TAS5806MDDCPR [TI]

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器 | DCP | 38 | -25 to 85;
TAS5806MDDCPR
型号: TAS5806MDDCPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器 | DCP | 38 | -25 to 85

放大器 音频放大器
文件: 总93页 (文件大小:2092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5806MD  
ZHCSJT7 MAY 2019  
具有增强处理能力和 DirectPathTM HP 驱动器的 TAS5806MD 23W、无电  
感器、数字输入、立体声、闭环 D 类音频放大器  
1 特性  
2 应用  
1
支持多路输出配置:  
LCD 电视、OLED 电视  
无线扬声器、智能扬声器(带语音助理)  
条形音箱、有线扬声器、书架立体声系统  
AV 接收器、智能家居和物联网电器  
2.0 模式(8Ω21VTHD+N=1%)下可提供  
2 × 23W 的功率  
单声道模式(4Ω21VTHD+N=1%)下可提  
45W 的功率  
3 说明  
优异的音频性能  
1W1kHzPVDD = 12V 的条件下,THD+N  
0.03%  
TAS5806MD 是一款高效立体声闭环 D 类放大器,可  
提供具有低功率耗散和丰富声音且具有成本效益的数字  
输入解决方案。该器件的集成音频处理器和 96kHz 架  
构支持高级音频处理流程(包括 SRC、每通道 15 个  
BQ、音量控制、音频混合、3 频带 4 DRC、全频带  
AGLTHD 管理器和电平计)。  
SNR 107dBA 加权),噪声级别  
< 40µVrms  
灵活的电源配置  
PVDD4.5V 26.4V  
DVDD I/O1.8V 3.3V  
TAS5806MD 采用 TI 的专有混合调制方案,消耗极低  
的静态电流(13.5V PVDD 下为 16.5mA),从而能够  
延长便携式音频 应用中的电池寿命。凭借先进的 EMI  
抑制技术,对低于 10W 的 应用 ,设计人员可利用廉  
价的铁氧体磁珠滤波器来减小其布板空间并降低系统成  
本。该器件配有集成 DirectPathTM 耳机放大器和线路  
驱动器,可提高系统级集成度并降低解决方案总成本。  
灵活的音频 I/O  
I2SLJRJTDM3 线数字音频接口(无需  
MCLK)  
支持 3244.14888.296kHz 采样率  
用于音频监控、子通道或回声消除的 SDOUT  
增强的音频处理能力  
多频带高级 DRC AGL  
器件信息(1)  
2×15 BQ、热折返、直流阻断  
输入混合器、输出交叉开关、电平计  
器件型号  
封装  
封装尺寸(标称值)  
5 BQ + 单频带 DRC + THD 管理器(用于低  
音炮通道)  
TAS5806MD  
TSSOP (38)  
9.7mm × 4.4mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
声场定位器选项  
Speaker  
L Channel  
Speaker  
R Channel  
集成式自保护功能  
邻近的引脚对引脚短路且无损坏  
过流错误  
过温警告和错误  
欠压、过压锁定(UVLOOVLO)  
可轻松进行系统集成  
I2C 软件控制  
解决方案尺寸更小  
1.8V or 3.3V  
与开环器件相比,所需的无源器件更少  
4.5V-26.4V  
3.3V  
对于 PVDD 14V 的大多数情况,可实现无  
电感器运行(铁氧体磁珠)  
System  
Processor  
Headphone IN  
(Single-Ended)  
Digital Audio Source  
Copyright  
© 2018, Texas Instruments Incorporated  
立体声耳机和立体声线路驱动器通过 I2C 调  
节增益  
DirectPath 技术不再需要大容量的隔直电容  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEO2  
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 29  
9.5 Programming and Control....................................... 34  
9.6 Register Maps......................................................... 40  
10 Application and Implementation........................ 73  
10.1 Application Information.......................................... 73  
10.2 Typical Applications ............................................. 75  
11 Power Supply Recommendations ..................... 81  
11.1 DVDD Supply........................................................ 81  
11.2 PVDD Supply ........................................................ 82  
12 Layout................................................................... 83  
12.1 Layout Guidelines ................................................. 83  
12.2 Layout Example .................................................... 85  
13 器件和文档支持 ..................................................... 86  
13.1 器件支持................................................................ 86  
13.2 接收文档更新通知 ................................................. 86  
13.3 社区资源................................................................ 87  
13.4 ....................................................................... 87  
13.5 静电放电警告......................................................... 87  
13.6 Glossary................................................................ 87  
14 机械、封装和可订购信息....................................... 87  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Timing Requirements ............................................... 9  
7.7 Typical Characteristics............................................ 10  
Parametric Measurement Information ............... 22  
Detailed Description ............................................ 23  
9.1 Overview ................................................................. 23  
9.2 Functional Block Diagram ....................................... 23  
9.3 Feature Description................................................. 24  
8
9
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2019 5 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
5 Device Comparison Table  
ORDERABLE PART  
NUMBER  
RECOMMENDED  
PVDD RANGE  
Headphone/Line  
Driver integrated  
RDS(ON) OPTION  
Package  
TAS5806MD  
TAS5806M  
TAS5805M  
TAS5825M  
4.5 V to 26.4 V  
4.5 V to 26.4 V  
4.5 V to 26.4 V  
4.5 V to 26.4 V  
180 mΩ  
180 mΩ  
180 mΩ  
90 mΩ  
TSSOP38 (DCP)  
TSSOP38 (DCP)  
TSSOP28 (PWP)  
QFN32 (RHB)  
YES  
NO  
NO  
NO  
6 Pin Configuration and Functions  
DCP Package  
38-Pin TSSOP  
Top View  
BST_A-  
OUT_A-  
PGND  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
BST_B-  
2
OUT_B-  
PGND  
BST_B+  
OUT_B+  
PVDD  
PVDD  
AGND  
AVDD  
PDN  
3
BST_A+  
OUT_A+  
PVDD  
4
5
6
PVDD  
7
DGND  
8
DVDD  
9
Thermal  
Pad  
ADR/FAULT  
VR_DIG  
DGND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SCL  
SDA  
LRCLK  
SCLK  
SDOUT  
CPP  
SDIN  
NC  
HP_GND  
HPVDD  
HPR_IN  
HPL_IN  
CPN  
HPVSS  
HPL_OUT  
HPR_OUT  
Not to scale  
Copyright © 2019, Texas Instruments Incorporated  
3
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_A-  
BST_A-  
1
P
OUT_A-  
PGND  
2
AO  
G
Negative pin for differential speaker amplifier output A-  
3, 36  
Ground reference for power device circuitry. Connect this pin to system ground.  
Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_A+  
BST_A+  
OUT_A+  
PVDD  
4
5
P
AO  
P
Positive pin for differential speaker amplifier output A+  
PVDD voltage input  
6, 7, 32,  
33  
DGND  
DVDD  
8, 12  
9
G
P
Digital ground  
3.3-V or 1.8-V digital power supply  
Different I2 C device address can be set by selecting different pull up resistor to DVDD, see Table 3 for details.  
After power up, ADR/FAULT can be redefine as FAULT, go to Page0, Book0, set register 0x61 = 0x0b first, then  
set register 0x60 = 0x01  
ADR/FAULT  
VR_DIG  
10  
11  
13  
DIO  
P
Internally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ and RJ, this  
corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync  
boundary.  
LRCLK  
DI  
SCLK  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DI  
DI  
G
Bit clock for the digital signal that is active on the input data line of the serial data port.  
Data line to the serial data port  
SDIN  
HP_GND  
HPVDD  
HPR_IN  
HPL_IN  
HPR_OUT  
HPL_OUT  
HPVSS  
CPN  
Headphone Ground  
P
Headphone Positive Power Supply  
AI  
AI  
AO  
AO  
P
Headphone In Right  
Headphone In Left  
Headphone Out Right  
Headphone Out Left  
Headphone Negative Power Supply (Generated Internally)  
Negative connection point for charge pump fly cap  
No Connect Pin. Can be shorted to PVCC or shorted to GND or left open.  
Positive connection point for charge pump fly cap  
Serial Audio data output, the source data can select as Pre-DSP or Post DSP, by setting the register 0x30h.  
I2C serial control data interface input/output  
I2C serial control clock input  
NC  
CPP  
SDOUT  
SDA  
DO  
DI/O  
DI  
SCL  
Power Down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators. Low, Power Down  
Device; High, Enable Device.  
PDN  
29  
DI  
AVDD  
30  
31  
34  
P
G
Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices  
Analog ground  
AGND  
OUT_B+  
AO  
Positive pin for differential speaker amplifier output B+  
Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_B+  
BST_B+  
35  
37  
38  
P
AO  
P
OUT_B-  
Negative pin for differential speaker amplifier output B  
Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_B-  
BST_B-  
PowerPAD™  
P
Connect to the system Ground  
(1) AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P =  
Power, G = Ground (0 V)  
4
Copyright © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
MAX  
3.9  
UNIT  
V
DVDD, HPVDD  
PVDD  
Low-voltage digital supply  
PVDD supply  
30  
V
-(HPVDD +  
0.5)  
+(HPVDD +  
0.5)  
Input Voltage  
HPL_IN, HPR_IN  
V
VI(DigIn)  
VI(SPK_OUTxx)  
TA  
DVDD referenced digital inputs(2)  
Voltage at speaker output pins  
Ambient operating temperature,  
Storage temperature  
–0.5  
–0.3  
–25  
–40  
VDVDD + 0.5  
V
V
32  
85  
°C  
°C  
Tstg  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) DVDD referenced digital pins include: ADR/FAULT, LRCLK, SCLK, SCL, SDA, SDIN, PDN  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
MAX  
3.63  
3.63  
26.4  
UNIT  
HPVDD  
3.3  
V(POWER)  
Power supply inputs  
DVDD  
1.62  
4.5  
3.2  
4.8  
1.6  
2.4  
1
V
PVDD  
BTL Mode (4.5V<PVDD<16V)  
BTL Mode (16V<PVDD<24V)  
PBLT Mode (4.5V<PVDD<16V)  
PBLT Mode (16V<PVDD<24V)  
4
6
Ω
Ω
RSPK  
Minimum speaker load  
2
Ω
3
Ω
LOUT  
Minimum inductor value in LC filter under short-circuit condition  
4.7  
µH  
Headphone-mode load  
impedance (HPL/HPR)  
R_hp_L  
16  
1
32  
10  
Ω
Line-driver-mode load  
impedance (HPL/HPR)  
R_ln_L  
kΩ  
7.4 Thermal Information  
TAS5806MD  
TSSOP (DCP)  
38 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC  
STANDARD  
2-LAYER PCB  
JEDEC  
STANDARD  
4-LAYER PCB  
TAS5806MDEVM-4  
4-LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
-
-
-
-
-
-
29.2  
23.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18  
-
9.6  
0.8  
9.5  
2.4  
-
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.5  
8.4  
-
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2019, Texas Instruments Incorporated  
5
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
Free-air room temperature 25°C, DVDD=3.3V, 1SPW Modulation Mode with LC filter, BD Modulation Mode with Ferrite bead  
filter (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O  
|IIH  
Input logic high current level  
for DVDD referenced digital  
input pins  
|
VIN(DigIn) = VDVDD  
10  
µA  
µA  
Input logic low current level  
for DVDD referenced digital  
input pins  
|IIL|  
VIN(DigIn) = 0 V  
–10  
Input logic high threshold for  
DVDD referenced digital  
inputs  
VIH(Digin)  
70%  
80%  
VDVDD  
Input logic low threshold for  
DVDD referenced digital  
inputs  
VIL(Digin)  
30%  
VDVDD  
Output logic high voltage  
level  
VOH(Digin)  
IOH = 2 mA  
VDVDD  
VDVDD  
VOL(Digin)  
Output logic low voltage level IOH = –2 mA  
20%  
400  
I2C CONTROL PORT  
Allowable load capacitance  
for each I2C Line  
CL(I2C)  
pF  
fSCL(fast)  
fSCL(slow)  
SERIAL AUDIO PORT  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
Support SCL frequency  
Required LRCK/FS to SCLK  
rising edge delay  
tDLY  
5
ns  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
Supported input sample rates  
Supported SCLK frequencies  
SCLK frequency  
40%  
32  
60%  
96  
kHz  
fS  
32  
64  
24.576  
MHz  
SPEAKER AMPLIFIER (ALL OUTPUT CONFIGURATIONS)  
toff  
Turn-off Time  
Excluding volume ramp  
10  
ms  
V
Value represents the "peak voltage" disregarding  
clipping due to lower PVDD.  
AV(SPK_AMP)  
Programmable Gain  
4.95  
29.5  
Measured at 0 dB input(1FS)  
ΔAV(SPK_AMP)  
Amplifier gain error  
Gain = 29.5 Vp  
0.5  
384  
768  
dB  
kHz  
kHz  
Switching frequency of the  
speaker amplifier  
fSPK_AMP  
Drain-to-source on resistance  
of the individual output  
MOSFETs  
RDS(on)  
FET + Metallization.  
180  
mΩ  
Over-Current Error Threshold Any short to supply, ground, or other channels  
5
A
A
OCETHRES  
Over-Current cycle-by-cycle  
limit  
4.2  
PVDD over voltage error  
threshold  
OVETHRES(PVDD)  
UVETHRES(PVDD)  
OTETHRES  
28  
4.2  
160  
10  
V
PVDD under voltage error  
threshold  
V
Over temperature error  
threshold  
°C  
°C  
°C  
Over temperature error  
hysteresis  
OTEHystersis  
Over temperature warning  
Read by register 0x73 bit3  
level 3  
OTWTHRES  
135  
SPEAKER AMPLIFIER (STEREO BTL)  
6
Copyright © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Electrical Characteristics (continued)  
Free-air room temperature 25°C, DVDD=3.3V, 1SPW Modulation Mode with LC filter, BD Modulation Mode with Ferrite bead  
filter (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mA  
mA  
mA  
µA  
PDN=2V, DVDD=3.3V, Play mode  
18  
PDN=2V, DVDD=3.3V, Sleep mode  
PDN=2V, DVDD=3.3V, Deep Sleep mode  
PDN=0V, DVDD=3.3V, Shutdown mode  
PDN=2V, VPVDD=13.5V, LC filter=10uH+0.68uF,  
0.75  
0.75  
5.5  
Quiescent supply current  
on DVDD  
ICC  
32.5  
16.5  
mA  
mA  
Fsw=768kHz, BD Modulation, Play mode, BTL  
mode  
PDN=2V, VPVDD=13.5V, LC filter=22uH+0.68uF,  
Fsw=384kHz, Hybrid or 1SPW Modulation, Play  
mode, BTL Mode  
Quiescent supply current on  
PVDD  
ICC  
PDN=2V, VPVDD=13.5V, Output Hiz Mode  
PDN=2V, VPVDD=13.5V, Sleep Mode  
10.4  
7.2  
mA  
mA  
µA  
PDN=2V, VPVDD=13.5V, Deep Sleep Mode  
PDN=0V, VPVDD=13.5V, Shutdown Mode  
120  
7.2  
µA  
Measured differentially with zero input data,  
programmable gain configured with 29.5 Vp gain,  
VPVDD = 24 V  
|Vos|  
Amplifier offset voltage  
-6.5  
6.5  
mV  
VPVDD = 12 V, RSPK = 6 Ω, f = 1 kHz THD+N =  
10%  
12  
9.9  
25  
W
W
W
W
W
W
PO(SPK)  
PO(SPK)  
PO(SPK)  
Output power (per channel)  
Output power (per channel)  
Output power (per channel)  
VPVDD = 12 V, RSPK = 6 Ω, f = 1 kHz THD+N = 1%  
VPVDD = 18 V, RSPK = 6 Ω, f = 1 kHz THD+N =  
10%  
VPVDD = 18 V, RSPK = 6 Ω, f = 1 kHz THD+N = 1%  
21  
VPVDD = 21 V, RSPK = 8 Ω, f = 1 kHz THD+N =  
10%  
27.5  
VPVDD = 21 V, RSPK = 8 Ω, f = 1 kHz THD+N = 1%  
23  
Total harmonic distortion and VPVDD = 12 V, SPK_GAIN = 29.5 Vp, LC-filter  
noise  
0.03%  
THD+NSPK  
(PO = 1 W, f = 1 KHz, RSPK  
=
VPVDD = 24 V, SPK_GAIN = 29.5 Vp, LC-filter  
0.03%  
6 Ω)  
A-weighted (AES17), VPVDD = 12 V, LC-filter, RSPK  
= 6 Ω  
37  
38  
ICN(SPK)  
Idle channel noise  
Dynamic range  
µVrms  
A-weighted (AES17), VPVDD = 24 V, LC-filter, RSPK  
= 6 Ω  
A-Weighted, -60 dBFS method. VPVDD = 24 V,  
SPK_GAIN = 29.5 Vp, RSPK = 6 Ω  
DR  
112  
111  
107.5  
72  
dB  
dB  
dB  
dB  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=24V  
SNR  
Signal-to-noise ratio  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=14.4V  
Injected Noise = 1 KHz, 1 Vrms, VPVDD = 14.4 V,  
input audio signal = digital zero  
PSRR  
Power supply rejection ratio  
Cross-talk (worst case  
between left-to-right and  
right-to-left coupling)  
X-talkSPK  
f = 1 KHz  
100  
dB  
SPEAKER AMPLIFIER (MONO PBTL)  
Measured differentially with zero input data,  
programmable gain configured with 29.5 Vp gain,  
VPVDD = 24 V  
|VOS  
|
Amplifier offset voltage  
–8  
8
mV  
VPVDD = 12 V, RSPK = 4Ω, f = 1KHz, THD+N = 1%  
15.4  
18.5  
W
W
VPVDD = 12 V, RSPK = 4 Ω, f = 1KHz, THD+N =  
10%  
PO(SPK)  
Output Power  
VPVDD = 18 V, RSPK = 4 Ω, f = 1KHz, THD+N =  
1%  
33.6  
41  
W
W
VPVDD = 18 V, RSPK = 4 Ω, f = 1KHz, THD+N =  
10%  
Copyright © 2019, Texas Instruments Incorporated  
7
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
Free-air room temperature 25°C, DVDD=3.3V, 1SPW Modulation Mode with LC filter, BD Modulation Mode with Ferrite bead  
filter (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Total harmonic distortion and VPVDD = 12 V, LC-filter, RSPK = 4 Ω  
0.015%  
noise  
(PO = 1 W, f = 1 KHz  
THD+NSPK  
DR  
VPVDD = 24 V, LC-filter RSPK = 4 Ω  
0.015%  
111  
A-Weighted, -60 dBFS method. VPVDD = 24 V,  
SPK_GAIN = 29.5 Vp  
Dynamic range  
dB  
dB  
dB  
dB  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=13.5V  
108  
111  
72  
SNR  
Signal-to-noise ratio  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=24V  
Injected Noise = 1 KHz, 1 Vrms, VPVDD = 19 V,  
Power supply rejection ratio  
PSRR  
input audio signal = digital zero  
Headphone Amplifier  
Headphone power output per  
channel  
Po(hp)  
SNR_hp  
SNR_ln  
fcp  
HPVDD = 3.3 V (Rhp = 32 Ω; THD = 1%)  
Rhp = 32  
30  
40  
101  
105  
360  
mW  
dB  
Signal -to-noise ratio  
(headphone mode)  
Signal-to-noise ratio (line  
driver mode)  
2-VRMS output  
dB  
Charge-pump switching  
frequency  
kHz  
8
Copyright © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Serial Audio Port Timing  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
1.024  
40  
16  
16  
8
MHz  
ns  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
I2C Bus Timing – Standard  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
4.7  
tLOW  
tHI  
4.7  
High period of the SCL clock  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
4
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
4.7  
4
250  
Data hold time  
0
900  
Rise time of SCL signal  
20 + 0.1CB  
1000  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
1000  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
1000  
1000  
1000  
ns  
ns  
ns  
µs  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
I2C Bus Timing –  
Fast  
fSCL  
SCL clock frequency  
400  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
1.3  
tLOW  
tHI  
1.3  
600  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
600  
600  
100  
Data hold time  
0
900  
300  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
300  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Pulse width of spike suppressed  
50  
版权 © 2019, Texas Instruments Incorporated  
9
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
7.7.1 Bridge Tied Load (BTL) Configuration Curves with 1 SPW Mode  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5806MDEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM Modulation mode set to 1 SPW mode  
with Class D Bandwidth =120 kHz for 576kHz Fsw and Class D Bandwidth = 175 kHz for 768 kHz Fsw (Listed in  
Register 0x53) unless otherwise noted.  
10  
5
10  
5
PVcc=5V  
TA=25èC  
RL=4W  
PVcc=7.4V  
TA=25èC  
RL=4W  
P O=0.5W  
PO =1W  
P O=0.5W  
PO =1W  
PO=2.5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D010324  
D0103412  
PVDD = 5 V  
4.7 µH + 0.68 µF  
1 SPW Modulation  
PVDD = 7.4 V  
FSW = 576 kHz  
4.7 µH + 0.68 µF  
1SPW Modulation  
FSW = 576 kHz  
Load = 4  
Load = 4 Ω  
1. THD+N vs Frequency-BTL  
2. THD+N vs Frequency-BTL  
10  
5
10  
5
PVcc=12V  
TA=25èC  
RL=4W  
PVcc=12V  
TA=25èC  
RL=6W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D10092  
D01023  
PVDD = 12 V  
4.7 µH + 0.68 µF  
1SPW Modulation  
PVDD = 12 V  
4.7 µH + 0.68 µF  
1SPW Modulation  
FSW = 768 kHz  
Load = 4 Ω  
FSW = 768 kHz  
Load = 6 Ω  
3. THD+N vs Frequency-BTL  
4. THD+N vs Frequency-BTL  
10  
5
10  
5
PVcc=18V  
TA=25èC  
RL=6W  
PVcc=24V  
TA=25èC  
RL=6W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D10042  
D01025  
PVDD = 18 V  
10 µH + 0.68 µF  
1SPW Modulation  
PVDD = 24 V  
10 µH + 0.68 µF  
1SPW Modulation  
FSW = 768 kHz  
Load = 6 Ω  
FSW = 768 kHz  
Load = 6 Ω  
5. THD+N vs Frequency-BTL  
6. THD+N vs Frequency-BTL  
10  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Bridge Tied Load (BTL) Configuration Curves with 1 SPW Mode (接下页)  
10  
5
10  
5
PVcc=12V  
TA=25èC  
RL=8W  
PVcc=18V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
D01027  
Frequency (Hz)  
Frequency (Hz)  
D10062  
PVDD = 12 V  
4.7 µH + 0.68 µF  
1SPW Modulation  
PVDD = 18 V  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 8 Ω  
FSW = 768 kHz  
1SPW Modulation  
Load = 8 Ω  
7. THD+N vs Frequency-BTL  
8. THD+N vs Frequency-BTL  
10  
5
10  
5
PVcc=24V  
TA=25èC  
RL=8W  
PVcc=19V  
TA=25èC  
RL=6W  
BD Mode  
1SPW Mode  
Hybrid Mode  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D10082  
D010120  
PVDD = 24 V  
10 µH + 0.68 µF  
1SPW Modulation  
PVDD = 19 V  
Hybrid, BD  
PO = 5 W  
Load = 6 Ω  
FSW = 768 kHz  
Load = 8 Ω  
FSW = 384 kHz  
1 SPW Modulation  
9. THD+N vs Frequency-BTL  
10. THD+N vs Frequency-BTL  
10  
5
10  
5
PVCC=5V  
TA=25èC  
RL=4W  
PVCC=12V  
TA=25èC  
RL=4W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 1kHz  
