SN75LVDS83CZQLR [TI]

FLATLINK™ TRANSMITTER; FlatLinkâ ?? ¢变送器
SN75LVDS83CZQLR
型号: SN75LVDS83CZQLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FLATLINK™ TRANSMITTER
FlatLinkâ ?? ¢变送器

文件: 总26页 (文件大小:854K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
FLATLINKTRANSMITTER  
Check for Samples: SN75LVDS83C  
1
FEATURES  
2
LVDS Display Serdes Interfaces Directly to  
28 Data Channels Plus Clock In Low-Voltage  
LCD Display Panels with Integrated LVDS  
TTL to 4 Data Channels Plus Clock Out  
Low-Voltage Differential  
Package: 4.5mm x 7mm BGA  
Consumes Less Than 1mW When Disabled  
1.8V up to 3.3V Tolerant Data Inputs to  
Connect Directly to Low-Power, Low-Voltage  
Application and Graphic Processors  
Selectable Rising or Falling Clock Edge  
Triggered Inputs  
Transfer Rate up to 85Mpps (Mega Pixel Per  
Second); Pixel Clock Frequency Range 10MHz  
to 85MHz  
ESD: 5kV HBM  
Support Spread Spectrum Clocking (SSC)  
Suited for Display Resolutions Ranging From  
HVGA up to HD With Low EMI  
APPLICATIONS  
LCD Display Panel Driver  
UMPC and Netbook PC  
Digital Picture Frame  
Operates From a Single 3.3V Supply and  
148mW (typical) at 75MHz  
DESCRIPTION  
The SN75LVDS83C FlatLinktransmitter contains four 7-bit parallel-load serial-out shift registers, a 7X clock  
synthesizer, and five Low-Voltage Differential Signaling (LVDS) line drivers in a single integrated circuit. These  
functions allow 28 bits of single-ended LVTTL data to be synchronously transmitted over five balanced-pair  
conductors for receipt by a compatible receiver, such as the SN75LVDS82 and LCD panels with integrated LVDS  
receiver.  
When transmitting, data bits D0 through D27 are each loaded into registers upon the edge of the input clock  
signal (CLKIN). The rising or falling edge of the clock can be selected via the clock select (CLKSEL) pin. The  
frequency of CLKIN is multiplied seven times, and then used to unload the data registers in 7-bit slices and  
serially. The four serial streams and a phase-locked clock (CLKOUT) are then output to LVDS output drivers.  
The frequency of CLKOUT is the same as the input clock, CLKIN.  
Application  
processor  
SN75LVDS83C  
FlatLinkTM Transmitter  
(e.g. OMAPTM  
)
BGA Package: 4.5 x 7mm  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
FlatLink is a trademark of Texas Instruments.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 20102011, Texas Instruments Incorporated  
 
