TAS5805MPWPR [TI]

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85;
TAS5805MPWPR
型号: TAS5805MPWPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有处理功能的 23W 立体声、45W 单声道、4.5V 至 26.4V 电源电压、数字输入 D 类音频放大器 | PWP | 28 | -25 to 85

放大器 音频放大器
文件: 总103页 (文件大小:4451K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
具有增强处理能力和低功率损耗TAS5805M 23W、无电感器、数字输入、立  
体声、闭D 类音频放大器  
• 无线扬声器、智能扬声器带语音助理)  
• 条形音箱、有线扬声器、书架立体声系统  
1 特性  
• 台式计算机、笔记本电脑  
AV 接收器、智能家居和物联网电器  
• 支持多路输出配置  
2.0 模式8Ω21VTHD+N=1%下可提供  
2 × 23W 的功率  
– 单声道模式4Ω21VTHD+N=1%下可提  
45W 的功率  
• 优异的音频性能  
3 说明  
TAS5805M 是一款高效立体声闭环 D 类放大器可提  
供具有低功率耗散和丰富声音的低成本数字输入解决方  
案。该器件的集成音频处理器和 96kHz 架构支持高级  
音频处理流程包括 SRC、每通道 15 BQ、音量控  
制、音频混合、3 频带 4 DRC、全频带 AGLTHD  
管理器和电平计。  
1W1kHzPVDD = 12V 条件THD+N ≤  
0.03%  
SNR 107dBA 加权),噪声级<  
40µVRMS  
• 低静态电流混合调制)  
TAS5805M 采用 TI 的专有混合调制方案消耗超低的  
静态电流13.5V PVDD 下为 16.5mA),从而能够延  
长便携式音频应用中的电池寿命。凭借先进的 EMI 抑  
制技术设计人员可以利用廉价的铁氧体磁珠滤波器来  
减小布板空间并降低系统成本。  
PVDD = 13.5V 且使22µH + 0.68µF 滤波器的  
情况下16.5mA  
• 灵活的电源配置  
PVDD4.5V 26.4V  
DVDD I/O1.8V 3.3V  
• 灵活的音I/O  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TAS5805M  
I2SLJRJTDM3 线数字音频接口无需  
TSSOP (28) PWP 9.7mm × 4.4mm  
MCLK)  
– 支3244.14888.296kHz 采样速率  
– 可支持音频监控、子通道或回声消除SDOUT  
• 增强的音频处理能力  
(1) 如需了解所有可用封装请参阅产品说明书末尾的可订购产品  
附录。  
Speaker  
Channel  
Speaker  
R Channel  
L
– 多频带高DRC AGL  
2×15 BQ  
– 热折返、直流阻断  
– 输入混合器、输出交叉开关  
– 电平计  
5 BQ + 单频DRC + THD 管理器用于低  
音炮通道)  
– 声场定位(SFS) 选项  
• 集成式自保护  
– 邻近的引脚对引脚短路不会造成损坏  
– 过流错(OCE)  
– 过热警(OTW)  
DVDD  
Digital  
Audio  
Source  
System  
Processor  
Copyright  
© 2018, Texas Instruments Incorporated  
– 过热错(OTE)  
– 欠压/过压锁(UVLO/OVLO)  
• 可轻松进行系统集成  
简化版方框图  
I2C 软件控制  
– 解决方案尺寸更小  
• 与开环器件相比所需的无源器件更少  
• 对PVDD 14V 的大多数情况可实现无  
电感器操作铁氧体磁珠)  
2 应用  
LCD 电视、OLED 电视  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEH5  
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................36  
7.5 Programming and Control.........................................41  
7.6 Register Maps...........................................................47  
8 Application and Implementation..................................77  
8.1 Application Information............................................. 77  
8.2 Typical Applications.................................................. 79  
9 Layout.............................................................................89  
9.1 Layout Guidelines..................................................... 89  
9.2 Layout Example........................................................ 91  
10 Device and Documentation Support..........................92  
10.1 Device Support....................................................... 92  
10.2 Receiving Notification of Documentation Updates..93  
10.3 支持资源..................................................................93  
10.4 Trademarks.............................................................93  
10.5 静电放电警告.......................................................... 93  
10.6 术语表..................................................................... 93  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................5  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................8  
6.6 Timing Requirements................................................ 11  
6.7 Typical Characteristics..............................................12  
7 Detailed Description......................................................29  
7.1 Overview...................................................................29  
7.2 Functional Block Diagram.........................................29  
7.3 Feature Description...................................................29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (December 2018) to Revision D (November 2020)  
Page  
Added note 1 to the Recommended Operating Conditions ............................................................................... 7  
Added capacitve load for each bus line, Cb = 400 pf to the I2C timming parameters in the Timing  
Requirements ...................................................................................................................................................11  
Change the I2C BUS Timming-Standard. Data Hold Time max value from 900 ns to 3450 ns in the Timing  
Requirements ...................................................................................................................................................11  
Added efficiency plot and 1%/10% THD+N output power vs PVDD plot for 4-Ωload..................................... 12  
Added notes the Hybrid Modulation section..................................................................................................... 40  
Added Speaker DC Protection, Device Over Temperature Protection, Device Over Voltage/Under Voltage  
Protection, and Clock Fault sections................................................................................................................ 46  
Changes from Revision B (October 2018) to Revision C (December 2018)  
Page  
Added 7-14 ..................................................................................................................................................45  
Added 7-15 ..................................................................................................................................................45  
Changes from Revision A (July 2018) to Revision B (October 2018)  
Page  
• 在中将“13.5V PVDD 下小16.5mA”更改为“13.5V PVDD 16.5mA..........................1  
Changed the Typical Characteristics graphs.................................................................................................... 12  
Added the Clock Halt Auto-recover section......................................................................................................31  
Added the Sample Rate on the Fly Change section.........................................................................................31  
Added the Thermal Foldback section............................................................................................................... 37  
Changed the Device State Control section.......................................................................................................37  
Changed the DSP Memory Book, Page and BQ Coefficients Update section................................................. 43  
Added the Example Use section.......................................................................................................................43  
Deleted 010:310K in 7-9 ............................................................................................................................. 47  
Added the Inductor Selections section............................................................................................................. 77  
Added the Step 2: Speaker Tuning section...................................................................................................... 82  
Changed the Development Support section.....................................................................................................92  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Changes from Revision * (May 2018) to Revision A (July 2018)  
Page  
• 发布为“量产数据”........................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Device Comparison Table  
ORDERABLE PART  
NUMBER  
RECOMMENDED  
PVDD RANGE  
Audio Process Flows  
RDS(ON)  
TAS5805M  
4.5 V to 26.4 V  
8 V to 26 V  
Enhanced Audio Process Flows with ROM Fixed  
Basic Audio Process Flow with ROM Fixed  
180 mΩ  
180 mΩ  
TAS5707/TAS5711  
Flexible Advanced Audio Process Flows with Smart-Amp  
Features  
TAS5825M  
4.5 V to 26.4 V  
90 mΩ  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
5-1. PWP Package, 28-Pin TSSOP,  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DGND  
DVDD  
VR_DIG  
NO.  
1, 5  
2
P
P
P
Digital ground  
3.3-V or 1.8-V digital power supply  
4
Internally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices  
Different I2 C device address can be set by selecting different pull up resistor to DVDD, see 7-5 for details. After  
power up, ADR/ FAULT can be redefine as FAULT, go to Page0, Book0, set register 0x61 = 0x0b first, then set  
register 0x60 = 0x01  
ADR/ FAULT  
LRCLK  
3
6
DI/O  
DI  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ and RJ, this  
corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync  
boundary  
SCLK  
SDIN  
SDOUT  
SDA  
7
8
DI  
DI  
Bit clock for the digital signal that is active on the input data line of the serial data port.  
Data line to the serial data port  
9
DO  
DI/O  
DI  
Serial Audio data output. The source data can be Pre-DSP or Post-DSP data, by setting the register 0x30h.  
I2C serial control data interface input/output  
10  
11  
SCL  
I2C serial control clock input  
Power Down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators. Low, Power Down  
Device; High, Enable Device.  
PDN  
12  
DI  
AVDD  
AGND  
13  
14  
P
P
Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices  
Analog ground  
15,16,27,  
28  
PVDD  
P
PVDD voltage input  
PGND  
19,24  
26  
P
Ground reference for power device circuitry. Connect this pin to system ground.  
Positive pin for differential speaker amplifier output A+  
OUT_A+  
O
Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_A+  
BST_A+  
OUT_A-  
25  
23  
P
O
Negative pin for differential speaker amplifier output A-  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_A-  
BST_A-  
22  
P
Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_B-  
BST_B-  
OUT_B-  
BST_B+  
21  
20  
18  
17  
P
O
P
Negative pin for differential speaker amplifier output B  
Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_B+  
OUT_B+  
O
P
Positive pin for differential speaker amplifier output B+  
Connect to the system Ground  
PowerPAD™  
(1) AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P =  
Power, G = Ground (0 V)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.5  
0.3  
25  
40  
MAX  
UNIT  
V
DVDD  
PVDD  
VI(DigIn)  
VI(SPK_OUTxx)  
TA  
Low-voltage digital supply  
PVDD supply  
3.9  
30  
VDVDD + 0.5  
32  
V
DVDD referenced digital inputs(2)  
Voltage at speaker output pins  
Ambient operating temperature  
Storage temperature  
V
V
85  
°C  
°C  
Tstg  
125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) DVDD referenced digital pins include: ADR/ FAULT, LRCLK, SCLK, SCL, SDA, SDIN, PDN  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted) see (1)  
MIN  
1.62  
4.5  
NOM  
MAX  
3.63  
26.4  
UNIT  
DVDD  
PVDD  
V(POWER)  
Power supply inputs  
V
VOUTPEAK  
OCETHRES  
/
RSPK  
RSPK  
LOUT  
Minimum speaker load  
Minimum speaker load  
6
BTL Mode (4.5VPVDD26.4V)  
PBTL Mode (4.5VPVDD26.4V)  
Ω
VOUTPEAK  
(2×OCETHRES  
/
4
Ω
)
Minimum inductor value in LC filter under short-circuit condition  
1
4.7  
µH  
(1) The minimal speaker load been limited by OCE Threshold, if output peak current <5A, TAS5805M also supports lower speaker load  
with High PVDD. For BTL, the OCE Threshold is 5A (Typical); For PBTL, the OCE Threshold is 10A (Typical). The minimal speaker  
load depends on the output peak voltage.  
6.4 Thermal Information  
TAS5805M  
TSSOP (PWP)  
28 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC  
STANDARD  
2-LAYER PCB  
JEDEC  
STANDARD  
4-LAYER PCB  
TAS5805MEVM-4  
4-LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
29.1  
21.8  
8.2  
24  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
N/A  
N/A  
1.5  
7.6  
N/A  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJT  
8.1  
ψJB  
RθJC(bot)  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS5805M  
 
 
 
 
 