f= 10KHz  
f= 1kHz  
f= 10KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
D101027  
D010173  
PVDD = 5 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 12 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
FSW = 768 kHz  
Load = 4 Ω  
FSW = 768 kHz  
Load = 4 Ω  
11. THD+N vs Output Power-BTL  
12. THD+N vs Output Power-BTL  
版权 © 2019, Texas Instruments Incorporated  
11  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Bridge Tied Load (BTL) Configuration Curves with 1 SPW Mode (接下页)  
10  
5
10  
5
PVCC=12V  
TA=25èC  
RL=6W  
PVCC=18V  
TA=25èC  
RL=6W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 1kHz  
f= 10KHz  
f= 1kHz  
f= 10KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
D101047  
D010175  
PVDD = 12 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 18 V  
1SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 6 Ω  
FSW = 768 kHz  
Load = 6 Ω  
13. THD+N vs Output Power-BTL  
14. THD+N vs Output Power-BTL  
10  
5
10  
5
PVCC=24V  
TA=25èC  
RL=6W  
PVCC=12V  
TA=25èC  
RL=8W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 1kHz  
f= 10KHz  
f= 1kHz  
f= 10KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
D101067  
D01017  
PVDD = 24 V  
1SPW Modulation  
10 µH + 0.68 µF  
PVDD = 12 V  
1SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 6 Ω  
FSW = 768 kHz  
Load = 8 Ω  
15. THD+N vs Output Power-BTL  
16. THD+N vs Output Power-BTL  
10  
5
10  
5
PVCC=18V  
TA=25èC  
RL=8W  
PVCC=24V  
TA=25èC  
RL=8W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 1kHz  
f= 10KHz  
f= 1kHz  
f= 10KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
D01014087  
D010179  
PVDD = 18 V  
1SPW Modulation  
10 µH + 0.68 µF  
PVDD = 24 V  
1SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 8 Ω  
FSW = 768 kHz  
Load = 8 Ω  
17. THD+N vs Output Power-BTL  
18. THD+N vs Output Power-BTL  
12  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Bridge Tied Load (BTL) Configuration Curves with 1 SPW Mode (接下页)  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
THD+N=1%, R L=4W  
THD+N=10%, R L=4W  
THD+N=1%, R L=6W  
THD+N=10%, R L=6W  
BTL Mode  
TA=25èC  
BTL Mode  
TA=25èC  
0
0
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16  
4.5  
6.5  
8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24  
Supply Voltage (V)  
Supply Voltage (V)  
D014  
D013270  
D014  
D013271  
Dashed lines represent thermally limited region for the continuous  
output power.  
Dashed lines represent thermally limited region for the continuous  
output power.  
PVDD = 4.5V~16V  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 4.5V~24V  
1SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 4 Ω  
FSW = 768 kHz  
Load = 6 Ω  
19. Output Power vs Supply Voltage  
20. Output Power vs Supply Voltage  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
THD+N=1%, R L=8W  
THD+N=10%, R L=8W  
TA=25èC  
RL=4W  
BTL Mode  
PVCC = 7.4V  
PVCC = 12 V  
PVCC = 4.5V  
BTL Mode  
TA=25èC  
0
4.5  
6.5  
8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24  
Supply Voltage (V)  
0
10  
20  
30  
Output Power (W)  
D014  
D013272  
D01243  
Dashed lines represent thermally limited region for the continuous  
output power.  
PVDD = 4.5 V, 7.4 V, 12 V  
FSW = 768 kHz Load = 4 Ω  
1 SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 4.5V~24V  
1SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 8 Ω  
22. Efficiency vs Supply Voltage  
21. Output Power vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVCC = 7.4V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
PVCC = 7.4V  
TA=25èC  
RL=6W  
BTL Mode  
TA=25èC  
RL=8W  
BTL Mode  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
Output Power (W)  
Output Power (W)  
D091060  
D091061  
PVDD = 7.4 V, 12 V, 18 V, 24 V  
FSW = 768 kHz Load = 6 Ω  
10 µH + 0.68 µF  
PVDD = 7.4 V, 12 V, 18 V, 24 V  
FSW = 768 kHz Load = 8 Ω  
10 µH + 0.68 µF  
1SPW Modulation  
1 SPW Modulation  
23. Efficiency vs Supply Voltage  
24. Efficiency vs Supply Voltage  
版权 © 2019, Texas Instruments Incorporated  
13  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Bridge Tied Load (BTL) Configuration Curves with 1 SPW Mode (接下页)  
80  
60  
40  
20  
0
0
Fsw=768kHz, Channel A  
Fsw=768kHz, Channel B  
PVDD=12V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
-20  
Ch B to Ch A  
-40  
-60  
-80  
-100  
-120  
5
10  
15  
Supply Voltage (V)  
18  
20  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
D10230706  
D0102318  
PVDD = 4.5V~24V  
FSW = 768 kHz  
1 SPW Modulation  
10 µH + 0.68 µF  
PVDD = 12 V  
1 SPW Modulation  
4.7 µH + 0.68 µF  
Load = 8 Ω  
FSW = 768 kHz  
Load = 6 Ω  
PO = 1 W  
25. Idle Channel Noise vs Supply Voltage  
26. Crosstalk  
0
0
-20  
PVDD=18V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
PVDD=24V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
-20  
Ch B to Ch A  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
100  
1k  
Frequency (Hz)  
10k 20k  
D0103310  
D0102319  
PVDD = 18 V  
1 SPW Modulation  
10 µH + 0.68 µF  
PO = 1 W  
PVDD = 24 V  
1 SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 6 Ω  
FSW = 768 kHz  
Load = 6 Ω  
PO = 1 W  
27. Crosstalk  
28. Crosstalk  
0
-20  
0
-20  
PVDD=12V, LC filter=4.7uH+0.68uF  
PVDD=18V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
Ch A to Ch B  
Ch B to Ch A  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
20  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D010331  
100  
1k  
Frequency (Hz)  
10k 20k  
D0103312  
PVDD = 12 V  
1 SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 18 V  
1 SPW Modulation  
10 µH + 0.68 µF  
FSW = 768 kHz  
Load = 8 Ω  
PO = 1 W  
FSW = 768 kHz  
Load = 8 Ω  
PO = 1 W  
29. Crosstalk  
30. Crosstalk  
14  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Bridge Tied Load (BTL) Configuration Curves with 1 SPW Mode (接下页)  
0
PVDD=24V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
-20  
-40  
Ch B to Ch A  
-60  
-80  
-100  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D010313  
PVDD = 24 V  
1 SPW Modulation  
10 µH + 0.68 µF  
PO = 1 W  
FSW = 768 kHz  
Load = 8 Ω  
31. Crosstalk  
版权 © 2019, Texas Instruments Incorporated  
15  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
7.7.2 Bridge Tied Load (BTL) Configuration Curves  
Free-air room temperature 25°C (unless otherwise noted), Measurements were made using TAS806MDEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 384 kHz, with Class D  
Bandwidth=80kHz (Listed in Register 0x53), Spread Spectrum Enable, Ferrite bead + Capacitor as the output  
filter, BD Modulation, unless otherwise noted.  
10  
5
10  
5
PVcc=12V  
TA=25èC  
RL=6W  
PVcc=12V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D103052  
D010326  
PVDD = 12 V  
Ferrite bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 12 V  
Ferrite bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
Load = 6 Ω  
FSW = 384 kHz  
BD Modulation  
Load = 8 Ω  
32. THD+N vs Frequency  
33. THD+N vs Frequency  
20  
10  
PVCC=7.4V  
TA=25èC  
RL=4W  
THD+N=1%, R L=8W  
THD+N=10%, R L=8W  
5
2
1
15  
10  
5
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
BTL Mode  
TA=25èC  
0.002  
0.001  
0
4.5  
6.5  
8.5  
10.5  
12.5  
14.5  
16  
0.01  
0.1  
1
10  
Supply Voltage (V)  
Output Power (W)  
D014  
D0137  
D011304087  
PVDD = 4.5V~16V  
FSW = 384 kHz  
Ferrite bead +  
Capacitor  
BD Modulation  
Spread Spectrum  
Enable  
Load = 8 Ω  
PVDD = 7.4V  
Ferrite bead +  
Capacitor  
BD Modulation  
Spread Spectrum  
Enable  
Load = 4 Ω  
FSW = 384 kHz  
34. Output Power vs Supply Voltage  
35. THD+N vs Output Power  
10  
5
10  
5
PVCC=12V  
A=25èC  
RL=8W  
PVCC=12V  
TA=25èC  
RL=6W  
T
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
D103097  
D010470  
PVDD = 12V  
Ferrite bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 12V  
Ferrite bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
Load = 6 Ω  
FSW = 384 kHz  
BD Modulation  
Load = 8 Ω  
36. THD+N vs Output Power  
37. THD+N vs Output Power  
16  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Bridge Tied Load (BTL) Configuration Curves (接下页)  
0
0
-20  
PVDD=12V, Ferrite Bead + Capacitor  
Ch A to Ch B  
PVDD=12V, Ferrite bead + Capacitor  
Ch 1 to Ch 2  
-20  
-40  
Ch B to Ch A  
Ch 2 to Ch 1  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
D0104312  
Frequency (Hz)  
Frequency (Hz)  
D010431  
PVDD = 12 V  
Ferrite bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 12V  
Ferrite bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
Load = 6 , PO = 1  
FSW = 384 kHz  
BD Modulation  
Load = 8 , PO =  
W
1 W  
38. Crosstalk  
39. Crosstalk  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
TA=25èC  
RL=4W  
TA=25èC  
RL=8W  
PVCC = 5V  
PVCC = 7.4V  
PVCC = 7.4V  
PVCC = 12 V  
10  
10  
0
0
0
0
10  
10  
20  
Output Power (W)  
Output Power (W)  
D104234  
Spread Spectrum  
Enable  
D01244  
PVDD = 5V, 7.4V  
FSW = 384 kHz  
Ferrite bead +  
Capacitor  
BD Modulation  
PVDD = 7.4V, 12V  
FSW = 384 kHz  
Ferrite bead +  
Capacitor  
BD Modulation  
Spread Spectrum  
Enable  
Load = 8 Ω  
Load = 4 Ω  
40. Efficiency vs Output Power  
41. Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
TA=25èC  
RL=6W  
PVCC = 7.4V  
PVCC = 12 V  
10  
0
0
10  
20  
30  
Output Power (W)  
D104254  
PVDD = 7.4V, 12V  
FSW = 384 kHz  
Ferrite bead + Capacitor  
BD Modulation  
Spread Spectrum Enable  
Load = 6 Ω  
42. Efficiency vs Output Power  
版权 © 2019, Texas Instruments Incorporated  
17  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
7.7.3 Parallel Bridge Tied Load (PBTL) Configuration  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5806MDEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 576kHz, the LC filter  
used was 4.7 μH / 0.68 μF, 1SPW modulation with Class D Bandwidth =120kHz (Listed in Register 0x53) unless  
otherwise noted.  
10  
5
10  
5
PVcc=7.4V  
TA=25èC  
RL=4W  
PVcc=12V  
TA=25èC  
RL=4W  
P O=1W  
PO=2.5W  
PO=4W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D104062  
D010427  
PVDD = 7.4 V  
FSW = 576 kHz  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 12 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
Load = 4 Ω  
FSW = 576 kHz  
Load = 4 Ω  
43. THD+N vs Frequency  
44. THD+N vs Frequency  
10  
10  
PVCC=5V  
TA=25èC  
RL=2W  
PVcc=24V  
TA=25èC  
RL=4W  
P O=1W  
PO=2.5W  
PO=5W  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.005  
0.002  
0.002  
0.001  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
10  
Frequency (Hz)  
Output Power (W)  
D104082  
D010479  
PVDD = 24 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 5 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
FSW = 576 kHz  
Load = 4 Ω  
FSW = 576 kHz  
Load = 2 Ω  
45. THD+N vs Frequency  
46. THD+N vs Output Power  
10  
10  
5
PVCC=5V  
TA=25èC  
PVCC=12V  
5
TA=25èC  
RL=4W  
2
1
2
1
RL=4W  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 10kHz  
f= 1KHz  
f= 10kHz  
f= 1KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
D105007  
D010571  
PVDD = 5 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 12 V  
1SPW Modulation  
4.7 µH + 0.68 µF  
FSW = 576 kHz  
Load = 4 Ω  
FSW = 576 kHz  
Load = 4 Ω  
47. THD+N vs Output Power  
48. THD+N vs Output Power  
18  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Parallel Bridge Tied Load (PBTL) Configuration (接下页)  
10  
10  
5
PVCC=18V  
TA=25èC  
PVCC=24V  
TA=25èC  
RL=4W  
5
2
1
2
1
RL=4W  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 10kHz  
f= 1KHz  
f= 10kHz  
f= 1KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
D105027  
D010573  
PVDD = 18V  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 24V  
1SPW Modulation  
4.7 µH + 0.68 µF  
FSW = 576 kHz  
Load = 4 Ω  
FSW = 576 kHz  
Load = 4 Ω  
49. THD+N vs Output Power  
50. THD+N vs Output Power  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Fsw=768kHz, PBTL Mode  
PVCC = 5V  
PVCC = 7.4 V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
TA=25èC  
RL=4W  
PBTL Mode  
5
10  
15  
18  
20  
0
5
10 15 20 25 30 35 40 45 50  
Output Power (W)  
Supply Voltage (V)  
D10530705  
D091062  
PVDD = 4.5V~24V  
FSW = 576 kHz  
1SPW Modulation  
4.7 µH + 0.68 µF  
PVDD = 5 V, 7.4 V, 12 V, 18 V, 24 V  
FSW = 576 kHz Load = 4 Ω  
1 SPW Modulation  
4.7 µH + 0.68 µF  
Load = 4 Ω  
51. Idle Channel Noise vs Supply Voltage  
52. Efficiency vs Output Power  
版权 © 2019, Texas Instruments Incorporated  
19  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
7.7.4 Headphone Driver  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5807MDREF  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20 kHz brickwall filter. HPVDD = 3.3V.  
All measurement taken with audio frequency set to 1 kHz.  
10  
5
10  
5
HPVDD=3.3V  
TA=25èC  
RL=16W  
HPVDD=3.3V  
TA=25èC  
RL=16W  
Vout=0.1Vrms  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
f= 1kHz  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
Frequency (Hz)  
Output Voltage (Vrms)  
D30002  
D03071  
HPVDD = 3.3 V  
VO = 0.1 Vrms  
Load = 16 Ω  
HPVDD = 3.3 V  
f = 1kHz  
Load = 16 Ω  
53. THD+N vs Frequency  
54. THD+N vs Output Voltage  
0
10  
5
HPVDD=3.3V  
TA=25èC  
RL=16W  
HPVDD=3.3V  
Vout=1Vrms  
TA=25èC  
RL=32W  
-20  
-40  
2
1
Vout=0.1Vrms  
0.5  
0.2  
0.1  
-60  
-80  
0.05  
0.02  
0.01  
-100  
-120  
-140  
0.005  
Right to Left  
Left to Right  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D0310328  
D03023  
HPVDD = 3.3 V  
VO = 0.1 Vrms  
Load = 16 Ω  
HPVDD = 3.3 V  
VO = 1 Vrms  
Load = 32 Ω  
55. Crosstalk vs Frequency  
56. THD+N vs Frequency  
10  
0
HPVDD=3.3V  
TA=25èC  
RL=32W  
HPVDD=3.3V  
TA=25èC  
RL=32W  
5
-20  
-40  
2
1
Vout=1Vrms  
0.5  
0.2  
0.1  
-60  
-80  
0.05  
0.02  
0.01  
-100  
-120  
-140  
0.005  
Right to Left  
Left to Right  
0.002  
0.001  
f= 1kHz  
0.01  
0.1  
1
20  
100  
1k  
10k 20k  
Output Voltage (Vrms)  
Frequency (Hz)  
D30047  
D0310358  
HPVDD = 3.3 V  
f = 1 kHz  
Load = 32 Ω  
HPVDD = 3.3 V  
VO = 1 Vrms  
Load = 32 Ω  
57. THD+N vs Output Voltage  
58. Crosstalk vs Frequency  
20  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
7.7.5 Line Driver  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5807MDREF  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20 kHz brickwall filter. HPVDD = 3.3 V.  
All measurements taken with audio frequency set to 1 kHz.  
10  
5
10  
5
HPVDD=3.3V  
TA=25èC  
RL=5kW  
HPVDD=3.3V  
TA=25èC  
RL=5kW  
Vout=1Vrms  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
f= 1kHz  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
Frequency (Hz)  
Output Voltage (Vrms)  
D40002  
D04071  
HPVDD = 3.3 V  
VO = 1 Vrms  
Load = 5 kΩ  
HPVDD = 3.3 V  
f = 1 kHz  
Load = 5 kΩ  
59. THD+N vs Frequency  
60. THD+N vs Output Voltage  
0
10  
5
HPVDD=3.3V  
TA=25èC  
RL=5kW  
HPVDD=3.3V  
Vout=1Vrms  
TA=25èC  
RL=10kW  
-20  
-40  
2
1
Vout=1Vrms  
0.5  
0.2  
0.1  
-60  
-80  
0.05  
0.02  
0.01  
-100  
-120  
-140  
0.005  
Right to Left  
Left to Right  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D0410318  
D04023  
HPVDD = 3.3 V  
VO = 1 Vrms  
Load = 5 kΩ  
HPVDD = 3.3 V  
VO = 1 Vrms  
Load = 10 kΩ  
61. Crosstalk vs Frequency  
62. THD+N vs Frequency  
10  
HPVDD=3.3V  
TA=25èC  
RL=10kW  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
f= 1kHz  
0.01  
0.1  
1
Output Voltage (Vrms)  
D40047  
HPVDD = 3.3 V  
f = 1 kHz  
Load = 10 kΩ  
63. THD+N vs Output Voltage  
版权 © 2019, Texas Instruments Incorporated  
21  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
8 Parametric Measurement Information  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
64. Serial Audio Port Timing in Slave Mode  
Repeated  
START  
START  
STOP  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
65. I2C Communication Port Timing Diagram  
22  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9 Detailed Description  
9.1 Overview  
The TAS5806MD device integrates 5 main building blocks together into a single cohesive device that maximizes  
sound quality, flexibility, and easy of use. The 5 main building blocks are listed as follows:  
A stereo audio DAC.  
An Audio DSP subsystem.  
A flexible close-loop amplifier capable of operating in stereo or mono, at several different switching  
frequencies, and with a variety of output voltages and loads.  
An I2C control port for communication with the device  
An Integrated DirectpathTM Headphone amplifier and line driver  
The device requires only three power supplies for proper operation. A DVDD supply is required to power the low  
voltage digital circuitry. A HPVDD supply is required to power the charge pump for Headphone/Line driver.  
Another supply, called PVDD, is required to provide power to the output stage of the audio amplifier. Onel LDO  
converts PVDD to 5 V for AVDD and internal GVDD, another one converts DVDD to 1.5V for internal digital core.  
9.2 Functional Block Diagram  
4.5-26.4V  
3.3/1.8V  
DVDD  
VR_DIG  
AVDD  
PVDD1/2/3/4  
LDO 1.5V  
LDO 5V  
BST_A+  
Close Loop Feedback  
IO  
OUT_A+  
I2S/TDM  
ADR/FAULT  
OUT_A-  
BST_A-  
H Bridge  
&
Gate Driver  
&
PDN  
PDM  
Modulator  
SDIN  
SCLK  
LRCLK  
Digital to PWM  
Conversion  
BST_B-  
OC/DC Protect  
PLL & OSC  
OUT_B-  
SDOUT  
SCL  
BST_B+  
OUT_B+  
Audio DSP  
Subsystem  
& I2C Block  
SDA  
Close Loop Feedback  
Headphone control (By I2C Register)  
HPL_OUT  
HPR_OUT  
Charge Pump  
HP_GND PGND 1/2  
AGND  
DGND  
HPVSS CPP CPN  
HPVDD HPL_IN HPR_IN  
3.3 V  
版权 © 2019, Texas Instruments Incorporated  
23  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Power Supplies  
To facilitate system design, TAS5806MD needs only a 3.3-V or 1.8-V supply in addition to the (typical) 12 V or  
24 V power-stage supply. Two internal voltage regulators provide suitable voltage levels for the gate drive  
circuitry and internal circuitry. The external pins are provided only as a connection point for off-chip bypass  
capacitors to filter the supply. Connecting external circuitry to these regulator outputs may result in reduced  
performance and damage to the device. Additionally, all circuitry requiring a floating voltage supply, e.g., the  
high-side gate drive, is accommodated by built-in bootstrap circuitry requiring only a few external capacitors. In  
order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is  
designed as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins  
(BST_x). The gate drive voltages (AVDD) are derived from the PVDD voltage. Special attention should be paid to  
placing all decoupling capacitors as close to their associated pins as possible. In general, inductance between  
the power-supply pins and decoupling capacitors must be avoided. For a properly functioning bootstrap circuit, a  
small ceramic capacitor must be connected from each bootstrap pin (BST_x) to the power-stage output pin  
(OUT_x). When the power-stage output is low, the bootstrap capacitor is charged through an internal diode  
connected between the gate-drive regulator output pin (AVDD) and the bootstrap pin. When the power-stage  
output is high, the bootstrap capacitor potential is shifted above the output potential and thus provides a suitable  
voltage supply for the high-side gate driver.  
9.3.2 Device Clocking  
The TAS5806MD devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio  
Interface.  
LRCLK/FS  
DSPCLK  
OSRCLK  
DACCLK  
DSP  
(Including  
interpolator)  