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
The SN75LVDS83C requires no external components and little or no control. The data bus appears the same at  
the input to the transmitter and output of the receiver with the data transmission transparent to the user(s). The  
only user intervention is selecting a clock rising edge by inputting a high level to CLKSEL or a falling edge with a  
low-level input, and the possible use of the Shutdown/Clear (SHTDN). SHTDN is an active-low input to inhibit the  
clock, and shut off the LVDS output drivers for lower power consumption. A low-level on this signal clears all  
internal registers to a low-level.  
The SN75LVDS83C is characterized for operation over ambient air temperatures of -10°C to 70°C.  
ORDERING INFORMATION(1)  
PART NUMBER  
PART MARKING  
PACKAGE  
SN75LVDS83CZQLR  
LVDS83C in BGA package  
56-pin ZQL LARGE Tape and Reel  
(1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet, or  
refer to our web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
UNIT  
MIN  
-0.5  
-0.5  
-0.5  
MAX  
Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC(2)  
Voltage range at any output terminal  
Voltage range at any input terminal  
Continuous power dissipation  
4
V
V
V
VCC + 0.5  
IOVCC + 0.5  
See the Thermal Information Table  
Storage temperature, Ts  
65  
150  
5
°C  
kV  
V
Human Body Model (HBM)(3) all pins  
ESD rating Charged Device Model (CDM)(4) all pins  
Machine Model (MM)(5) all pins  
500  
150  
V
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) All voltages are with respect to the GND terminals.  
(3) In accordance with JEDEC Standard 22, Test Method A114-A.  
(4) In accordance with JEDEC Standard 22, Test Method C101.  
(5) In accordance with JEDEC Standard 22, Test Method A115-A.  
2
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
2.8  
NOM  
MAX  
3.6  
3.6  
3.6  
3.6  
0.1  
UNIT  
Supply voltage, VCC  
3.3  
3.3  
LVDS output Supply voltage, LVDSVCC  
PLL analog supply voltage, PLLVCC  
IO input reference supply voltage, IOVCC  
Power supply noise on any VCC terminal  
2.8  
2.8  
3.3  
V
1.62  
1.8 / 2.5 / 3.3  
IOVCC = 1.8V  
IOVCC = 2.5V  
IOVCC = 3.3V  
IOVCC = 1.8V  
IOVCC = 2.5V  
IOVCC = 3.3V  
IOVCC/2 + 0.3V  
IOVCC/2 + 0.4V  
IOVCC/2 + 0.5V  
High-level input voltage, VIH  
Low-level input voltage, VIL  
V
V
IOVCC/2 - 0.3V  
IOVCC/2 - 0.4V  
IOVCC/2 - 0.5V  
132  
Differential load impedance, ZL  
90  
Operating free-air temperature, TA  
-10  
70  
C
THERMAL INFORMATION  
SN75LVDS83C  
THERMAL METRIC(1)  
UNIT  
ZQL (56 PINS)  
θJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
67.1  
25.2  
31.0  
0.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJCtop  
θJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
30.3  
n/a  
θJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
TIMING REQUIREMENTS  
PARAMETER  
MIN  
MAX  
100  
8%  
UNIT  
Input clock period, tc  
Input clock modulation  
11.76  
ns  
with modulation frequency 30kHz  
with modulation frequency 50kHz  
6%  
High-level input clock pulse width duration, tw  
Input signal transition time, tt  
0.4 tc  
0.6 tc  
3
ns  
ns  
ns  
ns  
Data set up time, D0 through D27 before CLKIN (See Figure 3)  
Data hold time, D0 through D27 after CLKIN  
2
0.8  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
ZQL PACKAGE  
(TOP VIEW)  
6
5
4
3
2
1
K
J
D8  
D9  
D7  
GND  
VCC  
D12  
GND  
D15  
D18  
GND  
D21  
D23  
D5  
D6  
D4  
D3  
D2  
D0  
D1  
D27  
Y0M  
Y1M  
H
G
F
D11  
D13  
D14  
D16  
D17  
D19  
D20  
D22  
D10  
GND  
GND  
Y0P  
Y1P  
IOVCC  
GND LVDSVCC  
E
D
C
B
A
Y2P  
CLKP  
Y3P  
Y2M  
CLKM  
Y3M  
CLKSEL GND  
IOVCC GND  
D25  
D24  
SHTDN PLLVCC GND  
D26  
CLKIN  
GND  
ZQL PIN LIST  
Ball #  
A1  
A4  
B1  
B4  
C1  
C4  
D1  
D4  
E1  
E4  
F1  
Signal  
GND  
Ball #  
A2  
A5  
B2  
B5  
C2  
C5  
D2  
D5  
E2  
E5  
F2  
Signal  
CLKIN  
D23  
Ball #  
A3  
A6  
B3  
B6  
C3  
C6  
D3  
D6  
E3  
E6  
F3  
Signal  
D26  
D24  
D22  
GND  
PLLVCC  
D21  
SHTDN  
D25  
D20  
Y3M  
Y3P  
GND  
IOVCC  
CLKM  
CLKSEL  
Y2M  
GND  
CLKP  
D18  
D19  
GND  
D17  
Y2P  
ball not populated  
ball not populated  
LVDSVCC  
ball not populated  
Y1M  
D15  
D16  
GND  
GND  
Y1P  
ball not populated  
F4  
F5  
F6  
D14  
GND  
D13  
GND  
D11  
