  
I
PHY_CLK  
System clock. This input provides a 49.152-MHz clock signal for data synchronization.  
Link request. This signal is driven by the link to initiate a request for the PHY to perform some  
service.  
O
PHY_LREQ  
199  
193  
A6  
F8  
I
LINKON  
LPS  
1394 link on. This input from the PHY indicates that the link should turn on.  
Link power status. LPS indicates that link is powered and fully functional.  
O
Table 217. Zoomed-Video Interface Terminals  
TERMINAL  
NUMBER  
I/O  
FUNCTION  
NAME  
PDV  
95  
GHK  
W14  
V14  
ZV_HREF  
O
O
Horizontal sync to the zoomed-video port  
Vertical sync to the zoomed-video port  
96  
ZV_VSYNC  
105  
104  
103  
102  
101  
99  
T19  
W16  
U15  
R14  
V15  
W15  
U14  
R13  
ZV_Y7  
ZV_Y6  
ZV_Y5  
ZV_Y4  
ZV_Y3  
ZV_Y2  
ZV_Y1  
ZV_Y0  
O
Video data to the zoomed-video port in YUV:4:2:2 format  
98  
97  
116  
112  
113  
109  
111  
107  
108  
106  
N17  
P18  
N15  
R18  
P17  
P15  
N14  
R17  
ZV_UV7  
ZV_UV6  
ZV_UV5  
ZV_UV4  
ZV_UV3  
ZV_UV2  
ZV_UV1  
ZV_UV0  
O
Video data to the zoomed-video port in YUV:4:2:2 format  
114  
117  
120  
118  
119  
P19  
N18  
M17  
N19  
M15  
O
O
O
O
O
ZV_SCLK  
ZV_MCLK  
ZV_PCLK  
ZV_LRCLK  
ZV_SDATA  
Audio SCLK PCM  
Audio MCLK PCM  
Pixel clock to the zoomed-video port  
Audio LRCLK PCM  
Audio SDATA PCM  
221  
222  
3 Feature/Protocol Descriptions  
The following sections give an overview of the PCI4410A device. Figure 31 shows connections to the PCI4410A  
device. The PCI interface includes all address/data and control signals for PCI protocol. The interrupt interface  
includes terminals for parallel PCI, parallel ISA, and serialized PCI and ISA signaling. Miscellaneous system interface  
terminals include multifunction terminals: SUSPEND, RI_OUT/PME (power-management control signal), and  
SPKROUT.  
1394 Ports  
North  
Bridge  
CPU  
Memory  
OHCI-PHY  
Interface  
1394  
PHY  
PCI Bus  
14  
VGA  
Controller  
PCI4410A  
PC Card  
South  
Bridge  
TPS2211  
Power  
Switch  
Super  
I/O  
Controller  
19  
ISA  
23  
Audio  
Codec  
4
Zoomed  
Video  
PC Card Interface  
Figure 31. PCI4410A System Block Diagram  
3.1 Power-Supply Sequencing  
The PCI4410A device contains 3.3-V I/O buffers with 5-V tolerance, requiring a core power supply and clamp  
voltages. The core power supply always is 3.3 V. The clamp voltages can be either 3.3 V or 5 V, depending on the  
interface. The following power-up and power-down sequences are recommended.  
The power-up sequence is:  
1. Apply 3.3-V power to the core.  
2. Assert GRST to the device to disable the outputs during power up. Output drivers must be powered up in  
the high-impedance state to prevent high current levels through the clamp diodes to the 5-V supply.  
3. Apply the clamp voltage.  
The power-down sequence is:  
1. Use GRST to switch outputs to a high-impedance state.  
2. Remove the clamp voltage.  
3. Remove the 3.3-V power from the core.  
3.2 I/O Characteristics  
Figure 32 shows a 3-state bidirectional buffer. Section 10.2, Recommended Operating Conditions, provides the  
electrical characteristics of the inputs and outputs.  
NOTE: The PCI4410A device meets the ac specifications of the PC Card Standard and the PCI  
Local Bus Specification.  
31  
V
CCP  
Tied for Open Drain  
OE  
Pad  
Figure 32. 3-State Bidirectional Buffer  
NOTE: Unused pins (input or I/O) must be held high or low to prevent them from floating.  
3.3 Clamping Voltages  
The clamping voltages are set to match whatever external environment the PCI4410A device is interfaced with: 3.3 V  
or 5 V. The I/O sites can be pulled through a clamping diode to a voltage rail that protects the core from external  
signals. The core power supply always is 3.3 V and is independent of the clamping voltages. For example, PCI  
signaling can be either 3.3 V or 5 V, and the PCI4410A device must reliably accommodate both voltage levels. This  
is accomplished by using a 3.3-V I/O buffer that is 5-V tolerant, with the applicable clamping voltage applied. If a  
system designer desires a 5-V PCI bus, V  
can be connected to a 5-V power supply.  
CCP  
The PCI4410A device requires four separate clamping voltages because it supports a wide range of features. The  
four voltages are listed and defined in Section 10.2, Recommended Operating Conditions.  
3.4 Peripheral Component Interconnect (PCI) Interface  
The PCI4410A device is fully compliant with the PCI Local Bus Specification. The PCI4410A device provides all  
required signals for PCI master or slave operation, and can operate in either a 5-V or 3.3-V signaling environment  
by connecting the V  
device provides the optional interrupt signal INTA.  
terminals to the desired voltage level. In addition to the mandatory PCI signals, the PCI4410A  
CCP  
3.4.1 PCI Bus Lock (LOCK)  
The bus-locking protocol defined in the PCI Local Bus Specification is not highly recommended, but is provided on  
the PCI4410A device as an additional compatibility feature. The PCI LOCK signal can be routed to the MFUNC4  
terminal via the multifunction routing register. See Section 4.32, Multifunction Routing Register, for details. Note that  
the use of LOCK is supported only by PCI-to-CardBus bridges in the downstream direction (away from the processor).  
PCI LOCK indicates an atomic operation that may require multiple transactions to complete. When LOCK is asserted,  
nonexclusive transactions can proceed to an address that currently is not locked. A grant to start a transaction on  
the PCI bus does not guarantee control of LOCK; control of LOCK is obtained under its own protocol. It is possible  
for different initiators to use the PCI bus while a single master retains ownership of LOCK. Note that the CardBus  
signal for this protocol is CBLOCK to avoid confusion with the bus clock.  
An agent may need to do an exclusive operation because a critical access to memory might be broken into several  
transactions, but the master wants exclusive rights to a region of memory. The granularity of the lock is defined by  
PCI to be 16 bytes, aligned. The LOCK protocol defined by the PCI Local Bus Specification allows a resource lock  
without interfering with nonexclusive real-time data transfer, such as video.  
The PCI bus arbiter may be designed to support only complete bus locks using the LOCK protocol. In this scenario,  
the arbiter will not grant the bus to any other agent (other than the LOCK master) while LOCK is asserted. A complete  
bus lock may have a significant impact on the performance of the video. The arbiter that supports complete bus lock  
must grant the bus to the cache to perform a writeback due to a snoop to a modified line when a locked operation  
is in progress.  
The PCI4410A device supports all LOCK protocol associated with PCI-to-PCI bridges, as also defined for  
PCI-to-CardBus bridges. This includes disabling write posting while a locked operation is in progress, which can solve  
32  
a potential deadlock when devices such as PCI-to-PCI bridges are used. The potential deadlock can occur if a  
CardBus target supports delayed transactions and blocks access to the target until it completes a delayed read. This  
target characteristic is prohibited by the PCI Local Bus Specification, and the issue is resolved by the PCI master using  
LOCK.  
3.4.2 Loading Subsystem Identification  
The subsystem vendor ID register (PCI offset 40h, see Section 4.26) and subsystem ID register (PCI offset 42h, see  
Section 4.27) make up a doubleword of PCI configuration space located at offset 40h for functions 0 and 1. This  
doubleword register is used for system and option card (mobile dock) identification purposes and is required by some  
operating systems. Implementation of this unique identifier register is a PC 99 requirement.  
The PCI4410A device offers two mechanisms to load a read-only value into the subsystem registers. The first  
mechanism relies upon the system BIOS providing the subsystem ID value. The default access mode to the  
subsystem registers is read-only, but can be made read/write by setting bit 5 (SUBSYSRW) in the system control  
register (PCI offset 80h, see Section 4.29). When this bit is set, the BIOS can write a subsystem identification value  
into the registers at PCI offset 40h. The BIOS must clear the SUBSYSRW bit such that the subsystem vendor ID  
register and subsystem ID register are limited to read-only access. This approach saves the added cost of  
implementing the serial electrically erasable programmable ROM (EEPROM).  
In some conditions, such as in a docking environment, the subsystem vendor ID register and subsystem ID register  
must be loaded with a unique identifier via a serial EEPROM. The PCI4410A device loads the data from the serial  
EEPROM after a reset of the primary bus. Note that the SUSPEND input gates the PCI reset from the entire PCI4410A  
core, including the serial bus state machine (see Section 3.8.4, Suspend Mode, for details on using SUSPEND).  
The PCI4410A device provides a two-line serial bus host controller that can interface to a serial EEPROM. See  
Section 3.6, Serial Bus Interface, for details on the two-wire serial bus controller and applications.  
3.5 PC Card Applications  
This section describes the PC Card interfaces of the PCI4410A device:  
Card insertion/removal and recognition  
P C power-switch interface  
Zoomed-video support  
Speaker and audio applications  
LED socket activity indicators  
PC Card-16 DMA support  
PC Card controller programming model  
CardBus socket registers  
2
3.5.1 PC Card Insertion/Removal and Recognition  
The PC Card Standard addresses the card-detection and recognition process through an interrogation procedure  
that the socket must initiate on card insertion into a cold, nonpowered socket. Through this interrogation, card voltage  
requirements and interface (16-bit versus CardBus) are determined.  
The scheme uses the card-detect and voltage-sense signals. The configuration of these four terminals identifies the  
card type and voltage requirements of the PC Card interface. The encoding scheme is defined in the PC Card  
Standard and in Table 31.  
33  
Table 31. PC Card Card-Detect and Voltage-Sense Connections  
CD2//CCD2  
Ground  
CD1//CCD1  
Ground  
VS2//CVS2  
Open  
VS1//CVS1  
Open  
KEY  
5 V  
5 V  
5 V  
LV  
INTERFACE  
16-bit PC Card  
VOLTAGE  
5 V  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
5 V and 3.3 V  
5 V, 3.3 V, and X.X V  
3.3 V  
Ground  
Ground  
Ground  
Ground  
16-bit PC Card  
Ground  
Ground  
Open  
Ground  
16-bit PC Card  
Ground  
Connect to CVS1  
Ground  
Open  
Connect to CCD1  
Ground  
LV  
CardBus PC Card  
16-bit PC Card  
3.3 V  
Ground  
Ground  
LV  
3.3 V and X.X V  
3.3 V and X.X V  
3.3 V, X.X V, and Y.Y V  
Y.Y V  
Connect to CVS2  
Connect to CVS1  
Ground  
Ground  
Connect to CCD2  
Ground  
Ground  
LV  
CardBus PC Card  
CardBus PC Card  
16-bit PC Card  
Ground  
Connect to CCD2  
Open  
LV  
Ground  
Ground  
LV  
Connect to CVS2  
Ground  
Ground  
Connect to CCD2  
Connect to CCD1  
Open  
Open  
LV  
CardBus PC Card  
CardBus PC Card  
CardBus PC Card  
Y.Y V  
Connect to CVS2  
Ground  
Open  
LV  
X.X V and Y.Y V  
Y.Y V  
Connect to CVS1  
Ground  
Connect to CCD2  
Connect to CCD1  
Ground  
LV  
Connect to CVS1  
Connect to CVS2  
Ground  
Reserved  
Reserved  
Ground  
Connect to CCD1  
2
3.5.2 P C Power-Switch Interface (TPS2211)  
2
The PCI4410A device provides a P C (PCMCIA peripheral control) interface for control of the PC Card power switch.  
The VCCD and VPPD terminals are used with the TI TPS2211 single-slot PC Card power-switch interface to provide  
power-switch support. Figure 33 shows terminal assignments for the TPS2211 power-switch interface. Figure 34  
illustrates a typical application, where the PCI4410A device represents the PC Card controller.  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCD0  
VCCD1  
3.3 V  
3.3 V  
SHDN  
VPPD0  
VPPD1  
AVCC  
AVCC  
AVCC  
AVPP  
12 V  
5 V  
5 V  
GND  
OC  
Figure 33. TPS2211 Terminal Assignments  
The PCI4410A device also includes support for the Maxim 1602 and Micrel MIC2562A single-channel CardBus  
power switches. Application of these power switches is similar to that of the TPS2211 power-switch interface.  
34  
Power Supply  
TPS2211  
12 V  
5 V  
12 V  
5 V  
3.3 V  
3.3 V  
AVPP  
AVCC  
V
V
V
V
PP1  
PP2  
CC  
SHDN  
SHDN  
Supervisor  
PC Card  
CC  
VCCD0  
VCCD1  
VPPD0  
VPPD1  
PCI4410A  
(PCMCIA  
Controller)  
OC  
Figure 34. TPS2211 Typical Application  
3.5.3 Zoomed-Video Support  
The zoomed-video (ZV) port on the PCI4410A device provides an internally buffered 16-bit ZV PC Card data path.  
This internal routing is programmed through the card control register (PCI offset 91h, bits 5 and 6). Figure 35  
summarizes the ZV subsystem implemented in the PCI4410A device, and details the bit functions found in the card  
control register.  
When ZV PORT_ENABLE is enabled, the ZV output terminals are enabled and allow the PCI4410A device to route  
the ZV data. However, no data is transmitted unless ZVENABLE (PCI offset 91h, bit 6) is enabled. If ZVENABLE is  
set to low, the ZV output port drives a logic 0 on the ZV bus of the PCI4410A device.  
35  
Zoomed-Video Subsystem  
Card Output  
Enable Logic  
ZV  
PORT_ENABLE  
Note: ZVSTAT must be enabled  
through the GPIO Control Register  
PC Card  
I/F  
PC Card  
Socket  
ZVSTAT  
23  
19 Video Signals  
VGA  
ZVENABLE  
Audio  
Codec  
4 Audio Signals  
Figure 35. Zoomed-Video Subsystem  
3.5.4 Ultra Zoomed Video  
Ultra zoomed video is an enhancement to the PCI4410A DMA engine and is intended to improve the 16-bit bandwidth  
for MPEG I and MPEG II decoder PC Cards. This enhancement allows the PCI4410A device to fetch 32 bits of data  
from memory, versus the PCI11XX/12XX 16-bit fetch capability. This enhancement allows a higher sustained  
throughput to the 16-bit PC Card because the PCI4410A device prefetches an extra 16 bits (32 bits total) during each  
PCI read transaction. If the PCI bus becomes busy, the PCI4410A device has an extra 16 bits of data to perform  
back-to-back 16-bit transactions to the PC Card before having to fetch more data. This feature is built into the DMA  
engine, and software is not required to enable this enhancement.  
NOTE: The PCI11XX and PCI12XX series CardBus controllers have enough 16-bit bandwidth  
to support MPEG II PC Card decoders. But, it was decided to improve the bandwidth even more  
in the PCI14XX series CardBus controllers.  
3.5.5 D3_STAT Terminal  
Additional functionality for the PCI4410A device versus the PCI12xx series is the D3_STAT (D3 status) pin. This pin  
is asserted under the following two conditions (both conditions must be true before D3_STAT is asserted):  
Function 0 (PC Card controller) and function 1 (OHCI-Lynxt) are both in D3.  
PME is enabled for either function.  
3.5.6 Internal Ring Oscillator  
The internal ring oscillator provides an internal clock source for the PCI4410A device so that neither the PCI clock  
nor an external clock is required for the PCI4410A device to power down a socket or interrogate a PC Card. This  
internal oscillator operates nominally at 16 kHz and can be enabled by setting bit 27 (P2CCLK) of the system control  
register (PCI offset 80h, see Section 4.29) to a 1. This function is disabled by default.  
36  
3.5.7 Integrated Pullup Resistors for PC Card Interface  
The PC Card Standard requires pullup resistors on various terminals to support both CardBus and 16-bit card  
configurations. Unlike the PCI1210 or PCI1211 device, which required external pullup resistors, the PCI4410A device  
has integrated all of these pullup resistors on the terminals shown in Table 32, except for the CCLKRUN/WP(IOIS16)  
pullup resistor.  
Table 32. Integrated Pullup Resistors  
TERMINAL NUMBER  
SIGNAL NAME  
PDV  
152  
158  
151  
153  
155  
157  
183  
182  
123  
185  
171  
180  
167  
179  
165  
181  
GHK  
F14  
C15  
E19  
E18  
E17  
A16  
E10  
C10  
L19  
A9  
ADDR14/CPERR  
ADDR15/CIRDY  
ADDR19/CBLOCK  
ADDR20/CSTOP  
ADDR21/CDEVSEL  
ADDR22/CTRDY  
BVD1(STSCHG)/CSTSCHG  
BVD2(SPKR)/CAUDIO  
CD1/CCD1  
CD2/CCD2  
INPACK/CREQ  
E12  
A10  
F12  
F11  
E13  
B10  
READY/CINT  
RESET/CRST  
VS1/CVS1  
VS2/CVS2  
WAIT/CSERR  
184  
F10  
WP(IOIS16)/CLKRUN  
This terminal requires pullup, but the PCI4410A lacks an integrated  
pullup resistor.  
3.5.8 SPKROUT and CAUDPWM Usage  
SPKROUT carries the digital audio signal from the PC Card to the system. When a 16-bit PC Card is configured for  
I/O mode, the BVD2 pin becomes SPKR. This terminal also is used in CardBus binary audio applications, and is  
referred to as CAUDIO. SPKR passes a TTL-level digital audio signal to the PCI4410A device. The CardBus CAUDIO  
signal also can pass a single-amplitude binary waveform. The binary audio signals from the PC Card socket is used  
in the PCI4410A device to produce SPKROUT. This output is enabled by bit 1 (SPKROUTEN) in the card control  
register (PCI offset 91h, see Section 4.34).  
Older controllers support CAUDIO in binary or PWM mode, but use the same terminal (SPKROUT). Some audio chips  
may not support both modes on one terminal and may have a separate terminal for binary and PWM. The PCI4410A  
implementation includes a signal for PWM, CAUDPWM, which can be routed to a MFUNC terminal. Bit 2  
(AUD2MUX), located in the card control register, is programmed to route a CardBus CAUDIO PWM terminal to  
CAUDPWM. See Section 4.32, Multifunction Routing Register, for details on configuring the MFUNC terminals.  
Figure 36 illustrates a sample application using SPKROUT and CAUDPWM.  
37  
System  
Core Logic  
BINARY_SPKR  
PWM_SPKR  
SPKROUT  
CAUDPWM  
Speaker  
Subsystem  
PCI4410A  
Figure 36. Sample Application of SPKROUT and CAUDPWM  
3.5.9 LED Socket Activity Indicators  
The socket activity LEDs indicate when a PC Card is being accessed. The LED_SKT signal can be routed to the  
multifunction terminals and also is provided on a dedicated pin (LED_SKT). When configured for LED output, this  
terminal outputs an active high signal to indicate socket activity. See Section 4.32, Multifunction Routing Register,  
for details on configuring the multifunction terminals.  
The LED signal is active high and is driven for 64-ms durations. When the LED is not being driven high, it is driven  
to a low state. Either of the two circuits shown in Figure 37 can be implemented to provide LED signaling. It is left  
for the board designer to implement the circuit that best fits the application.  
The LED activity signals are valid when a card is inserted, powered, and not in reset. For PC Card-16, the LED activity  
signal is pulsed when READY/IREQ is low. For CardBus cards, the LED activity signal is pulsed if CFRAME, CIRDY,  
or CREQ is active.  
Current Limiting  
R 500 Ω  
LED  
PCI4410A  
Current Limiting  
R 500 Ω  
Application-  
Specific Delay  
LED  
PCI4410A  
Figure 37. Two Sample LED Circuits  
As indicated, the LED signals are driven for a period of 64 ms by a counter circuit. To avoid the possibility of the LED  
appearing to be stuck when the PCI clock is stopped, the LED signaling is cut off when the SUSPEND signal is  
asserted, when the PCI clock is to be stopped during the clock run protocol, or in the D2 or D1 power state.  
If any additional socket activity occurs during this counter cycle, the counter is reset and the LED signal remains  
driven. If socket activity is frequent (at least once every 64 ms), the LED signal remains driven.  
3.5.10 PC Card-16 Distributed DMA Support  
The PCI4410A device supports a distributed DMA slave engine for 16-bit PC Card DMA support. The distributed DMA  
(DDMA) slave register set provides the programmability necessary for the slave DDMA engine. Table 33 provides  
the DDMA register configuration.  
38  
Two socket function-dependent PCI configuration header registers that are critical for DDMA are the socket DMA  
register 0 (PCI offset 94h, see Section 4.37) and the socket DMA register 1 (PCI offset 98h, see Section 4.38).  
Distributed DMA is enabled through socket DMA register 0, and the contents of this register configure the PC Card-16  
terminal (SPKR, IOIS16, or INPACK), which is used for the DMA request signal, DREQ. The base address of the  
DDMA slave registers and the transfer size (bytes or words) are programmed through the socket DMA register 1. See  
the programming model and register descriptions in Section 4 for details.  
Table 33. Distributed DMA Registers  
DDMA  
TYPE  
REGISTER NAME  
BASE ADDRESS  
OFFSET  
R
W
R
Current address  
Base address  
Current count  
Base count  
Reserved  
Reserved  
Page  
00h  
04h  
08h  
0Ch  
Reserved  
Reserved  
Reserved  
W
R
N/A  
Mode  
N/A  
Request  
N/A  
Status  
W
R
Command  
Multichannel  
Mask  
Reserved  
W
Master clear  
The DDMA registers contain control and status information consistent with the 8237 DMA controller; however, the  
register locations are reordered and expanded in some cases. While the DDMA register definitions are identical to  
those in the 8237 DMA controller of the same name, some register bits defined in the 8237 DMA controller do not  
apply to distributed DMA in a PCI environment. In such cases, the PCI4410A device implements these obsolete  
register bits as read-only, nonfunctional bits. The reserved registers shown in Table 33 are implemented as  
read-only and return 0s when read. Write transactions to reserved registers have no effect.  
The DDMA transfer is prefaced by several configuration steps that are specific to the PC Card and must be completed  
after the PC Card is inserted and interrogated. These steps include setting the proper DREQ signal assignment,  
setting the data transfer width, and mapping and enabling the DDMA register set. As discussed above, this is done  
through socket DMA register 0 and socket DMA register 1. The DMA register set is then programmed similarly to an  
8237 controller, and the PCI4410A device awaits a DREQ assertion from the PC Card requesting a DMA transfer.  
DMA writes transfer data from the PC Card-to-PCI memory addresses. The PCI4410A device accepts data 8 or  
16 bits at a time, depending on the programmed data width, and then requests access to the PCI bus by asserting  
its REQ signal. Once the PCI bus is granted in an idle state, the PCI4410A device initiates a PCI memory write  
command to the current memory address and transfers the data in a single data phase. After terminating the PCI  
cycle, the PCI4410A device accepts the next byte(s) from the PC Card until the transfer count expires.  
DMA reads transfer data from PCI memory addresses to the PC Card application. Upon the assertion of DREQ, the  
PCI4410A device asserts REQ to acquire the PCI bus. Once the bus is granted in an idle state, the PCI4410A device  
initiates a PCI memory read operation to the current memory address and accepts 8 or 16 bits of data, depending  
on the programmed data width. After terminating the PCI cycle, the data is passed on to the PC Card. After terminating  
the PC Card cycle, the PCI4410A device requests access to the PCI bus again, until the transfer count has expired.  
The PCI4410A target interface acts normally during this procedure and accepts I/O reads and writes to the DDMA  
registers. While a DDMA transfer is in progress and the host resets the DMA channel, the PCI4410A device asserts  
TC and ends the PC Card cycle(s). TC is indicated in the DDMA status register (see Section 7.5). At the PC Card  
interface, the PCI4410A device supports demand mode transfers. The PCI4410A device asserts DACK during the  
transfer unless DREQ is deasserted before TC. TC is mapped to the OE PC Card terminal for DMA write operations  
and is mapped to the WE PC Card terminal for DMA read operations. The DACK signal is mapped to the PC Card  
REG signal in all transfers, and the DREQ terminal is routed to one of three options, which is programmed through  
socket DMA register 0.  
39  
3.5.11 PC Card-16 PC/PCI DMA  
Some chipsets provide a way for legacy I/O devices to do DMA transfers on the PCI bus. In the PC/PCI DMA protocol,  
the PCI4410A device acts as a PCI target device to certain DMA-related I/O addresses. The PCI4410A PCREQ and  
PCGNT signals are provided as a point-to-point connection to a chipset supporting PC/PCI DMA. The PCREQ and  
PCGNT signals may be routed to the MFUNC2 and MFUNC5 terminals, respectively. See Section 4.32, Multifunction  
Routing Register, for details on configuring the multifunction terminals.  
Under the PC/PCI protocol, a PCI DMA slave device (such as the PCI4410A device) requests a DMA transfer on a  
particular channel using a serialized protocol on PCREQ. The I/O DMA bus master arbitrates for the PCI bus and  
grants the channel through a serialized protocol on PCGNT when it is ready for the transfer. The I/O cycle and memory  
cycles are then presented on the PCI bus, which performs the DMA transfers similarly to legacy DMA master devices.  
PC/PCI DMA is enabled for each PC Card-16 slot by setting bit 19 (CDREQEN) in the respective system control  
register (PCI offset 80h, see Section 4.29). On power up, this bit is reset and the card PC/PCI DMA is disabled. Bit 3  
(CDMA_EN) of the system control register is a global enable for PC/PCI DMA, and is set at power up and never  
cleared if the PC/PCI DMA mechanism is implemented. The desired DMA channel for each PC Card-16 slot must  
be configured through bits 1816 (CDMACHAN field) in the system control register. The channels are configured as  
indicated in Table 34.  
Table 34. PC/PCI Channel Assignments  
SYSTEM CONTROL  
CHANNEL TRANSFER  
DATA WIDTH  
REGISTER  
DMA CHANNEL  
BIT 18  
BIT 17  
BIT16  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
8-bit DMA transfers  
8-bit DMA transfers  
8-bit DMA transfers  
8-bit DMA transfers  
Not used  
16-bit DMA transfers  
16-bit DMA transfers  
16-bit DMA transfers  
As in distributed DMA, the PC Card terminal mapped to DREQ must be configured through socket DMA register 0  
(PCI offset 94h, see Section 4.37). The data transfer width is a function of channel number, and the DDMA slave  
registers are not used. When a DREQ is received from a PC Card and the channel has been granted, the PCI4410A  
device decodes the I/O addresses listed in Table 35 and performs actions dependent upon the address.  
Table 35. I/O Addresses Used for PC/PCI DMA  
DMA I/O ADDRESS  
DMA CYCLE TYPE  
Normal  
TERMINAL COUNT  
PCI CYCLE TYPE  
I/O read/write  
I/O read/write  
I/O read  
00h  
04h  
C0h  
C4h  
0
1
0
1
Normal TC  
Verify  
Verify TC  
I/O read  
When the PC/PCI DMA is used as a PC Card-16 DMA mechanism, it may not provide the performance levels of  
DDMA; however, the design of a PCI target implementing PC/PCI DMA is considerably less complex. No bus master  
state machine is required to support PC/PCI DMA, because the DMA control is centralized in the chipset. This DMA  
scheme often is referred to as centralized DMA for this reason.  
3.5.12 CardBus Socket Registers  
The PCI4410A device contains all registers for compatibility with the PC Card Standard. These registers exist as the  
CardBus socket registers and are listed in Table 36.  
310  
Table 36. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
Socket event  
Socket mask  
00h  
04h  
08h  
0Ch  
10h  
14h  
18h  
1Ch  
20h  
Socket present state  
Socket force event  
Socket control  
Reserved  
Reserved  
Reserved  
Socket power management  
3.6 Serial Bus Interface  
The PCI4410A device provides a serial bus interface to load subsystem identification and select register defaults  
2
through a serial EEPROM and to provide a PC Card power switch interface alternative to P C. See Section 3.5.2,  
2
2
P C Power-Switch Interface (TPS2211), for details. The PCI4410A serial bus interface is compatible with various I C  
and SMBus components.  
3.6.1 Serial Bus-Interface Implementation  
The PCI4410A device defaults to the serial bus interface are disabled. To enable the serial interface, a pullup resistor  
must be implemented on the VCCD0 and VCCD1 terminals and the appropriate pullup resistors must be implemented  
on the SDA and SCL signals, that is, the MFUNC1 and MFUNC4 terminals.  
The PCI4410A device implements a two-pin serial interface with one clock signal (SCL) and one data signal (SDA).  
When pullup resistors are provided on the VCCD0 and VCCD1 terminals, the SCL signal is mapped to the MFUNC4  
terminal and the SDA signal is mapped to the MFUNC1 terminal. The PCI4410A device drives SCL at nearly 100 kHz  
2
during data transfers, which is the maximum specified frequency for standard-mode I C. The serial EEPROM must  
be located at address A0h. Figure 38 illustrates an example application implementing the two-wire serial bus.  
V
CC  
Serial  
EEPROM  
PCI4410A  
VCCD0  
V
CC  
VCCD1  
MFUNC4  
MFUNC1  
SCL  
SDA  
Figure 38. Serial EEPROM Application  
Some serial device applications may include PC Card power switches, ZV source switches, card ejectors, or other  
devices that may enhance the users PC Card experience. The serial EEPROM device and PC Card power switches  
are discussed in the sections that follow.  
3.6.2 Serial Bus-Interface Protocol  
The SCL and SDA signals are bidirectional, open-drain signals and require pullup resistors as shown in Figure 38.  
2
The PCI4410A device supports up to 100 Kb/s data transfer rate and is compatible with standard-mode I C using  
7-bit addressing.  
All data transfers are initiated by the serial bus master. The beginning of a data transfer is indicated by a start  
condition, which is signaled when the SDA line transitions to a low state while SCL is in the high state, as illustrated  
311  
in Figure 39. The end of a requested data transfer is indicated by a stop condition, which is signaled by a low-to-high  
transition of SDA while SCL is in the high state, as shown in Figure 39. Data on SDA must remain stable during the  
high state of the SCL signal, because changes on the SDA signal during the high state of SCL are interpreted as  
control signals, that is, a start or a stop condition.  
SDA  
SCL  
Start  
Stop  
Change of  
Condition  
Condition  
Data Allowed  
Data Line Stable,  
Data Valid  
Figure 39. Serial Bus Start/Stop Conditions and Bit Transfers  
Data is transferred serially in 8-bit bytes. The number of bytes that can be transmitted during a data transfer is  
unlimited; however, each byte must be completed with an acknowledge bit. An acknowledge (ACK) is indicated by  
the receiver pulling the SDA signal low so that it remains low during the high state of the SCL signal. Figure 310  
illustrates the acknowledge protocol.  
SCL From  
1
2
3
7
8
9
Master  
SDA Output  
by Transmitter  
SDA Output  
by Receiver  
Figure 310. Serial Bus-Protocol Acknowledge  
The PCI4410A device is a serial bus master; all other devices connected to the serial bus external to the PCI4410A  
device are slave devices. As the bus master, the PCI4410A device drives the SCL clock at nearly 100 kHz during  
bus cycles and places SCL in a high-impedance state (zero frequency) during idle states.  
Typically, the PCI4410A device masters byte reads and byte writes under software control. Doubleword reads are  
performed by the serial EEPROM initialization circuitry upon a PCI reset, and may not be generated under software  
control. See Section 3.6.3, Serial Bus EEPROM Application, for details on how the PCI4410A device automatically  
loads the subsystem identification and other register defaults through a serial bus EEPROM.  
Figure 311 illustrates a byte write. The PCI4410A device issues a start condition and sends the 7-bit slave device  
address and the command bit 0. A 0 in the R/W command bit indicates that the data transfer is a write. The slave  
device acknowledges if it recognizes the address. The word address byte is then sent by the PCI4410A device and  
another slave acknowledgment is expected. The PCI4410A device then delivers the data byte, MSB first, and expects  
a final acknowledgment before issuing the stop condition.  
312  
Slave Address  
Word Address  
Data Byte  
S
b6 b5 b4 b3 b2 b1 b0  
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
P
R/W  
A = Slave acknowledgement  
S/P = Start/stop condition  
Figure 311. Serial Bus Protocol Byte Write  
Figure 312 illustrates a byte read. The read protocol is very similar to the write protocol, except the R/W command  
bit must be set to 1 to indicate a read-data transfer. In addition, the PCI4410A master must acknowledge reception  
of the read bytes from the slave transmitter. The slave transmitter drives the SDA signal during read data transfers.  
The SCL signal remains driven by the PCI4410A master.  
Slave Address  
Word Address  
S
b6 b5 b4 b3 b2 b1 b0  
1
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
R/W  
Data Byte  
Slave Address  
A
b7 b6 b5 b4 b3 b2 b1 b0  
M
P
b6 b5 b4 b3 b2 b1 b0  
A = Slave acknowledgement  
M = Master acknowledgement  
S/P = Start/stop condition  
Figure 312. Serial Bus Protocol Byte Read  
Figure 313 illustrates EEPROM interface doubleword data-collection protocol.  
Slave Address  
Word Address  
Slave Address  
S
1
0
1
0
0
0
0
0
A
b7 b6 b5 b4 b3 b2 b1 b0  
A
S
1
0
1
0
0
0
0
1
A
Start  
R/W  
Restart  
R/W  
Data Byte 3  
M
Data Byte 2  
M
Data Byte 1  
M
Data Byte 0  
M
P
A = Slave acknowledgement  
M = Master acknowledgement  
S/P = Start/stop condition  
Figure 313. EEPROM Interface Doubleword Data Collection  
3.6.3 Serial Bus EEPROM Application  
When the PCI bus is reset and the serial bus interface is detected, the PCI4410A device attempts to read the  
subsystem identification and other register defaults from a serial EEPROM. The registers and corresponding bits that  
may be loaded with defaults through the EEPROM are provided in Table 37.  
313  
Table 37. Registers and Bits Loadable Through Serial EEPROM  
OHCI REGISTERS LOADED  
OFFSET  
REFERENCE  
REGISTER  
REGISTER NAME  
BITS LOADED FROM EEPROM  
0
1
3Eh  
MIN_GNT and MAX_LAT (see Section 8.14)  
MIN_GNT and MAX_LAT (see Section 8.14)  
Subsystem identification (see Section 8.11)  
Subsystem identification (see Section 8.11)  
Subsystem identification (see Section 8.11)  
Subsystem identification (see Section 8.11)  
Link enhancement control (see Section 8.21)  
Mini-ROM address  
Byte 0, bits 30  
Byte 1, bits 30  
Byte 0  
3Fh  
2
PCI 2Ch  
PCI 2Ch  
PCI 2Ch  
PCI 2Ch  
PCI F4h  
3
Byte 1  
4
Byte 2  
5
Byte 3  
6
Byte 0, bits 7, 2, 1  
7
8
PCI 24h  
PCI 24h  
PCI 24h  
PCI 24h  
PCI 28h  
PCI 28h  
PCI 28h  
PCI 28h  
GUID high (see Section 9.10)  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
9
GUID high (see Section 9.10)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
GUID high (see Section 9.10)  
GUID high (see Section 9.10)  
GUID low (see Section 9.11)  
GUID low (see Section 9.11)  
GUID low (see Section 9.11)  
GUID low (see Section 9.11)  
Checksum  
PCI F4h  
PCI F0h  
PCI F0h  
Link enhancement control (see Section 8.21)  
Miscellaneous configuration (see Section 8.20)  
Miscellaneous configuration (see Section 8.20)  
Byte 1, bits 5, 4, 1, 0  
Byte 0, bits 4, 20  
Byte 1, bits 7, 5, 2  
CARDBUS REGISTERS LOADED  
REGISTER NAME  
OFFSET  
REFERENCE  
REGISTER  
BITS LOADED FROM EEPROM  
0
1
Flag byte  
PCI 40h  
PCI 40h  
PCI 42h  
PCI 42h  
PCI 80h  
PCI 80h  
PCI 80h  
PCI 86h  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 8Ch  
PCI 90h  
PCI 91h  
PCI 92h  
PCI 93h  
PCI A2h  
ExCA 00h  
Subsystem vendor ID (see Section 4.26)  
Subsystem vendor ID (see Section 4.26)  
Subsystem ID (see Section 4.27)  
Subsystem ID (see Section 4.27)  
System control (see Section 4.29)  
System control (see Section 4.29)  
System control (see Section 4.29)  
General control (see Section 4.31)  
Multifunction routing (see Section 4.32)  
Multifunction routing (see Section 4.32)  
Multifunction routing (see Section 4.32)  
Multifunction routing (see Section 4.32)  
Retry status (see Section 4.33)  
Byte 0  
2
Byte 1  
3
Byte 0  
4
Byte 1  
5
Byte 0  
6
Byte 1, bits 7, 6  
Byte 3, bits 7, 5, 3, 2, 0  
Bits 3, 1, 0  
Byte 0  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Byte 1  
Byte 2  
Byte 3, bits 30  
Bits 7, 6  
Bit 7  
Card control (see Section 4.34)  
Device control (see Section 4.35)  
Diagnostic (see Section 4.36)  
Bits 60  
Bits 7, 40  
Bit 15  
Power management capabilities (see Section 4.41)  
ExCA Identification and revision (see Section 5.1)  
Bits 70  
314  
Figure 314 details the EEPROM data format. This format must be followed for the PCI4410A device to properly load  
initializations from a serial EEPROM.  
Slave Address = 1010 000  
Reference(0)  
Byte 3 (0)  
Byte 2 (0)  
Byte 1 (0)  
Byte 0 (0)  
RSVD  
Word Address 00h  
Word Address 01h  
Word Address 02h  
Word Address 03h  
Word Address 04h  
Reference(n)  
Byte 3 (n)  
Byte 2 (n)  
Byte 1 (n)  
Byte 0 (n)  
RSVD  
Word Address 8 × (n1)  
Word Address 8 × (n1) + 1  
Word Address 8 × (n1) + 2  
Word Address 8 × (n1) + 3  
Word Address 8 × (n1) + 4  
RSVD  
RSVD  
RSVD  
Reference(1)  
Word Address 08h  
RSVD  
EOL  
Word Address 8 × (n)  
Figure 314. EEPROM Data Format  
The byte at the EEPROM word address 00h must contain either a valid offset reference, as listed in Table 37, or  
an end-of-list (EOL) indicator. The EOL indicator has a byte value of FFh, and indicates the end of the data to load  
from the EEPROM. Only doubleword registers are loaded from the EEPROM, and all bit fields must be considered  
when the EEPROM is programmed.  
The serial EEPROM is addressed at slave address 101 0000b by the PCI4410A device. All hardware address bits  
for the EEPROM should be tied to the appropriate level to achieve this address. The serial EEPROM chip in the  
sample application circuit (see Figure 38) assumes the 1010b high address nibble. The lower three address bits  
are terminal inputs to the chip, and the sample application shows these terminal inputs tied to GND.  
When a valid offset reference is read, four bytes are read from the EEPROM, MSB first, as illustrated in Figure 313.  
The address autoincrements after every byte transfer according to the doubleword read protocol. Note that the word  
addresses align with the data format illustrated in Figure 314. The PCI4410A device continues to load data from  
the serial EEPROM until an end-of-list indicator is read. Three reserved bytes are stuffed to maintain 8-byte data  
structures.  
Note, the 8-byte data structure is important to provide correct addressing per the doubleword read format shown in  
Figure 313. In addition, the reference offsets must be loaded in the EEPROM in sequential order, that is, 01h, 02h,  
03h, 04h. If the offsets are not sequential, the registers may be loaded incorrectly.  
3.6.4 Accessing Serial Bus Devices Through Software  
The PCI4410A device provides a programming mechanism to control serial bus devices through software. The  
programming is accomplished through a doubleword of PCI configuration space at offset B0h.  
3.7 Programmable Interrupt Subsystem  
Interrupts provide a way for I/O devices to let the microprocessor know that they require servicing. The dynamic  
nature of PC Cards and the abundance of PC Card I/O applications require substantial interrupt support from the  
PCI4410A device. The PCI4410A device provides several interrupt signaling schemes to accommodate the needs  
of a variety of platforms. The different mechanisms for dealing with interrupts in this device are based on various  
specifications and industry standards. The ExCA register set provides interrupt control for some 16-bit PC Card  
functions, and the CardBus socket register set provides interrupt control for the CardBus PC Card functions. The  
PCI4410A device is, therefore, backward compatible with existing interrupt control register definitions, and new  
registers have been defined where required.  
315  
The PCI4410A device detects PC Card interrupts and events at the PC Card interface and notifies the host controller,  
using one of several interrupt signaling protocols. To simplify the discussion of interrupts in the PCI4410A device, PC  
Card interrupts are classified as either card status change (CSC) or as functional interrupts.  
The method by which any type of PCI4410A interrupt is communicated to the host interrupt controller varies from  
system to system. The PCI4410A device offers system designers the choice of using parallel PCI interrupt signaling,  
parallel ISA-type IRQ interrupt signaling, or the IRQSER serialized ISA and/or PCI interrupt protocol. It is possible  
to use the parallel PCI interrupts in combination with either parallel IRQs or serialized IRQs, as detailed in the sections  
that follow. All interrupt signaling is provided through the seven multifunction terminals, MFUNC0MFUNC6. In  
addition, PCI interrupts (INTA and INTB) are available on dedicated pins.  
3.7.1 PC Card Functional and Card Status Change Interrupts  
PC Card functional interrupts are defined as requests from a PC Card application for interrupt service and are  