Serial Audio  
Interface (Input)  
Delta Sigma  
Modulator  
DAC  
Audio In  
66. Audio Flow with Respective Clocks  
66 shows the basic data flow and clock Distribution.  
The Serial Audio Interface typically has 3 connection pins which are listed as follows:  
SCLK (Bit Clock)  
LRCLK/FS (Left/Right Word Clock and Frame Sync)  
SDIN (Input Data)  
The device has an internal PLL that is used to take SCLK and create the higher rate clocks required by the DSP  
and the DAC clock.  
The TAS5806MD device has an audio sampling rate detection circuit that automatically senses which frequency  
the sampling rate is operating. Common audio sampling frequencies of 32 kHz, 44.1kHz – 48 kHz, 88.2 kHz – 96  
kHz are supported. The sampling frequency detector sets the clock for DAC and DSP automatically.  
9.3.3 Serial Audio Port – Clock Rates  
The serial audio interface port is a 3-wire serial port with the signals LRCLK/FS , SCLK , and SDIN. SCLK is the  
serial audio bit clock, used to clock the serial data present on SDIN into the serial shift register of the audio  
interface. Serial data is clocked into the TAS5806MD device on the rising edge of SCLK. The LRCK/FS pin is the  
serial audio left/right word clock or frame sync when the device is operated in TDM Mode.  
1. Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCLK/FS FREQUENCY  
FORMAT  
DATA BITS  
SCLK RATE (fS)  
(kHz)  
I2S/LJ/RJ  
32, 24, 20, 16  
32 to 96  
64, 32  
24  
版权 © 2019, Texas Instruments Incorporated  
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Feature Description (接下页)  
1. Audio Data Formats, Bit Depths and Clock Rates (接下页)  
MAXIMUM LRCLK/FS FREQUENCY  
(kHz)  
FORMAT  
DATA BITS  
SCLK RATE (fS)  
32  
44.1,48  
96  
128  
TDM  
32, 24, 20, 16  
128,256,512  
128,256  
Before DSP register initialize with I2C during the startup , TAS5806MD requires stable I2S ready. When Clock  
halt, non-supported SCLK to LRCLK(FS) ratio is detected, the device reports Clock Error in Register 113  
(Register Address 0x71).  
9.3.4 Clock Halt Auto-recovery  
As some of host processor will Halt the I2S clock when there is no audio playing. When Clock halt, the device  
puts all channels into the Hi-Z state and reports Clock Error in Register 113 (Register Address 0x71). After audio  
clocks recovery, the device automatically returns to the previous state.  
9.3.5 Sample Rate on the Fly Change  
TAS5806MD supports LRCLK(FS) rate on the fly change. For example, change LCRLK from 32kHz to 48kHz or  
96kHz, Host processor needs to put the LRCLK(FS)/SCLK to Halt state at least 100us before changing to the  
new sample rate.  
9.3.6 Serial Audio Port - Data Formats and Bit Depths  
The device supports industry-standard audio data formats, including standard I2S, left-justified, right-justified and  
TDM/DSP data. Data formats are selected via Register (P0-R51-D[5:4]). If the high width of LRCK/FS in  
TDM/DSP mode is less than 8 cycles of SCK, the register (P0-R51-D[3:2]) should set to 01. All formats require  
binary two's complement, MSB-first audio data; up to 32-bit audio data is accepted. All the data formats, word  
length and clock rate supported by this device are shown in Table 1. The data formats are detailed in Figure 1  
through Figure 6. The word length are selected via Register (P0-R51-D[1:0]). The offsets of data are selected via  
Register (P0-R51-D[7]) and Register (P0-R52-D[7:0]). Default setting is I2S and 24 bit word length.  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
1
1
2
2
2
15 16  
MSB  
LSB  
MSB  
MSB  
MSB  
LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
23 24  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
31 32  
MSB  
LSB  
LSB  
67. Left Justified Audio Data Format  
版权 © 2019, Texas Instruments Incorporated  
25  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
1 tS  
LRCLK/FS  
Right-channel  
Left-channel  
SCLK  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
1
1
2
2
2
15 16  
MSB LSB  
MSB LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
23 24  
MSB  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
31 32  
MSB  
MSB  
LSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
68. I2S Audio Data Format  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
2
15 16  
MSB LSB  
MSB LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
1
2
23 24  
MSB  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
1
2
31 32  
MSB  
MSB  
LSB  
LSB  
Right-Justified Data Format; L-channel = HIGH, R-channel = LOW  
Right Justified Data Format; L-channel = HIGH, R-channel = LOW  
69. Right Justified Audio Data Format  
26  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
1 /fS .  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
-
,
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
70. TDM 1 Audio Data Format  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
71. TDM 2 Audio Data Format  
版权 © 2019, Texas Instruments Incorporated  
27  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
The I2S slave timing is shown in .  
9.3.7 Digital Audio Processing  
TAS5806MD DSP has ROM fixed process flows which are same with TAS5805M for different applications, refer  
to application note, TAS5805M Process Flows for details.  
9.3.8 Class D Audio Amplifier  
Following the digital clipper, the interpolated audio data is next sent to the Closed Loop Class-D amplifier, whose  
first stage is Digital to PWM Conversion (DPC) block. In this block, the stereo audio data is translated into two  
pairs of complimentary pulse width modulated (PWM) signals which are used to drive the outputs of the speaker  
amplifier. Feedback loops around the DPC ensure constant gain across supply voltages, reduce distortion, and  
increase immunity to power supply injected noise and distortion. The analog gain is also applied in the Class-D  
amplifier section of the device.  
9.3.8.1 Speaker Amplifier Gain Select  
A combination of digital gain and analog gain is used to provide the overall gain of the speaker amplifier. As seen  
in 72, the audio path of the TAS5806MD consists of a digital audio input port, a digital audio path, a digital to  
PWM converter (DPC), a gate driver stage, a Class D power stage, and a feedback loop which feeds the output  
information back into the DPC block to correct for distortion sensed on the output pins. The total amplifier gain is  
comprised of digital gain, shown in the digital audio path and the analog gain from the input of the analog  
modulator to the output of the speaker amplifier power stage.  
Analog Gain  
Analog Gain  
Digital Gain  
Digital Gain  
Closed Loop Class D Amplifier  
Closed Loop Class D Amplifier  
SPK_OUTA+  
SPK_OUTA+  
Full Bridge Power  
Full Bridge Power  
Stage  
A
A
Stage  
Gate  
Gate  
Drivers  
Drivers  
SPK_OUTA-  
SPK_OUTA-  
Serial  
Serial  
Audio Processing  
Audio Processing  
(Flexible Audio Process Flows)  
(Flexible Audio Process Flows)  
Serial  
Serial  
Audio In  
Audio In  
Digital to PWM  
Digital to PWM  
Conversion  
Conversion  
Audio  
Audio  
Port  
Port  
SPK_OUTB+  
SPK_OUTB+  
Gate  
Gate  
Drivers  
Drivers  
Full Bridge Power  
Full Bridge Power  
Stage  
Stage  
B
B
SPK_OUTB-  
SPK_OUTB-  
SCL  
I2C Interface  
I2C Interface  
Control Register  
Control Register  
Closed Loop Class D Amplifier  
Closed Loop Class D Amplifier  
SDA  
Copyright © 2017, Texas Instruments Incorporated  
Copyright © 2017, Texas Instruments Incorporated  
72. Speaker Amplifier Gain  
As shown in 72, the first gain stage for the speaker amplifier is present in the digital audio path. It consists of  
the volume control and the digital boost block. The volume control is set to 0dB by default, it does not change.  
For all settings of the register 0x54, AGAIN[4:0], the digital boost block remains at 0 dB. These gain settings  
ensure that the output signal is not clipping at different PVDD levels. 0dBFS output is 29.5-V peak output voltage  
2. Analog Gain Setting  
AGAIN <4:0>  
00000  
GAIN (dBFS)  
AMPLIFIER OUTPUT PEAK VOLTAGE (V)  
0
29.5  
27.85  
…….  
4.95  
00001  
-0.5  
…….  
……..  
-15.5  
11111  
28  
版权 © 2019, Texas Instruments Incorporated  
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.4 Device Functional Modes  
9.4.1 Software Control  
The TAS5806MD device is configured via an I2 C communication port.  
The I2C Communication Protocol is detailed in the I2C Communication Port section. The I2C timing requirements  
are described in the I2C Bus Timing – Standard and I2C Bus Timing – Fast sections.  
9.4.2 Speaker Amplifier Operating Modes  
The TAS5806MD device can be used in two different amplifier configurations:  
BTL Mode  
PBTL Mode  
9.4.2.1 BTL Mode  
In BTL mode , the TAS5806MD device amplifies two independent signals, which represent the left and right  
portions of a stereo signal. The amplified left signal is presented on differential output pair shown as OUT_A+  
and OUT_A-, the amplified right signal is presented on differential output pair shown as OUT_B+ and OUT_B-.  
9.4.2.2 PBTL Mode  
The PBTL mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the device. On the output side of the  
TAS5806MD device, the summation of the devices can be done before the filter in a configuration called Pre-  
Filter Parallel Bridge Tied Load (PBTL). However, the two outputs can be required to merge together after the  
inductor portion of the output filter. Doing so does require two additional inductors, but allows smaller, less  
expensive inductors to be used because the current is divided between the two inductors. The process is called  
Post-Filter PBTL. On the input side of the TAS5806MD device, the input signal to the PBTL amplifier is left frame  
of I2S or TDM data.  
9.4.3 Low EMI Modes  
TAS5806MD employs several modes to minimize EMI during playing audio, and they can be used based on  
different applications.  
9.4.3.1 Minimize EMI with Spread Spectrum  
This device supports spread spectrum with triangle mode, Spread spectrum is used to minimize the EMI noise.  
User need configure register SS_CTRL0 (0x6B) to Enable triangle mode and enable spread spectrum, and  
select spread spectrum frequency and range with SS_CTRL1 (0x6C). For 384kHz FSW which configured by  
DEVICE_CTRL1 (0x02), the spread spectrum frequency and range are described in Table 3.  
3. Spread Spectrum Setting  
SS_TRI_CTR  
0
1
2
3
4
5
6
7
L[3:0]  
Triangle Freq  
24k  
48k  
Spread  
Spectrum  
Range  
5%  
10%  
20%  
25%  
5%  
10%  
20%  
25%  
User Application example-Central Switching Frequency is 384kHz, Triangle Frequency is 24kHz, take I2C device  
address 0x58 as an example:  
w 58 6b 03 //Enable Spread Spectrum.  
w 58 6c 03 //SS_TRI_CTRL[3:0]0011, Triangle Frequency = 24kHz, Spread Spectrum Range should be 25%  
(336kHz~432kHz).  
9.4.3.2 Channel to Channel Phase shift  
This device support channel to channel 180 degree PWM phase shift to minimize the EMI.  
版权 © 2019, Texas Instruments Incorporated  
29  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.4.3.3 Multi-Devices PWM Phase Synchronization  
This device support up to 4 phases selection for the multi devices application system. For example, when a  
system integrated 4 devices, user can select phase 0/1/2/3 for each device by register PHASE_CTRL (0x6A),  
which means there is a 45 degree phase shift between each device to minimize the EMI.  
Recommend to do the Phase Synchronization with I2S clock during the Startup Phase.  
1. Halt I2S clock.  
2. Configure each device phase selection and enable the phase synchronization. For example: Register 0x6A =  
0x03 for device 0; Register 0x6A = 0x07 for device 1; Register 0x6A = 0x0B for device 2; Register 0x6A =  
0x0F for device 3. There should be a 45 degree PWM phase shift between each device to minimize the EMI.  
3. Configure each device into HIZ mode.  
4. Provide I2S to each device. Phase synchronization for all 4 devices will be automatically done by internal  
sequence.  
5. Initialize the DSP code. (This step can be skipped if only need to do the PWM Phase Synchronization).  
6. Device to Device PWM phase shift should be fixed with 45 degree.  
9.4.4 Thermal Foldback  
The Thermal Foldback (TFB), is designed to protect TAS5806MD from excessive die temperature increases, in  
case the device operates beyond the recommended temperature/power limit, or with a weaker thermal system  
design than recommended. It allows the TAS5806MD to play as loud as possible without triggering unexpected  
thermal shutdown. When the die temperature triggers the over-temperature warning (OTW) level (135C typ), an  
internal AGL (Automatic Gain Limiter) will reduce the digital gain automatically. Once the die temperature drops  
below the OTW, the device’s digital gain gradually returns to the former setting. Both the attenuation gain and  
adjustable rate are programmable. The TFB gain regulation speed (attack rate and release rate) settings are the  
same as a regular AGL, which is also configurable with TAS5806MD App in PurePathTM Console3.  
9.4.5 Headphone Control  
TAS5806MD supports Headphone/Line driver control with I2C command which includes Headphone/Line driver  
gain control and Mute/Shutdown control.  
Register 0x77,  
Bit[7:3] HP_GAIN  
Register 0x77, Bit[2] HP_MUTEZ  
Register 0x77, Bit[1] HP_SDZ  
Headphone/Line  
Out  
Headphone/Line  
Input  
Headphone/Line Driver Gain  
(0dB~24dB, 1dB/Step)  
Headphone/Line Driver  
Mute /Shutdown  
73. Headphone/Line driver control with I2C  
9.4.6 Device State Control  
TAS5806MD has 5 states with different power dissipation which listed in the Electrical Characteristics Table.  
Shutdown Mode. With PDN pin pull down to GND. All internal LDOs (1.5V for digital core, 5V for analog) are  
disabled, all registers will be cleared to default value.  
Exit from Shutdown Mode and re-enter into Play mode, need reload all register  
configurations (which generated by PurePath Console3) again.  
Deep Sleep Mode. Deep Sleep Mode. Register 0x03h -D[1:0]=00, device stays in Deep Sleep Mode. In this  
mode, I2C block and 1.5V LDO for digital core still working, but internal 5V LDO (For AVDD and MOSFET  
gate driver) is disabled for low power dissipation. This mode can be used to extend the battery life in some  
portable speaker applications. If the host processor stops playing audio for a long time, TAS5806MD can be  
set to Deep Sleep Mode to minimize power dissipation until host processor starts playing audio again. Unlike  
the Shutdown Mode (Pulling PDN Low), entering or exiting Deep Sleep Mode, the DSP keeps active.  
Sleep Mode. Register 0x03h -D[1:0]=01, device stays in Sleep Mode. In this mode, I2C block, Digital core,  
DSP Memory , 5V Analog LDO are stilling working. Unlike the Shutdown Mode (Pull PDN Low), enter or exit  
30  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Sleep Mode, DSP keeps active. Exit from this mode and re-enter into play mode, only need to set Register  
0x03h -D[1:0]=11.  
Output Hiz Mode. Register 0x03h -D[1:0]=10, device stays in Hiz Mode. In this mode, only output driver is set  
to be Hi-Z state, all other block operate normally. Exit from this mode and re-enter into play mode, only need  
to set Register 0x03h -D[1:0]=11.  
Play Mode. Register 0x03h -D[1:0]=11, device stays in Play Mode.  
9.4.7 Device Modulation  
TAS5806MD has 3 modulation schemes: BD Modulation, 1SPW modulation and Hybrid modulation. Select  
modulation schemes for with Register 0x02 [1:0]-DAMP_MOD.  
9.4.7.1 BD Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0 V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
版权 © 2019, Texas Instruments Incorporated  
31  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
0V  
-
OUTP OUTN  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
74. BD Mode Modulation  
9.4.7.2 1SPW Modulation  
The 1SPW mode alters the normal modulation scheme in order to achieve higher efficiency with a slight penalty  
in THD degradation and more attention required in the output filter selection. In Low Idle Current mode the  
outputs operate at ~14% modulation during idle conditions. When an audio signal is applied one output will  
decrease and one will increase. The decreasing output signal will quickly rail to GND at which point all the audio  
modulation takes place through the rising output. The result is that only one output is switching during a majority  
of the audio cycle. Efficiency is improved in this mode due to the reduction of switching losses.  
32  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
OUTP-OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
-PVCC  
OUTP  
-OUTN  
0
A
Speaker  
Current  
75. 1SPW Mode Modulation  
9.4.7.3 Hybrid Modulation  
Hybrid Modulation is designed for minimized power loss without compromising the THD+N performance, and is  
optimized for battery-powered applications. With Hybrid modulation, TAS5806MD will detect the input signal level  
and adjust PWM duty cycle dynamically based on PVDD. Hybrid modulation achieves ultra low idle current and  
maintains the same audio performance level as the Hybrid Modulation.  
To use the Hybrid Modulation, users need to enter the system's PVDD value on the  
TAS5806MD PPC3 App.  
版权 © 2019, Texas Instruments Incorporated  
33  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.5 Programming and Control  
9.5.1 I2 C Serial Communication Bus  
The device has a bidirectional serial control interface that is compatible with the I2C bus protocol and supports  
100 and 400-kHz data transfer rates for random and sequential write and read operations as a slave device.  
Because the TAS5806MD register map and DSP memory spans multi pages, the user should change from page  
to page before writing individual register or DSP memory. Changing from page to page is accomplished via  
register 0 on each page. This register value selects the page address, from 0 to 255.  
9.5.2 Slave Address  
The TAS5806MD device has 7 bits for the slave address. The first five bits (MSBs) of the slave address are  
factory preset to 01011(0x5x). The next two bits of address byte are the device select bits which can be user-  
defined by ADR/FAULT pin in 4.  
4. I2 C Slave Address Configuration  
ADR/FAULT PIN  
MSBs  
User Define  
LSB  
Configuration  
4.7k to DVDD  
15kto DVDD  
47kto DVDD  
120kto DVDD  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
R/W  
R/W  
R/W  
R/W  
9.5.2.1 Random Write  
As shown in 76, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C device address and the  
read/write bit, the device responds with an acknowledge bit. Next, the master transmits the address byte  
corresponding to the internal memory address being accessed. After receiving the address byte, the device  
again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the  
memory address being accessed. After receiving the data byte, the device again responds with an acknowledge  
bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
76. Random Write Transfer  
9.5.2.2 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in 77. After receiving each data byte, the device responds  
with an acknowledge bit and the I2 subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
A4 A3  
A0  
ACK  
A1  
R/W ACK  
A6 A5  
ACK  
ACK  
ACK  
D0  
A6  
A7  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
77. Sequential Write Transfer  
34  
版权 © 2019, Texas Instruments Incorporated  
 