D3  
G1  
G4  
H1  
H4  
J1  
G2  
G5  
H2  
H5  
J2  
G3  
G6  
H3  
H6  
J3  
IOVCC  
Y0M  
D12  
Y0P  
D10  
VCC  
D0  
D27  
J4  
D6  
J5  
GND  
D2  
J6  
D9  
K1  
K4  
D1  
K2  
K5  
K3  
K6  
D4  
D5  
D7  
D8  
4
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
PIN  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
PIN FUNCTIONS  
I/O  
DESCRIPTION  
Y0P, Y0M, Y1P,  
Y1M, Y2P, Y2M  
Differential LVDS data outputs.  
Outputs are high-impedance when SHTDN is pulled low (de-asserted)  
Differential LVDS Data outputs.  
Y3P, Y3M  
LVDS Out  
Output is high-impedance when SHTDN is pulled low (de-asserted).  
Note: if the application only requires 18-bit color, this output can be left open.  
Differential LVDS pixel clock output.  
Output is high-impedance when SHTDN is pulled low (de-asserted).  
CLKP, CLKM  
Data inputs; supports 1.8V to 3.3V input voltage selectable by VDD supply. To connect a graphic  
source successfully to a display, the bit assignment of D[27:0] is critical (and not necessarily  
intuitive).  
For input bit assignment see Figure 11 to Figure 14 for details.  
Note: if application only requires 18-bit color, connect unused inputs D5, D10, D11, D16, D17, D23,  
and D27 to GND.  
D0 D27  
CMOS IN with  
pulldn  
CLKIN  
Input pixel clock; rising or falling clock polarity is selectable by Control input CLKSEL.  
Device shut down; pull low (de-assert) to shut down the device (low power, resets all registers) and  
high (assert) for normal operation.  
SHTDN  
Selects between rising edge input clock trigger (CLKSEL = VIH and falling edge input clock trigger  
(CLKSEL = VIL).  
CLKSEL  
VCC  
3.3V digital supply voltage  
IOVCC  
PLLVCC  
LVDSVCC  
GND  
I/O supply reference voltage (1.8V up to 3.3V matching the GPU data output signal swing)  
Power Supply(1) 3.3V PLL analog supply  
3.3V LVDS output analog supply  
Supply ground for VCC, IOVCC, LVDSVCC, and PLLVCC.  
(1) For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals  
directly to this plane.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
Parallel-Load 7-bit  
Shift Register  
D0, D1, D2, D3,  
D4, D6, D7  
7
7
7
7
Y0P  
Y0M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
Shift Register  
D8, D9, D12, D13,  
D14, D15, D18  
Y1P  
Y1M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
ShiftRegister  
D19, D20, D21, D22,  
D24, D25, D26  
Y2P  
Y2M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
Shift Register  
D27, D5, D10, D11,  
D16, D17, D23  
Y3P  
Y3M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Control Logic  
SHTDN  
7X Clock/PLL  
7XCLK  
CLKOUTP  
CLKOUTM  
>CLK  
CLKIN  
CLKINH  
CLKSEL  
RISING/FALLING EDGE  
6
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
Dn  
CLKIN  
or  
CLKIN  
CLKOUT  
Previous cycle  
Next  
Current cycle  
Y0  
Y1  
Y2  
Y3  
D7+1  
D0-1  
D7  
D18  
D26  
D23  
D6  
D15  
D25  
D17  
D4  
D14  
D24  
D16  
D3  
D13  
D22  
D11  
D2  
D12  
D21  
D10  
D1  
D9  
D0  
D8  
D8-1  
D19-1  
D27-1  
D18+1  
D26+1  
D23+1  
D20  
D5  
D19  
D27  
Figure 1. Typical SN75LVDS83C Load and Shift Sequences  
LVDSVCC  
IOVCC  
5W  
YnP or  
YnM  
D or  
SHTDN  
50W  
10kW  
7V  
7V  
300kW  
Figure 2. Equivalent Input and Output Schematic Diagrams  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
V
VT  
Input voltage threshold  
IOVCC/2  
Differential steady-state output voltage  
magnitude  
mV  
|VOD  
|
250  
450  
35  
RL = 100, See Figure 4  
Change in the steady-state differential  
output voltage magnitude between  
opposite binary states  
Δ|VOD  
|
1
mV  
Steady-state common-mode output  
voltage  
VOC(SS)  
VOC(PP)  
1.125  
1.375  
35  
V
See Figure 4  
tR/F (Dx, CLKin) = 1ns  
Peak-to-peak common-mode output  
voltage  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = IOVCC  
VIL = 0 V  
25  
±10  
±24  
±12  
±20  
μA  
μA  
VOY = 0 V  
mA  
mA  
μA  
IOS  
Short-circuit output current  
VOD = 0 V  
IOZ  
High-impedance state output current  
VO = 0 V to VCC  
IOVCC = 1.8V  
IOVCC = 3.3V  
200  
100  
Input pull-down integrated resistor on all  
inputs (Dx, CLKSEL, SHTDN, CLKIN)  
Rpdn  
kΩ  
μA  
disabled, all inputs at GND;  
SHTDN = VIL  
IQ  
Quiescent current (average)  
2
100  
SHTDN = VIH, RL = 100(5 places),  
grayscale pattern (Figure 5)  