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
Free-air room temperature 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O  
Input logic high current level  
for DVDD referenced digital  
input pins  
|IIH|  
VIN(DigIn) = VDVDD  
10  
µA  
µA  
Input logic low current level for  
DVDD referenced digital input VIN(DigIn) = 0 V  
pins  
|IIL|  
10  
Input logic high threshold for  
DVDD referenced digital inputs  
VIH(Digin)  
VIL(Digin)  
70%  
80%  
VDVDD  
VDVDD  
Input logic low threshold for  
DVDD referenced digital inputs  
30%  
20%  
400  
VOH(Digin)  
VOL(Digin)  
I2C CONTROL PORT  
Output logic high voltage level IOH = 2 mA  
VDVDD  
VDVDD  
Output logic low voltage level  
IOH = 2 mA  
Allowable load capacitance for  
CL(I2C)  
pF  
each I2C line  
fSCL(fast)  
fSCL(slow)  
SERIAL AUDIO PORT  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
Support SCL frequency  
Required LRCLK/FS to SCLK  
rising edge delay  
tDLY  
5
ns  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
Supported input sample rates  
Supported SCLK frequencies  
SCLK frequency  
40%  
32  
60%  
96  
kHz  
fS  
32  
64  
24.576  
MHz  
SPEAKER AMPLIFIER (ALL OUTPUT CONFIGURATIONS)  
Quiescent supply current on  
DVDD  
Icc  
Icc  
Icc  
Icc  
Icc  
Icc  
Icc  
Icc  
Icc  
PDN=2V, DVDD=3.3V, Play mode  
18  
0.75  
0.75  
5.5  
mA  
mA  
mA  
µA  
Quiescent supply current on  
DVDD  
PDN=2V, DVDD=3.3V, Sleep mode  
PDN=2V, DVDD=3.3V, Deep Sleep mode  
PDN=0V, DVDD=3.3V, Shutdown mode  
Quiescent supply current on  
DVDD  
Quiescent supply current on  
DVDD  
Quiescent supply current on  
PVDD  
PDN=2V,, PVDD=13.5V, LC filter=10uH+0.68uF,  
Fsw=768kHz, BD Modulation, Play mode  
32.5  
16.5  
10.4  
7.2  
mA  
mA  
mA  
mA  
µA  
Quiescent supply current on  
PVDD  
PDN=2V,, PVDD=13.5V, LC filter=22uH+0.68uF,  
Fsw=384kHz, Hybrid Modulation, Play mode  
Quiescent supply current on  
PVDD  
PDN=2V, PVDD=13.5V, Output Hiz Mode  
PDN=2V, PVDD=13.5V, Sleep Mode  
PDN=2V, PVDD=13.5V, Deep Sleep Mode  
Quiescent supply current on  
PVDD  
Quiescent supply current on  
PVDD  
120  
7.2  
Quiescent supply current on  
PVDD  
Icc  
toff  
PDN=0V, PVDD=13.5V, Shutdown Mode  
Excluding volume ramp  
µA  
ms  
Turn-off Time  
10  
Value represents the "peak voltage" disregarding  
clipping due to lower PVDD).  
Measured at 0 dB input(1FS)  
AV(SPK_AMP)  
Programmable Gain  
Amplifier gain error  
4.87  
29.5  
V
Gain = 29.5 Vp/FS  
0.5  
384  
768  
dB  
ΔAV(SPK_AMP)  
kHz  
kHz  
Switching frequency of the  
speaker amplifier  
fSPK_AMP  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Drain-to-source on resistance  
of the individual output  
MOSFETs  
RDS(on)  
FET + Metallization  
180  
mΩ  
OCETHRES  
Over-Current Error Threshold OUTxx Overcurrent Error Threshold  
5
A
V
PVDD over voltage error  
threshold  
OVETHRES(PVDD  
28  
PVDD under voltage error  
threshold  
UVETHRES(PVDD  
OTETHRES  
4.2  
160  
10  
V
Over temperature error  
threshold  
°C  
°C  
°C  
Over temperature error  
hysteresis  
OTEHystersis  
OTWTHRES  
Over temperature warning  
Read by register 0x73 bit3  
level  
135  
SPEAKER AMPLIFIER (STEREO BTL)  
Measured differentially with zero input data,  
programmable gain configured with 29.5 Vp gain,  
VPVDD = 12 V, BD Mode  
|VOS  
|
Amplifier offset voltage  
6.5  
mV  
6.5  
VPVDD = 21V, SPK_GAIN = 24.8 Vp/FS, RSPK = 8  
Ω, f = 1 kHz, THD+N = 1%, 1SPW Mode  
23  
27.5  
21  
W
W
W
W
W
W
W
W
VPVDD = 21 V, SPK_GAIN = 24.8 Vp/FS, RSPK = 8  
Ω, f = 1 kHz, THD+N = 10%, 1SPW Mode  
VPVDD = 18 V, SPK_GAIN = 20.8 Vp/FS, RSPK = 6  
Ω, f = 1 kHz, THD+N = 1%, BD Mode  
VPVDD = 18 V, SPK_GAIN = 20.8 Vp/FS, RSPK = 6  
Ω, f = 1 kHz, THD+N = 10%, BD Mode  
25  
Continuous Output power (per  
channel)  
PO(SPK)  
VPVDD = 12 V, SPK_GAIN = 13.9 Vp/FS, RSPK = 6  
Ω, f = 1 kHz THD+N = 1%, BD Mode  
9.9  
VPVDD = 12 V, SPK_GAIN = 13.9 Vp/FS, RSPK = 6  
Ω, f = 1 kHz THD+N = 10%, BD Mode  
12  
VPVDD = 13.5 V, SPK_GAIN = 15.6 Vp/FS, RSPK  
= 6 Ω, f = 1 kHz THD+N = 1%, BD Mode  
12  
VPVDD = 13.5 V, SPK_GAIN = 15.6 Vp/FS, RSPK  
= 6 Ω, f = 1 kHz THD+N = 10%, BD Mode  
15  
VPVDD = 12 V, Fsw=768kHz, SPK_GAIN = 13.9  
Vp/FS, LC-filter, BD Mode  
Total harmonic distortion and  
noise  
(PO = 1 W, f = 1 KHz, RSPK = 6  
Ω)  
0.03%  
0.03%  
THD+NSPK  
VPVDD = 18 V, Fsw=768kHz, SPK_GAIN = 20.8  
Vp/FS, LC-filter, BD Mode  
37  
38  
VPVDD = 12 V, Fsw=768kHz, LC-filter, Load=6 Ω  
VPVDD = 18 V, Fsw=768kHz, LC-filter, Load=6 Ω  
ICN(SPK)  
Idle channel noise(A-weighted)  
Dynamic range  
µVrms  
A-Weighted, -60 dBFS method. PVDD = 24 V,  
SPK_GAIN = 29.5 Vp/FS  
DR  
106  
111  
dB  
dB  
dB  
dB  
A-Weighted, referenced to 1% THD+N output level,  
PVDD=24V  
SNR  
Signal-to-noise ratio  
A-Weighted, referenced to 1% THD+N output level,  
PVDD=13.5V  
107.5  
72  
Injected Noise = 1 KHz, 1 Vrms, PVDD = 12 V, input  
audio signal = digital zero  
KSVR  
Power supply rejection ratio  
Cross-talk (worst case  
X-talkSPK  
between left-to-right and right- f = 1 kHz  
to-left coupling)  
100  
dB  
SPEAKER AMPLIFIER (MONO PBTL)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VPVDD = 12 V, SPK_GAIN = 13.9 Vp/FS, RSPK = 4  
Ω, f = 1kHz, THD+N = 1%, BD Mode  
15.4  
W
VPVDD = 12 V, SPK_GAIN = 13.9 Vp/FS, RSPK = 4  
Ω, f = 1kHz, THD+N = 10%, BD Mode  
18.5  
33.6  
41  
W
W
W
PO(SPK)  
Continuous Output Power  
VPVDD = 18V, SPK_GAIN = 22.1 Vp/FS, RSPK = 4  
Ω, f = 1kHz, THD+N = 1%, BD Mode  
VPVDD = 18 V, SPK_GAIN = 22.1 Vp/FS, RSPK = 4  
Ω, f = 1kHz, THD+N = 10%, BD Mode  
VPVDD = 12 V, SPK_GAIN = 16.5 Vp/FS, 4.7uH +  
0.68uF filter, RSPK = 4 Ω, BD Mode  
0.06%  
0.07%  
106  
Total harmonic distortion and  
noise  
(PO = 1 W, f = 1 kHz)  
THD+NSPK  
VPVDD = 24 V, SPK_GAIN = 29.5 Vp/FS, 4.7uH +  
0.68uF filter, RSPK = 4 Ω, 1SPW Mode  
A-Weighted, -60 dBFS method, PVDD = 24V,  
SPK_GAIN = 29.5 Vp/FS  
DR  
Dynamic range  
dB  
dB  
dB  
dB  
A-Weighted, referenced to 1% THD+N output level,  
PVDD=13.5V  
107.7  
111  
SNR  
Signal-to-noise ratio  
Power supply rejection ratio  
A-Weighted, referenced to 1% THD+N output level,  
PVDD=24V  
Injected Noise = 1 KHz, 1 Vrms, PVDD = 19 V, input  
audio signal = digital zero  
KSVR  
72  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Serial Audio Port Timing  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
1.024  
40  
16  
16  
8
MHz  
ns  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
I2C Bus Timing Standard  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
4.7  
tLOW  
tHI  
4.7  
High period of the SCL clock  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
4
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
4.7  
4
250  
Data hold time  
0
3450  
1000  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
1000  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
CB  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
1000  
1000  
1000  
ns  
ns  
ns  
µs  
pf  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Capacitve load for each bus line  
400  
400  
I2C Bus Timing –  
Fast  
fSCL  
SCL clock frequency  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
1.3  
tLOW  
tHI  
1.3  
600  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
600  
600  
100  
Data hold time  
0
900  
300  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
300  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
pf  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Pulse width of spike suppressed  
Capacitve load for each bus line  
50  
CB  
400  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.7 Typical Characteristics  
6.7.1 Bridge Tied Load (BTL) Configuration Curves with 1SPW Mode  
Free-air room temperature 25°C (unless otherwise noted.) Measurements were made using TAS5805MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM Modulation mode set to 1SPW mode  
with Class D Bandwidth = 120 kHz for 576 kHz Fsw and Class D Bandwidth = 175 kHz for 768 kHz Fsw (Listed  
in Register 0x53) unless otherwise noted.  
10  
5
10  
5
PVcc=5V  
TA=25èC  
RL=4W  
PVcc=7.4V  
TA=25èC  
RL=4W  
P O=0.5W  
PO =1W  
P O=0.5W  
PO =1W  
PO=2.5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D010324  
D0103412  
PVDD = 5 V  
4.7µH+0.68µF  
PVDD = 7.4 V  
FSW = 576 kHz  
4.7µH+0.68µF  
FSW = 576 kHz  
1SPW Modulation  
1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-1. THD+N vs Frequency-BTL  
6-2. THD+N vs Frequency-BTL  
10  
10  
PVcc=12V  
TA=25èC  
RL=4W  
Fsw=768kHz  
1SPW Mode  
PVcc=18V  
TA=25èC  
RL=4W  
Fsw=768kHz  
1SPW Mode  
P O=1W  
PO=2.5W  
PO=5W  
P O=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
DF01021  
DF0102  
PVDD = 12 V  
10µH+0.68µF  
PVDD = 18 V  
10µH+0.68µF  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-3. THD+N vs Frequency-BTL  
6-4. THD+N vs Frequency-BTL  
10  
10  
PVcc=24V  
TA=25èC  
RL=4W  
Fsw=768kHz  
1SPW Mode  
PVcc=12V  
TA=25èC  
RL=6W  
P O=1W  
PO=2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
DF01023  
D01023  
PVDD = 24 V  
10µH+0.68µF  
PVDD = 12 V  
4.7µH+0.68µF  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 4Ω  
Load = 6Ω  
6-5. THD+N vs Frequency-BTL  
6-6. THD+N vs Frequency-BTL  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10  
10  
5
PVcc=18V  
TA=25èC  
RL=6W  
PVcc=24V  
TA=25èC  
RL=6W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D10042  
D01025  
PVDD = 18 V  
10µH+0.68µF  
PVDD = 24 V  
10µH+0.68µF  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 6Ω  
Load = 6Ω  
6-7. THD+N vs Frequency-BTL  
6-8. THD+N vs Frequency-BTL  
10  
10  
PVcc=12V  
TA=25èC  
RL=8W  
PVcc=18V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D10062  
D01027  
PVDD = 12 V  
4.7uH+0.68uF  
PVDD = 18 V  
10µH+0.68µF  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 8Ω  
Load = 8Ω  
6-9. THD+N vs Frequency-BTL  
6-10. THD+N vs Frequency-BTL  
10  
10  
PVcc=24V  
TA=25èC  
RL=8W  
PVcc=19V  
TA=25èC  
RL=6W  
P O=1W  
PO =2.5W  
PO=5W  
BD Mode  
1SPW Mode  
Hybrid Mode  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D10082  
D010120  
PVDD = 24 V  
10µH+0.68µF  
PVDD = 19 V  
10µH+0.68µF  
POUT = 5W  
FSW = 768 kHz  
1SPW Modulation  
FSW = 384 kHz  
BD/1SPW/Hybrid  
Load = 8Ω  
Load = 6Ω  
6-11. THD+N vs Frequency-BTL  
6-12. THD+N vs Frequency-BTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
40  
45  
40  
35  
30  
25  
20  
15  
10  
5
TA=25èC  
RL=4W  
Fsw=768kHz  
BTL Mode  
1SPW Mode  
THD+N=1%, R L=6W  
THD+N=10%, R L=6W  
35  
30  
25  
20  
15  
10  
5
BTL Mode  
TA=25èC  
THD+N=1%  
THD+N=10%  
0
0
4
6
8
10  
12  
14  
16  
Supply Voltage (V)  
18  
20  
22  
24  
4.5  
6.5  
8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24  
Supply Voltage (V)  
D014  
DF033071  
D014  
D013271  
NOTE: Dashed lines represent thermally limited region for the  
continuous output power.  
NOTE: Dashed lines represent thermally limited region for the  
continuous output power.  
PVDD = 4.5 V~24V 10µH+0.68µF  
PVDD = 4.5 V~24V 10µH+0.68µF  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 4Ω  
Load = 6Ω  
6-13. Output Power vs Supply Voltage-BTL  
6-14. Output Power vs Supply Voltage-BTL  
40  
10  
PVCC=5V  
TA=25èC  
RL=4W  
THD+N=1%, R L=8W  
THD+N=10%, R L=8W  
5
35  
30  
25  
20  
15  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
BTL Mode  
TA=25èC  
0.002  
0.001  
0
4.5  
6.5  
8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24  
Supply Voltage (V)  
0.01  
0.1  
1
10  
Output Power (W)  
D014  
D013272  
D010172  
PVDD = 4.5 V~24V 10µH+0.68µF  
FSW = 768 kHz 1SPW Modulation  
PVDD = 5V  
FSW = 768 kHz  
4.7µH+0.68µF  
1SPW Modulation  
Load = 8Ω  
Load = 4Ω  
6-15. Output Power vs Supply Voltage-BTL  
6-16. THD+N vs Output Power-BTL  
10  
10  
PVCC=12V  
TA=25èC  
RL=4W  
BTL Mode  
PVCC=18V  
TA=25èC  
RL=4W  
BTL Mode  
5
5
2
2
1
1
Fsw=768kHz  
1SPW Mode  
Fsw=768kHz  
1SPW Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
DF02071  
DF02072  
PVDD = 12V  
10µH+0.68µF  
PVDD = 18V  
10µH+0.68µF  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-17. THD+N vs Output Power-BTL  
6-18. THD+N vs Output Power-BTL  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10  
10  
5
PVCC=12V  
TA=25èC  
RL=6W  
PVCC=18V  
TA=25èC  
RL=6W  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10  
0.01  
0.1  
1
Output Power (W)  
10 20  
D101047  
D010175  
PVDD = 12V  
FSW = 768 kHz  
4.7µH+0.68µF  
PVDD = 18V  
FSW = 768 kHz  
10µH+0.68µF  
1SPW Modulation  
1SPW Modulation  
Load = 6Ω  
Load = 6Ω  
6-19. THD+N vs Output Power-BTL  
6-20. THD+N vs Output Power-BTL  
10  
10  
PVCC=24V  
TA=25èC  
RL=6W  
PVCC=12V  
TA=25èC  
RL=8W  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
10  
Output Power (W)  
D101067  
D01017  
PVDD = 24V  
FSW = 768 kHz  
10µH+0.68µF  
PVDD = 12V  
FSW = 768 kHz  
4.7µH+0.68µF  
1SPW Modulation  
1SPW Modulation  
Load = 6Ω  
Load = 8Ω  
6-21. THD+N vs Output Power-BTL  
6-22. THD+N vs Output Power-BTL  
10  
10  
PVCC=18V  
TA=25èC  
RL=8W  
PVCC=24V  
TA=25èC  
RL=8W  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D01014087  
D010179  
PVDD = 18V  
FSW = 768 kHz  
10µH+0.68µF  
PVDD = 24V  
FSW = 768 kHz  
10µH+0.68µF  
1SPW Modulation  
1SPW Modulation  
Load = 8Ω  
Load = 8Ω  
6-23. THD+N vs Output Power-BTL  
6-24. THD+N vs Output Power-BTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
80  
0
-20  
Fsw=768kHz, Channel A  
Fsw=768kHz, Channel B  
PVDD=12V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
60  
40  
20  
0
-40  
-60  
-80  
-100  
-120  
5
10  
15  
Supply Voltage (V)  
18  
20  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D10032760  
D0102318  
PVDD = 4.5V~24V 10µH+0.68µF  
FSW = 768 kHz 1SPW Modulation  
PVDD = 12V  
4.7µH+0.68µF  
Pout=1W  
FSW = 768 kHz  
1SPW Modulation  
Load = 8Ω  
Load = 6Ω  
6-25. Idle Channel Noise vs PVDD-BTL  
6-26. Crosstalk  
0
0
PVDD=18V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
PVDD=24V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D0102319  
D0103310  
PVDD = 18V  
10µH+0.68µF  
Pout=1W  
PVDD = 24V  
10µH+0.68µF  
Pout=1W  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 6Ω  
Load = 6Ω  
6-27. Crosstalk  
6-28. Crosstalk  
0
0
PVDD=12V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
PVDD=18V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D010331  
D0103312  
PVDD = 12V  
4.7µH+0.68µF  
Pout=1W  
PVDD = 18V  
10µH+0.68µF  
Pout=1W  
FSW = 768 kHz  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
Load = 8Ω  
Load = 8Ω  
6-29. Crosstalk  
6-30. Crosstalk  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD=24V, LC filter=4.7uH+0.68uF  
Ch A to Ch B  
Ch B to Ch A  
-20  
-40  
TA=25èC  
RL=4W  
BTL Mode  
Fsw=768kHz  
1SPW Mode  
-60  
-80  
PVCC = 12V  
PVCC = 18 V  
PVCC = 24 V  
-100  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
0
5
10  
15  
20  
25  
30  
Output Power (W)  
35  
40  
45  
50  
D010313  
DF01060  
PVDD = 24V  
10µH+0.68µF  
Pout=1W  
PVDD =  
10µH+0.68µF  
1SPW Modulation  
FSW = 768 kHz  
1SPW Modulation  
12V/18V/24V  
Load = 8Ω  
FSW = 768 kHz  
Load = 4Ω  
6-31. Crosstalk  
6-32. Efficiency vs Output Power-BTL  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
TA=25èC  
RL=6W  
BTL Mode  
Fsw=768kHz  
1SPW Mode  
70  
60  
50  
40  
30  
20  
10  
0
TA=25èC  
RL=8W  
BTL Mode  
Fsw=768kHz  
1SPW Mode  
PVCC = 12V  
PVCC = 18 V  
PVCC = 24 V  
PVCC = 12V  
PVCC = 18 V  
PVCC = 24 V  
0
5
10  
15  
20  
Output Power (W)  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
Output Power (W)  
25  
30  
35  
40  
45  
50  
DF01061  
DF01062  
PVDD =  
10µH+0.68µF  
1SPW Modulation  
PVDD =  
12V/18V/24V  
FSW = 768 kHz 1SPW Modulation  
10µH+0.68µF  
12V/18V/24V  
FSW = 768 kHz  
Load = 6Ω  
Load = 8Ω  
6-33. Efficiency vs Output Power-BTL  
6-34. Efficiency vs Output Power-BTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.7.2 Bridge Tied Load (BTL) Configuration Curves with BD Mode  
Free-air room temperature 25°C (unless otherwise noted.) Measurements were made using TAS5805MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM Modulation mode set to BD mode with  
Class D Bandwidth = 175kHz (Listed in Register 0x53) unless otherwise noted.  
10  
5
10  
5
PVcc=5V  
TA=25èC  
RL=4W  
PVcc=7.4V  
TA=25èC  
RL=4W  
P O=0.5W  
PO =1W  
P O=0.5W  
PO =1W  
PO=2.5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D60002  
D06021  
PVDD = 5V  
10µH+0.68µF  
BD Modulation  
PVDD = 7.4V  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 4Ω  
Load = 4Ω  
6-35. THD+N vs Frequency  
6-36. THD+N vs Frequency  
10  
5
10  
5
PVcc=12V  
TA=25èC  
RL=4W  
PVcc=12V  
TA=25èC  
RL=6W  
P O=1W  
PO=2.5W  
PO=5W  
P O=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D6002  
D06023  
PVDD = 12V  
10µH+0.68µF  
BD Modulation  
PVDD = 12V  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 4Ω  
Load = 6Ω  
6-37. THD+N vs Frequency  
6-38. THD+N vs Frequency  
10  
5
10  
5
PVcc=18V  
TA=25èC  
RL=6W  
PVcc=12V  
TA=25èC  
RL=8W  
P O=1W  
PO=2.5W  
PO=5W  
P O=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D60042  
D06025  
PVDD = 18V  
10µH+0.68µF  
BD Modulation  
PVDD = 12V  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 6Ω  
Load = 8Ω  
6-39. THD+N vs Frequency  
6-40. THD+N vs Frequency  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10  
10  
5
PVcc=18V  
TA=25èC  
RL=8W  
PVCC=5V  
P O=1W  
PO=2.5W  
PO=5W  
5
TA=25èC  
BTL Mode  
Load=4W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f = 20Hz  
f = 1kHz  
f = 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
0.01  
0.1  
1
10  
Output Power (W)  
D60062  
D0607  
PVDD = 18V  
10µH+0.68µF  
BD Modulation  
PVDD = 5V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
Load = 8Ω  
Load = 4Ω  
6-41. THD+N vs Frequency  
6-42. THD+N vs Output Power  
10  
5
10  
PVCC=12V  
TA=25èC  
BTL Mode  
PVCC=12V  
TA=25èC  
BTL Mode  
5
2
1
2
1
Load=4W  
Load=6W  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f = 20Hz  
f = 1kHz  
f = 10kHz  
f = 20Hz  
f = 1kHz  
f = 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10  
D60087  
D06079  
PVDD = 12V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
PVDD = 12V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
Load = 4Ω  
Load = 6Ω  
6-43. THD+N vs Output Power  
6-44. THD+N vs Output Power  
10  
10  
PVCC=18V  
TA=25èC  
BTL Mode  
PVCC=12V  
TA=25èC  
BTL Mode  
5
5
2
1
2
1
Load=6W  
Load=8W  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f = 20Hz  
f = 1kHz  
f = 10KHz  
f = 20Hz  
f = 1kHz  
f = 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10  
D601007  
D060171  
PVDD = 18V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
PVDD = 12V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
Load = 6Ω  
Load = 8Ω  
6-45. THD+N vs Output Power  
6-46. THD+N vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10  
40  
35  
30  
25  
20  
15  
10  
5
PVCC=18V  
TA=25èC  
BTL Mode  
THD+N=1%, R L=4W  
THD+N=10%, R L=4W  
5
2
1
Load=8W  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
f = 20Hz  
f = 1kHz  
f = 10KHz  
0.005  
BTL Mode  
TA=25èC  
0.002  
0.001  
0
0.01  
0.1  
1
Output Power (W)  
10 20  
4
6
8
10 12  
Supply Voltage (V)  
14  
16  
18 19  
D014  
D063173  
D601027  
PVDD = 18V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
NOTE: Dashed lines represent thermally limited region for the  
continuous output power.  
Load = 8Ω  
10µH+0.68µF  
6-47. THD+N vs Output Power  
FSW = 768 kHz  
BD Modulation  