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.5.2.3 Random Read  
As shown in 78, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte of the internal memory address to be  
read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the device responds  
with an acknowledge bit. In addition, after sending the internal memory address byte, the master device transmits  
another start condition followed by the address and the read/write bit again. This time the read/write bit is a 1,  
indicating a read transfer. After receiving the address and the read/write bit, the device again responds with an  
acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving  
the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the  
single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
78. Random Read Transfer  
版权 © 2019, Texas Instruments Incorporated  
35  
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.5.2.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the master device as shown in 79. Except for the last data byte, the master  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C sub  
address by one. After receiving the last data byte, the master device transmits a not-acknowledge followed by a  
stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
79. Sequential Read Transfer  
9.5.2.5 DSP Memory Book, Page and BQ update  
The TAS5806MD device supports the I2C serial bus and the data transmission protocol for standard and fast  
mode as a slave device.  
The DSP memory is arranged in books, pages, and registers. Each book has several pages and each page has  
several registers.  
Because the TAS5806MD register map spans several books and pages, the user must select the correct book  
and page before writing individual register bits or bytes.  
To change the book, the user must be on page 0x00. In register 0x7f on page 0x00 you can change the book.  
On page 0x00 of each book, register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a book first write 0x00 to register 0x00 to switch to page 0 then write the book  
number to register 0x7f on page 0. To change between pages in a book, simply write the page number to  
register 0x00.  
All the Biquad Filters coefficients are addressed in Book 0xAA. The five coefficients of every Biquad Filter should  
be written entirely and sequentially from the lowest address to the highest.  
All DSP/Audio Process Flow Related Register are listed in Application Note, TAS5805M Process Flows  
9.5.2.6 Example Use  
Example 1, The following is a sample script for configuring a device on I2C slave address 0x58 and set the  
device switching frequency to 768kHz with Class D loop bandwidth to 175kHz, 1SPW Modulation:  
w 58 00 00 #Go to Page0  
w 58 7f 00 #Change the Book to 0x00  
w 58 00 00 #Go to Page 0x00  
w 58 02 01 #Set switching frequency to 768kHz with 1SPW Modulation  
w 58 53 60 #Set Class D Loop Bandwidth to 175kHz  
Example 2, The following is a sample script for configuring a device on I2C slave address 0x58 and using the  
DSP host memory to change the digital volume to the default value of 0dB:  
w 58 00 00 #Go to Page 0  
w 58 7f 8c #Change the Book to 0x8C  
w 58 00 2a #Go to Page 0x2a  
w 58 24 00 80 00 00 #change digital volume to 0dB  
36  
版权 © 2019, Texas Instruments Incorporated  
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.5.2.7 Checksum  
This device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum and an  
Exclusive (XOR) checksum. Register reads do not change checksum, but writes to even nonexistent registers  
will change the checksum. Both checksums are 8-bit checksums and both are available together simultaneously.  
The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00) to their respective 4-byte register  
locations.  
9.5.2.7.1 Cyclic Redundancy Check (CRC) Checksum  
The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell  
delineation, (1 + x1 + x2 + x8)). A major advantage of the CRC checksum is that it is input order sensitive. The  
CRC supports all I2C transactions, excluding book and page switching. The CRC checksum is read from register  
0x7E on page0 of any book (B_x, Page_0, Reg_126). The CRC checksum can be reset by writing 0x00 to the  
same register locations where the CRC checksum is valid.  
9.5.2.7.2 Exclusive or (XOR) Checksum  
The Xor checksum is a simpler checksum scheme. It performs sequential XOR of each register byte write with  
the previous 8-bit checksum register value. XOR supports only Book 0x8C, and excludes page switching and all  
registers in Page 0x00 of Book 0x8C. XOR checksum is read from location register 0x7D on page 0x00 of book  
0x8C (B_140, Page_0, Reg_125). The XOR Checksum can be reset by writing 0x00 to the same register  
location where it is read.  
版权 © 2019, Texas Instruments Incorporated  
37  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.5.3 Control via Software  
Startup Procedures  
Shutdown Procedures  
9.5.3.1 Startup Procedures  
1. Configure ADR/FAULT pin with proper setting for I2C device address.  
2. Bring up power supplies (it does not matter if PVDD or DVDD comes up first).  
3. Once power supplies are stable, bring up PDN to High and wait 5ms at least, then start SCLK, LRCLK. .  
4. Once I2S clocks are stable, set the device into HiZ state and enable DSP via the I2C control port.  
5. Wait 5ms at least. Then initialize the DSP Coefficient, then set the device to Play state.  
6. The device is now in normal operation.  
Initialization  
Normal Oper  
ation  
DVDD  
PVDD  
PDN  
0 ns  
0 ns  
0 ns  
5ms  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2C  
Set to HiZ state  
(Enable DSP)  
DSP Coeff  
Play  
Deep sleep  
5 ms for device settle down  
80. Start-up Sequence  
9.5.3.2 Shutdown Procedures  
1. The device is in normal operation.  
2. Configure the Register 0x03h -D[1:0]=10 (Hi-Z) via the I2C control port or Pull PDN low.  
3. Wait at least 6 ms (this time depends on the LRCLK/FS rate ,digital volume and digital volume ramp down  
rate).  
4. Bring down power supplies.  
5. The device is now fully shutdown and powered off.  
38  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
PDN  
6ms  
4.5V  
0ms  
PVDD  
DVDD  
I2C  
6ms  
I2C  
I2C  
I2C  
Output Hiz  
(1) Before PVDD/DVDD power down, Class D Output driver needs to be disabled by PDN or by I2C.  
(2) At least 6 ms delay needed based on LRCLK (Fs) = 48 kHz. Digital volume ramp down update every sample period,  
decreased by 0.5 dB for each update, digital volume = 24 dB. Change the value of register 0x4C and 0x4E or change  
the LRCLK rate, the delay changes.  
81. Power-down Sequence  
9.5.3.3 Protection and Monitoring  
9.5.3.3.1 Overcurrent Shutdown (OCSD)  
Under severe short-circuit event, such as a short to PVDD or ground, the device uses a peak-current detector,  
and the affected channel shuts down in < 100 ns if the peak current are enough. The shutdown speed depends  
on a number of factors, such as the impedance of the short circuit, supply voltage, and switching frequency. The  
user may restart the affected channel via I2C. An OCSD event activates the fault pin, and the I2 fault register  
saves a record. If the supply or ground short is strong enough to exceed the peak current threshold but not  
severe enough to trigger the OSCD, the peak current limiter prevents excess current from damaging the output  
FETs, and operation returns to normal after the short is removed.  
9.5.3.3.2 DC Detect  
If the TAS5806MD device measures a DC offset in the output voltage, the FAULTZ line is pulled low and the  
OUTxx outputs transition to high impedance, signifying a fault.  
版权 © 2019, Texas Instruments Incorporated  
39  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6 Register Maps  
9.6.1 CONTROL PORT Registers  
Table 5 lists the memory-mapped registers for the CONTROL PORT. All register offset addresses not listed in  
Table 5 should be considered as reserved locations and the register contents should not be modified.  
Table 5. CONTROL PORT Registers  
Offset  
1h  
Acronym  
Register Name  
Register 1  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
RESET_CTRL  
DEVICE_CTRL_1  
DEVICE_CTRL_2  
I2C_PAGE_AUTO_INC  
SIG_CH_CTRL  
CLOCK_DET_CTRL  
SDOUT_SEL  
2h  
Register 2  
3h  
Register 3  
Fh  
Register 15  
Register 40  
Register 41  
Register 48  
Register 49  
Register 51  
Register 52  
Register 53  
Register 55  
Register 56  
Register 57  
Register 58  
Register 76  
Register 78  
Register 79  
Register 80  
Register 81  
Register 83  
Register 84  
Register 92  
Register 93  
Register 96  
Register 97  
Register 102  
Register 103  
Register 104  
Register 105  
Register 106  
Register 107  
Register 108  
Register 109  
Register 110  
Register 111  
Register 112  
Register 113  
Register 114  
Register 115  
Register 116  
Register 117  
28h  
29h  
30h  
31h  
33h  
34h  
35h  
37h  
38h  
39h  
40h  
4Ch  
4Eh  
4Fh  
50h  
51h  
53h  
54h  
5Ch  
5Dh  
60h  
61h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
I2S_CTRL  
SAP_CTRL1  
SAP_CTRL2  
SAP_CTRL3  
FS_MON  
BCK_MON  
CLKDET_STATUS  
CHANNEL_FORCE_HIZ  
DIG_VOL_CTRL  
DIG_VOL_CTRL2  
DIG_VOL_CTRL3  
AUTO_MUTE_CTRL  
AUTO_MUTE_TIME  
ANA_CTRL  
AGAIN  
BQ_WR_CTRL1  
DAC_CTRL  
ADR_PIN_CTRL  
ADR_PIN_CONFIG  
DSP_MISC  
DIE_ID  
POWER_STATE  
AUTOMUTE_STATE  
PHASE_CTRL  
SS_CTRL0  
SS_CTRL1  
SS_CTRL2  
SS_CTRL3  
SS_CTRL4  
CHAN_FAULT  
GLOBAL_FAULT1  
GLOBAL_FAULT2  
OT WARNING  
PIN_CONTROL1  
PIN_CONTROL2  
40  
Copyright © 2019, Texas Instruments Incorporated  
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Table 5. CONTROL PORT Registers (continued)  
Offset  
76h  
Acronym  
Register Name  
Register 118  
Register 119  
Register 120  
Section  
Go  
MISC_CONTROL  
HP_CONTROL  
FAULT_CLEAR  
77h  
Go  
78h  
Go  
Complex bit access types are encoded to fit into small table cells. Table 6 shows the codes that are used for  
access types in this section.  
Table 6. CONTROL PORT Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2019, Texas Instruments Incorporated  
41  
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.1 RESET_CTRL Register (Offset = 1h) [reset = 0x00]  
RESET_CTRL is shown in Figure 82 and described in Table 7.  
Return to Summary Table.  
Figure 82. RESET_CTRL Register  
7
6
5
4
RST_MOD  
W
3
2
RESERVED  
R
1
0
RST_REG  
W
RESERVED  
R/W  
Table 7. RESET_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
RST_MOD  
R/W  
000  
This bit is reserved  
W
0
WRITE CLEAR BIT  
Reset Modules  
WRITE CLEAR BIT Reset full digital core This bit resets full digital  
signal chain (Include DSP and Control Port Registers). Since the  
DSP is also reset, the coeffient RAM content will also be cleared by  
the DSP.  
0: Normal  
1: Reset modules  
3-1  
0
RESERVED  
R
000  
0
This bit is reserved  
RST_CONTROL_REG  
W
WRITE CLEAR BIT  
Reset Registers  
This bit resets the control port registers back to their initial values.  
The RAM content is not cleared.  
0: Normal  
1: Reset control port registers  
42  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.2 DEVICE_CTRL_1 Register (Offset = 2h) [reset = 0x00]  
DEVICE_CTRL_1 is shown in Figure 83 and described in Table 8.  
Return to Summary Table.  
Figure 83. DEVICE_CTRL_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
FSW_SEL  
R/W  
RESERVED  
R/W  
DAMP_PBTL  
R/W  
DAMP_MOD  
R/W  
Table 8. DEVICE_CTRL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
FSW_SEL  
R/W  
0
This bit is reserved  
6-4  
R/W  
000  
SELECT FSW  
000:768K  
001:384K  
011:480K  
100:576K  
010:Reserved  
101:Reserved  
110:Reserved  
111:Reserved  
3
2
RESERVED  
DAMP_PBTL  
R/W  
R/W  
0
0
This bit is reserved  
0: SET DAMP TO BTL MODE  
1: SET DAMP TO PBTL MODE  
1-0  
DAMP_MOD  
R/W  
00  
00:BD MODE  
01:1SPW MODE  
10:HYBRID MODE  
Copyright © 2019, Texas Instruments Incorporated  
43  
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.3 DEVICE_CTRL_2 Register (Offset = 3h) [reset = 0x10]  
DEVICE_CTRL_2 is shown in Figure 84 and described in Table 9.  
Return to Summary Table.  
Figure 84. DEVICE_CTRL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DIS_DSP  
R/W  
MUTE  
R/W  
RESERVED  
R/W  
CTRL_STATE  
R/W  
Table 9. DEVICE_CTRL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
DIS_DSP  
R/W  
000  
This bit is reserved  
DSP reset  
R/W  
1
When the bit is made 0, DSP will start powering up and send out  
data. This needs to be made 0 only after all the input clocks are  
settled so that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
3
MUTE  
R/W  
0
Mute Both Left /Right Channel  
This bit issues soft mute request for the left/right channel. The  
volume will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
2
RESERVED  
R/W  
R/W  
0
This bit is reserved  
1-0  
CTRL_STATE  
00  
Device state control register  
00: Deep Sleep  
01: Sleep  
10: Hiz (Set both A channel and B channel to Hiz)  
Notes: For separate channel Hiz, see details in Table 21  
11: PLAY  
44  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.4 I2C_PAGE_AUTO_INC Register (Offset = Fh) [reset = 0x00]  
I2C_PAGE_AUTO_INC is shown in Figure 85 and described in Table 10.  
Return to Summary Table.  
Figure 85. I2C_PAGE_AUTO_INC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
PAGE_AUTOIN  
C_REG  
RESERVED  
R/W  
R/W  
Table 10. I2C_PAGE_AUTO_INC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R/W  
0000  
This bit is reserved  
PAGE_AUTOINC_REG  
R/W  
0
Page auto increment disable  
Disable page auto increment mode for non -zero books. When end  
of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0th location of current  
page itself like in older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2-0  
RESERVED  
R/W  
000  
This bit is reserved  
9.6.1.5 SIG_CH_CTRL Register (Offset = 28h) [reset = 0x00]  
SIG_CH_CTRL is shown in Figure 86 and described in Table 11.  
Return to Summary Table.  
Figure 86. SIG_CH_CTRL Register  
7
6
5
4
3
2
1
0
BCK_RATIO_CONFIGURE  
R/W  
FS_MODE  
R/W  
Table 11. SIG_CH_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BCK_RATIO_CONFIGUR R/W  
E
0000  
These bits indicate the configured BCK ratio, the number of BCK  
clocks in one audio frame.  
0011: 32FS  
0101: 64FS  
0111: 128FS  
1001: 256FS  
1011: 512FS  
3-0  
FS_MODE  
R/W  
0000  
FS Speed Mode These bits select the FS operation mode, which  
must be set according to the current audio sampling rate.  
0000: Auto detection  
0110: 32KHz  
1000: 44.1KHz  
1001: 48KHz  
1010: 88.2KHz  
1011: 96KHz  
Others Reserved  
Copyright © 2019, Texas Instruments Incorporated  
45  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.6 CLOCK_DET_CTRL Register (Offset = 29h) [reset = 0x00]  
CLOCK_DET_CTRL is shown in Figure 87 and described in Table 12.  
Return to Summary Table.  
Figure 87. CLOCK_DET_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
DIS_DET_PLL DIS_DET_BCL DIS_DET_FS DIS_DET_BCL DIS_DET_MIS  
RESERVED  
RESERVED  
K_RANGE  
K
S
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 12. CLOCK_DET_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6
DIS_DET_PLL  
R/W  
0
Ignore PLL overate Detection  
This bit controls whether to ignore the PLL overrate detection. The  
PLL must be slow than 150MHz or an error will be reported. When  
ignored, a PLL overrate error will not cause a clock error.  
0: Regard PLL overrate detection  
1: Ignore PLL overrate detection  
5
DIS_DET_BCLK_RANGE R/W  
0
Ignore BCK Range Detection  
This bit controls whether to ignore the BCK range detection. The  
BCK must be stable between 256KHz and 50MHz or an error will be  
reported. When ignored, a BCK range error will not cause a clock  
error.  
0: Regard BCK Range detection  
1: Ignore BCK Range detection  
4
3
DIS_DET_FS  
R/W  
R/W  
0
0
Ignore FS Error Detection  
This bit controls whether to ignore the FS Error detection. When  
ignored, FS error will not cause a clock error.But CLKDET_STATUS  
will report fs error.  
0: Regard FS detection  
1: Ignore FS detection  
DIS_DET_BCLK  
Ignore BCK Detection  
This bit controls whether to ignore the BCK detection against LRCK.  
The BCK must be stable between 32FS and 512FS inclusive or an  
error will be reported. When ignored, a BCK error will not cause a  
clock error.  
0: Regard BCK detection  
1: Ignore BCK detection  
2
DIS_DET_MISS  
R/W  
0
Ignore BCK Missing Detection  
This bit controls whether to ignore the BCK missing detection. When  
ignored an BCK missing will not cause a clock error.  
0: Regard BCK missing detection  
1: Ignore BCK missing detection  
1
0
RESERVED  
RESERVED  
R/W  
R/W  
0
0
This bit is reserved  
This bit is reserved  
9.6.1.7 SDOUT_SEL Register (Offset = 30h) [reset = 0h]  
SDOUT_SEL is shown in Figure 88 and described in Table 13.  
Return to Summary Table.  
Figure 88. SDOUT_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
SDOUT_SEL  
R/W  
46  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Table 13. SDOUT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
RESERVED  
0
This bit is reserved  
0
SDOUT_SEL  
R
0
SDOUT Select. This bit selects what is being output as SDOUT pin.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
Copyright © 2019, Texas Instruments Incorporated  
47  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.8 I2S_CTRL Register (Offset = 31h) [reset = 0x00]  
I2S_CTRL is shown in Figure 89 and described in Table 14.  
Return to Summary Table.  
Figure 89. I2S_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
BCK_INV  
R/W  
RESERVED  
RESERVED  
R
RESERVED  
R/W  
R/W  
R
Table 14. I2S_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
BCK_INV  
R/W  
00  
This bit is reserved  
BCK Polarity  
R/W  
0
This bit sets the inverted BCK mode. In inverted BCK mode, the  
DAC assumes that the LRCK and DIN edges are aligned to the  
rising edge of the BCK. Normally they are assumed to be aligned to  
the falling edge of the BCK.  
0: Normal BCK mode  
1: Inverted BCK mode  
4-0  
RESERVED  
R/W  
00000  
This bit is reserved  
48  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.9 SAP_CTRL1 Register (Offset = 33h) [reset = 0x02]  
SAP_CTRL1 is shown in Figure 90 and described in Table 15.  
Return to Summary Table.  
Figure 90. SAP_CTRL1 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT_MS  
B
RESERVED  
DATA_FORMAT  
I2S_LRCLK_PULSE  
WORD_LENGTH  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 15. SAP_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2S_SHIFT_MSB  
RESERVED  
R/W  
0
I2S Shift MSB  
6
R/W  
R/W  
0
This bit is reserved  
I2S Data Format  
5-4  
DATA_FORMAT  
00  
These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: TDM/DSP  
10: RTJ  
11: LTJ  
3-2  
1-0  
I2S_LRCLK_PULSE  
WORD_LENGTH  
R/W  
R/W  
00  
10  
01: lrclk pulse < 8 SCLK. If the high width of LRCLK/FS in TDM/DSP  
mode is less than 8 cycles of SCK, these two bits need set to 01.  
I2S Word Length  
These bits control both input and output audio interface sample word  
lengths for DAC operation.  
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
9.6.1.10 SAP_CTRL2 Register (Offset = 34h) [reset = 0x00]  
SAP_CTRL2 is shown in Figure 91 and described in Table 16.  
Return to Summary Table.  
Figure 91. SAP_CTRL2 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT  
R/W  
Table 16. SAP_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
I2S_SHIFT  
Type  
Reset  
Description  
R/W  
00000000  
I2S Shift LSB  
These bits control the offset of audio data in the audio frame for both  
input and output. The offset is defined as the number of BCK from  
the starting (MSB) of audio frame to the starting of the desired audio  
sample.  
000000000: offset = 0 BCK (no offset)  
000000001: ofsset = 1 BCK  
000000010: offset = 2 BCKs  
and  
111111111: offset = 512 BCKs  
Copyright © 2019, Texas Instruments Incorporated  
49  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.11 SAP_CTRL3 Register (Offset = 35h) [reset = 0x11]  
SAP_CTRL3 is shown in Figure 92 and described in Table 17.  
Return to Summary Table.  
Figure 92. SAP_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
LEFT_DAC_DPATH  
R/W  
RESERVED  
R/W  
RIGHT_DAC_DPATH  
R/W  
Table 17. SAP_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
RESERVED  
R/W  
00  
This bit is reserved  
LEFT_DAC_DPATH  
R/W  
01  
Left DAC Data Path. These bits control the left channel audio data  
path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
3-2  
1-0  
RESERVED  
R/W  
R/W  
00  
01  
This bit is reserved  
RIGHT_DAC_DPATH  
Right DAC Data Path. These bits control the right channel audio  
data path connection.  
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
50  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.12 FS_MON Register (Offset = 37h) [reset = 0x00]  
FS_MON is shown in Figure 93 and described in Table 18.  
Return to Summary Table.  
Figure 93. FS_MON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
BCLK_RATIO_HIGH  
R
FS  
R
Table 18. FS_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-0  
RESERVED  
BCLK_RATIO_HIGH  
FS  
R/W  
00  
This bit is reserved  
2 msbs of detected BCK ratio  
R
R
00  
0000  
These bits indicate the currently detected audio sampling rate.  
0000: FS Error  
0110: 32KHz  
1000: Reserved  
1001: 48KHz  
1011: 96KHz  
Others Reserved  
9.6.1.13 BCK_MON Register (Offset = 38h) [reset = 0x00]  
BCK_MON is shown in Figure 94 and described in Table 19.  
Return to Summary Table.  
Figure 94. BCK_MON Register  
7
6
5
4
3
2
1
0
BCLK_RATIO_LOW  
R
Table 19. BCK_MON Register Field Descriptions  
Bit  
7-0  
Field  
BCLK_RATIO_LOW  
Type  
Reset  
Description  
R
00000000  
These bits indicate the currently detected BCK ratio, the number of  
BCK clocks in one audio frame.  
BCK = 32 FS~512 FS  
Copyright © 2019, Texas Instruments Incorporated  
51  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.14 CLKDET_STATUS Register (Offset = 39h) [reset = 0x00]  
CLKDET_STATUS is shown in Figure 95 and described in Table 20.  
Return to Summary Table.  
Figure 95. CLKDET_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DET_STATUS  
R
Table 20. CLKDET_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R/W  
00  
This bit is reserved  
5
4
3
DET_STATUS  
DET_STATUS  
DET_STATUS  
R
R
R
0
0
0
This bit indicates whether the BCLK is overrate or underrate  
This bit indicates whether the PLL is overrate  
This bit indicates whether the PLL is locked or not. The PLL will be  
reported as unlocked when it is disabled.  
2
1
DET_STATUS  
DET_STATUS  
R
R
0
0
This bit indicates whether the BCK is missing or not.  
This bit indicates whether the BCK is valid or not. The BCK ratio  
must be stable and in the range of 32-512FS to be valid.  
0
DET_STATUS  
R
0
In auto detection mode(reg_fsmode=0),this bit indicated whether the  
audio sampling rate is valid or not. In non auto detection  
mode(reg_fsmode!=0), Fs error indicates that configured fs is  
different with detected fs. Even FS Error Detection Ignore is set, this  
flag will be also asserted.  
52  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.15 CHANNEL_FORCE_HIZ Register (Offset = 40h) [reset = 0x01]  
CHANNEL_FORCE_HIZ is shown in Figure 96 and described in Table 21.  
Return to Summary Table.  
Figure 96. CHANNEL_FORCE_HIZ Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
CH_A_HIZ  
R/W  
CH_B_HIZ  
R/W  
RESERVED  
R/W  
Table 21. CHANNEL_FORCE_HIZ Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R/W  
000  
These bits are reserved  
CH_A_HIZ  
CH_B_HIZ  
RESERVED  
R/W  
R/W  
R/W  
0
1: Force Channel A (L channel) to Hiz mode.  
0: Exit Force Hi-Z mode, Channel A is now controlled by Register  
0x03, see Table 9.  
Notes: If channel has been forced to Hiz, only method to exit Force  
Hi-Z mode is set this bit to 0. This function is disabled in PBTL  
mode.  
3
0
1: Force Channel B (R channel) to Hiz mode.  
0: Exit Force Hi-Z mode, Channel B is now controlled by Register  
0x03, see Table 9.  
Notes: If channel has been forced to Hiz, only method to exit Force  
Hi-Z mode is set this bit to 0. This function is disabled in PBTL  
mode.  
2-0  
001  
These bits are reserved.  
9.6.1.16 DIG_VOL_CTL Register (Offset = 4Ch) [reset = 30h]  
DIG_VOL_CTL is shown in Figure 97 and described in Table 22.  
Return to Summary Table.  
Figure 97. DIG_VOL_CTL Register  
7
6
5
4
3
2
1
0
PGA  
R/W  
Table 22. DIG_VOL_CTR Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PGA  
R/W  
00110000  
Digital Volume  
These bits control both left and right channel digital volume. The  
digital volume is 24 dB to -103 dB in -0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
........  
and 00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: -0.5 dB  
.......  
11111110: -103 dB  
11111111: Mute  
Copyright © 2019, Texas Instruments Incorporated  
53  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.17 DIG_VOL_CTRL2 Register (Offset = 4Eh) [reset = 0x33]  
DIG_VOL_CTRL2 is shown in Figure 98 and described in Table 23.  
Return to Summary Table.  
Figure 98. DIG_VOL_CTRL2 Register  
7
6
5
4
3
2
1
0
PGA_RAMP_DOWN_SPEED  
R/W  
PGA_RAMP_DOWN_STEP  
R/W  
PGA_RAMP_UP_SPEED  
R/W  
PGA_RAMP_UP_STEP  
R/W  
Table 23. DIG_VOL_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PGA_RAMP_DOWN_SPE R/W  
ED  
00  
Digital Volume Normal Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
1-0  
PGA_RAMP_DOWN_STE R/W  
P
11  
00  
11  
Digital Volume Normal Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
PGA_RAMP_UP_SPEED R/W  
Digital Volume Normal Ramp Up Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping up.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
PGA_RAMP_UP_STEP  
R/W  
Digital Volume Normal Ramp Up Step  
These bits control the step of the digital volume updates when the  
volume is ramping up.  
00: Increment by 4 dB for each updat  
01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
54  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.18 DIG_VOL_CTRL3 Register (Offset = 4Fh) [reset = 0x30]  
DIG_VOL_CTRL3 is shown in Figure 99 and described in Table 24.  
Return to Summary Table.  
Figure 99. DIG_VOL_CTRL3 Register  
7
6
5
4
3
2
1
0
FAST_RAMP_DOWN_SPEED  
R/W  
FAST_RAMP_DOWN_STEP  
R/W  
RESERVED  
R/W  
Table 24. DIG_VOL_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
FAST_RAMP_DOWN_SP R/W  
EED  
00  
Digital Volume Emergency Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft  
mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-0  
FAST_RAMP_DOWN_ST R/W  
EP  
11  
Digital Volume Emergency Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down due to clock error or power outage, which  
usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
RESERVED  
R/W  
0000  
This bit is reserved  
9.6.1.19 AUTO_MUTE_CTRL Register (Offset = 50h) [reset = 0x07]  
AUTO_MUTE_CTRL is shown in Figure 100 and described in Table 25.  
Return to Summary Table.  
Figure 100. AUTO_MUTE_CTRL Register  
7
6
5
4
3
2
1
REG_AUTO_MUTE_CTRL  
R/W  
0
RESERVED  
R/W  
Table 25. AUTO_MUTE_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-3  
2
R/W  
00000  
This bit is reserved  
REG_AUTO_MUTE_CTR R/W  
L
1
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are  
about to be auto muted  
1
0
REG_AUTO_MUTE_CTR R/W  
L
1
1
0: Disable right channel auto mute  
1: Enable right channel auto mute  
REG_AUTO_MUTE_CTR R/W  
L
0: Disable left channel auto mute  
1: Enable left channel auto mute bit2: .  
Copyright © 2019, Texas Instruments Incorporated  
55  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.20 AUTO_MUTE_TIME Register (Offset = 51h) [reset = 0x00]  
AUTO_MUTE_TIME is shown in Figure 101 and described in Table 26.  
Return to Summary Table.  
Figure 101. AUTO_MUTE_TIME Register  
7
6
5
AUTOMUTE_TIME_LEFT  
R/W  
4
3
2
1
0
RESERVED  
R/W  
RESERVED  
R/W  
AUTOMUTE_TIME_RIGHT  
R/W  
Table 26. AUTO_MUTE_TIME Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7
R/W  
0
This bit is reserved  
6-4  
AUTOMUTE_TIME_LEFT R/W  
000  
Auto Mute Time for Left Channel  
These bits specify the length of consecutive zero samples at left  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
RESERVED  
R/W  
0
This bit is reserved  
2-0  
AUTOMUTE_TIME_RIGH R/W  
T
000  
Auto Mute Time for Right Channel  
These bits specify the length of consecutive zero samples at right  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
56  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.21 ANA_CTRL Register (Offset = 53h) [reset = 0x00]  
ANA_CTRL is shown in Figure 102 and described in Table 27.  
Return to Summary Table.  
Figure 102. ANA_CTRL Register  
7
6
5
4
3
2
1
0
ANA_CTRL  
R/W  
Table 27. ANA_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
ANA_CTRL  
R/W  
0
This bit is reserved  
6-5  
R/W  
00  
Class-D bandwidth control.  
00: 80kHz;  
01: 100kHz;  
10: 120kHz;  
11: 175kHz.  
With Fsw=768kHz, 175kHz bandwidth should be selected for high  
audio performance. With Fsw=384kHz, bandwidth should 120kHz.  
4-0  
RESERVED  
R/W  
0000  
These bits are reserved  
Copyright © 2019, Texas Instruments Incorporated  
57  
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.22 AGAIN Register (Offset = 54h) [reset = 0x00]  
AGAIN is shown in Figure 103 and described in Table 28.  
Return to Summary Table.  
Figure 103. AGAIN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
ANA_GAIN  
R/W  
Table 28. AGAIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
ANA_GAIN  
R/W  
000  
This bit is reserved  
R/W  
00000  
Analog Gain Control , with 0.5dB one step  
This bit controls the analog gain.  
00000: 0 dB (29.5V peak voltage)  
00001: -0.5db  
11111: -15.5 dB  
9.6.1.23 BQ_WR_CTRL1 Register (Offset = 5Ch) [reset = 0x00]  
BQ_WR_CTRL1 is shown in Figure 104 and described in Table 29.  
Return to Summary Table.  
Figure 104. BQ_WR_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
BQ_WR_FIRST  
_COEF  
R/W  
R/W  
Table 29. BQ_WR_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
R/W  
0000000  
This bit is reserved  
BQ_WR_FIRST_COEF  
R/W  
0
Indicate the first coefficient of a BQ is starting to write.  
58  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.24 DAC_CTRL Register (Offset = 5Dh) [reset = 0xF8]  
DAC_CTRL is shown in Figure 105 and described in Table 30.  
Return to Summary Table.  
Figure 105. DAC_CTRL Register  
7
6
5
4
3
2
1
0
DAC_FREQUE  
NCY_SEL  
DAC_DITHER_EN  
DAC_DITHER  
DAC_CTRL_DEM_SEL  
R/W  
R/W  
R/W  
R/W  
Table 30. DAC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_FREQUENCY_SEL R/W  
1
DAC Frequency Select  
0: 6.144MHz  
1: 3.072MHz  
6-5  
4-2  
DAC_DITHER_EN  
DAC_DITHER  
R/W  
R/W  
11  
DITHER_EN,  
00: disable both stage dither  
01: enable main stage dither  
10: enable second stage dither  
11: enbale both stage dither  
110  
Dither level  
100: -2^-7  
101: -2^-8  
110: -2^-9  
111: -2^-10  
000: -2^-13  
001: -2^-14  
010: -2^-15  
011: -2^-16  
1-0  
DAC_CTRL_DEM_SEL  
R/W  
00  
00: Enable DEM  
11: Disable DEM  
9.6.1.25 ADR_PIN_CTRL Register (Offset = 60h) [reset = 0h]  
ADR_PIN_CTRL is shown in Figure 106 and described in Table 31.  
Return to Summary Table.  
Figure 106. ADR_PIN_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
ADR_OE  
R/W - 0x0  
Table 31. ADR_PIN_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
ADR_OE  
R/W  
0000000  
This bit is reserved  
R/W  
0
ADR Output Enable This bit sets the direction of the ADR pin  
0: ADR is input  
1: ADR is output  
Copyright © 2019, Texas Instruments Incorporated  
59  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.26 ADR_PIN_CONFIG Register (Offset = 61h) [reset = 0x00]  
ADR_PIN_CONFIG is shown in Figure 107 and described in Table 32.  
Return to Summary Table.  
Figure 107. ADR_PIN_CONFIG Register  
7
6
5
4
3
2
ADR_PIN_CONFIG  
R/W  
1
0
RESERVED  
Table 32. ADR_PIN_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R/W  
000  
These bits are reserved  
00000: off (low)  
ADR_PIN_CONFIG  
R/W  
00000  
00011: Auto mute flag (asserted when both L and R channels are  
auto muted)  
00100: Auto mute flag for left channel 0101: Auto mute flag for right  
channel  
00110: Clock invalid flag (clock error or clock missing)  
00111: Reserved  
01001: Reserved  
01011: ADR as FAULTZ output  
9.6.1.27 DSP_MISC Register (Offset = 66h) [reset = 0h]  
DSP_MISC is shown in Figure 108 and described in Table 33.  
Return to Summary Table.  
Figure 108. DSP_MISC Register  
7
6
5
4
3
2
1
0
BYPASS_CONTROL  
R/W  
Table 33. DSP_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R/W  
0000  
These bits are reserved  
BYPASS CONTROL  
R/W  
0
1: Left and Right will have use unique coef 0->Right channel will  
share left channel coefficient  
2
1
0
BYPASS CONTROL  
BYPASS CONTROL  
BYPASS CONTROL  
R/W  
R/W  
R/W  
0
0
0
1: bypass 128 tap FIR  
1: bypass DRC (Only bypass DRC in L/R channel)  
1: bypass EQ (Only bypass EQs in L/R channel)  
9.6.1.28 DIE_ID Register (Offset = 67h) [reset = 0h]  
DIE_ID is shown in Figure 109 and described in Table 34.  
Return to Summary Table.  
Figure 109. DIE_ID Register  
7
6
5
4
3
2
1
0
DIE_ID  
R-0h  
60  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Table 34. DIE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIE_ID  
R
0h  
DIE ID  
Copyright © 2019, Texas Instruments Incorporated  
61  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.29 POWER_STATE Register (Offset = 68h) [reset = 0x00]  
POWER_STATE is shown in Figure 110 and described in Table 35.  
Return to Summary Table.  
Figure 110. POWER_STATE Register  
7
6
5
4
3
2
1
0
STATE_RPT  
R
Table 35. POWER_STATE Register Field Descriptions  
Bit  
7-0  
Field  
STATE_RPT  
Type  
Reset  
Description  
R
00000000  
0: Deep sleep  
1: Sleep  
2: HIZ  
3: Play  
Others: reserved  
62  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.30 AUTOMUTE_STATE Register (Offset = 69h) [reset = 0x00]  
AUTOMUTE_STATE is shown in Figure 111 and described in Table 36.  
Return to Summary Table.  
Figure 111. AUTOMUTE_STATE Register  
7
6
5
4
3
2
1
0
RESERVED  
R
ZERO_RIGHT_ ZERO_LEFT_  
MON  
MON  
R
R
Table 36. AUTOMUTE_STATE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
R
000000  
This bit is reserved  
ZERO_RIGHT_MON  
R
R
0
0
This bit indicates the auto mute status for right channel.  
0: Not auto muted  
1: Auto muted  
0
ZERO_LEFT_MON  
This bit indicates the auto mute status for left channel.  
0: Not auto muted  
1: Auto muted  
Copyright © 2019, Texas Instruments Incorporated  
63  
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.31 PHASE_CTRL Register (Offset = 6Ah) [reset = 0x00]  
PHASE_CTRL is shown in Figure 112 and described in Table 37.  
Return to Summary Table.  
Figure 112. PHASE_CTR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
RAMP_PHASE_SEL  
PHASE_SYNC PHASE_SYNC  
_SEL  
_EN  
R/W  
R/W  
R/W  
Table 37. PHASE_CTR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-2  
RESERVED  
R/W  
0000  
This bit is reserved  
RAMP_PHASE_SEL  
R/W  
00  
Select ramp clock phase when multi devices integrated in one  
system to reduce EMI and peak supply peak current, it is  
recomended set all devices the same RAMP frequency and same  
spread spectrum. it must be set before driving device into PLAY  
mode if this feature is needed.  
00: phase0  
01: phase1  
10: phase2  
11: phase3  
1
0
I2S_SYNC_EN  
R/W  
R/W  
0
0
Use I2S to synchronize output PWM phase  
0: Disable  
1: Enable  
PHASE_SYNC_EN  
0: RAMP phase sync disable  
1: RAMP phase sync enable  
64  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.32 SS_CTRL0 Register (Offset = 6Bh) [reset = 0x00]  
SS_CTRL0 is shown in Figure 113 and described in Table 38.  
Return to Summary Table.  
Figure 113. SS_CTRL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
SS_PRE_DIV_ SS_MANUAL_  
RESERVED  
R/W  
SS_RDM_EN  
SS_TRI_EN  
SEL  
MODE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 38. SS_CTRL0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
This bit is reserved  
6
5
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
SS_PRE_DIV_SEL  
SS_MANUAL_MODE  
RESERVED  
Select pll clock divide 2 as source clock in manual mode  
Set ramp ss controller to manual mode  
This bit is reserved  
4
3-2  
1
SS_RDM_EN  
SS_TRI_EN  
Random SS enable  
0
Triangle SS enable  
9.6.1.33 SS_CTRL1 Register (Offset = 6Ch) [reset = 0x00]  
SS_CTRL1 is shown in Figure 114 and described in Table 39.  
Return to Summary Table.  
Figure 114. SS_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
SS_RDM_CTRL  
R/W  
SS_TRI_CTRL  
R/W  
Table 39. SS_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-4  
3-0  
SS_RDM_CTRL  
SS_TRI_CTRL  
R/W  
R/W  
000  
Random SS range control  
Triangle SS frequency and range control  
0000  
Copyright © 2019, Texas Instruments Incorporated  
65  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.34 SS_CTRL2 Register (Offset = 6Dh) [reset = 0x50]  
SS_CTRL2 is shown in Figure 115 and described in Table 40.  
Return to Summary Table.  
Figure 115. SS_CTRL2 Register  
7
6
5
4
3
2
1
0
TM_FREQ_CTRL  
R/W  
Table 40. SS_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
TM_FREQ_CTRL  
Type  
Reset  
Description  
Control ramp frequency in manual mode, F=61440000/N  
R/W  
01010000  
9.6.1.35 SS_CTRL3 Register (Offset = 6Eh) [reset = 0x11]  
SS_CTRL3 is shown in Figure 116 and described in Table 41.  
Return to Summary Table.  
Figure 116. SS_CTRL3 Register  
7
6
5
4
3
2
1
0
TM_DSTEP_CTRL  
R/W  
TM_USTEP_CTRL  
R/W  
Table 41. SS_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
SS_TM_DSTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum fall step in ramp ss manual  
mode  
3-0  
SS_TM_USTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum rise step in ramp ss manual  
mode  
9.6.1.36 SS_CTRL4 Register (Offset = 6Fh) [reset = 0x24]  
SS_CTRL4 is shown in Figure 117 and described in Table 42.  
Return to Summary Table.  
Figure 117. SS_CTRL4 Register  
7
6
5
4
3
2
SS_TM_PERIOD_BOUNDRY  
R/W  
1
0
RESERVED  
R/W  
TM_AMP_CTRL  
R/W  
Table 42. SS_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-5  
4-0  
TM_AMP_CTRL  
R/W  
01  
Control ramp amp ctrl in ramp ss manual model  
SS_TM_PERIOD_BOUN R/W  
DRY  
00100  
Control triangle mode spread spectrum boundary in ramp ss manual  
mode  
66  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.37 CHAN_FAULT Register (Offset = 70h) [reset = 0x00]  
CHAN_FAULT is shown in Figure 118 and described in Table 43.  
Return to Summary Table.  
Figure 118. CHAN_FAULT Register  
7
6
5
4
3
2
CH2_DC_1  
R
1
CH1_OC_I  
R
0
CH2_OC_I  
R
RESERVED  
R
CH1_DC_1  
R
Table 43. CHAN_FAULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
CH1_DC_1  
CH2_DC_1  
CH1_OC_I  
CH2_OC_I  
R
0000  
This bit is reserved  
R
R
R
R
0
0
0
0
Left channel DC fault  
Right channel DC fault  
Left channel over current fault  
Right channel over current fault  
2
1
0
9.6.1.38 GLOBAL_FAULT1 Register (Offset = 71h) [reset = 0h]  
GLOBAL_FAULT1 is shown in Figure 119 and described in Table 44.  
Return to Summary Table.  
Figure 119. GLOBAL_FAULT1 Register  
7
6
5
4
3
2
1
0
OTP_CRC_ER BQ_WR_ERRO  
CLK_FAULT_I  
PVDD_OV_I  
PVDD_UV_I  
ROR  
R
R
R
R
R
R
Table 44. GLOBAL_FAULT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
OTP_CRC_ERROR  
BQ_WR_ERROR  
RESERVED  
R
0h  
Indicate OTP CRC check error.  
The recent BQ is written failed  
This bit is reserved  
Clock fault  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
5-3  
2
CLK_FAULT_I  
PVDD_OV_I  
1
PVDD OV fault  
0
PVDD_UV_I  
PVDD UV fault  
Copyright © 2019, Texas Instruments Incorporated  
67  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.39 GLOBAL_FAULT2 Register (Offset = 72h) [reset = 0h]  
GLOBAL_FAULT2 is shown in Figure 120 and described in Table 45.  
Return to Summary Table.  
Figure 120. GLOBAL_FAULT2 Register  
7
6
5
RESERVED  
R
4
3
2
1
0
OTSD_I  
R
RESERVED  
R
Table 45. GLOBAL_FAULT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
OTSD_I  
R
0000000  
This bit is reserved  
R
0
Over temperature shut down fault  
9.6.1.40 OT WARNING Register (Offset = 73h) [reset = 0x00]  
OT_WARNING is shown in Figure 121 and described in Table 46.  
Return to Summary Table.  
Figure 121. OT_WARNING Register  
7
6
5
4
3
2
OTW  
R
1
0
RESERVED  
R
RESERVED  
RESERVED  
R
R
R
R
Table 46. OT_WARNING Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
2
RESERVED  
RESERVED  
OTW  
R
00  
This bit is reserved  
This bit is reserved  
Over temperature warning ,135C  
This bit is reserved  
R
R
R
000  
0
1-0  
RESERVED  
00  
68  
Copyright © 2019, Texas Instruments Incorporated  
 