VCC = 3.3V, fCLK = 75MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 1.8V  
SHTDN = VIH, RL = 100(5 places),  
44.9  
0.1  
mA  
ICC  
Supply current (average)  
worst-case pattern (Figure 6),  
VCC = 3.3V, fCLK = 75MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
55.1  
0.5  
2
mA  
pF  
I(IOVCC) with IOVCC = 1.8V  
CI  
Input capacitance  
(1) All typical values are at VCC = 3.3V, TA = 25°C.  
8
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
SWITCHING CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Delay time, CLKOUTafter Yn valid  
(serial bit position 0, equal D1, D9,  
D20, D5)  
t0  
t1  
t2  
t3  
t4  
t5  
-0.15  
0
0.15  
7 tc + 0.15  
7 tc + 0.15  
7 tc + 0.15  
7 tc + 0.15  
7 tc + 0.15  
7 tc + 0.15  
ns  
ns  
ns  
ns  
ns  
ns  
Delay time, CLKOUTafter Yn valid  
(serial bit position 1, equal D0, D8,  
D19, D27)  
1
2
3
4
5
6
1
2
3
4
5
6
/
/
/
/
/
/
7 tc - 0.15  
7 tc - 0.15  
7 tc - 0.15  
7 tc - 0.15  
7 tc - 0.15  
7 tc - 0.15  
/
/
/
/
/
/
Delay time, CLKOUTafter Yn valid  
(serial bit position 2, equal D7, D18,  
D26. D23)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 3; equal D6, D15,  
D25, D17)  
See Figure 7, tC = 13.3ns,  
|Input clock jitter| < 25ps  
(2)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 4, equal D4, D14,  
D24, D16)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 5, equal D3, D13,  
D22, D11)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 6, equal D2, D12,  
D21, D10)  
t6  
ns  
ns  
tc(o)  
Output clock period  
tc  
tC = 13.3ns; clean reference clock, see  
Figure 8  
±26  
(3)  
Δtc(o)  
Output clock cycle-to-cycle jitter  
ps  
tC = 13.3ns with 0.05UI added noise  
modulated at 3MHz, see Figure 8  
±44  
4
tw  
High-level output clock pulse duration  
/
7 tc  
ns  
ps  
Differential output voltage transition  
time (tr or tf)  
tr/f  
See Figure 4  
200  
250  
800  
15  
Enable time, SHTDNto phase lock  
(Yn valid)  
ten  
f(clk) = 85MHz, See Figure 9  
f(clk) = 85MHz, See Figure 10  
µs  
Disable time, SHTDNto off-state  
(CLKOUT high-impedance)  
tdis  
13  
ns  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) |Input clock jitter| is the magnitude of the change in the input clock period.  
(3) The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed  
over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value.  
PARAMETER MEASUREMENT INFORMATION  
tsu  
thold  
Dn  
CLKIN  
All input timing is defined at IOVDD / 2 on an input signal with a 10% to 90% rise or fall time of less than 3 ns.  
CLKSEL = 0V.  
Figure 3. Set Up and Hold Time Definition  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
49.9W ꢀ1 ꢁ( ꢂPLCS  
Yꢂ  
V
OD  
V
YM  
OL  
ꢀ001  
801  
V
ODꢁHS  
0V  
V
ODꢁPS  
(01  
01  
t
t
r
f
V
OLꢁꢂꢂS  
V
V
OLꢁCCS  
OLꢁCCS  
0V  
Figure 4. Test Load and Voltage Definitions for LVDS Outputs.  
CLKIN  
D0,8,16  
D1,9,17  
D2,10,18  
D3,11,19  
D4-7,12-15,20-23  
D24-27  
The 16 grayscale test pattern test device power consumption for a typical display pattern.  
Figure 5. 16 Grayscale Test Pattern  
10  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
PARAMETER MEASUREMENT INFORMATION (continued)  
T
CLKIN  
EVEN Dn  
ODD Dn  
The worst-case test pattern produces nearly the maximum switching frequency for all of the LVDS outputs.  
Figure 6. Worst-Case Power Test Pattern  
t7  
CLKIN  
CLKOUT  
t6  
t5  
t4  
t3  
t2  
t1  
t0  
Yn  
VOD(H)  
0.00V  
VOD(L)  
~2.5V  
1.40V  
~0.5V  
CLKOUT  
or Yn  
CLKIN  
t7  
t0-6  
CLKOUT is shown with CLKSEL at high-level.  
CLKIN polarity depends on CLKSEL input level.  
Figure 7. SN75LVDS83C Timing Definitions  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
Device  
Under  
Test  
+
Reference  
VCO  
+
Modulation  
v(t) = A sin(2 pf  
t)  
mod  
HP8656B Signal  
Generator,  
0.1 MHz-990 MHz  
HP8665A Synthesized  
Signal Generator,  
0.1 MHz-4200 MHz  
Device Under  
Test  
DTS2070C  
Digital  
TimeScope  
Input  
RF Output  
CLKIN  
CLKOUT  
RF Output  
Modulation Input  
Figure 8. Output Clock Jitter Test Set Up  
CLKIN  
Dn  
ten  
SHTDN  
Yn  
Invalid  
Valid  
Figure 9. Enable Time Waveforms  
CLKIN  
tdis  
SHTDN  
CLKOUT  
Figure 10. Disable Time Waveforms  
12  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
APPLICATION INFORMATION  
This section describes the power up sequence, provides information on device connectivity to various GPU and  
LCD display panels, and offers a pcb routing example.  
Power Up Sequence  
The SN75LVDS83C does not require a specific power up sequence.  
It is permitted to power up IOVCC while VCC, VCCPLL, and VCCLVDS remain powered down and connected to  
GND. The input level of the SHTDN during this time does not matter as only the input stage is powered up while  
all other device blocks are still powered down.  
It is also permitted to power up all 3.3V power domains while IOVCC is still powered down to GND. The device  
will not suffer damage. However, in this case, all the I/Os are detected as logic HIGH, regardless of their true  
input voltage level. Hence, connecting SHTDN to GND will still be interpreted as a logic HIGH; the LVDS output  
stage will turn on. The power consumption in this condition is significantly higher than standby mode, but still  
lower than normal mode.  
The user experience can be impacted by the way a system powers up and powers down an LCD screen. The  
following sequence is recommended:  
Power up sequence (SN75LVDS83C SHTDN input initially low):  
1. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off.  
2. Wait for additional 0-200ms to ensure display noise wont occur.  
3. Enable video source output; start sending black video data.  
4. Toggle LVDS83C shutdown to SHTDN = VIH.  
5. Send >1ms of black video data; this allows the LVDS83C to be phase locked, and the display to show black  
data first.  
6. Start sending true image data.  
7. Enable backlight.  
Power Down sequence (SN75LVDS83C SHTDN input initially high):  
1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.  
2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive  
this for >2 frame times.  
3. Set SN75LVDS83C input SHTDN = GND; wait for 250ns.  
4. Disable the video output of the video source.  
5. Remove power from the LCD panel for lowest system power.  
Signal Connectivity  
While there is no formal industry standardized specification for the input interface of LVDS LCD panels, the  
industry has aligned over the years on a certain data format (bit order). Figure 11 through Figure 14 show how  
each signal should be connected from the graphic source through the SN75LVDS83C input, output and LVDS  
LCD panel input. Detailed notes are provided with each figure.  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
24-bpc GPU  
SN75LVDS83C  
FORMAT1 FORMAT2 (See Note A)  
R0(LSB)  
R1  
R2  
D0  
D1  
D27  
D5  
D2  
D3  
D4  
D6  
D27  
D5  
D7  
D8  
D0  
D1  
D2  
D3  
R3  
R4  
R5  
R6  
Y0M  
Y0P  
100  
100  
to column  
driver  
D4  
R7(MSB)  
G0(LSB)  
G1  
D6  
Y1M  
Y1P  
D10  
D11  
D7  
FPC  
Cable  
LVDS  
timing  
Controller  
G2  
G3  
D9  
Y2M  
Y2P  
100  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
D8  
G4  
D9  
(8bpc, 24bpp)  
G5  
G6  
D12  
D13  
D14  
D16  
D17  
D15  
D18  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
D23  
Y3M  
Y3P  
100  
to row driver  
G7(LSB)  
B0(LSB)  
B1  
CLKOUTM  
CLKOUTP  
100  
B2  
B3  
B4  
B5  
24-bpp LCD Display  
B6  
B7(MSB)  
HSYNC  
VSYNC  
ENABLE  
RSVD (Note C)  
CLK  
CLKIN CLKIN  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note B)  
Main Board  
Note A. FORMAT: The majority of 24-bit LCD display panels require the two most significant bits (2 MSB ) of each  
color to be transferred over the 4th serial data output Y3. A few 24-bit LCD display panels require the two LSBs of  
each color to be transmitted over the Y3 output. The system designer needs to verify which format is expected by  
checking the LCD display data sheet.  
Format 1: use with displays expecting the 2 MSB to be transmitted over the 4th data channel Y3. This is the  
dominate data format for LCD panels.  
Format 2: use with displays expecting the 2 LSB to be transmitted over the 4th data channel.  
Note B. Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Note C. If RSVD is not driven to a valid logic level, then an external connection to GND is recommended.  
Note D. RSVD must be driven to a valid logic level. All unused SN75LVDS83C inputs must be tied to a valid logic  
level.  
Figure 11. 24-Bit Color Host to 24-bit LCD Panel Application  
14  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
 
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
18-bpp GPU  
SN75LVDS83C  
R0(LSB)  
R1  
R2  
D0  
D1  
D2  
R3  
R4  
D3  
D4  
D6  
Y0M  
Y0P  
100  
R5(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
Y1M  
Y1P  
100  
G0(LSB)  
G1  
G2  
FPC  
Cable  
D9  
Y2M  
Y2P  
LVDS  
timing  
Controller  
100  
G3  
G4  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
(6-bpc, 18-bpp)  
G5(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
B0(LSB)  
B1  
B2  
B3  
B4  
B5(MSB)  
18-bpp LCD Display  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
3.3V  
C2  
3.3V  
C3  
4.8k  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note B)  
Main Board  
Note A. Leave output Y3 NC.  
Note B.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Figure 12. 18-Bit Color Host to 18-Bit Color LCD Panel Display Application  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): SN75LVDS83C  
 
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
12-bpp GPU  
SN75LVDS83C  
(See Note B)  
R2 or VCC  
R3 or GND  
R0  
D0  
D1  
D2  
R1  
R2  
D3  
D4  
D6  
Y0M  
Y0P  
100  
100  
R3(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
Y1M  
Y1P  
(See Note B)  
G2 or VCC  
G3 or GND  
G0  
FPC  
Cable  
D9  
Y2M  
Y2P  
LVDS  
timing  
Controller  
100  
G1  
G2  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
(6-bpc, 18-bpp)  
G3(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
(See Note B)  
B2 or VCC  
B3 or GND  
B0  
B1  
B2  
18-bpp LCD Display  
B3(MSB)  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note C)  
Main Board  
Note A. Leave output Y3 N.C.  
Note B. R3, G3, B3: this MSB of each color also connects to the 5th bit of each color for increased dynamic range of  
the entire color space at the expense of none-linear step sizes between each step. For linear steps with less dynamic  
range, connect D1, D8, and D18 to GND.  
R2, G2, B2: these outputs also connects to the LSB of each color for increased, dynamic range of the entire color  
space at the expense of none-linear step sizes between each step. For linear steps with less dynamic range, connect  
D0, D7, and D15 to VCC.  
Note C.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Figure 13. 12-Bit Color Host to 18-Bit Color LCD Panel Display Application  
16  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
 
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
24-bpp GPU  
SN75LVDS83C  
R0 and R1: NC  
(See Note B)  
R2  
D0  
R3  
R4  
D1  
D2  
R5  
R6  
D3  
D4  
D6  
Y0M  
Y0P  
100  
R7(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
G0 and G1: NC  
(See Note B)  
Y1M  
Y1P  
100  
G2  
G3  
FPC  
Cable  
G4  
G5  
G6  
D9  
Y2M  
Y2P  
LVDS  
timing  
Controller  
100  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
(6-bpc, 18-bpp)  
G7(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
B0 and B1: NC  
(See Note B)  
B2  
B3  
B4  
B5  
B6  
B7(MSB)  
18-bpp LCD Display  
B0 and B1: NC  
(See Note B)  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note C)  
Main Board  
Note A. Leave output Y3 NC.  
Note B. R0, R1, G0, G1, B0, B1: For improved image quality, the GPU should dither the 24-bit output pixel down  
to18-bit per pixel.  
NoteC.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Figure 14. 24-Bit Color Host to 18-Bit Color LCD Panel Display Application  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): SN75LVDS83C  
 
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
Typical Application Schematic  
Figure 15 represents the schematic drawing of the SN75LVDS83C evaluation module.  
J1  
U1H  
J2  
sma_surface  
C3  
GND1  
C5  
GND2  
D3  
GND3  
F5  
J3  
GND4  
sma_surface  
G3  
H3  
U1A  
GND5  
D1  
GND6  
CLKM  
J5  
D2  
GND7  
CLKP  
A1  
J4  
PLLGND  
sma_surface  
B1  
H2  
LVDSGND1  
LVDSGND2  
Y0P  
Y0M  
F2  
H1  
G2  
J5  
sma_surface  
Y1P  
SN75LVDS83CZQL  
G1  
Y1M  
E1  
Y2P  
E2  
J6  
sma_surface  
Y2M  
IOVCC  
C2  
C1  
Y3P  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
4.7k  
Y3M  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
J7  
sma_surface  
JMP1  
SN75LVDS83CZQL  
U1B  
J2  
K1  
K2  
J3  
K3  
J4  
K5  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
1
2
J8  
sma_surface  
J9  
sma_surface  
14  
Header 7x2  
SN75LVDS83CZQL  
J10  
sma_surface  
IOVCC  
R11  
4.7k  
R12  
4.7k  
R13  
4.7k  
R14  
4.7k  
R15  
4.7k  
R16  
4.7k  
R17  
4.7k  
sma_surface  
JMP2  
U1C  
K6  
D8  
D8  
J6  
D9  
1
2
D9  
IOVCC  
IOVCC  
G5  
D12  
D13  
D14  
D15  
D18  
D12  
G6  
D13  
F6  
D14  
E5  
D15  
D5  
D18  
14  
R1  
R2  
Header 7x2  
4.7k  
SN75LVDS83CZQL  
IOVCC  
R18  
4.7k  
R19  
4.7k  
R20  
4.7k  
R21  
4.7k  
R22  
4.7k  
R23  
4.7k  
R24  
4.7k  
JMP6  
U1G  
JMP3  
B3  
SHTDN  
U1D  
SHTDN  
1
3
2
4
D4  
CLKSEL  
C6  
D19  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
CLKSEL  
1
2
B6  
D20  
Header 2x2  
B5  
D21  
A6  
D22  
SN75LVDS83CZQL  
A4  
D24  
B4  
D25  
A3  
D26  
14  
U1J  
E3  
NC1  
E4  
Header 7x2  
NC2  
F3  
NC3  
SN75LVDS83CZQL  
F4  
NC4  
IOVCC  
SN75LVDS83CZQL  
R25  
4.7k  
R26  
4.7k  
R27  
4.7k  
R28  
4.7k  
R29  
4.7k  
R30  
4.7k  
R31  
4.7k  
JMP4  
U1E  
K4  
D5  
D5  
VCC  
IOVCC  
1
2
H4  
D10  
H6  
D10  
D11  
D16  
D17  
D23  
D27  
U1I  
D11  
E6  
D16  
G4  
VCC  
B2  
D6  
PLLVCC  
F1  
LVDSVCC  
D17  
A5  
D23  
J1  
D27  
14  
H5  
IOVCC1  
C4  
IOVCC2  
Header 7x2  
SN75LVDS83CZQL  
SN75LVDS83CZQL  
VCC  
VCC  
VCC  
IOVCC  
C31  
1uF  
C32  
0.1uF  
C33  
0.01uF  
C34  
1uF  
C35  
0.1uF  
C36  
0.01uF  
C40  
1uF  
C41  
C42  
C37  
1uF  
C38  
C39  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
PLACE UNDER LVDS83C  
(bottom pcb side)  
Figure 15. Schematic Example (SN75LVDS83C Evaluation Board)  
18  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
 