Load = 4Ω  
6-48. Output Power vs Supply Voltage  
50  
45  
THD+N=1%, R L=6W  
THD+N=10%, R L=6W  
THD+N=1%, R L=8W  
THD+N=10%, R L=8W  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
BTL Mode  
TA=25èC  
BTL Mode  
TA=25èC  
5
0
0
4
6
8
10  
12  
Supply Voltage (V)  
14  
16  
18  
20  
22  
24  
4
6
8
10  
12  
Supply Voltage (V)  
14  
16  
18  
20  
22  
24  
D014  
D063174  
D014  
D063175  
NOTE: Dashed lines represent thermally limited region for the  
continuous output power.  
NOTE: Dashed lines represent thermally limited region for the  
continuous output power.  
10µH+0.68µF  
10µH+0.68µF  
FSW = 768 kHz  
BD Modulation  
FSW = 768 kHz  
BD Modulation  
Load = 6Ω  
Load = 8Ω  
6-49. Output Power vs Supply Voltage  
6-50. Output Power vs Supply Voltage  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
40  
20  
BTL Mode  
A=25èC  
RL=4W  
PVCC = 4.5V  
PVCC = 7.4 V  
PVCC = 12 V  
T
10  
0
Fsw = 768kHz, BD Mode  
18 20  
0
5
10  
15  
Supply Voltage (V)  
25  
0
10  
20 30  
Output Power (W)  
40  
50  
D60130706  
D062148  
10µH+0.68µF  
BD Modulation  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 6Ω  
Load = 4Ω  
6-51. Idle Channel Noise vs Supply Voltage  
6-52. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
BTL Mode  
TA=25èC  
RL=6W  
BTL Mode  
TA=25èC  
RL=8W  
PVCC = 7.4V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 7.4V  
PVCC = 12 V  
PVCC = 18 V  
0
10  
20  
30  
Output Power (W)  
40  
50  
60  
0
10  
20  
Output Power (W)  
30  
40  
D601294  
D06240  
10µH+0.68µF  
BD Modulation  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 6Ω  
Load = 8Ω  
6-53. Efficiency vs Output Power  
6-54. Efficiency vs Output Power  
0
0
PVDD=12V, Load=6W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
PVDD=18V, Load=6W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D060231  
D0602312  
PVDD=12V  
10µH+0.68µF  
BD Modulation  
PVDD=18V  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 6Ω  
Load = 6Ω  
6-55. Crosstalk  
6-56. Crosstalk  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.7.3 Bridge Tied Load (BTL) Configuration Curves with Ferrite Bead + Capacitor as the Output Filter  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5805MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 384 kHz, with Class D  
Bandwidth = 80 kHz (Listed in Register 0x53), Spread Spectrum Enable, Ferrite bead + Capacitor as the output  
filter, BD Modulation, unless otherwise noted.  
10  
5
10  
5
PVcc=12V  
TA=25èC  
RL=6W  
PVcc=12V  
TA=25èC  
RL=8W  
P O=1W  
PO =2.5W  
PO=5W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D103052  
D010326  
PVDD = 12V  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 12V  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
FSW = 384 kHz  
BD Modulation  
Load = 6Ω  
Load = 8Ω  
6-57. THD+N vs Frequency-BTL  
6-58. THD+N vs Frequency-BTL  
20  
10  
PVCC=7.4V  
TA=25èC  
RL=4W  
THD+N=1%, R L=8W  
THD+N=10%, R L=8W  
5
2
15  
10  
5
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
BTL Mode  
TA=25èC  
0.002  
0.001  
0
4.5  
6.5  
8.5 10.5  
Supply Voltage (V)  
12.5  
14.5  
16  
0.01  
0.1  
1
10  
Output Power (W)  
D014  
D0137  
D011304087  
PVDD = 4.5V~16V Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 7.4V  
FSW = 384 kHz  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
BD Modulation  
Load = 8Ω  
Load = 4Ω  
6-59. Output Power vs Supply Voltage-BTL  
6-60. THD+N vs Output Power-BTL  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10  
10  
5
PVCC=12V  
A=25èC  
RL=8W  
PVCC=12V  
TA=25èC  
RL=6W  
5
T
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10  
0.01  
0.1  
1
Output Power (W)  
10  
D103097  
D010470  
PVDD = 12V  
FSW = 384 kHz  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 12V  
FSW = 384 kHz  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
BD Modulation  
BD Modulation  
Load = 6Ω  
Load = 8Ω  
6-61. THD+N vs Output Power-BTL  
6-62. THD+N vs Output Power-BTL  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
PVDD=12V, Ferrite Bead + Capacitor  
Ch A to Ch B  
Ch B to Ch A  
-20  
-40  
-60  
-80  
-100  
TA=25èC  
RL=4W  
PVCC = 5V  
PVCC = 7.4V  
10  
0
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
0
10  
Output Power (W)  
D010431  
D012443  
PVDD = 12V,  
Pout=1W  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 5V/7.4V  
FSW = 384 kHz  
Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
BD Modulation  
Load = 6Ω  
Load = 4Ω  
6-63. Crosstalk  
6-64. Efficiency vs Output Power-BTL  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
TA=25èC  
RL=8W  
TA=25èC  
RL=6W  
PVCC = 7.4V  
PVCC = 12 V  
PVCC = 7.4V  
PVCC = 12 V  
10  
10  
0
0
0
10  
Output Power (W)  
20  
0
10  
20  
30  
Output Power (W)  
D10424  
D012445  
PVDD = 7.4V/12V Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
PVDD = 7.4V/12V Ferrite Bead +  
Capacitor  
Spread Spectrum  
Enable  
FSW = 384 kHz  
BD Modulation  
FSW = 384 kHz  
BD Modulation  
Load = 8Ω  
Load = 6Ω  
6-65. Efficiency vs Output Power-BTL  
6-66. Efficiency vs Output Power-BTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.7.4 Parallel Bridge Tied Load (PBTL) Configuration with 1SPW Modulation  
Free-air room temperature 25°C (unless otherwise noted.) Measurements were made using TAS5805MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 576 kHz, the LC filter  
used was 4.7 μH / 0.68 μF, 1SPW modulation with Class D Bandwidth = 120kHz (Listed in Register 0x53)  
unless otherwise noted.  
10  
5
10  
5
PVcc=7.4V  
TA=25èC  
RL=4W  
PVcc=12V  
TA=25èC  
RL=4W  
P O=1W  
PO=2.5W  
PO=4W  
P O=1W  
PO =2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D104062  
D010427  
PVDD = 7.4V  
4.7uH + 0.68uF  
PVDD = 12V  
4.7uH + 0.68uF  
FSW = 576 kHz  
1SPW Modulation  
FSW = 576 kHz  
1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-67. THD+N vs Frequency-PBTL  
6-68. THD+N vs Frequency-PBTL  
10  
10  
PVcc=24V  
TA=25èC  
RL=4W  
PVCC=5V  
TA=25èC  
RL=2W  
P O=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
0.01  
0.1  
1
10  
Output Power (W)  
D104082  
D010479  
PVDD = 24V  
4.7uH + 0.68uF  
PVDD = 5V  
FSW = 576 kHz  
4.7uH + 0.68uF  
1SPW Modulation  
FSW = 576 kHz  
1SPW Modulation  
Load = 4Ω  
Load = 2Ω  
6-69. THD+N vs Frequency-PBTL  
6-70. THD+N vs Output Power-PBTL  
10  
10  
PVCC=5V  
TA=25èC  
RL=4W  
PVCC=12V  
TA=25èC  
RL=4W  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 10kHz  
f= 1KHz  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10  
0.01  
0.1  
1
Output Power (W)  
10 20  
Output Power (W)  
D105007  
D010571  
PVDD = 5V  
FSW = 576 kHz  
4.7uH + 0.68uF  
1SPW Modulation  
PVDD = 12V  
FSW = 576 kHz  
4.7uH + 0.68uF  
1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-71. THD+N vs Output Power-PBTL  
6-72. THD+N vs Output Power-PBTL  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10  
10  
5
PVCC=18V  
TA=25èC  
RL=4W  
PVCC=24V  
TA=25èC  
RL=4W  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 10kHz  
f= 1KHz  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D105027  
D010573  
PVDD = 18V  
FSW = 576 kHz  
4.7uH + 0.68uF  
PVDD = 24V  
4.7uH + 0.68uF  
1SPW Modulation  
FSW = 576kHz  
1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-73. THD+N vs Output Power-PBTL  
6-74. THD+N vs Output Power-PBTL  
70  
80  
THD+N=1%, R L=4W  
THD+N=10%, R L=4W  
Fsw=768kHz, PBTL Mode  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
40  
20  
0
PBTL Mode  
TA=25èC  
0
4.5  
6.5  
8.5 10.5 12.5 14.5 16.5 18.5 20.5 22.5 24  
Supply Voltage (V)  
5
10  
15  
Supply Voltage (V)  
18  
20  
D014  
D013574  
D01035705  
PVDD = 4.5V~24V 4.7uH + 0.68uF  
FSW = 576 kHz 1SPW Modulation  
PVDD = 4.5V~24V 4.7uH + 0.68uF  
FSW = 576 kHz 1SPW Modulation  
Load = 4Ω  
Load = 4Ω  
6-75. Output Power vs Supply Voltage-PBTL  
6-76. Idle Channel Noise vs Supply Voltage-  
PBTL  
100  
90  
80  
70  
60  
50  
40  
30  
PVCC = 5V  
PVCC = 7.4 V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
20  
TA=25èC  
RL=4W  
PBTL Mode  
10  
0
0
10  
20  
30 40  
Output Power (W)  
50  
60  
D105264  
PVDD = 5V/7.4V/12V/18V/24V  
FSW = 576 kHz  
4.7uH + 0.68uF  
1SPW Modulation  
Load = 4Ω  
6-77. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
6.7.5 Parallel Bridge Tied Load (PBTL) Configuration with BD Modulation  
Free-air room temperature 25°C (unless otherwise noted.) Measurements were made using TAS5805MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, the LC filter  
used was 10 μH / 0.68 μF, BD Modulation with Class D Bandwidth = 175kHz (Listed in Register 0x53), unless  
otherwise noted.  
10  
5
10  
5
PVcc=7.4V  
TA=25èC  
RL=4W  
PVcc=12V  
TA=25èC  
RL=4W  
P O=1W  
PO=2.5W  
PO=5W  
P O=1W  
PO=2.5W  
PO=5W  
2
1
2
1
PBTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D70012  
D0702  
PVDD = 7.4V  
10µH+0.68µF  
BD Modulation  
PVDD = 12V  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 4Ω  
Load = 4Ω  
6-78. THD+N vs Frequency  
6-79. THD+N vs Frequency  
10  
5
10  
5
PVCC=12V  
TA=25èC  
PBTL Mode  
PVCC=18V  
TA=25èC  
PBTL Mode  
2
1
2
1
Load=4W  
Load=4W  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f = 20Hz  
f = 1kHz  
f = 10kHz  
f=20Hz  
f=1kHz  
f=10kHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D70047  
D07075  
PVDD = 12V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
PVDD = 18V  
FSW = 768 kHz  
10µH+0.68µF  
BD Modulation  
Load = 4Ω  
Load = 4Ω  
6-80. THD+N vs Output Power  
6-81. THD+N vs Output Power  
10  
60  
PVCC=5V  
TA=25èC  
PBTL Mode  
5
2
1
Load=2W  
0.5  
40  
20  
0
0.2  
0.1  
0.05  
0.02  
0.01  
f=20Hz  
f=1kHz  
f=10kHz  
0.005  
0.002  
0.001  
PBTL Mode  
20  
0.01  
0.1  
1
10  
5
10  
15  
Supply Voltage (V)  
18  
Output Power (W)  
D7007  
D073007  
PVDD = 5V  
10µH+0.68µF  
BD Modulation  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
FSW = 768 kHz  
Load = 2Ω  
Load = 4Ω  
6-82. THD+N vs Output Power  
6-83. Idle Channel Noise vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVCC = 5V  
PBTL Mode  
TA=25èC  
RL=4W  
PVCC = 7.4 V  
PVCC = 12 V  
PVCC = 18 V  
0
10  
20  
Output Power (W)  
30  
40  
D700284  
10µH+0.68µF  
BD Modulation  
FSW = 768 kHz  
Load = 4Ω  
6-84. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Parameter Measurement Information  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
STOP  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
7-1. Serial Audio Port Timing in Slave Mode  
Repeated  
START  
START  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
7-2. I2C Communication Port Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TAS5805M device integrates 4 main building blocks together into a single cohesive device that maximizes  
sound quality, flexibility, and ease of use. The 4 main building blocks are listed as follows:  
A stereo audio DAC.  
An Audio DSP subsystem.  
A flexible closed-loop amplifier capable of operating in stereo or mono, at different switching frequencies, and  
supporting a variety of output voltages and loads.  
An I2C control port for communication with the device  
The device requires only two power supplies for proper operation. A DVDD supply is required to power the low  
voltage digital circuitry. Another supply, called PVDD, is required to provide power to the output stage of the  
audio amplifier. Two internal LDOs convert PVDD to 5 V for GVDD and AVDD and to 1.5V for DVDD  
respectively.  
7.2 Functional Block Diagram  
4.5-26.4V  
3.3/1.8V  
DVDD  
VR_DIG  
AVDD  
PVDD1/2/3/4  
LDO 1.5V  
LDO 5V  
BST_A+  
Closed-Loop Feedback  
IO  
IO  
OUT_A+  
I2S/TDM  
ADR/FAULT  
OUT_A-  
BST_A-  
PDN  
H Bridge  
&
Gate Driver  
&
Audio DSP  
Subsystem  
SDIN  
SCLK  
LRCLK  
Digital to PWM  
Conversion  
BST_B-  
OC/DC Protect  
PDM  
OUT_B-  
Modulator  
SDOUT  
SCL  
BST_B+  
OUT_B+  
PLL & OSC  
SDA  
Closed-Loop Feedback  
PGND 1/2  
AGND  
DGND  
7.3 Feature Description  
7.3.1 Power Supplies  
To facilitate system design, TAS5805M needs only a 3.3-V or 1.8-V supply in addition to the (typical) 12-V or 24-  
V power-stage supply. Two internal voltage regulators provide suitable voltage levels for the gate drive circuitry  
and internal circuitry. The external pins are provided only as a connection point for off-chip bypass capacitors to  
filter the supply. Connecting external circuitry to these regulator outputs may result in reduced performance and  
damage to the device. Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive,  
is accommodated by built-in bootstrap circuitry requiring only a few external capacitors. In order to provide good  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TAS5805M  
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical,  
independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BST_x). The gate drive  
voltages (AVDD) are derived from the PVDD voltage. Special attention should be paid to placing all decoupling  
capacitors as close to their associated pins as possible. In general, inductance between the power-supply pins  
and decoupling capacitors must be avoided. For a properly functioning bootstrap circuit, a small ceramic  
capacitor must be connected from each bootstrap pin (BST_x) to the power-stage output pin (OUT_x). When the  
power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the  
gate-drive regulator output pin (AVDD) and the bootstrap pin. When the power-stage output is high, the  
bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for  
the high-side gate driver.  
7.3.2 Device Clocking  
The TAS5805M devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio  
Interface.  
DACCLK  
LRCLK/FS  
DSPCLK  
OSRCLK  
DSP  
(Including  
interpolator)  
Serial Audio  
Interface (Input)  
Delta Sigma  
Modulator  
Audio In  
DAC  
7-1. Audio Flow with Respective Clocks  
7-1 shows the basic data flow and clock distribution.  
The Serial Audio Interface typically has 3 connection pins which are listed as follows:  
SCLK (Bit Clock)  
LRCLK/FS (Left Right Word Clock and Frame Sync)  
SDIN (Input Data)  
The device has an internal PLL that is used to take SCLK (Bit Clock) as reference clock and create the higher  
rate clocks required by the DSP and the DAC clock.  
The TAS5805M device has an audio sampling rate detection circuit that automatically senses the sampling  
frequency. Common audio sampling frequencies of 32 kHz, 44.1kHz 48 kHz, 88.2 kHz 96 kHz are  
supported. The sampling frequency detector sets the clock for DAC and DSP automatically.  
7.3.3 Serial Audio Port Clock Rates  
The serial audio interface port is a 3-wire serial port with the signals LRCLK/FS, SCLK, and SDIN. SCLK is the  
serial audio bit clock, used to clock the serial data present on SDIN into the serial shift register of the audio  
interface. Serial data is clocked into the TAS5805M device on the rising edge of SCLK. The LRCK/FS pin is the  
serial audio left/right word clock or frame sync when the device is operated in TDM Mode.  
7-1. Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCLK/FS FREQUENCY  
FORMAT  
DATA BITS  
SCLK RATE (fS)  
(kHz)  
32 to 96  
32  
I2S/LJ/RJ  
32, 24, 20, 16  
64, 32  
128  
TDM  
32, 24, 20, 16  
44.1,48  
96  
128,256,512  
128,256  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Before DSP register initialize with I2C during the startup , TAS5805M requires stable I2S ready. When Clock halt,  
non-supported SCLK to LRCLK(FS) ratio is detected, the device reports Clock Error in Register 113 (Register  
Address 0x71).  
7.3.4 Clock Halt Auto-recovery  
As some of host processor will Halt the I2S clock when there is no audio playing. When Clock halt, the device  
puts all channels into the Hi-Z state and reports Clock Error in Register 113 (Register Address 0x71). After audio  
clocks recovery, the device automatically returns to the previous state.  
7.3.5 Sample Rate on the Fly Change  
TAS5805M supports LRCLK(FS) rate on the fly change. For example, change LCRLK from 32kHz to 48kHz or  
96kHz, Host processor needs to put the LRCLK(FS)/SCLK to Halt state at least 100us before changing to the  
new sample rate.  
7.3.6 Serial Audio Port - Data Formats and Bit Depths  
The device supports industry-standard audio data formats, including standard I2S, left-justified, right-justified and  
TDM/DSP data. Data formats are selected via Register (P0-R51-D[5:4]). If the high width of LRCK/FS in  
TDM/DSP mode is less than 8 cycles of SCK, the register (P0-R51-D[3:2]) should be set to 01. All formats  
require binary two's complement, MSB-first audio data; up to 32-bit audio data is accepted. All the data formats,  
word length and clock rate supported by this device are shown in 7-1. The data formats are detailed in 7-2  
through 7-6. The word length are selected via Register (P0-R51-D[1:0]). The offsets of data are selected via  
Register (P0-R51-D[7]) and Register (P0-R52-D[7:0]). Default setting is I2S and 24 bit word length.  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
1
1
2
2
2
15 16  
MSB  
LSB  
MSB  
MSB  
MSB  
LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
23 24  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
31 32  
MSB  
LSB  
LSB  
7-2. Left-Justified Audio Data Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
1
1
2
2
2
15 16  
MSB LSB  
MSB LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
23 24  
MSB  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
31 32  
MSB  
MSB  
LSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
7-3. I2S Audio Data Format  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
2
15 16  
MSB LSB  
MSB LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
1
2
23 24  
MSB  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
1
2
31 32  
MSB  
MSB  
LSB  
LSB  
Right-Justified Data Format; L-channel = HIGH, R-channel = LOW  
Right-Justified Data Format; L-channel = HIGH, R-channel = LOW  
7-4. Right-Justified Audio Data Format  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
1 /fS .  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
,
-
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
7-5. TDM 1 Audio Data Format  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
7-6. TDM 2 Audio Data Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.3.7 Digital Audio Processing  
TAS5805M DSP has advanced process flows for different applications, refer to application note, TAS5805  
Process Flows for details or request the PPC3 access for TAS5805M app .  
7.3.8 Class D Audio Amplifier  
Following the digital clipper, the interpolated audio data is next sent to the closed-Loop Class-D amplifier, whose  
first stage is Digital to PWM Conversion (DPC) block. In this block, the stereo audio data is translated into two  
pairs of complimentary pulse-width- modulated (PWM) signals which are used to drive the outputs of the speaker  
amplifier. Feedback loops around the DPC ensure constant gain across supply voltages, reducing distortion and  
improving immunity to the power supply noise. The analog gain is also applied in the Class-D amplifier section of  
the device.  
7.3.8.1 Speaker Amplifier Gain Select  
A combination of digital gain and analog gain is used to provide the overall gain of the speaker amplifier. As  
seen in 7-7, the audio path of the TAS5805M consists of a digital audio input port, a digital audio path, a  
digital to PWM converter (DPC), a gate driver stage, a Class-D power stage, and a feedback loop which feeds  
the output information back into the DPC block to correct for distortion sensed on the output pins. The total  
amplifier gain consists of digital gain shown in the digital audio path, and the analog gain from the input of the  
analog modulator to the output of the speaker amplifier power stage.  
Digital Gain  
Analog Gain  
Closed-Loop Class D Amplifier  
Gate Drives  
SPK_OUTA+  
SPK_OUTA-  
Full Bridge  
Power Stage  
A
Serial  
Audio  
Port  
Audio processing  
DSP  
Serial  
Audio In  
Digital to PWM  
Conersion  
SPK_OUTB+  
SPK_OUTB-  
Full Bridge  
Power Stage  
B
Gate Drives  
SCL  
SDA  
I2C Interface  
Control Register  
Closed-Loop Class D Amplifier  
Copyright © 2018, Texas Instruments Incorporated  
7-7. Speaker Amplifier Gain  
As shown in 7-7, the first gain stage of the speaker amplifier is present in the digital audio path. Digital gain  
consists of the volume control, input Mixer or output Crossbar. The digital gain is set to 0dB by default. Change  
analog gain via register 0x54, AGAIN[4:0] which supports 32 steps analog gain setting (0.5dB per step). These  
analog gain settings ensure that the output signal is not clipped at different PVDD levels. 0dBFS output  
corresponds to 29.5-V peak output voltage.  
7-2. Analog Gain Setting  
AGAIN <4:0>  
00000  
GAIN (dBFS)  
AMPLIFIER PEAK OUTPUT VOLTAGE (V)  
0
29.5  
27.85  
…….  
4.95  
00001  
-0.5  
…….  
……..  
-15.5  
11111  
7.3.8.2 Class D Loop Bandwidth and Switching Frequency Setting  
TAS5805M closed loop structure provides Loop bandwidth setting option (Setting by register 83 -Register  
address 0x53h-D[6-5]) to co-work with different switching frequency (Setting by register 2 -Register address  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
0x02h-D[6-4] ). 7-3 shows recommended settings for the Loop Bandwidth and Switching Frequency selection.  
Same Fsw, Better THD+N performance with higher BW.  
7-3. Loop Bandwidth and Switching Frequency Setting  
Modulation  
Scheme  
Fsw  
BW (Loop Band Width)  
Notes  
384kHz  
480kHz  
576kHz  
768kHz  
384kHz  
480kHz  
576kHz  
768kHz  
80kHz  
80kHz, 100kHz  
Principle: Fsw (Switching Frequency) 4.2 × Loop  
Hybrid, 1SPW  
Bandwidth  
80kHz, 100kHz, 120kHz  
80kHz, 100kHz, 120kHz, 175kHz  
80kHz, 100kHz, 120kHz  
80kHz, 100kHz, 120kHz  
80kHz, 100kHz, 120kHz, 175kHz  
80kHz, 100kHz, 120kHz, 175kHz  
Principle: Fsw (Switching Frequency) 3 × Loop  
BD  
Bandwidth  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Software Control  
The TAS5805M device is configured via an I2 C communication port.  
The I2C Communication Protocol is detailed in the I2C Communication Port section. The I2C timing requirements  
are described in the I2C Bus Timing Standard and I2C Bus Timing Fast sections.  
7.4.2 Speaker Amplifier Operating Modes  
The TAS5805M device can be used in two different amplifier configurations:  
BTL Mode  
PBTL Mode  
7.4.2.1 BTL Mode  
In BTL mode, the TAS5805M amplifies two independent signals, which represent the left and right portions of a  
stereo signal. The amplified left signal is presented on differential output pair shown as OUT_A+ and OUT_A-,  
the amplified right signal is presented on differential output pair shown as OUT_B+ and OUT_B-.  
7.4.2.2 PBTL Mode  
The PBTL mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the device. On the output side of the  
TAS5805M device, the summation of the devices can be done before the filter in a configuration called Pre-Filter  
Parallel Bridge Tied Load (PBTL). However, the two outputs can be required to merge together after the inductor  
portion of the output filter. Doing so does require two additional inductors, but allows for smaller, less-expensive  
inductors to be used because the current is divided between the two inductors. The process is called Post-Filter  
PBTL. On the input side of the TAS5805M device, the input signal to the PBTL amplifier is left frame of I2S or  
TDM data.  
7.4.3 Low EMI Modes  
TAS5805M employs several modes to minimize EMI during playing audio, and they can be used based on  
different applications.  
7.4.3.1 Spread Spectrum  
Spread spectrum is used in some inductor free case to minimize EMI noise. The TAS5805M supports Spread  
Spectrum with triangle mode.  
User needs to configure register SS_CTRL0 (0x6B) to enable Spread Spectrum with triangle mode, and select  
spread spectrum frequency and range with SS_CTRL1 (0x6C). For 384kHz FSW which configured by  
DEVICE_CTRL1 (0x02), the Spread Spectrum frequency and range are described in 7-4  
7-4. Triangle Mode Spread Spectrum Frequency and Range Selection  
SS_TRI_CT  
RL[3:0]  
0
1
2
3
4
5
6
7
Triangle  
Freq  
24k  
48k  
Spread  
Spectrum  
Range  
5%  
10%  
20%  
25%  
5%  
10%  
20%  
25%  
User Application example-Central Switching Frequency is 384kHz, Triangle Frequency is 24kHz:  
w 58 6b 03 //Enable Spread Spectrum  
w 58 6c 03 //SS_TRI_CTRL[3:0]0011, Triangle Frequency = 24kHz, Spread Spectrum Range should be 25%  
(336kHz~432kHz)  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.4.3.2 Channel to Channel Phase Shift  
This device supports channel to channel 180-degree PWM phase shift to minimize the EMI.  
7.4.3.3 Multi-Devices PWM Phase Synchronization  
This device supports up to 4 phases selection for the multi devices application system. For example, when a  
system integrated 4 pieces of TAS5805M devices, user can select phase 0/1/2/3 for each device with register  
PHASE_CTRL (0x6A), which means there is a 45-degree phase shift between each device to minimize the EMI.  
Recommend to do the Phase Synchronization with I2S clock during the Startup Phase:  
1. Halt I2S clock.  
2. Configure each device phase selection and enable the phase synchronization. For example: Register 0x6A  
= 0x03 for device 0; Register 0x6A = 0x07 for device 1; Register 0x6A = 0x0B for device 2; Register 0x6A =  
0x0F for device 3. There should be a 45-degree PWM phase shift between each device to minimize the EMI.  
3. Configure each device into Hi-Z mode.  
4. Provide I2S to each device. Phase synchronization for all 4 devices will be automatically done by internal  
sequence.  
5. Initialize the DSP code. (This step can be skipped if only need to do the PWM Phase Synchronization).  
6. Device to Device PWM phase shift should be fixed with 45 degree.  
7.4.4 Thermal Foldback  
The Thermal Foldback (TFB), is designed to protect TAS5805M from excessive die temperature increases, in  
case the device operates beyond the recommended temperature/power limit, or with a weaker thermal system  
design than recommended. It allows the TAS5805M to play as loud as possible without triggering unexpected  
thermal shutdown. When the die temperature triggers the over-temperature warning (OTW) level (135C typ), an  
internal AGL (Automatic Gain Limiter) will reduce the digital gain automatically. Once the die temperature drops  
below the OTW, the devices digital gain gradually returns to the former setting. Both the attenuation gain and  
adjustable rate are programmable. The TFB gain regulation speed (attack rate and release rate) settings are the  
same as a regular AGL, which is also configurable with TAS5805M App in PurePathTM Console3.  
7.4.5 Device State Control  
TAS5805M has 5 states with different power dissipation which listed in the Electrical Characteristics Table.  
Shutdown Mode. With PDN pin pull down to GND. All internal LDOs (1.5V for digital core, 5V for analog) are  
disabled, all registers will be cleared to default value.  
备注  
Exit from Shutdown Mode and re-enter into Play mode, need reload all register configurations  
(which generated by PurePath Console3) again.  
Deep Sleep Mode. Register 0x03h -D[1:0]=00, device stays in Deep Sleep Mode. In this mode, I2C block and  
1.5V LDO for digital core still working, but internal 5V LDO (For AVDD and MOSFET gate driver) is disabled  
for low power dissipation. This mode can be used to extend the battery life in some portable speaker  
applications. If the host processor stops playing audio for a long time, TAS5805M can be set to Deep Sleep  
Mode to minimize power dissipation until host processor starts playing audio again. Unlike the Shutdown  
Mode (Pulling PDN Low), entering or exiting Deep Sleep Mode, the DSP keeps active.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
备注  
As in Deep Sleep Mode, the internal 5V LDO (For AVDD and internal MOSFET gate driver) is  
disabled. Exit from Deep Sleep Mode (Register 0x03h -D[1:0]=00) and re-enter into Play mode  
(Register 0x03h -D[1:0]=11), Below sequence is required for internal Finite-state machine fast  
setting (Take TAS5805M I2C device address = 0x58 as example).  
w 58 00 00 #Go to page 0  
w 58 7f 00 #Change the book to 0x00  
w 58 03 02 #Change the device into Hiz Mode  
w 58 03 00 #Change the device into Deep Sleep Mode  
w 58 00 00 #Go to page 0  
w 58 7f 00 #Change the book to 0x00  
w 58 03 02 #Change the device into Hiz Mode  
w 58 03 03 #Change the device into Play Mode  
Sleep Mode. Register 0x03h -D[1:0]=01, device stays in Sleep Mode. In this mode, I2 C block, Digital core,  
DSP Memory , 5V Analog LDO are stilling working. Unlike the Shutdown Mode (Pull PDN Low), enter or exit  
Sleep Mode, DSP is kept active. Exit from this mode and re-enter into play mode, only need to set Register  
0x03h -D[1:0]=11.  
Output Hiz Mode. Register 0x03h -D[1:0]=10, device stays in Hiz Mode. In this mode, only output driver is set  
to be Hi-Z state, all other block operate normally. Exit from this mode and re-enter into play mode, only need  
to set Register 0x03h -D[1:0]=11.  
Play Mode. Register 0x03h -D[1:0]=11, device stays in Play Mode.  
7.4.6 Device Modulation  
TAS5805M has 3 modulation schemes: BD Modulation, 1SPW modulation and Hybrid modulation. Select  
modulation schemes for TAS5805M with Register 0x02 [1:0]-DAMP_MOD.  
7.4.6.1 BD Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0 V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
0V  
-
OUTP OUTN  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
7-8. BD Mode Modulation  
7.4.6.2 1SPW Modulation  
The 1SPW mode alters the normal modulation scheme in order to achieve higher efficiency with a slight penalty  
in THD degradation and more attention required in the output filter selection. In Low Idle Current mode the  
outputs operate at ~14% modulation during idle conditions. When an audio signal is applied one output will  
decrease and one will increase. The decreasing output signal will quickly rail to GND at which point all the audio  
modulation takes place through the rising output. The result is that only one output is switching during a majority  
of the audio cycle. Efficiency is improved in this mode due to the reduction of switching losses.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
OUTP-OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
-PVCC  
OUTP  
-OUTN  
0
A
Speaker  
Current  
7-9. 1SPW Mode Modulation  
7.4.6.3 Hybrid Modulation  
Hybrid Modulation is designed to minimized power loss without compromising the THD+N performance, and is  
optimized for battery-powered applications. With Hybrid modulation enabled, device detects the input signal level  
and adjust PWM duty cycle dynamically based on PVDD. Hybrid modulation achieves ultra low idle current and  
maintains the same audio performance level as the BD Modulation. In order to minimize the power dissipation,  
low switching frequency (For example, Fsw = 384 kHz) with proper LC filter (15 µH + 0.68 µF or 22 µH + 0.68  
µF) is recommended.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
备注  
1) With Hybrid Modulation, users need to input the system's PVDD value via device development App.  
2) With Hybrid Modulation, Change device state from Deep Sleep Mode to Play Mode, specific  
sequence is required:  
1. Set device's PWM Modulation to BD or 1SPW mode via Register (Book0/Page0/Register0x02h,  
Bit [1:0]).  
2. Set device to Hi-Z state via Register (Book0/Page0/Register0x03h, Bit [1:0]).  
3. Delay 2ms.  
4. Set device's PWM Modulation to Hybrid mode via Register (Book0/Page0/Register0x02h, Bit  
[1:0]).  
5. Delay 15ms.  
6. Set device to Play state via Register (Book0/Page0/Register0x03h, Bit [1:0]).  
7.5 Programming and Control  
7.5.1 I2 C Serial Communication Bus  
The device has a bidirectional serial control interface that is compatible with the Inter IC ( I2)C bus protocol and  
supports 100 and 400-kHz data transfer rates for random and sequential write and read operations as a slave  
device. Because the TAS5805M register map and DSP memory spans multiple pages, users should change  
from page to page before writing individual registes or DSP memory. Changing from page to page is  
accomplished by writing to register 0 on each page. Its register value selects the page address, from 0 to 255.  
7.5.2 Slave Address  
The TAS5805M device has 7 bits for the slave address. The first five bits (MSBs) of the slave address are  
factory preset to 01011(0x5x). The next two bits of address byte are the device select bits which can be user-  
defined by ADR pin in 7-5.  
7-5. I2 C Slave Address Configuration  
ADR PIN Configuration  
4.7k to DVDD  
15kto DVDD  
MSBs  
User Define  
LSB  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
R/ W  
R/ W  
R/ W  
R/ W  
47kto DVDD  
120kto DVDD  
7.5.2.1 Random Write  
As shown in 7-10, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C device address and the  
read/write bit, the device responds with an acknowledge bit. Next, the master transmits the address byte  
corresponding to the internal memory address being accessed. After receiving the address byte, the device  
again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the  
memory address being accessed. After receiving the data byte, the device again responds with an acknowledge  
bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
7-10. Random Write Transfer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.2.2 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in 7-11. After receiving each data byte, the device responds  
with an acknowledge bit and the I2 subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
R/W ACK  
A4 A3  
A0  
ACK  
ACK  
ACK  
ACK  
D0  
A6  
A1  
A7  
A6  
A5  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
7-11. Sequential Write Transfer  
7.5.2.3 Random Read  
As shown in 7-12, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte of the internal memory address to be  
read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the device responds  
with an acknowledge bit. In addition, after sending the internal memory address byte, the master device  
transmits another start condition followed by the address and the read/write bit again. This time the read/write bit  
is a 1, indicating a read transfer. After receiving the address and the read/write bit, the device again responds  
with an acknowledge bit. Next, the device transmits the data byte from the memory address being read. After  
receiving the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete  
the single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
Subaddress  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Data Byte  
7-12. Random Read Transfer  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.2.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the master device as shown in 7-13. Except for the last data byte, the master  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
sub address by one. After receiving the last data byte, the master device transmits a not-acknowledge followed  
by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
7-13. Sequential Read Transfer  
7.5.2.5 DSP Memory Book, Page and BQ Coefficients Update  
The TAS5805M device supports the I2C serial bus and the data transmission protocol for standard and fast  
mode as a slave device.  
The DSP memory is arranged in books, pages, and registers. Each book has several pages and each page has  
several registers.  
Because the TAS5805M register map spans several books and pages, the user must select the correct book and  
page before writing individual register bits or bytes.  
To change the book, the user must be on page 0x00. In register 0x7f on page 0x00 you can change the book.  
On page 0x00 of each book, register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a book first write 0x00 to register 0x00 to switch to page 0 then write the book  
number to register 0x7f on page 0. To change between pages in a book, simply write the page number to  
register 0x00.  
All the Biquad Filters coefficients are addressed in Book 0xAA. The five coefficients of every Biquad Filter should  
be written entirely and sequentially from the lowest address to the highest .  
All DSP/Audio Process Flow Related Register are listed in Application Note, TAS5805M Process Flows  
7.5.2.6 Example Use  
Example 1, The following is a sample script for configuring a device on I2C slave address 0x58 and set the  
device switching frequency to 768kHz with Class D loop bandwidth to 175kHz, BD Modulation:  
w 58 00 00 #Go to Page0  
w 58 7f 00 #Change the Book to 0x00  
w 58 00 00 #Go to Page 0x00  
w 58 02 00 #Set switching frequency to 768kHz with BD Modulation  
w 58 53 60 #Set Class D Loop Bandwidth to 175kHz  
Example 2, The following is a sample script for configuring a device on I2C slave address 0x58 and using the  
DSP host memory to change the digital volume to the default value of 0dB:  
w 58 00 00 #Go to Page 0  
w 58 7f 8c #Change the Book to 0x8C  
w 58 00 2a #Go to Page 0x2a  
w 58 24 00 80 00 00 #change digital volume to 0dB  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.2.7 Checksum  
This device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum and an  
Exclusive (XOR) checksum. Register reads do not change checksum, but writes to even nonexistent registers  
will change the checksum. Both checksums are 8-bit checksums and both are available together simultaneously.  
The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00) to their respective 4-byte register  
locations.  
7.5.2.7.1 Cyclic Redundancy Check (CRC) Checksum  
The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell  
delineation, (1 + x1 + x2 + x8)). A major advantage of the CRC checksum is that it is input order sensitive. The  
CRC supports all I2C transactions, excluding book and page switching. The CRC checksum is read from register  
0x7E on page0 of any book (B_x, Page_0, Reg_126). The CRC checksum can be reset by writing 0x00 to the  
same register locations where the CRC checksum is valid.  
7.5.2.7.2 Exclusive or (XOR) Checksum  
The Xor checksum is a simpler checksum scheme. It performs sequential XOR of each register byte write with  
the previous 8-bit checksum register value. XOR supports only Book 0x8C, and excludes page switching and all  
registers in Page 0x00 of Book 0x8C. XOR checksum is read from location register 0x7D on page 0x00 of book  
0x8C (B_140, Page_0, Reg_125). The XOR Checksum can be reset by writing 0x00 to the same register  
location where it is read.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.3 Control via Software  
Startup Procedures  
Shutdown Procedures  
7.5.3.1 Startup Procedures  
1. Configure ADR/ FAULT pin with proper settings for I2C device address.  
2. Bring up power supplies (it does not matter if PVDD or DVDD comes up first).  
3. Once power supplies are stable, bring up PDN to High and wait 5ms at least, then start SCLK, LRCLK.  
4. Once I2S clocks are stable, set the device into HiZ state and enable DSP via the I2C control port.  
5. Wait 5ms at least. Then initialize the DSP Coefficient, then set the device to Play state.  
6. The device is now in normal operation.  
Initialization  
Normal Op  
eration  
DVDD  
PVDD  
PDN  
0 ns  
0 ns  
0 ns  
5ms  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2C  
Set to HiZ state  
(Enable DSP)  
DSP Coeff  
Play  
Deep sleep  
5 ms for device settle down  
7-14. Start-up Sequence  
7.5.3.2 Shutdown Procedures  
1. The device is in normal operation.  
2. Configure the Register 0x03h -D[1:0]= 10 (Hiz) via the I2C control port or Pull PDN low.  
3. Wait at least 6ms (this time depends on the LRCLK rate ,digital volume and digital volume ramp down rate).  
4. Bring down power supplies.  
5. The device is now fully shut down and powered off.  
PDN  
6ms  
4.5V  
PVDD  
0ms  
DVDD  
6ms  
I2C  
I2C  
I2C  
I2C  
Output Hiz  
ñ
ñ
Before PVDD/DVDD power down, Class D Output driver needs to be disabled by PDN or by I2C.  
At least 6ms delay needed based on LRCLK (Fs) = 48kHz,Digital volume ramp down update every sample period,  
decreased by 0.5dB for each update, digital volume =24dB. Change the value of register 0x4C and 0x4E or change  
the LRCLK rate, the delay changes.  
7-15. Power-Down Sequence  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TAS5805M  
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.5.3.3 Protection and Monitoring  
7.5.3.3.1 Overcurrent Shutdown (OCSD)  
Under severe short-circuit event, such as a short to PVDD or ground, the device uses a peak-current detector,  
and the affected channel shuts down in < 100 ns if the peak current are big enough. The shutdown speed  
depends on a number of factors, such as the impedance of the short circuit, supply voltage, and switching  
frequency. The user may restart the affected channel via I2C. An OCSD event activates the fault pin, and the I2C  
fault register saves a record. If the supply or ground short is strong enough to exceed the peak current threshold  
but not severe enough to trigger the OSCD, the peak current limiter prevents excess current from damaging the  
output FETs, and operation returns to normal after the short is removed.  
7.5.3.3.2 Speaker DC Protection  
If the device measures a >1.9 V (Typical) DC offset and continue more than 570 ms (typical) on the output stage,  
the ADR/ FAULT line will be pulled low and set the OUTxx outputs to Hi-Z state to protect speaker, signifying a  
fault in Register 0x70 in Book0/Page0. This fault report bit in Register 0x70 keeps 1 and device keeps in Hi-Z  
mode unless clear it by Register 0x78 in Book0/Page0 manually.  
7.5.3.3.3 Device Over Temperature Protection  
Once the die temperature exceed 160°C (Typical), device will set the output driver from Play mode to Hi-Z Mode.  
Over temperature shutdown fault reported by Register 0x72 in Book0/Page0. Set this fault's behavior to Auto-  
recovery mode, device will come back to play mode automatically once the die temperature drop down to 150°C  
or device needs re-enter into play mode by clearing fault with Register 0x78 in Book0/Page0.  
7.5.3.3.4 Device Over Voltage/Under Voltage Protection  
7.5.3.3.4.1 Over Voltage Protection  
Once the PVDD voltage exceed the OVETHRES(PVDD) (28.1 V Typical), device will set the output driver from Play  
mode to Hi-Z mode. Over voltage fault reported by Regoster 0x71 in Book0/Page0. Once PVDD drop below 27.5  
V (Typical), device will come back to Play mode. But this bit still keeps 1 unless clear it by Registerr 0x78 in  
Book0/Page0 manually.  
7.5.3.3.4.2 Under Voltage Protection  
Once the PVDD voltage drop below the UVETHRES(PVDD) (4 V Typical), device will set the output driver from Play  
mode to Hi-Z mode. Under voltage fault reported by Register 0x71 in Book0/Page0. Once PVDD rise above 4.25  
V (Typical), device will come back to Play mode. But this bit still keeps 1 unless clear it by Register 0x78 in  
Book0/Page0 manually.  
7.5.3.3.5 Clock Fault  
Once there has any Clock error occurs (Clock Halt, SCLK/LRCLK Ratio Error, Pll unlock, FS error) , Register  
0x37 and Register 0x39 monitor these errors and real-time report with details, device will enter into Hi-Z mode.  
Clock Fault reported in Register 0x71 in Book0/Page0. Once the clock error been removed, device will come  
back to play mode automatically. But this bit still keeps 1 unless clear it by Register 0x78 in Book0/Page0  
manually.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 CONTROL PORT Registers  
7-6 lists the memory-mapped registers for the CONTROL PORT. All register offset addresses not listed in 表  
7-6 should be considered as reserved locations and the register contents should not be modified.  
7-6. CONTROL PORT Registers  
Offset  
1h  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
RESET_CTRL  
DEVICE_CTRL_1  
DEVICE_CTRL_2  
I2C_PAGE_AUTO_INC  
SIG_CH_CTRL  
CLOCK_DET_CTRL  
SDOUT_SEL  
Register 1  
2h  
Register 2  
3h  
Register 3  
Fh  
Register 15  
Register 40  
Register 41  
Register 48  
Register 49  
Register 51  
Register 52  
Register 53  
Register 55  
Register 56  
Register 57  
Register 76  
Register 78  
Register 79  
Register 80  
Register 81  
Register 83  
Register 84  
Register 92  
Register 93  
Register 96  
Register 97  
Register 102  
Register 103  
Register 104  
Register 105  
Register 106  
Register 107  
Register 108  
Register 109  
Register 110  
Register 111  
Register 112  
Register 113  
Register 114  
Register 115  
Register 116  
28h  
29h  
30h  
31h  
33h  
34h  
35h  
37h  
38h  
39h  
4Ch  
4Eh  
4Fh  
50h  
51h  
53h  
54h  
5Ch  
5Dh  
60h  
61h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
I2S_CTRL  
SAP_CTRL1  
SAP_CTRL2  
SAP_CTRL3  
FS_MON  
BCK_MON  
CLKDET_STATUS  
DIG_VOL_CTRL  
DIG_VOL_CTRL2  
DIG_VOL_CTRL3  
AUTO_MUTE_CTRL  
AUTO_MUTE_TIME  
ANA_CTRL  
AGAIN  
BQ_WR_CTRL1  
DAC_CTRL  
ADR_PIN_CTRL  
ADR_PIN_CONFIG  
DSP_MISC  
DIE_ID  
POWER_STATE  
AUTOMUTE_STATE  
PHASE_CTRL  
SS_CTRL0  
SS_CTRL1  
SS_CTRL2  
SS_CTRL3  
SS_CTRL4  
CHAN_FAULT  
GLOBAL_FAULT1  
GLOBAL_FAULT2  
OT WARNING  
PIN_CONTROL1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7-6. CONTROL PORT Registers (continued)  
Offset  
75h  
Acronym  
Register Name  
Register 117  
Register 118  
Register 120  
Section  
Go  
PIN_CONTROL2  
MISC_CONTROL  
FAULT_CLEAR  
76h  
Go  
78h  
Go  
Complex bit access types are encoded to fit into small table cells. 7-7 shows the codes that are used for  
access types in this section.  
7-7. CONTROL PORT Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.1 RESET_CTRL Register (Offset = 1h) [reset = 0x00]  
RESET_CTRL is shown in 7-12 and described in 7-8.  
Return to Summary Table.  
7-12. RESET_CTRL Register  
7
6
5
4
RST_MOD  
W
3
2
RESERVED  
R
1
0
RST_REG  
W
RESERVED  
R/W  
7-8. RESET_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
RST_MOD  
R/W  
000  
This bit is reserved  
W
0
WRITE CLEAR BIT  
Reset Modules  
WRITE CLEAR BIT Reset full digital core This bit resets full digital  
signal chain (Include DSP and Control Port Registers). Since the  
DSP is also reset, the coeffient RAM content will also be cleared by  
the DSP.  
0: Normal  
1: Reset modules  
3-1  
0
RESERVED  
R
000  
0
This bit is reserved  
RST_CONTROL_REG  
W
WRITE CLEAR BIT  
Reset Registers  
This bit resets the control port registers back to their initial values.  
The RAM content is not cleared.  
0: Normal  
1: Reset control port registers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.2 DEVICE_CTRL_1 Register (Offset = 2h) [reset = 0x00]  
DEVICE_CTRL_1 is shown in 7-13 and described in 7-9.  
Return to Summary Table.  
7-13. DEVICE_CTRL_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
FSW_SEL  
R/W  
RESERVED  
R/W  
DAMP_PBTL  
R/W  
DAMP_MOD  
R/W  
7-9. DEVICE_CTRL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
FSW_SEL  
R/W  
0
This bit is reserved  
6-4  
R/W  
000  
SELECT FSW  
000:768K  
001:384K  
011:480K  
100:576K  
010:Reserved  
101:Reserved  
110:Reserved  
111:Reserved  
3
2
RESERVED  
DAMP_PBTL  
R/W  
R/W  
0
0
This bit is reserved  
0: SET DAMP TO BTL MODE  
1: SET DAMP TO PBTL MODE  
1-0  
DAMP_MOD  
R/W  
00  
00:BD MODE  
01:1SPW MODE  
10:HYBRID MODE  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.3 DEVICE_CTRL_2 Register (Offset = 3h) [reset = 0x10]  
DEVICE_CTRL_2 is shown in 7-14 and described in 7-10.  
Return to Summary Table.  
7-14. DEVICE_CTRL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DIS_DSP  
R/W  
MUTE  
R/W  
RESERVED  
R/W  
CTRL_STATE  
R/W  
7-10. DEVICE_CTRL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
DIS_DSP  
R/W  
000  
This bit is reserved  
DSP reset  
R/W  
1
When the bit is made 0, DSP will start powering up and send out  
data. This needs to be made 0 only after all the input clocks are  
settled so that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
3
MUTE  
R/W  
0
Mute Both Left /Right Channel  
This bit issues soft mute request for the left/right channel. The  
volume will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
2
RESERVED  
R/W  
R/W  
0
This bit is reserved  
1-0  
CTRL_STATE  
00  
Device state control register  
00: Deep Sleep  
01: Sleep  
10: Hi-Z,  
11: PLAY  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.4 I2C_PAGE_AUTO_INC Register (Offset = Fh) [reset = 0x00]  
I2C_PAGE_AUTO_INC is shown in 7-15 and described in 7-11.  
Return to Summary Table.  
7-15. I2C_PAGE_AUTO_INC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
PAGE_AUTOIN  
C_REG  
RESERVED  
R/W  
R/W  
7-11. I2C_PAGE_AUTO_INC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R/W  
0000  
This bit is reserved  
Page auto increment disable  
PAGE_AUTOINC_REG  
R/W  
0
Disable page auto increment mode. for non -zero books. When end  
of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0 th location of current  
page itself like in older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2-0  
RESERVED  
R/W  
000  
This bit is reserved  
7.6.1.5 SIG_CH_CTRL Register (Offset = 28h) [reset = 0x00]  
SIG_CH_CTRL is shown in 7-16 and described in 7-12.  
Return to Summary Table.  
7-16. SIG_CH_CTRL Register  
7
6
5
4
3
2
1
0
BCK_RATIO_CONFIGURE  
R/W  
FS_MODE  
R/W  
7-12. SIG_CH_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BCK_RATIO_CONFIGUR R/W  
E
0000  
These bits indicate the configured BCK ratio, the number of BCK  
clocks in one audio frame.  
0011: 32FS  
0101: 64FS  
0111: 128FS  
1001: 256FS  
1011: 512FS  
3-0  
FS_MODE  
R/W  
0000  
FS Speed Mode These bits select the FS operation mode, which  
must be set according to the current audio sampling rate.  
0000: Auto detection  
0010: 8KHz  
0100: 16KHz  
0110: 32KHz  
1000: 44.1KHz  
1001: 48KHz  
1010: 88.2KHz  
1011: 96KHz  
Others Reserved  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.6 CLOCK_DET_CTRL Register (Offset = 29h) [reset = 0x00]  
CLOCK_DET_CTRL is shown in 7-17 and described in 7-13.  
Return to Summary Table.  
7-17. CLOCK_DET_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
DIS_DET_PLL DIS_DET_BCL DIS_DET_FS DIS_DET_BCL DIS_DET_MISS RESERVED  
RESERVED  
K_RANGE  
K
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7-13. CLOCK_DET_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
DIS_DET_PLL  
Type  
Reset  
Description  
7
R/W  
0
This bit is reserved  
Ignore PLL overate Detection  
6
R/W  
0
This bit controls whether to ignore the PLL overrate detection. The  
PLL must be slow than 150MHz or an error will be reported. When  
ignored, a PLL overrate error will not cause a clock error.  
0: Regard PLL overrate detection  
1: Ignore PLL overrate detection  
5
DIS_DET_BCLK_RANGE R/W  
0
Ignore BCK Range Detection  
This bit controls whether to ignore the BCK range detection. The  
BCK must be stable between 256KHz and 50MHz or an error will be  
reported. When ignored, a BCK range error will not cause a clock  
error.  
0: Regard BCK Range detection  
1: Ignore BCK Range detection  
4
3
DIS_DET_FS  
R/W  
R/W  
0
0
Ignore FS Error Detection  
This bit controls whether to ignore the FS Error detection. When  
ignored, FS error will not cause a clock error.But CLKDET_STATUS  
will report fs error.  
0: Regard FS detection  
1: Ignore FS detection  
DIS_DET_BCLK  
Ignore BCK Detection  
This bit controls whether to ignore the BCK detection against LRCK.  
The BCK must be stable between 32FS and 512FS inclusive or an  
error will be reported. When ignored, a BCK error will not cause a  
clock error.  
0: Regard BCK detection  
1: Ignore BCK detection  
2
DIS_DET_MISS  
R/W  
0
Ignore BCK Missing Detection  
This bit controls whether to ignore the BCK missing detection. When  
ignored an BCK missing will not cause a clock error.  
0: Regard BCK missing detection  
1: Ignore BCK missing detection  
1
0
RESERVED  
RESERVED  
R/W  
R/W  
0
0
This bit is reserved  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.7 SDOUT_SEL Register (Offset = 30h) [reset = 0h]  
SDOUT_SEL is shown in 7-18 and described in 7-14.  
Return to Summary Table.  
7-18. SDOUT_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
SDOUT_SEL  
R/W  
7-14. SDOUT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
SDOUT_SEL  
0
This bit is reserved  
R
0
SDOUT Select. This bit selects what is being output as SDOUT pin.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.8 I2S_CTRL Register (Offset = 31h) [reset = 0x00]  
I2S_CTRL is shown in 7-19 and described in 7-15.  
Return to Summary Table.  
7-19. I2S_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
BCK_INV  
R/W  
RESERVED  
RESERVED  
R
RESERVED  
R/W  
R/W  
R
7-15. I2S_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
BCK_INV  
R/W  
00  
This bit is reserved  
BCK Polarity  
R/W  
0
This bit sets the inverted BCK mode. In inverted BCK mode, the  
DAC assumes that the LRCK and DIN edges are aligned to the rising  
edge of the BCK. Normally they are assumed to be aligned to the  
falling edge of the BCK.  
0: Normal BCK mode  
1: Inverted BCK mode  
4-0  
RESERVED  
R/W  
00000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.9 SAP_CTRL1 Register (Offset = 33h) [reset = 0x02]  
SAP_CTRL1 is shown in 7-20 and described in 7-16.  
Return to Summary Table.  
7-20. SAP_CTRL1 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT_MS  
B
RESERVED  
DATA_FORMAT  
R/W  
I2S_LRCLK_PULSE  
R/W  
WORD_LENGTH  
R/W  
R/W  
R/W  
7-16. SAP_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2S_SHIFT_MSB  
RESERVED  
R/W  
0
I2S Shift MSB  
6
R/W  
R/W  
0
This bit is reserved  
I2S Data Format  
5-4  
DATA_FORMAT  
00  
These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: TDM/DSP  
10: RTJ  
11: LTJ  
3-2  
1-0  
I2S_LRCLK_PULSE  
WORD_LENGTH  
R/W  
R/W  
00  
10  
01: lrclk pulse < 8 SCLK. If the high width of LRCLK/FS in TDM/DSP  
mode is less than 8 cycles of SCK, these two bits need set to 01.  
I2S Word Length  
These bits control both input and output audio interface sample word  
lengths for DAC operation.  
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
7.6.1.10 SAP_CTRL2 Register (Offset = 34h) [reset = 0x00]  
SAP_CTRL2 is shown in 7-21 and described in 7-17.  
Return to Summary Table.  
7-21. SAP_CTRL2 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT  
R/W  
7-17. SAP_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
I2S_SHIFT  
Type  
Reset  
Description  
R/W  
00000000  
I2S Shift LSB  
These bits control the offset of audio data in the audio frame for both  
input and output. The offset is defined as the number of BCK from  
the starting (MSB) of audio frame to the starting of the desired audio  
sample.  
000000000: offset = 0 BCK (no offset)  
000000001: ofsset = 1 BCK  
000000010: offset = 2 BCKs  
and  
111111111: offset = 512 BCKs  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.11 SAP_CTRL3 Register (Offset = 35h) [reset = 0x11]  
SAP_CTRL3 is shown in 7-22 and described in 7-18.  
Return to Summary Table.  
7-22. SAP_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
LEFT_DAC_DPATH  
R/W  
RESERVED  
R/W  
RIGHT_DAC_DPATH  
R/W  
7-18. SAP_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
RESERVED  
R/W  
00  
This bit is reserved  
LEFT_DAC_DPATH  
R/W  
01  
Left DAC Data Path. These bits control the left channel audio data  
path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
3-2  
1-0  
RESERVED  
R/W  
R/W  
00  
01  
This bit is reserved  
RIGHT_DAC_DPATH  
Right DAC Data Path. These bits control the right channel audio data  
path connection.  
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.12 FS_MON Register (Offset = 37h) [reset = 0x00]  
FS_MON is shown in 7-23 and described in 7-19.  
Return to Summary Table.  
7-23. FS_MON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
BCLK_RATIO_HIGH  
R
FS  
R
7-19. FS_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-0  
RESERVED  
BCLK_RATIO_HIGH  
FS  
R/W  
00  
This bit is reserved  
2 msbs of detected BCK ratio  
R
R
00  
0000  
These bits indicate the currently detected audio sampling rate.  
0000: FS Error  
0010: 8KHz  
0100: 16KHz  
0110: 32KHz  
1000: Reserved  
1001: 48KHz  
1011: 96KHz  
Others Reserved  
7.6.1.13 BCK_MON Register (Offset = 38h) [reset = 0x00]  
BCK_MON is shown in 7-24 and described in 7-20.  
Return to Summary Table.  
7-24. BCK_MON Register  
7
6
5
4
3
2
1
0
BCLK_RATIO_LOW  
R
7-20. BCK_MON Register Field Descriptions  
Bit  
7-0  
Field  
BCLK_RATIO_LOW  
Type  
Reset  
Description  
R
00000000  
These bits indicate the currently detected BCK ratio, the number of  
BCK clocks in one audio frame.  
BCK = 32 FS~512 FS  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.14 CLKDET_STATUS Register (Offset = 39h) [reset = 0x00]  
CLKDET_STATUS is shown in 7-25 and described in 7-21.  
Return to Summary Table.  
7-25. CLKDET_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DET_STATUS  
R
7-21. CLKDET_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R/W  
00  
This bit is reserved  
5
4
3
DET_STATUS  
DET_STATUS  
DET_STATUS  
R
R
R
0
0
0
This bit indicates whether the BCLK is overrate or underrate  
This bit indicates whether the PLL is overrate  
This bit indicates whether the PLL is locked or not. The PLL will be  
reported as unlocked when it is disabled.  
2
1
DET_STATUS  
DET_STATUS  
R
R
0
0
This bit indicates whether the BCK is missing or not.  
This bit indicates whether the BCK is valid or not. The BCK ratio  
must be stable and in the range of 32-512FS to be valid.  
0
DET_STATUS  
R
0
In auto detection mode(reg_fsmode=0),this bit indicated whether the  
audio sampling rate is valid or not. In non auto detection  
mode(reg_fsmode!=0), Fs error indicates that configured fs is  
different with detected fs. Even FS Error Detection Ignore is set, this  
flag will be also asserted.  
7.6.1.15 DIG_VOL_CTL Register (Offset = 4Ch) [reset = 30h]  
DIG_VOL_CTL is shown in 7-26 and described in 7-22.  
Return to Summary Table.  
7-26. DIG_VOL_CTL Register  
7
6
5
4
3
2
1
0
PGA  
R/W  
7-22. DIG_VOL_CTR Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PGA  
R/W  
00110000  
Digital Volume  
These bits control both left and right channel digital volume. The  
digital volume is 24 dB to -103 dB in -0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
........  
and 00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: -0.5 dB  
.......  
11111110: -103 dB  
11111111: Mute  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.16 DIG_VOL_CTRL2 Register (Offset = 4Eh) [reset = 0x33]  
DIG_VOL_CTRL2 is shown in 7-27 and described in 7-23.  
Return to Summary Table.  
7-27. DIG_VOL_CTRL2 Register  
7
6
5
4
3
2
1
0
PGA_RAMP_DOWN_SPEED  
R/W  
PGA_RAMP_DOWN_STEP  
R/W  
PGA_RAMP_UP_SPEED  
R/W  
PGA_RAMP_UP_STEP  
R/W  
7-23. DIG_VOL_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PGA_RAMP_DOWN_SPE R/W  
ED  
00  
Digital Volume Normal Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
1-0  
PGA_RAMP_DOWN_STE R/W  
P
11  
00  
11  
Digital Volume Normal Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
PGA_RAMP_UP_SPEED R/W  
Digital Volume Normal Ramp Up Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping up.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
PGA_RAMP_UP_STEP  
R/W  
Digital Volume Normal Ramp Up Step  
These bits control the step of the digital volume updates when the  
volume is ramping up.  
00: Increment by 4 dB for each updat  
01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.17 DIG_VOL_CTRL3 Register (Offset = 4Fh) [reset = 0x30]  
DIG_VOL_CTRL3 is shown in 7-28 and described in 7-24.  
Return to Summary Table.  
7-28. DIG_VOL_CTRL3 Register  
7
6
5
4
3
2
1
0
FAST_RAMP_DOWN_SPEED  
R/W  
FAST_RAMP_DOWN_STEP  
R/W  
RESERVED  
R/W  
7-24. DIG_VOL_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
FAST_RAMP_DOWN_SP R/W  
EED  
00  
Digital Volume Emergency Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft  
mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
FAST_RAMP_DOWN_ST R/W  
EP  
11  
Digital Volume Emergency Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down due to clock error or power outage, which  
usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
3-0  
RESERVED  
R/W  
0000  
This bit is reserved  
7.6.1.18 AUTO_MUTE_CTRL Register (Offset = 50h) [reset = 0x07]  
AUTO_MUTE_CTRL is shown in 7-29 and described in 7-25.  
Return to Summary Table.  
7-29. AUTO_MUTE_CTRL Register  
7
6
5
4
3
2
1
REG_AUTO_MUTE_CTRL  
R/W  
0
RESERVED  
R/W  
7-25. AUTO_MUTE_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-3  
2
R/W  
00000  
This bit is reserved  
REG_AUTO_MUTE_CTR R/W  
L
1
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are  
about to be auto muted  
1
0
REG_AUTO_MUTE_CTR R/W  
L
1
1
0: Disable right channel auto mute  
1: Enable right channel auto mute  
REG_AUTO_MUTE_CTR R/W  
L
0: Disable left channel auto mute  
1: Enable left channel auto mute bit2: .  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.19 AUTO_MUTE_TIME Register (Offset = 51h) [reset = 0x00]  
AUTO_MUTE_TIME is shown in 7-30 and described in 7-26.  
Return to Summary Table.  
7-30. AUTO_MUTE_TIME Register  
7
6
5
AUTOMUTE_TIME_LEFT  
R/W  
4
3
2
1
0
RESERVED  
R/W  
RESERVED  
R/W  
AUTOMUTE_TIME_RIGHT  
R/W  
7-26. AUTO_MUTE_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-4  
AUTOMUTE_TIME_LEFT R/W  
000  
Auto Mute Time for Left Channel  
These bits specify the length of consecutive zero samples at left  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
RESERVED  
R/W  
0
This bit is reserved  
2-0  
AUTOMUTE_TIME_RIGH R/W  
T
000  
Auto Mute Time for Right Channel  
These bits specify the length of consecutive zero samples at right  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.20 ANA_CTRL Register (Offset = 53h) [reset = 0x00]  
ANA_CTRL is shown in 7-31 and described in 7-27.  
Return to Summary Table.  
7-31. ANA_CTRL Register  
7
6
5
4
3
2
1
0
ANA_CTRL  
R/W  
7-27. ANA_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
ANA_CTRL  
R/W  
0
This bit is reserved  
6-5  
R/W  
00  
Class-D bandwidth control.  
00: 80kHz;  
01: 100kHz;  
10: 120kHz;  
11: 175kHz.  
With Fsw=768kHz, 175kHz bandwidth should be selected for high  
audio performance.  
4-0  
RESERVED  
R/W  
00000  
These bits are reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.21 AGAIN Register (Offset = 54h) [reset = 0x00]  
AGAIN is shown in 7-32 and described in 7-28.  
Return to Summary Table.  
7-32. AGAIN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
ANA_GAIN  
R/W  
7-28. AGAIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
ANA_GAIN  
R/W  
000  
This bit is reserved  
R/W  
00000  
Analog Gain Control , with 0.5dB one step  
This bit controls the analog gain.  
00000: 0 dB (29.5V peak voltage)  
00001: -0.5db  
11111: -15.5 dB  
7.6.1.22 BQ_WR_CTRL1 Register (Offset = 5Ch) [reset = 0x00]  
BQ_WR_CTRL1 is shown in 7-33 and described in 7-29.  
Return to Summary Table.  
7-33. BQ_WR_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
BQ_WR_FIRST  
_COEF  
R/W  
R/W  
7-29. BQ_WR_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
R/W  
0000000  
This bit is reserved  
BQ_WR_FIRST_COEF  
R/W  
0
Indicate the first coefficient of a BQ is starting to write.  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.23 DAC_CTRL Register (Offset = 5Dh) [reset = 0xF8]  
DAC_CTRL is shown in 7-34 and described in 7-30.  
Return to Summary Table.  
7-34. DAC_CTRL Register  
7
6
5
4
3
2
1
0
DAC_FREQUE  
NCY_SEL  
DAC_DITHER_EN  
DAC_DITHER  
DAC_CTRL_DEM_SEL  
R/W  
R/W  
R/W  
R/W  
7-30. DAC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_FREQUENCY_SEL R/W  
1
DAC Frequency Select  
0: 6.144MHz  
1: 3.072MHz  
6-5  
4-2  
DAC_DITHER_EN  
DAC_DITHER  
R/W  
R/W  
11  
DITHER_EN,  
00: disable both stage dither  
01: enable main stage dither  
10: enable second stage dither  
11: enbale both stage dither  
110  
Dither level  
100: -2^-7  
101: -2^-8  
110: -2^-9  
111: -2^-10  
000: -2^-13  
001: -2^-14  
010: -2^-15  
011: -2^-16  
1-0  
DAC_CTRL_DEM_SEL  
R/W  
00  
00: Enable DEM  
11: Disable DEM  
7.6.1.24 ADR_PIN_CTRL Register (Offset = 60h) [reset = 0h]  
ADR_PIN_CTRL is shown in 7-35 and described in 7-31.  
Return to Summary Table.  
7-35. ADR_PIN_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
ADR_OE  
R/W - 0x0  
7-31. ADR_PIN_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
ADR_OE  
R/W  
0000000  
This bit is reserved  
R/W  
0
ADR Output Enable This bit sets the direction of the ADR pin  
0: ADR is input  
1: ADR is output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.25 ADR_PIN_CONFIG Register (Offset = 61h) [reset = 0x00]  
ADR_PIN_CONFIG is shown in 7-36 and described in 7-32.  
Return to Summary Table.  
7-36. ADR_PIN_CONFIG Register  
7
6
5
4
3
2
ADR_PIN_CONFIG  
R/W  
1
0
RESERVED  
7-32. ADR_PIN_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
R/W  
000  
These bits are reserved  
ADR_PIN_CONFIG  
R/W  
00000  
00000: off (low)  
00011: Auto mute flag (asserted when both L and R channels are  
auto muted)  
00100: Auto mute flag for left channel 0101: Auto mute flag for right  
channel  
00110: Clock invalid flag (clock error or clock missing)  
00111: Reserved  
01001: Reserved  
01011: ADR as FAULTZ output  
7.6.1.26 DSP_MISC Register (Offset = 66h) [reset = 0h]  
DSP_MISC is shown in 7-37 and described in 7-33.  
Return to Summary Table.  
7-37. DSP_MISC Register  
7
6
5
4
3
2
1
0
BYPASS_CONTROL  
R/W  
7-33. DSP_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
R/W  
0000  
These bits are reserved  
BYPASS CONTROL  
R/W  
0
1: Left and Right will have use unique coef 0->Right channel will  
share left channel coefficient  
2
1
0
BYPASS CONTROL  
BYPASS CONTROL  
BYPASS CONTROL  
R/W  
R/W  
R/W  
0
0
0
1: bypass 128 tap FIR  
1: bypass DRC (Only bypass DRC in L/R channel)  
1: bypass EQ (Only bypass EQs in L/R channel)  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.27 DIE_ID Register (Offset = 67h) [reset = 0h]  
DIE_ID is shown in 7-38 and described in 7-34.  
Return to Summary Table.  
7-38. DIE_ID Register  
7
6
5
4
3
2
1
0
DIE_ID  
R-0h  
7-34. DIE_ID Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIE_ID  
R
0h  
DIE ID  
7.6.1.28 POWER_STATE Register (Offset = 68h) [reset = 0x00]  
POWER_STATE is shown in 7-39 and described in 7-35.  
Return to Summary Table.  
7-39. POWER_STATE Register  
7
6
5
4
3
2
1
0
STATE_RPT  
R
7-35. POWER_STATE Register Field Descriptions  
Bit  
7-0  
Field  
STATE_RPT  
Type  
Reset  
Description  
R
00000000  
0: Deep sleep  
1: Sleep  
2: HIZ  
3: Play  
Others: reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.29 AUTOMUTE_STATE Register (Offset = 69h) [reset = 0x00]  
AUTOMUTE_STATE is shown in 7-40 and described in 7-36.  
Return to Summary Table.  
7-40. AUTOMUTE_STATE Register  
7
6
5
4
3
2
1
0
RESERVED  
R
ZERO_RIGHT_ ZERO_LEFT_M  
MON  
ON  
R
R
7-36. AUTOMUTE_STATE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1
RESERVED  
R
000000  
This bit is reserved  
ZERO_RIGHT_MON  
R
R
0
0
This bit indicates the auto mute status for right channel.  
0: Not auto muted  
1: Auto muted  
0
ZERO_LEFT_MON  
This bit indicates the auto mute status for left channel.  
0: Not auto muted  
1: Auto muted  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.30 PHASE_CTRL Register (Offset = 6Ah) [reset = 0x00]  
PHASE_CTRL is shown in 7-41 and described in 7-37.  
Return to Summary Table.  
7-41. PHASE_CTR Register  
7
6
5
4
3
2
1
0
RESERVED  
RAMP_PHASE_SEL  
R/W  
PHASE_SYNC PHASE_SYNC  
_SEL  
_EN  
R/W  
R/W  
R/W  
7-37. PHASE_CTR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-2  
RESERVED  
R/W  
0000  
This bit is reserved  
RAMP_PHASE_SEL  
R/W  
00  
Select ramp clock phase when multi devices integrated in one  
system to reduce EMI and peak supply peak current, it is  
recomended set all devices the same RAMP frequency and same  
spread spectrum. it must be set before driving device into PLAY  
mode if this feature is needed.  
00: phase 0  
01: phase1  
10: phase2  
11: phase3  
1
0
I2S_SYNC_EN  
R/W  
R/W  
0
0
Use I2S to synchronize output PWM phase  
0: Disable  
1: Enable  
PHASE_SYNC_EN  
0: RAMP phase sync disable  
1: RAMP phase sync enable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.31 SS_CTRL0 Register (Offset = 6Bh) [reset = 0x00]  
SS_CTRL0 is shown in 7-42 and described in 7-38.  
Return to Summary Table.  
7-42. SS_CTRL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
SS_PRE_DIV_ SS_MANUAL_  
RESERVED  
R/W  
SS_RDM_EN  
SS_TRI_EN  
SEL  
MODE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7-38. SS_CTRL0 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7
R/W  
0
This bit is reserved  
This bit is reserved  
6
5
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
SS_PRE_DIV_SEL  
SS_MANUAL_MODE  
RESERVED  
Select pll clock divide 2 as source clock in manual mode  
Set ramp ss controller to manual mode  
This bit is reserved  
4
3-2  
1
SS_RDM_EN  
Random SS enable  
0
SS_TRI_EN  
Triangle SS enable  
7.6.1.32 SS_CTRL1 Register (Offset = 6Ch) [reset = 0x00]  
SS_CTRL1 is shown in 7-43 and described in 7-39.  
Return to Summary Table.  
7-43. SS_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
SS_RDM_CTRL  
R/W  
SS_TRI_CTRL  
R/W  
7-39. SS_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-4  
3-0  
SS_RDM_CTRL  
SS_TRI_CTRL  
R/W  
R/W  
000  
Random SS range control  
0000  
Triangle SS frequency and range control  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.33 SS_CTRL2 Register (Offset = 6Dh) [reset = 0x50]  
SS_CTRL2 is shown in 7-44 and described in 7-40.  
Return to Summary Table.  
7-44. SS_CTRL2 Register  
7
6
5
4
3
2
1
0
TM_FREQ_CTRL  
R/W  
7-40. SS_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
TM_FREQ_CTRL  
Type  
Reset  
Description  
R/W  
01010000  
Control ramp frequency in manual mode, F=61440000/N  
7.6.1.34 SS_CTRL3 Register (Offset = 6Eh) [reset = 0x11]  
SS_CTRL3 is shown in 7-45 and described in 7-41.  
Return to Summary Table.  
7-45. SS_CTRL3 Register  
7
6
5
4
3
2
1
0
TM_DSTEP_CTRL  
R/W  
TM_USTEP_CTRL  
R/W  
7-41. SS_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
SS_TM_DSTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum fall step in ramp ss manual  
mode  
3-0  
SS_TM_USTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum rise step in ramp ss manual  
mode  
7.6.1.35 SS_CTRL4 Register (Offset = 6Fh) [reset = 0x24]  
SS_CTRL4 is shown in 7-46 and described in 7-42.  
Return to Summary Table.  
7-46. SS_CTRL4 Register  
7
6
5
4
3
2
SS_TM_PERIOD_BOUNDRY  
R/W  
1
0
RESERVED  
R/W  
TM_AMP_CTRL  
R/W  
7-42. SS_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-5  
4-0  
TM_AMP_CTRL  
R/W  
01  
Control ramp amp ctrl in ramp ss manual model  
SS_TM_PERIOD_BOUND R/W  
RY  
00100  
Control triangle mode spread spectrum boundary in ramp ss manual  
mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.36 CHAN_FAULT Register (Offset = 70h) [reset = 0x00]  
CHAN_FAULT is shown in 7-47 and described in 7-43.  
Return to Summary Table.  
7-47. CHAN_FAULT Register  
7
6
5
4
3
CH1_DC_1  
R
2
CH2_DC_1  
R
1
CH1_OC_I  
R
0
CH2_OC_I  
R
RESERVED  
R
7-43. CHAN_FAULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
CH1_DC_1  
CH2_DC_1  
CH1_OC_I  
CH2_OC_I  
R
0000  
This bit is reserved  
R
R
R
R
0
0
0
0
Left channel DC fault  
Right channel DC fault  
Left channel over current fault  
Right channel over current fault  
2
1
0
7.6.1.37 GLOBAL_FAULT1 Register (Offset = 71h) [reset = 0h]  
GLOBAL_FAULT1 is shown in 7-48 and described in 7-44.  
Return to Summary Table.  
7-48. GLOBAL_FAULT1 Register  
7
6
5
4
3
2
1
0
OTP_CRC_ER BQ_WR_ERRO  
CLK_FAULT_I  
R
PVDD_OV_I  
PVDD_UV_I  
ROR  
R
R
R
R
R
7-44. GLOBAL_FAULT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
OTP_CRC_ERROR  
BQ_WR_ERROR  
RESERVED  
R
0h  
Indicate OTP CRC check error.  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
The recent BQ is written failed  
This bit is reserved  
Clock fault  
5-3  
2
CLK_FAULT_I  
PVDD_OV_I  
1
PVDD OV fault  
0
PVDD_UV_I  
PVDD UV fault  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.38 GLOBAL_FAULT2 Register (Offset = 72h) [reset = 0h]  
GLOBAL_FAULT2 is shown in 7-49 and described in 7-45.  
Return to Summary Table.  
7-49. GLOBAL_FAULT2 Register  
7
6
5
4
3
2
1
0
OTSD_I  
R
RESERVED  
R
RESERVED  
R
7-45. GLOBAL_FAULT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
OTSD_I  
R
0000000  
This bit is reserved  
R
0
Over temperature shut down fault  
7.6.1.39 OT WARNING Register (Offset = 73h) [reset = 0x00]  
OT_WARNING is shown in 7-50 and described in 7-46.  
Return to Summary Table.  
7-50. OT_WARNING Register  
7
6
5
4
3
2
OTW  
R
1
0
RESERVED  
R
RESERVED  
RESERVED  
R
R
R
R
7-46. OT_WARNING Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-3  
2
RESERVED  
RESERVED  
OTW  
R
00  
This bit is reserved  
R
R
R
000  
0
This bit is reserved  
Over temperature warning ,135C  
This bit is reserved  
1-0  
RESERVED  
00  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.40 PIN_CONTROL1 Register (Offset = 74h) [reset = 0x00]  
PIN_CONTROL1 is shown in 7-51 and described in 7-47.  
Return to Summary Table.  
7-51. PIN_CONTROL1 Register  
7
6
5
4
3
2
1
0
MASK_OTSD MASK_DVDD_ MASK_DVDD_ MASK_CLK_FA MASK_PVDD_ MASK_PVDD_  
MASK_DC  
MASK_OC  
UV  
OV  
ULT  
UV  
OV  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7-47. PIN_CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
MASK_OTSD  
R/W  
0
Mask OTSD fault report  
Mask DVDD UV fault report  
Mask DVDD OV fault report  
Mask clock fault report  
Mask PVDD UV fault report  
Mask PVDD OV fault report  
Mask DC fault report  
MASK_DVDD_UV  
MASK_DVDD_OV  
MASK_CLK_FAULT  
MASK_PVDD_UV  
MASK_PVDD_OV  
MASK_DC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
MASK_OC  
Mask OC fault report  
7.6.1.41 PIN_CONTROL2 Register (Offset = 75h) [reset = 0xF8]  
PIN_CONTROL2 is shown in 7-52 and described in 7-48.  
Return to Summary Table.  
7-52. PIN_CONTROL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
CLKFLT_LATC OTSD_LATCH_ OTW_LATCH_  
MASK_OTW  
RESERVED  
H_EN  
EN  
EN  
R/W  
R/W  
R/W  
R/W  
7-48. PIN_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R/W  
11  
This bit is reserved  
CLKFLT_LATCH_EN  
OTSD_LATCH_EN  
OTW_LATCH_EN  
MASK_OTW  
R/W  
R/W  
R/W  
R/W  
R/W  
1
Enable clock fault latch  
Enable OTSD fault latch  
Enable OT warning latch  
Mask OT warning report  
This bit is reserved  
4
1
3
1
2
0
1-0  
RESERVED  
00  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.42 MISC_CONTROL Register (Offset = 76h) [reset = 0x00]  
MISC_CONTROL is shown in 7-53 and described in 7-49.  
Return to Summary Table.  
7-53. MISC_CONTROL Register  
7
6
5
4
3
2
1
0
DET_STATUS_  
LATCH  
RESERVED  
R/W  
OTSD_AUTO_  
REC_EN  
RESERVED  
R/W  
R/W  
R/W  
7-49. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DET_STATUS_LATCH  
R/W  
0
1:Latch clock detection status  
0:Don't latch clock detection status  
6-5  
4
RESERVED  
R/W  
R/W  
R/W  
00  
This bit is reserved  
OTSD_AUTO_REC_EN  
RESERVED  
0
OTSD auto recovery enable  
This bit is reserved  
3-0  
0000  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
7.6.1.43 FAULT_CLEAR Register (Offset = 78h) [reset = 0x00]  
FAULT_CLEAR is shown in 7-54 and described in 7-50.  
Return to Summary Table.  
7-54. FAULT_CLEAR Register  
7
6
5
4
3
2
1
0
ANALOG_FAUL  
T_CLEAR  
RESERVED  
R/W  
W
7-50. FAULT_CLEAR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ANALOG_FAULT_CLEAR  
W
0
WRITE CLEAR BIT.  
Once write this bit to 1, device will clear analog fault  
6-0  
RESERVED  
R/W  
0000000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
This section details the information required to configure the device for several popular configurations and  
provides guidance on integrating the TAS5805M device into the larger system.  
8.1.1 Bootstrap Capacitors  
The output stage of the TAS5805M uses a high-side NMOS driver, rather than a PMOS driver. To generate the  
gate driver voltage for the high-side NMOS, a bootstrap capacitor for each output terminal acts as a floating  
power supply for the switching cycle. Use 0.22-µF capacitors to connect the appropriate output pin (OUT_X) to  
the bootstrap pin (BST_X). For example, connect a 0.22-µF capacitor between OUT_A and BST_A for  
bootstrapping the A channel. Similarly, connect another 0.22-µF capacitor between the OUT_B and BST_B pins  
for the B channel inverting output.  
8.1.2 Inductor Selections  
It is required that the peak current is smaller than the OCP (Over current protection) value which is 5A, there are  
3 cases which cause high peak current flow through inductor.  
1. During power up (idle state, no audio input), the duty cycle increases from 0 to θ.  
Ipeak _ power _up ö PVDD ì C / L ìsin(1/ LìC ì  
q
/ Fsw )  
(1)  
备注  
θ=0.5 (BD Modulation), 0.14 (1SPW Modulation), 0.14 (Hybrid Modulation). This formula just  
provide a rough estimation, suggest to measure the start-up current based on your LC filter.  
8-1. Peak current during power up  
PVDD  
L (uH)  
C (uF)  
Fsw (kHz)  
Ipeak_power_up  
6.07A (>5A OCP), not  
recommended  
24  
4.7  
0.68  
384  
24  
24  
24  
12  
12  
4.7  
10  
10  
4.7  
10  
0.68  
0.68  
0.68  
0.68  
0.68  
768  
384  
768  
384  
384  
3.25A  
3A  
1.55A  
3.32A  
1.55A  
2. During music playing, some audio burst signal (high frequency) with very hard PVDD clipping will cause  
PWM duty cycle increase dramatically. This is the worst case and it rarely happens.  
Ipeak _clipping ö PVDDì(1-q)/(F ì L)  
sw  
(2)  
3. Peak current due to Max output power. Ignore the ripple current flow through capacitor here.  
Ipeak _ output _ power ö 2ì Max _Output _ Power / Rspea ker_ Load  
(3)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TAS5805M  
 
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Same PVDD and switching frequency, larger inductance means smaller idle current for lower power dissipation.  
It's suggested that inductor's saturation current Isat, is larger than the amplifier's peak current during power-up  
and play audio.  
ISAT í max(Ipeak_ power_up,I peak_clipping,Ipeak_output_ power  
)
(4)  
In addition, the effective inductance at the peak current is required to be at least 80% of the inductance value in  
8-2, to meet datasheet specifications.  
The minimum inductance is given in 8-2  
8-2. LC filter recommendation  
Recommended Minimum  
Inductance (uH) for LC filter design  
PVDD (V)  
Switching Frequency (kHz)  
Modulation Scheme  
4.7uH + 0.68uF  
12  
>12  
384  
BD  
10uH + 0.68uF  
10uH + 0.68uF  
12  
>12  
384  
1SPW/Hybrid  
15uH + 0.68uF  
For higher switching frequency (Fsw), select inductors with minimum inductance to be 384kHz/Fsw×L.  
8.1.3 Power Supply Decoupling  
To ensure high efficiency, low THD, and high PSRR, proper power supply decoupling is necessary. Noise  
transients on the power supply lines are short duration voltage spikes. These spikes can contain frequency  
components that extend into the hundreds of megahertz. The power supply input must be decoupled with some  
good quality, low ESL, Low ESR capacitors larger than 22 µF. These capacitors bypasses low frequency noise to  
the ground plane. For high frequency decoupling, place 1-µF or 0.1-µF capacitors as close as possible to the  
PVDD pins of the device.  
8.1.4 Output EMI Filtering  
The TAS5805M device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a  
simple ferrite bead or a ferrite bead plus a capacitor can replace the tradition large inductor and capacitor that  
are commonly used. In other high-power applications, large toroid inductors are required for maximum power  
and film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter  
Design (SLOA119) for a detailed description on the proper component selection and design of an L-C filter  
based upon the desired load and response.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2 Typical Applications  
8.2.1 2.0 (Stereo BTL) System  
In the 2.0 system, two channels are presented to the amplifier via the digital input signal. These two channels  
are amplified and then sent to two separate speakers. In some cases, the amplified signal is further separated  
based upon frequency by a passive crossover network after the L-C filter. Even so, the application is considered  
2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
8-1 shows the 2.0 (Stereo BTL) system application.  
/ꢄ  
ꢇꢃꢄ$  
&ꢄꢁ  
ꢀꢀꢂꢂS)  
39''  
39''ꢄ  
39''ꢄ  
39''ꢄ  
/ꢎ&KDQQHO  
*1'  
/5  
ꢅ$  
/ꢀ  
&ꢀꢇ  
ꢀꢀꢂꢂS)  
&ꢄ  
&ꢀ  
&ꢇ  
ꢂꢃꢄ—)  
&ꢅ  
&ꢁ  
ꢀꢀ—)  
&ꢍ  
ꢀꢀ—)  
ꢇꢃꢄ$  
ꢀꢀ—)  
ꢀꢀ—)  
ꢂꢃꢄ—)  
&ꢄꢍ  
ꢀꢀꢂꢂS)  
&ꢄꢊ  
5ꢇ  
ꢍꢉ  
ꢀꢀꢂꢂS)  
*1'  
*1'  
*1'  
*1'  
*1'  
'9''  
*1'  
*1'  
*1'  
&ꢀꢂ  
5ꢅ  
ꢍꢉ  
ꢀꢀꢂꢂS)  
/ꢇ  
*1'  
ꢇꢃꢄ$  
&ꢄꢆ  
8ꢄ  
&ꢆ  
&ꢉ  
ꢀꢀꢂꢂS)  
ꢅꢃꢆ—)  
ꢂꢃꢄ—)  
ꢄꢁ  
ꢄꢍ  
ꢀꢆ  
ꢀꢉ  
ꢀꢍ  
ꢀꢇ  
39''  
287B$ꢈ  
287B$ꢌ  
5ꢎ&KDQQHO  
*1'  
39''  
39''  
39''  
ꢄꢆ  
ꢀꢂ  
287B%ꢈ  
287B%ꢌ  
/ꢅ  
*1'  
'9''  
*1'  
'9''  
ꢄꢇ  
'9''  
$9''  
ꢇꢃꢄ$  
&ꢄꢉ  
&ꢄꢄ  
ꢀꢁ %67Bꢄꢈ  
ꢀꢀ %67Bꢄꢌ  
ꢄꢉ  
%67B$ꢈ  
%67B$ꢌ  
%67B%ꢈ  
%67B%ꢌ  
6'287  
ꢀꢀꢂꢂS)  
&ꢊ  
ꢂꢃꢀꢀ—)  
&ꢄꢀ  
&ꢀꢄ  
5ꢁ  
ꢍꢉ  
ꢀꢀꢂꢂS)  
—)  
&ꢄꢂ  
—)  
ꢂꢃꢀꢀ—)  
&ꢄꢇ  
*1'  
95B',*  
5ꢄ  
ꢅꢃꢆꢂN  
5ꢀ  
ꢄꢂꢃꢂN  
*1'  
&ꢀꢀ  
5ꢍ  
ꢍꢉ  
ꢂꢃꢀꢀ—)  
&ꢄꢅ  
ꢀꢀꢂꢂS)  
)520ꢎ&21752//(5  
ꢀꢄ  
6'$  
6&/  
ꢄꢂ  
ꢄꢄ  
ꢂꢃꢀꢀ—)  
6'$  
6&/  
6'$  
6&/  
6'287  
*1'  
$'5ꢋ)$8/7  
3'1  
ꢀꢅ  
ꢄꢊ  
ꢄꢅ  
$'5ꢋ)$8/7  
3'1  
3*1'  
3*1'  
$*1'  
'*1'  
'*1'  
$'5ꢋ)$8/7  
3'1  
ꢄꢀ  
/5&/.  
6&/.  
6',1  
/5&/.  
6&/.  
6',1  
/5&/.  
6&/.  
6',1  
ꢀꢊ  
3$'  
)520ꢎ&21752//(5  
7$6ꢁꢉꢂꢁ0  
*1'  
8-1. 2.0 (Stereo BTL) System Application Schematic with Ferrite Bead as the output filter  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
/ꢅ  
39''  
39''  
ꢀꢁ—+  
&ꢅꢆ  
&ꢅ  
ꢈꢌꢁ—)  
&ꢃ  
ꢈꢌꢁ—)  
&ꢀ  
&ꢈ  
ꢁꢂꢅ—)  
&ꢇ  
&ꢆ  
ꢀꢀ—)  
ꢁꢂꢃꢄ—)  
ꢀꢀ—)  
ꢁꢂꢅ—)  
&KDQQHOꢎ/  
*1'  
/ꢀ  
*1'  
'9''  
*1'  
*1'  
*1'  
*1'  
*1'  
ꢀꢁ—+  
&ꢅꢃ  
ꢁꢂꢃꢄ—)  
8ꢅ  
&ꢉ  
ꢇꢂꢉ—)  
&ꢄ  
ꢁꢂꢅ—)  
ꢅꢆ  
ꢅꢃ  
ꢀꢉ  
ꢀꢄ  
ꢀꢃ 287Bꢅꢊ  
*1'  
39''  
287B$ꢊ  
287B$ꢋ  
287Bꢅꢋ  
ꢀꢈ  
39''  
39''  
39''  
/ꢈ  
287Bꢀꢊ  
ꢅꢉ  
287B%ꢊ  
287B%ꢋ  
*1'  
'9''  
*1'  
'9''  
ꢀꢁ 287Bꢀꢋ  
ꢀꢁ—+  
ꢅꢈ  
'9''  
$9''  
&ꢅꢉ  
ꢀꢆ  
ꢀꢀ  
ꢅꢄ  
ꢀꢅ  
&ꢅꢅ  
%67Bꢅꢊ  
%67Bꢅꢋ  
%67Bꢀꢊ  
%67Bꢀꢋ  
6'287  
%67B$ꢊ  
%67B$ꢋ  
%67B%ꢊ  
%67B%ꢋ  
6'287  
ꢁꢂꢃꢄ—)  
&ꢌ  
ꢁꢂꢀꢀ—)  
&ꢅꢀ  
&KDQQHOꢎ5  
—)  
&ꢅꢁ  
ꢁꢂꢀꢀ—)  
&ꢅꢈ  
95B',*  
/ꢇ  
5ꢅ  
ꢅꢆꢂꢁN  
5ꢀ  
ꢅꢁꢂꢁN  
*1'  
*1'  
—)  
ꢁꢂꢀꢀ—)  
&ꢅꢇ  
)520ꢎ&21752//(5  
ꢀꢁ—+  
6'$  
6&/  
ꢁꢂꢀꢀ—)  
ꢅꢁ  
ꢅꢅ  
6'$  
6&/  
6'$  
6&/  
&ꢅꢄ  
ꢁꢂꢃꢄ—)  
ꢀꢇ  
ꢅꢌ  
ꢅꢇ  
$'5ꢍ)$8/7  
3'1  
$'5ꢍ)$8/7  
3'1  
3*1'  
3*1'  
$*1'  
'*1'  
'*1'  
$'5ꢍ)$8/7  
3'1  
ꢅꢀ  
*1'  
/5&/.  
6&/.  
6',1  
/5&/.  
6&/.  
6',1  
/5&/.  
6&/.  
6',1  
ꢀꢌ  
3$'  
)520ꢎ&21752//(5  
7$6ꢆꢄꢁꢆ0  
*1'  
8-2. 2.0 (Stereo BTL) System Application Schematic with Inductor as the output filter  
8.2.1.1 Design Requirements  
Power supplies:  
3.3-V or 1.8-V supply  
4.5-V to 24-V supply  
Communication: host processor serving as I2C compliant master  
External memory (Such as EEPROM and FLASH) used for coefficients  
The requirement for the supporting components for the TAS5805M device in a Stereo 2.0 (BTL) system is  
provide in 8-3 and 8-4  
8-3. Supporting Component Requirements for Stereo 2.0 (BTL) system (With Ferrite bead as output  
filter)  
REFERENCE  
VALUE  
SIZE  
DETAILED DESCRIPTION  
DESIGNATOR  
C1,C2,C5,C6  
C3,C4  
22uF  
0.1uF  
4.7uF  
0.1uF  
1uF  
0805  
0402  
0603  
0603  
0603  
CAP, CERM, 22 µF, 35 V, +/- 20%, JB, 0805  
CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0402  
CAP, CERM, 4.7 µF, 10 V, +/- 10%, X5R, 0603  
CAP, CERM, 0.1 µF, 16 V, +/- 10%, X7R, 0603  
CAP, CERM, 1 µF, 16 V, +/- 10%, X5R, 0603  
C7  
C8  
C9,C10  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8-3. Supporting Component Requirements for Stereo 2.0 (BTL) system (With Ferrite bead as output  
filter) (continued)  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
R1  
R2  
4.70k  
10.0k  
0402  
0404  
0603  
RES, 4.70 k, 1%, 0.0625 W, 0402  
RES, 10.0 k, 1%, 0.063 W, 0402  
C11,C12,C13,C14  
0.22uF  
CAP, CERM, 0.22 µF, 50 V, +/- 10%, X7R, 0603  
C15,C16,C17,C18,C19,C  
20,C21,C22,C23  
2200pF  
0603  
CAP, CERM, 2200 pF, 100 V,+/- 10%, X7R, 0603  
R3,R4,R5,R6  
L1,L2,L3,L4  
L5  
68 ohm  
300 ohm  
100 ohm  
0603  
0806  
0806  
ES, 68, 5%, 0.1 W, 0603  
Ferrite Bead, 300 ohm @ 100 MHz, 3.1 A, 0806  
Ferrite Bead, 100 ohm @ 100 MHz, 4 A, 0806  
With Low EMI technology, TAS5805M keeps enough EMI margin for most of application cases where PVDD <  
14V with ferrite bead (Low BOM cost). With Ferrite Bead and capacitor as the output filter, 8-1 and 8-3  
includes a good configuration (Proper value of Ferrite bead, Capacitor, Resistor) to achieve enough EMI margin  
for the typical case which PVDD = 12V, Speaker Load = 8Ω/6Ω, each speaker wire with 1m length, Output  
Power = 1W/4W/8W for each channel.  
Select Ferrite bead (L1~L5). The trade-off is impedance and rated current. If the rated current meet the  
system's requirement, larger impedance means larger EMI margin for the EMI, especially for the frequency  
band 5 MHz~50 MHz. The typical ferrite bead recommend for TAS5805M is NFZ2MSM series (Murata) and  
UPZ2012E series (Sunlord). 300 ohm at 100 MHz ferrite bead is a typical value which can pass EMI for most  
of application cases.  
Select capacitor (C15~C23). The trade-off is capacitor value and idle current. Larger capacitor means larger  
idle current, increase the capacitor value from 1nF to 2.2nF makes much help for frequency band 5 MHz~100  
MHz.  
Using Ferrite bead as the output filter, recommend designer to use Fsw = 384 kHz with Spread spectrum  
enable, BD Modulation, refer to 7.4.3.1  
With Ferrite bead as the output power. In order to pass EMI (AC Conducted Emission) standard, an AC to DC  
adapter with EMI filter in it is needed. For most of applications (TV/Voice Control Speaker/Wireless speaker/  
Soundbar) which need a 110 V~220 V power supply usually has a EMI filter in the AC to DC adapter. Some  
cases use DC power supply and also need to test the DC Conducted Emission , this applications  
(Automotive/Industry) need a simple EMI filter on PVDD for TAS5805M. Refer to application note: AN-2162  
Simple Success With Conducted EMI From DC to DC Converters.  
8-4. Supporting Component Requirements for Stereo 2.0 (BTL) system (With Inductor as output filter)  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
C1,C6  
390 µF  
22 µF  
10mmx10mm  
0603  
CAP, AL, 390 µF, 35 V, ±20%, 0.08 ohm, SMD  
CAP, CERM, 22 µF, 35 V, ±20%, JB, 0805  
CAP, CERM, 0.1 µF, 50 V, ±10%, X7R, 0402  
CAP, CERM, 4.7 µF, 10 V, ±10%, X5R, 0603  
CAP, CERM, 0.1 µF, 16 V, ±10%, X7R, 0603  
CAP, CERM, 1 µF, 16 V, ±10%, X5R, 0603  
RES, 4.70 k, 1%, 0.0625 W, 0402  
C2,C5  
C3,C4  
0.1 µF  
4.7 µF  
0.1 µF  
1 µF  
0402  
C7  
C8  
0603  
0603  
C9,C10  
0603  
R1  
4.70 k  
10.0 k  
0.22 µF  
0.68 µF  
10 µH  
0402  
R2  
0404  
RES, 10.0 k, 1%, 0.063 W, 0402  
C11,C12,C13,C14  
C15,C16,C17,C18  
L1,L2,L3,L4  
0603  
CAP, CERM, 0.22 µF, 50 V, ±10%, X7R, 0603  
CAP, CERM, 0.68 µF, 50 V, ±10%, X7R, 0805  
Inductor, Shielded, 10 µH, 4.4 A, 0.023 ohm, SMD  
0805  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
With Inductor as the output filter, designers can achieve ultra low idle current (with Hybrid Modulation or 1SPW  
Modulation) and keep large EMI margin. As the switching frequency of TAS5805M can be adjustable from 384  
kHz to 768 kHz. Higher switching frequency means smaller Inductor value needed.  
With 768 kHz switching frequency. Designers can select 10uH + 0.68 µF or 4.7 µH +0.68 µF as the output  
filter, this will help customer to save the Inductor size with the same rated current during the inductor  
selection. With 4.7uH + 0.68uF, make sure PVDD 12V to avoid the large ripple current to trigger the OC  
threshold (5A).  
With 384 kHZ switching frequency. Designers can select 22 µH + 0.68 µF or 15 µH + 0.68 µF or 10 µH + 0.68  
µF as the output filter, this will help customer to save power dissipation for some battery power supply  
application. With 10 µH + 0.68 µF, make sure PVDD 12 V to avoid the large ripple current to trigger the OC  
threshold (5 A).  
8.2.1.2 Detailed Design Procedures  
The design procedure can be used for Stereo 2.0, Mono, 2.1 system.  
8.2.1.2.1 Step 1: Hardware Integration  
Use the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Follow the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support, go to the E2E forums (E2E.ti.com). If deviating from the recommended layout  
is necessary, go to the E2E forum to request a layout review.  
8.2.1.2.2 Step 2: Speaker Tuning  
Use the TAS5805MEVM evaluation module and the PPC3 app to configure the desired device settings.  
8.2.1.2.3 Step 3: Software Integration  
Use the End System Integration feature of the PPC3 app to generate a baseline configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate  
static configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
8.2.1.3 Application Curves  
8.2.1.3.1 Audio Performance  
10  
5
10  
5
PVCC=12V  
TA=25èC  
RL=6W  
PVCC=18V  
TA=25èC  
RL=8W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
f= 20Hz  
f= 1kHz  
f= 10KHz  
f= 20Hz  
f= 1kHz  
f= 10KHz  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10  
0.01  
0.1  
1
Output Power (W)  
10 20  
D103097  
D01014087  
8-3. THD+N vs Frequency (Ferrite bead as  
8-4. THD+N vs Frequency (Inductor as Output  
Output Filter, BD Modulation, BTL Mode)  
Filter, Hybrid Modulation, BTL Mode)  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2.1.3.2 EN55022 Conducted Emissions Results with Ferrite Bead as output filter  
With (Ferrite Bead as the output filter), 220 V to 12 V adapter from a major TV customer, 8-Ω speaker, Spread  
Spectrum Enabled, Stereo Output Power = 8W/CH, 1 meter speaker cable for each channel.  
8-5. Conducted Emission with Ferrite Bead  
8-6. Conducted Emission with Ferrite Bead  
Filter - Line  
Filter - Neutral  
8.2.1.3.3 EN55022 Radiated Emissions Results with Ferrite Bead as output filter  
With (Ferrite Bead as the output filter), 220 V to 12 V adapter from a major TV customer, 8-Ω speaker, Spread  
Spectrum Enabled, Stereo Output Power = 8W/CH, 1 meter speaker cable for each channel.  
8-7. Radiated Emission with Ferrite Bead Filter - 8-8. Radiated Emission with Ferrite Bead Filter -  
Horizontal  
Vertical  
With Inductor as the output filter, the EMI margin reserve 15dB Margin for both Conducted Emission and  
Radiated Emission. More data are included in the application note -TAS5805M Design Considerations for EMC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2.2 MONO (PBTL) Systems  
In MONO mode, TAS5805M can be used as PBTL mode to drive sub-woofer with more output power.  
39''  
39''  
&ꢆꢌ  
&ꢆꢊ  
ꢅꢉꢁ—)  
/ꢀ  
&ꢆꢋ  
&ꢆꢄ  
ꢁꢂꢀ—)  
&ꢆꢉ  
&ꢅꢁ  
ꢆꢆ—)  
ꢅꢉꢁ—)  
ꢆꢆ—)  
ꢁꢂꢀ—)  
287ꢇ  
ꢀꢁ—+  
&ꢅꢆ  
*1'  
ꢅꢂꢅ9 RU ꢀꢂꢄ9  
*1'  
*1'  
'9''  
*1'  
*1'  
ꢁꢂꢃꢄ—)  
*1'  
8ꢀ  
*1'  
&ꢅꢅ  
&ꢅꢌ  
ꢌꢂꢋ—)  
ꢁꢂꢀ—)  
ꢀꢊ  
ꢀꢃ  
ꢆꢋ  
ꢆꢄ  
ꢆꢃ  
ꢆꢅ  
39''  
287B$ꢇ  
287B$ꢈ  
/ꢆ  
39''  
39''  
39''  
ꢀꢋ  
ꢆꢁ  
287ꢈ  
287B%ꢇ  
287B%ꢈ  
*1'  
'9''  
*1'  
'9''  
ꢀꢁ—+  
ꢀꢅ  
'9''  
$9''  
ꢆꢊ  
ꢆꢆ  
ꢀꢄ  
ꢆꢀ  
ꢁꢂꢀꢀ—) &ꢅꢊ  
%67B$ꢇ  
%67B$ꢈ  
%67B%ꢇ  
%67B%ꢈ  
6'287  
&ꢅꢃ  
&ꢅꢋ  
—)  
ꢁꢂꢃꢄ—)  
ꢁꢂꢀꢀ—)  
ꢁꢂꢀꢀ—)  
&ꢅꢁ  
&ꢌꢁ  
&ꢌꢂ  
&ꢅꢉ  
—)  
95B',*  
5ꢋ  
ꢀꢊꢂꢁN  
5ꢄ  
ꢀꢁꢂꢁN  
*1'  
)520ꢎ&21752//(5  
ꢁꢂꢀꢀ—)  
6'$  
6&/  
ꢀꢁ  
ꢀꢀ  
*1'  
6'$  
6&/  
6'$  
6&/  
6'287  
$'5ꢍ)$8/7  
3'1  
ꢆꢌ  
ꢀꢉ  
ꢀꢌ  
$'5ꢍ)$8/7  
3'1  
3*1'  
3*1'  
$*1'  
'*1'  
'*1'  
$'5ꢍ)$8/7  
3'1  
ꢀꢆ  
/5&/.  
6&/.  
6',1  
/5&/.  
6&/.  
6',1  
/5&/.  
6&/.  
6',1  
ꢆꢉ  
3$'  
)520ꢎ$8',2ꢎ5(6285&(  
7$6ꢊꢄꢁꢊ0  
*1'  
8-9. Mono (PBTL) System Application Schematic  
8.2.2.1 Design Requirements  
Power supplies:  
3.3-V or 1.8-V supply  
4.5-V to 24-V supply  
Communication: host processor serving as I2C compliant master  
External memory (Such as EEPROM and FLASH) used for coefficients  
The requirement for the supporting components for the TAS5805M device in a MONO (PBTL) system is provide  
in 8-5  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8-5. Supporting Component Requirements for MONO (PBTL) system (With Inductor as output filter)  
REFERENCE  
VALUE  
SIZE  
DETAILED DESCRIPTION  
DESIGNATOR  
C24,C25  
C27,C30  
C28,C29  
C33  
390uF  
22uF  
10mmx10mm  
0603  
CAP, AL, 390 µF, 35 V, +/- 20%, 0.08 ohm, SMD  
CAP, CERM, 22 µF, 35 V, +/- 20%, JB, 0805  
CAP, CERM, 0.1 µF, 50 V, +/- 10%, X7R, 0402  
CAP, CERM, 4.7 µF, 10 V, +/- 10%, X5R, 0603  
CAP, CERM, 0.1 µF, 16 V, +/- 10%, X7R, 0603  
CAP, CERM, 1 µF, 16 V, +/- 10%, X5R, 0603  
RES, 4.70 k, 1%, 0.0625 W, 0402  
0.1uF  
4.7uF  
0.1uF  
1uF  
0402  
0603  
C34  
0603  
C37,C39  
R7  
0603  
4.70k  
10.0k  
0.22uF  
0.68uF  
10uH  
0402  
R8  
0404  
RES, 10.0 k, 1%, 0.063 W, 0402  
C35,C38,C40,C41  
C32,C36  
L1,L2  
0603  
CAP, CERM, 0.22 µF, 50 V, +/- 10%, X7R, 0603  
CAP, CERM, 0.68 µF, 50 V, +/- 10%, X7R, 0805  
Inductor, Shielded, 10 µH, 7A, 0.023 ohm, SMD  
0805  
8.2.2.2 Detailed Design Procedure  
For information about the Detailed Design Procedure, see the 8.2.1.2 section.  
8.2.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
5
PVCC=18V  
TA=25èC  
RL=4W  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
PVCC = 5V  
PVCC = 7.4 V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
TA=25èC  
RL=4W  
PBTL Mode  
f= 20Hz  
f= 10kHz  
f= 1KHz  
0.005  
0.002  
0.001  
0
10  
20  
30 40  
Output Power (W)  
50  
60  
0.01  
0.1  
1
Output Power (W)  
10 20  
D105264  
D010572  
8-10. Efficiency vs Output Power (Inductor as  
8-11. THD+N vs Output Power (Inductor as  
Output Filter, Hybrid modulation, PBTL mode)  
Output Filter, Hybrid Modulation, PBTL mode)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
8.2.3 Advanced 2.1 System (Two TAS5805M Devices)  
In higher performance systems, the subwoofer output can be enhanced using digital audio processing as was  
done in the high-frequency channels. To accomplish this, two TAS5805M devices are used - one for the high  
frequency left and right speakers and one for the mono subwoofer speaker. In this system, the audio signal can  
be sent from the TAS5805M device through the SDOUT pin. Alternatively, the subwoofer amplifier can accept  
the same digital input as the stereo, which might come from a central systems processor. 8-12 shows the 2.1  
(Stereo BTL with Two TAS5805M devices) system application.  
/ꢆ  
39''  
39''  
/ꢈ  
ꢀꢁ—+  
&ꢆꢀ  
ꢁꢂꢃꢄ—)  
&ꢆ  
ꢅꢌꢁ—)  
&ꢃ  
ꢅꢌꢁ—)  
&ꢇ  
ꢇꢇ—)  
&ꢅ  
ꢁꢂꢆ—)  
&ꢊ  
&ꢀ  
ꢇꢇ—)  
/ꢎ&KDQQHO  
ꢁꢂꢆ—)  
/ꢇ  
*1'  
/ꢉ  
*1'  
*1'  
*1'  
*1'  
*1'  
*1'  
ꢀꢁ—+  
&ꢆꢃ  
ꢁꢂꢃꢄ—)  
8ꢆ  
'9''  
ꢆꢀ  
ꢆꢃ  
ꢇꢋ  
ꢇꢄ  
ꢇꢃ 287B/ꢈ  
39''  
287B$ꢈ  
287B$ꢉ  
287B/ꢉ  
*1'  
ꢇꢅ  
39''  
39''  
39''  
/ꢅ  
&ꢋ  
ꢊꢂꢋ—)  
&ꢄ  
ꢁꢂꢆ—)  
287B5ꢈ  
5ꢈ  
ꢆꢋ  
287B%ꢈ  
287B%ꢉ  
ꢇꢁ 287B5ꢉ  
ꢀꢁ—+  
&ꢆꢋ  
ꢁꢂꢃꢄ—)  
ꢆꢅ  
'9''  
$9''  
ꢇꢀ  
ꢇꢇ  
ꢆꢄ  
ꢇꢆ  
&ꢆꢆ  
%67B$ꢈ  
%67B$ꢉ  
%67B%ꢈ  
%67B%ꢉ  
6'287  
*1'  
*1'  
&ꢌ  
ꢁꢂꢇꢇ—)  
&ꢆꢇ  
5ꢎ&KDQQHO  
—)  
/ꢊ  
&ꢆꢁ  
ꢁꢂꢇꢇ—)  
&ꢆꢅ  
*1'  
95B',*  
'9''  
5ꢆ  
'9''  
5ꢇ  
*1'  
5ꢉ  
—)  
ꢁꢂꢇꢇ—)  
&ꢆꢊ  
ꢀꢁ—+  
&ꢆꢄ  
ꢁꢂꢃꢄ—)  
6'$  
6&/  
ꢁꢂꢇꢇ—)  
ꢆꢁ  
ꢆꢆ  
6'$  
6&/  
ꢆꢀꢂꢁN  
ꢆꢁꢂꢁN  
6'287  
ꢇꢊ  
ꢆꢌ  
ꢆꢊ  
*1'  
$'5ꢍ)$8/7ꢆ  
3'1ꢆ  
$'5ꢍ)$8/7  
3'1  
3*1'  
3*1'  
$*1'  
'*1'  
'*1'  
ꢆꢇ  
39''  
39''  
/ꢀ  
/5&/.  
6&/.  
287ꢈ  
&ꢆꢌ  
ꢅꢌꢁ—)  
&ꢇꢊ  
ꢅꢌꢁ—)  
/5&/.  
6&/.  
6',1  
&ꢇꢁ  
&ꢇꢆ  
ꢁꢂꢆ—)  
&ꢇꢇ  
&ꢇꢅ  
ꢇꢇ—)  
ꢀꢁ—+  
ꢇꢇ—)  
ꢁꢂꢆ—)  
&ꢅꢆ  
6',1ꢇ  
ꢇꢌ  
3$'  
ꢁꢂꢃꢄ—)  
)520ꢎ&21752//(5  
7$6ꢀꢄꢁꢀ0ꢎꢏ%7/ ꢇꢂꢁ 0RGHꢐ  
*1'  
'9''  
*1'  
*1'  
*1'  
*1'  
*1'  
*1'  
8ꢇ  
*1'  
6'$  
6XEꢉ:RRIHU  
6&/  
ꢆꢀ  
ꢆꢃ  
ꢇꢋ  
ꢇꢄ  
ꢇꢃ  
ꢇꢅ  
39''  
39''  
39''  
39''  
287B$ꢈ  
287B$ꢉ  
$'5ꢍ)$8/7ꢆ  
$'5ꢍ)$8/7ꢇ  
3'1ꢆ  
/ꢃ  
&ꢇꢀ  
ꢊꢂꢋ—)  
&ꢇꢃ  
ꢁꢂꢆ—)  
287ꢉ  
ꢆꢋ  
ꢇꢁ  
287B%ꢈ  
287B%ꢉ  
3'1ꢇ  
ꢀꢁ—+  
ꢆꢅ  
'9''  
$9''  
&ꢇꢌ  
&ꢅꢇ  
ꢁꢂꢀꢀ—)  
*1'  
*1'  
ꢇꢀ  
ꢇꢇ  
ꢆꢄ  
%67B$ꢈ  
%67B$ꢉ  
%67B%ꢈ  
%67B%ꢉ  
6'287  
ꢁꢂꢃꢄ—)  
'9''  
'9''  
'9'' '9''  
&ꢇꢋ  
—)  
ꢁꢂꢀꢀ—) &ꢁꢁ  
ꢁꢂꢀꢀ—) &ꢁꢂ  
ꢀꢁꢀꢀ—) &ꢁꢃ  
&ꢇꢄ  
95B',*  
5ꢅ  
ꢇꢂꢇN  
5ꢊ  
ꢇꢂꢇN  
5ꢀ  
ꢊꢋN  
5ꢃ  
ꢆꢁꢂꢁN  
*1'  
*1'  
—)  
)520 $8',2ꢎ5(6285&(  
ꢇꢆ  
6'$  
6&/  
ꢆꢁ  
ꢆꢆ  
6'$  
6&/  
ꢇꢊ  
ꢆꢌ  
ꢆꢊ  
$'5ꢍ)$8/7ꢇ  
3'1ꢇ  
$'5ꢍ)$8/7  
3'1  
3*1'  
3*1'  
$*1'  
'*1'  
'*1'  
ꢆꢇ  
/5&/.  
6&/.  
/5&/.  
6&/.  
6',1  
ꢇꢌ  
3$'  
7$6ꢀꢄꢁꢀ0ꢎꢏ3%7/ꢎꢎ0212 0RGHꢐ  
*1'  
8-12. 2.1 (2.1 CH with Two TAS5805M Devices) Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Power Supply Recommendations  
The TAS5805M device requires two power supplies for proper operation. A high-voltage supply calls PVDD is  
required to power the output stage of the speaker amplifier and its associated circuitry. Additionally, one low-  
voltage power supply which is calls DVDD is required to power the various low-power portions of the device. The  
allowable voltage range for both PVDD and DVDD supply are listed in the Recommended Operating Conditions  
table. Once the device has been initialized, PVDD must keep within the normal operation voltage. Once PVDD  
lower than 3.5V, all registers need re-initialize again.  
Internal Digital  
Digital IO  
Circuitry  
DVDD  
1.8V/3.3VÅ  
VR_DIG  
1.5V  
LDO  
External Filtering/Decoupling  
DVDD  
Gate Drive/Internal  
Analog Circuitry  
Output Stage  
Power Supply  
PVDD  
4.5V~26.4V  
AVDD  
5V  
LDO  
External Filtering/Decoupling  
PVDD  
Copyright © 2018, Texas Instruments Incorporated  
9-1. Power Supply Function Block Diagram  
9.1 DVDD Supply  
The DVDD supply that is required from the system is used to power several portions of the device. As shown in  
9-1, it provides power to the DVDD pin. Proper connection, routing and decoupling techniques are highlighted  
in the 8 section and the 9.2 section and must be followed as closely as possible for proper operation and  
performance.  
Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply.  
To simplify the power supply requirements for the system, the TAS5805M device includes an integrated low  
dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD  
supply and its output is presented on the DVDD_REG pin, providing a connection point for an external bypass  
capacitor. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuitry. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and  
operation of the device.  
9.2 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques  
are highlighted in the TAS5805MEVM and must be followed as closely as possible for proper operation and  
performance. Due to the high-voltage switching of the output stage, it is particularly important to properly  
decouple the output power stages in the manner described in the TAS5805M device 8. Lack of proper  
decoupling, like that shown in the 8, results in voltage spikes which can damage the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TAS5805M  
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker  
amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD pin is  
provided for the attachment of decoupling capacitor for the gate drive voltage regulator. It is important to note  
that the linear regulator integrated in the device has only been designed to support the current requirements of  
the internal circuitry, and should not be used to power any additional external circuitry. Additional loading on this  
pin could cause the voltage to sag, negatively affecting the performance and operation of the device.  
Another separate power supply is derived from the PVDD supply via an integrated linear regulator is AVDD.  
AVDD pin is provided for the attachment of decoupling capacitor for the TAS5805M internal circuitry. It is  
important to note that the linear regulator integrated in the device has only been designed to support the current  
requirements of the internal circuitry, and should not be used to power any additional external circuitry. Additional  
loading on this pin could cause the voltage to sag, negatively affecting the performance and operation of the  
device.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
9.1.1 General Guidelines for Audio Amplifiers  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout.  
Ideally, the guidance provided in the applications section with regard to device and component selection can be  
followed by precise adherence to the layout guidance shown in the 9.2 section. These examples represent  
exemplary baseline balance of the engineering trade-offs involved with lying out the device. These designs can  
be modified slightly as needed to meet the needs of a given application. In some applications, for instance,  
solution size can be compromised to improve thermal performance through the use of additional contiguous  
copper neat the device. Conversely, EMI performance can be prioritized over thermal performance by routing on  
internal traces and incorporating a via picket-fence and additional filtering components. In all cases, it is  
recommended to start from the guidance shown in the 9.2 section and work with TI field application engineers  
or through the E2E community to modify it based upon the application specific goals.  
9.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network  
Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This  
applies to DVDD, AVDD, GVDD and PVDD. However, the capacitors on the PVDD net for the TAS5805M device  
deserve special attention.  
The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as  
possible. Not only dose placing these device far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS5805M device can cause ringing on the output pins that can cause the voltage on the output  
pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the  
deice . For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the 9.2 section.  
9.1.3 Optimizing Thermal Performance  
Follow the layout example shown in the 9-1 to achieve the best balance of solution size, thermal, audio, and  
electromagnetic performance. In some cases, deviation from this guidance can be required due to design  
constraints which cannot be avoided. In these instances, the system designer should ensure that the heat can  
get out of the device and into the ambient air surrounding the device. Fortunately, the heat created in the device  
naturally travels away from the device and into the lower temperature structures around the device.  
9.1.3.1 Device, Copper, and Component Layout  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat producing components or structures near the amplifier (including above or below in  
the end equipment).  
If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5805M device  
and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top  
and bottom layer.  
Place the TAS5805M device away from the edge of the PCB when possible to ensure that the heat can travel  
away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5805M device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5805M  
device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane  
from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible.  
9.1.3.2 Stencil Pattern  
The recommended drawings for the TAS5805M device PCB foot print and associated stencil pattern are shown  
at the end of this document in the package addendum. Additionally, baseline recommendations for the via  
arrangement under and around the device are given as a starting point for the PCB design. This guidance is  
provided to suit the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all  
other performance criteria. In elevated ambient temperature or under high-power dissipation use-cases, this  
guidance may be too conservative and advanced PCB design techniques may be used to improve thermal  
performance of the system.  
备注  
The customer must verify that deviation from the guidance shown in the package addendum, including  
the deviation explained in this section, meets the customers quality, reliability, and manufacturability  
goals.  
9.1.3.2.1 PCB footprint and Via Arrangement  
The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the  
shape and position of the copper patterns to which the TAS5805M device will be soldered. This footprint can be  
followed directly from the guidance in the package addendum at the end of this data sheet. It is important to  
make sure that the thermal pad, which connects electrically and thermally to the PowerPADof the TAS5805M  
device, be made no smaller than what is specified in the package addendum. This ensures that the TAS5805M  
device has the largest interface possible to move heat from the device to the board.  
The via pattern shown in the package addendum provides an improved interface to carry the heat from the  
device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings)  
present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away  
from the device and into the surrounding structures and air. By increasing the number of vias, as shown in the 节  
9.2 section, this interface can benefit from improved thermal performance.  
备注  
Vias can obstruct heat flow if they are not constructed properly.  
More notes on the construction and placement of vias are as follows:  
Remove thermal reliefs on thermal vias, because they impede the flow of heat through the via.  
Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the  
additional cost of filled vias.  
The diameter of the drull must be 8 mm or less. Also, the distance between the via barrel and the surrounding  
planes should be minimized to help heat flow from the via into the surrounding copper material. In all cases,  
minimum spacing should be determined by the voltages present on the planes surrounding the via and  
minimized wherever possible.  
Vias should be arranged in columns, which extend in a line radially from the heat source to the surrounding  
area. This arrangement is shown in the 9.2 section.  
Ensure that vias do not cut off power current flow from the power supply through the planes on internal  
layers. If needed, remove some vias that are farthest from the TAS5805M device to open up the current path  
to and from the device.  
9.1.3.2.2 Solder Stencil  
During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste  
on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity  
and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most  
cases, the aperture for each of the component pads is almost the same size as the pad itself. However, the  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TAS5805M  
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
thermal pad on the PCB is large and depositing a large, single deposition of solder paste would lead to  
manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder paste  
to outgas during the assembly process and reduce the risk of solder bridging under the device. This structure is  
called an aperture array, and is shown in the 9.2 section. It is important that the total area of the aperture  
array (the area of all of the small apertures combined) covers between 70% and 80% of the area of the thermal  
pad itself.  
9.2 Layout Example  
Top Layer 3D view  
Top Layer Layout  
Bot Layer Layout  
9-1. 2.0 (Stereo BTL with Ferrite Bead as Output Filter) Layout View  
Top Layer 3D view  
Top Layer Layout  
Bot Layer 3D view  
Bot Layer Layout  
9-2. 2.0 (Stereo BTL with Inductor as Output Filter) Layout View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TAS5805M  
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Device Nomenclature  
The glossary is general commonly used acronyms and words which are defined in accordance with a broad TI  
initiative to comply with industry standards such as JEDEC, IPC, IEEE, and others. The glossary provided in this  
section defines words, phrases, and acronyms that are unique to this product and documentation, collateral, or  
support tools and software used with this product. For any additional questions regarding definitions and  
terminology, please see the e2e Audio Amplfier Forum.  
Bridge tied load (BTL) is an output configuration in which one terminal of the speaker is connected to one half-  
bridge and the other terminal is connected to another half-bridge.  
DUT refers to a device under test to differentiate one device from another.  
Closed-loop architecture describes a topology in which the amplifier monitors the output terminals, comparing  
the output signal to the input signal and attempts to correct for non-linearities in the output.  
Dynamic controls are those which are changed during normal use by either the system or the end-user.  
GPIO is a general purpose input/output pin. It is a highly configurable, bi-directional digital pin which can perform  
many functions as required by the system.  
Host processor (also known as System Processor, Scalar, Host, or System Controller) refers to device  
which serves as a central system controller, providing control information to devices connected to it as well as  
gathering audio source data from devices upstream from it and distributing it to other devices. This device often  
configures the controls of the audio processing devices (like the TAS5805M) in the audio path in order to  
optimize the audio output of a loudspeaker based on frequency response, time alignment, target sound pressure  
level, safe operating area of the system, and user preference.  
Maximum continuous output power refers to the maximum output power that the amplifier can continuously  
deliver without shutting down when operated in a 25°C ambient temperature. Testing is performed for the period  
of time required that their temperatures reach thermal equilibrium and are no longer increasing  
Parallel bridge tied load (PBTL) is an output configuration in which one terminal of the speaker is connected to  
two half-bridges which have been placed in parallel and the other terminal is connected to another pair of half  
bridges placed in parallel  
rDS(on) is a measure of the on-resistance of the MOSFETs used in the output stage of the amplifier.  
Static controls/Static configurations are controls which do not change while the system is in normal use.  
Vias are copper-plated through-hole in a PCB.  
10.1.2 Development Support  
For TAS5805M Evaluation Module, TAS5805MEVM  
Request PurePathTM Console Graphical Development Suite for Audio System Design and  
Development,PUREPATHCONSOLE  
Request TAS5805M PPC3 app access by click 'Request Now' in TAS5805M product folder,TAS5805M  
Or contact TI field support team to get the PPC3 platform access and TAS5805M app access.  
Application notes: Minimize Idle Current in Portable Audio With TAS5805M Hybrid Mode  
Application notes: TAS5805M Process Flows  
Class-D LC Filter Design,Class-D LC Filter Design  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TAS5805M  
 
 
 
TAS5805M  
ZHCSI92D MAY 2018 REVISED NOVEMBER 2020  
www.ti.com.cn  
10.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TAS5805M  
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5805MPWP  
TAS5805MPWPR  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
PWP  
PWP  
28  
28  
50  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-25 to 85  
-25 to 85  
5805  
5805  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5805MPWPR  
HTSSOP PWP  
28  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TAS5805MPWPR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TAS5805MPWP  
TAS5805MPWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
28  
28  
50  
50  
530  
530  
10.2  
10.2  
3600  
3600  
3.5  
3.5  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0028M  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
26X 0.65  
28  
1
2X  
9.8  
9.6  
8.45  
NOTE 3  
14  
15  
0.30  
0.19  
28X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.82 MAX  
NOTE 5  
14  
15  
2X 0.825 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
4.05  
3.53  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
28  
3.10  
2.58  
4224480/A 08/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0028M  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.1)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
28X (1.5)  
1
28X (0.45)  
28  
SEE DETAILS  
(R0.05) TYP  
26X (0.65)  
SYMM  
(4.05)  
(0.6)  
(9.7)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.2) TYP  
(
0.2) TYP  
VIA  
14  
15  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4224480/A 08/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0028M  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.1)  
BASED ON  
0.125 THICK  
STENCIL  
28X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
28X (0.45)  
28  
(R0.05) TYP  
26X (0.65)  
SYMM  
(4.05)  
BASED ON  
0.125 THICK  
STENCIL  
15  
14  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.47 X 4.53  
3.10 X 4.05 (SHOWN)  
2.83 X 3.70  
0.125  
0.15  
0.175  
2.62 X 3.42  
4224480/A 08/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS5806M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5806MD

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器
TI

TAS5806MDCPR

23-W, Inductor-Less, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with Enhanced Processing and Low Power Dissipation
TI

TAS5806MDDCPR

具有处理功能和 P2P HP 的 23W 立体声、45W 单声道、4.5V 至 26.4V、数字输入 D 类音频放大器 | DCP | 38 | -25 to 85
TI

TAS5822M

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5822MDCPR

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5825M

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器
TI

TAS5825MRHBR

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825MRHBT

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825P

具有超低空闲电流和出色效率的 4.5V 至 26.4V H 类控制数字输入 D 类音频放大器
TI

TAS5825PRHBR

具有超低空闲电流和出色效率的 4.5V 至 26.4V H 类控制数字输入 D 类音频放大器 | RHB | 32 | -25 to 85
TI

TAS5828M

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器
TI