 
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.41 PIN_CONTROL1 Register (Offset = 74h) [reset = 0x00]  
PIN_CONTROL1 is shown in Figure 122 and described in Table 47.  
Return to Summary Table.  
Figure 122. PIN_CONTROL1 Register  
7
6
5
4
3
2
1
0
MASK_OTSD MASK_DVDD_ MASK_DVDD_ MASK_CLK_F MASK_PVDD_ MASK_PVDD_  
MASK_DC  
MASK_OC  
UV  
OV  
AULT  
UV  
OV  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 47. PIN_CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
MASK_OTSD  
R/W  
0
Mask OTSD fault report  
Mask DVDD UV fault report  
Mask DVDD OV fault report  
Mask clock fault report  
Mask PVDD UV fault report  
Mask PVDD OV fault report  
Mask DC fault report  
MASK_DVDD_UV  
MASK_DVDD_OV  
MASK_CLK_FAULT  
MASK_PVDD_UV  
MASK_PVDD_OV  
MASK_DC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
MASK_OC  
Mask OC fault report  
9.6.1.42 PIN_CONTROL2 Register (Offset = 75h) [reset = 0xF8]  
PIN_CONTROL2 is shown in Figure 123 and described in Table 48.  
Return to Summary Table.  
Figure 123. PIN_CONTROL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
CLKFLT_LATC OTSD_LATCH OTW_LATCH_  
MASK_OTW  
RESERVED  
H_EN  
_EN  
EN  
R/W  
R/W  
R/W  
R/W  
Table 48. PIN_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R/W  
11  
This bit is reserved  
CLKFLT_LATCH_EN  
OTSD_LATCH_EN  
OTW_LATCH_EN  
MASK_OTW  
R/W  
R/W  
R/W  
R/W  
R/W  
1
Enable clock fault latch  
Enable OTSD fault latch  
Enable OT warning latch  
Mask OT warning report  
This bit is reserved  
4
1
3
1
2
0
1-0  
RESERVED  
00  
Copyright © 2019, Texas Instruments Incorporated  
69  
 