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
PCB Routing  
Figure 16 and Figure 17 show a possible breakout of the data input and output signals from the BGA package.  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
G0  
G1  
D8  
D7  
D5  
D6  
D4  
D3  
D2  
D0  
D1  
G2  
D9  
GND  
VCC  
D12  
GND  
D15  
D27  
Y0M  
Y1M  
D11  
D10  
GND  
GND  
Y0P  
Y1P  
G3  
G4  
D13  
D14  
D16  
IOVCC  
G5  
G6  
G7  
B0  
LVDSGND LVDSVCC  
Y2P  
CLKP  
Y3P  
Y2M  
CLKM  
Y3M  
B1  
B2  
D17  
D19  
D20  
D22  
D18 CLKSEL GND  
GND  
D21  
D23  
IOVCC GND  
B3  
B4  
D25  
D24  
SHTDN PLLVCC LVDS GND  
+PLLGND  
B5  
B6  
D26 CLKIN PLLGND  
B7  
HS  
VS  
EN  
CLK  
Figure 16. 24-Bit Color Routing (See Figure 11 for the Schematic)  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): SN75LVDS83C  
 
SN75LVDS83C  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
www.ti.com  
G1  
G0  
R5 R4 R3 R2  
R1  
R0  
D8  
D7  
D5  
D6  
D4  
D3  
D2  
D0  
D1  
To GND  
G2  
D9  
GND  
VCC  
D12  
GND  
D15  
D18  
GND  
D21  
D27  
Y0M  
Y1M  
D11  
D13  
D14  
D16  
D10  
GND  
Y0P  
Y1P  
G3  
G4  
IOVCC GND  
G5  
B0  
LVDS GND LVDS VCC  
To GND  
B1  
Y2P  
CLKP  
Y3P  
Y2M  
CLKM  
Y3M  
D17  
D19  
D20  
CLKSEL GND  
IOVCC GND  
B2  
remains  
unconnected  
B3  
B4  
B5  
D25  
SHTDN PLLVCC LVDSGND  
+PLLGND  
CLKIN  
D22  
D23 D24  
D26  
PLLGND  
HS VS EN  
CLK  
Figure 17. 18-Bit Color Routing (See Figure 12, Figure 13, and Figure 14 for the Schematic)  
20  
Submit Documentation Feedback  
Copyright © 20102011, Texas Instruments Incorporated  
Product Folder Link(s): SN75LVDS83C  
SN75LVDS83C  
www.ti.com  
SLLSE66A OCTOBER 2010REVISED SEPTEMBER 2011  
REVISION HISTORY  
Changes from Original (May 2009) to Revision A  
Page  
Multiply changes throughout the data sheet ......................................................................................................................... 1  
Copyright © 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): SN75LVDS83C  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Feb-2012  
PACKAGING INFORMATION  
Status (1)  
Eco Plan (2)  
MSL Peak Temp (3)  
Samples  
Orderable Device  
Package Type Package  
Drawing  
Pins  
Package Qty  
Lead/  
Ball Finish  
(Requires Login)  
SN75LVDS83CZQLR  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQL  
56  
1000  
Green (RoHS  
& no Sb/Br)  
SNAGCU Level-2-260C-1 YEAR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN75LVDS83CZQLR  
BGA MI  
CROSTA  
R JUNI  
OR  
ZQL  
56  
1000  
330.0  
16.4  
4.8  
7.3  
1.5  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Feb-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 28.6  
SN75LVDS83CZQLR  
BGA MICROSTAR  
JUNIOR  
ZQL  
56  
1000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TIs terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TIs standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SN75LVDS83C_17

FLATLINK TRANSMITTER
TI

SN75LVDS83DGG

FLATLINKE TRANSMITTER
TI

SN75LVDS83DGGG4

FlatLink TRANSMITTER
TI

SN75LVDS83DGGR

FlatLink&trade; Transmitter 56-TSSOP 0 to 70
TI

SN75LVDS83DGGR-P

FlatLink(TM) Transmitter 56-TSSOP
TI

SN75LVDS83DGGRG4

FlatLink&#153; Transmitter 56-TSSOP 0 to 70
TI

SN75LVDS83ZQL

FlatLink(TM) Transmitter 56-BGA MICROSTAR JUNIOR -10 to 70
TI

SN75LVDS83ZQLR

FlatLink(TM) Transmitter 52-BGA MICROSTAR JUNIOR -10 to 70
TI

SN75LVDS84

FLATLINKE TRANSMITTERS
TI

SN75LVDS84A

FLATLINKE TRANSMITTER
TI

SN75LVDS84ADGG

FLATLINKE TRANSMITTER
TI

SN75LVDS84ADGGG4

FLATLINK TRANSMITTER
TI