indicated by asserting specially defined signals on the PC Card interface. Functional interrupts are generated by  
16-bit I/O PC Cards and by CardBus PC Cards.  
Card status change (CSC)-type interrupts are defined as events at the PC Card interface that are detected by the  
PCI4410A device, and may warrant notification of host card and socket services software for service. CSC events  
include both card insertion and removal from PC Card sockets, as well as transitions of certain PC Card signals.  
Table 38 summarizes the sources of PC Card interrupts and the type of card associated with them. CSC and  
functional interrupt sources are dependent on the type of card inserted in the PC Card socket. The three types of cards  
that can be inserted into any PC Card socket are:  
16-bit memory card  
16-bit I/O card  
CardBus cards  
Table 38. Interrupt Mask and Flag Registers  
CARD TYPE  
EVENT  
MASK  
FLAG  
Battery conditions  
(BVD1, BVD2)  
ExCA offset 05h/805h  
bits 1 and 0  
ExCA offset 04h/804h  
bits 1 and 0  
16-bit  
memory  
Wait states  
(READY)  
ExCA offset 05h/805h  
bit 2  
ExCA offset 04h/804h  
bit 2  
Change in card status  
(STSCHG)  
ExCA offset 05h/805h  
bit 0  
ExCA offset 04h/804h  
bit 0  
16-bit I/O  
Interrupt request  
(IREQ)  
PCI configuration offset 91h  
bit 0  
Always enabled  
All 16-bit  
PC Cards  
ExCA offset 05h/805h  
bit 3  
ExCA offset 04h/804h  
bit 3  
Power cycle complete  
Change in card status  
(CSTSCHG)  
Socket mask  
bit 0  
Socket event  
bit 0  
Interrupt request  
(CINT)  
PCI configuration offset 91h  
bit 0  
Always enabled  
CardBus  
Socket mask  
bit 3  
Socket event  
bit 3  
Power cycle complete  
Card insertion or  
removal  
Socket mask  
bits 2 and 1  
Socket event  
bits 2 and 1  
Functional interrupt events are valid only for 16-bit I/O and CardBus cards; that is, the functional interrupts are not  
valid for 16-bit memory cards. Furthermore, card insertion and removal-type CSC interrupts are independent of the  
card type. Table 39 describes the PC Card interrupt events.  
316  
Table 39. PC Card Interrupt Events and Description  
CARD TYPE  
EVENT  
TYPE  
SIGNAL  
DESCRIPTION  
A transition on BVD1 indicates a change in the  
PC Card battery conditions.  
BVD1(STSCHG)//CSTSCHG  
Battery conditions  
(BVD1, BVD2)  
CSC  
A transition on BVD2 indicates a change in the  
PC Card battery conditions.  
16-bit  
memory  
BVD2(SPKR)//CAUDIO  
READY(IREQ)//CINT  
Wait states  
(READY)  
A transition on READY indicates a change in the ability  
of the memory PC Card to accept or provide data.  
CSC  
CSC  
Change in card  
status (STSCHG)  
The assertion of STSCHG indicates a status change  
on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
16-bit I/O  
CardBus  
Interrupt request  
(IREQ)  
The assertion of IREQ indicates an interrupt request  
from the PC Card.  
Functional  
CSC  
Change in card  
status (CSTSCHG)  
The assertion of CSTSCHG indicates a status change  
on the PC Card.  
BVD1(STSCHG)//CSTSCHG  
READY(IREQ)//CINT  
Interrupt request  
(CINT)  
The assertion of CINT indicates an interrupt request  
from the PC Card.  
Functional  
A transition on either CD1//CCD1 or CD2//CCD2  
indicates an insertion or removal of a 16-bit or CardBus  
PC Card.  
Card insertion  
or removal  
CD1//CCD1,  
CD2//CCD2  
CSC  
CSC  
All PC Cards  
Power cycle  
complete  
An interrupt is generated when a PC Card power-up  
cycle has completed.  
N/A  
The naming convention for PC Card signals describes the function for 16-bit memory, I/O cards, and CardBus. For  
example, READY(IREQ)//CINT includes READY for 16-bit memory cards, IREQ for 16-bit I/O cards, and CINT for  
CardBus cards. The 16-bit memory card signal name is first, with the I/O card signal name second, enclosed in  
parentheses. The CardBus signal name follows after a forward double slash (//).  
The PC Card Standard describes the power-up sequence that must be followed by the PCI4410A device when an  
insertion event occurs and the host requests that the socket V  
and V  
be powered. Upon completion of this  
CC  
PP  
power-up sequence, the PCI4410A interrupt scheme can be used to notify the host system (see Table 39), denoted  
by the power cycle complete event. This interrupt source is considered a PCI4410A internal event because it depends  
on the completion of applying power to the socket rather than on a signal change at the PC Card interface.  
3.7.2 Interrupt Masks and Flags  
Host software may individually mask (or disable) most of the potential interrupt sources listed in Table 39 by setting  
the appropriate bits in the PCI4410A device. By individually masking the interrupt sources listed, software can control  
those events that cause a PCI4410A interrupt. Host software has some control over the system interrupt the  
PCI4410A device asserts by programming the appropriate routing registers. The PCI4410A device allows host  
software to route PC Card CSC and PC Card functional interrupts to separate system interrupts. Interrupt routing  
somewhat specific to the interrupt signaling method used is discussed in more detail in the following sections.  
When an interrupt is signaled by the PCI4410A device, the interrupt service routine must determine which of the  
events listed in Table 38 caused the interrupt. Internal registers in the PCI4410A device provide flags that report the  
source of an interrupt. By reading these status bits, the interrupt service routine can determine the action to be taken.  
Table 38 details the registers and bits associated with masking and reporting potential interrupts. All interrupts can  
be masked, except the functional PC Card interrupts, and an interrupt status flag is available for all types of interrupts.  
Notice that there is not a mask bit to stop the PCI4410A device from passing PC Card functional interrupts through  
to the appropriate interrupt scheme. These interrupts are not valid until the card is properly powered, and there never  
should be a card interrupt that does not require service after proper initialization.  
Table 38 lists the various methods of clearing the interrupt flag bits. The flag bits in the ExCA registers (16-bit PC  
Card-related interrupt flags) can be cleared using two different methods. One method is an explicit write of 1 to the  
flag bit to clear and the other is by reading the flag bit register. The selection of flag bit clearing is made by bit 2  
(IFCMODE) in the ExCA global control register (see Section 5.22), located at ExCA offset 1Eh/5Eh/81Eh, and  
defaults to the flag cleared on read method.  
317  
The CardBus-related interrupt flags can be cleared by an explicit write of 1 to the interrupt flag in the socket event  
register (CardBus offset 00h, see Section 6.1). Although some of the functionality is shared between the CardBus  
registers and the ExCA registers, software should not program the chip through both register sets when a CardBus  
card is functioning.  
3.7.3 Using Parallel IRQ Interrupts  
The seven multifunction terminals, MFUNC6MFUNC0, implemented in the PCI4410A device may be routed to  
obtain a subset of the ISA IRQs. The IRQ choices provide ultimate flexibility in PC Card host interruptions. To use  
the parallel ISA type IRQ interrupt signaling, software must program the device control register (PCI offset 92h, see  
Section 4.35) to select the parallel IRQ signaling scheme. See Section 4.32, Multifunction Routing Register, for  
details on configuring the multifunction terminals.  
A system using parallel IRQs requires a minimum of one PCI terminal, INTA, to signal CSC events. This requirement  
is dictated by certain card and socket services software. The MFUNC pins provide (at a maximum) seven different  
IRQs to support legacy 16-bit PC Card functions.  
As an example, suppose the seven IRQs used by legacy PC Card applications are IRQ3, IRQ4, IRQ5, IRQ9, IRQ10,  
IRQ11, and IRQ15. The multifunction routing register must be programmed to a value of 0x0FBA5439. This routes  
the MFUNC terminals as illustrated in Figure 315. Not shown is that INTA also must be routed to the programmable  
interrupt controller (PIC), or to some circuitry that provides parallel PCI interrupts to the host.  
PCI4410A  
MFUNC0  
PIC  
IRQ9  
IRQ3  
IRQ4  
IRQ5  
IRQ10  
IRQ11  
IRQ15  
MFUNC1  
MFUNC2  
MFUNC3  
MFUNC4  
MFUNC5  
MFUNC6  
Figure 315. IRQ Implementation  
Power-on software is responsible for programming the multifunction routing register to reflect the IRQ configuration  
of a system implementing the PCI4410A device. See Section 4.32, Multifunction Routing Register, for details on  
configuring the multifunction terminals.  
The parallel ISA-type IRQ signaling from the MFUNC6MFUNC0 terminals is compatible with those input directly into  
the 8259 PIC. The parallel IRQ option is provided for system designs that require legacy ISA IRQs. Design constraints  
may demand more MFUNC6MFUNC0 IRQ terminals than the PCI4410A device makes available.  
3.7.4 Using Parallel PCI Interrupts  
Parallel PCI interrupts are available in parallel PCI interrupt mode, parallel IRQ and parallel PCI interrupt mode, or  
serialized IRQ and parallel PCI interrupt mode.  
3.7.5 Using Serialized IRQSER Interrupts  
The serialized interrupt protocol implemented in the PCI4410A device uses a single terminal to communicate all  
interrupt status information to the host controller. The protocol defines a serial packet consisting of a start cycle,  
multiple interrupt indication cycles, and a stop cycle. All data in the packet is synchronous with the PCI clock. The  
packet data describes 16 parallel ISA IRQ signals and the optional 4 PCI interrupts INTA, INTB, INTC, and INTD. For  
details on the IRQSER protocol, refer to the document Serialized IRQ Support for PCI Systems.  
318  
3.7.6 SMI Support in the PCI4410A Device  
The PCI4410A device provides a mechanism for interrupting the system when power changes have been made to  
the PC Card socket interfaces. The interrupt mechanism is designed to fit into a system maintenance interrupt (SMI)  
scheme. SMI interrupts are generated by the PCI4410A device, when enabled, after a write cycle to either the socket  
control register (CardBus offset 10h, see Section 6.5) of the CardBus register set or the ExCA power control register  
(ExCA offset 02h, see Section 5.3).  
The SMI control is programmed through three bits in the system control register (PCI offset 80h, see Section 4.29).  
These bits are SMIROUTE (bit 26), SMISTATUS (bit 25), and SMIENB (bit 24). Table 310 describes the SMI control  
bits function.  
Table 310. SMI Control  
BIT NAME  
SMIROUTE  
SMISTATUS  
SMIENB  
FUNCTION  
This shared bit controls whether the SMI interrupts are sent as a CSC interrupt or as IRQ2.  
This socket-dependent bit is set when an SMI interrupt is pending. This status flag is cleared by writing back a 1.  
When set, SMI interrupt generation is enabled.  
If CSC SMI interrupts are selected, the SMI interrupt is sent as the CSC. The CSC interrupt can be either level or edge  
mode, depending upon bit 1 (CSCMODE) in the ExCA global control register (ExCA offset 1Eh, see Section 5.22).  
If IRQ2 is selected by SMIROUTE, the IRQSER signaling protocol supports SMI signaling in the IRQ2 IRQ/Data slot.  
In a parallel ISA IRQ system, the support for an active low IRQ2 is provided only if IRQ2 is routed to MFUNC1,  
MFUNC3, or MFUNC6 through the multifunction routing register (PCI offset 8Ch, see Section 4.32).  
3.8 Power-Management Overview  
In addition to the low-power CMOS technology process used for the PCI4410A device, various features are designed  
into the device to allow implementation of popular power-saving techniques. These features and techniques are  
discussed in this section.  
3.8.1 Clock-Run Protocol  
The PCI CLKRUN feature is the primary method of power management on the PCI interface of the PCI4410A device.  
CLKRUN signaling is provided through the MFUNC6 terminal. Because some chipsets do not implement CLKRUN,  
this is not always available to the system designer, and alternative power-saving features are provided. For details  
on the CLKRUN protocol see the PCI Mobile Design Guide.  
The PCI4410A device does not permit the central resource to stop the PCI clock under any of the following conditions:  
Bit 1 (KEEPCLK) in the system control register (PCI offset 80h, see Section 4.29) is set.  
The PC Card-16 resource manager is busy.  
The PCI4410A CardBus master state machine is busy. A cycle may be in progress on CardBus.  
The PCI4410A master is busy. There may be posted data from CardBus to PCI in the PCI4410A device.  
Interrupts are pending.  
The CardBus CCLK for either socket has not been stopped by the PCI4410A CCLKRUN manager.  
The PCI4410A device restarts the PCI clock using the CLKRUN protocol under any of the following conditions:  
A PC Card-16 IREQ or a CardBus CINT has been asserted.  
A CardBus CBWAKE (CSTSCHG) or PC Card-16 STSCHG/RI event occurs.  
A CardBus attempts to start the CCLK using CCLKRUN.  
A CardBus card arbitrates for the CardBus bus using CREQ.  
A 16-bit DMA PC Card asserts DREQ.  
3.8.2 CardBus PC Card Power Management  
The PCI4410A device implements its own card power-management engine that can turn off the CCLK to a socket  
when there is no activity to the CardBus PC Card. The PCI clock-run protocol is followed on the CardBus CCLKRUN  
interface to control this clock management.  
319  
3.8.3 16-Bit PC Card Power Management  
Bit 7 (COE) in the ExCA power control register (ExCA offset 02h, see Section 5.3) and bit 0 (PWRDWN) in the ExCA  
global control register (ExCA offset 1Eh, Section 5.22) are provided for 16-bit PC Card power management. The COE  
bit places the card interface in a high-impedance state to save power. The power savings when using this feature  
are minimal. The COE bit will reset the PC Card when used, and the PWRDWN bit will not. Furthermore, the  
PWRDWN bit is an automatic COE; that is, the PWRDWN performs the COE function when there is no card activity.  
NOTE: The 16-bit PC Card must implement the proper pullup resistors for the COE and  
PWRDWN modes.  
3.8.4 Suspend Mode  
The SUSPEND signal, provided for backward compatibility, gates the PRST (PCI reset) signal and the GRST (global  
reset) signal from the PCI4410A device. Besides gating PRST and GRST, SUSPEND also gates PCLK inside the  
PCI4410A device to minimize power consumption.  
Gating PCLK does not create any issues with respect to the power switch interface in the PCI4410A device. This is  
because the PCI4410A device does not depend on the PCI clock to clock the power-switch interface. There are two  
methods to clock the power-switch interface in the PCI4410A device:  
Use an external clock to the PCI4410A CLOCK terminal  
Use the internal oscillator  
It also should be noted that asynchronous signals, such as card status change interrupts and RI_OUT, can be passed  
to the host system without a PCI clock. However, if card status change interrupts are routed over the serial interrupt  
stream, the PCI clock must be restarted to pass the interrupt, because neither the internal oscillator nor an external  
clock is routed to the serial interrupt state machine. Figure 316 shows the suspend functional implementation  
diagram.  
xRST  
xRSTIN  
PCI4410A  
Core  
SUSPEND  
GNT  
SUSPENDIN  
PCLKIN  
PCLK  
Figure 316. Suspend Functional Implementation  
Figure 317 is a signal diagram of the suspend function.  
320  
xRST  
GNT  
SUSPEND  
PCLK  
External Terminals  
Internal Signals  
xRSTIN  
SUSPENDIN  
PCLKIN  
Figure 317. Signal Diagram of Suspend Function  
3.8.5 Requirements for Suspend Mode  
The suspend mode prevents the clearing of all register contents on the assertion of reset (PRST or GRST) that would  
require the reconfiguration of the PCI4410A device by software. Asserting the SUSPEND signal places the  
controllers PCI outputs in a high-impedance state and gates the PCLK signal internally to the controller unless a PCI  
transaction currently is in process (GNT is asserted). It is important that the PCI bus not be parked on the PCI4410A  
device when SUSPEND is asserted, because the outputs are in a high-impedance state.  
The GPIOs, MFUNC signals, and RI_OUT signals are all active during SUSPEND, unless they are disabled in the  
appropriate PCI4410A registers.  
3.8.6 Ring Indicate  
The RI_OUT output is an important feature in power management, allowing a system to go into a suspended mode  
and wake up on modem rings and other card events. TI-designed flexibility permits this signal to fit wide platform  
requirements. RI_OUT on the PCI4410A device can be asserted under any of the following conditions:  
A 16-bit PC Card modem in a powered socket asserts RI to indicate to the system the presence of an  
incoming call.  
A powered-down CardBus card asserts CSTSCHG (CBWAKE), requesting system and interface wake-up.  
A powered CardBus card asserts CSTSCHG from the insertion/removal of cards or change in battery  
voltage levels.  
Figure 318 shows various enable bits for the PCI4410A RI_OUT function; however, it does not show the masking  
of CSC events. See Table 38 for a detailed description of CSC interrupt masks and flags.  
321  
RI_OUT Function  
CSTSMASK  
RIENB  
PC Card  
Socket  
RINGEN  
Card  
I/F  
RI_OUT  
CDRESUME  
Figure 318. RI_OUT Functional Diagram  
RI from the 16-bit PC Card interface is masked by bit 7 (RINGEN) in the ExCA interrupt and general control register  
(ExCA offset 03h, see Section 5.4). This is programmed on a per-socket basis and is applicable only when a 16-bit  
card is powered in the socket.  
The CBWAKE, signaling to RI_OUT, is enabled through the same mask as the CSC event for CSTSCHG. The mask  
bit (bit 0, CSTSMASK) is programmed through the socket mask register (CardBus offset 04h, see Section 6.2) in the  
CardBus socket registers.  
3.8.7 PCI Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges establishes the infrastructure  
required for the operating system to control the power of PCI functions. This is done by defining a standard PCI  
interface and operations to manage the power of PCI functions on the bus. The PCI bus and the PCI functions can  
be assigned one of four software-visible power-management states that result in varying levels of power savings.  
The four power-management states of PCI functions are:  
D0 Fully-on state  
D1 and D2 Intermediate states  
D3 Off state  
Similarly, bus power states of the PCI bus are B0B3. The bus power states B0B3 are derived from the device power  
state of the originating bridge device.  
For the operating system (OS) to manage the device power states on the PCI bus, the PCI function must support four  
power-management operations. These operations are:  
Capabilities reporting  
Power status reporting  
Setting the power state  
System wake-up  
The OS identifies the capabilities of the PCI function by traversing the new capabilities list. The presence of  
capabilities, in addition to the standard PCI capabilities, is indicated by a 1 in bit 4 (CAPLIST) of the status register  
(PCI offset 06h, see Section 4.5).  
The capabilities pointer provides access to the first item in the linked list of capabilities. For the PCI4410A device,  
a CardBus bridge with PCI configuration space header type 2, the capabilities pointer is mapped to an offset of 14h.  
The first byte of each capability register block is required to be a unique ID of that capability. PCI power management  
has been assigned an ID of 01h. The next byte is a pointer to the next pointer item in the list of capabilities. If there  
are no more items in the list, the next item pointer should be set to 0. The registers following the next item pointer  
are specific to the functions capability. The PCI power-management capability implements the register block outlined  
in Table 311.  
322  
Table 311. Power-Management Registers  
REGISTER NAME  
OFFSET  
A0h  
Power management capabilities  
PMCSR bridge support extensions  
Next item pointer  
Capability ID  
Data  
Power management control/status (CSR)  
A4h  
The power management capabilities register (PCI offset A2h, see Section 4.41) is a static read-only register that  
provides information on the capabilities of the function related to power management. The power management  
control/status register (PCI offset A4h, see Section 4.42) enables control of power management states and  
enables/monitors power management events. The data register is an optional register that can provide dynamic data.  
For more information on PCI power management, see the PCI Bus Power Management Interface Specification for  
PCI to CardBus Bridges.  
3.8.8 CardBus Bridge Power Management  
The PCI Bus Power Management Interface Specification for PCI to CardBus Bridges was approved by PCMCIA in  
December of 1997. This specification follows the device and bus state definitions provided in the PCI Bus Power  
Management Interface Specification published by the PCI Special Interest Group (SIG). The main issue addressed  
in the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges is wake up from D3 or D3  
without losing wake-up context (also called PME context).  
hot  
cold  
The specific issues addressed by the PCI Bus Power Management Interface Specification for PCI to CardBus Bridges  
for D3 wake up are as follows:  
Preservation of device context: The specification states that a reset must occur when transitioning from D3  
to D0. Some method to preserve wake-up context must be implemented so that the reset does not clear  
the PME context registers.  
Power source in D3  
if wake-up support is required from this state.  
cold  
The Texas Instruments PCI4410A device addresses these D3 wake-up issues in the following manner:  
Two resets are provided to handle preservation of PME context bits:  
Global reset (GRST) is used only on the initial boot up of the system after power up. It places the  
PCI4410A device in its default state and requires BIOS to configure the device before becoming fully  
functional.  
PCI reset (PRST) now has dual functionality based on whether PME is enabled or not. If PME is  
enabled, PME context is preserved. If PME is not enabled, PRST acts the same as a normal PCI reset.  
Please see the master list of PME context bits in Section 3.8.10.  
Power source in D3  
an auxiliary power source must be supplied to the PCI4410A V  
Guide for D3 Wake-Up or the PCI Power Management Interface Specification for PCI to CardBus Bridges  
if wake-up support is required from this state. Because V  
is removed in D3  
,
cold  
CC  
cold  
pins. Consult the PCI14xx Implementation  
CC  
for further information.  
3.8.9 ACPI Support  
The Advanced Configuration and Power Interface (ACPI) Specification provides a mechanism that allows unique  
pieces of hardware to be described to the ACPI driver. The PCI4410A device offers a generic interface that is  
compliant with ACPI design rules.  
Two doublewords of general-purpose ACPI programming bits reside in PCI4410A PCI configuration space at offset  
A8h. The programming model is broken into status and control functions. In compliance with ACPI, the top-level event  
status and enable bits reside in the general-purpose event status (PCI offset A8h, see Section 4.45) and  
general-purpose event enable (PCI offset AAh, see Section 4.46) registers.  
323  
The status and enable bits generate an event that allows the ACPI driver to call a control method associated with the  
pending status bit. The control method can then control the hardware by manipulating the hardware control bits or  
by investigating child status bits and calling their respective control methods. A hierarchical implementation would  
be somewhat limiting, however, as upstream devices would have to remain in some level of power state to report  
events.  
For more information on ACPI, see the Advanced Configuration and Power Interface (ACPI) Specification.  
3.8.10 Master List of PME Context Bits and Global Reset-Only Bits  
If the PME enable bit (PCI offset A4h, bit 8) is asserted, the assertion of PRST will not clear the following PME context  
bits. If the PME enable bit is not asserted, the PME context bits are cleared with PRST. The PME context bits are:  
Bridge control register (PCI offset 3Eh): bit 6  
Power management control/status register (PCI offset A4h): bits 15, 8  
ExCA power control register (ExCA offset 802h): bits 4, 3, 1, 0  
ExCA interrupt and general control (ExCA offset 803h): bits 6, 5  
ExCA card status change interrupt register (ExCA offset 805h): bits 30  
CardBus socket event register (CardBus offset 00h): bits 30  
CardBus socket mask register (CardBus offset 04h): bits 30  
CardBus socket present state register (CardBus offset 08h): bits 1310, 7, 50  
CardBus socket control register (CardBus offset 10h): bits 64, 20  
Global reset places all registers in their default state regardless of the state of the PME enable bit. The GRST signal  
is gated only by the SUSPEND signal. This means that assertion of SUSPEND blocks the GRST signal internally,  
thus preserving all register contents. The registers cleared by GRST are:  
Subsystem ID/subsystem vendor ID (PCI offset 40h): bits 310  
PC Card 16-bit legacy mode base address register (PCI offset 44h): bits 311  
System control register (PCI offset 80h): bits 3124, 2214, 63, 1, 0  
General status register (PCI offset 85h): bits 20  
General control register (PCI offset 86h): bits 3, 1, 0  
Multifunction routing register (PCI offset 8Ch): bits 270  
Retry status register (PCI offset 90h): bits 7, 6, 3, 1  
Card control register (PCI offset 91h): bits 75, 20  
Device control register (PCI offset 92h): bits 70  
Diagnostic register (PCI offset 93h): bits 70  
Socket DMA register 0 (PCI offset 94h): bits 10  
Socket DMA register 1 (PCI offset 98h): bits 154, 20  
Power management capabilities register (PCI offset A2h): bit 15  
General-purpose event enable register (PCI offset AAh): bits 15, 11, 8, 40  
General-purpose output register (PCI offset AEh): bits 40  
PCI miscellaneous configuration register (OHCI function, PCI offset F0h): bits 15, 13, 10, 20  
Link enhancements register (OHCI function, PCI offset F4h): bits 13, 12, 97, 2, 1  
GPIO control register (OHCI function, PCI offset FCh): bits 29, 28, 24, 21, 20, 16, 15, 13, 12, 8, 7, 5, 4, 0  
Global unique ID low/high (OHCI function, PCI offset 24h28h): bits 310  
ExCA identification and revision register (ExCA offset 00h): bits 70  
ExCA card status change register (ExCA offset 804h): bits 30  
ExCA global control register (ExCA offset 1Eh): bits 30  
324  
4 PC Card Controller Programming Model  
This section describes the PCI4410A PCI configuration registers that make up the 256-byte PCI configuration header  
for each PCI4410A function. As noted, some bits are global in nature and are accessed only through function 0.  
4.1 PCI Configuration Registers (Functions 0 and 1)  
The PCI4410A device is a multifunction PCI device, and the PC Card controller is integrated as PCI functions 0 and  
1. The configuration header is compliant with the PCI Local Bus Specification as a CardBus bridge header and is  
PC 99 compliant as well. Table 41 shows the PCI configuration header, which includes both the predefined portion  
of the configuration space and the user-definable registers.  
Table 41. PCI Configuration Registers (Functions 0 and 1)  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
PCI class code  
Revision ID  
08h  
BIST  
Header type  
Latency timer  
Cache line size  
0Ch  
10h  
CardBus socket/ExCA base address  
Reserved  
CardBus bus number  
Secondary status  
Capability pointer  
PCI bus number  
14h  
CardBus latency timer  
Subordinate bus number  
18h  
CardBus memory base register 0  
1Ch  
20h  
CardBus memory limit register 0  
CardBus memory base register 1  
CardBus memory limit register 1  
CardBus I/O base register 0  
CardBus I/O limit register 0  
CardBus I/O base register 1  
CardBus I/O limit register 1  
24h  
28h  
2Ch  
30h  
34h  
38h  
Bridge control  
Subsystem ID  
Interrupt pin  
Interrupt line  
3Ch  
40h  
Subsystem vendor ID  
PC Card 16-bit I/F legacy-mode base address  
44h  
Reserved  
48h7Ch  
80h  
System control  
Reserved  
Diagnostic  
General control  
General status  
Reserved  
84h  
Reserved  
Multifunction routing  
Device control Card control  
88h8Bh  
8Ch  
90h  
Retry status  
Socket DMA register 0  
Socket DMA register 1  
Reserved  
94h  
98h  
9Ch  
A0h  
Power management capabilities  
Next-item pointer  
Capability ID  
Power management  
Power management data  
control/status register  
Power management control/status  
A4h  
bridge support extensions  
General-purpose event enable  
General-purpose output  
General-purpose event status  
General-purpose input  
A8h  
ACh  
Reserved  
B0hFCh  
41  
A bit description table, typically included when a register contains bits of more than one type or purpose, indicates  
bit field names, a detailed field description, and field access tags, which appear in the type column of the  
bit-description table. Table 42 describes the field access tags.  
Table 42. Bit-Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
Field can be read by software.  
R
W
S
Field can be written by software to any value.  
Field can be set by a write of 1. Writes of 0 have no effect.  
Field can be cleared by a write of 1. Writes of 0 have no effect.  
Field can be autonomously updated by the PCI4410A device.  
C
U
Clear  
Update  
A bit can display either of two types of behavior when read. After  
having been read, it can maintain the value it had previously, or the  
read process can cause it to be reset to 0.  
4.2 Vendor ID Register  
This 16-bit register contains a value allocated by the PCI SIG (special interest group) and identifies the manufacturer  
of the PCI device. The vendor ID assigned to TI is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
00h  
104Ch  
4.3 Device ID Register  
This 16-bit register contains a value assigned to the PCI4410A device by TI. The device identification for the  
PCI4410A device is AC41h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
1
R
0
R
1
R
1
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Device ID  
Read-only  
02h  
AC41h  
42  
4.4 Command Register  
The command register provides control over the PCI4410A interface to the PCI bus. All bit functions adhere to the  
definitions in PCI Local Bus Specification. See Table 43 for the complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Command  
Read-only, Read/Write  
Offset:  
Default:  
04h  
0000h  
Table 43. Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
1510  
RSVD  
R
Reserved. Bits 1510 return 0s when read.  
Fast back-to-back enable. The PCI4410A device does not generate fast back-to-back transactions;  
therefore, bit 9 returns 0 when read.  
9
8
FBB_EN  
R
System error (SERR) enable. Bit 8 controls the enable for the SERR driver on the PCI interface. SERR can  
be asserted after detecting an address parity error on the PCI bus. Both bits 8 and 6 must be set for the  
PCI4410A device to report address parity errors.  
SERR_EN  
R/W  
0 = Disable SERR output driver (default)  
1 = Enable SERR output driver  
Address/data stepping control. The PCI4410A device does not support address/data stepping; therefore,  
bit 7 is hardwired to 0.  
7
6
STEP_EN  
PERR_EN  
R
Parity-error response enable. Bit 6 controls the PCI4410A devices response to parity errors through PERR.  
Data parity errors are indicated by asserting PERR; address parity errors are indicated by asserting SERR.  
0 = PCI4410A device ignores detected parity error (default).  
R/W  
1 = PCI4410A device responds to detected parity errors.  
VGA palette snoop. When bit 5 is set to 1, palette snooping is enabled (that is, the PCI4410A device does  
not respond to palette register writes and snoops the data). When bit 5 is 0, the PCI4410A device treats all  
palette accesses like all other accesses.  
5
VGA_EN  
R/W  
Memory write and invalidate enable. Bit 4 controls whether a PCI initiator device can generate memory  
write-and-Invalidate commands. The PCI4410A controller does not support memory write and invalidate  
commands. It uses memory write commands instead; therefore, this bit is hardwired to 0.  
4
3
MWI_EN  
SPECIAL  
R
R
Special cycles. Bit 3 controls whether or not a PCI device ignores PCI special cycles. The PCI4410A device  
does not respond to special cycle operations; therefore, this bit is hardwired to 0.  
Bus-master control. Bit 2 controls whether or not the PCI4410A device can act as a PCI bus initiator  
(master). The PCI4410A device can take control of the PCI bus only when this bit is set.  
0 = Disables the PCI4410A devices ability to generate PCI bus accesses (default).  
1 = Enables the PCI4410A devices ability to generate PCI bus accesses.  
2
MAST_EN  
R/W  
Memory space enable. Bit 1 controls whether or not the PCI4410A device can claim cycles in PCI memory  
space.  
1
0
MEM_EN  
IO_EN  
R/W  
R/W  
0 = Disables the PCI4410A devices response to memory space accesses (default).  
1 = Enables the PCI4410A devices response to memory space accesses.  
I/O space control. Bit 0 controls whether or not the PCI4410A device can claim cycles in PCI I/O space.  
0 = Disables the PCI4410A devices response to I/O space accesses (default).  
1 = Enables the PCI4410A devices response to I/O space accesses.  
43  
4.5 Status Register  
The status register provides device information to the host system. Bits in this register can be read normally. A bit  
in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All bit  
functions adhere to the definitions in the PCI Local Bus Specification. PCI bus status is shown through each function.  
See Table 44 for the complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Status  
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
1
R/C  
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
Register:  
Type:  
Status  
Read-only, Read/Clear  
Offset:  
Default:  
06h  
0210h  
Table 44. Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
PAR_ERR  
R/C  
Detected parity error. Bit 15 is set when a parity error is detected (either address or data).  
Signaled system error. Bit 14 is set when SERR is enabled and the PCI4410A device signals a system error  
to the host.  
14  
13  
SYS_ERR  
MABORT  
R/C  
R/C  
R/C  
R/C  
R
Received master abort. Bit 13 is set when a cycle initiated by the PCI4410A device on the PCI bus is  
terminated by a master abort.  
Received target abort. Bit 12 is set when a cycle initiated by the PCI4410A device on the PCI bus is  
terminated by a target abort.  
12  
TABT_REC  
TABT_SIG  
PCI_SPEED  
Signaled target abort. Bit 11 is set by the PCI4410A device when it terminates a transaction on the PCI bus  
with a target abort.  
11  
DEVSEL timing. These bits encode the timing of DEVSEL and are hardwired 01b, indicating that the  
PCI4410A device asserts PCI_SPEED at a medium speed on nonconfiguration cycle accesses.  
109  
Data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred, and the following conditions were met:  
a. PERR was asserted by any PCI device, including the PCI4410A device.  
b. The PCI4410A device was the bus master during the data parity error.  
c. Bit 6 (PERR_EN) in the command register (PCI offset 04h, see Section 4.4) is set.  
8
DATAPAR  
R/C  
Fast back-to-back capable. The PCI4410A device cannot accept fast back-to-back transactions; therefore,  
bit 7 is hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User-definable feature support. The PCI4410A device does not support the user-definable features;  
therefore, bit 6 is hardwired to 0.  
66-MHz capable. The PCI4410A device operates at a maximum PCLK frequency of 33 MHz; therefore, bit  
5 is hardwired to 0.  
66MHZ  
Capabilities list. Bit 4 returns 1 when read. This bit indicates that capabilities, in addition to standard PCI  
capabilities, are implemented. The linked list of PCI power management capabilities is implemented in this  
function.  
4
CAPLIST  
RSVD  
R
R
30  
Reserved. Bits 30 return 0s when read.  
44  
4.6 Revision ID Register  
The revision ID register indicates the silicon revision of the PCI4410A device.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Revision ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Revision ID  
Read-only  
08h  
02h  
4.7 PCI Class Code Register  
The class code register recognizes the PCI4410A device as a bridge device (06h) and CardBus bridge device (07h)  
with a 00h programming interface.  
Bit  
23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Name  
PCI class code  
Base class  
Subclass  
Programming interface  
Type  
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Default  
Register:  
Type:  
Offset:  
Default:  
PCI class code  
Read-only  
09h  
06 0700h  
4.8 Cache Line Size Register  
The cache line size register is programmed by host software to indicate the system cache line size.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Cache line size  
Read/Write  
0Ch  
00h  
45  
4.9 Latency Timer Register  
The latency timer register specifies the latency timer for the PCI4410A device in units of PCI clock cycles. When the  
PCI4410A device is a PCI bus initiator and asserts FRAME, the latency timer begins counting from zero. If the latency  
timer expires before the PCI4410A transaction has terminated, the PCI4410A device terminates the transaction when  
its GNT is deasserted.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer  
Read/Write  
0Dh  
00h  
4.10 Header Type Register  
This register returns 82h when read, indicating that the PCI4410A configuration spaces adhere to the CardBus bridge  
PCI header. The CardBus bridge PCI header ranges from PCI register 0 to 7Fh, and 80hFFh are user-definable  
extension registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type  
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Header type  
Read-only  
0Eh  
82h  
4.11 BIST Register  
Because the PCI4410A device does not support a built-in self-test (BIST), this register returns the value of 00h when  
read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
BIST  
Read-only  
0Fh  
00h  
46  
4.12 CardBus Socket/ExCA Base Address Register  
The CardBus socket/ExCA base-address register is programmed with a base address referencing the CardBus  
socket registers and the memory-mapped ExCA register set. Bits 3112 are read/write and allow the base address  
to be located anywhere in the 32-bit PCI memory address space on a 4-Kbyte boundary. Bits 110 are read-only,  
returning 0s when read. When software writes all 1s to this register, the value read back is FFFF F000h, indicating  
that at least 4 Kbytes of memory address space are required. The CardBus registers start at offset 000h, and the  
memory-mapped ExCA registers begin at offset 800h.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CardBus socket/ExCA base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus socket/ExCA base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CardBus socket/ExCA base-address  
Read-only, Read/Write  
10h  
0000 0000h  
4.13 Capability Pointer Register  
The capability pointer register provides a pointer into the PCI configuration header where the PCI  
power-management register block resides. PCI header doublewords at A0h and A4h provide the power-management  
(PM) registers. The socket has its own capability pointer register. This register returns A0h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability pointer  
R
1
R
0
R
1
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Capability pointer  
Read-only  
14h  
A0h  
47  
4.14 Secondary Status Register  
The secondary status register is compatible with the PCI-to-PCI bridge secondary status register and indicates  
CardBus-related device information to the host system. This register is very similar to the status register (PCI offset  
06h); status bits are cleared by writing a 1. See Table 45 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Secondary status  
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R
0
R
1
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Secondary status  
Read-only, Read/Clear  
Offset:  
Default:  
16h  
0200h  
Table 45. Secondary Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
CBPARITY  
R/C  
Detected parity error. Bit 15 is set when a CardBus parity error is detected (either address or data).  
Signaled system error. Bit 14 is set when CSERR is signaled by a CardBus card. The PCI4410A device  
does not assert CSERR.  
14  
13  
CBSERR  
CBMABORT  
REC_CBTA  
SIG_CBTA  
CB_SPEED  
R/C  
R/C  
R/C  
R/C  
R
Received master abort. Bit 13 is set when a cycle initiated by the PCI4410A device on the CardBus bus  
is terminated by a master abort.  
Received target abort. Bit 12 is set when a cycle initiated by the PCI4410A device on the CardBus bus  
is terminated by a target abort.  
12  
Signaled target abort. Bit 11 is set by the PCI4410A device when it terminates a transaction on the CardBus  
bus with a target abort.  
11  
CDEVSEL timing. These bits encode the timing of CDEVSEL and are hardwired 01b, indicating that the  
PCI4410A device asserts CB_SPEED at a medium speed.  
109  
CardBus data parity error detected.  
0 = The conditions for setting bit 8 have not been met.  
1 = A data parity error occurred and the following conditions were met:  
a. CPERR was asserted on the CardBus interface.  
8
CB_DPAR  
R/C  
b. The PCI4410A device was the bus master during the data parity error.  
c. Bit 0 (CPERREN) in the bridge control register (PCI offset 3Eh, see Section 4.25) is set.  
Fast back-to-back capable. The PCI4410A device cannot accept fast back-to-back transactions;  
therefore, bit 7 is hardwired to 0.  
7
6
CBFBB_CAP  
CB_UDF  
R
R
User-definable feature support. The PCI4410A device does not support the user-definable features;  
therefore, bit 6 is hardwired to 0.  
66-MHz capable. The PCI4410A CardBus interface operates at a maximum CCLK frequency of 33 MHz;  
therefore, bit 5 is hardwired to 0.  
5
CB66MHZ  
RSVD  
R
R
40  
Reserved. Bits 40 return 0s when read.  
48  
4.15 PCI Bus Number Register  
This register is programmed by the host system to indicate the bus number of the PCI bus to which the PCI4410A  
device is connected. The PCI4410A device uses this register in conjunction with the CardBus bus number (PCI offset  
19h, see Section 4.16) and subordinate bus number (PCI offset 1Ah, see Section 4.17) registers to determine when  
to forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
PCI bus number  
Read/Write  
18h  
00h  
4.16 CardBus Bus Number Register  
This register is programmed by the host system to indicate the bus number of the CardBus bus to which the PCI4410A  
device is connected. The PCI4410A device uses this register in conjunction with the PCI bus number (PCI offset 18h,  
see Section 4.15) and subordinate bus number (PCI offset 1Ah, see Section 4.17) registers to determine when to  
forward PCI configuration cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
CardBus bus number  
Read/Write  
19h  
00h  
4.17 Subordinate Bus Number Register  
This register is programmed by the host system to indicate the highest-numbered bus below the CardBus bus. The  
PCI4410A device uses this register in conjunction with the PCI bus number (PCI offset 18h, see Section 4.15) and  
CardBus bus number (PCI offset 19h, see Section 4.16) registers to determine when to forward PCI configuration  
cycles to its secondary buses.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subordinate bus number  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subordinate bus number  
Read/Write  
1Ah  
00h  
49  
4.18 CardBus Latency Timer Register  
This register is programmed by the host system to specify the latency timer for the PCI4410A CardBus interface in  
units of CCLK cycles. When the PCI4410A device is a CardBus initiator and asserts CFRAME, the CardBus latency  
timer begins counting. If the latency timer expires before the PCI4410A transaction has terminated, the PCI4410A  
device terminates the transaction at the end of the next data phase. A recommended minimum value for this register  
is 20h, which allows most transactions to be completed.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
CardBus latency timer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
CardBus latency timer  
Read/Write  
1Bh  
00h  
4.19 Memory Base Registers 0, 1  
The memory base registers indicate the lower address of a PCI memory address range. These registers are used  
by the PCI4410A device to determine when to forward a memory transaction to the CardBus bus and when to forward  
a CardBus cycle to PCI. Bits 3112 of these registers are read/write and allow the memory base to be located  
anywhere in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 110 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register (PCI offset 3Eh, see Section 4.25)  
specify whether memory windows 0 and 1 are prefetchable or nonprefetchable. The memory base register or the  
memory limit register must be nonzero for the PCI4410A device to claim any memory transactions through CardBus  
memory windows (that is, these windows are not enabled by default to pass the first 4 Kbytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Memory base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Memory base registers 0, 1  
Read-only, Read/Write  
1Ch, 24h  
0000 0000h  
410  
4.20 Memory Limit Registers 0, 1  
The memory limit registers indicate the upper address of a PCI memory address range. These registers are used  
by the PCI4410A device to determine when to forward a memory transaction to the CardBus bus and when to forward  
a CardBus cycle to PCI. Bits 3112 of these registers are read/write and allow the memory base to be located  
anywhere in the 32-bit PCI memory space on 4-Kbyte boundaries. Bits 110 are read-only and always return 0s. Write  
transactions to these bits have no effect. Bits 8 and 9 of the bridge control register (PCI offset 3Eh, see Section 4.25)  
specify whether memory windows 0 and 1 are prefetchable or nonprefetchable. The memory base register or the  
memory limit register must be nonzero for the PCI4410A device to claim any memory transactions through CardBus  
memory windows (that is, these windows are not enabled by default to pass the first 4 Kbytes of memory to CardBus).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Memory limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Memory limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Memory limit registers 0, 1  
Read-only, Read/Write  
20h, 28h  
0000 0000h  
4.21 I/O Base Registers 0, 1  
The I/O base registers indicate the lower address of a PCI I/O address range. These registers are used by the  
PCI4410A device to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus  
cycle to the PCI bus. The lower 16 bits of this register locate the bottom of the I/O window within a 64-Kbyte page,  
and the upper 16 bits (3116) are a page register that locates this 64-Kbyte page in 32-bit PCI I/O address space.  
Bits 312 are read/write. Bits 1 and 0 are read-only and always return 0s, forcing I/O windows to be aligned on a  
natural doubleword boundary.  
NOTE: Either the I/O base or the I/O limit register must be nonzero to enable any I/O  
transactions.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
I/O base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
I/O base registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
I/O base registers 0, 1  
Read-only, Read/Write  
2Ch, 34h  
0000 0000h  
411  
4.22 I/O Limit Registers 0, 1  
The I/O limit registers indicate the upper address of a PCI I/O address range. These registers are used by the  
PCI4410A device to determine when to forward an I/O transaction to the CardBus bus and when to forward a CardBus  
cycle to PCI. The lower 16 bits of this register locate the top of the I/O window within a 64-Kbyte page, and the upper  
16 bits are a page register that locates this 64-Kbyte page in 32-bit PCI I/O address space. Bits 152 are read/write  
and allow the I/O limit address to be located anywhere in the 64-Kbyte page (indicated by bits 3116 of the appropriate  
I/O base register) on doubleword boundaries.  
Bits 3116 are read-only and always return 0s when read. The page is set in the I/O base register. Bits 1 and 0 are  
read-only and always return 0s, forcing I/O windows to be aligned on a natural doubleword boundary. Write  
transactions to read-only bits have no effect. The PCI4410A device assumes that the lower 2 bits of the limit address  
are 1s.  
NOTE: The I/O base or the I/O limit register must be nonzero to enable an I/O transaction.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
I/O limit registers 0, 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
I/O limit registers 0, 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
I/O limit registers 0, 1  
Read-only, Read/Write  
30h, 38h  
0000 0000h  
4.23 Interrupt Line Register  
The interrupt line register communicates interrupt line routing information.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Register:  
Type:  
Offset:  
Default:  
Interrupt line  
Read/Write  
3Ch  
FFh  
412  
4.24 Interrupt Pin Register  
The value read from the interrupt pin register is function dependent and depends on the interrupt signaling mode,  
selected through bits 21 (INTMODE field) of the device control register (PCI offset 92h, see Section 4.35). The  
PCI4410A device defaults to serialized PCI and ISA interrupt mode.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Interrupt pin  
Read-only  
3Dh  
01h  
413  
4.25 Bridge Control Register  
The bridge control register provides control over various PCI4410A bridging functions. See Table 46 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bridge control  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Bridge control  
Read-only, Read/Write  
Offset:  
Default:  
3Eh  
0340h  
Table 46. Bridge Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
1511  
RSVD  
R
Reserved. Bits 1511 return 0s when read.  
Write posting enable. Enables write posting to and from the CardBus sockets. Write posting enables  
posting of write data on burst cycles. Operating with write posting disabled inhibits performance on burst  
cycles. Note that bursted write data can be posted, but various write transactions cannot.  
10  
9
POSTEN  
R/W  
R/W  
Memory window 1 type. Bit 9 specifies whether or not memory window 1 is prefetchable. This bit is socket  
dependent. Bit 9 is encoded as:  
PREFETCH1  
0 = Memory window 1 is nonprefetchable.  
1 = Memory window 1 is prefetchable (default).  
Memory window 0 type. Bit 8 specifies whether or not memory window 0 is prefetchable. This bit is  
encoded as:  
8
7
6
5
PREFETCH0  
INTR  
R/W  
R/W  
R/W  
R/W  
0 = Memory window 0 is nonprefetchable.  
1 = Memory window 0 is prefetchable (default).  
PCI interrupt IREQ routing enable. Bit 7 selects whether PC Card functional interrupts are routed to PCI  
interrupts or to the IRQ specified in the ExCA registers.  
0 = Functional interrupts are routed to PCI interrupts (default).  
1 = Functional interrupts are routed to IRQ interrupts.  
CardBus reset. When bit 6 is set, CRST is asserted on the CardBus interface. CRST also can be asserted  
by passing a PRST assertion to CardBus.  
CRST  
0 = CRST is deasserted.  
1 = CRST is asserted (default).  
Master abort mode. Bit 5 controls how the PCI4410A device responds to a master abort when the  
PCI4410A device is an initiator on the CardBus interface.  
MABTMODE  
0 = Master aborts are not signaled (default).  
1 = Signal target abort on PCI. Signal SERR (if enabled)  
4
3
RSVD  
R
Reserved. Bit 4 returns 0 when read.  
VGA enable. Bit 3 affects how the PCI4410A device responds to VGA addresses. When this bit is set,  
accesses to VGA addresses are forwarded.  
VGAEN  
R/W  
ISA mode enable. Bit 2 affects how the PCI4410A device passes I/O cycles within the 64-Kbyte ISA range.  
This bit is not common between sockets. When this bit is set, the PCI4410A device does not forward the  
last 768 bytes of each 1K I/O range to CardBus.  
2
1
ISAEN  
R/W  
R/W  
CSERR enable. Bit 1 controls the response of the PCI4410A device to CSERR signals on the CardBus  
bus.  
CSERREN  
0 = CSERR is not forwarded to PCI SERR.  
1 = CSERR is forwarded to PCI SERR.  
CardBus parity error response enable. Bit 0 controls the response of the PCI4410A device to CardBus  
parity errors.  
0
CPERREN  
R/W  
0 = CardBus parity errors are ignored.  
1 = CardBus parity errors are reported using CPERR.  
414  
4.26 Subsystem Vendor ID Register  
The subsystem vendor ID register is used for system and option-card identification purposes and may be required  
for certain operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW)  
in the system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Subsystem vendor ID  
Read-only (Read/Write if enabled by SUBSYSRW)  
Offset:  
Default:  
40h  
0000h  
4.27 Subsystem ID Register  
The subsystem ID register is used for system and option-card identification purposes and may be required for certain  
operating systems. This register is read-only or read/write, depending on the setting of bit 5 (SUBSYSRW) in the  
system control register (PCI offset 80h, see Section 4.29).  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Subsystem ID  
Read-only (Read/Write if enabled by SUBSYSRW)  
Offset:  
Default:  
42h  
0000h  
4.28 PC Card 16-Bit I/F Legacy-Mode Base-Address Register  
The PCI4410A device supports the index/data scheme of accessing the ExCA registers, which is mapped by this  
register. An address written to this register is the address for the index register and the address + 1 is the data address.  
Using this access method, applications requiring index/data ExCA access can be supported. The base address can  
be mapped anywhere in 32-bit I/O space on a word boundary; hence, bit 0 is read-only, returning 1 when read. See  
Section 5, ExCA Compatibility Registers, for register offsets.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PC Card 16-bit I/F legacy-mode base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PC Card 16-bit I/F legacy-mode base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
1
Register:  
Type:  
Offset:  
Default:  
PC Card 16-bit I/F legacy-mode base address  
Read-only, Read/Write  
44h  
0000 0001h  
415  
4.29 System Control Register  
System-level initializations are performed through programming this doubleword register. See Table 47 for a  
complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
System control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/C  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
System control  
R/W  
1
R/W  
0
R
0
R
1
R
0
R
0
R
0
R
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
System control  
Read-only, Read/Write, Read/Clear  
Offset:  
Default:  
80h  
0044 9060h  
416  
Table 47. System Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Serialized PCI interrupt routing step. Bits 31 and 30 configure the serialized PCI interrupt stream signaling  
and accomplish an even distribution of interrupts signaled on the four PCI interrupt slots. Bits 31 and 30  
are global to all PCI4410A functions.  
3130  
SER_STEP  
R/W  
00 = INTA/INTB signal in INTA/INTB slots (default)  
01 = INTA/INTB signal in INTB/INTC slots  
10 = INTA/INTB signal in INTC/INTD slots  
11 = INTA/INTB signal in INTD/INTA slots  
29  
28  
TIE_INTB_INTA  
DIAGNOSTIC  
R/W  
R/W  
Tie INTB to INTA. When bit 29 is set to 1, INTB is tied to INTA (default is 0).  
TI diagnostic (IIC_Test) bit (default is 0).  
Internal oscillator enable.  
27  
26  
OSEN  
R/W  
R/W  
0 = Internal oscillator is disabled (default).  
1 = Internal oscillator is enabled.  
SMI interrupt routing. Bit 26 selects whether IRQ2 or CSC is signaled when a write occurs to power a PC  
Card socket.  
SMIROUTE  
0 = PC Card power change interrupts are routed to IRQ2 (default).  
1 = A CSC interrupt is generated on PC Card power changes.  
SMI interrupt status. This bit is set when bit 24 (SMIENB) is set and a write occurs to set the socket power.  
Writing a 1 to bit 25 clears the status.  
25  
24  
SMISTATUS  
SMIENB  
R/C  
0 = SMI interrupt is signaled (default).  
1 = SMI interrupt is not signaled.  
SMI interrupt mode enable. When bit 24 is set and a write to the socket power control occurs, the SMI  
interrupt signaling is enabled and generates an interrupt.  
R/W  
PCI Bus Power Management Interface Specification (Revision 1.1) enable.  
0 = Use PCI Bus Power Management Interface Specification (Revision 1.0) implementation (default).  
1 = Use PCI Bus Power Management Interface Specification (Revision 1.1) implementation.  
Note: See bits 20 (VERSION field) in the power management capability register (PCI offset A2h,  
Section 4.41) for additional information.  
23  
PCIPMEN  
R/W  
CardBus reserved-terminals signaling. When a CardBus card is inserted and bit 22 is set, the RSVD  
CardBus terminals are driven low. When this bit is 0, these signals are placed in a high-impedance state.  
0 = 3-state CardBus RSVD  
22  
21  
CBRSVD  
R/W  
R/W  
1 = Drive Cardbus RSVD low (default)  
V
protection enable.  
CC  
0 = V  
VCCPROT  
protection is enabled for 16-bit cards (default).  
protection is disabled for 16-bit cards.  
CC  
CC  
1 = V  
Reduced zoomed-video enable. When this bit is enabled, pins A25A22 of the card interface for PC  
Card-16 cards are placed in the high-impedance state. This bit should not be set for normal ZV operation.  
This bit is encoded as:  
20  
19  
REDUCEZV  
CDREQEN  
R/W  
R/W  
0 = Reduced zoomed video is disabled (default).  
1 = Reduced zoomed video is enabled.  
PC/PCI DMA card enable. When bit 19 is set, the PCI4410A device allows 16-bit PC Cards to request  
PC/PCI DMA using the DREQ signaling. DREQ is selected through the socket DMA register 0 (PCI offset  
94h, see Section 4.37).  
0 = Ignore DREQ signaling from PC Cards (default)  
1 = Signal DMA request on DREQ  
PC/PCI DMA channel assignment. Bits 1816 are encoded as:  
03 = 8-bit DMA channels  
1816  
CDMACHAN  
R/W  
R/W  
4 = PCI master; not used (default)  
57 = 16-bit DMA channels  
Memory-read burst-enable downstream. When bit 15 is set, memory-read transactions are allowed to  
burst downstream.  
15  
MRBURSTDN  
0 = Downstream memory-read burst is disabled.  
1 = Downstream memory-read burst is enabled (default).  
417  
Table 47. System Control Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Memory-read burst-enable upstream. When bit 14 is set, the PCI4410A device allows memory-read  
transactions to burst upstream.  
14  
MRBURSTUP  
R/W  
0 = Upstream memory-read burst is disabled (default).  
1 = Upstream memory-read burst is enabled.  
Socket activity status. When set, bit 13 indicates access has been performed to or from a PC card and  
is cleared upon read of this status bit.  
0 = No socket activity (default)  
1 = Socket activity  
13  
12  
SOCACTIVE  
RSVD  
R
R
Reserved. Bit 12 returns 1 when read.  
Power stream in progress status bit. When set, bit 11 indicates that a power stream to the power switch  
is in progress and a powering change has been requested. This bit is cleared when the power stream  
is complete.  
11  
PWRSTREAM  
R
0 = Power stream is complete and delay has expired.  
1 = Power stream is in progress.  
Power-up delay in progress status. When set, bit 9 indicates that a power-up stream has been sent to  
the power switch and proper power may not yet be stable. This bit is cleared when the power-up delay  
has expired.  
10  
9
DELAYUP  
R
R
Power-down delay in progress status. When set, bit 10 indicates that a power-down stream has been  
sent to the power switch and proper power may not yet be stable. This bit is cleared when the  
power-down delay has expired.  
DELAYDOWN  
Interrogation in progress. When set, bit 8 indicates an interrogation is in progress and clears when  
interrogation completes. This bit is socket dependent.  
0 = Interrogation is not in progress (default).  
8
INTERROGATE  
R
1 = Interrogation is in progress.  
Auto power-switch enable.  
0 = Bit 5 (AUTOPWRSWEN) in ExCA power control register (ExCA offset 02h, see Section 5.3)  
is disabled. (default).  
7
6
AUTOPWRSWEN  
PWRSAVINGS  
R/W  
R/W  
1 = Bit 5 (AUTOPWRSWEN) in ExCA power control register (ExCA offset 02h, see Section 5.3)  
is enabled.  
Power savings mode enable. When this bit is set, if a CB card is inserted, idle, and without a CB clock,  
then the applicable CB state machine is not clocked.  
Subsystem ID (PCI offset 42h, see Section 4.27), subsystem vendor ID (PCI offset 40h, see  
Section 4.26), ExCA identification and revision (ExCA offset 00h, see Section 5.1) registers read/write  
enable.  
5
SUBSYSRW  
R/W  
0 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read/write.  
1 = Subsystem ID, subsystem vendor ID, ExCA identification and revision registers are read-only  
(default).  
CardBus data parity error SERR signaling enable  
4
3
CB_DPAR  
CDMA_EN  
R/W  
R/W  
0 = CardBus data parity error is not signaled on PCI SERR.  
1 = CardBus data parity error is signaled on PCI SERR.  
PC/PCI DMA enable. Bit 3 enables PC/PCI DMA when set if MFUNC0MFUNC6 are configured for  
centralized DMA.  
0 = Centralized DMA is disabled (default).  
1 = Centralized DMA is enabled.  
ExCA power control bit. Enabled by selecting the 82365SL mode.  
2
1
ExCAPower  
KEEPCLK  
R/W  
R/W  
0 = Enables 3.3 V  
1 = Enables 5 V  
Keep clock. This bit works with PCI and CB CLKRUN protocols.  
0 = Allows normal functioning of both CLKRUN protocols (default)  
1 = Does not allow CB clock or PCI clock to be stopped using the CLKRUN protocols  
RI_OUT/PME multiplex enable.  
0 = RI_OUT and PME are both routed to the RI_OUT/PME terminal. If both are enabled at the  
same time, RI_OUT has precedence over PME.  
0
RIMUX  
R/W  
1 = Only PME is routed to the RI_OUT/PME terminal.  
418  
4.30 General Status Register  
The general status register provides the general device status information. The status of the serial EEPROM interface  
is provided through this register. See Table 48 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General status  
R
0
R
0
R
0
R
0
R
0
R
X
R/C  
0
R
0
Register:  
Type:  
Offset:  
Default:  
General status  
Read/Clear, Read-only  
85h (Function 0)  
00h  
Table 48. General Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
73  
RSVD  
R
Reserved. Bits 73 return 0s when read.  
Serial EEPROM detect. Serial EEPROM is detected by sampling a logic high on SCL while PRST is low.  
When this bit is set, the serial ROM is detected. This status bit is encoded as:  
0 = EEPROM is not detected (default).  
2
1
0
EEDETECT  
DATAERR  
EEBUSY  
R
R/C  
R
1 = EEPROM is detected.  
Serial EEPROM data error status. This bit indicates when a data error occurs on the serial EEPROM  
interface. This bit may be set due to a missing acknowledge. This bit is cleared by a writeback of 1.  
0 = No error is detected (default).  
1 = Data error is detected.  
Serial EEPROM busy status. This bit indicates the status of the PCI4410A serial EEPROM circuitry. This  
bit is set during the loading of the subsystem ID value.  
0 = Serial EEPROM circuitry is not busy (default).  
1 = Serial EEPROM circuitry is busy.  
4.31 General Control Register  
The general control register provides top-level PCI arbitration control. See Table 49 for a complete description of  
the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General control  
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
General control  
Read-Only, Read/Write  
Offset:  
Default:  
86h  
00h  
Table 49. General Control Register Description  
BIT  
74  
3
SIGNAL  
RSVD  
TYPE  
FUNCTION  
R
Reserved. Bits 74 return 0s when read.  
DISABLE_OHCI  
RSVD  
R/W When bit 3 is set, the open HCI 1394 controller function is completely nonaccessible and nonfunctional.  
2
R
Reserved. Bit 2 returns 0 when read.  
Controls top-level PCI arbitration.  
00 = 1394 open HCI priority  
01 = CardBus priority  
10  
ARB_CTRL  
R/W  
10 = Fair round robin  
11 = Reserved (fair round robin)  
419  
4.32 Multifunction Routing Register  
The multifunction routing register is used to configure the MFUNC0MFUNC6 terminals. These terminals can be  
configured for various functions. All multifunction terminals default to the general-purpose input configuration. This  
register is intended to be programmed once at power-on initialization. The default value for this register can also be  
loaded through a serial bus EEPROM. See Table 410 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Multifunction routing  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Multifunction routing  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Multifunction routing  
Read-only, Read/Write  
8Ch  
0000 0000h  
Table 410. Multifunction Routing Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3128  
RSVD  
R
Bits 3128 return 0s when read.  
Multifunction terminal 6 configuration. These bits control the internal signal mapped to the MFUNC6 terminal  
as follows:  
0000 = RSVD  
0001 = CLKRUN  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
2724  
2320  
MFUNC6  
MFUNC5  
R/W  
R/W  
Multifunction terminal 5 configuration. These bits control the internal signal mapped to the MFUNC5 terminal  
as follows:  
0000 = GPI4  
0001 = GPO4  
0010 = PCGNT  
0011 = IRQ3  
0100 = IRQ4  
0101 = D3_STAT 1001 = IRQ9  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1100 = LED_SKT  
1101 = Diagnostic setup: OHCI test  
1110 = GPE  
1010 = IRQ10  
1011 = IRQ11  
1111 = IRQ15  
Multifunction terminal 4 configuration. These bits control the internal signal mapped to the MFUNC4 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling up the VCCD0 and VCCD1 terminals, the  
MFUNC4 terminal provides the SCL signaling.  
1916  
MFUNC4  
R/W  
0000 = GPI3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = LED_SKT  
1110 = GPE  
0001 = GPO3  
0010 = PCI LOCK  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 3 configuration. These bits control the internal signal mapped to the MFUNC3 terminal  
as follows:  
0000 = RSVD  
0001 = IRQSER  
0010 = IRQ2  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = IRQ6  
0111 = IRQ7  
1000 = IRQ8  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = IRQ12  
1101 = IRQ13  
1110 = IRQ14  
1111 = IRQ15  
1512  
118  
MFUNC3  
MFUNC2  
R/W  
R/W  
Multifunction terminal 2 configuration. These bits control the internal signal mapped to the MFUNC2 terminal  
as follows:  
0000 = GPI2  
0001 = GPO2  
0010 = PCREQ  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = RI_OUT  
1101 = D3_STAT  
1110 = GPE  
1111 = IRQ7  
420  
Table 410. Multifunction Routing Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Multifunction terminal 1 configuration. These bits control the internal signal mapped to the MFUNC1 terminal  
as follows:  
NOTE: When the serial bus mode is implemented by pulling up the VCCD0 and VCCD1 terminals, the  
MFUNC1 terminal provides the SDA signaling.  
74  
MFUNC1  
R/W  
0000 = GPI1  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LED_SKT  
1101 = IRQ13  
1110 = GPE  
0001 = GPO1  
0010 = D3_STAT  
0011 = IRQ3  
1111 = IRQ15  
Multifunction terminal 0 configuration. These bits control the internal signal mapped to the MFUNC0 terminal  
as follows:  
0000 = GPI0  
0001 = GPO0  
0010 = INTA  
0011 = IRQ3  
0100 = IRQ4  
0101 = IRQ5  
0110 = ZVSTAT  
0111 = ZVSEL0  
1000 = CAUDPWM  
1001 = IRQ9  
1010 = IRQ10  
1011 = IRQ11  
1100 = LED_SKT  
1101 = IRQ13  
1110 = GPE  
30  
MFUNC0  
R/W  
1111 = IRQ15  
4.33 Retry Status Register  
The retry status register enables the retry timeout counters and displays the retry expiration status. The flags are set  
15  
when the PCI4410A device retries a PCI or CardBus master request and the master does not return within 2 PCI  
clock cycles. The flags are cleared by writing a 1 to the bit. These bits are expected to be incorporated into the  
command, status, and bridge control registers by the PCI SIG. See Table 411 for a complete description of the  
register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Retry status  
R/W  
1
R/W  
1
R
0
R
0
R/C  
0
R
0
R/C  
0
R
0
Register:  
Type:  
Retry status  
Read-only, Read/Write, Read/Clear  
Offset:  
Default:  
90h  
C0h  
Table 411. Retry Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI retry timeout counter enable. Bit 7 is encoded:  
0 = PCI retry counter is disabled.  
7
PCIRETRY  
R/W  
1 = PCI retry counter is enabled (default).  
CardBus retry timeout counter enable. Bit 6 is encoded:  
0 = CardBus retry counter is disabled.  
6
54  
3
CBRETRY  
RSVD  
R/W  
R
1 = CardBus retry counter is enabled (default).  
Reserved. Bits 5 and 4 return 0s when read.  
CardBus target retry expired. Write a 1 to clear bit 3.  
0 = Inactive (default)  
TEXP_CB  
RSVD  
R/C  
R
1 = Retry has expired.  
2
Reserved. Bit 2 returns 0 when read.  
PCI target retry expired. Write a 1 to clear bit 1.  
0 = Inactive (default)  
1
TEXP_PCI  
RSVD  
R/C  
R
1 = Retry has expired.  
0
Reserved. Bit 0 returns 0 when read.  
421  
4.34 Card Control Register  
The card control register is provided for PCI1130 compatibility. RI_OUT is enabled through this register. See  
Table 412 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Card control  
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/C  
0
Register:  
Type:  
Card control  
Read-only, Read/Write, Read/Clear  
Offset:  
Default:  
91h  
00h  
Table 412. Card Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Ring indicate output enable.  
0 = Disables any routing of RI_OUT signal (default).  
1 = Enables RI_OUT signal for routing to the RI_OUT/PME terminal, when bit 0 (RIMUX) in the  
system control register (PCI offset 80h, see Section 4.29) is set to 0, and for routing to MFUNC2  
or MFUNC4.  
7
RIENB  
R/W  
Compatibility ZV mode enable. When set, the PC Card socket interface ZV terminals enter a  
high-impedance state. This bit defaults to 0.  
6
5
ZVENABLE  
R/W  
R/W  
ZV output port enable. When bit 5 is set, the ZV output port is enabled. If bit 6 (ZVENABLE) is set, ZV  
data from the PC Card interface is routed to the ZV output port. Otherwise, the ZV output port drives  
a stable 0 pattern on all pins.  
ZV  
PORT_ENABLE  
When bit 5 is not set, the ZV output port pins are placed in a high-impedance state. Default is 0.  
Reserved. Bits 4 and 3 return 0 when read.  
43  
RSVD  
R
CardBus audio-to-IRQMUX. When set, the CAUDIO CardBus signal is routed to the corresponding  
multifunction terminal, which may be configured for CAUDPWM.  
2
AUD2MUX  
R/W  
Speaker out enable. When bit 1 is set, SPKR on the PC Card is enabled and is routed to SPKROUT.  
The SPKROUT terminal drives data only when the sockets SPKROUTEN bit is set. This bit is encoded  
as:  
1
0
SPKROUTEN  
R/W  
R/C  
0 = SPKR to SPKROUT is not enabled (default).  
1 = SPKR to SPKROUT is enabled.  
Interrupt flag. Bit 0 is the interrupt flag for 16-bit I/O PC Cards and for CardBus cards. Bit 0 is set when  
a functional interrupt is signaled from a PC Card interface. Write back a 1 to clear this bit.  
0 = No PC Card functional interrupt is detected (default).  
IFG  
1 = PC Card functional interrupt is detected.  
422  
4.35 Device Control Register  
The device control register is provided for PCI1130 compatibility. The interrupt mode select and the socket-capable  
force bits are programmed through this register. See Table 413 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device control  
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
0
Register:  
Type:  
Device control  
Read-only, Read/Write  
Offset:  
Default:  
92h  
66h  
Table 413. Device Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Socket-power lock bit. When this bit is set to 1, software cannot power down the PC Card socket  
while in D3. This may be necessary to support wake on LAN or RING if the operating system is  
programmed to power down a socket when the CardBus controller is placed in the D3 state.  
7
SKTPWR_LOCK  
3VCAPABLE  
R/W  
R/W  
3-V socket-capable force  
0 = Not 3-V capable  
6
1 = 3-V capable (default)  
5
4
3
IO16V2  
BUS_HOLDER_EN  
TEST  
R/W  
R/W  
R/W  
Diagnostic bit. This bit defaults to 1.  
Bus-holder cell enable/disable. Setting bit 4 to 1 enables the bus-holder cells on the 1394 link  
interface. Default state is 0, bus-holder cells disabled.  
TI test. Only a 0 should be written to bit 3.  
Interrupt signaling mode. Bits 2 and 1 select the interrupt signaling mode. The interrupt signaling  
mode bits are encoded:  
00 = Parallel PCI interrupts only  
01 = Parallel IRQ and parallel PCI interrupts  
10 = IRQ serialized interrupts and parallel PCI interrupt  
11 = IRQ and PCI serialized interrupts (default)  
21  
INTMODE  
RSVD  
R/W  
R/W  
0
Reserved. Bit 0 is reserved for test purposes. Only 0 should be written to this bit.  
423  
4.36 Diagnostic Register  
The diagnostic register is provided for internal TI test purposes. In addition, the diagnostic register can be used to  
control CSC interrupt routing, enable asynchronous interrupts, and alter the PCI vendor ID and device ID register  
fields. See Table 414 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Diagnostic  
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Register:  
Type:  
Offset:  
Default:  
Diagnostic  
Read/Write  
93h  
21h  
Table 414. Diagnostic Register Description  
BIT  
7
SIGNAL  
TRUE_VAL  
RSVD  
TYPE  
R/W  
R/W  
R/W  
FUNCTION  
This bit defaults to 0. This bit causes software to fail to recognize the PCI4410A device when set to  
1. This bit is encoded as:  
0 = Reads true values from the PCI vendor ID and PCI device ID registers (default).  
1 = Reads all 1s from the PCI vendor ID and PCI device ID registers.  
6
Reserved. Bit 6 returns 0 when read.  
CSC interrupt routing control  
0 = CSC interrupts are routed to PCI if ExCA 803 (see Section 5.4) bit 4 = 1.  
1 = CSC interrupts are routed to PCI if ExCA 805 (see Section 5.6) bits 74 = 0000b (default).  
In this case, the setting of ExCA 803 bit 4 is a dont care.  
5
CSC  
4
3
2
1
DIAG4  
DIAG3  
DIAG2  
DIAG1  
R/W  
R/W  
R/W  
R/W  
Diagnostic RETRY_DIS. Delayed transaction disabled.  
Diagnostic RETRY_EXT. Extends the latency from 16 to 64.  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_CB. Set = 2 , reset = 2  
10  
15  
.
Diagnostic DISCARD_TIM_SEL_PCI. Set = 2 , reset = 2  
Asynchronous interrupt enable.  
0
ASYNCINT  
R/W  
0 = CSC interrupt is not generated asynchronously.  
1 = CSC interrupt is generated asynchronously (default).  
424  
4.37 Socket DMA Register 0  
The socket DMA register 0 provides control over the PC Card DMA request (DREQ) signaling. See Table 415 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket DMA register 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket DMA register 0  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Socket DMA register 0  
Read-only, Read/Write  
94h  
0000 0000h  
Table 415. Socket DMA Register 0 Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
312  
RSVD  
R
Reserved. Bits 312 return 0s when read.  
DMA request (DREQ). Bits 1 and 0 indicate which pin on the 16-bit PC Card interface acts as DREQ during  
DMA transfers. This field is encoded as:  
00 = Socket is not configured for DMA (default).  
01 = DREQ uses SPKR.  
10  
DREQPIN  
R/W  
10 = DREQ uses IOIS16.  
11 = DREQ uses INPACK.  
425  
4.38 Socket DMA Register 1  
The socket DMA register 1 provides control over the distributed DMA (DDMA) registers and the PCI portion of DMA  
transfers. The DMA base address locates the DDMA registers in a 16-byte region within the first 64K bytes of PCI  
I/O address space. See Table 416 for a complete description of the register contents.  
NOTE: 32-bit transfers are not supported; the maximum transfer possible for 16-bit PC Cards  
is 16 bits.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket DMA register 1  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket DMA register 1  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Socket DMA register 1  
Read-only, Read/Write  
98h  
0000 0000h  
Table 416. Socket DMA Register 1 Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
3116  
RSVD  
R
Reserved. Bits 3116 return 0s when read.  
DMA base address. Locates the sockets DMA registers in PCI I/O space. This field represents a 16-bit PCI  
I/O address. The upper 16 bits of the address are hardwired to 0, forcing this window to within the lower  
64K bytes of I/O address space. The lower 4 bits are hardwired to 0 and are included in the address decode.  
Thus, the window is aligned to a natural 16-byte boundary.  
154  
DMABASE  
EXTMODE  
R/W  
R
3
Extended addressing. This feature is not supported by the PCI4410A device and always returns a 0.  
Transfer size. Bits 2 and 1 specify the width of the DMA transfer on the PC Card interface and are  
encoded as:  
00 = Transfers are 8 bits (default).  
01 = Transfers are 16 bits.  
10 = Reserved  
21  
XFERSIZE  
DDMAEN  
R/W  
R/W  
11 = Reserved  
DDMA registers decode enable. Enables the decoding of the distributed DMA registers based on the value  
of bits 154 (DMABASE field).  
0 = Disabled (default)  
1 = Enabled  
0
426  
4.39 Capability ID Register  
The capability ID register identifies the linked list item as the register for PCI power management. The register returns  
01h when read, which is the unique ID assigned by the PCI SIG for the PCI location of the capabilities pointer and  
the value.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID  
Read-only  
A0h  
01h  
4.40 Next-Item Pointer Register  
The next-item pointer register indicates the next item in the linked list of the PCI power-management capabilities.  
Because the PCI4410A functions include only one capabilities item, this register returns 0s when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Next-item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Next-item pointer  
Read-only  
A1h  
00h  
427  
4.41 Power Management Capabilities Register  
This register contains information on the capabilities of the PC Card function related to power management. Both  
PCI4410A CardBus bridge functions support D0, D1, D2, and D3 power states. See Table 417 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
R/W  
1
R
1
R
1
R
1
R
1
R
1
R
1
R
0
R
0
R
0
R
1
R
1
R
0
R
0
R
0
R
1
Register:  
Type:  
Power management capabilities  
Read/Write, Read-only  
Offset:  
Default:  
A2h  
FE31h  
Table 417. Power Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME support. This 5-bit field indicates the power states from which the PCI4410A functions can assert  
PME. A 0 (zero) for any bit indicates that the function cannot assert the PME signal while in that power  
state. These five bits return 11111b when read. Each of these bits is described below:  
15  
PME_SUPPORT  
PME_SUPPORT  
R/W  
R
Bit 15 defaults to the value 1, indicating the PME signal can be asserted from the D3  
bit is R/W because wake-up support from D3  
cold  
state. This  
is contingent on the system providing an auxiliary  
cold  
power source to the V  
source to the V  
CC  
terminals. If the system designer chooses not to provide an auxiliary power  
terminals for D3 wake-up support, the BIOS should write a 0 to this bit.  
cold  
CC  
1411  
Bit 14 contains the value 1, indicating that the PME signal can be asserted from D3 state.  
hot  
Bit 13 contains the value 1, indicating that the PME signal can be asserted from D2 state.  
Bit 12 contains the value 1, indicating that the PME signal can be asserted from D1 state.  
Bit 11 contains the value 1, indicating that the PME signal can be asserted from the D0 state.  
D2 support. Bit 10 returns a 1 when read, indicating that the CardBus function supports the D2 device  
power state.  
10  
D2_SUPPORT  
R
D1 support. Bit 9 returns a 1 when read, indicating that the CardBus function supports the D1 device  
power state.  
9
D1_SUPPORT  
RSVD  
R
R
86  
Reserved. Bits 86 return 0s when read.  
Device-specific initialization. Bit 5 returns 1 when read, indicating that the CardBus controller function  
requires special initialization (beyond the standard PCI configuration header) before the generic class  
device driver is able to use it.  
5
DSI  
R
Auxiliary power source. Bit 4 is meaningful only if bit 15 (PME_Support, D3  
) is set. When bit 4 is  
cold  
set, it indicates that support for PME in D3  
cold  
requires auxiliary power supplied by the system by way  
4
3
AUX_PWR  
PMECLK  
R
R
of a proprietary delivery vehicle. When bit 4 is 0, it indicates that the function supplies its own auxiliary  
power source. Because the PCI4410A device requires an auxiliary power supply, this bit returns 1.  
PME clock. Bit 3 returns 0 when read, indicating that no host bus clock is required for the PCI4410A  
device to generate PME.  
Version. Bits 20 return 001b when read, indicating that there are four bytes of general-purpose power  
management (PM) registers as described in the PCI Bus Power Management Interface Specification.  
See bit 23 (PCIPMEN) in the system control register (PCI offset 80h, Section 4.29) for additional  
information.  
20  
VERSION  
R
It is recommended that the PCIPMEN bit be set by BIOS. If PCIPMEN is set, bits 20 (VERSION field)  
will return 010b, indicating support for the PCI Bus Power Management Interface Specification  
(Revision 1.1).  
428  
4.42 Power Management Control/Status Register  
The power management control/status register determines and changes the current power state of the PCI4410A  
CardBus function. The contents of this register are not affected by the internally generated reset caused by the  
transition from D3  
to D0 state. All PCI, ExCA, and CardBus registers are reset as a result of a D3  
to D0 state  
hot  
hot  
transition. TI-specific registers, PCI power management registers, and the legacy base address register are not reset.  
See Table 418 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status  
R/C  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Power management control/status  
Read-only, Read/Write, Read/Clear  
Offset:  
Default:  
A4h  
0000h  
Table 418. Power Management Control/Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PME status. Bit 15 is set when the CardBus function normally would assert PME, independent  
of the state of bit 8 (PME_EN). Bit 15 is cleared by a writeback of 1, and this also clears the PME  
signal if PME was asserted by this function. Writing a 0 to this bit has no effect.  
15  
PMESTAT  
R/C  
Data scale. This 2-bit field returns 0s when read. The CardBus function does not return any  
dynamic data, as indicated by bit 4 (DYN_DATA_PME_EN).  
1413  
129  
DATASCALE  
DATASEL  
R
R
Data select. This 4-bit field returns 0s when read. The CardBus function does not return any  
dynamic data, as indicated by bit 4 (DYN_DATA_PME_EN).  
PME enable. When set to 1, bit 8 enables the function to assert PME. When cleared to 0, the  
assertion of PME is disabled.  
8
PME_EN  
RSVD  
R/W  
R
75  
4
Reserved. Bits 75 return 0s when read.  
Dynamic data PME enable. Bit 4 returns 0 when read, because the CardBus function does not  
report dynamic data.  
DYN_DATA_PME_EN  
RSVD  
R
32  
R
Reserved. Bits 32 return 0s when read.  
Power state. This 2-bit field is used both to determine the current power state of a function and  
to set the function into a new power state. This field is encoded as:  
00 = D0  
01 = D1  
10 = D2  
10  
PWR_STATE  
R/W  
11 = D3  
hot  
429  
4.43 Power Management Control/Status Register Bridge Support Extensions  
The power management control/status register bridge support extensions support PCI bridge-specific functionality.  
See Table 419 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control/status register bridge support extensions  
R
1
R/W  
1
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management control/status register bridge support extensions  
Read-only  
A6h  
C0h  
Table 419. Power Management Control/Status Register Bridge Support Extensions Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
BPCC_Enable. Bus power/clock control enable. This bit returns 1 when read.  
This bit is encoded as:  
0 = Bus power/clock control is disabled.  
1 = Bus power/clock control is enabled (default).  
7
BPCC_EN  
R
A 0 indicates that the bus power/clock control policies defined in the PCI Bus Power Management  
Interface Specification are disabled. When the bus power/clock control enable mechanism is disabled,  
the bridges power management control/status register power state field (PCI offset A4h, see  
Section 4.42, bits 10) cannot be used by the system software to control the power or the clock of the  
bridges secondary bus. A 1 indicates that the bus power/clock control mechanism is enabled.  
B2/B3 support for D3 . The state of this bit determines the action that is to occur as a direct result of  
hot  
programming the function to D3 . This bit is meaningful only if bit 7 (BPCC_EN) is a 1. This bit is encoded  
hot  
as:  
6
B2_B3  
RSVD  
R/W  
R
0 = When the bridge is programmed to D3 , its secondary bus will have its power removed (B3).  
hot  
1 = When the bridge function is programmed to D3 , its secondary buss PCI clock will be  
hot  
stopped (B2). (Default)  
50  
Reserved. Bits 50 return 0s when read.  
4.44 Power Management Data Register  
The power management data register returns 0s when read, because the CardBus functions do not report dynamic  
data.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management data  
Read-only  
A7h  
00h  
430  
4.45 General-Purpose Event Status Register  
The general-purpose event status register contains status bits that are set by different events. The bits in this register  
and the corresponding GPE are cleared by writing a 1 to the corresponding bit location. See Table 420 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event status  
R/C  
0
R
0
R
0
R
0
R/C  
0
R
0
R
0
R/C  
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
Register:  
Type:  
General-purpose event status  
Read-only, Read/Clear  
Offset:  
Default:  
A8h  
0000h  
Table 420. General-Purpose Event Status Register Description  
BIT  
15  
SIGNAL  
ZV_STS  
RSVD  
TYPE  
R/C  
R
FUNCTION  
PC card ZV status. Bit 15 is set on a change in status of bit 6 (ZVENABLE) in the card control register (PCI  
offset 91h, see Section 4.34).  
1412  
11  
Reserved. Bits 1412 return 0s when read.  
Power change status. Bit 11 is set when software has changed the power state of the socket. A change  
PWR_STS  
RSVD  
R/C  
R
in either V  
CC  
or V for the socket causes this bit to be set.  
PP  
109  
8
Reserved. Bits 10 and 9 return 0s when read.  
12-V V request status. Bit 8 is set when software has changed the requested V  
level to or from 12 V  
PP  
PP  
VPP12_STS  
RSVD  
R/C  
R
for the PC Card socket.  
75  
4
Reserved. Bits 75 return 0s when read.  
GPI4 Status. Bit 4 is set on a change in status of the MFUNC5 terminal input level. This bit does not depend  
upon the state of a corresponding bit in the general-purpose event enable register.  
GP4_STS  
R/C  
GPI3 Status. Bit 3 is set on a change in status of the MFUNC4 terminal input level. This bit does not depend  
upon the state of a corresponding bit in the general-purpose event enable register.  
3
2
1
0
GP3_STS  
GP2_STS  
GP1_STS  
GP0_STS  
R/C  
R/C  
R/C  
R/C  
GPI2 Status. Bit 2 is set on a change in status of the MFUNC2 terminal input level. This bit does not depend  
upon the state of a corresponding bit in the general-purpose event enable register.  
GPI1 Status. Bit 1 is set on a change in status of the MFUNC1 terminal input level. This bit does not depend  
upon the state of a corresponding bit in the general-purpose event enable register.  
GPI0 Status. Bit 0 is set on a change in status of the MFUNC0 terminal input level. This bit does not depend  
upon the state of a corresponding bit in the general-purpose event enable register.  
431  
4.46 General-Purpose Event Enable Register  
The general-purpose event enable register contains bits that are set to enable a GPE signal. The GPE signal is driven  
until the corresponding status bit is cleared and the event is serviced. The GPE can be signaled only if one of the  
multifunction terminals, MFUNC6MFUNC0, is configured for GPE signaling. See Table 421 for a complete  
description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose event enable  
R/W  
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
General-purpose event enable  
Read-only, Read/Write  
Offset:  
Default:  
AAh  
0000h  
Table 421. General-Purpose Event Enable Register Description  
BIT  
15  
SIGNAL  
ZV_EN  
TYPE  
R/W  
R
FUNCTION  
PC card socket ZV enable. When bit 15 is set, a GPE is signaled on a change in status of bit 6 (ZVENABLE)  
in the card control register (PCI offset 91h, see Section 4.34).  
1412  
11  
RSVD  
Reserved. Bits 1412 return 0s when read.  
Power change enable. When bit 11 is set, a GPE is signaled when software has changed the power state  
of the socket.  
PWR_EN  
RSVD  
R/W  
R
109  
8
Reserved. Bits 10 and 9 return 0s when read.  
12-V V  
request enable. When bit 8 is set, a GPE is signaled when software has changed the requested  
level to or from 12 V for the card socket.  
PP  
VPP12_EN  
RSVD  
R/W  
R
V
PP  
75  
4
Reserved. Bits 75 return 0s when read.  
GPI4 enable. When bit 4 is set, a GPE is signaled when there has been a change in status of the MFUNC5  
terminal input level if configured as GPI4.  
GP4_EN  
R/W  
GPI3 enable. When bit 3 is set, a GPE is signaled when there has been a change in status of the MFUNC4  
terminal input level if configured as GPI3.  
3
2
1
0
GP3_EN  
GP2_EN  
GP1_EN  
GP0_EN  
R/W  
R/W  
R/W  
R/W  
GPI2 enable. When bit 2 is set, a GPE is signaled when there has been a change in status of the MFUNC2  
terminal input if configured as GPI2.  
GPI1 enable. When bit 1 is set, a GPE is signaled when there has been a change in status of the MFUNC1  
terminal input if configured as GPI1.  
GPI0 enable. When bit 0 is set, a GPE is signaled when there has been a change in status of the MFUNC0  
terminal input if configured as GPI0.  
432  
4.47 General-Purpose Input Register  
The general-purpose input register provides the logical value of the data input from the GPI terminals, MFUNC5,  
MFUNC4, and MFUNC2MFUNC0. See Table 422 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose input  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Offset:  
Default:  
General-purpose input  
Read-only  
ACh  
00XXh  
Table 422. General-Purpose Input Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
155  
RSVD  
R
Reserved. Bits 155 return 0s when read.  
GPI4 data bit. The value read from bit 4 represents the logical value of the data input from the MFUNC5  
terminal.  
4
3
2
1
0
GPI4_DATA  
GPI3_DATA  
GPI2_DATA  
GPI1_DATA  
GPI0_DATA  
R
GPI3 data bit. The value read from bit 3 represents the logical value of the data input from the MFUNC4  
terminal.  
R
R
R
R
GPI2 data bit. The value read from bit 2 represents the logical value of the data input from the MFUNC2  
terminal.  
GPI1 data bit. The value read from bit 1 represents the logical value of the data input from the MFUNC1  
terminal.  
GPI0 data bit. The value read from bit 0 represents the logical value of the data input from the MFUNC0  
terminal.  
433  
4.48 General-Purpose Output Register  
The general-purpose output register is used for control of the general-purpose outputs. See Table 423 for a  
complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
General-purpose output  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
General-purpose output  
Read-only, Read/Write  
AEh  
0000h  
Table 423. General-Purpose Output Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
155  
RSVD  
R
Reserved. Bits 155 return 0s when read.  
GPO4 data bit. The value written to bit 4 represents the logical value of the data driven to the MFUNC5  
terminal if configured as GPO4. Read transactions return the last data value written.  
4
3
2
1
0
GPO4_DATA  
GPO3_DATA  
GPO2_DATA  
GPO1_DATA  
GPO0_DATA  
R/W  
GPO3 data bit. The value written to bit 3 represents the logical value of the data driven to the MFUNC4  
terminal if configured as GPO3. Read transactions return the last data value written.  
R/W  
R/W  
R/W  
R/W  
GPO2 data bit. The value written to bit 2 represents the logical value of the data driven to the MFUNC2  
terminal if configured as GPO2. Read transactions return the last data value written.  
GPO1 data bit. The value written to bit 1 represents the logical value of the data driven to the MFUNC1  
terminal if configured as GPO1. Read transactions return the last data value written.  
GPO0 data bit. The value written to bit 0 represents the logical value of the data driven to the MFUNC0  
terminal if configured as GPO0. Read transactions return the last data value written.  
434  
5 ExCA Compatibility Registers  
The ExCA registers implemented in the PCI4410A device are register-compatible with the Intel 82365SLDF  
PCMCIA controller. The ExCA registers are identified by an offset value that is compatible with the legacy I/O  
index/data scheme used on the Intel 82365 ISA controller. The ExCA registers are accessed through this scheme  
by writing the register offset value into the index register (I/O base) and reading or writing the data register (I/O base  
+ 1). The I/O base address used in the index/data scheme is programmed in the PC Card 16-bit I/F legacy-mode base  
address register (PCI offset 44h, see Section 4.28). The offsets from this base address run contiguously from 00h  
to 3Fh for the socket. See Figure 51 for an ExCA I/O-mapping illustration.  
PCI4410A Configuration Registers  
Host I/O Space  
Offset  
Offset  
00h  
PC Card  
ExCA  
10h  
Index  
Data  
Registers  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
3Fh  
44h  
Figure 51. ExCA Register Access Through I/O  
The TI PCI4410A device also provides a memory-mapped alias of the ExCA registers by directly mapping them into  
PCI memory space. They are located through the CardBus socket/ExCA base address register (PCI offset 10h, see  
Section 4.12) at memory offset 800h. See Figure 52 for an ExCA memory-mapping illustration. This illustration also  
identifies the CardBus socket-register mapping, which is mapped into the same 4K window at memory offset 0h.  
Host  
Memory Space  
PCI4410A Configuration Registers  
Offset  
Offset  
00h  
CardBus  
Socket  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
800h  
ExCA  
Registers  
844h  
Figure 52. ExCA Register Access Through Memory  
51  
As defined by the 82365SLDL Specification, the interrupt registers in the ExCA register set control such card  
functions as reset, type, interrupt routing, and interrupt enables. Special attention must be paid to the interrupt routing  
registers and the host-interrupt signaling method selected for the PCI4410A device to ensure that all possible  
PCI4410A interrupts potentially can be routed to the programmable interrupt controller. The ExCA registers that are  
critical to the interrupt signaling are the ExCA interrupt and general control register (ExCA offset 03h, see Section 5.4)  
and the ExCA card status-change-interrupt configuration register (ExCA offset 05h, see Section 5.6).  
Access to I/O-mapped 16-bit PC Cards is available to the host system via two ExCA I/O windows. These are regions  
of host I/O address space into which the card I/O space is mapped. These windows are defined by start, end, and  
offset addresses programmed in the ExCA registers described in this section. I/O windows have byte granularity.  
Access to memory-mapped 16-bit PC Cards is available to the host system via five ExCA memory windows. These  
are regions of host memory space into which the card memory space is mapped. These windows are defined by start,  
end, and offset addresses programmed in the ExCA registers described in this section. Table 51 identifies each  
ExCA register and its respective ExCA offset. Memory windows have 4-Kbyte granularity.  
Table 51. ExCA Registers and Offsets  
CARDBUS SOCKET  
ExCA OFFSET  
EXCA REGISTER NAME  
ADDRESS OFFSET  
(HEX)  
(HEX)  
Identification and revision  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
80A  
80B  
80C  
80D  
80E  
80F  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
81A  
81B  
81C  
81D  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
Interface status  
Power control  
Interrupt and general control  
Card status change  
Card status-change-interrupt configuration  
Address window enable  
I / O window control  
I / O window 0 start-address low byte  
I / O window 0 start-address high byte  
I / O window 0 end-address low byte  
I / O window 0 end-address high byte  
I / O window 1 start-address low byte  
I / O window 1 start-address high byte  
I / O window 1 end-address low byte  
I / O window 1 end-address high byte  
Memory window 0 start-address low byte  
Memory window 0 start-address high byte  
Memory window 0 end-address low byte  
Memory window 0 end-address high byte  
Memory window 0 offset-address low byte  
Memory window 0 offset-address high byte  
Card detect and general control  
Reserved  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
Memory window 1 start-address low byte  
Memory window 1 start-address high byte  
Memory window 1 end-address low byte  
Memory window 1 end-address high byte  
Memory window 1 offset-address low byte  
Memory window 1 offset-address high byte  
52  
Table 51. ExCA Registers and Offsets (Continued)  
CARDBUS SOCKET  
ADDRESS OFFSET  
(HEX)  
ExCA OFFSET  
(HEX)  
EXCA REGISTER NAME  
Global control  
81E  
81F  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
82A  
82B  
82C  
82D  
82E  
82F  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
83A  
83B  
83C  
83D  
83E  
83F  
840  
841  
842  
843  
844  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
Reserved  
Memory window 2 start-address low byte  
Memory window 2 start-address high byte  
Memory window 2 end-address low byte  
Memory window 2 end-address high byte  
Memory window 2 offset-address low byte  
Memory window 2 offset-address high byte  
Reserved  
Reserved  
Memory window 3 start-address low byte  
Memory window 3 start-address high byte  
Memory window 3 end-address low byte  
Memory window 3 end-address high byte  
Memory window 3 offset-address low byte  
Memory window 3 offset-address high byte  
Reserved  
Reserved  
Memory window 4 start-address low byte  
Memory window 4 start-address high byte  
Memory window 4 end-address low byte  
Memory window 4 end-address high byte  
Memory window 4 offset-address low byte  
Memory window 4 offset-address high byte  
I/O window 0 offset-address low byte  
I/O window 0 offset-address high byte  
I/O window 1 offset-address low byte  
I/O window 1 offset-address high byte  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Memory window page 0  
Memory window page 1  
Memory window page 2  
Memory window page 3  
Memory window page 4  
53  
5.1 ExCA Identification and Revision Register  
The ExCA identification and revision register provides host software with information on 16-bit PC Card support and  
Intel 82365SL-DF compatibility. This register is read-only or read/write, depending on the setting of bit 5  
(SUBSYSRW) in the system control register (PCI offset 80h, see Section 4.29). See Table 52 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA identification and revision  
R
1
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
Register:  
Type:  
ExCA identification and revision  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 800h; ExCA offset 00h  
84h  
Table 52. ExCA Identification and Revision Register Description  
BIT  
76  
54  
SIGNAL  
IFTYPE  
RSVD  
TYPE  
FUNCTION  
Interface type. These bits, which are hardwired as 10b, identify the 16-bit PC Card support provided by the  
PCI4410A device. The PCI4410A device supports both I/O and memory 16-bit PC cards.  
R
R/W  
Reserved.  
Intel 82365SL-DF revision. This field stores the Intel 82365SL-DF revision supported by the PCI4410A  
device. Host software can read this field to determine compatibility to the Intel 82365SL-DF register set.  
Writing 0010b to this field puts the controller in 82365SL mode. This field defaults to 0100b upon PCI4410A  
reset.  
30  
365REV  
R/W  
54  
5.2 ExCA Interface Status Register  
The ExCA interface status register provides information on the current status of the PC Card interface. An X in the  
default bit value indicates that the value of the bit after reset depends on the state of the PC Card interface. See  
Table 53 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interface status  
R
0
R
0
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
ExCA interface status  
Read-only  
Offset:  
Default:  
CardBus socket address + 801h; ExCA offset 01h  
00XX XXXXb  
Table 53. ExCA Interface Status Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
7
RSVD  
R
Reserved. Bit 7 returns 0 when read.  
Card Power. Bit 6 indicates the current power status of the PC Card socket. This bit reflects how the ExCA  
power control register (ExCA offset 02h, see Section 5.3) is programmed. Bit 6 is encoded as:  
6
5
CARDPWR  
READY  
R
R
0 = V  
1 = V  
and V  
and V  
to the socket turned off (default)  
to the socket turned on  
CC  
CC  
PP  
PP  
Ready. Bit 5 indicates the current status of the READY signal at the PC Card interface.  
0 = PC Card not ready for data transfer  
1 = PC Card ready for data transfer  
Card write protect. Bit 4 indicates the current status of WP at the PC Card interface. This signal reports to  
the PCI4410A device whether or not the memory card is write protected. Furthermore, write protection for  
an entire PCI4410A 16-bit memory window is available by setting the appropriate bit in the ExCA memory  
window offset-address high-byte register (see Section 5.18).  
4
CARDWP  
R
0 = WP is 0. PC Card is read/write.  
1 = WP is 1. PC Card is read-only.  
Card detect 2. Bit 3 indicates the status of CD2 at the PC Card interface. Software can use this and bit 2  
(CDETECT1) to determine if a PC Card is fully seated in the socket.  
0 = CD2 is 1. No PC Card is inserted.  
3
2
CDETECT2  
CDETECT1  
R
R
1 = CD2 is 0. PC Card is at least partially inserted.  
Card detect 1. Bit 2 indicates the status of CD1 at the PC Card interface. Software can use this and bit 3  
(CDETECT2) to determine if a PC Card is fully seated in the socket.  
0 = CD1 is 1. No PC Card is inserted.  
1 = CD1 is 0. PC Card is at least partially inserted.  
Battery voltage detect. When a 16-bit memory card is inserted, the field indicates the status of the battery  
voltage detect signals (BVD1, BVD2) at the PC Card interface, where bit 1 reflects the BVD2 status and bit 0  
reflects BVD1.  
00 = Battery dead  
01 = Battery dead  
10 = Battery low; warning  
11 = Battery good  
10  
BVDSTAT  
R
When a 16-bit I/O card is inserted, this field indicates the status of SPKR (bit 1) and STSCHG (bit 0) at the  
PC Card interface. In this case, the two bits in this field directly reflect the current state of these card outputs.  
55  
5.3 ExCA Power Control Register  
The ExCA power control register provides PC Card power control. Bit 7 (COE) of this register controls the 16-bit output  
enables on the socket interface, and can be used for power management in 16-bit PC Card applications. The  
PCI4410A device supports both the 82365SL and 82365SL-DF register models. Bits 30 (365REV filed) of the ExCA  
identification and revision register (ExCA offset 00h, see Section 5.1) control which register model is supported. See  
Table 54 and Table 55 for a complete description of the register contents.  
5.3.1 Intel 82365SL Support Mode  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA power control  
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA power control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 802h; ExCA offset 02h  
00h  
Table 54. ExCA Power Control Register 82365SL Support Description  
BIT  
7
SIGNAL  
COE  
TYPE  
R/W  
R
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI4410A device. This bit  
is encoded as:  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
6
RSVD  
Reserved. Bit 6 returns 0 when read.  
Auto power switch enable. This bit is enabled by bit 7 of the system control register (PCI offset 80h, see  
Section 4.29).  
5
AUTOPWRSWEN  
R/W  
0 = Automatic socket power switching based on card detects is disabled.  
1 = Automatic socket power switching based on card detects is enabled.  
PC Card power enable.  
0 = V  
1 = V  
= V  
PP1  
= V = No connection  
PP2  
CC  
CC  
4
CAPWREN  
RSVD  
R/W  
R
is enabled and controlled by bit 2 (ExCAPower) of the system control register (PCI offset 80h,  
and V are controlled according to bits 10 (EXCAVPP field).  
see Section 4.29), V  
PP1  
PP2  
Reserved. Bits 3 and 2 return 0s when read.  
PC Card V power control. Bits 1 and 0 are used to request changes to card V . The PCI4410A device  
32  
PP PP  
ignores this field unless V  
to the socket is enabled (that is, 5 V or 3.3 V). This field is encoded as:  
CC  
00 = No connection (default)  
01 = V  
10  
EXCAVPP  
R/W  
CC  
10 = 12 V  
11 = Reserved  
56  
5.3.2 Intel 82365SL-DF Support Mode  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA power control  
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA power control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 802h; ExCA offset 02h  
00h  
Table 55. ExCA Power Control Register 82365SL-DF Support Description  
BIT  
7
SIGNAL  
COE  
TYPE  
R/W  
R
FUNCTION  
Card output enable. Bit 7 controls the state of all of the 16-bit outputs on the PCI4410A device. This bit is  
encoded as:  
0 = 16-bit PC Card outputs disabled (default)  
1 = 16-bit PC Card outputs enabled  
65  
RSVD  
Reserved. Bits 6 and 5 return 0s when read.  
V
CC  
. Bits 4 and 3 are used to request changes to card V . This field is encoded as:  
CC  
00 = 0 V (default)  
01 = 0 V reserved  
10 = 5 V  
43  
EXCAVCC  
RSVD  
R/W  
R
11 = 3 V  
2
Reserved. Bit 2 returns 0 when read.  
V
. Bits 1 and 0 are used to request changes to card V . The PCI4410A device ignores this field unless  
PP PP  
V
to the socket is enabled. This field is encoded as:  
CC  
00 = No connection (default)  
01 = V  
10  
EXCAVPP  
R/W  
CC  
10 = 12 V  
11 = Reserved  
57  
5.4 ExCA Interrupt and General Control Register  
The ExCA interrupt and general control register controls interrupt routing for I/O interrupts, as well as other critical  
16-bit PC Card functions. See Table 56 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA interrupt and general control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA interrupt and general control  
Read/Write  
Offset:  
Default:  
CardBus socket address + 803h; ExCA offset 03h  
00h  
Table 56. ExCA Interrupt and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Card ring indicate enable. Bit 7 enables the ring indicate function of BVD1/RI. This bit is encoded as:  
0 = Ring indicate disabled (default)  
7
RINGEN  
R/W  
1 = Ring indicate enabled  
Card reset. Bit 6 controls the 16-bit PC Card RESET, and allows host software to force a card reset. Bit 6  
affects 16-bit cards only. This bit is encoded as:  
6
5
RESET  
R/W  
R/W  
0 = RESET signal asserted (default)  
1 = RESET signal deasserted  
Card type. Bit 5 indicates the PC card type. This bit is encoded as:  
0 = Memory PC Card installed (default)  
CARDTYPE  
1 = I/O PC Card installed  
PCI Interrupt CSC routing enable bit. When bit 4 is set (high), the card status change interrupts are routed  
to PCI interrupts. When low, the card status-change interrupts are routed using bits 74 (CSCSELECT field)  
in the ExCA card status-change-interrupt configuration register (ExCA offset 05h, see Section 5.6). This bit  
is encoded as:  
4
CSCROUTE  
R/W  
0 = CSC interrupts are routed by ExCA registers (default).  
1 = CSC interrupts are routed to PCI interrupts.  
Card interrupt select for I/O PC Card functional interrupts. Bits 30 select the interrupt routing for I/O  
PC Card functional interrupts. This field is encoded as:  
0000 = No interrupt routing (default) . CSC interrupts routed to PCI interrupts. These bit settings, along  
with bit 4 (CSCROUTE), are combined through an OR function for backwards compatibility.  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0100 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
30  
INTSELECT  
R/W  
58  
5.5 ExCA Card Status-Change Register  
The ExCA card status-change register controls interrupt routing for I/O interrupts, as well as other critical 16-bit PC  
Card functions. The register enables these interrupt sources to generate an interrupt to the host. When the interrupt  
source is disabled, the corresponding bit in this register always reads 0. When an interrupt source is enabled, the  
corresponding bit in this register is set to indicate that the interrupt source is active. After generating the interrupt to  
the host, the interrupt service routine must read this register to determine the source of the interrupt. The interrupt  
service routine is responsible for resetting the bits in this register as well. Resetting a bit is accomplished by one of  
two methods: a read of this register or an explicit writeback of 1 to the status bit. The choice of these two methods  
is based on bit 2 (interrupt flag clear mode select) in the ExCA global control register (ExCA offset 1Eh, see  
Section 5.22). See Table 57 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA card status-change  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
ExCA card status-change  
Read-only  
Offset:  
Default:  
CardBus socket address + 804h; ExCA offset 04h  
00h  
Table 57. ExCA Card Status-Change Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
74  
RSVD  
R
Reserved. Bits 74 return 0s when read.  
Card detect change. Bit 3 indicates whether a change on CD1 or CD2 occurred at the PC Card  
interface. This bit is encoded as:  
3
2
CDCHANGE  
R
R
0 = No change is detected on either CD1 or CD2.  
1 = Change is detected on either CD1 or CD2.  
Ready change. When a 16-bit memory is installed in the socket, bit 2 includes whether the source of  
a PCI4410A interrupt was due to a change on READY at the PC Card interface, indicating that the  
PC Card is now ready to accept new data. This bit is encoded as:  
READYCHANGE  
0 = No low-to-high transition is detected on READY (default).  
1 = Detected low-to-high transition on READY  
When a 16-bit I/O card is installed, bit 2 is always 0.  
Battery warning change. When a 16-bit memory card is installed in the socket, bit 1 indicates whether  
the source of a PCI4410A interrupt was due to a battery-low warning condition. This bit is encoded as:  
0 = No battery warning condition (default)  
1
0
BATWARN  
R
R
1 = Detected battery warning condition  
When a 16-bit I/O card is installed, bit 1 is always 0.  
Battery dead or status change. When a 16-bit memory card is installed in the socket, bit 0 indicates  
whether the source of a PCI4410A interrupt was due to a battery-dead condition. This bit is encoded  
as:  
0 = STSCHG is deasserted (default).  
1 = STSCHG is asserted.  
BATDEAD//RI  
Ring indicate. When an I/O card is installed in the socket and the PCI4410A device is configured for  
ring-indicate operation, bit 0 indicates the status of RI.  
59  
5.6 ExCA Card Status-Change-Interrupt Configuration Register  
The ExCA card status-change-interrupt configuration register controls interrupt routing for card status-change  
interrupts, as well as masking CSC interrupt sources. See Table 58 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA status-change-interrupt configuration  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA card status-change-interrupt configuration  
Read/Write  
Offset:  
Default:  
CardBus socket address + 805h; ExCA offset 05h  
00h  
Table 58. ExCA Card Status-Change-Interrupt Configuration Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt select for card status change. Bits 74 select the interrupt routing for card status change  
interrupts.  
0000 = CSC interrupts routed to PCI interrupts if bit 5 (CSC) of the diagnostic register (PCI offset 93h, see  
Section 4.36) is set to 1. In this case bit 4 (CSCROUTE) of the ExCA interrupt and general control register  
is a dont care(ExCA offset 03h, see Section 5.4). This is the default setting.  
0000 = No ISA interrupt routing if bit 5 (CSC) of the diagnostic register is set to 0 (PCI offset 93h, see  
Section 4.36). In this case, CSC interrupts are routed to PCI interrupts by setting bit 4 (CSCROUTE) of  
the ExCA interrupt and general control register (ExCA offset 03h, see Section 5.4) to 1.  
74  
CSCSELECT  
R/W  
This field is encoded as:  
0000 = No interrupt routing (default)  
0001 = IRQ1 enabled  
0010 = SMI enabled  
0011 = IRQ3 enabled  
0100 = IRQ4 enabled  
0101 = IRQ5 enabled  
0110 = IRQ6 enabled  
0111 = IRQ7 enabled  
1000 = IRQ8 enabled  
1001 = IRQ9 enabled  
1010 = IRQ10 enabled  
1011 = IRQ11 enabled  
1100 = IRQ12 enabled  
1101 = IRQ13 enabled  
1110 = IRQ14 enabled  
1111 = IRQ15 enabled  
Card detect enable. Bit 3 enables interrupts on CD1 or CD2 changes. This bit is encoded as:  
0 = Disables interrupts on CD1 or CD2 line changes (default)  
3
2
CDEN  
R/W  
R/W  
1 = Enables interrupts on CD1 or CD2 line changes  
Ready enable. Bit 2 enables/disables a low-to-high transition on PC Card READY to generate a host  
interrupt. This interrupt source is considered a card status change. This bit is encoded as:  
0 = Disables host interrupt generation (default)  
READYEN  
1 = Enables host interrupt generation  
Battery warning enable. Bit 1 enables/disables a battery warning condition to generate a CSC interrupt.  
This bit is encoded as:  
1
0
BATWARNEN  
BATDEADEN  
R/W  
R/W  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
Battery-dead enable. Bit 0 enables/disables the generation of a CSC interrupt for a battery-dead condition  
(16-bit memory PC card) or assertion of the STSCHG signal (16-bit I/O PC card).  
0 = Disables host interrupt generation (default)  
1 = Enables host interrupt generation  
510  
5.7 ExCA Address Window Enable Register  
The ExCA address window enable register enables/disables the memory and I/O windows to the 16-bit PC Card. By  
default, all windows to the card are disabled. The PCI4410A device does not acknowledge PCI memory or I/O cycles  
to the card if the corresponding enable bit in this register is 0, regardless of the programming of the memory or I/O  
window start/end/offset address registers. See Table 59 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA address window enable  
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA address window enable  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 806h; ExCA offset 06h  
00h  
Table 59. ExCA Address Window Enable Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 enable. Bit 7 enables/disables I/O window 1 for the PC Card. This bit is encoded as:  
0 = I/O window 1 is disabled (default).  
7
IOWIN1EN  
R/W  
1 = I/O window 1 is enabled.  
I/O window 0 enable. Bit 6 enables/disables I/O window 0 for the PC Card. This bit is encoded as:  
0 = I/O window 0 is disabled (default).  
6
5
IOWIN0EN  
RSVD  
R/W  
R
1 = I/O window 0 is enabled.  
Reserved. Bit 5 returns 0 when read.  
Memory window 4 enable. Bit 4 enables/disables memory window 4 for the PC Card. This bit is  
encoded as:  
4
3
2
1
0
MEMWIN4EN  
MEMWIN3EN  
MEMWIN2EN  
MEMWIN1EN  
MEMWIN0EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0 = Memory window 4 is disabled (default).  
1 = Memory window 4 is enabled.  
Memory window 3 enable. Bit 3 enables/disables memory window 3 for the PC Card. This bit is  
encoded as:  
0 = Memory window 3 is disabled (default).  
1 = Memory window 3 is enabled.  
Memory window 2 enable. Bit 2 enables/disables memory window 2 for the PC Card. This bit is  
encoded as:  
0 = Memory window 2 is disabled (default).  
1 = Memory window 2 is enabled.  
Memory window 1 enable. Bit 1 enables/disables memory window 1 for the PC Card. This bit is  
encoded as:  
0 = Memory window 1 is disabled (default).  
1 = Memory window 1 is enabled.  
Memory window 0 enable. Bit 0 enables/disables memory window 0 for the PC Card. This bit is  
encoded as:  
0 = Memory window 0 is disabled (default).  
1 = Memory window 0 is enabled.  
511  
5.8 ExCA I/O Window Control Register  
The ExCA I/O window control register contains parameters related to I/O window sizing and cycle timing. See  
Table 510 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O window control  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA I/O window control  
Read/Write  
Offset:  
Default:  
CardBus socket address + 807h; ExCA offset 07h  
00h  
Table 510. ExCA I/O Window Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
I/O window 1 wait state. Bit 7 controls the I/O window 1 wait state for 16-bit I/O accesses. Bit 7 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF  
PCMCIA controller. This bit is encoded as:  
7
WAITSTATE1  
R/W  
R/W  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 1 zero wait state. Bit 6 controls the I/O window 1 wait state for 8-bit I/O accesses. Bit 6 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF PCMCIA controller. This bit is encoded as:  
6
ZEROWS1  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/O window 1 IOIS16 source. Bit 5 controls the I/O window 1 automatic data-sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width determined by DATASIZE1, bit 4 (default).  
5
4
IOSIS16W1  
DATASIZE1  
R/W  
R/W  
1 = Window data width determined by IOIS16.  
I/O window 1 data size. Bit 4 controls the I/O window 1 data size. Bit 4 is ignored if bit 5 (IOSIS16W1) is  
set. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
I/O window 0 wait state. Bit 3 controls the I/O window 0 wait state for 16-bit I/O accesses. Bit 3 has no effect  
on 8-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel 82365SL-DF  
PCMCIA controller. This bit is encoded as:  
3
2
WAITSTATE0  
ZEROWS0  
R/W  
R/W  
0 = 16-bit cycles have standard length (default).  
1 = 16-bit cycles are extended by one equivalent ISA wait state.  
I/O window 0 zero wait state. Bit 2 controls the I/O window 0 wait state for 8-bit I/O accesses. Bit 2 has  
no effect on 16-bit accesses. This wait-state timing emulates the ISA wait state used by the Intel  
82365SL-DF PCMCIA controller. This bit is encoded as:  
0 = 8-bit cycles have standard length (default).  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
I/O window 0 IOIS16 source. Bit 1 controls the I/O window 0 automatic data sizing feature that uses IOIS16  
from the PC Card to determine the data width of the I/O data transfer. This bit is encoded as:  
0 = Window data width is determined by DATASIZE0, bit 0 (default).  
1
0
IOSIS16W0  
DATASIZE0  
R/W  
R/W  
1 = Window data width is determined by IOIS16.  
I/O window 0 data size. Bit 0 controls the I/O window 0 data size. Bit 0 is ignored if bit 1 (IOSIS16W0) is  
set. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
1 = Window data width is 16 bits.  
512  
5.9 ExCA I/O Windows 0 and 1 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 start-address low byte  
CardBus socket address + 808h; ExCA offset 08h  
ExCA I/O window 1 start-address low byte  
CardBus socket address + 80Ch; ExCA offset 0Ch  
Read/Write  
Type:  
Default:  
00h  
5.10 ExCA I/O Windows 0 and 1 Start-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window start address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 start-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 start-address high byte  
CardBus socket address + 809h; ExCA offset 09h  
ExCA I/O window 1 start-address high byte  
CardBus socket address + 80Dh; ExCA offset 0Dh  
Read/write  
Type:  
Default:  
00h  
513  
5.11 ExCA I/O Windows 0 and 1 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the lower 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 end-address low byte  
CardBus socket address + 80Ah; ExCA offset 0Ah  
ExCA I/O window 1 end-address low byte  
CardBus socket address + 80Eh; ExCA offset 0Eh  
Read/Write  
Type:  
Default:  
00h  
5.12 ExCA I/O Windows 0 and 1 End-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window end address for I/O windows 0 and 1. The 8 bits of these  
registers correspond to the upper 8 bits of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 end-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 end-address high byte  
CardBus socket address + 80Bh; ExCA offset 0Bh  
ExCA I/O window 1 end-address high byte  
CardBus socket address + 80Fh; ExCA offset 0Fh  
Read/write  
Type:  
Default:  
00h  
514  
5.13 ExCA Memory Windows 04 Start-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window start address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19A12 of the start address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 start-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 start-address low byte  
CardBus socket address + 810h; ExCA offset 10h  
ExCA memory window 1 start-address low byte  
CardBus socket address + 818h; ExCA offset 18h  
ExCA memory window 2 start-address low byte  
CardBus socket address + 820h; ExCA offset 20h  
ExCA memory window 3 start-address low byte  
CardBus socket address + 828h; ExCA offset 28h  
ExCA memory window 4 start-address low byte  
CardBus socket address + 830h; ExCA offset 30h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
515  
5.14 ExCA Memory Windows 04 Start-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window start address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23A20 of the start address. In addition, the memory  
window data width and wait states are set in this register. See Table 511 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 start-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 start-address high byte  
CardBus socket address + 811h; ExCA offset 11h  
ExCA memory window 1 start-address high byte  
CardBus socket address + 819h; ExCA offset 19h  
ExCA memory window 2 start-address high byte  
CardBus socket address + 821h; ExCA offset 21h  
ExCA memory window 3 start-address high byte  
CardBus socket address + 829h; ExCA offset 29h  
ExCA memory window 4 start-address high byte  
CardBus socket address + 831h; ExCA offset 31h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
Table 511. ExCA Memory Windows 04 Start-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Data size. Bit 7 controls the memory window data width. This bit is encoded as:  
0 = Window data width is 8 bits (default).  
7
DATASIZE  
R/W  
1 = Window data width is 16 bits.  
Zero wait state. Bit 6 controls the memory window wait state for 8- and 16-bit accesses. This wait-state timing  
emulates the ISA wait state used by the Intel 82365SL-DF PCMCIA controller. This bit is encoded as:  
0 = 8- and 16-bit cycles have standard length (default).  
6
ZEROWAIT  
R/W  
1 = 8-bit cycles are reduced to equivalent of three ISA cycles.  
16-bit cycles are reduced to equivalent of two ISA cycles.  
54  
30  
SCRATCH  
STAHN  
R/W  
R/W  
Scratch-pad bits. Bits 5 and 4 have no effect on memory window operation.  
Start-address high nibble. Bits 30 represent the upper address bits A23A20 of the memory window  
start address.  
516  
5.15 ExCA Memory Windows 04 End-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window end address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19A12 of the end address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 end-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 end-address low byte  
CardBus socket address + 812h; ExCA offset 12h  
ExCA memory window 1 end-address low byte  
CardBus socket address + 81Ah; ExCA offset 1Ah  
ExCA memory window 2 end-address low byte  
CardBus socket address + 822h; ExCA offset 22h  
ExCA memory window 3 end-address low byte  
CardBus socket address + 82Ah; ExCA offset 2Ah  
ExCA memory window 4 end-address low byte  
CardBus socket address + 832h; ExCA offset 32h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
517  
5.16 ExCA Memory Windows 04 End-Address High-Byte Registers  
These registers contain the high nibble of the 16-bit memory window end address for memory windows 0, 1, 2, 3,  
and 4. The lower 4 bits of these registers correspond to bits A23A20 of the end address. In addition, the memory  
window wait states are set in this register. See Table 512 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 end-address high byte  
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 end-address high byte  
CardBus socket address + 813h; ExCA offset 13h  
ExCA memory window 1 end-address high byte  
CardBus socket address + 81Bh; ExCA offset 1Bh  
ExCA memory window 2 end-address high byte  
CardBus socket address + 823h; ExCA offset 23h  
ExCA memory window 3 end-address high byte  
CardBus socket address + 82Bh; ExCA offset 2Bh  
ExCA memory window 4 end-address high byte  
CardBus socket address + 833h; ExCA offset 33h  
Read-only, Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
Table 512. ExCA Memory Windows 04 End-Address High-Byte Registers Description  
BIT  
76  
54  
30  
SIGNAL  
MEMWS  
RSVD  
TYPE  
R/W  
R
FUNCTION  
Wait state. Bits 7 and 6 specify the number of equivalent ISA wait states to be added to 16-bit memory  
accesses. The number of wait states added is equal to the binary value of these two bits.  
Reserved. Bits 5 and 4 return 0s when read.  
End-address high nibble. Bits 30 represent the upper address bits A23A20 of the memory window end  
ENDHN  
R/W  
address.  
518  
5.17 ExCA Memory Windows 04 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit memory window offset address for memory windows 0, 1, 2, 3, and  
4. The 8 bits of these registers correspond to bits A19A12 of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 offset-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 offset-address low byte  
CardBus socket address + 814h; ExCA offset 14h  
ExCA memory window 1 offset-address low byte  
CardBus socket address + 81Ch; ExCA offset 1Ch  
ExCA memory window 2 offset-address low byte  
CardBus socket address + 824h; ExCA offset 24h  
ExCA memory window 3 offset-address low byte  
CardBus socket address + 82Ch; ExCA offset 2Ch  
ExCA memory window 4 offset-address low byte  
CardBus socket address + 834h; ExCA offset 34h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
519  
5.18 ExCA Memory Windows 04 Offset-Address High-Byte Registers  
These registers contain the high 6 bits of the 16-bit memory window offset address for memory windows 0, 1, 2, 3,  
and 4. The lower 6 bits of these registers correspond to bits A25A20 of the offset address. In addition, the write  
protection and common/attribute memory configurations are set in this register. See Table 513 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 offset-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
Register:  
Offset:  
ExCA memory window 0 offset-address high byte  
CardBus socket address + 815h; ExCA offset 15h  
ExCA memory window 1 offset-address high byte  
CardBus socket address + 81Dh; ExCA offset 1Dh  
ExCA memory window 2 offset-address high byte  
CardBus socket address + 825h; ExCA offset 25h  
ExCA memory window 3 offset-address high byte  
CardBus socket address + 82Dh; ExCA offset 2Dh  
ExCA memory window 4 offset-address high byte  
CardBus socket address + 835h; ExCA offset 35h  
Read/Write  
Register:  
Offset:  
Type:  
Default:  
00h  
Table 513. ExCA Memory Windows 04 Offset-Address High-Byte Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Write protect. Bit 7 specifies whether write operations to this memory window are enabled. This bit is  
encoded as:  
7
WINWP  
R/W  
0 = Write operations are allowed (default).  
1 = Write operations are not allowed.  
Bit 6 specifies whether this memory window is mapped to card attribute or common memory. This bit is encoded  
as:  
6
REG  
R/W  
R/W  
0 = Memory window is mapped to common memory (default).  
1 = Memory window is mapped to card attribute memory.  
Offset-address high byte. Bits 50 represent the upper address bits A25A20 of the memory window  
offset address.  
50  
OFFHB  
520  
5.19 ExCA I/O Windows 0 and 1 Offset-Address Low-Byte Registers  
These registers contain the low byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the lower 8 bits of the offset address, and bit 0 always is 0.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address low byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 offset-address low byte  
CardBus socket address + 836h; ExCA offset 36h  
ExCA I/O window 1 offset-address low byte  
CardBus socket address + 838h; ExCA offset 38h  
Read-only, Read/Write  
Type:  
Default:  
00h  
5.20 ExCA I/O Windows 0 and 1 Offset-Address High-Byte Registers  
These registers contain the high byte of the 16-bit I/O window offset address for I/O windows 0 and 1. The 8 bits of  
these registers correspond to the upper 8 bits of the offset address.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O windows 0 and 1 offset-address high byte  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Offset:  
Register:  
Offset:  
ExCA I/O window 0 offset-address high byte  
CardBus socket address + 837h; ExCA offset 37h  
ExCA I/O window 1 offset-address high byte  
CardBus socket address + 839h; ExCA offset 39h  
Read/Write  
Type:  
Default:  
00h  
521  
5.21 ExCA I/O Card-Detect and General Control Register  
The ExCA card-detect and general control register controls how the ExCA registers for the socket respond to card  
removal, and reports the status of VS1 and VS2 at the PC Card interface. See Table 514 for a complete description  
of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA I/O card detect and general control  
R
X
R
X
R/W  
0
R/W  
0
R
0
R
0
R/W  
0
R
0
Register:  
Type:  
ExCA card-detect and general control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 816h; ExCA offset 16h  
XX00 0000b  
Table 514. ExCA I/O Card-Detect and General Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
VS2 state. Bit 7 reports the current state of VS2 at the PC Card interface and, therefore, has no default  
value.  
7
VS2STAT  
R
0 = VS2 low  
1 = VS2 high  
VS1 state. Bit 6 reports the current state of VS1 at the PC Card interface and, therefore, has no default  
value.  
6
5
VS1STAT  
SWCSC  
R
0 = VS1 low  
1 = VS1 high  
Software card-detect interrupt. If bit 3 (CDEN) in the ExCA card status-change-interrupt configuration  
register (ExCA offset 05h, see Section 5.6) is set to 1, writing a 1 to bit 5 causes a card-detect card-status  
change interrupt for the associated card socket. If bit 3 (CDEN) in the ExCA card status-change-interrupt  
configuration register (see Section 5.6) is cleared to 0, writing a 1 to bit 5 has no effect. A read operation  
of this bit always returns 0.  
R/W  
Card-detect resume enable. If bit 4 is set to 1, once a card detect change has been detected on CD1 and  
CD2 inputs, RI_OUT goes from high to low. RI_OUT remains low until bit 0 (card status change) in the  
ExCA card status-change register (ExCA offset 04h, see Section 5.5) is cleared. If this bit is a 0, the  
card-detect resume functionality is disabled.  
4
CDRESUME  
R/W  
0 = Card-detect resume disabled (default)  
1 = Card-detect resume enabled  
32  
1
RSVD  
REGCONFIG  
RSVD  
R
R/W  
R
Reserved. Bits 3 and 2 return 0s when read.  
Register configuration on card removal. Bit 1 controls how the ExCA registers for the socket react to a card  
removal event. This bit is encoded as:  
0 = No change to ExCA registers on card removal (default)  
1 = Reset ExCA registers on card removal  
0
Reserved. Bit 0 returns 0 when read.  
522  
5.22 ExCA Global Control Register  
The ExCA global control register controls the PC Card socket. The host interrupt mode bits in this register are retained  
for Intel 82365SL-DF compatibility. See Table 515 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA global control  
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA global control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 81Eh; ExCA offset 1Eh  
00h  
Table 515. ExCA Global Control Register Description  
FUNCTION  
BIT  
75  
4
SIGNAL  
RSVD  
TYPE  
R
Reserved. Bits 75 return 0s when read.  
This bit has no assigned function.  
No function  
R/W  
Level/edge interrupt mode select. Bit 3 selects the signaling mode for the PCI4410A host interrupt. This bit  
is encoded as:  
3
2
1
INTMODE  
IFCMODE  
CSCMODE  
R/W  
R/W  
R/W  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Interrupt flag clear mode select. Bit 2 selects the interrupt flag clear mechanism for the flags in the ExCA  
card status-change register (ExCA offset 04h, see Section 5.5). This bit is encoded as:  
0 = Interrupt flags are cleared by read of CSC register (default).  
1 = Interrupt flags are cleared by explicit writeback of 1.  
Card status change level/edge mode select. Bit 1 selects the signaling mode for the PCI4410A host interrupt  
for card status changes. This bit is encoded as:  
0 = Host interrupt is edge mode (default).  
1 = Host interrupt is level mode.  
Power-down mode select. When bit 0 is set to 1, the PCI4410A device is in power-down mode. In  
power-down mode, the PCI4410A card outputs are high impedance until an active cycle is executed on the  
card interface. Following an active cycle, the outputs are again high impedance. The PCI4410A device still  
receives DMA requests, functional interrupts, and/or card status change interrupts; however, an actual card  
access is required to wake up the interface. This bit is encoded as:  
0
PWRDWN  
R/W  
0 = Power-down mode is disabled (default).  
1 = Power-down mode is enabled.  
5.23 ExCA Memory Windows 04 Page Register  
The upper 8 bits of a 4-byte PCI memory address are compared to the contents of this register when addresses for  
16-bit memory windows are decoded. Each window has its own page register, all of which default to 00h. By  
programming this register to a nonzero value, host software can locate 16-bit memory windows in any 1 of 256  
16-Mbyte regions in the 4-Gbyte PCI address space. These registers are accessible only when the ExCA registers  
are memory-mapped; that is, these registers cannot be accessed using the index/data I/O scheme.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
ExCA memory windows 04 page  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
ExCA memory windows 04 page  
Read/Write  
Offset:  
Default:  
CardBus socket address + 840h, 841h, 842h, 843h, 844h  
00h  
523  
524  
6 CardBus Socket Registers  
The PC Card Standard requires a CardBus socket controller to provide five 32-bit registers that report and control  
socket-specific functions. The PCI4410A device provides the CardBus socket/ExCA base-address register (PCI  
offset 10h, see Section 4.12) to locate these CardBus socket registers in PCI memory address space. Each socket  
has a separate base address register for accessing the CardBus socket registers (see Figure 61). Table 61 gives  
the location of the socket registers in relation to the CardBus socket/ExCA base address.  
The PCI4410A device implements an additional register at offset 20h that provides power-management control for  
the socket.  
Host  
Memory Space  
PCI4410A Configuration Registers  
Offset  
Offset  
00h  
CardBus  
Socket  
Registers  
10h  
44h  
CardBus Socket/ExCA Base Address  
16-Bit Legacy-Mode Base Address  
20h  
800h  
ExCA  
Registers  
844h  
Figure 61. Accessing CardBus Socket Registers Through PCI Memory  
Table 61. CardBus Socket Registers  
REGISTER NAME  
OFFSET  
00h  
Socket event  
Socket mask  
04h  
Socket present state  
Socket force event  
Socket control  
Reserved  
08h  
0Ch  
10h  
14h  
Reserved  
18h  
Reserved  
1Ch  
20h  
Socket power management  
61  
6.1 Socket Event Register  
The socket event register indicates a change in socket status has occurred. These bits do not indicate what the  
change is, only that one has occurred. Software must read the socket present state register (CardBus offset 08h, see  
Section 6.3) for current status. Each bit in this register can be cleared by writing a 1 to that bit. The bits in this register  
can be set to a 1 by software by writing a 1 to the corresponding bit in the socket force event register (CardBus offset  
0Ch, see Section 6.4). All bits in this register are cleared by PCI reset. They can be set again immediately if, when  
coming out of PC Card reset, the bridge finds the status unchanged (that is, CSTSCHG is reasserted or card detect  
still is true). Software must clear this register before enabling interrupts. If it is not cleared when interrupts are enabled,  
an interrupt is generated (but not masked) based on any bit set. See Table 62 for a complete description of the  
register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/C  
0
R/C  
0
R/C  
0
R/C  
0
Register:  
Type:  
Socket event  
Read-only, Read/Clear  
Offset:  
Default:  
CardBus socket address + 00h  
0000 0000h  
Table 62. Socket Event Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
314  
RSVD  
R
Reserved. Bits 314 return 0s when read.  
Power cycle. Bit 3 is set when the PCI4410A device detects that bit 3 (PWRCYCLE) in the socket present  
state register (CardBus offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1.  
3
2
1
PWREVENT  
CD2EVENT  
CD1EVENT  
R/C  
R/C  
R/C  
CCD2. Bit 2 is set when the PCI4410A device detects that bit 2 (CDETECT2) in the socket present state  
register (CardBus offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1.  
CCD1. Bit 1 is set when the PCI4410A device detects that bit 1 (CDETECT1) in the socket present state  
register (CardBus offset 08h, see Section 6.3) has changed state. This bit is cleared by writing a 1.  
CSTSCHG. Bit 0 is set when bit 0 (CARDSTS) in the socket present state register (CardBus offset 08h,  
see Section 6.3) has changed state. For CardBus cards, bit 0 is set on the rising edge of CSTSCHG. For  
16-bit PC Cards, bit 0 is set on both transitions of CSTSCHG. This bit is reset by writing a 1.  
0
CSTSEVENT  
R/C  
62  
6.2 Socket Mask Register  
The socket mask register allows software to control the CardBus card events that generate a status change interrupt.  
The state of these mask bits does not prevent the corresponding bits from reacting in the socket event register  
(CardBus offset 00h, see Section 6.1). See Table 63 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Socket mask  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 04h  
0000 0000h  
Table 63. Socket Mask Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
314  
RSVD  
R
Reserved. Bits 314 return 0s when read.  
Power cycle. Bit 3 masks bit 3 (PWRCYCLE) in the socket present state register (CardBus offset 08h, see  
Section 6.3) from causing a status change interrupt.  
3
21  
0
PWRMASK  
CDMASK  
R/W  
R/W  
R/W  
0 = PWRCYCLE event does not cause CSC interrupt (default).  
1 = PWRCYCLE event causes CSC interrupt.  
Card detect mask. Bits 2 and 1 mask bits 1 and 2 (CDETECT1 and CDETECT2) in the socket present state  
register (CardBus offset 08h, see Section 6.3) from causing a CSC interrupt.  
00 = Insertion/removal does not cause CSC interrupt (default).  
01 = Reserved (undefined)  
10 = Reserved (undefined)  
11 = Insertion/removal causes CSC interrupt.  
CSTSCHG mask. Bit 0 masks bit 0 (CARDSTS) in the socket present state register (CardBus offset 08h,  
see Section 6.3) from causing a CSC interrupt.  
CSTSMASK  
0 = CARDSTS event does not cause CSC interrupt (default).  
1 = CARDSTS event causes CSC interrupt.  
63  
6.3 Socket Present State Register  
The socket present state register reports information about the socket interface. Write transactions to the socket force  
event register (CardBus offset 0Ch, see Section 6.4) are reflected here, as well as general socket-interface status.  
Information about PC Card V  
support and card type is updated only at each insertion. Also, note that the PCI4410A  
CC  
device uses CCD1 and CCD2 during card identification, and changes on these signals during this operation are not  
reflected in this register. See Table 64 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket present state  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket present state  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
X
R
0
R
0
R
0
R
X
R
X
R
X
Register:  
Type:  
Socket present state  
Read-only  
Offset:  
Default:  
CardBus socket address + 08h  
3000 00XXh  
Table 64. Socket Present State Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
YV socket. Bit 31 indicates whether or not the socket can supply V  
device does not support Y.Y-V V ; therefore, this bit is hardwired to 0.  
CC  
= Y.Y V to PC Cards. The PCI4410A  
CC  
31  
YVSOCKET  
R
XV socket. Bit 30 indicates whether or not the socket can supply V  
device does not support X.X-V V ; therefore, this bit is hardwired to 0.  
CC  
= X.X V to PC Cards. The PCI4410A  
CC  
30  
29  
XVSOCKET  
3VSOCKET  
R
R
3-V socket. Bit 29 indicates whether or not the socket can supply V  
device does support 3.3-V V ; therefore, this bit always is set unless overridden by the socket force event  
CC  
register (CardBus offset 0Ch, see Section 6.4).  
= 3.3 V to PC Cards. The PCI4410A  
CC  
5-V socket. Bit 28 indicates whether or not the socket can supply V  
device does support 5-V V ; therefore, this bit always is set unless overridden by the socket force event  
CC  
register (CardBus offset 0Ch, see Section 6.4).  
= 5 V to PC Cards. The PCI4410A  
CC  
28  
5VSOCKET  
R
2714  
13  
RSVD  
R
R
R
R
R
Reserved. Bits 2714 return 0s when read.  
YVCARD  
XVCARD  
3VCARD  
5VCARD  
YV card. Bit 13 indicates whether or not the PC Card inserted in the socket supports V  
XV card. Bit 12 indicates whether or not the PC Card inserted in the socket supports V  
= Y.Y V.  
= X.X V.  
= 3.3 V.  
= 5 V.  
CC  
12  
CC  
11  
3-V card. Bit 11 indicates whether or not the PC Card inserted in the socket supports V  
CC  
10  
5-V card. Bit 10 indicates whether or not the PC Card inserted in the socket supports V  
CC  
Bad V  
invalid voltage.  
request. Bit 9 indicates that the host software has requested that the socket be powered at an  
CC  
9
8
7
BADVCCREQ  
DATALOST  
R
R
R
0 = Normal operation (default)  
1 = Invalid V  
CC  
request by host software  
Data lost. Bit 8 indicates that a PC Card removal event may have caused lost data because the cycle did  
not terminate properly or because write data still resides in the PCI4410A device.  
0 = Normal operation (default)  
1 = Potential data loss due to card removal  
Not a card. Bit 7 indicates that an unrecognizable PC Card is inserted in the socket. This bit is not updated  
until a valid PC Card is inserted into the socket.  
NOTACARD  
0 = Normal operation (default)  
1 = Unrecognizable PC Card detected  
64  
Table 64. Socket Present State Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
READY(IREQ)//CINT. Bit 6 indicates the current status of READY(IREQ)//CINT at the PC Card interface.  
0 = READY(IREQ)//CINT low  
6
IREQCINT  
R
1 = READY(IREQ)//CINT high  
CardBus card detected. Bit 5 indicates that a CardBus PC Card is inserted in the socket. This bit is not  
updated until another card interrogation sequence occurs (card insertion).  
5
4
CBCARD  
R
R
16-bit card detected. Bit 4 indicates that a 16-bit PC Card is inserted in the socket. This bit is not updated  
until another card interrogation sequence occurs (card insertion).  
16BITCARD  
Power cycle. Bit 3 indicates that the status of each card powering request. This bit is encoded as:  
0 = Socket powered down (default)  
3
2
PWRCYCLE  
CDETECT2  
R
R
1 = Socket powered up  
CCD2. Bit 2 reflects the current status of CCD2 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
0 = CCD2 low (PC Card may be present)  
1 = CCD2 high (PC Card not present)  
CCD1. Bit 1 reflects the current status of CCD1 at the PC Card interface. Changes to this signal during  
card interrogation are not reflected here.  
1
0
CDETECT1  
CARDSTS  
R
R
0 = CCD1 low (PC Card may be present)  
1 = CCD1 high (PC Card not present)  
CSTSCHG. Bit 0 reflects the current status of CSTSCHG at the PC Card interface.  
0 = CSTSCHG low  
1 = CSTSCHG high  
65  
6.4 Socket Force Event Register  
The socket force event register is used to force changes to the socket event register (CardBus offset 00h, see  
Section 6.1) and the socket present state register (CardBus offset 08h, see Section 6.3). Bit 14 (CVSTEST) in this  
register must be written when forcing changes that require card interrogation. See Table 65 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket force event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket force event  
R
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
R
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
Socket force event  
Read-only, Write-only  
Offset:  
Default:  
CardBus socket address + 0Ch  
0000 0000h  
Table 65. Socket Force Event Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
3115  
RSVD  
R
Reserved. Bits 3115 return 0s when read.  
Card VS test. When bit 14 is set, the PCI4410A device re-interrogates the PC Card, updates the socket  
present state register (CardBus offset 08h, see Section 6.3), and enables the socket control register  
(CardBus offset 10h, see Section 6.5).  
14  
13  
12  
11  
10  
CVSTEST  
FYVCARD  
FXVCARD  
F3VCARD  
F5VCARD  
W
W
W
W
W
Force YV card. Write transactions to bit 13 cause bit 13 (YVCARD) in the socket present state register to  
be written (CardBus offset 08h, see Section 6.3). When set, this bit disables the socket control register  
(CardBus offset 10h, see Section 6.5).  
Force XV card. Write transactions to bit 12 cause bit 12 (XVCARD) in the socket present state register to  
be written (CardBus offset 08h, see Section 6.3). When set, this bit disables the socket control register  
(CardBus offset 10h, see Section 6.5).  
Force 3-V card. Write transactions to bit 11 cause bit 11 (3VCARD) in the socket present state register to  
be written (CardBus offset 08h, see Section 6.3). When set, this bit disables the socket control register  
(CardBus offset 10h, see Section 6.5).  
Force 5-V card. Write transactions to bit 10 cause bit 10 (5VCARD) in the socket present state register to  
be written (CardBus offset 08h, see Section 6.3). When set, this bit disables the socket control register  
(CardBus offset 10h, see Section 6.5).  
Force bad V  
CC  
request. Changes to bit 9 (BADVCCREQ) in the socket present state register (CardBus offset  
08h, see Section 6.3) can be made by writing to bit 9.  
9
8
FBADVCCREQ  
FDATALOST  
W
W
Force data lost. Write transactions to bit 8 cause bit 8 (DATALOST) in the socket present state register to  
be written (CardBus offset 08h, see Section 6.3).  
Force not a card. Write transactions to bit 7 cause bit 7 (NOTACARD) in the socket present state register  
to be written (CardBus offset 08h, see Section 6.3).  
7
6
5
FNOTACARD  
RSVD  
W
R
Reserved. Bit 6 returns 0 when read.  
Force CardBus card. Write transactions to bit 5 cause bit 5 (CBCARD) in the socket present state register  
to be written (CardBus offset 08h, see Section 6.3).  
FCBCARD  
W
Force 16-bit card. Write transactions to bit 4 cause bit 4 (16BITCARD) in the socket present state register  
to be written (CardBus offset 08h, see Section 6.3).  
4
3
F16BITCARD  
FPWRCYCLE  
W
W
Force power cycle. Write transactions to bit 3 cause bit 3 (PWREVENT) in the socket event register to be  
written (CardBus offset 00h, see Section 6.1), and bit 3 (PWRCYCLE) in the socket present state register  
is unaffected (CardBus offset 08h, see Section 6.3).  
66  
Table 65. Socket Force Event Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Force CCD2. Write transactions to bit 2 cause bit 2 (CD2EVENT) in the socket event register to be written  
(CardBus offset 00h, see Section 6.1), and bit 2 (CDETECT2) in the socket present state register is  
unaffected (CardBus offset 08h, see Section 6.3).  
2
FCDETECT2  
W
Force CCD1. Write transactions to bit 1 cause bit 1 (CD1EVENT) in the socket event register to be written  
(CardBus offset 00h, see Section 6.1), and bit 1 (CDETECT1) in the socket present state register is  
unaffected (CardBus offset 08h, see Section 6.3).  
1
0
FCDETECT1  
FCARDSTS  
W
W
Force CSTSCHG. Write transactions to bit 0 cause bit 0 (CSTSEVENT) in the socket event register to be  
written (CardBus offset 00h, see Section 6.1), and bit 0 (CARDSTS) in the socket present state register is  
unaffected (CardBus offset 08h, see Section 6.3).  
6.5 Socket Control Register  
The socket control register provides control of the voltages applied to the socket and instructions for CB CLKRUN  
protocol. The PCI4410A device ensures that the socket is powered up only at acceptable voltages when a CardBus  
card is inserted. See Table 66 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Socket control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Socket control  
Read-only, Read/Write  
Offset:  
Default:  
CardBus socket address + 10h  
0000 0000h  
Table 66. Socket Control Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
318  
RSVD  
R
Reserved. Bits 318 return 0s when read.  
CB CLKRUN protocol instructions.  
0 = CB CLKRUN protocol can only attempt to stop/slow the CB clock if the socket is idle and the  
PCI CLKRUN protocol is preparing to stop/slow the PCI bus clock.  
7
STOPCLK  
R/W  
1 = CB CLKRUN protocol can attempt to stop/slow the CB clock if the socket is idle.  
V
CC  
control. Bits 64 request card V  
000 = Request power off (default)  
001 = Reserved  
changes.  
CC  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
CC  
CC  
64  
3
VCCCTRL  
RSVD  
R/W  
R
010 = Request V  
011 = Request V  
= 5 V  
= 3.3 V  
CC  
CC  
Reserved. Bit 3 returns 0 when read.  
control. Bits 20 request card V  
V
changes.  
PP  
000 = Request power off (default)  
PP  
100 = Request V  
101 = Request V  
110 = Reserved  
111 = Reserved  
= X.X V  
= Y.Y V  
PP  
PP  
001 = Request V  
010 = Request V  
= 12 V  
= 5 V  
20  
VPPCTRL  
R/W  
PP  
PP  
PP  
011 = Request V  
= 3.3 V  
67  
6.6 Socket Power Management Register  
This register provides power management control over the socket through a mechanism for slowing or stopping the  
clock on the card interface when the card is idle. See Table 67 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R/W  
0
15  
14  
13  
12  
11  
10  
0
Name  
Type  
Default  
Socket power management  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Socket power management  
Read-only, Read/Write  
CardBus socket address + 20h  
0000 0000h  
Table 67. Socket Power Management Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3126  
RSVD  
R
R
Reserved. Bits 3126 return 0s when read.  
Socket access status. This bit indicates when a socket access has occurred. This bit is cleared by a read  
access.  
25  
SKTACCES  
0 = A PC Card access has not occurred (default).  
1 = A PC Card access has occurred.  
Socket mode status. This bit provides clock mode information.  
0 = Clock is operating normally.  
24  
2317  
16  
SKTMODE  
RSVD  
R
R
1 = Clock frequency has changed.  
Reserved. Bits 2317 return 0s when read.  
CardBus clock control enable. When bit 16 is set, bit 0 (CLKCTRL) is enabled.  
0 = Clock control is disabled (default).  
CLKCTRLEN  
RSVD  
R/W  
R
1 = Clock control is enabled.  
151  
Reserved. Bits 151 return 0s when read.  
CardBus clock control. This bit determines whether the CB CLKRUN protocol stops or slows the CB clock  
during idle states. Bit 16 (CLKCTRLEN) enables this bit.  
0
CLKCTRL  
R/W  
0 = Allows CB CLKRUN protocol to stop the CB clock (default).  
1 = Allows CB CLKRUN protocol to slow the CB clock by a factor of 16.  
68  
7 Distributed DMA (DDMA) Registers  
The DMA base address, programmable in PCI configuration space as bits 154 (DMABASE field) of the socket DMA  
register 1 (PCI offset 98h, see Section 4.38) points to a 16-byte region in PCI I/O space where the DMA registers  
reside. The names and locations of these registers are summarized in Table 71. These PCI4410A register  
definitions are identical in function, but differ in location, to the 8237 DMA controller. The similarity between the  
register models retains some level of compatibility with legacy DMA and simplifies the translation required by the  
master DMA device when it forwards legacy DMA writes to DMA channels.  
While the DMA register definitions are identical to those in the 8237 DMA controller of the same name, some register  
bits defined in the 8237 DMA controller do not apply to distributed DMA in a PCI environment. In such cases, the  
PCI4410A device implements these obsolete register bits as read-only nonfunctional bits. The reserved registers  
shown in Table 71 are implemented as read-only and return 0s when read. Write transactions to reserved registers  
have no effect.  
Table 71. Distributed DMA Registers  
DMA BASE  
ADDRESS OFFSET  
TYPE  
REGISTER NAME  
R
W
R
Current address  
Base address  
Current count  
Base count  
Reserved  
Reserved  
Page  
00h  
Reserved  
Reserved  
Reserved  
04h  
08h  
0Ch  
W
R
N/A  
Mode  
N/A  
Status  
W
R
Request  
N/A  
Command  
Multichannel  
Mask  
Reserved  
W
Master clear  
71  
7.1 DMA Current Address/Base Address Register  
The DMA current address/base address register sets the starting (base) memory address of a DMA transfer. Read  
transactions from this register indicate the current memory address of a direct memory transfer.  
For the 8-bit DMA transfer mode, the current address register contents are presented on AD15AD0 of the PCI bus  
during the address phase. Bits 70 of the DMA page register (see Section 7.2) are presented on AD23AD16 of the  
PCI bus during the address phase.  
For the 16-bit DMA transfer mode, the current address register contents are presented on AD16AD1 of the PCI bus  
during the address phase, and AD0 is driven to logic 0. Bits 71 of the DMA page register (see Section 7.2) are  
presented on AD23AD17 of the PCI bus during the address phase, and bit 0 is ignored.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
Type  
Default  
Bit  
DMA current address/base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA current address/base-address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DMA current address/base address  
Read/Write  
Offset:  
Default:  
DMA base address + 00h  
0000h  
7.2 DMA Page Register  
The DMA page register sets the upper byte of the address of a DMA transfer. Details of the address represented by  
this register are explained in Section 7.1, DMA Current Address/Base Address Register.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA page  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DMA page  
Read/Write  
Offset:  
Default:  
DMA base address + 02h  
00h  
72  
7.3 DMA Current Count/Base Count Register  
The DMA current count/base count register sets the total transfer count, in bytes, of a direct memory transfer. Read  
transactions to this register indicate the current count of a direct memory transfer. In the 8-bit transfer mode, the count  
is decremented by 1 after each transfer, and the count is decremented by 2 after each transfer in the 16-bit transfer  
mode.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Name  
Type  
Default  
Bit  
DMA current count/base count  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA current count/base count  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
DMA current count/base count  
Read/Write  
Offset:  
Default:  
DMA base address + 04h  
0000h  
7.4 DMA Command Register  
The DMA command register enables and disables the DMA controller. Bit 2 (DMAEN) defaults to 0, enabling the DMA  
controller. All other bits are reserved. See Table 72 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA command  
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
DMA command  
Read-only, Read/Write  
DMA base address + 08h  
00h  
Table 72. DMA Command Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
73  
RSVD  
R
Reserved. Bits 73 return 0s when read.  
DMA controller enable. Bit 2 enables and disables the distributed DMA slave controller in the PCI4410A  
device and defaults to the enabled state.  
2
DMAEN  
RSVD  
R/W  
R
0 = DMA controller is enabled (default).  
1 = DMA controller is disabled.  
10  
Reserved. Bits 1 and 0 return 0s when read.  
73  
7.5 DMA Status Register  
The DMA status register indicates the terminal count and DMA request (DREQ) status. See Table 73 for a complete  
description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA status  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
DMA status  
Read-only  
Offset:  
Default:  
DMA base address + 08h  
00h  
Table 73. DMA Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Channel request. In the 8237 DMA controller, bits 74 indicate the status of DREQ of each DMA channel.  
In the PCI4410A device, these bits indicate the DREQ status of the single socket being serviced by this  
register. All four bits are set to 1 when the PC Card asserts DREQ and are reset to 0 when DREQ is  
deasserted. The status of bit 0 (MASKBIT) in the DMA multichannel/mask register (see Section 7.9) has  
no effect on these bits.  
74  
DREQSTAT  
R
Channel terminal count. The 8327 DMA controller uses bits 30 to indicate the TC status of each of its four  
DMA channels. In the PCI4410A device, these bits report information about a single DMA channel;  
therefore, all four of these register bits indicate the TC status of the single socket being serviced by this  
register. All four bits are set to 1 when the TC is reached by the DMA channel. These bits are reset to 0 when  
read or when the DMA channel is reset.  
30  
TC  
R
7.6 DMA Request Register  
The DMA request register requests a DMA transfer through software. Any write to this register enables software  
requests, and this register is to be used in block mode only.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA request  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
DMA request  
Write-only  
Offset:  
Default:  
DMA base address + 09h  
00h  
74  
7.7 DMA Mode Register  
The DMA mode register sets the DMA transfer mode. See Table 74 for a complete description of the register  
contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA mode  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
DMA mode  
Read-only, Read/Write  
DMA base address + 0Bh  
00h  
Table 74. DMA Mode Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Mode select. The PCI4410A device uses bits 7 and 6 to determine the transfer mode.  
00 = Demand mode select (default)  
01 = Single mode select  
10 = Block mode select  
11 = Reserved  
76  
DMAMODE  
R/W  
Address increment/decrement. The PCI4410A device uses bit 5 to select the memory address in the DMA  
current address/base address register to increment or decrement after each data transfer. This is in  
accordance with the 8237 DMA controller use of this register bit and is encoded as follows:  
0 = Addresses increment (default).  
5
4
INCDEC  
R/W  
R/W  
1 = Addresses decrement.  
Auto initialization  
AUTOINIT  
0 = Auto initialization is disabled (default).  
1 = Auto initialization is enabled.  
Transfer type. Bits 3 and 2 select the type of direct memory transfer to be performed. A memory write transfer  
moves data from the PCI4410A PC Card interface to memory and a memory read transfer moves data from  
memory to the PCI4410A PC Card interface. The field is encoded as:  
00 = No transfer selected (default)  
01 = Write transfer  
32  
10  
XFERTYPE  
RSVD  
R/W  
R
10 = Read transfer  
11 = Reserved  
Reserved. Bits 1 and 0 return 0s when read.  
7.8 DMA Master Clear Register  
The DMA master clear register resets the DMA controller and all DMA registers.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA master clear  
W
0
W
0
W
0
W
0
W
0
W
0
W
0
W
0
Register:  
Type:  
DMA master clear  
Write-only  
Offset:  
Default:  
DMA base address + 0Dh  
00h  
75  
7.9 DMA Multichannel/Mask Register  
The PCI4410A device uses only the least significant bit of this register to mask the PC Card DMA channel. The  
PCI4410A device sets the mask bit to 1 when the PC Card is removed. Host software is responsible for either resetting  
the socket DMA controller or enabling the mask bit. See Table 75 for a complete description of the register contents.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
DMA multichannel/mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
DMA multichannel/mask  
Read-only, Read/Write  
DMA base address + 0Fh  
00h  
Table 75. DMA Multichannel/Mask Register Description  
FUNCTION  
BIT  
SIGNAL  
TYPE  
71  
RSVD  
R
Reserved. Bits 71 return 0s when read.  
Mask select. Bit 0 masks incoming DREQ signals from the PC Card. When set to 1, the socket ignores DMA  
requests from the card. When cleared (or reset to 0), incoming DREQ assertions are serviced normally.  
0 = DMA service is provided on card DREQ.  
0
MASKBIT  
R/W  
1 = Socket DREQ signal is ignored (default).  
76  
8 OHCI-Lynxt Controller Programming Model  
This section describes the internal registers used to program the link function, including both PCI configuration  
registers and open HCI registers. All registers are detailed in the same format. A brief description is provided for each  
register, followed by the register offset and a bit table describing the reset state for each register.  
A bit description table typically is included that indicates bit signal names, a detailed field description, and field access  
tags. Table 81 describes the field access tags.  
Table 81. Bit-Field Access Tag Descriptions  
ACCESS TAG  
NAME  
Read  
Write  
Set  
MEANING  
Field can be read by software.  
R
W
S
Field can be written by software to any value.  
Field can be set to 1 by a write of 1. Writes of 0 have no effect.  
Field can be reset to 0 by a write of 1. Writes of 0 have no effect.  
Field can be autonomously updated by the PCI4410A device.  
C
U
Clear  
Update  
8.1 PCI Configuration Registers  
The PCI4410A link function configuration header is compliant with the PCI Local Bus Specification as a standard  
header. Table 82 illustrates the PCI configuration header, which includes both the predefined portion of the  
configuration space and the user-definable registers. The registers that are labeled reserved are read-only, returning  
0 when read, and are not applicable to the link function or have been reserved by the PCI specification for future use.  
Table 82. PCI Configuration Register Map  
REGISTER NAME  
OFFSET  
00h  
Device ID  
Status  
Vendor ID  
Command  
04h  
Class code  
Header type  
Open HCI registers base address  
Revision ID  
08h  
BIST  
Latency timer  
Cache line size  
0Ch  
10h  
TI extension registers base address  
Reserved  
14h  
18h28h  
2Ch  
Subsystem ID  
Subsystem vendor ID  
Reserved  
Reserved  
30h  
Capabilities pointer  
34h  
Reserved  
38h  
Max latency  
Min grant  
Interrupt pin  
Interrupt line  
3Ch  
PCI OHCI control  
Next item pointer  
40h  
Power management capabilities  
PM data PMCSR_BSE  
Capability ID  
44h  
Power management control and status  
48h  
Reserved  
4CECh  
F0h  
PCI miscellaneous configuration  
Link enhancements  
F4h  
Subsystem ID alias  
Subsystem vendor ID alias  
GPIO1 GPIO0  
F8h  
GPIO3  
GPIO2  
FCh  
81  
8.2 Vendor ID Register  
The vendor ID register contains a value allocated by the PCI SIG and identifies the manufacturer of the PCI device.  
The vendor ID assigned to Texas Instruments is 104Ch.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
00h  
104Ch  
8.3 Device ID Register  
The device ID register contains a value assigned to the PCI4410A device by Texas Instruments. The device  
identification for the PCI4410A OHCI controller function is 8017h.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Device ID  
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
1
R
1
R
1
Register:  
Type:  
Offset:  
Default:  
Device ID register  
Read-only  
02h  
8017h  
82  
8.4 PCI Command Register  
The command register provides control over the PCI4410A link interface to the PCI bus. All bit functions adhere to  
the definitions in the PCI Local Bus Specification, as seen in the following bit descriptions. See Table 83 for a  
complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI command  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
PCI command  
Read-only, Read/Write  
Offset:  
Default:  
04h  
0000h  
Table 83. PCI Command Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
1510  
RSVD  
R
Reserved. Bits 1510 return 0s when read.  
Fast back-to-back enable. The PCI4410A device does not generate fast back-to-back transactions;  
therefore, this bit returns 0 when read.  
9
8
7
6
5
FBB_ENB  
SERR_ENB  
STEP_ENB  
PERR_ENB  
VGA_ENB  
R
R/W  
R
SERR enable. When this bit is set to 1, the PCI4410A SERR driver is enabled. SERR can be asserted  
after detecting an address parity error on the PCI bus.  
Address/data-stepping control. The PCI4410A device does not support address/data stepping; therefore,  
this bit is hardwired to 0.  
Parity error enable. When this bit is set to 1, the PCI4410A device is enabled to drive the PERR response  
to parity errors through the PERR signal.  
R/W  
R
VGA palette snoop enable. The PCI4410A device does not feature VGA palette snooping. This bit returns  
0 when read.  
Memory write and invalidate enable. When this bit is set to 1, the PCI4410A device is enabled to generate  
MWI PCI bus commands. If this bit is cleared, the PCI4410A device generates memory write commands  
instead.  
4
MWI_ENB  
R/W  
Special cycle enable. The PCI4410A device does not respond to special cycle transactions. This bit  
returns 0 when read.  
3
2
1
0
SPECIAL  
MASTER_ENB  
MEMORY_ENB  
IO_ENB  
R
Bus master enable. When this bit is set to 1, the PCI4410A device is enabled to initiate cycles on the PCI  
bus.  
R/W  
R/W  
R
Memory response enable. Setting this bit to 1 enables the PCI4410A device to respond to memory cycles  
on the PCI bus. This bit must be set to 1 to access OHCI registers.  
I/O space enable. The PCI4410A link does not implement any I/O-mapped functionality; therefore, this bit  
returns 0 when read.  
83  
8.5 PCI Status Register  
The PCI status register provides device information to the host system. Bits in this register may be read normally. A  
bit in the status register is reset when a 1 is written to that bit location; a 0 written to a bit location has no effect. All  
bit functions adhere to the definitions in the PCI Local Bus Specification. PCI bus status is shown through each  
function. See Table 84 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI status  
RCU RCU RCU RCU RCU  
R
0
R
1
RCU  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
0
0
0
0
0
0
Register:  
Type:  
PCI status  
Read-only, Read/Clear/Update  
Offset:  
Default:  
06h  
0210h  
Table 84. PCI Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
15  
PAR_ERR  
RCU  
Detected parity error. This bit is set to 1 when either an address parity or data parity error is detected.  
Signaled system error. This bit is set to 1 when SERR is enabled and the PCI4410A device has signaled a  
system error to the host.  
14  
13  
SYS_ERR  
MABORT  
RCU  
RCU  
RCU  
RCU  
R
Received master abort. This bit is set to 1 when a cycle initiated by the PCI4410A device on the PCI bus is  
terminated by a master abort.  
Received target abort. This bit is set to 1 when a cycle initiated by the PCI4410A device on the PCI bus is  
terminated by a target abort.  
12  
TABORT_REC  
TABORT_SIG  
PCI_SPEED  
Signaled target abort. This bit is set to 1 by the PCI4410A device when it terminates a transaction on the  
PCI bus with a target abort.  
11  
DEVSEL timing. Bits 10 and 9 encode the timing of DEVSEL and are hardwired 01b, indicating that the  
PCI4410A device asserts this signal at a medium speed on nonconfiguration cycle accesses.  
109  
Data parity error detected. This bit is set to 1 when the following conditions have been met:  
a. PERR was asserted by any PCI device, including the PCI4410A device.  
8
DATAPAR  
RCU  
b. The PCI4410A device was the bus master during the data parity error.  
c. Bit 6 (PERR_ENB) in the PCI command register (PCI offset 04h, see Section 8.4) is set to 1.  
Fast back-to-back capable. The PCI4410A device cannot accept fast back-to-back transactions;  
therefore, this bit is hardwired to 0.  
7
6
5
FBB_CAP  
UDF  
R
R
R
User-definable features (UDF) supported. The PCI4410A device does not support the UDF; therefore,  
this bit is hardwired to 0.  
66-MHz capable. The PCI4410A device operates at a maximum PCLK frequency of 33 MHz; therefore,  
this bit is hardwired to 0.  
66MHZ  
Capabilities list. This bit returns 1 when read, indicating that capabilities additional to standard PCI are  
implemented. The linked list of PCI power-management capabilities is implemented in this function.  
4
CAPLIST  
RSVD  
R
R
30  
Reserved. Bits 30 return 0s when read.  
84  
8.6 Class Code and Revision ID Register  
The class code and revision ID register categorizes the PCI4410A device as a serial bus controller (0Ch), controlling  
an IEEE 1394 bus (00h), with an OHCI programming model (10h). Furthermore, the TI chip revision is indicated in  
the lower byte. See Table 85 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Class code and revision ID  
R
0
R
0
R
0
R
0
R
1
R
1
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Class code and revision ID  
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Class code and revision ID  
Read-only  
08h  
0C00 1002h  
Table 85. Class Code and Revision ID Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Base class. This field returns 0Ch when read, which broadly classifies the function as a serial bus  
controller.  
3124  
BASECLASS  
R
Sub class. This field returns 00h when read, which specifically classifies the function as controlling an  
IEEE 1394 serial bus.  
2316  
SUBCLASS  
R
Programming interface. This field returns 10h when read, which indicates that the programming model is  
compliant with the 1394 Open Host Controller Interface Specification.  
158  
70  
PGMIF  
R
R
CHIPREV  
Silicon revision. This field returns the silicon revision of the PCI4410A device.  
8.7 Latency Timer and Class Cache Line Size Register  
The latency timer and class cache line size register is programmed by host BIOS to indicate system cache line size  
and the latency timer associated with the PCI4410A device. See Table 86 for a complete description of the register  
contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Latency timer and class cache line size  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Latency timer and class cache line size  
Read/Write  
0Ch  
0000h  
Table 86. Latency Timer and Class Cache Line Size Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
PCI latency timer. The value in this field specifies the latency timer for the PCI4410A device, in units of  
PCI clock cycles. When the PCI4410A device is a PCI bus initiator and asserts FRAME, the latency  
timer begins counting from zero. If the latency timer expires before the PCI4410A transaction has  
terminated, the PCI4410A device terminates the transaction when its GNT is deasserted.  
158  
LATENCY_TIMER  
R/W  
Cache line size. This value is used by the PCI4410A device during memory write and invalidate,  
memory-read line, and memory-read multiple transactions.  
70  
CACHELINE_SZ  
R/W  
85  
8.8 Header Type and BIST Register  
The header type and built-in self-test (BIST) register indicates that this function is part of a multifunction device, and  
has a standard PCI header type and no BIST. See Table 87 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Header type and BIST  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Header type and BIST  
Read-only  
0Eh  
0000h  
Table 87. Header Type and BIST Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
158  
BIST  
R
R
Built-in self-test. The PCI4410A device does not include a BIST, thus this field returns 00h when read.  
PCI header type. The PCI4410A device includes the standard PCI header, and this is communicated by  
returning 00h when this field is read.  
70  
HEADER_TYPE  
8.9 Open HCI Base Address Register  
The open HCI base address register is programmed with a base address referencing the memory-mapped OHCI  
control. When BIOS writes all 1s to this register, the value read back is FFFF F800h, indicating that at least 2 Kbytes  
of memory address space are required for the OHCI registers. See Table 88 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Open HCI base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Open HCI base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Open HCI base address  
Read-only, Read/Write  
10h  
0000 0000h  
Table 88. Open HCI Registers Base Address Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3111  
OHCIREG_PTR  
R/W  
Open HCI register pointer. Specifies the upper 21 bits of the 32-bit OHCI register base address.  
Open HCI register size. This field returns 0s when read, indicating that the OHCI registers require a  
2-Kbyte region of memory.  
104  
3
OHCI_SZ  
OHCI_PF  
R
R
R
R
OHCI register prefetch. This bit returns 0 when read, indicating that the OHCI registers are  
nonprefetchable.  
Open HCI memory type. This field returns 0s when read, indicating that the OHCI base address  
register is 32 bits wide and mapping can be done anywhere in the 32-bit memory space.  
21  
0
OHCI_MEMTYPE  
OHCI_MEM  
OHCI memory indicator. This bit returns 0 when read, indicating that the OHCI registers are mapped  
into system memory space.  
86  
8.10 TI Extension Base Address Register  
The TI extension base address register is programmed with a base address referencing the memory-mapped TI  
extension registers. See Table 89 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
TI extension base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
TI extension base address  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
TI extension base address  
Read-only  
14h  
0000 0000h  
Table 89. TI Extension Base Address Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
TI extension register pointer. Specifies the upper 21 bits of the 32-bit TI extension register base  
address.  
3111  
TI_EXTREG_PTR  
R/W  
TI extension register size. This field returns 0s when read, indicating that the TI extension registers  
require a 2-Kbyte region of memory.  
104  
3
TI_SZ  
TI_PF  
R
R
R
R
TI extension register prefetch. This bit returns 0 when read, indicating that the TI extension registers  
are nonprefetchable.  
TI memory type. This field returns 0s when read, indicating that the base register is 32 bits wide and  
mapping can be done anywhere in the 32-bit memory space.  
21  
0
TI_MEMTYPE  
TI_MEM  
TI memory indicator. This bit returns 0 when read, indicating that the TI extension registers are  
mapped into system memory space.  
87  
8.11 PCI Subsystem Identification Register  
The PCI subsystem identification register is used for subsystem and option card identification purposes. This register  
can be initialized from the serial EEPROM or can be written using the subsystem access identification register (offset  
F8h, see Section 8.22). See Table 810 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI subsystem identification  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
Register:  
Type:  
PCI subsystem identification  
Read/Update  
Offset:  
Default:  
2Ch  
0000 0000h  
Table 810. PCI Subsystem Identification Register Description  
BIT  
3116  
150  
SIGNAL  
TYPE  
RU  
FUNCTION  
OHCI_SSID  
OHCI_SSVID  
Subsystem device ID. This field indicates the subsystem device ID.  
Subsystem vendor ID. This field indicates the subsystem vendor ID.  
RU  
8.12 PCI Power Management Capabilities Pointer Register  
The PCI power management capabilities pointer register provides a pointer into the PCI configuration header where  
the PCI power-management register block resides. The PCI4410A configuration header doublewords at 44h and 48h  
provide the power-management registers. This register is read-only and returns 44h when read.  
Bit  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PCI power management capabilities pointer  
R
0
R
1
R
0
R
0
R
0
R
1
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
PCI power management capabilities pointer  
Read-only  
34h  
44h  
88  
8.13 Interrupt Line and Interrupt Pin Registers  
The interrupt line and interrupt pin registers are used to communicate interrupt-line routing information. See  
Table 811 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Interrupt line and interrupt pin  
R
0
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Registers: Interrupt line and interrupt pin  
Type:  
Read-only, Read/Write  
Offset:  
Default:  
3Ch  
0200h  
Table 811. Interrupt Line and Interrupt Pin Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Interrupt pin. This field returns 01h or 02h when read, indicating that the PCI4410A link function signals  
interrupts on the INTA or INTB terminal, respectively. If bit 29 (TIE_INTB_INTA) in the system control  
register (offset 80h, see Section 4.29) is set to 1, the INTR_PIN byte reads 0000 0001b, which indicates  
the OHCI function is signaling on INTA.  
158  
INTR_PIN  
R
Interrupt line. This field is programmed by the system and indicates to the software which interrupt line the  
PCI4410A INTA is connected to.  
70  
INTR_LINE  
R/W  
8.14 MIN_GNT and MAX_LAT Register  
The MIN_GNT and MAX_LAT register is used to communicate to the system the desired setting of bits 158 in the  
latency timer and class cache line size register (offset 0Ch, see Section 8.7). If a serial EEPROM is detected, the  
contents of this register are loaded through the serial EEPROM interface after a PRST. If no serial EEPROM is  
detected, this register returns a default value that corresponds to MIN_GNT = 3, MAX_LAT = 4. See Table 812 for  
a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
MIN_GNT and MAX_LAT  
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
1
RU  
1
Registers: MIN_GNT and MAX_LAT  
Type:  
Offset:  
Default:  
Read/Update  
3Eh  
0403h  
Table 812. MIN_GNT and MAX_LAT Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Maximum latency. The contents of this field may be used by host BIOS to assign an arbitration priority  
level to the PCI4410A device. The default for this field indicates that the PCI4410A device may need to  
access the PCI bus as often as every 0.25 µs; thus, an extremely high priority level is requested. The  
contents of this field may also be loaded through the serial EEPROM.  
158  
MAX_LAT  
RU  
RU  
Minimum grant. The contents of this field may be used by host BIOS to assign a latency timer register  
value to the PCI4410A device. The default for this field indicates that the PCI4410A device may need to  
sustain burst transfers for nearly 64 µs, thus requesting a large value be programmed in bits 158 of the  
PCI4410A latency timer and class cache line size register (offset 0Ch, see Section 8.7).  
70  
MIN_GNT  
89  
8.15 PCI OHCI Control Register  
The PCI OHCI control register contains IEEE 1394 Open HCI specific control bits. All bits in this register are read-only  
and return 0s, because no OHCI-specific control bits have been implemented.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI OHCI control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
PCI OHCI control  
Read-only  
40h  
0000h  
8.16 Capability ID and Next Item Pointer Register  
The capability ID and next item pointer register identifies the linked-list capability item and provides a pointer to the  
next capability item, respectively. See Table 813 for a complete description of the register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Capability ID and next item pointer  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
Capability ID and next item pointer  
Read-only  
44h  
0001h  
Table 813. Capability ID and Next Item Pointer Registers Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Next item pointer. The PCI4410A device supports only one additional capability that is communicated to  
the system through the extended capabilities list; thus, this field returns 00h when read.  
158  
NEXT_ITEM  
R
Capability identification. This field returns 01h when read, which is the unique ID assigned by the PCI  
SIG for PCI power-management capability.  
70  
CAPABILITY_ID  
R
810  
8.17 Power Management Capabilities Register  
The power management capabilities register indicates the capabilities of the PCI4410A device related to PCI power  
management. In summary, the D0, D2, and D3  
description of the register contents.  
device states are supported. See Table 814 for a complete  
hot  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management capabilities  
RU  
0
RU  
1
RU  
1
RU  
0
RU  
0
R
1
R
0
R
0
R
0
R
0
R
0
R
1
R
0
R
0
R
0
R
1
Register:  
Type:  
Power management capabilities  
Read/Update, Read-only  
Offset:  
Default:  
46h  
6411h  
Table 814. Power Management Capabilities Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
. This bit can be set to 1 or cleared to 0 via bit 15 (PME_D3COLD) in the  
miscellaneous configuration register (offset F0h, see Section 8.20). The miscellaneous configuration  
register is loaded from the serial EEPROM. When this bit is set to 1, it indicates that the PCI4410A  
PCI_PME support from D3  
cold  
15  
PME_D3COLD  
RU  
device is capable of generating a PCI_PME wake event from D3  
. This bit state is dependent upon  
cold  
the PCI4410A V  
implementation and may be configured by using bit 15 (PME_D3COLD) in the  
AUX  
miscellaneous configuration register (see Section 8.20).  
PME support. This four-bit field indicates the power states from which the PCI4410A device may assert  
PME. This field returns a value of 1100b by default, indicating that PME may be asserted from the  
1411  
PME_SUPPORT  
RU  
D3  
and D2 power states. Bit 13 may be modified by host software using bit 13  
hot  
(PME_SUPPORT_D2) in the PCI miscellaneous configuration register (offset F0h, see Section 8.20).  
D2 support. This bit can be set or cleared via bit 10 (D2_SUPPORT) in the miscellaneous configuration  
register (offset F0h, see Section 8.20). The miscellaneous configuration register is loaded from the  
serial EEPROM. When this bit is set, it indicates that D2 support is present. When this bit is cleared, it  
indicates that D2 support is not present for backward compatibility. For normal operation, this bit is set  
to 1.  
10  
9
D2_SUPPORT  
D1_SUPPORT  
RU  
R
D1 support. This bit returns a 0 when read, indicating that the PCI4410A device does not support the  
D1 power state.  
Dynamic data support. This bit returns a 0 when read, indicating that the PCI4410A device does not  
report dynamic power-consumption data.  
8
DYN_DATA  
RSVD  
R
R
76  
Reserved. Bits 7 and 6 return 0s when read.  
Device-specific initialization. This bit returns 0 when read, indicating that the PCI4410A device does  
not require special initialization beyond the standard PCI configuration header before a generic class  
driver is able to use it.  
5
DSI  
R
Auxiliary power source. Since the PCI4410A device supports PME generation in the D3  
cold  
device  
4
3
AUX_PWR  
PME_CLK  
R
R
state and requires V  
aux  
, this bit returns 1 when read.  
PME clock. This bit returns 0 when read, indicating that no host bus clock is required for the PCI4410A  
device to generate PME.  
Power-management version. This field returns 001b when read, indicating that the PCI4410A device  
is compatible with the registers described in the PCI Bus Power Management Interface Specification  
(Revision 1.0).  
20  
PM_VERSION  
R
811  
8.18 Power Management Control and Status Register  
The power management control and status register implements the control and status of the PCI power management  
function. This register is not affected by the internally generated reset caused by the transition from the D3  
state. See Table 815 for a complete description of the register contents.  
to D0  
hot  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management control and status  
RC  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
Power management control and status  
Read-only, Read/Write, Read/Clear  
Offset:  
Default:  
48h  
0000h  
Table 815. Power Management Control and Status Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit is set to 1 when the PCI4410A device normally would be asserting the PME signal, independent of  
the state of bit 8 (PME_ENB). This bit is cleared by a writeback of 1, which also clears the PME signal driven  
by the PCI4410A device. Writing a 0 to this bit has no effect.  
15  
PME_STS  
RC  
Dynamic data control. This bit field returns 0s when read because the PCI4410A device does not report  
dynamic data.  
149  
DYN_CTRL  
PME_ENB  
R
When bit 8 = 1, PME assertion is enabled. When bit 8 = 0, PME assertion is disabled. This bit defaults to 0 if  
the function does not support PME generation from D3 . If the function supports PME from D3 , then  
cold cold  
this bit is sticky and must be explicitly cleared by the operating system each time it is initially loaded.  
Functions that do not support PME generation from any D-state (that is, bits 1511 in the power  
management capabilities register (offset 46h, see Section 8.17) equal 00000b), may hardwire this bit to be  
read-only, always returning a 0 when read by system software.  
8
R/W  
75  
4
RSVD  
DYN_DATA  
RSVD  
R
R
R
Reserved. Bits 75 return 0s when read.  
Dynamic data. This bit returns 0 when read because the PCI4410A device does not report dynamic data.  
Reserved. Bits 3 and 2 return 0s when read.  
32  
Power state. This two-bit field is used to set the PCI4410A device power state and is encoded as follows:  
00 = Current power state is D0.  
01 = Current power state is D1 (not supported by this device).  
10 = Current power state is D2.  
10  
PWR_STATE  
R/W  
11 = Current power state is D3  
hot.  
812  
8.19 Power Management Extension Register  
The power management extension register provides extended power-management features not applicable to the  
PCI4410A device; thus, it is read-only and returns 0 when read. See Table 816 for a complete description of the  
register contents.  
Bit  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Power management extension  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Power management extension  
Read-only  
4Ah  
0000h  
Table 816. Power Management Extension Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
150  
RSVD  
R
Reserved. Bits 150 return 0s when read.  
813  
8.20 PCI Miscellaneous Configuration Register  
The PCI miscellaneous configuration register provides miscellaneous PCI-related configuration. See Table 817 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PCI miscellaneous configuration  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
PCI miscellaneous configuration  
R/W  
0
R
0
R/W  
1
R
0
R
0
R/W  
1
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
PCI miscellaneous configuration  
Read-only, Read/Write  
F0h  
0000 2400h  
Table 817. PCI Miscellaneous Configuration Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Reserved. Bits 3116 return 0s when read.  
PME support from D3 . This bit is used to program bit 15 (PME_D3COLD) in the power  
management capabilities register (offset 46h, see Section 8.17). This bit retains state through  
PRST and D3D0 transitions.  
3116  
RSVD  
PME_D3COLD  
RSVD  
R
cold  
15  
14  
R/W  
R
Reserved. Bit 14 returns 0 when read.  
PME support. This bit is used to program bit 13 (PME_SUPPORT_D2) in the power management  
capabilities register (offset 46h, see Section 8.17). If wake up from the D2 power state  
implemented in the PCI4410A device is not desired, this bit is cleared to indicate to  
power-management software that wake-up from D2 is not supported. This bit retains state  
through PRST and D3D0 transitions.  
13  
PME_SUPPORT_D2  
R/W  
1211  
RSVD  
R
Reserved. Bits 12 and 11 return 0s when read.  
D2 support. This bit is used to program bit 10 (D2_SUPPORT) in the power management  
capabilities register (offset 46h, see Section 8.17). If the D2 power state implemented in the  
PCI4410A device is not desired, this bit can be cleared to indicate to power-management  
software that D2 is not supported. This bit retains state through PRST and D3D0 transitions.  
10  
D2_SUPPORT  
R/W  
93  
RSVD  
R
Reserved. Bits 93 return 0s when read.  
When this bit is set to 1, the internal SCLK runs identically with the chip input. This bit is a test  
feature only and should be cleared to 0 (all applications).  
2
DISABLE_SCLKGATE  
R/W  
When this bit is set to 1, the internal PCI clock runs identically with the chip input. This bit is a test  
feature only and should be cleared to 0 (all applications).  
1
0
DISABLE_PCIGATE  
KEEP_PCLK  
R/W  
R/W  
When this bit is set to 1, the PCI clock always is kept running through the CLKRUN protocol.  
When this bit is cleared, the PCI clock can be stopped using CLKRUN.  
814  
8.21 Link Enhancement Control Register  
The link enhancement control register implements TI proprietary bits that are initialized by software or by a serial  
EEPROM, if present. After these bits are set to 1, their functionality is enabled only if bit 22 (aPhyEnhanceEnable)  
in the host controller control register (offset 50h/54h, see Section 9.16) is set to 1. See Table 818 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link enhancement control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Link enhancement control  
R
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R
0
R/W  
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R
0
Register:  
Type:  
Offset:  
Default:  
Link enhancement control  
Read-only, Read/Write  
F4h  
0000 1000h  
Table 818. Link Enhancement Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3114  
RSVD  
R
Reserved. Bits 3114 return 0 when read.  
This bit field sets the initial AT threshold value, which is used until the AT FIFO is underrun. When the  
PCI4410A device retries the packet, it uses a 2-Kbyte threshold, resulting in a store-and-forward  
operation.  
00 = Threshold ~ 2 Kbytes resulting in store-and-forward operation  
01 = Threshold ~ 1.7 Kbytes (default)  
10 = Threshold ~ 1 K  
11 = Threshold ~ 512 bytes  
These bits fine-tune the asynchronous transmit threshold. For most applications the 1.7-K threshold  
is optimal. Changing this value may increase or decrease the 1394 latency depending on the average  
PCI bus latency.  
1312  
atx_thresh  
R/W  
Setting the AT threshold to 1.7K, 1K, or 512 bytes results in data being transmitted at these thresholds,  
or when an entire packet has been checked into the FIFO. If the packet to be transmitted is larger than  
the AT threshold, the remaining data must be received before the AT FIFO is emptied; otherwise, an  
underrun condition will occur, resulting in a packet error at the receiving node. As a result, the link will  
then commence store-and-forward operation, that is, wait until it has the complete packet in the FIFO  
before retransmitting it on the second attempt, to ensure delivery.  
An AT threshold of 2K results in store-and-forward operation, which means that asynchronous data  
will not be transmitted until an end-of-packet token is received. Restated, setting the AT threshold to  
2K results in only complete packets being transmitted.  
118  
RSVD  
R
Reserved. Bits 118 return 0s when read.  
Enable asynchronous priority requests. OHCI-Lynxt (TSB12LV22) compatible. Setting this bit to 1  
7
enab_unfair  
R/W  
enables the link to respond to requests with priority arbitration. It is recommended that this bit be set  
to 1.  
This reserved field is not assigned in PCI4410A follow-on products, since this bit location loaded by  
the serial EEPROM from the enhancements field corresponds to bit 23 (programPhyEnable) in the  
host controller control register (offset 50h/54h, see Section 9.16).  
6
RSVD  
RSVD  
R
R
53  
Reserved. Bits 53 return 0 when read.  
Enable insert idle. OHCI-Lynxt (TSB12LV22) compatible. When the PHY device has control of the  
PHY_CTL0PHY_CTL1 control lines and PHY_DATA0PHY_DATA7 data lines and the link requests  
control, the PHY drives 11b on the PHY_CTL0PHY_CTL1 lines. The link then can start driving these  
lines immediately. Setting this bit to 1 inserts an idle state, so the link waits one clock cycle before it  
starts driving the lines (turnaround time). It is recommended that this bit be set to 1.  
2
enab_insert_idle  
R/W  
815  
Table 818. Link Enhancement Control Register Description (Continued)  
BIT  
1
SIGNAL  
enab_accel  
RSVD  
TYPE  
R/W  
R
FUNCTION  
Enable acceleration enhancements. OHCI-Lynxt (TSB12LV22) compatible. When set to 1, this bit  
notifies the PHY that the link supports the IEEE 1394a-2000 acceleration enhancements, that is,  
ack-accelerated, fly-by concatenation, etc. It is recommended that this bit be set to 1.  
0
Reserved. Bit 0 returns 0 when read.  
8.22 Subsystem Access Identification Register  
The subsystem access identification register is used for system and option card identification purposes. The contents  
of this register are aliased to the subsystem identification register at address 2Ch. See Table 819 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Subsystem access identification  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Subsystem access identification  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Subsystem access identification  
Read/Write  
F8h  
0000 0000h  
Table 819. Subsystem Access Identification Register Description  
BIT  
3116  
150  
SIGNAL  
TYPE  
R/W  
FUNCTION  
SUBDEV_ID  
SUBVEN_ID  
Subsystem device ID alias. This field indicates the subsystem device ID.  
Subsystem vendor ID alias. This field indicates the subsystem vendor ID.  
R/W  
816  
8.23 GPIO Control Register  
The GPIO control register has the control and status bits for GPIO0, GPIO1, GPIO2, and GPIO3 ports. Upon reset,  
GPIO0 and GPIO1 default to bus manager contender (BMC) and link power status terminals, respectively. The BMC  
terminal can be configured as GPIO0 by setting bit 7 (DISABLE_BMC) to 1. The LPS terminal can be configured as  
GPIO1 by setting bit 15 (DISABLE_LPS) to 1. See Table 820 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GPIO control  
R
0
R
0
R/W  
0
R/W  
0
R
0
R
0
R
0
9
R/W  
0
R
0
7
R
0
6
R/W  
0
R/W  
0
R
0
3
R
0
2
R
0
1
R/W  
0
15  
14  
13  
12  
11  
10  
8
5
4
0
Name  
Type  
Default  
GPIO control  
R/W  
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R/W  
0
R/W  
0
R
0
R/W  
0
R/W  
1
R
0
R
0
R
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
GPIO control  
Read-only, Read/Write  
FCh  
0000 1010h  
Table 820. GPIO Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3130  
RSVD  
R
Reserved. Bits 31 and 30 return 0s when read.  
GPIO3 polarity invert. This bit controls the input/output polarity control of GPIO3.  
29  
28  
GPIO_INV3  
GPIO_ENB3  
R/W  
R/W  
0 = Noninverted (default)  
1 = Inverted  
GPIO3 enable control. This bit controls the output enable for GPIO3.  
0 = High-impedance output (default)  
1 = Output is enabled  
2725  
24  
RSVD  
GPIO_DATA3  
RSVD  
R
R/W  
R
Reserved. Bits 2725 return 0s when read.  
GPIO3 data. When GPIO3 output is enabled, the value written to this bit represents the logical data  
driven to the GPIO3 terminal.  
2322  
Reserved. Bits 23 and 22 return 0s when read.  
GPIO2 polarity invert. This bit controls the input/output polarity control of GPIO2.  
21  
20  
GPIO_INV2  
GPIO_ENB2  
R/W  
R/W  
0 = Noninverted (default)  
1 = Inverted  
GPIO2 enable control. This bit controls the output enable for GPIO2.  
0 = High-impedance output (default)  
1 = Output is enabled  
1917  
RSVD  
R
Reserved. Bits 1917 return 0s when read.  
GPIO2 data. When GPIO2 output is enabled, the value written to this bit represents the logical data  
driven to the GPIO2 terminal.  
16  
GPIO_DATA2  
R/W  
Disable link power status (LPS). This bit configures this terminal as  
15  
14  
DISABLE_LPS  
RSVD  
R/W  
R
0 = LPS (default)  
1 = GPIO1  
Reserved. Bit 14 returns 0 when read.  
GPIO1 polarity invert. When bit 15 (DISABLE_LPS) is set to 1, this bit controls the input/output polarity  
control of GPIO1.  
0 = Noninverted (default)  
1 = Inverted  
13  
GPIO_INV1  
R/W  
817  
Table 820. GPIO Control Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
GPIO1 enable control. When bit 15 (DISABLE_LPS) is set to 1, this bit controls the output enable for  
GPIO1.  
12  
GPIO_ENB1  
R/W  
0 = High-impedance output  
1 = Output is enabled (default)  
119  
RSVD  
R
Reserved. Bits 119 return 0s when read.  
GPIO1 data. When bit 15 (DISABLE_LPS) is set to 1 and GPIO1 output is enabled, the value written to  
this bit represents the logical data driven to the GPIO1 terminal.  
8
GPIO_DATA1  
R/W  
Disable bus manager contender (BMC). This bit configures this terminal as bus manager contender or  
GPIO0.  
7
6
5
DISABLE_BMC  
RSVD  
R/W  
R
0 = BMC (default)  
1 = GPIO0  
Reserved. Bit 6 returns 0 when read.  
GPIO0 polarity invert. When bit 7 (DISABLE_BMC) is set to 1, this bit controls the input/output polarity  
control for GPIO0.  
0 = Noninverted (default)  
1 = Inverted  
GPIO_INV0  
R/W  
GPIO0 enable control. When bit 7 (DISABLE_BMC) is set to 1, this bit controls the output enable for  
GPIO0.  
4
GPIO_ENB0  
R/W  
0 = High-impedance output  
1 = Output is enabled (default)  
31  
RSVD  
R
Reserved. Bits 31 return 0s when read.  
GPIO0 data. When bit 7 (DISABLE_BMC) is set to 1 and GPIO0 output is enabled, the value written to  
this bit represents the logical data driven to the GPIO0 terminal.  
0
GPIO_DATA0  
R/W  
818  
9 Open HCI Registers  
The open HCI registers defined by the 1394 Open Host Controller Interface Specification are memory-mapped into  
a 2-Kbyte region of memory pointed to by the OHCI base address register at offset 10h in PCI configuration space  
(see Section 8.9). These registers are the primary interface for controlling the PCI4410A IEEE 1394 link function.  
This section provides the register interface and bit descriptions. Several set/clear register pairs in this programming  
model are implemented to solve various issues with typical read-modify-write control registers. There are two  
addresses for a set/clear register: RegisterSet and RegisterClear. See Table 91 for a register listing. A 1-bit written  
to RegisterSet causes the corresponding bit in the set/clear register to be set to 1; a 0 bit leaves the corresponding  
bit unaffected. A 1-bit written to RegisterClear causes the corresponding bit in the set/clear register to be cleared;  
a 0 bit leaves the corresponding bit in the set/clear register unaffected.  
Typically, a read from either RegisterSet or RegisterClear returns the contents of the set or clear register, respectively.  
However, sometimes reading the RegisterClear provides a masked version of the set or clear register. The interrupt  
event register is an example of this behavior.  
Table 91. Open HCI Register Map  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
00h  
OHCI version  
Version  
Global unique ID ROM  
Asynchronous transmit retries  
CSR data  
GUID_ROM  
ATRetries  
04h  
08h  
CSRData  
0Ch  
CSR compare data  
CSR control  
CSRCompareData  
CSRControl  
ConfigROMhdr  
BusID  
10h  
14h  
Configuration ROM header  
Bus identification  
18h  
1Ch  
Bus options  
BusOptions  
GUIDHi  
20h  
Global unique ID high  
Global unique ID low  
Reserved  
24h  
GUIDLo  
28h  
2Ch 30h  
34h  
Configuration ROM map  
Posted write address low  
Posted write address high  
Vendor identification  
Reserved  
ConfigROMmap  
PostedWriteAddressLo  
PostedWriteAddressHi  
VendorID  
38h  
3Ch  
40h  
44h 4Ch  
50h  
HCControlSet  
HCControlClr  
Host controller control  
Reserved  
54h  
58h 5Ch  
91  
Table 91. Open HCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
ABBREVIATION  
OFFSET  
60h  
Self ID  
Reserved  
Self ID buffer  
Self ID count  
Reserved  
SelfIDBuffer  
64h  
SelfIDCount  
68h  
6Ch  
IRChannelMaskHiSet  
IRChannelMaskHiClear  
IRChannelMaskLoSet  
IRChannelMaskLoClear  
IntEventSet  
70h  
Isochronous receive channel mask high  
Isochronous receive channel mask low  
Interrupt event  
74h  
78h  
7Ch  
80h  
IntEventClear  
84h  
IntMaskSet  
88h  
Interrupt mask  
IntMaskClear  
8Ch  
IsoXmitIntEventSet  
IsoXmitIntEventClear  
IsoXmitIntMaskSet  
IsoXmitIntMaskClear  
IsoRecvIntEventSet  
IsoRecvIntEventClear  
IsoRecvIntMaskSet  
IsoRecvIntMaskClear  
90h  
Isochronous transmit interrupt event  
Isochronous transmit interrupt mask  
Isochronous receive interrupt event  
Isochronous receive interrupt mask  
94h  
98h  
9Ch  
A0h  
A4h  
A8h  
ACh  
Reserved  
B0 D8h  
DCh  
E0h  
Fairness control  
FairnessControl  
LinkControlSet  
Link control  
LinkControlClear  
NodeID  
E4h  
Node identification  
PHY layer control  
Isochronous cycle timer  
Reserved  
E8h  
PhyControl  
ECh  
IsoCycleTimer  
F0h  
F4h FCh  
100h  
104h  
108h  
10Ch  
110h  
114h  
118h  
11Ch  
120h  
124h 17Ch  
AsyncRequestFilterHiSet  
AsyncRequestFilterHiClear  
AsyncRequestFilterLoSet  
AsyncRequestFilterLoClear  
PhysicalRequestFilterHiSet  
PhysicalRequestFilterHiClear  
PhysicalRequestFilterLoSet  
PhysicalRequestFilterLoClear  
PhysicalUpperBound  
Asynchronous request filter high  
Asynchronous request filter low  
Physical request filter high  
Physical request filter low  
Physical upper bound  
Reserved  
92  
Table 91. Open HCI Register Map (Continued)  
DMA CONTEXT  
REGISTER NAME  
Asynchronous context control  
ABBREVIATION  
OFFSET  
180h  
ContextControlSet  
ContextControlClear  
184h  
Asynchronous  
request transmit  
[ ATRQ ]  
Reserved  
188h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
18Ch  
190h 19Ch  
1A0h  
ContextControlSet  
ContextControlClear  
Asynchronous context control  
1A4h  
Asynchronous  
response transmit  
[ ATRS ]  
Reserved  
1A8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1ACh  
1B0h 1BCh  
1C0h  
ContextControlSet  
ContextControlClear  
Asynchronous context control  
1C4h  
Asynchronous  
request receive  
[ ARRQ ]  
Reserved  
1C8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1CCh  
1D0h 1DCh  
1E0h  
ContextControlSet  
ContextControlClear  
Asynchronous context control  
1E4h  
Asynchronous  
response receive  
[ ARRS ]  
Reserved  
1E8h  
Asynchronous context command pointer  
Reserved  
CommandPtr  
1ECh  
1F0h 1FCh  
200h + 16*n  
204h + 16*n  
208h + 16*n  
20Ch + 16*n  
210h 3FCh  
400h + 32*n  
404h + 32*n  
408h + 32*n  
40Ch + 32*n  
410h + 32*n  
ContextControlSet  
ContextControlClear  
Isochronous transmit context control  
Isochronous  
transmit context n  
n = 0, 1, 2, 3, 7  
Reserved  
Isochronous transmit context command pointer  
Reserved  
CommandPtr  
ContextControlSet  
ContextControlClear  
Isochronous receive context control  
Isochronous  
receive context n  
n = 0, 1, 2, 3  
Reserved  
Isochronous receive context command pointer  
Isochronous receive context match  
CommandPtr  
ContextMatch  
93  
9.1 OHCI Version Register  
The OHCI version register indicates the OHCI version support, and whether or not the serial EEPROM is present.  
See Table 92 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
OHCI version  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
1
Register:  
Type:  
Offset:  
Default:  
OHCI version  
Read-only  
00h  
0001 0000h  
Table 92. OHCI Version Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3125  
RSVD  
R
Reserved. Bits 3125 return 0s when read.  
The PCI4410A device sets bit 24 to 1 if the serial EEPROM is detected. If the serial EEPROM is present,  
the Bus_Info_Block is loaded automatically on hardware reset.  
24  
GUID_ROM  
R
Major version of the open HCI. The PCI4410A device is compliant with the 1394 Open Host Controller  
Interface Specification; thus, this field reads 01h.  
2316  
158  
70  
version  
RSVD  
R
R
R
Reserved. Bits 158 return 0s when read.  
Minor version of the open HCI. The PCI4410A device is compliant with the 1394 Open Host Controller  
Interface Specification; thus, this field reads 00h.  
revision  
94  
9.2 GUID ROM Register  
The GUID ROM register is used to access the serial EEPROM, and is applicable only if bit 24 (GUID_ROM) in the  
OHCI version register (offset 00h, see Section 9.1) is set to 1. See Table 93 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID ROM  
RSU  
0
R
0
R
0
R
0
R
0
R
0
RSU  
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
0
15  
14  
13  
12  
11  
10  
9
7
6
5
4
3
2
1
0
Name  
Type  
Default  
GUID ROM  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
GUID ROM  
Read-only, Read/Set/Update, Read/Update  
Offset:  
Default:  
04h  
00XX 0000h  
Table 93. GUID ROM Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Software sets this bit to 1 to reset the GUID ROM address to 0. When the PCI4410A device completes the  
th  
31  
addrReset  
RSU  
reset, it clears this bit. The PCI4410A device does not automatically fill bits 2316 (rdData field) with the 0  
byte.  
3026  
RSVD  
rdStart  
R
Reserved. Bits 3026 return 0s when read.  
A read of the currently addressed byte is started when this bit is set to 1. This bit is automatically cleared  
when the PCI4410A device completes the read of the currently addressed GUID ROM byte.  
25  
RSU  
24  
RSVD  
rdData  
RSVD  
R
RU  
R
Reserved. Bit 24 returns 0 when read.  
2316  
150  
This field represents the data read from the GUID ROM.  
Reserved. Bits 150 return 0s when read.  
95  
9.3 Asynchronous Transmit Retries Register  
The asynchronous transmit retries register indicates the number of times the PCI4410A device attempts a retry for  
asynchronous DMA request transmit and for asynchronous physical and DMA response transmit. See Table 94 for  
a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous transmit retries  
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Asynchronous transmit retries  
Read-only, Read/Write  
08h  
0000 0000h  
Table 94. Asynchronous Transmit Retries Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
The second limit field returns 0s when read, because outbound dual-phase retry is not  
implemented.  
3129  
secondLimit  
R
2816  
1512  
cycleLimit  
RSVD  
R
R
The cycle limit field returns 0s when read, because outbound dual-phase retry is not implemented.  
Reserved. Bits 1512 return 0s when read.  
The maxPhysRespRetries field tells the physical response unit how many times to attempt to retry  
the transmit operation for the response packet when a busy acknowledge or ack_data_error is  
received from the target node.  
118  
74  
30  
maxPhysRespRetries  
maxATRespRetries  
maxATReqRetries  
R/W  
R/W  
R/W  
The maxATRespRetries field tells the asynchronous transmit response unit how many times  
to attempt to retry the transmit operation for the response packet when a busy acknowledge  
or ack_data_error is received from the target node.  
The maxATReqRetries field tells the asynchronous transmit DMA request unit how many times to  
attempt to retry the transmit operation for the response packet when a busy acknowledge or  
ack_data_error is received from the target node.  
9.4 CSR Data Register  
The CSR data register is used to access the bus management CSR registers from the host through compare-swap  
operations. This register contains the data to be stored in a CSR if the compare is successful.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR data  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CSR data  
Read-only  
0Ch  
0000 0000h  
96  
9.5 CSR Compare Register  
The CSR compare register is used to access the bus management CSR registers from the host through  
compare-swap operations. This register contains the data to be compared with the existing value of the CSR  
resource.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR compare  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR compare  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
CSR compare  
Read-only  
10h  
0000 0000h  
9.6 CSR Control Register  
The CSR control register is used to access the bus management CSR registers from the host through compare-swap  
operations. This register is used to control the compare-swap operation and to select the CSR resource. See  
Table 95 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
CSR control  
RU  
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
CSR control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R/W  
0
R/W  
0
Register:  
Type:  
CSR control  
Read-only, Read/Update, Read/Write  
Offset:  
Default:  
14h  
0000 0000h  
Table 95. CSR Control Register Description  
BIT  
31  
SIGNAL  
csrDone  
RSVD  
TYPE  
RU  
FUNCTION  
This bit is set to 1 by the PCI4410A device when a compare-swap operation is complete. It is cleared  
whenever this register is written.  
302  
R
Reserved. Bits 302 return 0s when read.  
This field selects the CSR resource as follows:  
00 = BUS_MANAGER_ID  
01 = BANDWIDTH_AVAILABLE  
10 = CHANNELS_AVAILABLE_HI  
11 = CHANNELS_AVAILABLE_LO  
10  
csrSel  
R/W  
97  
9.7 Configuration ROM Header Register  
The configuration ROM header register externally maps to the first quadlet of the 1394 configuration ROM, offset  
FFFF F000 0400h. See Table 96 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM header  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM header  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Configuration ROM header  
Read/Write  
Offset:  
Default:  
18h  
0000 XXXXh  
Table 96. Configuration ROM Header Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in the host controller control  
register (offset 50h/54h, see Section 9.16) is set to 1.  
3124  
info_length  
R/W  
IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in the host controller control  
register (offset 50h/54h, see Section 9.16) is set to 1.  
2316  
150  
crc_length  
R/W  
R/W  
IEEE 1394 bus-management field. Must be valid at any time bit 17 (linkEnable) in the host controller  
control register (offset 50h/54h, see Section 9.16) is set to 1. The reset value is undefined if no serial  
EEPROM is present. If a serial EEPROM is present, this field is loaded from the serial EEPROM.  
rom_crc_value  
9.8 Bus Identification Register  
The bus identification register externally maps to the first quadlet in the Bus_Info_Block, and contains the constant  
3133 3934h, which is the ASCII value of 1394.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus identification  
R
0
R
0
R
1
R
1
R
0
R
0
R
0
9
R
1
8
R
0
7
R
0
6
R
1
5
R
1
4
R
0
3
R
0
2
R
1
1
R
1
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Bus identification  
R
0
R
0
R
1
R
1
R
1
R
0
R
0
R
1
R
0
R
0
R
1
R
1
R
0
R
1
R
0
R
0
Register:  
Type:  
Bus identification  
Read-only  
Offset:  
Default:  
1Ch  
3133 3934h  
98  
9.9 Bus Options Register  
The bus options register externally maps to the second quadlet of the Bus_Info_Block. See Table 97 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Bus options  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
0
R
0
R
0
9
R
0
8
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Bus options  
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R
0
R
0
R
0
R
0
R/W  
X
R/W  
X
R
0
R
0
R
0
R
0
R
1
R
0
Register:  
Type:  
Offset:  
Default:  
Bus options  
Read-only, Read/Write  
20h  
X0XX A0X2h  
Table 97. Bus Options Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Isochronous resource-manager capable. IEEE 1394 bus-management field. Must be valid when bit 17  
(linkEnable) in the host controller control register (offset 50h/54h, see Section 9.16) is set to 1.  
31  
irmc  
R/W  
Cycle master capable. IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in the  
host controller control register (offset 50h/54h, see Section 9.16) is set to 1.  
30  
29  
28  
cmc  
isc  
R/W  
R/W  
R/W  
Isochronous support capable. IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable)  
in the host controller control register (offset 50h/54h, see Section 9.16) is set to 1.  
Bus manager capable. IEEE 1394 bus-management field. Must be valid when bit 17 (linkEnable) in the  
host controller control register (offset 50h/54h, see Section 9.16) is set to 1.  
bmc  
Power-management capable. IEEE 1394 bus-management field. When bit 27 is set, this indicates that  
the node is power-management capable. Must be valid when bit 17 (linkEnable) in the host controller  
control register (offset 50h/54h, see Section 9.16) is set to 1.  
27  
pmc  
R/W  
2624  
2316  
RSVD  
R
Reserved. Bits 2624 return 0s when read.  
Cycle master clock accuracy in parts per million. IEEE 1394 bus-management field. Must be valid when  
bit 17 (linkEnable) in the host controller control register (offset 50h/54h, see Section 9.16) is set to 1.  
cyc_clk_acc  
R/W  
Maximum request. IEEE 1394 bus-management field. Hardware initializes this field to indicate the  
maximum number of bytes in a block request packet that is supported by the implementation. This value,  
max_rec_bytes must be 512, or greater, and is calculated by 2^(max_rec + 1). Software may change this  
field; however, this field must be valid at any time bit 17 (linkEnable) in the host controller control register  
(offset 50h/54h, see Section 9.16) is set to 1. A received block write request packet with a length greater  
than max_rec_bytes may generate an ack_type_error. This field is not affected by a soft reset, and  
defaults to a value indicating 2048 bytes on a hard reset.  
1512  
max_rec  
R/W  
118  
76  
53  
20  
RSVD  
g
R
R/W  
R
Reserved. Bits 118 return 0s when read.  
Generation counter. This field is incremented if any portion of the configuration ROM has incremented  
since the prior bus reset.  
RSVD  
Lnk_spd  
Reserved. Bits 53 return 0s when read.  
Link speed. This field returns 010, indicating that the link speeds of 100, 200, and 400 Mbits/s are  
supported.  
R
99  
9.10 GUID High Register  
The GUID high register represents the upper quadlet in a 64-bit global unique ID (GUID) which maps to the third  
quadlet in the Bus_Info_Block. This register contains node_vendor_ID and chip_ID_hi fields. This register initializes  
to 0s on a hardware reset, which is an illegal GUID value. If a serial EEPROM is detected, the contents of this register  
are loaded through the serial EEPROM interface after a PRST. At that point, the contents of this register cannot be  
changed. If no serial EEPROM is detected, then the contents of this register are loaded by the BIOS after a PRST.  
At that point, the contents of this register cannot be changed.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID high  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID high  
Read-only  
24h  
0000 0000h  
9.11 GUID Low Register  
The GUID low register represents the lower quadlet in a 64-bit global unique ID (GUID), which maps to chip_ID_lo  
in the Bus_Info_Block. This register initializes to 0s on a hardware reset and behaves identically to the GUID high  
register (offset 24h, see Section 9.10).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
GUID low  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
GUID low  
Read-only  
28h  
0000 0000h  
910  
9.12 Configuration ROM Mapping Register  
The configuration ROM mapping register contains the start address within system memory that maps to the start  
address of 1394 configuration ROM for this node. See Table 98 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Configuration ROM mapping  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Configuration ROM mapping  
Read-only, Read/Write  
34h  
0000 0000h  
Table 98. Configuration ROM Mapping Register Description  
BIT  
3110  
90  
SIGNAL  
configROMaddr  
RSVD  
TYPE  
R/W  
R
FUNCTION  
If a quadlet read request to 1394 offset FFFF F000 0400h through offset FFFF F000 07FFh is  
received, the low-order 10 bits of the offset are added to this register to determine the host memory  
address of the read request.  
Reserved. Bits 90 return 0s when read.  
9.13 Posted Write Address Low Register  
The posted write address low register is used to communicate error information if a write request is posted and an  
error occurs while the posted data packet is being written. See Table 99 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address low  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Default:  
Posted write address low  
Read/Update  
38h  
XXXX XXXXh  
Table 99. Posted Write Address Low Register Description  
BIT  
SIGNAL  
TYPE  
RU  
FUNCTION  
The lower 32 bits of the 1394 destination offset of the write request that failed.  
310  
offsetLo  
911  
9.14 Posted Write Address High Register  
The posted write address high register is used to communicate error information if a write request is posted and an  
error occurs while writing the posted data packet. See Table 910 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Posted write address high  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Posted write address high  
Read/Update  
Offset:  
Default:  
3Ch  
XXXX XXXXh  
Table 910. Posted Write Address High Register Description  
BIT  
3116  
150  
SIGNAL  
sourceID  
offsetHi  
TYPE  
RU  
FUNCTION  
This field is the 10-bit bus number (bits 3122) and 6-bit node number (bits 2116) of the node that issued  
the write request that failed.  
RU  
The upper 16 bits of the 1394 destination offset of the write request that failed.  
9.15 Vendor ID Register  
The vendor ID register holds the company ID of an organization that specifies any vendor-unique registers. The  
PCI4410A device does not implement Texas Instruments unique behavior with regards to open HCI. Thus, this  
register is read-only, and returns 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Vendor ID  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Vendor ID  
Read-only  
40h  
0000 0000h  
912  
9.16 Host Controller Control Register  
The host controller control set/clear register pair provides flags for controlling the PCI4410A link function. See  
Table 911 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Host controller control  
R
0
RSC  
X
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RC  
0
RSC  
R
0
5
R
0
4
RSC RSC RSC RSCU  
0
0
X
0
0
15  
14  
13  
12  
11  
10  
7
6
3
2
1
0
Name  
Type  
Default  
Host controller control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Host controller control  
Read/Set/Clear/Update, Read/Set/Clear, Read/Clear, Read-only  
Offset:  
50h  
54h  
set register  
clear register  
Default:  
X00X 0000h  
Table 911. Host Controller Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
31  
RSVD  
noByteSwapData  
RSVD  
R
Reserved. Bit 31 returns 0 when read.  
This bit is used to control whether physical accesses to locations outside the PCI4410A device  
itself, as well as any other DMA data accesses, should be swapped.  
30  
RSC  
R
2924  
Reserved. Bits 2924 return 0s when read.  
This bit informs upper-level software that lower-level software has consistently configured the  
IEEE 1394a-2000 enhancements in the link and PHY. When this bit is 1, generic software such as  
the OHCI driver is responsible for configuring IEEE 1394a-2000 enhancements in the PHY and  
bit 22 (aPhyEnhanceEnable) in the PCI4410A device. When this bit is 0, the generic software  
may not modify the IEEE 1394a-2000 enhancements in the PCI4410A device or PHY and cannot  
interpret the setting of bit 22 (aPhyEnhanceEnable). This bit is initialized from serial EEPROM.  
23  
22  
programPhyEnable  
RC  
When bits 23 (programPhyEnable) and 17 (linkEnable) are 1, the OHCI driver can set this bit to 1  
to use all IEEE 1394a-2000 enhancements. When bit 23 (programPhyEnable) is 0, the software  
does not change the PHY enhancements or this bit.  
aPhyEnhanceEnable  
RSC  
2120  
RSVD  
LPS  
R
Reserved. Bits 21 and 20 return 0s when read.  
This bit is used to control the link power status. Software must set this bit to 1 to permit the  
link-PHY communication. A 0 prevents link-PHY communication.  
19  
RSC  
This bit is used to enable (1) or disable (0) posted writes. Software should change this bit only  
when bit 17 (linkEnable) is 0.  
18  
17  
postedWriteEnable  
linkEnable  
RSC  
RSC  
This bit is cleared to 0 by a hardware reset or software reset. Software must set this bit to 1 when  
the system is ready to begin operation, and then force a bus reset. This bit is necessary to keep  
other nodes from sending transactions before the local system is ready. When this bit is cleared,  
the PCI4410A device is logically and immediately disconnected from the 1394 bus, no packets  
are received or processed, nor are packets transmitted.  
When this bit is set to 1, all PCI4410A states are reset, all FIFOs are flushed, and all OHCI  
registers are set to their hardware reset values, unless otherwise specified. PCI registers are not  
affected by this bit. This bit remains set to 1 while the soft reset is in progress and reverts back to 0  
when the reset has completed.  
16  
SoftReset  
RSVD  
RSCU  
R
150  
Reserved. Bits 150 return 0s when read.  
913  
9.17 Self-ID Buffer Pointer Register  
The self-ID buffer pointer register points to the 2-Kbyte aligned base address of the buffer in host memory where the  
self-ID packets are stored during bus initialization. Bits 3111 are read/write accessible. Bits 100 are reserved, and  
return 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self-ID buffer pointer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self-ID buffer pointer  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self-ID buffer pointer  
Read-only, Read/Write  
64h  
0000 0000h  
9.18 Self-ID Count Register  
The self-ID count register keeps a count of the number of times the bus self-ID process has occurred, flags self-ID  
packet errors, and keeps a count of the amount of self-ID data in the self-ID buffer. See Table 912 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Self-ID count  
RU  
X
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Self-ID count  
R
0
R
0
R
0
R
0
R
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
RU  
0
R
0
R
0
Register:  
Type:  
Offset:  
Default:  
Self-ID count  
Read/Update  
68h  
X0XX 0000h  
Table 912. Self ID Count Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit is 1 if an error was detected during the most recent self-ID packet reception. The contents of  
the self-ID buffer are undefined. This bit is cleared after a self-ID reception in which no errors are  
detected. Note that an error can be a hardware error or a host bus write error.  
31  
selfIDError  
RU  
3024  
2316  
1511  
RSVD  
selfIDGeneration  
RSVD  
R
RU  
R
Reserved. Bits 3024 return 0s when read.  
The value in this field increments each time a bus reset is detected. This field rolls over to 0 after  
reaching 255.  
Reserved. Bits 1511 return 0s when read.  
This field indicates the number of quadlets that have been written into the self-ID buffer for the current  
bits 2316 (selfIDGeneration field). This includes the header quadlet and the self-ID data. This field is  
cleared to 0 when the self-ID reception begins.  
102  
10  
selfIDSize  
RSVD  
RU  
R
Reserved. Bits 1 and 0 return 0s when read.  
914  
9.19 Isochronous Receive Channel Mask High Register  
The isochronous receive channel mask high set/clear register is used to enable packet receives from the upper 32  
isochronous data channels. A read from either the set register or clear register returns the content of the isochronous  
receive channel mask high register. See Table 913 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive channel mask high  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
Register:  
Type:  
Isochronous receive channel mask high  
Read/Set/Clear  
Offset:  
70h  
74h  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 913. Isochronous Receive Channel Mask High Register Description  
BIT  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
SIGNAL  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
FUNCTION  
isoChannel63  
isoChannel62  
isoChannel61  
isoChannel60  
isoChannel59  
isoChannel58  
isoChannel57  
isoChannel56  
isoChannel55  
isoChannel54  
isoChannel53  
isoChannel52  
isoChannel51  
isoChannel50  
isoChannel49  
isoChannel48  
isoChannel47  
isoChannel46  
isoChannel45  
isoChannel44  
isoChannel43  
isoChannel42  
isoChannel41  
isoChannel40  
isoChannel39  
isoChannel38  
When bit 31 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 63.  
When bit 30 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 62.  
When bit 29 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 61.  
When bit 28 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 60.  
When bit 27 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 59.  
When bit 26 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 58.  
When bit 25 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 57.  
When bit 24 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 56.  
When bit 23 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 55.  
When bit 22 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 54.  
When bit 21 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 53.  
When bit 20 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 52.  
When bit 19 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 51.  
When bit 18 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 50.  
When bit 17 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 49.  
When bit 16 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 48.  
When bit 15 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 47.  
When bit 14 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 46.  
When bit 13 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 45.  
When bit 12 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 44.  
When bit 11 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 43.  
When bit 10 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 42.  
When bit 9 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 41.  
When bit 8 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 40.  
When bit 7 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 39.  
When bit 6 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 38.  
8
7
6
915  
Table 913. Isochronous Receive Channel Mask High Register Description (Continued)  
BIT  
5
SIGNAL  
TYPE  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
FUNCTION  
isoChannel37  
isoChannel36  
isoChannel35  
isoChannel34  
isoChannel33  
isoChannel32  
When bit 5 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 37.  
When bit 4 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 36.  
When bit 3 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 35.  
When bit 2 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 34.  
When bit 1 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 33.  
When bit 0 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 32.  
4
3
2
1
0
9.20 Isochronous Receive Channel Mask Low Register  
The isochronous receive channel mask low set/clear register is used to enable packet receives from the lower 32  
isochronous data channels. See Table 914 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous receive channel mask low  
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
X
X
Register:  
Type:  
Isochronous receive channel mask low  
Read/Set/Clear  
Offset:  
78h  
7Ch  
set register  
clear register  
Default:  
XXXX XXXXh  
Table 914. Isochronous Receive Channel Mask Low Register Description  
BIT  
31  
30  
L
SIGNAL  
isoChannel31  
isoChannel30  
L
TYPE  
RSC  
RSC  
L
FUNCTION  
When bit 31 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 31.  
When bit 30 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 30.  
Bits 29 through 2 follow the same pattern.  
1
isoChannel1  
isoChannel0  
RSC  
RSC  
When bit 1 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 1.  
When bit 0 is set to 1, the PCI4410A device is enabled to receive from isochronous channel number 0.  
0
916  
9.21 Interrupt Event Register  
The interrupt event set/clear register reflects the state of the various PCI4410A interrupt sources. The interrupt bits  
are set by an asserting edge of the corresponding interrupt signal, or by writing a 1 in the corresponding bit in the set  
register. The only mechanism to clear a bit in this register is to write a 1 to the corresponding bit in the clear register.  
This register is fully compliant with the 1394 Open Host Controller Interface Specification, and the PCI4410A device  
adds a vendor-specific interrupt function to bit 30. When the interrupt event register is read, the return value is the  
bit-wise AND function of the interrupt event and interrupt mask registers. See Table 915 for a complete description  
of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Interrupt event  
R
0
R
X
R
0
R
0
R
0
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt event  
Read/Set/Clear/Update, Read/Update, Read-only  
Offset:  
80h  
84h  
set register  
clear register (returns the content of the interrupt event register bitwise ANDed with  
the interrupt mask register when read)  
Default:  
XXXX 0XXXh  
Table 915. Interrupt Event Register Description  
BIT  
31  
SIGNAL  
TYPE  
FUNCTION  
RSVD  
vendorSpecific  
RSVD  
R
R
R
Reserved. Bit 31 returns 0 when read.  
Vendor defined.  
30  
2927  
Reserved. Bits 2927 return 0s when read.  
The PCI4410A device has received a PHY register data byte that can be read from bits 2316 of the  
PHY control register (offset ECh, see Section 9.30).  
26  
phyRegRcvd  
RSCU  
If bit 21 (cycleMaster) of the link control register (offset E0h/E4h, see Section 9.28) is set to 1, this  
25  
cycleTooLong  
RSCU indicates that over 125 µs have elapsed between the start of sending a cycle start packet and the end  
of a subaction gap. The link control register bit 21 (cycleMaster) is cleared by this event.  
This event occurs when the PCI4410A device encounters any error that forces it to stop operations  
RSCU on any or all of its subunits, for example, when a DMA context sets its dead bit to 1. While bit 24 is set  
to 1, all normal interrupts for the context(s) that caused this interrupt are blocked from being set to 1.  
24  
23  
unrecoverableError  
cycleInconsistent  
A cycle start was received that had values for the cycleSeconds and cycleCount fields that are  
RSCU different from the values in bits 3125 (cycleSeconds field) and bits 2412 (cycleCount field) in the  
isochronous cycle timer register (offset F0h, see Section 9.31).  
A lost cycle is indicated when no cycle_start packet is sent/received between two successive  
cycleSynch events. A lost cycle can be predicted when a cycle_start packet does not immediately  
follow the first subaction gap after the cycleSynch event or if an arbitration reset gap is detected after  
a cycleSynch event without an intervening cycle start. Bit 22 may be set to 1 either when a lost cycle  
occurs or when logic predicts that one will occur.  
22  
cycleLost  
RSCU  
th  
21  
20  
cycle64Seconds  
cycleSynch  
RSCU Indicates that the 7 bit of the cycle second counter has changed.  
Indicates that a new isochronous cycle has started. Bit 20 is set to 1 when the low-order bit of the  
cycle count toggles.  
RSCU  
19  
18  
17  
phy  
RSCU Indicates the PHY requests an interrupt through a status transfer.  
RSVD  
R
Reserved. Bit 18 returns 0 when read.  
busReset  
RSCU Indicates that the PHY chip has entered the bus reset mode.  
917  
Table 915. Interrupt Event Register Description (Continued)  
BIT  
16  
SIGNAL  
selfIDcomplete  
RSVD  
TYPE  
RSCU  
R
FUNCTION  
A self-ID packet stream has been received. It is generated at the end of the bus initialization process.  
This bit is turned off simultaneously when bit 17 (busReset) is turned on.  
1510  
9
Reserved. Bits 1510 return 0s when read.  
Indicates that the PCI4410A device sent a lock response for a lock request to a serial bus register,  
but did not receive an ack_complete.  
lockRespErr  
RSCU  
Indicates that a host bus error occurred while the PCI4410A device was trying to write a 1394 write  
request, which had already been given an ack_complete, into system memory.  
8
7
postedWriteErr  
isochRx  
RSCU  
RU  
Isochronous receive DMA interrupt. Indicates that one or more isochronous receive contexts have  
generated an interrupt. This is not a latched event; it is the logical OR of all bits in the isochronous  
receive interrupt event (offset A0h/A4h, see Section 9.25) and isochronous receive interrupt mask  
(offset A8h/ACh, see Section 9.26) registers. The isochronous receive interrupt event register  
indicates which contexts have been interrupted.  
Isochronous transmit DMA interrupt. Indicates that one or more isochronous transmit contexts have  
generated an interrupt. This is not a latched event, it is the logical OR of all bits in the isochronous  
transmit interrupt event (offset 90h/94h, see Section 9.23) and isochronous transmit interrupt mask  
(offset 98h/9Ch, see Section 9.24) registers. The isochronous transmit interrupt event register  
indicates which contexts have been interrupted.  
6
isochTx  
RU  
Indicates that a packet was sent to an asynchronous receive response context buffer and the  
descriptors xferStatus and resCount fields have been updated.  
5
4
3
2
1
0
RSPkt  
RQPkt  
RSCU  
RSCU  
RSCU  
RSCU  
RSCU  
RSCU  
Indicates that a packet was sent to an asynchronous receive request context buffer and the  
descriptors xferStatus and resCount fields have been updated.  
Asynchronous receive response DMA interrupt. This bit is conditionally set to 1 upon completion of  
an ARRS DMA context command descriptor.  
ARRS  
Asynchronous receive request DMA interrupt. This bit is conditionally set to 1 upon completion of an  
ARRQ DMA context command descriptor.  
ARRQ  
Asynchronous response transmit DMA interrupt. This bit is conditionally set to 1 upon completion of  
an ATRS DMA command.  
respTxComplete  
reqTxComplete  
Asynchronous request transmit DMA interrupt. This bit is conditionally set to 1 upon completion of an  
ATRQ DMA command.  
918  
9.22 Interrupt Mask Register  
The interrupt mask set/clear register is used to enable the various PCI4410A interrupt sources. Reads from either  
the set register or the clear register always return the contents of the interrupt mask register. In all cases except  
masterIntEnable (bit 31), the enables for each interrupt event align with the event register bits detailed in Table 915.  
See Table 916 for a description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Interrupt mask  
RSC  
0
R
X
R
0
R
0
R
0
RSCU RSCU RSCU RSCU RSCU RSCU RSCU RSCU  
R
0
2
RSCU RSCU  
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
0
Name  
Type  
Default  
Interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
RSCU RSCU  
RU  
X
RU  
X
RSCU RSCU RSCU RSCU RSCU RSCU  
X
X
X
X
X
X
X
X
Register:  
Type:  
Interrupt mask  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
88h  
8Ch  
set register  
clear register  
Default:  
XXXX 0XXXh  
Table 916. Interrupt Mask Register Description  
BIT  
31  
SIGNAL  
TYPE  
FUNCTION  
If this bit is set to 1, external interrupts are generated in accordance with the interrupt mask register. If  
this bit is cleared, no external interrupts are generated regardless of the interrupt mask register  
settings.  
masterIntEnable  
RSC  
300  
See Table 915.  
919  
9.23 Isochronous Transmit Interrupt Event Register  
The isochronous transmit interrupt event set/clear register reflects the interrupt state of the isochronous transmit  
contexts. An interrupt is generated on behalf of an isochronous transmit context if an OUTPUT_LAST command  
completes and its interrupt bits are set to 1. Upon determining that the isochTx (bit 6) interrupt has occurred in the  
interrupt event register (offset 80h/84h, see Section 9.21), software can check this register to determine which  
context(s) caused the interrupt. The interrupt bits are set to 1 by an asserting edge of the corresponding interrupt  
signal, or by writing a 1 in the corresponding bit in the set register. The only mechanism to clear a bit in this register  
is to write a 1 to the corresponding bit in the clear register. See Table 917 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous transmit interrupt event  
Read/Set/Clear, Read-only  
Offset:  
90h  
94h  
set register  
clear register (returns the contents of the isochronous transmit interrupt event  
register bitwise ANDed with the isochronous transmit interrupt mask register when  
read)  
Default:  
0000 00XXh  
Table 917. Isochronous Transmit Interrupt Event Register Description  
BIT  
SIGNAL  
RSVD  
TYPE  
R
FUNCTION  
318  
Reserved. Bits 318 return 0s when read.  
7
6
5
4
3
2
1
0
isoXmit7  
isoXmit6  
isoXmit5  
isoXmit4  
isoXmit3  
isoXmit2  
isoXmit1  
isoXmit0  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
Isochronous transmit channel 7 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 6 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 5 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 4 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 3 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 2 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 1 caused the interrupt event register bit 6 (isochTx) interrupt.  
Isochronous transmit channel 0 caused the interrupt event register bit 6 (isochTx) interrupt.  
920  
9.24 Isochronous Transmit Interrupt Mask Register  
The isochronous transmit interrupt mask set/clear register is used to enable the isochTx interrupt source on a  
per-channel basis. Reads from either the set register or the clear register always return the contents of the  
isochronous transmit interrupt mask register. In all cases, the enables for each interrupt event align with the  
isochronous transmit interrupt event register bits detailed in Table 917.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous transmit interrupt mask  
Read/Set/Clear, Read-only  
Offset:  
98h  
9Ch  
set register  
clear register  
Default:  
0000 00XXh  
921  
9.25 Isochronous Receive Interrupt Event Register  
The isochronous receive interrupt event set/clear register reflects the interrupt state of the isochronous receive  
contexts. An interrupt is generated on behalf of an isochronous receive context if an INPUT_* command completes  
and its interrupt bits are set to 1. Upon determining that the isochRx (bit 7) interrupt in the interrupt event register  
(offset 80h/84h, see Section 9.21) has occurred, software can check this register to determine which context(s)  
caused the interrupt. The interrupt bits are set to 1 by an asserting edge of the corresponding interrupt signal, or by  
writing a 1 in the corresponding bit in the set register. The only mechanism to clear a bit in this register is to write a  
1 to the corresponding bit in the clear register. See Table 918 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt event  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous receive interrupt event  
Read/Set/Clear, Read-only  
Offset:  
A0h  
A4h  
set register  
clear register (returns the contents of the isochronous receive interrupt event register  
bitwise ANDed with the isochronous receive interrupt mask register when read)  
Default:  
0000 000Xh  
Table 918. Isochronous Receive Interrupt Event Register Description  
BIT  
SIGNAL  
RSVD  
TYPE  
R
FUNCTION  
314  
Reserved. Bits 314 return 0s when read.  
3
2
1
0
isoRecv3  
isoRecv2  
isoRecv1  
isoRecv0  
RSC  
RSC  
RSC  
RSC  
Isochronous receive channel 3 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 2 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 1 caused the interrupt event register bit 7 (isochRx) interrupt.  
Isochronous receive channel 0 caused the interrupt event register bit 7 (isochRx) interrupt.  
922  
9.26 Isochronous Receive Interrupt Mask Register  
The isochronous receive interrupt mask set/clear register is used to enable the isochRx interrupt source on a  
per-channel basis. Reads from either the set register or the clear register always return the contents of the  
isochronous receive interrupt mask register. In all cases the enables for each interrupt event align with the  
isochronous receive interrupt event register bits detailed in Table 918.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive interrupt mask  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
RSC  
X
RSC RSC  
RSC  
X
X
X
Register:  
Type:  
Isochronous receive interrupt mask  
Read/Set/Clear, Read-only  
Offset:  
A8h  
ACh  
set register  
clear register  
Default:  
0000 000Xh  
9.27 Fairness Control Register (Optional Register)  
The fairness control register provides a mechanism by which software can direct the host controller to transmit  
multiple asynchronous requests during a fairness interval. See Table 919 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Fairness control  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Fairness control  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Register:  
Type:  
Offset:  
Default:  
Fairness control  
Read-only, Read/Write  
DCh  
XXXX XX00h  
Table 919. Fairness Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
318  
RSVD  
R
Reserved. Bits 318 return 0s when read.  
This field specifies the maximum number of priority arbitration requests for asynchronous request packets  
that the link is permitted to make of the PHY during a fairness interval.  
70  
pri_req  
R/W  
923  
9.28 Link Control Register  
The link control set/clear register provides the control flags that enable and configure the link core protocol portions  
of the PCI4410A device. It contains controls for the receiver and cycle timer. See Table 920 for a complete  
description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Link control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
RSC RSCU RSC  
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
6
5
4
Name  
Type  
Default  
Link control  
R
0
R
0
R
0
R
0
R
0
RSC RSC  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
X
X
Register:  
Type:  
Link control  
Read/Set/Clear/Update, Read/Set/Clear, Read-only  
Offset:  
E0h  
E4h  
set register  
clear register  
Default:  
00X0 0X00h  
Table 920. Link Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3123  
RSVD  
R
Reserved. Bits 3123 return 0s when read.  
When bit 22 is set to 1, the cycle timer uses an external source (CYCLEIN) to determine when to roll  
over the cycle timer. When this bit is cleared, the cycle timer rolls over when the timer reaches  
3072 cycles of the 24.576-MHz clock (125 µs).  
22  
21  
20  
cycleSource  
RSC  
RSCU  
RSC  
When bit 21 is set to 1 and the PHY has notified the PCI4410A device that it is root, the PCI4410A  
device generates a cycle start packet every time the cycle timer rolls over, based on the setting of  
bit 22 (cycleSource). When bit 21 is cleared, the OHCI-Lynxt accepts received cycle start packets  
to maintain synchronization with the node that is sending them. Bit 21 is automatically cleared when  
bit 25 (cycleTooLong) in the interrupt event register (offset 80h/84h, see Section 9.21) is set. Bit 21  
cannot be set to 1 until bit 25 (cycleTooLong) is cleared.  
cycleMaster  
When bit 20 is set to 1, the cycle timer offset counts cycles of the 24.576-MHz clock and rolls over at  
the appropriate time, based on the settings of the above bits. When this bit is cleared, the cycle timer  
offset does not count.  
CycleTimerEnable  
1911  
RSVD  
R
Reserved. Bits 1911 return 0s when read.  
When bit 10 is set to 1, the receiver accepts incoming PHY packets into the AR request context if the  
AR request context is enabled. This does not control receipt of self-identification packets.  
10  
RcvPhyPkt  
RSC  
When bit 9 is set to 1, the receiver accepts incoming self-identification packets. Before setting this bit  
to 1, software must ensure that the self-ID buffer pointer register contains a valid address.  
9
RcvSelfID  
RSVD  
RSC  
R
80  
Reserved. Bits 80 return 0s when read.  
924  
9.29 Node Identification Register  
The node identification register contains the address of the node on which the OHCI-Lynxt chip resides, and  
indicates the valid node number status. The 16-bit combination of the busNumber field (bits 156) and the  
NodeNumber field (bits 50) is referred to as the node ID. See Table 921 for a complete description of the register  
contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Node identification  
RU  
0
RU  
0
R
0
R
0
RU  
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Node identification  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
1
1
1
1
1
1
1
1
1
1
Register:  
Type:  
Node identification  
Read/Write/Update, Read/Update, Read-only  
Offset:  
Default:  
E8h  
0000 FFXXh  
Table 921. Node Identification Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
Bit 31 indicates whether or not the PCI4410A device has a valid node number. It is cleared when a 1394  
bus reset is detected and set to 1 when the PCI4410A device receives a new node number from the PHY.  
31  
iDValid  
RU  
30  
root  
RSVD  
CPS  
RU  
R
Bit 30 is set to 1 during the bus reset process if the attached PHY is root.  
Reserved. Bits 29 and 28 return 0s when read.  
2928  
27  
RU  
R
Bit 27 is set to 1 if the PHY is reporting that cable power status is OK (VP 8V).  
Reserved. Bits 2616 return 0s when read.  
2616  
RSVD  
This field is used to identify the specific 1394 bus the PCI4410A device belongs to when multiple  
1394-compatible buses are connected via a bridge.  
156  
50  
busNumber  
RWU  
This field is the physical node number established by the PHY during self-identification. It is  
automatically set to the value received from the PHY after the self-identification phase. If the PHY  
sets the nodeNumber to 63, software should not set bit 15 (run) of the asynchronous context control  
register (see Section 9.37) for either of the AT DMA contexts.  
NodeNumber  
RU  
925  
9.30 PHY Control Register  
The PHY control register is used to read or write a PHY register. See Table 922 for a complete description of the  
register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
PHY control  
RU  
X
R
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
PHY control  
RWU RWU  
R
0
R
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
0
0
Register:  
Type:  
PHY control  
Read/Write/Update, Read/Update, Read/Write, Read-only  
Offset:  
Default:  
ECh  
XXXX 0XXXh  
Table 922. PHY Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
This bit is cleared to 0 by the PCI4410A device when either bit 15 (rdReg) or bit 14 (wrReg) is set to 1. This  
bit is set to 1 when a register transfer is received from the PHY.  
31  
rdDone  
RU  
3028  
2724  
2316  
RSVD  
rdAddr  
rdData  
R
Reserved. Bits 3028 return 0s when read.  
RU  
RU  
This is the address of the register most recently received from the PHY.  
This field is the contents of a PHY register which has been read.  
This bit is set to 1 by software to initiate a read request to a PHY register, and is cleared by hardware  
when the request has been sent. Bits 15 and 14 must not be set simultaneously.  
15  
14  
rdReg  
wrReg  
RWU  
RWU  
This bit is set to 1 by software to initiate a write request to a PHY register, and is cleared by hardware  
when the request has been sent. Bits 14 and 15 must not be set simultaneously.  
1312  
118  
70  
RSVD  
regAddr  
wrData  
R
Reserved. Bits 13 and 12 return 0s when read.  
R/W  
R/W  
This field is the address of the PHY register to be written or read.  
This field is the data to be written to a PHY register and is ignored for reads.  
926  
9.31 Isochronous Cycle Timer Register  
The isochronous cycle timer register indicates the current cycle number and offset. When the PCI4410A device is  
cycle master, this register is transmitted with the cycle start message. When the PCI4410A device is not cycle master,  
this register is loaded with the data field in an incoming cycle start. In the event that the cycle start message is not  
received, the fields can continue incrementing on their own (if programmed) to maintain a local time reference. See  
Table 923 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous cycle timer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Default:  
Isochronous cycle timer  
Read/Write/Update  
F0h  
XXXX XXXXh  
Table 923. Isochronous Cycle Timer Register Description  
BIT  
SIGNAL  
cycleSeconds  
cycleCount  
TYPE  
RWU  
RWU  
FUNCTION  
3125  
2412  
This field counts seconds [rollovers from bits 2412 (cycleCount field)] modulo 128.  
This field counts cycles [rollovers from bits 110 (cycleOffset field)] modulo 8000.  
This field counts 24.576-MHz clocks modulo 3072, that is, 125 µs. If an external 8-kHz clock  
configuration is being used, this bit must be cleared at each tick of the external clock.  
110  
cycleOffset  
RWU  
927  
9.32 Asynchronous Request Filter High Register  
The asynchronous request filter high set/clear register is used to enable asynchronous receive requests on a  
per-node basis, and handles the upper node IDs. When a packet is destined for either the physical request context  
or the ARRQ context, the source node ID is examined. If the bit corresponding to the node ID is not set to 1 in this  
register, the packet is not acknowledged and the request is not queued. The node ID comparison is done if the source  
node is on the same bus as the PCI4410A device. All nonlocal bus-sourced packets are not acknowledged unless  
bit 31 in this register is set to 1. See Table 924 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Asynchronous request filter high  
Read/Set/Clear  
Offset:  
100h set register  
104h clear register  
0000 0000h  
Default:  
Table 924. Asynchronous Request Filter High Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If bit 31 is set to 1, all asynchronous requests received by the PCI4410A device from nonlocal  
bus nodes are accepted.  
31  
asynReqAllBuses  
asynReqResource62  
asynReqResource61  
asynReqResource60  
asynReqResource59  
asynReqResource58  
asynReqResource57  
asynReqResource56  
asynReqResource55  
asynReqResource54  
asynReqResource53  
asynReqResource52  
RSC  
If bit 30 is set to 1 for local bus node number 62, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 29 is set to 1 for local bus node number 61, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 28 is set to 1 for local bus node number 60, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 27 is set to 1 for local bus node number 59, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 26 is set to 1 for local bus node number 58, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 25 is set to 1 for local bus node number 57, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 24 is set to 1 for local bus node number 56, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 23 is set to 1 for local bus node number 55, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 22 is set to 1 for local bus node number 54, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 21 is set to 1 for local bus node number 53, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 20 is set to 1 for local bus node number 52, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
928  
Table 924. Asynchronous Request Filter High Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If bit 19 is set to 1 for local bus node number 51, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
19  
asynReqResource51  
RSC  
If bit 18 is set to 1 for local bus node number 50, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
asynReqResource50  
asynReqResource49  
asynReqResource48  
asynReqResource47  
asynReqResource46  
asynReqResource45  
asynReqResource44  
asynReqResource43  
asynReqResource42  
asynReqResource41  
asynReqResource40  
asynReqResource39  
asynReqResource38  
asynReqResource37  
asynReqResource36  
asynReqResource35  
asynReqResource34  
asynReqResource33  
asynReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 17 is set to 1 for local bus node number 49, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 16 is set to 1 for local bus node number 48, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 15 is set to 1 for local bus node number 47, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 14 is set to 1 for local bus node number 46, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 13 is set to 1 for local bus node number 45, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 12 is set to 1 for local bus node number 44, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 11 is set to 1 for local bus node number 43, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 10 is set to 1 for local bus node number 42, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 9 is set to 1 for local bus node number 41, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
If bit 8 is set to 1 for local bus node number 40, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
8
If bit 7 is set to 1 for local bus node number 39, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
7
If bit 6 is set to 1 for local bus node number 38, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
6
If bit 5 is set to 1 for local bus node number 37, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
5
If bit 4 is set to 1 for local bus node number 36, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
4
If bit 3 is set to 1 for local bus node number 35, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
3
If bit 2 is set to 1 for local bus node number 34, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
2
If bit 1 is set to 1 for local bus node number 33, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
1
If bit 0 is set to 1 for local bus node number 32, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
0
929  
9.33 Asynchronous Request Filter Low Register  
The asynchronous request filter low set/clear register is used to enable asynchronous receive requests on a per-node  
basis, and handles the lower node IDs. Other than filtering different node IDs, this register behaves identically to the  
asynchronous request filter high register. See Table 925 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Asynchronous request filter low  
Read/Set/Clear  
Offset:  
108h set register  
10Ch clear register  
0000 0000h  
Default:  
Table 925. Asynchronous Request Filter Low Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If bit 31 is set to 1 for local bus node number 31, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
31  
asynReqResource31  
RSC  
If bit 30 is set to 1 for local bus node number 30, asynchronous requests received by the  
PCI4410A device from that node are accepted.  
30  
L
asynReqResource30  
RSC  
L
L
Bits 29 through 2 follow the same pattern.  
If bit 1 is set to 1 for local bus node number 1, asynchronous requests received by the PCI4410A  
device from that node are accepted.  
1
asynReqResource1  
RSC  
If bit 0 is set to 1 for local bus node number 0, asynchronous requests received by the PCI4410A  
device from that node are accepted.  
0
asynReqResource0  
RSC  
930  
9.34 Physical Request Filter High Register  
The physical request filter high set/clear register is used to enable physical receive requests on a per-node basis,  
and handles the upper node IDs. When a packet is destined for the physical request context and the node ID has  
been compared against the ARRQ registers, then the comparison is done again with this register. If the bit  
corresponding to the node ID is not set to 1 in this register, the request is handled by the ARRQ context instead of  
the physical request context. See Table 926 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter high  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Physical request filter high  
Read/Set/Clear  
Offset:  
110h set register  
114h clear register  
0000 0000h  
Default:  
Table 926. Physical Request Filter High Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If bit 31 is set to 1, all asynchronous requests received by the PCI4410A device from nonlocal  
bus nodes are accepted.  
31  
physReqAllBusses  
physReqResource62  
physReqResource61  
physReqResource60  
physReqResource59  
physReqResource58  
physReqResource57  
physReqResource56  
physReqResource55  
physReqResource54  
physReqResource53  
physReqResource52  
physReqResource51  
physReqResource50  
RSC  
If bit 30 is set to 1 for local bus node number 62, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 29 is set to 1 for local bus node number 61, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 28 is set to 1 for local bus node number 60, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 27 is set to 1 for local bus node number 59, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 26 is set to 1 for local bus node number 58, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 25 is set to 1 for local bus node number 57, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 24 is set to 1 for local bus node number 56, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 23 is set to 1 for local bus node number 55, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 22 is set to 1 for local bus node number 54, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 21 is set to 1 for local bus node number 53, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 20 is set to 1 for local bus node number 52, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 19 is set to 1 for local bus node number 51, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 18 is set to 1 for local bus node number 50, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
931  
Table 926. Physical Request Filter High Register Description (Continued)  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If bit 17 is set to 1 for local bus node number 49, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
17  
physReqResource49  
RSC  
If bit 16 is set to 1 for local bus node number 48, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
16  
15  
14  
13  
12  
11  
10  
9
physReqResource48  
physReqResource47  
physReqResource46  
physReqResource45  
physReqResource44  
physReqResource43  
physReqResource42  
physReqResource41  
physReqResource40  
physReqResource39  
physReqResource38  
physReqResource37  
physReqResource36  
physReqResource35  
physReqResource34  
physReqResource33  
physReqResource32  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
If bit 15 is set to 1 for local bus node number 47, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 14 is set to 1 for local bus node number 46, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 13 is set to 1 for local bus node number 45, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 12 is set to 1 for local bus node number 44, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 11 is set to 1 for local bus node number 43, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 10 is set to 1 for local bus node number 42, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 9 is set to 1 for local bus node number 41, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
If bit 8 is set to 1 for local bus node number 40, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
8
If bit 7 is set to 1 for local bus node number 39, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
7
If bit 6 is set to 1 for local bus node number 38, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
6
If bit 5 is set to 1 for local bus node number 37, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
5
If bit 4 is set to 1 for local bus node number 36, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
4
If bit 3 is set to 1 for local bus node number 35, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
3
If bit 2 is set to 1 for local bus node number 34, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
2
If bit 1 is set to 1 for local bus node number 33, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
1
If bit 0 is set to 1 for local bus node number 32, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
0
932  
9.35 Physical Request Filter Low Register  
The physical request filter low set/clear register is used to enable physical receive requests on a per-node basis, and  
handles the lower node IDs. When a packet is destined for the physical request context, and the node ID has been  
compared against the asynchronous request filter registers, the node ID comparison is done again with this register.  
If the bit corresponding to the node ID is not set to 1 in this register, the request is handled by the asynchronous request  
context instead of the physical request context. See Table 927 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC  
RSC RSC  
RSC  
0
0
0
0
0
0
0
0
0
0
0
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Physical request filter low  
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC  
0
RSC RSC  
RSC  
0
0
0
0
0
Register:  
Type:  
Physical request filter low  
Read/Set/Clear  
Offset:  
118h set register  
11Ch clear register  
0000 0000h  
Default:  
Table 927. Physical Request Filter Low Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
If bit 31 is set to 1 for local bus node number 31, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
31  
physReqResource31  
RSC  
If bit 30 is set to 1 for local bus node number 30, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
30  
L
physReqResource30  
RSC  
L
L
Bits 29 through 2 follow the same pattern.  
If bit 1 is set to 1 for local bus node number 1, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
1
physReqResource1  
RSC  
If bit 0 is set to 1 for local bus node number 0, physical requests received by the PCI4410A  
device from that node are handled through the physical request context.  
0
physReqResource0  
RSC  
9.36 Physical Upper Bound Register (Optional Register)  
This register is an optional register and is not implemented. This register returns all 0s when read.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Physical upper bound  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
R
0
Register:  
Type:  
Physical upper bound  
Read-only  
Offset:  
Default:  
120h  
0000 0000h  
933  
9.37 Asynchronous Context Control Register  
The asynchronous context control set/clear register controls the state and indicates status of the DMA context. See  
Table 928 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Asynchronous context control  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Asynchronous context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Offset:  
Asynchronous context control  
Read/Set/Clear/Update, Read/Set/Update, Read/Update, Read-only  
180h set register [ATRQ]  
184h clear register [ATRQ]  
1A0h set register [ATRS]  
1A4h clear register [ATRS]  
1C0h set register [ARRQ]  
1C4h clear register [ARRQ]  
1E0h set register [ATRS]  
1E4h clear register [ATRS]  
0000 X0XXh  
Default:  
Table 928. Asynchronous Context Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
3116  
RSVD  
R
Reserved. Bits 3116 return 0s when read.  
This bit is set to 1 by software to enable descriptor processing for the context and cleared by software to stop  
descriptor processing. The PCI4410A device changes this bit only on a hardware or software reset.  
15  
1413  
12  
run  
RSCU  
R
RSVD  
wake  
Reserved. Bits 14 and 13 return 0s when read.  
Software sets this bit to 1 to cause the PCI4410A device to continue or resume descriptor processing. The  
PCI4410A device clears this bit on every descriptor fetch.  
RSU  
The PCI4410A device sets this bit to 1 when it encounters a fatal error, and clears the bit when software  
resets bit 15 (run).  
11  
dead  
RU  
10  
active  
RSVD  
RU  
R
The PCI4410A device sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0s when read.  
98  
This field indicates the speed at which a packet was received or transmitted, and only contains meaningful  
information for receive contexts. This field is encoded as:  
000b = 100 Mbits/s  
001b = 200 Mbits/s  
010b = 400 Mbits/s  
All other values are reserved.  
75  
40  
spd  
RU  
RU  
This field holds the acknowledge sent by the link core for this packet or an internally generated error code if  
the packet was not transferred successfully.  
eventcode  
934  
9.38 Asynchronous Context Command Pointer Register  
The asynchronous context command pointer register contains a pointer to the address of the first descriptor block  
that the PCI4410A device accesses when software enables the context by setting bit 15 (run) of the asynchronous  
context control register (see Section 9.37) to 1. See Table 929 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Asynchronous context command pointer  
RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU RWU  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Register:  
Type:  
Offset:  
Asynchronous context command pointer  
Read/Write/Update  
19Ch [ATRQ]  
1ACh [ATRS]  
1CCh [ATRQ]  
1ECh [ATRS]  
Default:  
XXXX XXXXh  
Table 929. Asynchronous Context Command Pointer Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
314  
descriptorAddress  
RWU  
Contains the upper 28 bits of the address of a 16-byte aligned descriptor block.  
Indicates the number of contiguous descriptors at the address pointed to by the descriptor address.  
If Z is 0, it indicates that the descriptorAddress field (bits 314) is not valid.  
30  
Z
RWU  
935  
9.39 Isochronous Transmit Context Control Register  
The isochronous transmit context control set/clear register controls options, state, and status for the isochronous  
transmit DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3, ,  
7). See Table 930 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context control  
RSCU RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC RSC  
RSC  
X
RSC  
X
RSC  
X
RSC  
X
RSC  
X
X
X
X
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
Isochronous transmit context control  
RSC  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous transmit context control  
Read/Set/Clear/Update, Read/Set/Clear, Read-only, Read/Update  
Offset:  
200h + (16 * n)  
204h + (16 * n)  
XXXX X0XXh  
set register  
clear register  
Default:  
Table 930. Isochronous Transmit Context Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
When bit 31 is set to 1, processing occurs such that the packet described by the context first  
descriptor block is transmitted in the cycle whose number is specified in the cycleMatch field  
(bits 3016). The cycleMatch field (bits 3016) must match the low-order two bits of cycleSeconds  
and the 13-bit cycleCount field in the cycle start packet that is sent or received immediately before  
isochronous transmission begins. Since the isochronous transmit DMA controller may work ahead,  
the processing of the first descriptor block may begin slightly in advance of the actual cycle in which  
the first packet is transmitted.  
31  
cycleMatchEnable  
RSCU  
The effects of this bit, however, are impacted by the values of other bits in this register and are  
explained in the 1394 Open Host Controller Interface Specification. Once the context has become  
active, hardware clears this bit.  
This field contains a 15-bit value, corresponding to the low-order two bits of the isochronous cycle  
timer register (OHCI offset F0h, see Section 9.31) cycleSeconds field (bits 3125) and the  
cycleCount field (bits 2412). If bit 31 (cycleMatchEnable) is set, then this isochronous transmit  
DMA context becomes enabled for transmits when the low-order two bits of the isochronous cycle  
timer register cycleSeconds field (bits 3125) and the cycleCount field (bits 2412) value equal this  
field (cycleMatch) value.  
3016  
cycleMatch  
run  
RSC  
RSC  
This bit is set to 1 by software to enable descriptor processing for the context and cleared by  
software to stop descriptor processing. The PCI4410A device changes this bit only on a hardware  
or software reset.  
15  
1413  
RSVD  
wake  
R
Reserved. Bits 14 and 13 return 0s when read.  
Software sets this bit to 1 to cause the PCI4410A device to continue or resume descriptor  
processing. The PCI4410A device clears this bit on every descriptor fetch.  
12  
RSU  
The PCI4410A device sets this bit to 1 when it encounters a fatal error, and clears the bit when  
software resets bit 15 (run) to 0.  
11  
dead  
RU  
10  
active  
RSVD  
spd  
RU  
R
The PCI4410A device sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0s when read.  
98  
75  
RU  
This field is not meaningful for isochronous transmit contexts.  
Following an OUTPUT_LAST* command, the error code is indicated in this field. Possible values  
are: ack_complete, evt_descriptor_read, evt_data_read, and evt_unknown.  
40  
event code  
RU  
936  
9.40 Isochronous Transmit Context Command Pointer Register  
The isochronous transmit context command pointer register contains a pointer to the address of the first descriptor  
block that the PCI4410A device accesses when software enables an isochronous transmit context by setting bit 15  
(run) in the isochronous transmit context control register (see Section 9.39) to 1. The n value in the following register  
addresses indicates the context number (n = 0, 1, 2, 3, , 7).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous transmit context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous transmit context command pointer  
Read-only  
Offset:  
Default:  
20Ch + (16 * n)  
XXXX XXXh  
9.41 Isochronous Receive Context Control Register  
The isochronous receive context control set/clear register controls options, state, and status for the isochronous  
receive DMA contexts. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3).  
See Table 931 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context control  
RSC  
X
RSC RSCU RSC  
R
0
R
0
R
0
9
R
0
8
R
0
7
R
0
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
0
X
X
X
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
Isochronous receive context control  
RSCU  
0
R
0
R
0
RSU  
X
RU  
0
RU  
0
R
0
R
0
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
RU  
X
Register:  
Type:  
Isochronous receive context control  
Read/Set/Clear/Update, Read/Set/Clear, Read/Update, Read-only  
Offset:  
400h + (32 * n)  
404h + (32 * n)  
X000 X0XXh  
set register  
clear register  
Default:  
937  
Table 931. Isochronous Receive Context Control Register Description  
BIT  
SIGNAL  
TYPE  
FUNCTION  
When this bit is set to 1, received packets are placed back-to-back to completely fill each receive  
buffer. When this bit is cleared, each received packet is placed in a single buffer. If bit 28  
(multiChanMode) is set to 1, this bit must also be set to 1. The value of this bit must not be changed  
while bit 10 (active) or bit 15 (run) is set to 1.  
31  
bufferFill  
RSC  
When this bit is set to 1, received isochronous packets include the complete 4-byte isochronous  
packet header seen by the link layer. The end of the packet is marked with a xferStatus in the first  
doublet, and a 16-bit timeStamp indicating the time of the most recently received (or sent) cycleStart  
packet. When this bit is cleared, the packet header is stripped from received isochronous packets.  
The packet header, if received, immediately precedes the packet payload. The value of this bit must  
not be changed while bit 10 (active) or bit 15 (run) is set to 1.  
30  
29  
isochHeader  
RSC  
When this bit is set to 1, the context begins running only when the 13-bit cycleMatch field (bits 2412)  
in the isochronous receive context match register (see Section 9.43) matches the 13-bit cycleCount  
field in the cycleStart packet. The effects of this bit, however, are impacted by the values of other bits  
in this register. Once the context has become active, hardware clears this bit. The value of this bit  
must not be changed while bit 10 (active) or bit 15 (run) is set to 1.  
cycleMatchEnable  
RSCU  
When this bit is set to 1, the corresponding isochronous receive DMA context receives packets for all  
isochronous channels enabled in the isochronous receive channel mask high (offset 70h/74h, see  
Section 9.19) and isochronous receive channel mask low (offset 78h/7Ch, see Section 9.20)  
registers. The isochronous channel number specified in the isochronous receive context match  
register (see Section 9.43) is ignored.  
When this bit is cleared, the isochronous receive DMA context receives packets for that single  
channel. Only one isochronous receive DMA context can use the isochronous receive channel mask  
registers (see Sections 9.19 and 9.20). If more that one isochronous receive context control register  
has this bit set to 1, the results are undefined. The value of this bit must not be changed while bit 10  
(active) or bit 15 (run) is set to 1.  
28  
multiChanMode  
RSC  
2716  
RSVD  
run  
R
Reserved. Bits 2716 return 0s when read.  
This bit is set by software to enable descriptor processing for the context and cleared by software to  
15  
RSCU stop descriptor processing. The PCI4410A device changes this bit only on a hardware or software  
reset.  
1413  
RSVD  
wake  
R
Reserved. Bits 14 and 13 return 0s when read.  
Software sets this bit to cause the PCI4410A device to continue or resume descriptor processing.  
The PCI4410A device clears this bit on every descriptor fetch.  
12  
RSU  
The PCI4410A device sets this bit to 1 when it encounters a fatal error, and clears the bit when  
software resets bit 15 (run).  
11  
dead  
RU  
10  
active  
RSVD  
RU  
R
The PCI4410A device sets this bit to 1 when it is processing descriptors.  
Reserved. Bits 9 and 8 return 0 when read.  
98  
This field indicates the speed at which the packet was received.  
000b = 100 Mbits/s  
001b = 200 Mbits/s  
010b = 400 Mbits/s  
All other values are reserved.  
75  
40  
spd  
RU  
RU  
For bufferFill mode, possible values are: ack_complete, evt_descriptor_read, evt_data_write, and  
evt_unknown. Packets with data errors (either dataLength mismatches or dataCRC errors) and  
packets for which a FIFO overrun occurred are backed out. For packet-per-buffer mode, possible  
values are: ack_complete, ack_data_error, evt_long_packet, evt_overrun, evt_descriptor_read,  
evt_data_write, and evt_unknown.  
event code  
938  
9.42 Isochronous Receive Context Command Pointer Register  
The isochronous receive context command pointer register contains a pointer to the address of the first descriptor  
block that the PCI4410A device accesses when software enables an isochronous receive context by setting bit 15  
(run) of the isochronous receive context control register (see Section 9.41). The n value in the following register  
addresses indicates the context number (n = 0, 1, 2, 3).  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context command pointer  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
9
R
X
8
R
X
7
R
X
6
R
X
5
R
X
4
R
X
3
R
X
2
R
X
1
R
X
0
15  
14  
13  
12  
11  
10  
Name  
Type  
Default  
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
R
X
Register:  
Type:  
Isochronous receive context command pointer  
Read-only  
Offset:  
Default:  
40Ch + (32 * n)  
XXXX XXXXh  
939  
9.43 Isochronous Receive Context Match Register  
The isochronous receive context match register is used to start an isochronous receive context running on a specified  
cycle number, to filter incoming isochronous packets based on tag values, and to wait for packets with a specified  
sync value. The n value in the following register addresses indicates the context number (n = 0, 1, 2, 3). See  
Table 932 for a complete description of the register contents.  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Name  
Type  
Default  
Bit  
Isochronous receive context match  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R/W  
0
R/W  
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Name  
Type  
Default  
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R
0
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
R/W  
X
Register:  
Type:  
Offset:  
Default:  
Isochronous receive context match  
Read/Write, Read-only  
410Ch + (32 * n)  
XXXX XXXXh  
Table 932. Isochronous Receive Context Match Register Description  
BIT  
31  
30  
29  
28  
27  
SIGNAL  
tag3  
TYPE  
R/W  
R/W  
R/W  
R/W  
R
FUNCTION  
If this bit is set to 1, this context matches on isochronous receive packets with a tag field of 11b.  
If this bit is set to 1, this context matches on isochronous receive packets with a tag field of 10b.  
If this bit is set to 1, this context matches on isochronous receive packets with a tag field of 01b.  
If this bit is set to 1, this context matches on isochronous receive packets with a tag field of 00b.  
Reserved. Bit 27 returns 0 when read.  
tag2  
tag1  
tag0  
RSVD  
This field contains a 15-bit value corresponding to the low-order two bits of cycleSeconds and the  
13-bit cycleCount field in the cycleStart packet. If bit 29 (cycleMatchEnable) of the isochronous receive  
context control register (see Section 9.41) is set, then this context is enabled for receives when the two  
low-order bits of the isochronous cycle timer register (OHCI offset F0h, see Section 9.31)  
cycleSeconds field (bits 3125) and cycleCount field (bits 2412) value equal this field (cycleMatch)  
value.  
2612  
cycleMatch  
R/W  
This 4-bit field is compared to the sync field of each isochronous packet for this channel when the  
command descriptors w field is set to 11b.  
118  
sync  
R/W  
R
7
RSVD  
Reserved. Bit 7 returns 0 when read.  
If this bit and bit 29 (tag1) are set, packets with tag 01b are accepted into the context if the two  
most significant bits of the packets sync field are 00b. Packets with tag values other than 01b are  
filtered according to bit 28 (tag0), bit 30 (tag2), and bit 31 (tag3) without any additional restrictions.  
6
tag1SyncFilter  
R/W  
R/W  
If this bit is cleared, this context matches on isochronous receive packets as specified in bits 3128  
(tag3tag0) with no additional restrictions.  
This 6-bit field indicates the isochronous channel number for which this isochronous receive DMA  
context accepts packets.  
50  
channelNumber  
940  
10 Electrical Characteristics  
10.1 Absolute Maximum Ratings Over Operating Temperature Ranges  
Supply voltage range, V  
Clamping voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4.6 V  
CC  
, V  
, V  
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 6 V  
CCCB CCI CCL CCP,  
Input voltage range, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
+ 0.5 V  
I
CCP  
CCA  
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
ZV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
TTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
Miscellaneous and PHY I/F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
CC  
CC  
CC  
CC  
Output voltage range, V : PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
O
CC  
CCA  
Card A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
ZV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
TTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
Fail safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
Miscellaneous and PHY I/F . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
CC  
CC  
CC  
CC  
Input clamp current, I (V < 0 or V > V ) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
IK  
I
I
CC  
Output clamp current, I  
Storage temperature range, T  
(V < 0 or V > V ) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
OK  
O O CC  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Virtual junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Applies for external input and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals are measured with  
I
CC  
respect to V  
respect to V  
instead of V . PC Card terminals are measured with respect to V  
. The limit specified applies for a dc condition.  
. Miscellaneous signals are measured with  
CCCB  
CCP  
CCI  
CC  
2. Applies for external output and bidirectional buffers. V > V  
does not apply to fail-safe terminals. PCI terminals are measured  
O
CC  
with respect to V  
with respect to V  
instead of V . PC Card terminals are measured with respect to V  
. The limit specified applies for a dc condition.  
. Miscellaneous signals are measured  
CCCB  
CCP  
CC  
CCI  
101  
10.2 Recommended Operating Conditions (see Note 3)  
OPERATION  
MIN  
NOM  
MAX  
UNIT  
V
V
Commercial  
Commercial  
3.3 V  
3
3.3  
3.6  
V
Core voltage  
CC  
3.3 V  
5 V  
3
3.3  
5
3.6  
PCI I/O clamp voltage, ZV Port I/O  
voltage  
V
V
CCP  
4.75  
5.25  
V
V
V
3.3 V  
5 V  
3
3.3  
5
3.6  
CCCB  
CCI  
CCL  
Commercial  
PCI  
PC Card I/O clamp voltage  
High-level input voltage  
4.75  
5.25  
3.3 V  
5 V  
0.5 V  
CCP  
V
CCP  
2
V
CCP  
3.3 V  
5 V  
0.475 V  
V
V
CCA/B  
CCA/B  
CCA/B  
PC Card  
PHY I/F  
2.4  
V
V
IH  
2
2
V
V
V
CC  
CC  
CC  
TTL  
V
V
§
Fail safe  
2.4  
3.3 V  
5 V  
0
0
0
0
0
0
0
0.3 V  
CCP  
PCI  
0.8  
0.325 V  
3.3 V  
5 V  
V
CCA/B  
PC Card  
PHY I/F  
V
IL  
0.8  
0.8  
0.8  
0.8  
Low-level input voltage  
TTL  
V
V
§
Fail safe  
PCI  
3.3 V  
5 V  
0
0
0
0
0
V
CCP  
PC Card  
PHY I/F  
V
CCA/B  
V
V
CC  
V
V
Input voltage  
I
TTL  
V
V
V
CC  
CC  
§
Fail safe  
PCI  
V
3.3 V  
5 V  
0
0
0
0
0
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
4
PC Card  
PHY I/F  
V
Output voltage  
O
TTL  
V
V
§
Fail safe  
PCI and PC Card  
TTL and fail safe  
1
0
t
t
Input transition time (t and t )  
ns  
r
f
6
T
Operating ambient temperature range  
Virtual junction temperature  
0
0
25  
25  
70  
°C  
°C  
A
#
T
J
115  
Applies to external inputs and bidirectional buffers without hysteresis  
Miscellaneous terminals are 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 87, 88, 121, and 122 for the PDV packaged device; and M18, M19, P9, P10,  
P11, R11, U10, U11, U12, V10, V12, W10, W11, and W12 for the GHK packaged device (SUSPEND, SPKROUT, RI_OUT, multifunction terminals  
(MFUNC0MFUNC6), and power-switch control terminals).  
§
Fail-safe terminals are 123, 165, 179, and 185 for the PDV packaged device; and A9, E13, F11, and L19 for the GHK packaged device (card  
detect and voltage sense terminals).  
Applies to external output buffers  
#
These junction temperatures reflect simulation conditions. The customer is responsible for verifying junction temperature.  
NOTE 3: Unused terminals (input or I/O) must be held high or low to prevent them from floating.  
102  
10.3 Electrical Characteristics Over Recommended Operating Conditions (unless  
otherwise noted)  
PARAMETER  
TERMINALS OPERATION TEST CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
= 0.5 mA  
= 2 mA  
= 0.15 mA  
= 0.15 mA  
= 4 mA  
= 8 mA  
= 4 mA  
= 8 mA  
= 1.5 mA  
= 6 mA  
0.9V  
3.3 V  
5 V  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
CC  
2.4  
PCI  
0.9V  
3.3 V  
5 V  
CC  
2.4  
PC Card  
PHY I/F  
TTL  
V
OH  
V
High-level output voltage  
2.8  
3.3 V  
3.3 V  
V
CC  
V
CC  
V
CC  
0.6  
0.6  
0.6  
0.1V  
3.3 V  
5 V  
CC  
PCI  
0.55  
= 0.7 mA  
= 0.7 mA  
= 4 mA  
0.1V  
CC  
3.3 V  
5 V  
PC Card  
PHY I/F  
0.55  
0.5  
0.5  
0.5  
0.5  
0.5  
1  
3.3 V  
3.3 V  
V
OL  
V
Low-level output voltage  
= 8 mA  
= 4 mA  
TTL  
= 8 mA  
= 8 mA  
SERR  
3.6 V  
5.25 V  
3.6 V  
V = V  
I
Output  
terminals  
CC  
CC  
CC  
3-state output, high-impedance state  
output current (see Note 4)  
I
I
I
µA  
µA  
µA  
OZL  
OZH  
IL  
V = V  
1  
I
10  
V = V  
I
Output  
terminals  
3-state output, high-impedance state  
output current  
5.25 V  
25  
1  
V = V  
I
CC  
Input terminals  
I/O terminals  
V = GND  
I
Low-level input current  
High-level input current  
V = GND  
I
10  
10  
3.6 V  
V = V  
I
CC  
Input  
terminals  
5.25 V  
3.6 V  
20  
10  
25  
V = V  
I
CC  
CC  
CC  
V = V  
I
I
IH  
µA  
I/O terminals  
5.25 V  
V = V  
I
Fail-safe  
terminals  
3.6 V  
V = V  
10  
I
CC  
For PCI terminals, V = V  
For I/O terminals, input leakage (I and I ) includes I  
. For PC Card terminals, V = V  
. For miscellaneous terminals, V = V .  
I
CCP  
I
CCCB CCI  
I
leakage of the disabled output.  
IL IH  
OZ  
103  
10.4 PCI Clock/Reset Timing Requirements Over Recommended Ranges of Supply  
Voltage and Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
t
t
t
Cycle time, PCLK  
t
30  
11  
11  
1
ns  
ns  
c
cyc  
Pulse duration (width), PCLK high  
Pulse duration (width), PCLK low  
Slew rate, PCLK  
t
high  
wH  
wL  
t
ns  
low  
t , t  
v/t  
4
V/ns  
ms  
ms  
r f  
t
t
Pulse duration (width), PRST  
Setup time, PCLK active at end of PRST  
t
1
w
rst  
t
100  
su  
rst-clk  
10.5 PCI Timing Requirements Over Recommended Ranges of Supply Voltage and  
Operating Free-Air Temperature  
ALTERNATE  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
PCLK-to-shared signal  
valid delay time  
t
11  
val  
inv  
C
= 50 pF,  
L
t
Propagation delay time, See Note 4  
ns  
pd  
See Note 4  
PCLK-to-shared signal  
invalid delay time  
t
2
2
t
t
t
t
Enable time, high impedance-to-active delay time from PCLK  
Disable time, active-to-high impedance delay time from PCLK  
Setup time before PCLK valid  
t
ns  
ns  
ns  
ns  
en  
dis  
su  
h
on  
t
28  
off  
t
7
0
su  
Hold time after PCLK high  
t
h
NOTE 4: PCI shared signals are AD31AD0, C/BE3C/BE0, FRAME, TRDY, IRDY, STOP, IDSEL, DEVSEL, and PAR.  
104  
11 Mechanical Information  
The PCI4410A device is packaged in either a 209-ball GHK MicroStar BGAt or a 208-pin PDV package. The  
PCI4410A device is a single-socket CardBus bridge with an integrated OHCI link. The following shows the  
mechanical dimensions for the GHK and PDV packages.  
GHK (S-PBGA-N209)  
PLASTIC BALL GRID ARRAY  
16,10  
15,90  
SQ  
14,40 TYP  
0,80  
W
V
U
T
R
P
N
M
L
K
J
H
G
F
0,80  
E
D
C
B
A
1
3
5
7
9
11 13 15 17 19  
10 12 14 16 18  
2
4
6
8
0,95  
0,85  
1,40 MAX  
Seating Plane  
0,10  
0,55  
0,45  
0,12  
0,08  
M
0,08  
0,45  
0,35  
41452732/B 12/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. MicroStar BGAt configuration.  
111  
PDV (S-PQFP-G208)  
PLASTIC QUAD FLATPACK  
156  
105  
157  
104  
0,27  
M
0,08  
0,17  
0,50  
0,13 NOM  
208  
53  
1
52  
Gage Plane  
25,50 TYP  
0,25  
28,05  
SQ  
0,05 MIN  
0°ā7°  
27,95  
30,20  
SQ  
29,80  
0,75  
0,45  
1,45  
1,35  
Seating Plane  
0,08  
1,60 MAX  
4087729/D 11/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
112  

相关型号:

PCI4410GHK

PC Card and OHCI Controller
TI

PCI4410PDV

PC Card and OHCI Controller
TI

PCI4450

PC Card and OHCI Controller
TI

PCI4450GFN

PC Card and OHCI Controller
TI

PCI4450GJG

PC Card and OHCI Controller
TI

PCI4451

PC CARD AND OHCI CONTROLLER
TI

PCI4451GFN

PC CARD AND OHCI CONTROLLER
TI

PCI4451GJG

PC CARD AND OHCI CONTROLLER
TI

PCI4510

PC CARD AND INTEGRATED 1394A-2000 OHCI TWO PORT PHY/LINK LAYER CONTROLLER
TI

PCI4510A

PC Card and Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller
TI

PCI4510AGHK

PC Card and Integrated 1394a-2000 OHCI Two-Port PHY/Link-Layer Controller
TI

PCI4510APDV

PCMCIA BUS CONTROLLER, PQFP208, PLASTIC, QFP-208
TI