 
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.43 MISC_CONTROL Register (Offset = 76h) [reset = 0x00]  
MISC_CONTROL is shown in Figure 124 and described in Table 49.  
Return to Summary Table.  
Figure 124. MISC_CONTROL Register  
7
6
5
4
3
2
1
0
DET_STATUS_  
LATCH  
RESERVED  
R/W  
OTSD_AUTO_  
REC_EN  
RESERVED  
R/W  
R/W  
R/W  
Table 49. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DET_STATUS_LATCH  
R/W  
0
1:Latch clock detection status  
0:Don't latch clock detection status  
6-5  
4
RESERVED  
R/W  
R/W  
R/W  
00  
This bit is reserved  
OTSD_AUTO_REC_EN  
RESERVED  
0
OTSD auto recovery enable  
This bit is reserved  
3-0  
0000  
70  
Copyright © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
9.6.1.44 HP_CONTROL Register (Offset = 77h) [reset = 0x00]  
HP_CONTROL is shown in Figure 125 and described in Table 50.  
Return to Summary Table.  
Figure 125. HP_CONTROL Register  
7
6
5
4
3
2
1
0
HP_GAIN  
HP_MUTEZ  
HP_SDZ  
HP_FAST_STA  
RT_UP  
R/W  
R/W  
R/W  
R/W  
Table 50. HP_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
HP_GAIN  
R/W  
00000  
Headphone gain  
0: 0dB  
1: 1dB  
...  
24: 24dB  
25~31: reserved  
2
1
0
HP_MUTEZ  
HP_SDZ  
R/W  
R/W  
R/W  
0
0
0
0: Mute Headphone  
1: Un-mute Headphone  
0: Shutdown Headphone  
1: Enable Headphone  
RESERVED  
This bit is reserved  
Copyright © 2019, Texas Instruments Incorporated  
71  
 
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
9.6.1.45 FAULT_CLEAR Register (Offset = 78h) [reset = 0x00]  
FAULT_CLEAR is shown in Figure 126 and described in Table 51.  
Return to Summary Table.  
Figure 126. FAULT_CLEAR Register  
7
6
5
4
3
2
1
0
ANALOG_FAU  
LT_CLEAR  
RESERVED  
W
R/W  
Table 51. FAULT_CLEAR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ANALOG_FAULT_CLEAR  
RESERVED  
W
0
WRITE CLEAR BIT.  
Once write this bit to 1, device will clear analog fault  
6-0  
R/W  
0000000  
This bit is reserved  
72  
版权 © 2019, Texas Instruments Incorporated  
 
 
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
This section details the information required to configure the device for several popular configurations and  
provides guidance on integrating the TAS5806MD device into the larger system.  
10.1.1 Bootstrap Capacitors  
The output stage of the TAS5806MD uses a high-side NMOS driver, rather than a PMOS driver. To generate the  
gate driver voltage for the high-side NMOS, a bootstrap capacitor for each output terminal acts as a floating  
power supply for the switching cycle. Use 0.22-µF capacitors to connect the appropriate output pin (OUT_X) to  
the bootstrap pin (BST_X). For example, connect a 0.22-µF capacitor between OUT_A and BST_A for  
bootstrapping the A channel. Similarly, connect another 0.22-µF capacitor between the OUT_B and BST_B pins  
for the B channel inverting output.  
10.1.2 Inductor Selections  
It is required that the peak current is smaller than the OCP (Over current protection) value which is 5A, there are  
3 cases which cause high peak current flow through inductor.  
1. During power up (idle state, no audio input), the duty cycle increases from 0 to θ.  
Ipeak _ power _up ö PVDD ì C / L ìsin(1/ LìC ìq / Fsw )  
(1)  
θ = 0.5 (BD Modulation), 0.14 (1SPW Modulation), 0.14 (Hybrid Modulation)  
52. Peak current during power up  
PWM  
Modulatio PVDD  
n
L (uH)  
C (uF)  
Fsw (kHz)  
Ipeak_power_up  
Comments  
24  
24  
12  
4.7  
10  
0.68  
0.68  
0.68  
0.68  
0.68  
384 (80kHz BW)  
384 (80kHz BW)  
384 (80kHz BW)  
384 (80kHz BW)  
768 (175kHz BW)  
6.07A (>5A OCP)  
1. Lower Switching Frequency only permits low  
Class D Loop Bandwidth, which cause worse  
THD+N.  
3A  
4.7  
10  
3.32A  
1.55A  
3.25A  
2. Lower Switching Frequency cause higher  
startup peak current, which needs Inductor  
supports higher saturation current.  
12  
BD  
24  
4.7  
Modulation  
(θ=0.5)  
3. BD Mode has more switching loss than 1SPW  
mode, so the thermal performance is worse  
with high PVDD, recommend 1SPW mode for  
high PVDD case (Typical >16V case).  
24  
10  
0.68  
768 (175kHz BW)  
1.55A  
4. Saturation  
current  
.
of  
Inductor  
needs  
>Ipeak_power_up  
版权 © 2019, Texas Instruments Incorporated  
73  
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Application Information (接下页)  
52. Peak current during power up (接下页)  
PWM  
Modulatio PVDD  
n
L (uH)  
C (uF)  
Fsw (kHz)  
Ipeak_power_up  
Comments  
24  
24  
12  
12  
4.7  
10  
0.68  
0.68  
0.68  
0.68  
0.68  
0.68  
384 (80kHz BW)  
384 (80kHz BW)  
384 (80kHz BW)  
384 (80kHz BW)  
768 (175kHz BW)  
768 (175kHz BW)  
1.84A  
0.87A  
0.92A  
0.44A  
0.46A  
0.93A  
1. 1SPW mode with smaller duty cycle during  
start up cause smaller Ipeak_power_up  
4.7  
10  
1SPW  
Modulation  
(θ=0.14)  
12  
24  
4.7  
4.7  
1. Even with same Inductor value, higher  
switching  
frequency  
cause  
smaller  
Ipeak_power_up which means some lower cost  
inductor with less saturation current is  
permitted.  
24  
10  
0.68  
768 (175kHz BW)  
0.87A  
2. 768kHz switching frequency,175kHz Loop  
Bandwidth with 1SPW mode is a good balance  
for both thermal and audio performance.  
2. During music playing, some audio burst signal (high frequency) with very hard PVDD clipping will cause  
PWM duty cycle increase dramatically. This is the worst case and it rarely happens.  
Ipeak _clipping ö PVDDì(1-q)/(F ì L)  
sw  
(2)  
53. Peak current during PVDD clipping with Burst Signal  
PWM  
Modulation  
PVDD L (uH)  
Fsw (kHz)  
Ipeak_clipping  
Comments  
24  
24  
24  
12  
12  
24  
24  
12  
12  
10  
10  
10  
10  
4.7  
10  
10  
10  
4.7  
768  
576  
384  
768  
768  
768  
384  
768  
768  
2.68A  
3.58A  
1SPW  
5.37A (>5A OCP)  
1.34A  
For high PVDD case, 1SPW mode is a good option to improve  
thermal performance, but switching frequency can't be too low.  
2.86A  
1.56  
3.12  
BD  
0.78  
1.66  
3. Peak current due to Max output power. Ignore the ripple current flow through capacitor here.  
Ipeak _ output _ power ö 2ì Max _Output _ Power / Rspea ker_ Load  
(3)  
Same PVDD and switching frequency, larger inductance means smaller idle current for lower power dissipation.  
It's suggested that inductor's saturation current Isat, is larger than the amplifier's peak current during power-up  
and play audio.  
ISAT í max(Ipeak_ power_up,I peak_clipping,Ipeak_output_ power  
)
(4)  
In addition, the effective inductance at the peak current is required to be at least 80% of the inductance value in  
54 to meet datasheet specifications. The minimum inductance is given in 54 .  
74  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
PVDD (V)  
ZHCSJT7 MAY 2019  
54. LC filter recommendation  
Recommended Minimum Inductance (µH)  
for LC filter design  
Switching Frequency (kHz)  
Modulation Scheme  
12  
>12  
12  
>12  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
10 µH + 0.68 µF  
15 µH + 0.68 µF  
384  
384  
BD  
1 SPW/Hybrid  
For higher switching frequency (Fsw), select inductors with minimum inductance to be 384 kHz/Fsw × L.  
10.1.3 Power Supply Decoupling  
To ensure high efficiency, low THD, and high PSRR, proper power supply decoupling is necessary. Noise  
transients on the power supply lines are short duration voltage spikes. These spikes can contain frequency  
components that extend into the hundreds of megahertz. The power supply input must be decoupled with some  
good quality, low ESL, Low ESR capacitors larger than 22 µF. These capacitors bypasses low frequency noise to  
the ground plane. For high frequency decoupling, place 1-µF or 0.1-µF capacitors as close as possible to the  
PVDD pins of the device.  
10.1.4 Output EMI Filtering  
The TAS5806MD device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a  
simple ferrite bead or a ferrite bead plus a capacitor can replace the tradition large inductor and capacitor that  
are commonly used. In other high-power applications, large toroid inductors are required for maximum power and  
film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter Design  
(SLOA119) for a detailed description on the proper component selection and design of an L-C filter based upon  
the desired load and response.  
10.2 Typical Applications  
10.2.1 2.0 (Stereo BTL) System  
In the 2.0 system, two channels are presented to the amplifier via the digital input signal. These two channels are  
amplified and then sent to two separate speakers. In some cases, the amplified signal is further separated based  
upon frequency by a passive crossover network after the L-C filter. Even so, the application is considered 2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
127 shows the 2.0 (Stereo BTL) system application.  
版权 © 2019, Texas Instruments Incorporated  
75  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
/ꢉ  
287/ꢋ  
ꢀꢁꢂ—+  
39''  
39''  
&ꢆꢇ  
ꢄꢁꢃꢅ—)  
/ꢍ&KDQQHOꢍ6SHDNHU  
&ꢉꢇ  
ꢈꢇꢄ—)  
&ꢃꢄ  
ꢈꢇꢄ—)  
&ꢈꢊ  
ꢆꢆ—)  
&ꢈꢆ  
ꢄꢁꢊ—)  
&ꢈꢈ  
&ꢈꢀ  
ꢆꢆ—)  
ꢄꢁꢊ—)  
*1'  
*1'  
*1'  
*1'  
/ꢃ  
&ꢈꢃ  
ꢊꢄꢄꢄS)  
&ꢈꢂ  
ꢊꢄꢄꢄS)  
287/ꢌ  
ꢀꢁꢂ—+  
*1'  
*1'  
*1'  
*1'  
*1'  
&ꢈꢅ  
*1'  
ꢄꢁꢃꢅ—)  
'9''  
*1'  
*1'  
/ꢂ  
&ꢀꢄ  
ꢄꢁꢊ—)  
&ꢈꢇ  
8ꢆ  
2875ꢋ  
ꢀꢁꢂ—)  
ꢀꢁꢂ—+  
287B$ꢋ  
287B$ꢌ  
39''  
287B$ꢋ  
287B$ꢌ  
&ꢀꢊ  
5ꢍ&KDQQHOꢍ6SHDNHU  
39''  
ꢄꢁꢃꢅ—)  
*1'  
'9''  
*1'  
ꢈꢆ  
ꢈꢈ  
ꢈꢀ  
ꢈꢂ  
287B%ꢋ  
287B%ꢌ  
39''  
39''  
287B%ꢋ  
287B%ꢌ  
&ꢀꢆ  
ꢊꢂ  
ꢈꢄ  
%67B$ꢋ  
%67B$ꢌ  
%67B%ꢋ  
%67B%ꢌ  
'9''  
+39''  
$9''  
%67B$ꢋ  
%67B$ꢌ  
%67B%ꢋ  
%67B%ꢌ  
/ꢅ  
&ꢀꢀ  
ꢊꢄꢄꢄS)  
&ꢀꢉ  
ꢊꢄꢄꢄS)  
&ꢀꢈ  
ꢄꢁꢆꢆ—)  
&ꢀꢂ  
&ꢀꢃ  
ꢄꢁꢆꢆ—)  
&ꢀꢅ  
2875ꢌ  
ꢈꢉ  
ꢈꢅ  
ꢄꢁꢆꢆ—)  
—)  
ꢀꢁꢂ—+  
&ꢉꢄ  
ꢄꢁꢊ—)  
&ꢀꢇ  
ꢄꢁꢆꢆ—)  
&ꢉꢆ  
—)  
*1'  
&ꢉꢊ  
ꢊꢊ  
ꢆꢃ  
ꢆꢊ  
ꢆꢄ  
6'287  
95B',*  
6'287  
ꢄꢁꢃꢅ—)  
+3/B287  
+35B287  
—)  
+3/B287  
+35B287  
*1'  
*1'  
*1'  
&ꢉꢃ  
*1'  
ꢆꢉ  
ꢆꢈ  
&33  
&31  
+3/B,1  
&ꢉꢈ  
ꢊꢇ  
ꢊꢅ  
+3/B,1  
+35B,1  
+3/,1  
+35,1  
—)  
&ꢉꢂ  
—)  
+35B,1  
—)  
ꢈꢁꢈ9  
ꢆꢀ  
1&  
'9''ꢆ  
6'$  
6&/  
-ꢉ  
ꢆꢂ  
ꢆꢅ  
ꢆꢆ  
ꢈꢃ  
6'$  
6&/  
+3966  
3*1'  
3*1'  
)520  
ꢊꢄ  
ꢆꢇ  
ꢈꢊ  
ꢊꢃ  
ꢊꢆ  
&ꢉꢀ  
—)  
$'5ꢎ)$8/7  
3'1  
$'5ꢎ)$8/7  
3'1  
$*1'  
5ꢆꢊ  
ꢊꢉꢁꢄN  
+3B*1'  
'*1'  
&21752//(5  
/5&/.  
6&/.  
6',1  
ꢊꢈ  
ꢊꢀ  
ꢊꢉ  
/5&/.  
6&/.  
6',1  
'*1'  
6'$  
6&/  
*1'  
ꢈꢇ  
3$'  
&ꢉꢉ  
+3ꢍ287  
$'5ꢎ)$8/7  
3'1  
ꢄꢁꢊ—)  
7$6ꢉꢅꢄ60'  
*1'  
*1'  
,ꢆ& $GGUHVVꢍ  ꢄ[ꢉ$  
/5&/.  
6&/.  
6',1  
*1'  
+3ꢌ35(6(17  
127. 2.0 (Stereo BTL) System Application Schematic  
10.2.2 Design Requirements  
Power supplies:  
3.3-V or 1.8-V supply for DVDD.  
3.3V for HPVDD.  
4.5-V to 24-V supply for PVDD.  
Communication: host processor serving as I2C compliant master.  
Externa memory (Such as EEPROM or FLASH) used for coefficients.  
76  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Typical Applications (接下页)  
10.2.3 Detailed Design Procedure  
The design procedure can be used for Stereo 2.0, Mono, 2.1 system  
10.2.3.1 Step 1: Hardware Integration  
Use the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Follow the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support, go to the E2E forums (E2E.ti.com). If deviating from the recommended layout  
is necessary, go to the E2E forum to request a layout review.  
10.2.3.2 Step2: Speaker Tuning  
Use the TAS5806MDEVM board and the TAS5806MD tuning software to configure the desired device settings.  
10.2.3.3 Software Integration  
Use the End System Integration feature of the TAS5806MD tuning software app to generate a baseline  
configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate static  
configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
版权 © 2019, Texas Instruments Incorporated  
77  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.4 Application Curves  
10  
10  
5
PVcc=12V  
TA=25èC  
RL=6W  
PVcc=18V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
D10032  
D01027  
PVDD = 12 V  
BTL Load = 6 Ω  
PVDD = 18 V  
BTL Load = 8 Ω  
LC filter = 10 µH + 0.68 µF  
Fsw = 768 kHz  
LC filter = 4.7 µH + 0.68 µF  
Fsw = 768 kHz  
128. THD+N vs Frequency (1 SPW Mode, PVDD = 12 V,  
Load = 6 Ω, BTL Mode)  
129. THD+N vs Frequency (1 SPW Mode, PVDD = 18 V,  
Load = 8 Ω, BTL Mode)  
10  
10  
PVCC=12V  
TA=25èC  
PVCC=18V  
TA=25èC  
5
5
2
1
2
1
RL=6W  
RL=8W  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 20Hz  
0.005  
0.005  
f= 1kHz  
f= 10KHz  
f= 1kHz  
f= 10KHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
D101047  
D01014087  
PVDD = 12 V  
BTL Load = 6 Ω  
LC filter = 4.7 µH + 0.68 µF  
PVDD = 18 V  
BTL Load = 8 Ω  
LC filter = 10 µH + 0.68 µF  
Fsw = 768 kHz  
Fsw = 768 kHz  
130. THD+N vs Output Power (1SPW Mode, PVDD = 12  
V, Load = 6 Ω, BTL Mode)  
131. THD+N vs Output Power (1 SPW Mode, PVDD = 18  
V, Load = 8 Ω, BTL Mode)  
10  
10  
HPVDD=3.3V  
TA=25èC  
HPVDD=3.3V  
TA=25èC  
5
5
2
1
2
1
RL=32W  
RL=10kW  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
f= 1kHz  
f= 1kHz  
0.01  
0.1  
1
0.01  
0.1  
1
Output Voltage (Vrms)  
Output Voltage (Vrms)  
D30047  
D04074  
HPVDD = 3.3 V  
f = 1 kHz  
BTL Load = 32 Ω  
HPVDD = 3.3 V  
f = 1kHz  
BTL Load = 10 kΩ  
132. THD+N vs Output Voltage  
(Headphone load = 32 Ω)  
133. THD+N vs Output Voltage  
(Line driver load = 10 kΩ)  
78  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Typical Applications (接下页)  
10.2.5 Mono (PBTL) system  
In MONO application, TAS5806MD can be used as PBTL mode to drive sub-woofer with more output power.  
39''  
39''  
/ꢅ  
287ꢈ  
ꢆꢁꢇ—+  
&ꢅ  
ꢌꢋꢀ—)  
&ꢂ  
ꢌꢋꢀ—)  
&ꢄ  
ꢄꢄ—)  
&ꢌ  
ꢀꢁꢅ—)  
&ꢆ  
&ꢊ  
ꢄꢄ—)  
&ꢄꢅ  
ꢀꢁꢅ—)  
ꢀꢁꢂꢃ—)  
*1'  
*1'  
*1'  
*1'  
*1'  
*1'  
*1'  
6XEZRRIHU  
'9''  
&ꢃ  
ꢀꢁꢅ—)  
&ꢇ  
8ꢄ  
ꢆꢁꢇ—)  
39''  
287B$ꢈ  
287B$ꢉ  
39''  
&ꢅꢂ  
&ꢅꢇ  
ꢀꢁꢄꢄ—)  
*1'  
'9''  
*1'  
ꢌꢄ  
ꢌꢌ  
ꢌꢆ  
ꢌꢇ  
ꢀꢁ22—)  
39''  
39''  
287B%ꢈ  
287B%ꢉ  
ꢅꢇ  
ꢌꢀ  
%67B$ꢈ  
%67B$ꢉ  
%67B%ꢈ  
%67B%ꢉ  
'9''  
+39''  
$9''  
%67B$ꢈ  
%67B$ꢉ  
%67B%ꢈ  
%67B%ꢉ  
/ꢄ  
&ꢅꢌ  
&ꢅꢋ  
ꢌꢊ  
ꢌꢃ  
&ꢅꢃ  
ꢀꢁꢄꢄ—)  
287ꢉ  
—)  
&ꢅꢀ  
ꢀꢁꢅ—)  
&ꢋ  
ꢀꢁꢄꢄ—)  
ꢆꢁꢇ—+  
—)  
*1'  
&ꢅꢆ  
ꢅꢅ  
ꢄꢂ  
ꢄꢅ  
ꢄꢀ  
6'287  
95B',*  
6'287  
&ꢄꢆ  
+3/B287  
+35B287  
—)  
+3/B287  
+35B287  
ꢀꢁꢂꢃ—)  
*1'  
&ꢅꢅ  
*1'  
ꢄꢊ  
ꢄꢌ  
&33  
&31  
+3/B,1  
&ꢅꢊ  
ꢅꢋ  
ꢅꢃ  
+3/B,1  
+35B,1  
+3/,1  
+35,1  
—)  
&ꢅꢄ  
—)  
+35B,1  
—)  
*1'  
ꢌꢁꢌ9  
ꢄꢆ  
1&  
'9''  
6'$  
6&/  
-ꢂ  
ꢄꢇ  
ꢄꢃ  
ꢄꢄ  
ꢌꢂ  
6'$  
6&/  
+3966  
3*1'  
3*1'  
)520  
ꢅꢀ  
ꢄꢋ  
ꢌꢅ  
ꢅꢂ  
ꢅꢄ  
&ꢅꢂ  
—)  
$'5ꢎ)$8/7  
3'1  
$'5ꢎ)$8/7  
3'1  
$*1'  
5ꢅ  
ꢅꢊꢁꢀN  
+3B*1'  
'*1'  
&21752//(5  
/5&/.  
6&/.  
6',1  
ꢅꢌ  
ꢅꢆ  
ꢅꢊ  
/5&/.  
6&/.  
6',1  
'*1'  
6'$  
6&/  
*1'  
ꢌꢋ  
3$'  
&ꢄꢋ  
ꢀꢁꢅ—)  
+3ꢍ287  
$'5ꢎ)$8/7  
3'1  
7$6ꢊꢃꢀ0'  
*1'  
*1'  
,ꢄ& $GGUHVVꢍ  ꢀ[ꢊ$  
/5&/.  
6&/.  
6',1  
*1'  
+3ꢉ35(6(17  
134. Mono (PBTL) System Application Schematic  
版权 © 2019, Texas Instruments Incorporated  
79  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Typical Applications (接下页)  
10.2.6 Application Curves  
10  
5
10  
PVCC=24V  
TA=25èC  
RL=4W  
PVcc=24V  
TA=25èC  
RL=4W  
P O=1W  
PO=2.5W  
PO=5W  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
0.005  
0.005  
f= 10kHz  
f= 1KHz  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
0.01  
0.1  
1
10 20  
Frequency (Hz)  
Output Power (W)  
D104082  
D010573  
PVDD = 24 V  
1 SPW Mode  
PBTL Load = 4 Ω  
PVDD = 24 V  
1 SPW Mode  
PBTL Load = 4 Ω  
Fsw = 576 kHz  
LC filter = 4.7 µH + 0.68 µF  
Fsw = 576 kHz  
LC filter = 4.7 µH + 0.68 µF  
135. THD+N vs Frequency  
136. THD+N vs Output Power  
80  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
11 Power Supply Recommendations  
The TAS5806MD device requires three power supplies for proper operation. A high-voltage supply calls PVDD is  
required to power the output stage of the speaker amplifier and its associated circuitry. One low-voltage power  
supply which is calls DVDD is required to power the various low-power portions of the device. Another low-  
voltage power supply which is calls HPVDD for headphone driver. The allowable voltage range for both PVDD,  
DVDD and HPVDD supply are listed in the Recommended Operating Conditions table. The two power supplies  
do not have a required power-up sequence. The power supplies can be powered on in any order. But once the  
device has been initialized, PVDD must keep within the normal operation voltage. Once PVDD lower than 3.5V,  
all registers need re-initialize again.  
Internal Digital  
Digital IO  
Circuitry  
DVDD  
(1.8V/3.3V)  
VR_DIG  
1.5V  
LDO  
External Filtering/Decoupling  
DVDD  
Gate Drive/Internal  
Analog Circuitry  
Output Stage  
Power Supply  
PVDD  
4.5V~26.4V  
AVDD  
5V  
LDO  
External Filtering/Decoupling  
PVDD  
HPVDD  
3.3V  
Headphone Driver  
(Charge Pump )  
HPVDD  
Copyright © 2018, Texas Instruments Incorporated  
137. Power Supply Function Block Diagram  
11.1 DVDD Supply  
The DVDD supply that is required from the system is used to power several portions of the device. As shown in  
137, it provides power to the DVDD pin. Proper connection, routing and decoupling techniques are highlighted  
in the Application and Implementation section and the Layout Example section and must be followed as closely  
as possible for proper operation and performance.  
Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply.  
To simplify the power supply requirements for the system, the TAS5806MD device includes an integrated low  
dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD  
supply and its output is presented on the VR_DIG pin, providing a connection point for an external bypass  
capacitor. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuity. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and  
operation of the device.  
版权 © 2019, Texas Instruments Incorporated  
81  
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
11.2 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the TAS5806MD MEVM and must be followed as closely as possible for proper operation and  
performance. Due to the high-voltage switching of the output stage, it is particularly important to properly  
decouple the output power stages in the manner described in the TAS5806MD device Application and  
Implementation. Lack of proper decoupling, like that shown in the Application and Implementation, results in  
voltage spikes which can damage the device.  
A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker  
amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD pin is  
provided for the attachment of decoupling capacitor for the gate drive voltage regulator. It is important to note  
that the linear regulator integrated in the device has only been designed to support the current requirements of  
the internal circuitry, and should not be used to power any additional external circuitry. Additional loading on this  
pin could cause the voltage to sag, negatively affecting the performance and operation of the device.  
Another separate power supply is derived from the PVDD supply via an integrated linear regulator is AVDD.  
AVDD pin is provided for the attachment of decoupling capacitor for the TAS5806MD internal circuitry. It is  
important to note that the linear regulator integrated in the device has only been designed to support the current  
requirements of the internal circuitry, and should not be used to power any additional external circuitry. Additional  
loading on this pin could cause the voltage to sag, negatively affecting the performance and operation of the  
device.  
82  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
12 Layout  
12.1 Layout Guidelines  
12.1.1 General Guidelines for Audio Amplifiers  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout.  
Ideally, the guidance provided in the applications section with regard to device and component selection can be  
followed by precise adherence to the layout guidance shown in the Layout Example section. These examples  
represent exemplary baseline balance of the engineering trade-offs involved with lying out the device. These  
designs can be modified slightly as needed to meet the needs of a given application. In some applications, for  
instance, solution size can be compromised to improve thermal performance through the use of additional  
contiguous copper neat the device. Conversely, EMI performance can be prioritized over thermal performance by  
routing on internal traces and incorporating a via picket-fence and additional filtering components. In all cases, it  
is recommended to start from the guidance shown in the Layout Example section and work with TI field  
application engineers or through the E2E community to modify it based upon the application specific goals.  
12.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network  
Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This  
applies to DVDD, AVDD and PVDD. However, the capacitors on the PVDD net for the TAS5806MD device  
deserve special attention.  
The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as  
possible. Not only dose placing these device far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS5806MD device can cause ringing on the output pins that can cause the voltage on the  
output pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging  
the deice . For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the Layout Example section.  
12.1.3 Optimizing Thermal Performance  
Follow the layout example shown in the 138 to achieve the best balance of solution size, thermal, audio, and  
electromagnetic performance. In some cases, deviation from this guidance can be required due to design  
constraints which cannot be avoided. In these instances, the system designer should ensure that the heat can  
get out of the device and into the ambient air surrounding the device. Fortunately, the heat created in the device  
naturally travels away from the device and into the lower temperature structures around the device.  
12.1.3.1 Device, Copper, and Component Layout  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat producing components or structures near the amplifier (including above or below in  
the end equipment).  
If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5806MD device  
and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top  
and bottom layer.  
Place the TAS5806MD device away from the edge of the PCB when possible to ensure that the heat can  
travel away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5806MD device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5806MD  
device.  
Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane  
版权 © 2019, Texas Instruments Incorporated  
83  
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
Layout Guidelines (接下页)  
from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible.  
12.1.3.2 Stencil Pattern  
The recommended drawings for the TAS5806MD device PCB foot print and associated stencil pattern are shown  
at the end of this document in the package addendum. Additionally, baseline recommendations for the via  
arrangement under and around the device are given as a starting point for the PCB design. This guidance is  
provided to suit the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all  
other performance criteria. In elevated ambient temperature or under high-power dissipation use-cases, this  
guidance may be too conservative and advanced PCB design techniques may be used to improve thermal  
performance of the system.  
The customer must verify that deviation from the guidance shown in the package  
addendum, including the deviation explained in this section, meets the customer’s quality,  
reliability, and manufacturability goals.  
12.1.3.2.1 PCB footprint and Via Arrangement  
The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the  
shape and position of the copper patterns to which the TAS5806MD device will be soldered. This footprint can be  
followed directly from the guidance in the package addendum at the end of this data sheet. It is important to  
make sure that the thermal pad, which connects electrically and thermally to the PowerPAD™ of the  
TAS5806MD device, be made no smaller than what is specified in the package addendum. This ensures that the  
TAS5806MD device has the largest interface possible to move heat from the device to the board.  
The via pattern shown in the package addendum provides an improved interface to carry the heat from the  
device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings)  
present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away  
from the device and into the surrounding structures and air. By increasing the number of vias, as shown in the  
Layout Example section, this interface can benefit from improved thermal performance.  
Vias can obstruct heat flow if they are not constructed properly.  
More notes on the construction and placement of vias are as follows:  
Remove thermal reliefs on thermal vias, because they impede the flow of heat through the via.  
Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the  
additional cost of filled vias.  
The diameter of the drull must be 8 mm or less. Also, the distance between the via barrel and the surrounding  
planes should be minimized to help heat flow from the via into the surrounding copper material. In all cases,  
minimum spacing should be determined by the voltages present on the planes surrounding the via and  
minimized wherever possible.  
Vias should be arranged in columns, which extend in a line radially from the heat source to the surrounding  
area. This arrangement is shown in the Layout Example section.  
Ensure that vias do not cut off power current flow from the power supply through the planes on internal  
layers. If needed, remove some vias that are farthest from the TAS5806MD device to open up the current  
path to and from the device.  
12.1.3.2.2 Solder Stencil  
During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste  
on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity  
and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most  
cases, the aperture for each of the component pads is almost the same size as the pad itself. However, the  
thermal pad on the PCB is large and depositing a large, single deposition of solder paste would lead to  
84  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
Layout Guidelines (接下页)  
manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder paste  
to outgas during the assembly process and reduce the risk of solder bridging under the device. This structure is  
called an aperture array, and is shown in the Layout Example section. It is important that the total area of the  
aperture array (the area of all of the small apertures combined) covers between 70% and 80% of the area of the  
thermal pad itself.  
12.2 Layout Example  
Bot Layer 3D layout  
Top Layer 3D layout  
138. 2.0 (Stereo BTL) 3-D View  
版权 © 2019, Texas Instruments Incorporated  
85  
 
TAS5806MD  
ZHCSJT7 MAY 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 器件命名规则  
Glossary 部分列出的是一个通用的术语表,其中包括常用的缩写和词语,它们都是根据一个范围广泛的 TI 计划定  
义的,符合 JEDECIPCIEEE 等行业标准。本部分提供的术语表定义了特定于本产品和文档、附属产品或本产  
品使用的支持工具和软件的词语和缩写。如对定义和术语有其他疑问,请访问 e2e 音频放大器论坛。  
桥接式负载 (BTL) 是一种输出配置,其中扬声器的两端分别连接一个半桥。  
DUT 是指被测器件,用于区分不同的器件。  
闭环架构是一种拓扑结构,其中放大器监视输出端子、对比输出信号与输入信号,并尝试修正输出信号的非线性。  
动态控件是指系统或最终用户在正常使用时可更改的控件。  
GPIO 是通用输入/输出引脚。该引脚是一个高度可配置的双向数字引脚,可执行系统所需的多种功能。  
主机处理器(也称系统处理器、标量、主机或系统控制器)是指用作中央系统控制器的器件,可为与其连接的器件  
提供控制信息,还可以从上游器件采集音频源数据并将其分配给其他器件。该器件通常配置音频路径中音频处理器  
件(如 TAS5806MD)的控件,从而根据频率响应、时间校准、目标声压级、系统安全工作区域和用户偏好优化扬  
声器的音频输出。  
最大持续输出功率是指放大器在 25°C 运行环境温度下可持续(不关断)提供的最大输出功率。测试该参数时,要  
求温度达到热平衡点且不再升高  
并联桥接式负载 (PBTL) 是一种输出配置,其中扬声器的两端分别连接一对并行放置的半桥  
rDS(on) 是指放大器输出级中所用 MOSFET 的导通电阻。  
静态控件/静态配置是指系统正常使用时不发生变化的控件。  
过孔是指 PCB 中的镀铜通孔。  
13.1.2 开发支持  
有关 RDGUI 软件,请咨询当地的现场支持工程师。  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
86  
版权 © 2019, Texas Instruments Incorporated  
TAS5806MD  
www.ti.com.cn  
ZHCSJT7 MAY 2019  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
87  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5806MDDCPR  
ACTIVE  
HTSSOP  
DCP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-25 to 85  
TAS5806MD  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.5 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/B  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS5822M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5822MDCPR

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5825M

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器
TI

TAS5825MRHBR

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825MRHBT

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825P

具有超低空闲电流和出色效率的 4.5V 至 26.4V H 类控制数字输入 D 类音频放大器
TI

TAS5825PRHBR

具有超低空闲电流和出色效率的 4.5V 至 26.4V H 类控制数字输入 D 类音频放大器 | RHB | 32 | -25 to 85
TI

TAS5828M

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器
TI

TAS5828MDADR

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器 | DAD | 32 | -40 to 85
TI

TAS6421-Q1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6421QDKQRQ1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6422-Q1

具有负载突降保护功能的汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI