TAS5822M [TI]

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing;
TAS5822M
型号: TAS5822M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing

文件: 总90页 (文件大小:3944K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS5822M  
SLASEV8 – DECEMBER 2020  
TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with  
96kHz Enhanced Processing  
1 Features  
2 Applications  
Flexible audio I/O:  
Sounds bars, PC audio  
Wireless, Bluetooth speakers  
DTV, HDTV, UHD and multi-purpose monitors  
– Supports 32, 44.1, 48, 88.2, 96 kHz sample  
rates  
– I2S, LJ, RJ, TDM  
– SDOUT for audio monitoring, sub-channel or  
echo cancellation  
– PLL integrated, supports 3-Wire digital audio  
interface (no MCLK required)  
3 Description  
The TAS5822M is a High Efficiency digital input  
Class-D audio amplifier for driving loudspeakers used  
in consumer, commercial, and industrial electronics. .  
– Supports stereo bridge-tied or mono parallel  
bridge-tied loads (BTL and PBTL)  
Efficient class-D operation:  
– > 90% power efficiency, 90 mΩ RDSon  
Supports multiple output configurations  
– 2 × 35 W in 2.0 Mode (8-Ω, 24 V, THD+N=1%)  
– 2 × 22 W in 2.0 Mode (6-Ω, 18 V, THD+N=1%)  
Excellent audio performance:  
The high-performance closed loop architecture and  
wide-switching frequency range reduces the solution  
size by reducing passive components and minimize  
the inductor size in most applications. TAS5822M has  
an integrated audio processor with up to 96-kHz  
architecture support advanced process flow.  
This device supports high efficiency 1SPW  
modulation with adjustable Class D loop bandwidth to  
achieve good audio performance.  
– THD+N ≤ 0.06% at 1 W, 1 kHz, PVDD = 24 V  
– SNR ≥ 110 dB (A-weighted), ICN ≤ 40 μVRMS  
Enhanced audio processing:  
Device Information  
PART NUMBER  
PACKAGE(1)  
BODY SIZE (NOM)  
– Sample rate convertor  
TAS5822M  
HTSSOP (38) DCP 9.7 mm × 4.4 mm  
– 96-kHz processor sampling  
– DC blocking, 2 ×14 BQs, THD manager  
– DPEQ, Volume Control  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Speaker  
Speaker  
– Input Mixer, Output Crossbar  
– 4th order 2-Band DRC + AGL  
– Over temperature fold back  
Flexible power supply configurations  
– PVDD: 4.5 V to 26.4 V  
– DVDD and I/O: 1.8 V or 3.3 V  
Excellent Integrated self-protection:  
– Over-current error (OCE)  
L Channel  
R Channel  
– Over-temperature warning (OTW)  
– Over-temperature error (OTE)  
– Under/over-voltage lock-out (UVLO/OVLO)  
Easy system integration  
– I2C Software Control  
1.8V or 3.3V  
4.5V-26.5V  
– Reduced solution size  
Less passives required compared with open  
loop devices  
System  
Processor  
Digital Audio Source  
Copyright © 2019, Texas Instruments Incorporated  
Ultra Low EMI with latest EMI technology  
No large inductors required for most  
applications  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings ....................................... 5  
6.2 ESD Ratings .............................................................. 5  
6.3 Recommended Operating Conditions ........................6  
6.4 Thermal Information ...................................................6  
6.5 Electrical Characteristics ............................................7  
6.6 Timing Requirements ...............................................10  
6.7 Typical Characteristics..............................................12  
6.8 Parametric Measurement Information.......................21  
7 Detailed Description......................................................22  
7.1 Overview...................................................................22  
7.2 Functional Block Diagram.........................................22  
7.3 Feature Description...................................................22  
7.4 Device Functional Modes..........................................28  
7.5 Programming and Control.........................................33  
7.6 Register Maps...........................................................38  
8 Application and Implementation..................................71  
8.1 Application Information............................................. 71  
8.2 Typical Applications.................................................. 71  
9 Power Supply Recommendations................................77  
9.1 DVDD Supply............................................................77  
9.2 PVDD Supply............................................................78  
10 Layout...........................................................................79  
10.1 Layout Guidelines................................................... 79  
10.2 Layout Example...................................................... 81  
11 Device and Documentation Support..........................82  
11.1 Support Resources................................................. 82  
11.2 Trademarks............................................................. 82  
11.3 Electrostatic Discharge Caution..............................82  
11.4 Glossary..................................................................82  
12 Mechanical, Packaging, and Orderable  
Information.................................................................... 82  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
December 2020  
*
Initial release.  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Device Comparison Table  
ORDERABLE PART  
NUMBER  
RECOMMENDED PVDD Typical Peak Current  
RDS(ON) OPTION  
180 mΩ  
Package  
RANGE  
(speaker current)  
TAS5805M  
TAS5806M  
4.5 V to 26.4 V  
5A  
TSSOP 28  
TSSOP 38 (Pin to Pin with  
TAS5822M)  
4.5 V to 26.4 V  
4.5 V to 26.4 V  
5A  
7A  
180 mΩ  
TSSOP 38 (Pin to Pin with  
TAS5806M)  
TAS5822M  
90 mΩ  
5 Pin Configuration and Functions  
BST_A-  
OUT_A-  
PGND  
BST_A+  
OUT_A+  
PVDD  
PVDD  
DGND  
DVDD  
ADR/FAULT  
VR_DIG  
DGND  
LRCLK  
SCLK  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
BST_B-  
OUT_B-  
PGND  
BST_B+  
OUT_B+  
PVDD  
PVDD  
AGND  
AVDD  
PDN  
2
3
4
5
6
7
8
9
Thermal  
Pad  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
SCL  
SDA  
SDOUT  
NC  
SDIN  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Not to scale  
Figure 5-1. DCP Package, 38-Pin TSSOP, Top View  
Table 5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DGND  
DVDD  
VR_DIG  
NO.  
8,12  
9
G
P
P
Digital ground  
3.3-V or 1.8-V digital power supply  
11  
Internally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices  
Different I2 C device address can be set by selecting different pull up resistor to DVDD, see Table 4 for details.  
This pin can be programed by writing 1 to a register bit after Power up bit. In this mode, the ADR/ FAULT Is  
redefined as FAULT,go to Page 0, Book 0, set register 0x61 = 0x0b first, then set register 0x60 = 0x01  
ADR/ FAULT  
LRCLK  
10  
13  
DIO  
DI  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ and RJ, this  
corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync  
boundary.  
SCLK  
SDIN  
14  
15  
26  
DI  
DI  
Bit clock for the digital signal that is active on the input data line of the serial data port.  
Data line to the serial data port  
SDOUT  
DO  
Serial Audio data output, the source data can select as Pre-DSP or Post DSP  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SDA  
NO.  
27  
28  
29  
30  
31  
6
DI/O  
DI  
DI  
P
I2C serial control data interface input/output  
SCL  
I2C serial control clock input  
PDN  
Power Down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators.  
Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices  
Analog ground  
AVDD  
AGND  
G
P
7
P
PVDD  
PVDD voltage input  
32  
33  
3
P
P
G
PGND  
Ground reference for power device circuitry. Connect this pin to system ground.  
Positive pin for differential speaker amplifier output A+  
36  
5
G
OUT_A+  
BST_A+  
OUT_A-  
BST_A-  
O
Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_A+  
4
2
1
P
O
P
Negative pin for differential speaker amplifier output A-  
Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_A-  
Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_B-  
BST_B-  
OUT_B-  
BST_B+  
38  
37  
35  
P
O
P
Negative pin for differential speaker amplifier output B  
Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_B+  
OUT_B+  
NC  
34  
18  
19  
20  
21  
17  
16  
22  
25  
23  
24  
O
-
Positive pin for differential speaker amplifier output B+  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
No Connect Pin. Can be shorted to PVDD or shorted to GND or left open.  
Connect to the system Ground  
NC  
-
NC  
-
NC  
-
NC  
-
NC  
-
NC  
-
NC  
-
NC  
-
NC  
-
PowerPAD™  
G
(1) AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P =  
Power, G = Ground (0 V)  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted) (1)  
MIN  
–0.3  
–0.3  
MAX  
3.9  
UNIT  
V
DVDD  
PVDD  
VI(DigIn)  
VI(SPK_OUTxx)  
TA  
Low-voltage digital supply  
PVDD supply  
30  
V
DVDD referenced digital inputs(2)  
Voltage at speaker output pins  
Ambient operating temperature,  
Operating junction temperature  
Storage temperature  
–0.5 VDVDD + 0.5  
V
–0.3  
–40  
-40  
32  
85  
V
°C  
°C  
°C  
TJ  
160  
125  
Tstg  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) DVDD referenced digital pins include: ADR/FAULT, LRCLK, SCLK, SDIN, SDOUT, SCL, SDA, PDN  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS5822M  
 
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.62  
4.5  
NOM  
MAX  
3.63  
26.4  
UNIT  
DVDD  
V(POWER)  
Power supply inputs  
V
PVDD  
BTL mode, Speaker Load =4Ω  
(+/-20% Variation)  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
20.8  
26  
V
V
V
V
V
V
V
BTL mode, Speaker Load =5Ω  
(+/-20% Variation)  
BTL mode, Speaker Load =6Ω  
(+/-20% Variation)  
26.4  
26.4  
21  
Recommended PVDD  
Range(1)  
BTL mode, Speaker Load =8Ω  
(+/-20% Variation)  
PBTL mode, Speaker Load =2Ω  
(+/-20% Variation)  
PBTL mode, Speaker Load =3Ω  
(+/-20% Variation)  
26.4  
26.4  
PBTL mode, Speaker Load =4Ω  
(+/-20% Variation)  
4.5  
VIH(DigIn)  
VIL(DigIn)  
Input logic high for DVDD referenced digital inputs  
Input logic low for DVDD referenced digital inputs  
0.9 × VDVDD  
DVDD  
V
V
0.1 × VDVDD  
Minimum inductor value in LC filter under short-circuit  
condition  
LOUT  
1
µH  
(1) The Max Recommended PVDD value is limited by OCETHRES, if the Class D amplifier's output peak current lower than OCETHRES, 4Ω  
BTL load and 2Ω PBTL load also supports higher PVDD up to 26.4V  
6.4 Thermal Information  
TAS5822M  
TSSOP (DCP)  
38 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC  
STANDARD  
4-LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
28.4  
13.5  
8.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
8.6  
RθJC(bot)  
1.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.5 Electrical Characteristics  
Free-air room temperature 25°C, 1SPW Mode, LC filter=4.7uH+0.68uF, Fsw=768kHz, Class D Bandwidth=175kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital I/O  
Input logic high current  
level  
|IIH|  
for DVDD referenced  
digital  
VIN(DigIn) = VDVDD  
10  
uA  
input pins  
Input logic low current level  
for DVDD referenced  
digital  
|IIL|  
VIN(DigIn) = 0 V  
–10  
uA  
input pins  
Input logic high threshold  
for  
VIH(Digin)  
70%  
80%  
VDVDD  
DVDD referenced digital  
inputs  
Input logic low threshold  
for  
DVDD referenced digital  
inputs  
VIL(Digin)  
30%  
VDVDD  
Output logic high voltage  
level  
VOH(Digin)  
VOL(Digin)  
IOH = 4 mA  
VDVDD  
VDVDD  
Output logic low voltage  
level  
IOH = –4 mA  
20%  
400  
I2C CONTROL PORT  
Allowable load capacitance  
CL(I2C)  
pF  
for each I2C Line  
fSCL(fast)  
fSCL(slow)  
Support SCL frequency  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
SERIAL AUDIO PORT  
Required LRCLK/FS to  
SCLK  
tDLY  
5
ns  
rising edge delay  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
40%  
32  
60%  
96  
Supported input sample  
rates  
kHz  
Supported SCLK  
frequencies  
32  
64  
fS  
SCLK frequency  
24.576  
MHz  
AMPLIFIER OPERATING MODE AND DC PRAMETERS  
toff  
Turn-off Time  
Excluding volume ramp  
10  
ms  
Value represents the "peak voltage"  
disregarding  
clipping due to lower PVDD  
Measured at 0 dB input(1FS)  
AV(SPK_AMP)  
Programmable Gain  
Amplifier gain error  
13.75  
29.4  
dBV  
ΔAV(SPK_AMP)  
Gain = 29.4dBV  
0.5  
384  
dB  
kHz  
kHz  
kHz  
kHz  
kHz  
480  
Switching frequency of the  
speaker amplifier  
fSPK_AMP  
576  
768  
1024  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C, 1SPW Mode, LC filter=4.7uH+0.68uF, Fsw=768kHz, Class D Bandwidth=175kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Drain-to-source on  
resistance  
of the individual output  
MOSFETs  
FET + Metallization. VPVDD=24V, I(OUT)=500mA,  
TJ=25  
RDS(on)  
90  
mΩ  
PROTECTION  
Speaker Output Current (Post LC filter),  
Speaker  
current  
Over-Current Error  
Threshold  
OCETHRES  
6
7
A
PVDD under voltage error  
threshold  
UVETHRES(PVDD)  
3.7  
27  
4
4.2  
V
V
PVDD over voltage error  
threshold  
OVETHRES(PVDD)  
28.1  
29.2  
Class D Amplifier's output DC voltage cross  
speaker load to trigger Output DC Fault  
protection  
Output DC Error protection  
threshold  
DCETHRES  
1.9  
V
Class D Amplifier's output remain at or  
above DCETHRES  
TDCDET  
Output DC Detect time  
570  
160  
10  
ms  
Over temperature error  
threshold  
OTETHRES  
OTEHystersis  
OTWTHRES  
Over temperature error  
hysteresis  
Over temperature warning  
level  
Read by register 0x73 bit3  
135  
°C  
OL  
SL  
Open Load Detection  
Short Load Detection  
Open Load Detection for ChA or ChB or both  
Short Load Detection for ChA or ChB or both  
40  
70  
2
AUDIO PERFORMACNE (STEREO BTL)  
Measured differentially with zero input data,  
programmable gain configured with 29.4dBV  
|VOS  
|
Amplifier offset voltage  
–6.5  
6.5  
mV  
analog gain, VPVDD  
=
18 V, 1SPW Modulation  
VPVDD = 13.5 V, RSPK = 6 Ω, f = 1 KHz, THD  
+N =10%  
15  
13  
27  
23  
35  
W
W
W
W
W
VPVDD = 13.5 V, RSPK = 6 Ω, f = 1 KHz, THD  
+N =1%  
Output Power (Per  
Channel)  
VPVDD = 18 V, RSPK = 6 Ω, f = 1 KHz, THD  
+N =10%  
PO(SPK)  
VPVDD = 18 V, RSPK = 6 Ω, f = 1 KHz, THD  
+N =1%  
VPVDD = 24 V, RSPK = 8 Ω, f = 1 KHz, THD+N  
=1%  
Total harmonic distortion  
and  
noise  
VPVDD = 13.5 V  
VPVDD = 18 V  
0.03  
0.02  
%
%
THD+NSPK  
(PO = 1 W, f = 1 KHz, RSPK  
VPVDD = 24 V  
0.02  
%
=
6 Ω)  
Idle channel  
noise(Aweighted,  
AES17)  
VPVDD = 13.5 V, LC-filter, Load=6 Ω  
VPVDD = 18 V, LC-filter ,Load=6 Ω  
35  
35  
µVrms  
µVrms  
ICN(SPK)  
A-Weighted, -60 dBFS method. VPVDD = 24  
DR  
Dynamic range  
V,  
111  
dB  
Analog Gain = 29.4dBV  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C, 1SPW Mode, LC filter=4.7uH+0.68uF, Fsw=768kHz, Class D Bandwidth=175kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
A-Weighted, referenced to 1% THD+N  
Output  
111  
dB  
Level, VPVDD=24V  
SNR  
Signal-to-noise ratio  
A-Weighted, referenced to 1% THD+N  
Output  
106  
72  
dB  
dB  
dB  
Level, VPVDD=13.5V  
Injected Noise = 1 KHz, 1 Vrms, VPVDD  
13.5 V,  
input audio signal = digital zero  
=
Power supply rejection  
ratio  
PSRR  
Cross-talk (worst case  
between left-to-right and  
right-to-left coupling)  
f = 1 KHz, based on Inductor  
(DFEG7030D-4R7)  
from Murata  
X-talkSPK  
100  
AUDIO PERFORMANCE (MONO PBTL)  
Measured differentially with zero input data,  
programmable gain configured with 29.4dBV  
Analog gain, VPVDD = 18 V, 1SPW  
Modulation  
|VOS  
|
Amplifier offset voltage  
Output Power  
–6.5  
6.5  
mV  
VPVDD = 24 V, RSPK = 4 Ω, f = 1KHz, THD+N  
=1%  
65  
45  
W
W
VPVDD = 18 V, RSPK = 3 Ω, f = 1KHz, THD+N  
=1%  
PO(SPK)  
VPVDD = 18 V, RSPK = 3 Ω, f = 1KHz, THD+N  
=10%  
55  
W
%
Total harmonic distortion  
VPVDD = 18 V, LC-filter, RSPK = 3 Ω  
0.05  
and  
noise  
(PO = 1 W, f = 1 KHz)  
THD+NSPK  
DR  
VPVDD = 24 V, LC-filter, RSPK = 4 Ω  
0.02  
111  
%
A-Weighted, -60 dBFS method, VPVDD=24V,  
RSPK= 3 Ω.  
Dynamic range  
dB  
A-Weighted, referenced to 1% THD+N  
Output  
Level, VPVDD=18V, RSPK = 3 Ω  
108  
106  
72  
dB  
dB  
dB  
SNR  
Signal-to-noise ratio  
A-Weighted,referenced to 1% THD+N  
Output  
Level, VPVDD=13.5V, RSPK = 2 Ω  
Injected Noise = 1 KHz, 1 Vrms,VPVDD = 18  
V,  
Power supply rejection  
ratio  
PSRR  
input audio signal = digital zero  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS5822M  
TAS5822M  
www.ti.com  
UNIT  
SLASEV8 – DECEMBER 2020  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
Serial Audio Port Timing - Slave Mode  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
1.024  
40  
16  
16  
8
MHz  
ns  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCLK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
I2C Bus Timing – Standard  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
4.7  
tLOW  
tHI  
4.7  
High period of the SCL clock  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
4
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
4.7  
4
250  
Data hold time  
0
3450  
1000  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
1000  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
CB  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
1000  
1000  
1000  
ns  
ns  
ns  
µs  
pf  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Capacitive load for each bus line  
400  
400  
I2C Bus Timing – Fast  
fSCL  
SCL clock frequency  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
1.3  
tLOW  
tHI  
1.3  
600  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
600  
600  
100  
Data hold time  
0
900  
300  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
300  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
pf  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Pulse width of spike suppressed  
Capacitive load for each bus line  
50  
CB  
400  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
0.5 × DVDD  
Figure 6-1. Serial Audio Port Timing in Slave Mode  
Repeated  
START  
START  
STOP  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
Figure 6-2. I2C Communication Port Timing Diagram  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.7 Typical Characteristics  
6.7.1 Bridge Tied Load (BTL) Configuration Curves with 1SPW Modulation, Fsw = 768kHz  
Free-air room temperature 25°C (unless otherwise noted) Measurements were made using TAS5822MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, 1SPW  
Mode, the LC filter used was 10μH / 0.68 μF, Class D bandwidth = 175 kHz, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA=25èC  
TA=25èC  
RL=4W  
BTL Mode  
Fsw=768kHz  
RL=6W  
BTL Mode  
Fsw=768kHz  
PVDD = 18V  
PVDD = 24 V  
PVDD = 18V  
PVDD = 24 V  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Output Power (W)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Output Power (W)  
D900106  
D091061  
FSW = 768 kHz  
Load=4Ω  
1SPW Mode  
FSW = 768 kHz  
Load=6Ω  
1SPW Mode  
Figure 6-3. Efficiency vs Output Power-BTL  
Figure 6-4. Efficiency vs Output Power-BTL  
100  
90  
80  
70  
60  
50  
40  
100  
Fsw=768kHz  
1SPW Modulation  
BTL Mode  
80  
60  
40  
20  
0
30  
TA=25èC  
20  
RL=8W  
BTL Mode  
Fsw=768kHz  
Load=4W  
Load=6W  
Load=8W  
PVDD = 18V  
PVDD = 24 V  
10  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Output Power (W)  
5
10  
15  
Supply Voltage (V)  
18  
20  
D900126  
D0930704  
FSW = 768 kHz  
Load=8Ω  
1SPW Mode  
FSW = 768 kHz  
1SPW Mode  
Figure 6-5. Efficiency vs Output Power-BTL  
Figure 6-6. Idle Channel Noise vs Supply Voltage  
60  
Fsw=768kHz  
55  
60  
THD+N=1%, Load=6W  
THD+N=1%, Load=8W  
THD+N=10%, Load=6W  
THD+N=10%, Load=8W  
55  
TA=25èC  
50  
50  
RL=4W  
1SPW Mode  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
THD+N=1%, 2CH run  
THD+N=1%, 1CH run  
THD+N=10%, 2CH run  
THD+N=10%, 1CH run  
Fsw=768kHz  
TA=25èC  
1SPW Mode  
10  
5
0
0
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
D014  
D093075  
D014  
D093076  
Continuous Output Power, 2CH run, High PVDD, RDSon  
increase due to die temperature increase.  
6Ω and 8Ω efficiency is higher than 4Ω, better thermal  
performance, 2CH and 1CH data almost same.  
FSW = 768 kHz  
1SPW Mode  
Load=4Ω  
FSW = 768 kHz  
1SPW Mode  
Load=6Ω or 8Ω  
Figure 6-7. Output Power vs Supply Voltage  
Figure 6-8. Output Power vs Supply Voltage  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10  
5
10  
5
PVCC=18V  
TA=25èC  
RL=4W  
PVCC=22V  
TA=25èC  
RL=4W  
2
1
2
1
BTL Mode  
BTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D09017  
D901067  
FSW = 768 kHz  
Load=4Ω  
PVDD = 18V  
FSW = 768 kHz  
Load=4Ω  
PVDD = 22V  
Figure 6-9. THD+N vs Output Power-BTL  
Figure 6-10. THD+N vs Output Power-BTL  
10  
10  
PVCC=24V  
TA=25èC  
RL=4W  
BTL Mode  
PVCC=18V  
TA=25èC  
RL=6W  
BTL Mode  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D901087  
D090179  
FSW = 768 kHz  
Load=4Ω  
PVDD = 24V  
FSW = 768 kHz  
Load=6Ω  
PVDD = 18V  
Figure 6-11. THD+N vs Output Power-BTL  
Figure 6-12. THD+N vs Output Power-BTL  
10  
10  
PVCC=22V  
TA=25èC  
RL=6W  
BTL Mode  
PVCC=24V  
TA=25èC  
RL=6W  
BTL Mode  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D902007  
D090271  
FSW = 768 kHz  
Load=6Ω  
PVDD = 22V  
FSW = 768 kHz  
Load=6Ω  
PVDD = 24V  
Figure 6-13. THD+N vs Output Power-BTL  
Figure 6-14. THD+N vs Output Power-BTL  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10  
10  
5
PVCC=18V  
TA=25èC  
RL=8W  
BTL Mode  
PVCC=22V  
TA=25èC  
RL=8W  
5
2
2
1
BTL Mode  
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
D902027  
D090273  
FSW = 768 kHz  
Load=8Ω  
PVDD = 18V  
FSW = 768 kHz  
Load=8Ω  
PVDD = 22V  
Figure 6-15. THD+N vs Output Power-BTL  
Figure 6-16. THD+N vs Output Power-BTL  
10  
10  
PVCC=24V  
TA=25èC  
RL=8W  
BTL Mode  
PVDD=18V  
TA=25èC  
RL=4W  
PO=1W  
PO=2.5W  
PO=5W  
5
5
2
2
1
BTL Mode  
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D902047  
D09027  
FSW = 768 kHz  
Load=8Ω  
PVDD = 24V  
FSW = 768 kHz  
Load=4Ω  
PVDD = 18V  
Figure 6-17. THD+N vs Output Power-BTL  
Figure 6-18. THD+N vs Frequency-BTL  
10  
10  
PVDD=22V  
TA=25èC  
RL=4W  
PVDD=24V  
TA=25èC  
RL=4W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
BTL Mode  
BTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D90082  
D09029  
FSW = 768 kHz  
Load=4Ω  
PVDD = 22V  
FSW = 768 kHz  
Load=4Ω  
PVDD = 24V  
Figure 6-19. THD+N vs Frequency-BTL  
Figure 6-20. THD+N vs Frequency-BTL  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10  
5
10  
5
PVDD=18V  
TA=25èC  
RL=6W  
PVDD=22V  
TA=25èC  
RL=6W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
BTL Mode  
BTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D090121  
D901002  
FSW = 768 kHz  
Load=6Ω  
PVDD = 18V  
FSW = 768 kHz  
Load=6Ω  
PVDD = 22V  
Figure 6-21. THD+N vs Frequency-BTL  
Figure 6-22. THD+N vs Frequency-BTL  
10  
10  
PVDD=24V  
TA=25èC  
RL=6W  
PVDD=18V  
TA=25èC  
RL=8W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
BTL Mode  
BTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D90102  
D090123  
FSW = 768 kHz  
Load=6Ω  
PVDD = 24V  
FSW = 768 kHz  
Load=8Ω  
PVDD = 18V  
Figure 6-23. THD+N vs Frequency-BTL  
Figure 6-24. THD+N vs Frequency-BTL  
10  
10  
PVDD=22V  
TA=25èC  
RL=8W  
PVDD=24V  
TA=25èC  
RL=8W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
BTL Mode  
BTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D901042  
D090125  
FSW = 768 kHz  
Load=8Ω  
PVDD = 22V  
FSW = 768 kHz  
Load=8Ω  
PVDD = 24V  
Figure 6-25. THD+N vs Frequency-BTL  
Figure 6-26. THD+N vs Frequency-BTL  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
0
0
-20  
PVDD=18V, Load=6W, Pout=1W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
PVDD=18V, Load=8W, Pout=1W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D002315  
D002316  
Load = 6Ω  
1SPW Mode  
Load = 8Ω  
1SPW Mode  
FSW = 768 kHz  
PVDD = 18V  
FSW = 768 kHz  
PVDD = 18V  
Figure 6-27. Crosstalk vs Frequency-BTL  
Figure 6-28. Crosstalk vs Frequency-BTL  
0
0
PVDD=22V, Load=6W, Pout=1W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
PVDD=24V, Load=4W, Pout=1W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D002317  
D002318  
Load = 6Ω  
1SPW Mode  
Load = 4Ω  
1SPW Mode  
FSW = 768 kHz  
PVDD = 22V  
FSW = 768 kHz  
PVDD = 24V  
Figure 6-29. Crosstalk vs Frequency-BTL  
Figure 6-30. Crosstalk vs Frequency-BTL  
0
0
PVDD=24V, Load=6W, Pout=1W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
PVDD=24V, Load=8W, Pout=1W  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-100  
-120  
-120  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D002319  
D003310  
Load = 6Ω  
1SPW Mode  
Load = 8Ω  
1SPW Mode  
FSW = 768 kHz  
PVDD = 24V  
FSW = 768 kHz  
PVDD = 24V  
Figure 6-31. Crosstalk vs Frequency-BTL  
Figure 6-32. Crosstalk vs Frequency-BTL  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.7.2 Parallel Bridge Tied Load (PBTL) Configuration Curves with 1SPW Modulation, Fsw = 768kHz  
Free-air room temperature 25°C (unless otherwise noted).Measurements were made using TAS5822MEVM  
board and Audio Precision System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All  
measurements taken with audio frequency set to 1 kHz and device PWM frequency set to 768 kHz, 1SPW  
Mode, the LC filter used was 10 μH / 0.68 μF, Class D bandwidth = 175 kHz, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA=25èC  
TA=25èC  
RL=4W  
PBTL Mode  
Fsw=768kHz  
RL=3W  
PBTL Mode  
Fsw=768kHz  
PVDD = 18V  
PVDD = 22 V  
PVCC = 24 V  
PVDD = 18V  
PVDD = 22 V  
PVCC = 24 V  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Output Power (W)  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Output Power (W)  
D300106  
D091265  
FSW = 768 kHz  
Load = 4Ω  
PVDD =  
18V/22V/24V  
FSW = 768 kHz  
Load = 3Ω  
PVDD =  
18V/22V/24V  
Figure 6-33. Efficiency vs Output Power  
Figure 6-34. Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
100  
Fsw=768kHz  
1SPW Modulation  
PBTL Mode  
80  
60  
40  
20  
0
TA=25èC  
20  
RL=2W  
PBTL Mode  
Fsw=768kHz  
PVDD = 18V  
PVDD = 22 V  
PVCC = 24 V  
Load=4W  
Load=3W  
Load=2W  
10  
0
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70  
Output Power (W)  
5
10  
15  
Supply Voltage (V)  
18  
20  
D90216  
D0903207  
FSW = 768 kHz  
Load = 2Ω  
PVDD =  
18V/22V/24V  
FSW = 768 kHz Load = 2Ω/3Ω/4Ω 1SPW Mode  
Figure 6-36. idle Channel Noise vs PVDD  
Figure 6-35. Efficiency vs Output Power  
100  
10  
PVCC=18V  
TA=25èC  
RL=4W  
PBTL Mode  
THD+N= 1%, 4W  
THD+N=10%, 4W  
THD+N= 1%, 3W  
THD+N=10%, 3W  
5
90  
2
80  
1
THD+N= 1%, 2W  
THD+N=10%, 2W  
70  
60  
50  
40  
30  
20  
10  
0
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
Fsw=768kHz  
TA=25èC  
1SPW Mode  
0.005  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
4
6
8
10 12 14 16 18 20 22 24 26  
Supply Voltage (V)  
0.01  
0.1  
1
Output Power (W)  
10 20  
D014  
D093278  
D090279  
FSW = 768 kHz Load = 2Ω/3Ω/4Ω 1SPW Mode  
FSW = 768 kHz  
Load = 4Ω  
PVDD = 18V  
Figure 6-37. Output Power vs PVDD  
Figure 6-38. THD+N vs Output Power  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10  
10  
5
PVCC=22V  
TA=25èC  
RL=4W  
PBTL Mode  
PVDD=24V  
TA=25èC  
RL=4W  
5
2
2
1
PBTL Mode  
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
100  
D090371  
D903007  
FSW = 768 kHz  
Load = 4Ω  
PVDD=22V  
FSW = 768 kHz  
Load = 4Ω  
PVDD = 24V  
Figure 6-39. THD+N vs Output Power  
Figure 6-40. THD+N vs Output Power  
10  
10  
PVDD=18V  
TA=25èC  
RL=3W  
PBTL Mode  
PVCC=22V  
TA=25èC  
RL=3W  
PBTL Mode  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
0.01  
0.1  
1
Output Power (W)  
10 20  
100  
D903027  
D090373  
FSW = 768 kHz  
Load = 3Ω  
PVDD = 18V  
FSW = 768 kHz  
Load = 3Ω  
PVDD = 22V  
Figure 6-41. THD+N vs Output Power  
Figure 6-42. THD+N vs Output Power  
10  
10  
PVCC=24V  
TA=25èC  
RL=3W  
PBTL Mode  
PVCC=18V  
TA=25èC  
RL=2W  
PBTL Mode  
5
5
2
2
1
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
100  
0.01  
0.1  
1
Output Power (W)  
10 20  
100  
D903047  
D090375  
FSW = 768 kHz  
Load = 3Ω  
PVDD = 24V  
FSW = 768 kHz  
Load = 2Ω  
PVDD = 18V  
Figure 6-43. THD+N vs Output Power  
Figure 6-44. THD+N vs Output Power  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10  
5
10  
5
PVCC=22V  
TA=25èC  
RL=2W  
PVDD=18V  
TA=25èC  
RL=4W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
PBTL Mode  
PBTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
f= 1kHz  
f= 10kHz  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
Output Power (W)  
10 20  
100  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D090328  
D903067  
FSW = 768 kHz  
Load = 2Ω  
PVDD = 22V  
FSW = 768 kHz  
Load = 4Ω  
PVDD = 18V  
Figure 6-45. THD+N vs Output Power  
Figure 6-46. THD+N vs Frequency  
10  
10  
PVDD=22V  
TA=25èC  
RL=4W  
PVDD=24V  
TA=25èC  
RL=4W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
PBTL Mode  
PBTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D903092  
D090420  
FSW = 768 kHz  
Load = 4Ω  
PVDD = 22V  
FSW = 768 kHz  
Load = 4Ω  
PVDD = 24V  
Figure 6-47. THD+N vs Frequency  
Figure 6-48. THD+N vs Frequency  
10  
10  
PVDD=18V  
TA=25èC  
RL=3W  
PVDD=22V  
TA=25èC  
RL=3W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
5
5
2
1
2
1
PBTL Mode  
PBTL Mode  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D904012  
D09042  
FSW = 768 kHz  
Load = 3Ω  
PVDD = 18V  
FSW = 768 kHz  
Load = 3Ω  
PVDD = 22V  
Figure 6-49. THD+N vs Frequency  
Figure 6-50. THD+N vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10  
10  
5
PVDD=24V  
TA=25èC  
RL=3W  
PBTL Mode  
PVDD=18V  
TA=25èC  
RL=2W  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
5
2
2
1
PBTL Mode  
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D904032  
D090424  
FSW = 768 kHz  
Load = 3Ω  
PVDD = 24V  
FSW = 768 kHz  
Load = 2Ω  
PVDD = 18V  
Figure 6-51. THD+N vs Frequency  
Figure 6-52. THD+N vs Frequency  
10  
PVDD=22V  
TA=25èC  
RL=2W  
PO=1W  
PO=2.5W  
PO=5W  
5
2
1
PBTL Mode  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
D904052  
FSW = 768 kHz  
Load = 2Ω  
PVDD = 22V  
Figure 6-53. THD+N vs Frequency  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
6.8 Parametric Measurement Information  
6.8.1 Power Consumption Summary  
Free-air room temperature 25°C (unless others noted), LC filter = 10 µH + 0.68 µF, Enable DSP (96 kHz Process  
Flow), 1SPW Modulation, DVDD = 3.3 V, ADR/FAULT pin pull up resistor = 4.7 kΩ, PDN pin pull up resistor = 10  
kΩ.  
VPVDD (V)  
FSW(kHz)  
State of Operation  
Play (Idle)  
Hi-Z  
IPVDD (mA)  
33.16  
10.15  
7.01  
IDVDD (mA)  
18.04  
17.84  
0.76  
PDISS(W)  
0.656  
0.242  
0.129  
0.005  
0.001  
0.575  
0.242  
0.129  
0.005  
0.001  
0.595  
0.242  
0.129  
0.005  
0.001  
1.044  
0.306  
0.174  
0.006  
0.001  
0.894  
0.306  
0.174  
0.006  
0.001  
0.891  
0.306  
0.174  
0.006  
0.001  
384  
Sleep  
Deep Sleep  
Shutdown  
Play (Idle)  
Hi-Z  
0.12  
0.75  
0.009  
28.66  
10.15  
7.01  
0.33  
18.04  
17.85  
0.76  
18  
768  
Sleep  
Deep Sleep  
Shutdown  
Play (Idle)  
Hi-Z  
0.12  
0.75  
0.009  
29.75  
10.15  
7.01  
0.33  
18.06  
17.86  
0.76  
1024  
Sleep  
Deep Sleep  
Shutdown  
Play (Idle)  
Hi-Z  
0.12  
0.75  
0.009  
41.01  
10.29  
7.14  
0.33  
18.1  
17.88  
0.76  
384  
Sleep  
Deep Sleep  
Shutdown  
Play (Idle)  
Hi-Z  
0.13  
0.76  
0.012  
34.76  
10.29  
7.14  
0.33  
18.1  
17.87  
0.76  
24  
768  
Sleep  
Deep Sleep  
Shutdown  
Play (Idle)  
Hi-Z  
0.13  
0.76  
0.011  
34.64  
10.29  
7.15  
0.33  
18.1  
17.86  
0.76  
1024  
Sleep  
Deep Sleep  
Shutdown  
0.13  
0.75  
0.012  
0.33  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The TAS5822M device integrates 4 main building blocks together into a single cohesive device that maximizes  
sound quality, flexibility, and ease of use. The 4 main building blocks are listed as follows:  
A stereo Digital to PWM Coversion block.  
An Audio DSP subsystem.  
A flexible close-loop amplifier capable of operating in stereo or mono, at several different switching  
frequencies, and with a variety of output voltages and loads.  
An I2C control port for communication with the device  
The device requires only two power supplies for proper operation. A DVDD supply is required to power the low  
voltage digital circuitry. Another supply, called PVDD, is required to provide power to the output stage of the  
audio amplifier. One internal LDO converts PVDD to 5 V for GVDD and AVDD, another internal LDO converts  
DVDD to 1.5V VR_DIG for digital core.  
7.2 Functional Block Diagram  
LDO Bandgap Generator  
(Enable with PVDD>3.5V)  
PVDD  
5V Regulator  
(Internal Gate Drive and  
Analog Power Supply )  
1.5V Regulator  
(For Digital Core)  
Internal Voltage Supplies  
I -> V  
Analog Gain Setting  
Closed Loop Class D Amplifier  
DSP  
Full Bridge  
Power  
Stage A  
+
Gate  
Drives  
OUT_A+  
OUT_A-  
DAC  
œ
Analog  
to  
PWM  
Output  
Current  
ROM Fixed  
Process Flow  
Monitoring  
(OC protection)  
SCLK  
LRCLK  
SDIN  
OUT_B+  
OUT_B-  
Full Bridge  
Power  
Stage B  
Serial  
Audio  
Port  
Modulator  
+
Gate  
Drives  
DAC  
œ
Die Temperature Monitoring  
and UV/OV/OT Protection  
Clock Monitoring  
and Error Protection  
Error Reporting  
SDOUT  
Internal Control Registers and State Machines  
ADR/FAULT  
SCL  
SDA  
PDN  
SDOUT  
7.3 Feature Description  
7.3.1 Power Supplies  
To facilitate system design, TAS5822M needs only a 3.3-V or 1.8-V supply in addition to the (typical) 12 V or 24  
V power-stage supply. Two internal voltage regulators provide suitable voltage levels for the gate drive circuitry  
and internal circuitry. The external pins are provided only as a connection point for off-chip bypass capacitors to  
filter the supply. Connecting external circuitry to these regulator outputs may result in reduced performance and  
damage to the device. Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive,  
is accommodated by built-in bootstrap circuitry requiring only a few external capacitors. In order to provide good  
electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical,  
independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BST_x). The gate drive  
voltages (AVDD) are derived from the PVDD voltage. Special attention should be paid to placing all decoupling  
capacitors as close to their associated pins as possible. In general, inductance between the power-supply pins  
and decoupling capacitors must be avoided. For a properly functioning bootstrap circuit, a small ceramic  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
capacitor must be connected from each bootstrap pin (BST_x) to the power-stage output pin (OUT_x). When the  
power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the  
gate-drive regulator output pin (AVDD) and the bootstrap pin. When the power-stage output is high, the  
bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for  
the high-side gate driver.  
7.3.2 Device Clocking  
The TAS5822M devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio  
Interface.  
LRCLK/FS  
DSPCLK  
OSRCLK  
DACCLK  
DSP  
(Including  
interpolator)  
Serial Audio  
Interface (Input)  
Delta Sigma  
Modulator  
DAC  
Audio In  
Figure 7-1. Audio Flow with Respective Clocks  
Figure 7-1 shows the basic data flow and clock Distribution.  
The Serial Audio Interface typically has 3 connection pins which are listed as follows:  
SCLK (Bit Clock)  
LRCLK/FS (Left Right Word Clock and Frame Sync)  
SDIN (Input Data)  
The device has an internal PLL that is used to take SCLK and create the higher rate clocks required by the DSP  
and the DAC clock.  
The device has an audio sampling rate detection circuit that automatically senses which frequency the sampling  
rate is operating. Common audio sampling frequencies of 32 kHz, 44.1kHz – 48 kHz, 88.2 kHz – 96 kHz are  
supported. The sampling frequency detector sets the clock for DAC and DSP automatically.  
7.3.3 Serial Audio Port – Clock Rates  
The serial audio interface port is a 3-wire serial port with the signals LRCLK/FS , SCLK and SDIN. SCLK is the  
serial audio bit clock, used to clock the serial data present on SDIN into the serial shift register of the audio  
interface. Serial data is clocked into the TAS5822M device on the rising edge of SCLK. The LRCK/FS pin is the  
serial audio left/right word clock or frame sync when the device is operated in TDM Mode.  
Table 7-1. Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCLK/FS FREQUENCY  
FORMAT  
DATA BITS  
SCLK RATE (fS)  
(kHz)  
32 to 96  
32  
I2S/LJ/RJ  
32, 24, 20, 16  
64, 32  
128  
TDM  
32, 24, 20, 16  
44.1,48  
96  
128,256,512  
128,256  
Before DSP register initialize with I 2C during the startup , requires stable I 2S ready. When Clock halt, non-  
supported SCLK to LRCLK(FS) ratio is detected, the device reports Clock Error in Register 113 (Register  
Address 0x71).  
7.3.4 Clock Halt Auto-recovery  
As some of host processor will Halt the I2S clock when there is no audio playing. When Clock halt, the device  
puts all channels into the Hi-Z state and reports Clock Error in Register 113 (Register Address 0x71). After audio  
clocks recovery, the device automatically returns to the previous state.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.3.5 Sample Rate on the Fly Change  
TAS5822M supports LRCLK(FS) rate on the fly change. For example, change LCRLK from 32kHz to 48kHz or  
96kHz, Host processor needs to put the LRCLK(FS)/SCLK to Halt state at least 10ms before changing to the  
new sample rate.  
7.3.6 Serial Audio Port - Data Formats and Bit Depths  
The device supports industry-standard audio data formats, including standard I2S, left-justified, right-justified and  
TDM/DSP data. Data formats are selected via Register (Register Address 0x33-D[5:4]). If the high width of  
LRCLK(FS) in TDM/DSP mode is less than 8 cycles of SCLK(BCLK), the register (Register Address 0x33-D[3:2])  
should set to 01. All formats require binary two's complement, MSB-first audio data; up to 32-bit audio data is  
accepted. All the data formats, word length and clock rate supported by this device are shown in Table 1. The  
data formats are detailed in Figure 1 through Figure 6. The word length are selected via Register (Register  
Address 0x33-D[1:0]).Default setting is I2S and 24 bit word length.  
For TDM Mode, the offsets of data are selected via Register (Register Address 0x33-D[7-6]) and Register  
(Register Address 0x34-D[7:0]).  
Table 7-2. TDM Slots vs FS  
LRCLK(FS)  
48kHz  
TDM Slots  
Notes  
16  
8
Each Slots's position (offset) can be set by Register 51 (Register address 0x33)  
and Register 52 (Register address 0x34).  
96kHz  
1 tS .  
Right-channel  
Left-channel  
LRCK/FS  
SCLK  
Audio data word = 16-bit, SCLK = 32, 48, 64fS  
1
2
15 16  
1
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SCLK = 48, 64fS  
2
1
2
24  
2
23 24  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 32-bit, SCLK = 64fS  
1
2
31 32  
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Figure 7-2. Left Justified Audio Data Format  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
1 tS .  
LRCK/FS  
Left-channel  
Right-channel  
SCLK  
Audio data word = 16-bit, SCLK = 32, 48, 64fS  
1
2
15 16  
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SCLK = 48, 64fS  
2
1
2
23 24  
1
23 24  
DATA  
LSB  
MSB  
LSB  
MSB  
Audio data word = 32-bit, SCLK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
LSB  
MSB  
LSB  
Figure 7-3. I2S Audio Data Format  
1 /fS .  
Right-channel  
Left-channel  
LRCK/FS  
SCLK  
Audio data word = 16-bit, SCLK = 32, 48, 64fS  
DATA  
1
2
15 16  
LSB  
1
2
15 16  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SCLK = 48, 64fS  
2
1
2
24  
1
2
23 24  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32-bit, SCLK = 64fS  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
MSB  
MSB  
LSB  
Right Justified Data Format; L-channel = HIGH, R-channel = LOW  
Figure 7-4. Right Justified Audio Data Format  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
1 /fS .  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
,
-
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 7-5. TDM 1 Audio Data Format  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCLK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 7-6. TDM 2 Audio Data Format  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.3.7 Digital Audio Processing  
TAS5822M DSP has a ROM fixed process flow which support 96kHz DSP sample rate. Request PPC3 tuning  
software for details.  
AMP  
Left  
2 BQs  
Low-band DRC  
Interpolation  
AMP  
Right  
14 .v[  
(Individual  
Left/Right)  
Volume  
(Click & pop  
free)  
DC  
Blocking  
Input  
mixer  
DPEQ  
Audio in  
SRC  
Cross bar  
1 BQ  
AGL  
Clipper  
1 BQ  
(4th order)  
Support  
32k/48k/96K-96k  
2 BQs  
High-band DRC  
I2S out  
Left/Right  
MUX  
Level  
Meter  
Figure 7-7. Audio Process Flow  
7.3.8 Class D Audio Amplifier  
Following the digital clipper, the interpolated audio data is next sent to the Closed Loop Class-D amplifier, whose  
first stage is Digital to PWM Conversion (DPC) block. In this block, the stereo audio data is translated into two  
pairs of complimentary pulse width modulated (PWM) signals which are used to drive the outputs of the speaker  
amplifier. Feedback loops around the DPC ensure constant gain across supply voltages, reduce distortion, and  
increase immunity to power supply injected noise and distortion. The analog gain is also applied in the Class-D  
amplifier section of the device.  
7.3.8.1 Speaker Amplifier Gain Select  
A combination of digital gain and analog gain is used to provide the overall gain of the speaker amplifier. As  
seen in Figure 7-8, the audio path of the device consists of a digital audio input port, a digital audio path, a  
stereo DAC, an analog to PWM modulator, a gate driver stage, a Class D power stage, and a feedback loop  
which feeds the output information back into the analog to PWM Modulator to correct for distortion sensed on the  
output pins. The total amplifier gain is comprised of digital gain, shown in the digital audio path and the analog  
gain from the input of the analog modulator to the output of the speaker amplifier power stage.  
DSP Volume  
DAC Volume  
Analog Gain  
Book 0x78, Page 0x2A  
Register 0x24/0x28/0x30  
Book 0x00, Page 0x00  
Register 0x4C  
Book 0x00, Page 0x00  
Register 0x54  
I -> V  
Analog Gain Setting  
Closed Loop Class D Amplifier  
DSP  
Full Bridge  
Power  
Stage A  
+
Gate  
Drives  
OUT_A+  
OUT_A-  
DAC  
œ
Analog  
Output  
Current  
Monitoring  
(OC protection)  
SCLK  
LRCLK  
SDIN  
Serial  
Audio  
Port  
ROM Fixed  
Process Flow  
to  
PWM  
Modulator  
OUT_B+  
OUT_B-  
Full Bridge  
Power  
Stage B  
+
Gate  
Drives  
DAC  
œ
Figure 7-8. Speaker Amplifier Gain  
As shown in Figure 7-8, the first gain stage for the speaker amplifier is present in the digital audio path. It  
consists of the DSP volume control and the DAC volume control. The volume control is set to 0dB by default. For  
all settings of the Register 0x54, AGAIN[4:0], the digital boost block remains at 0 dB. These gain settings ensure  
that the output signal is not clipping at different PVDD levels. 0dBFS output is 29.5-V peak output voltage  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table 7-3. Analog Gain Setting  
AMPLIFIER OUTPUT PEAK  
AMPLIFIER OUTPUT PEAK  
AGAIN[4:0]  
GAIN (dBFS)  
VOLTAGE (VP/FS)  
29.5VP/FS (Default Setting)  
27.85VP/FS  
VOLTAGE (dBV/FS)  
29.4dBV  
28.9dBV  
28.4dBV  
27.9dBV  
....  
00000 (Default Setting)  
0 (Default Setting)  
00001  
00010  
00011  
…….  
-0.5  
-1.0  
26.29VP/FS  
-1.5  
24.82VP/FS  
……..  
-15.5  
…….  
11111  
4.95VP/FS  
13.9dBV  
Table 7-4. Example of Analog Gain Setting  
(Based on 6Ω speaker Load, take 0.5Ω loss for PCB, Speaker wire, Inductor DCR and RDSon)  
DAC  
Input  
(µDSP  
Output)  
dBFS  
Full Band AGL  
Threshold  
dBFS  
Book0/Page0,  
Register 0x54,  
AGAIN[4:0]  
Amplifier Output Peak  
Amplifier Output  
Peak Voltage  
dBV  
PVDD  
V
Gain (dBFS)  
Voltage  
V
24  
18  
00101  
01010  
01111  
-2.5  
-5  
22.5V (Without Clipping)  
16.6V (Without Clipping)  
12.46V (Without Clipping)  
27dBV  
24.35dBV  
21.9dBV  
0
0
13.5  
-7.5  
22.5V (Clipping or not,  
depends on AGL time  
constant tuning)  
-2.5  
-5  
-2.5  
-5  
24  
18  
27dBV  
24.35dBV  
21.9dBV  
16.6V (Clipping or not,  
depends on AGL time  
constant tuning)  
00000  
0
12.46V (Clipping or not,  
depends on AGL time  
constant tuning)  
-7.5  
-7.5  
13.5  
7.4 Device Functional Modes  
7.4.1 Software Control  
The TAS5822M device is configured via an I2C communication port.  
The I2C Communication Protocol is detailed in the I2C Communication Port section. The I2C timing requirements  
are described in the I2C Bus Timing – Standard and I2C Bus Timing – Fast sections.  
7.4.2 Speaker Amplifier Operating Modes  
The TAS5822M device can be used in two different amplifier configurations:  
BTL Mode  
PBTL Mode  
7.4.2.1 BTL Mode  
The familiar BTL mode of operation uses the TAS5822M device to amplify two independent signals, which  
represent the left and right portions of a stereo signal. The amplified left signal is presented on differential output  
pair shown as OUT_A+ and OUT_A-, the amplified right signal is presented on differential output pair shown as  
OUT_B+ and OUT_B-.  
7.4.2.2 PBTL Mode  
The PBTL mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the device. On the output side of the  
TAS5822M device, the summation of the devices can be done before the filter in a configuration called Pre-Filter  
Parallel Bridge Tied Load (PBTL). However, the two outputs can be required to merge together after the inductor  
portion of the output filter. Doing so does require two additional inductors, but allows smaller, less expensive  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
inductors to be used because the current is divided between the two inductors. The process is called Post-Filter  
PBTL. On the input side of the TAS5822M device, the input signal to the PBTL amplifier is left frame of I2S or  
TDM data.  
7.4.3 Minimize EMI with Spread Spectrum  
This device supports spread spectrum with triangle mode, Spread spectrum is used to minimize the EMI noise.  
User need configure register SS_CTRL0 (0x6B) to Enable triangle mode and enable spread spectrum, and  
select spread spectrum frequency and range with SS_CTRL1 (0x6C). For 384kHz FSW which configured by  
DEVICE_CTRL1 (0x02), the spread spectrum frequency and range are described in Table 3.  
Table 7-5. Spread Spectrum Setting  
SS_TRI_CTR  
0
1
2
3
4
5
6
7
L[3:0]  
Triangle Freq  
24k  
48k  
Spread  
Spectrum  
Range  
5%  
10%  
20%  
25%  
5%  
10%  
20%  
25%  
User Application example-Central Switching Frequency is 384kHz, Triangle Frequency is 24kHz:  
w 58 6b 03 //Enable Spread Spectrum  
w 58 6c 03 //SS_TRI_CTRL[3:0]0011, Triangle Frequency = 24kHz, Spread Spectrum Range should be 25%  
(336kHz~432kHz)  
7.4.4 Minimize EMI with channel to channel phase shift  
This device support channel to channel 180 degree PWM phase shift to minimize the EMI. Bit 0 of Register 0x53  
can be used to disable or enable the phase shift.  
7.4.5 Minimize EMI with Multi-Devices PWM Phase Synchronization  
This device support up to 4 phases selection for the multi devices application system. For example, when a  
system integrated 4 TAS5822M devices, user can select phase 0/1/2/3 for each device by register  
PHASE_CTRL (0x6A), which means there is a 45 degree phase shift between each device to minimize the EMI.  
Recommend to do the Phase Synchronization with I2S clock during the Startup Phase.  
1. Halt I2S clock.  
2. Halt I2S clock.  
3. Configure each device phase selection and enable the phase synchronization. For example: Register 0x6A =  
0x03 for device 0; Register 0x6A = 0x07 for device 1; Register 0x6A = 0x0B for device 2; Register 0x6A =  
0x0F for device 3. There should be a 45 degree PWM phase shift between each device to minimize the EMI.  
4. Configure each device into Hi-Z mode.  
5. Provide I2S to each device. Phase synchronization for all 4 devices will be automatically done by internal  
sequence.  
6. Initialize the DSP code. (This step can be skipped if only need to do the PWM Phase Synchronization).  
7. Device to Device PWM phase shift should be fixed with 45 degree.  
7.4.6 Thermal Foldback  
The Thermal Foldback (TFB) or Over temperature foldback, is designed to protect TAS5822M from excessive  
die temperature increases, in case the device operates beyond the recommended temperature/power limit, or  
with a weaker thermal system design than recommended. It allows the TAS5822M to play as loud as possible  
without triggering unexpected thermal shutdown. When the die temperature triggers the over-temperature  
warning (OTW) level (135C typ), an internal AGL (Automatic Gain Limiter) will reduce the digital gain  
automatically. Once the die temperature drops below the OTW, the device’s digital gain gradually returns to the  
former setting. Both the attenuation gain and adjustable rate are programmable. The TFB gain regulation speed  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
(attack rate and release rate) settings are the same as a regular AGL, which is also configurable with TAS5822M  
tuning software.  
7.4.7 Device State Control  
TAS5822M has 5 states with different power dissipation which listed in the Electrical Characteristics Table.  
Shutdown Mode. With PDN pin pull down to GND. All internal LDOs (1.5V for digital core, 5V for analog) are  
disabled, all registers will be cleared to default value.  
Note  
Exit from Shutdown Mode and re-enter into Play mode, need follow up the start-up sequence and  
reload all register configurations (which generated by TAS5822M tuning software) again.  
Deep Sleep Mode. Deep Sleep Mode. Register 0x03h -D[1:0]=00, device stays in Deep Sleep Mode. In this  
mode, I2C block and 1.5V LDO for digital core still working, but internal 5V LDO (For AVDD and MOSFET  
gate driver) is disabled for low power dissipation. This mode can be used to extend the battery life in some  
portable speaker applications. If the host processor stops playing audio for a long time, can be set to Deep  
Sleep Mode to minimize power dissipation until host processor starts playing audio again. Unlike the  
Shutdown Mode (Pulling PDN Low), entering or exiting Deep Sleep Mode, the DSP keeps active.  
Sleep Mode. Register 0x03h -D[1:0]=01, device stays in Sleep Mode. In this mode, I2C block, Digital core,  
DSP Memory , 5V Analog LDO are stilling working. Unlike the Shutdown Mode (Pull PDN Low), enter or exit  
Sleep Mode, DSP is kept active. Exit from this mode and re-enter into play mode, only need to set Register  
0x03h -D[1:0]=11.  
Output Hiz Mode. Register 0x03h -D[1:0]=10, device stays in Hiz Mode. In this mode, only output driver is set  
to be Hi-Z state, all other block operate normally. Exit from this mode and re-enter into play mode, only need  
to set Register 0x03h -D[1:0]=11.  
Play Mode. Register 0x03h -D[1:0]=11, device stays in Play Mode.  
7.4.8 Device Modulation  
TAS5822M has 3 modulation schemes: BD Modulation, 1SPW modulation and Hybrid modulation. Select  
modulation schemes for with Register 0x02 [1:0]-DAMP_MOD.  
7.4.8.1 BD Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0 V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
0V  
-
OUTP OUTN  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
Figure 7-9. BD Mode Modualtion  
7.4.8.2 1SPW Modulation  
The 1SPW mode alters the normal modulation scheme in order to achieve higher efficiency with a slight penalty  
in THD degradation and more attention required in the output filter selection. In Low Idle Current mode the  
outputs operate at ~17% modulation during idle conditions. When an audio signal is applied one output will  
decrease and one will increase. The decreasing output signal will quickly rail to GND at which point all the audio  
modulation takes place through the rising output. The result is that only one output is switching during a majority  
of the audio cycle. Efficiency is improved in this mode due to the reduction of switching losses.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
OUTP-OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
-PVCC  
OUTP  
-OUTN  
0
A
Speaker  
Current  
Figure 7-10. 1SPW Mode Modulation  
7.4.8.3 Hybrid Modulation  
Hybrid Modulation is designed to minimized power loss without compromising the THD+N performance, and is  
optimized for battery-powered applications. With Hybrid modulation enabled, device detects the input signal level  
and adjust PWM duty cycle dynamically based on PVDD. Hybrid modulation achieves ultra low idle current and  
maintains the same audio performance level as the BD Modulation. In order to minimize the power dissipation,  
low switching frequency (For example, Fsw = 384 kHz) with proper LC filter (15 µH + 0.68 µF or 22 µH + 0.68  
µF) is recommended.  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Note  
1) With Hybrid Modulation, users need to input the system's PVDD value via device development App.  
2) With Hybrid Modulation, Change device state from Deep Sleep Mode to Play Mode, specific  
sequence is required:  
1. Set device's PWM Modulation to BD or 1SPW mode via Register (Book0/Page0/Register0x02h, Bit  
[1:0]).  
2. Set device to Hi-Z state via Register (Book0/Page0/Register0x03h, Bit [1:0]).  
3. Delay 2ms.  
4. Set device's PWM Modulation to Hybrid mode via Register (Book0/Page0/Register0x02h, Bit [1:0]).  
5. Delay 15ms.  
6. Set device to Play state via Register (Book0/Page0/Register0x03h, Bit [1:0]).  
7.5 Programming and Control  
7.5.1 I2 C Serial Communication Bus  
The device has a bidirectional serial control interface that is compatible with the Inter IC ( I2)C bus protocol and  
supports 100 and 400-kHz data transfer rates for random and sequential write and read operations as a slave  
device. Because the TAS5822M register map and DSP memory spans multi pages, the user should change from  
page to page before writing individual register or DSP memory. Changing from page to page is accomplished via  
register 0 on each page. This register value selects the page address, from 0 to 255.  
7.5.2 Slave Address  
The TAS5822M device has 7 bits for the slave address. The first five bits (MSBs) of the slave address are  
factory preset to 01011(0x5x). The next two bits of address byte are the device select bits which can be user-  
defined by ADR/ FAULT pin in Table 7-6.  
Table 7-6. I2 C Slave Address Configuration  
ADR/ FAULT PIN  
MSBs  
User Define  
LSB  
Configuration  
4.7k Ω to DVDD  
15kΩ to DVDD  
47kΩ to DVDD  
120kΩ to DVDD  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
R/ W  
R/ W  
R/ W  
R/ W  
7.5.2.1 Random Write  
As shown in Figure 7-11, a single-byte data-write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C device address  
and the read/write bit, the device responds with an acknowledge bit. Next, the master transmits the address byte  
corresponding to the internal memory address being accessed. After receiving the address byte, the device  
again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the  
memory address being accessed. After receiving the data byte, the device again responds with an acknowledge  
bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
Figure 7-11. Random Write Transfer  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.5.2.2 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in Figure 7-12. After receiving each data byte, the device  
responds with an acknowledge bit and the I2 subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
R/W ACK  
A4 A3  
A0  
ACK  
ACK  
ACK  
ACK  
D0  
A6  
A1  
A7  
A6  
A5  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
Figure 7-12. Sequential Write Transfer  
7.5.2.3 Random Read  
As shown in Figure 7-13, a single-byte data-read transfer begins with the master device transmitting a start  
condition followed by the I 2C device address and the read/write bit. For the data-read transfer, both a write  
followed by a read are actually done. Initially, a write is done to transfer the address byte of the internal memory  
address to be read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the  
device responds with an acknowledge bit. In addition, after sending the internal memory address byte, the  
master device transmits another start condition followed by the address and the read/write bit again. This time  
the read/write bit is a 1, indicating a read transfer. After receiving the address and the read/write bit, the device  
again responds with an acknowledge bit. Next, the device transmits the data byte from the memory address  
being read. After receiving the data byte, the master device transmits a not-acknowledge followed by a stop  
condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
Subaddress  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Data Byte  
Figure 7-13. Random Read Transfer  
7.5.2.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the master device as shown in Figure 7-14. Except for the last data byte, the master  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
sub address by one. After receiving the last data byte, the master device transmits a not-acknowledge followed  
by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
Figure 7-14. Sequential Read Transfer  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.5.2.5 DSP Memory Book, Page and BQ update  
The TAS5822M device supports the I2C serial bus and the data transmission protocol for standard and fast  
mode as a slave device.  
The DSP memory is arranged in books, pages, and registers. Each book has several pages and each page has  
several registers.  
Because the TAS5822M register map spans several books and pages, the user must select the correct book and  
page before writing individual register bits or bytes.  
To change the book, the user must be on page 0x00. In register 0x7f on page 0x00 you can change the book.  
On page 0x00 of each book, register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a book first write 0x00 to register 0x00 to switch to page 0 then write the book  
number to register 0x7f on page 0. To change between pages in a book, simply write the page number to  
register 0x00.  
All the Biquad Filters coefficients are addressed in Book 0xAA. The five coefficients of every Biquad Filter should  
be written entirely and sequentially from the lowest address to the highest.  
7.5.2.6 Example Use  
Example 1, The following is a sample script for configuring a device on I2C slave address 0x58 and set the  
device switching frequency to 768kHz with Class D loop bandwidth to 175kHz, 1SPW Modulation:  
w 58 00 00 #Go to Page0  
w 58 7f 00 #Change the Book to 0x00  
w 58 00 00 #Go to Page 0x00  
w 58 02 01 #Set switching frequency to 768kHz with 1SPW Modulation  
w 58 53 60 #Set Class D Loop Bandwidth to 175kHz  
Example 2, The following is a sample script for configuring a device on I2C slave address 0x58 and using the  
DSP host memory to change the digital volume to the default value of 0dB:  
w 58 00 00 #Go to Page 0  
w 58 7f 8c #Change the Book to 0x8C  
w 58 00 2a #Go to Page 0x2a  
w 58 24 00 80 00 00 #change digital volume to 0dB  
7.5.2.7 Checksum  
This device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum and an  
Exclusive (XOR) checksum. Register reads do not change checksum, but writes to even nonexistent registers  
will change the checksum. Both checksums are 8-bit checksums and both are available together simultaneously.  
The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00) to their respective 4-byte register  
locations.  
7.5.2.7.1 Cyclic Redundancy Check (CRC) Checksum  
The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell  
delineation, (1 + x1 + x2 + x8)). A major advantage of the CRC checksum is that it is input order sensitive. The  
CRC supports all I2C transactions, excluding book and page switching. The CRC checksum is read from register  
0x7E on page0 of any book (B_x, Page_0, Reg_126). The CRC checksum can be reset by writing 0x00 to the  
same register locations where the CRC checksum is valid.  
7.5.2.7.2 Exclusive or (XOR) Checksum  
The Xor checksum is a simpler checksum scheme. It performs sequential XOR of each register byte write with  
the previous 8-bit checksum register value. XOR supports only Book 0x8C, and excludes page switching and all  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
registers in Page 0x00 of Book 0x8C. XOR checksum is read from location register 0x7D on page 0x00 of book  
0x8C (B_140, Page_0, Reg_125). The XOR Checksum can be reset by writing 0x00 to the same register  
location where it is read.  
7.5.3 Control via Software  
Startup Procedures  
Shutdown Procedures  
7.5.3.1 Startup Procedures  
1. Configure ADR/ FAULT pin with proper setting for I2C device address.  
2. Bring up power supplies (it does not matter if PVDD or DVDD comes up first).  
3. Once all power supplies are stable, bring up the PDN HIGH.  
4. Once I2S clock are stable, configure the device via the I2C control port based on the user cases (Make sure  
the PDN pin = HIGH before I2C control port operating).  
5. The device is now in normal operation.  
Figure 7-15. Startup sequence  
Normal Operation  
Initialization  
DVDD  
PVDD  
No sequence requirement  
PVDD stable  
DVDD stable  
PDN  
No sequence requirement  
I2S  
I2S  
I2S  
I2C  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
Set to Hi-Z state  
(Enable DSP)  
DSP Coeff  
Play  
Deep sleep  
5 ms for device settle down  
7.5.3.2 Shutdown Procedures  
1. The device is in normal operation.  
2. Configure the Register 0x03h -D[1:0]=00 (DEEP SLEEP) via the I2C control port or Pull PDN low.  
3. The clocks can now be stopped and the power supplies brought down.  
4. The device is now fully shutdown and powered off.  
PDN  
6ms  
4.5V  
PVDD  
0ms  
DVDD  
6ms  
I2C  
I2C  
I2C  
I2C  
Output Hiz  
ñ
ñ
Before PVDD/DVDD power down, Class D Output driver needs to be disabled by PDN or by I2C.  
At least 6ms delay needed based on LRCLK (Fs) = 48kHz,Digital volume ramp down update every sample period,  
decreased by 0.5dB for each update, digital volume =24dB. Change the value of register 0x4C and 0x4E or change  
the LRCLK rate, the delay changes.  
Figure 7-16. Power down sequence  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.5.3.3 Protection and Monitoring  
7.5.3.3.1 Over current Shutdown (OCSD)  
Under severe short-circuit event, such as a short to PVDD or ground, the device uses a peak-current detector,  
and the affected channel shuts down in < 100 ns if the peak current are enough. The shutdown speed depends  
on a number of factors, such as the impedance of the short circuit, supply voltage, and switching frequency. The  
user may restart the affected channel via I2C. An OCSD event activates the fault pin, and the I2C fault register  
saves a record. If the supply or ground short is strong enough to exceed the peak current threshold but not  
severe enough to trigger the OSCD, the peak current limiter prevents excess current from damaging the output  
FETs, and operation returns to normal after the short is removed.  
7.5.3.3.2 Speaker DC Protection  
If the device measures a >1.9 V (Typical) DC offset and continue more than 570 ms (typical) on the output stage,  
the ADR/ FAULT line will be pulled low and set the OUTxx outputs to Hi-Z state to protect speaker, signifying a  
fault in Register 0x70 in Book0/Page0. This fault report bit in Register 0x70 keeps 1 and device keeps in Hi-Z  
mode unless clear it by Register 0x78 in Book0/Page0 manually.  
7.5.3.3.3 Device Over Temperature Protection  
Once the die temperature exceed 160°C (Typical), device will set the output driver from Play mode to Hi-Z Mode.  
Over temperature shutdown fault reported by Register 0x72 in Book0/Page0. Set this fault's behavior to Auto-  
recovery mode, device will come back to play mode automatically once the die temperature drop down to 150°C  
or device needs re-enter into play mode by clearing fault with Register 0x78 in Book0/Page0.  
7.5.3.3.4 Over Voltage Protection  
Once the PVDD voltage exceed the OVETHRES(PVDD) (28.1 V Typical), device will set the output driver from Play  
mode to Hi-Z mode. Over voltage fault reported by Register 0x71 in Book0/Page0. Once PVDD drop below 27.5  
V (Typical), device will come back to Play mode. But this bit still keeps 1 unless clear it by Register 0x78 in  
Book0/Page0 manually.  
7.5.3.3.5 Under Voltage Protection  
Once the PVDD voltage drop below the UVETHRES(PVDD) (4 V Typical), device will set the output driver from Play  
mode to Hi-Z mode. Under voltage fault reported by Register 0x71 in Book0/Page0. Once PVDD rise above 4.25  
V (Typical), device will come back to Play mode. But this bit still keeps 1 unless clear it by Register 0x78 in  
Book0/Page0 manually.  
7.5.3.3.6 Clock Fault  
Once there has any Clock error occurs (Clock Halt, SCLK/LRCLK Ratio Error, Pll unlock, FS error) , Register  
0x37 and Register 0x39 monitor these errors and real-time report with details, device will enter into Hi-Z mode.  
Clock Fault reported in Register 0x71 in Book0/Page0. Once the clock error been removed, device will come  
back to play mode automatically. But this bit still keeps 1 unless clear it by Register 0x78 in Book0/Page0  
manually.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6 Register Maps  
7.6.1 CONTROL PORT Registers  
Table 7-7 lists the memory-mapped registers for the CONTROL PORT. All register offset addresses not listed in  
Table 7-7 should be considered as reserved locations and the register contents should not be modified.  
Table 7-7. CONTROL PORT Registers  
Offset  
1h  
Acronym  
Register Name  
Section  
RESET_CTRL  
DEVICE_CTRL_1  
DEVICE_CTRL_2  
I2C_PAGE_AUTO_INC  
SIG_CH_CTRL  
CLOCK_DET_CTRL  
SDOUT_SEL  
Register 1  
Section 7.6.1.1  
Section 7.6.1.2  
Section 7.6.1.3  
Section 7.6.1.4  
Section 7.6.1.5  
Section 7.6.1.6  
Section 7.6.1.7  
Section 7.6.1.8  
Section 7.6.1.9  
Section 7.6.1.10  
Section 7.6.1.11  
Section 7.6.1.12  
Section 7.6.1.13  
Section 7.6.1.14  
Section 7.6.1.15  
Section 7.6.1.16  
Section 7.6.1.17  
Section 7.6.1.18  
Section 7.6.1.19  
Section 7.6.1.20  
Section 7.6.1.21  
Section 7.6.1.22  
Section 7.6.1.23  
Section 7.6.1.24  
Section 7.6.1.25  
Section 7.6.1.26  
Section 7.6.1.27  
Section 7.6.1.28  
Section 7.6.1.29  
Section 7.6.1.30  
Section 7.6.1.31  
Section 7.6.1.32  
Section 7.6.1.33  
Section 7.6.1.34  
Section 7.6.1.35  
Section 7.6.1.36  
Section 7.6.1.37  
Section 7.6.1.38  
Section 7.6.1.39  
Section 7.6.1.40  
Section 7.6.1.41  
2h  
Register 2  
3h  
Register 3  
Fh  
Register 15  
Register 40  
Register 41  
Register 48  
Register 49  
Register 51  
Register 52  
Register 53  
Register 55  
Register 56  
Register 57  
Register 76  
Register 78  
Register 79  
Register 80  
Register 81  
Register 82  
Register 83  
Register 84  
Register 92  
Register 93  
Register 96  
Register 97  
Register 102  
Register 103  
Register 104  
Register 105  
Register 106  
Register 107  
Register 108  
Register 109  
Register 110  
Register 111  
Register 112  
Register 113  
Register 114  
Register 115  
Register 116  
28h  
29h  
30h  
31h  
33h  
34h  
35h  
37h  
38h  
39h  
4Ch  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
5Ch  
5Dh  
60h  
61h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
I2S_CTRL  
SAP_CTRL1  
SAP_CTRL2  
SAP_CTRL3  
FS_MON  
BCK_MON  
CLKDET_STATUS  
DIG_VOL  
DIG_VOL_CTRL1  
DIG_VOL_CTRL2  
AUTO_MUTE_CTRL  
AUTO_MUTE_TIME  
AMUTE_DELAY  
ANA_CTRL  
AGAIN  
BQ_WR_CTRL1  
DAC_CTRL  
ADR_PIN_CTRL  
ADR_PIN_CONFIG  
DSP_MISC  
DIE_ID  
POWER_STATE  
AUTOMUTE_STATE  
PHASE_CTRL  
SS_CTRL0  
SS_CTRL1  
SS_CTRL2  
SS_CTRL3  
SS_CTRL4  
CHAN_FAULT  
GLOBAL_FAULT1  
GLOBAL_FAULT2  
OT WARNING  
PIN_CONTROL1  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table 7-7. CONTROL PORT Registers (continued)  
Offset  
75h  
Acronym  
Register Name  
Section  
PIN_CONTROL2  
FAULT_CLEAR  
Register 117  
Register 120  
Section 7.6.1.42  
Section 7.6.1.44  
78h  
Complex bit access types are encoded to fit into small table cells. Table 7-8 shows the codes that are used for  
access types in this section.  
Table 7-8. CONTROL PORT Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.1 RESET_CTRL Register (Offset = 1h) [reset = 0x00]  
RESET_CTRL is shown in Figure 7-13 and described in Table 7-9.  
Return to Table 7-7.  
Figure 7-13. RESET_CTRL Register  
7
6
5
4
RST_MOD  
W
3
2
RESERVED  
R
1
0
RST_REG  
W
RESERVED  
R/W  
Table 7-9. RESET_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
W
Reset  
000  
0
Description  
7-5  
4
RESERVED  
RST_MOD  
This bit is reserved  
WRITE CLEAR BIT  
Reset Modules  
WRITE CLEAR BIT Reset full digital core This bit resets full digital  
signal chain (Include DSP and Control Port Registers). Since the  
DSP is also reset, the coeffient RAM content will also be cleared by  
the DSP.  
0: Normal  
1: Reset modules  
3-1  
0
RESERVED  
R
000  
0
This bit is reserved  
RST_CONTROL_REG  
W
WRITE CLEAR BIT  
Reset Registers  
This bit resets the control port registers back to their initial values.  
The RAM content is not cleared.  
0: Normal  
1: Reset control port registers  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.2 DEVICE_CTRL_1 Register (Offset = 2h) [reset = 0x00]  
DEVICE_CTRL_1 is shown in Figure 7-14 and described in Table 7-10.  
Return to Table 7-7.  
Figure 7-14. DEVICE_CTRL_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
FSW_SEL  
R/W  
RESERVED  
R/W  
DAMP_PBTL  
R/W  
DAMP_MOD  
R/W  
Table 7-10. DEVICE_CTRL_1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
FSW_SEL  
0
This bit is reserved  
6-4  
000  
SELECT FSW. 000:768K  
001:384K  
010:310K  
011:480K  
100:576K  
101:1.024MHz  
110:Reserved  
111:Reserved  
3
2
RESERVED  
DAMP_PBTL  
R/W  
R/W  
0
0
This bit is reserved  
0: SET DAMP TO BTL MODE  
1:SET DAMP TO PBTL MODE  
1-0  
DAMP_MOD  
R/W  
00  
00: BD MODE  
01: 1SPW MODE (Recommended)  
10: HYBRID MODE (Recommended)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.3 DEVICE_CTRL_2 Register (Offset = 3h) [reset = 0x10]  
DEVICE_CTRL_2 is shown in Figure 7-15 and described in Table 7-11.  
Return to Table 7-7.  
Figure 7-15. DEVICE_CTRL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DIS_DSP  
R/W  
MUTE  
R/W  
RESERVED  
R/W  
CTRL_STATE  
R/W  
Table 7-11. DEVICE_CTRL_2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
000  
1
Description  
7-5  
4
RESERVED  
DIS_DSP  
This bit is reserved  
DSP reset  
When the bit is made 0, DSP will start powering up and send out  
data. This needs to be made 0 only after all the input clocks are  
settled so that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
3
MUTE  
R/W  
0
Mute both Left Channel and Right Channel  
This bit issues soft mute request for the left channel and right  
channel. The volume will be smoothly ramped down/up to avoid pop/  
click noise.  
0: Normal volume  
1: Mute  
2
Reserved  
R/W  
R/W  
0
This bit is reserved  
1-0  
CTRL_STATE  
00  
Device state control register  
00: Deep Sleep  
01: Sleep  
10: Hiz,  
11: PLAY  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.4 I2C_PAGE_AUTO_INC Register (Offset = Fh) [reset = 0x00]  
I2C_PAGE_AUTO_INC is shown in Figure 7-16 and described in Table 7-12.  
Return to Table 7-7.  
Figure 7-16. I2C_PAGE_AUTO_INC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
PAGE_AUTOIN  
C_REG  
RESERVED  
R/W  
R/W  
Table 7-12. I2C_PAGE_AUTO_INC Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000  
0
Description  
7-4  
3
RESERVED  
This bit is reserved  
Page auto increment disable  
PAGE_AUTOINC_REG  
Disable page auto increment mode. for non -zero books. When end  
of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0 th location of current  
page itself like in older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2-0  
RESERVED  
R/W  
000  
This bit is reserved  
7.6.1.5 SIG_CH_CTRL Register (Offset = 28h) [reset = 0x00]  
SIG_CH_CTRL is shown in Figure 7-17 and described in Table 7-13.  
Return to Table 7-7.  
Figure 7-17. SIG_CH_CTRL Register  
7
6
5
4
3
2
1
0
BCK_RATIO_CONFIGURE  
R/W  
FS_MODE  
R/W  
Table 7-13. SIG_CH_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BCK_RATIO_CONFIGUR R/W  
E
0000  
These bits indicate the configured BCK ratio, the number of BCK  
clocks in one audio frame.  
4'b0011:32FS  
4'b0101:64FS  
4'b0111:128FS  
4'b1001:256FS  
4'b1011:512FS  
3-0  
FS_MODE  
R/W  
0000  
FS Speed Mode These bits select the FS operation mode, which  
must be set according to the current audio sampling rate.  
4 'b0000 Auto detection  
4 'b0110 32KHz  
4 'b1000 44.1KHz  
4'b1001 48KHz  
4 'b1010 88.2KHz  
4 'b1011 96KHz  
Others Reserved  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.6 CLOCK_DET_CTRL Register (Offset = 29h) [reset = 0x00]  
CLOCK_DET_CTRL is shown in Figure 7-18 and described in Table 7-14.  
Return to Table 7-7.  
Figure 7-18. CLOCK_DET_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
DIS_DET_PLL DIS_DET_BCL DIS_DET_FS DIS_DET_BCL DIS_DET_MISS RESERVED  
DIS_DET_LOC  
K
K_RANGE  
K
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 7-14. CLOCK_DET_CTRL Register Field Descriptions  
Bit  
7
Field  
RESERVED  
DIS_DET_PLL  
Type  
R/W  
R/W  
Reset  
Description  
0
0
This bit is reserved  
Ignore PLL overate Detection  
6
This bit controls whether to ignore the PLL overrate detection. The  
PLL must be slow than 150MHz or an error will be reported. When  
ignored, a PLL overrate error will not cause a clock error.  
0: Regard PLL overrate detection  
1: Ignore PLL overrate detection  
5
DIS_DET_BCLK_RANGE R/W  
0
Ignore BCK Range Detection  
This bit controls whether to ignore the BCK range detection. The  
BCK must be stable between 256KHz and 50MHz or an error will be  
reported. When ignored, a BCK range error will not cause a clock  
error.  
0: Regard BCK Range detection  
1: Ignore BCK Range detection  
4
3
DIS_DET_FS  
R/W  
R/W  
0
0
Ignore FS Error Detection  
This bit controls whether to ignore the FS Error detection. When  
ignored, FS error will not cause a clock error.But CLKDET_STATUS  
will report fs error.  
0: Regard FS detection  
1: Ignore FS detection  
DIS_DET_BCLK  
Ignore BCK Detection  
This bit controls whether to ignore the BCK detection against LRCK.  
The BCK must be stable between 32FS and 512FS inclusive or an  
error will be reported. When ignored, a BCK error will not cause a  
clock error.  
0: Regard BCK detection  
1: Ignore BCK detection  
2
DIS_DET_MISS  
R/W  
0
Ignore BCK Missing Detection  
This bit controls whether to ignore the BCK missing detection. When  
ignored an BCK missing will not cause a clock error.  
0: Regard BCK missing detection  
1: Ignore BCK missing detection  
1
0
RESERVED  
R/W  
R/W  
0
0
This bit is reserved  
This bit is reserved  
DIS_DET_LOCK  
7.6.1.7 SDOUT_SEL Register (Offset = 30h) [reset = 0h]  
SDOUT_SEL is shown in Figure 7-19 and described in Table 7-15.  
Return to Table 7-7.  
Figure 7-19. SDOUT_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
SDOUT_SEL  
R/W  
Copyright © 2020 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table 7-15. SDOUT_SEL Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
Description  
RESERVED  
SDOUT_SEL  
0
0
This bit is reserved  
SDOUT Select.  
R
This bit selects what is being output as SDOUT pin.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.8 I2S_CTRL Register (Offset = 31h) [reset = 0x00]  
I2S_CTRL is shown in Figure 7-20 and described in Table 7-16.  
Return to Table 7-7.  
Figure 7-20. I2S_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
BCK_INV  
R/W  
RESERVED  
RESERVED  
R
RESERVED  
R/W  
R/W  
R
Table 7-16. I2S_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
BCK_INV  
00  
This bit is reserved  
BCK Polarity  
0
This bit sets the inverted BCK mode. In inverted BCK mode, the  
DAC assumes that the LRCK and DIN edges are aligned to the rising  
edge of the BCK. Normally they are assumed to be aligned to the  
falling edge of the BCK.  
0: Normal BCK mode  
1: Inverted BCK mode  
4-0  
RESERVED  
R/W  
00000  
This bit is reserved  
Copyright © 2020 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.9 SAP_CTRL1 Register (Offset = 33h) [reset = 0x02]  
SAP_CTRL1 is shown in Figure 7-21 and described in Table 7-17.  
Return to Table 7-7.  
Figure 7-21. SAP_CTRL1 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT_MSB  
DATA_FORMAT  
R/W  
I2S_LRCLK_PULSE  
R/W  
WORD_LENGTH  
R/W  
R/W  
Table 7-17. SAP_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
I2S_SHIFT_MSB  
R/W  
00  
I2S Shift MSB [9:8].  
See details in Table 7-18.  
5-4  
DATA_FORMAT  
R/W  
00  
I2S Data Format  
These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: TDM/DSP  
10: RTJ  
11: LTJ  
3-2  
1-0  
I2S_LRCLK_PULSE  
WORD_LENGTH  
R/W  
R/W  
00  
10  
01: lrclk pulse < 8 SCLK  
I2S Word Length  
These bits control both input and output audio interface sample word  
lengths for DAC operation.  
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
7.6.1.10 SAP_CTRL2 Register (Offset = 34h) [reset = 0x00]  
SAP_CTRL2 is shown in Figure 7-22 and described in Table 7-18.  
Return to Table 7-7.  
Figure 7-22. SAP_CTRL2 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT  
R/W  
Table 7-18. SAP_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
I2S_SHIFT  
Type  
Reset  
Description  
R/W  
00000000  
I2S Shift LSB [7:0]  
These bits control the offset of audio data in the audio frame for both  
input and output. The offset is defined as the number of BCK from  
the starting (MSB) of audio frame to the starting of the desired audio  
sample. I2S Shift MSB [9:8] locates in Section 7.6.1.9 .  
000000000: offset = 0 BCK (no offset)  
000000001: ofsset = 1 BCK  
000000010: offset = 2 BCKs  
and  
111111111: offset = 512 BCKs  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.11 SAP_CTRL3 Register (Offset = 35h) [reset = 0x11]  
SAP_CTRL3 is shown in Figure 7-23 and described in Table 7-19.  
Return to Table 7-7.  
Figure 7-23. SAP_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
LEFT_DAC_DPATH  
R/W  
RESERVED  
R/W  
RIGHT_DAC_DPATH  
R/W  
Table 7-19. SAP_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
RESERVED  
00  
This bit is reserved  
LEFT_DAC_DPATH  
01  
Left DAC Data Path. These bits control the left channel audio data  
path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
3-2  
1-0  
RESERVED  
R/W  
R/W  
00  
01  
This bit is reserved  
RIGHT_DAC_DPATH  
Right DAC Data Path. These bits control the right channel audio data  
path connection.  
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
Copyright © 2020 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.12 FS_MON Register (Offset = 37h) [reset = 0x00]  
FS_MON is shown in Figure 7-24 and described in Table 7-20.  
Return to Table 7-7.  
Figure 7-24. FS_MON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
BCLK_RATIO_HIGH  
R
FS  
R
Table 7-20. FS_MON Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
7-6  
5-4  
3-0  
RESERVED  
BCLK_RATIO_HIGH  
FS  
00  
This bit is reserved  
2 msbs of detected BCK ratio  
00  
R
0000  
These bits indicate the currently detected audio sampling rate.  
0000 FS Error  
0010 8KHz  
0100 16KHz  
0110 32KHz  
1000 Reserved  
1001 48KHz  
1011 96KHz  
1101 192KHz  
Others Reserved  
7.6.1.13 BCK_MON Register (Offset = 38h) [reset = 0x00]  
BCK_MON is shown in Figure 7-25 and described in Table 7-21.  
Return to Table 7-7.  
Figure 7-25. BCK_MON Register  
7
6
5
4
3
2
1
0
BCLK_RATIO_LOW  
R
Table 7-21. BCK_MON Register Field Descriptions  
Bit  
7-0  
Field  
BCLK_RATIO_LOW  
Type  
Reset  
Description  
R
00000000  
These bits indicate the currently detected BCK ratio, the number of  
BCK clocks in one audio frame.  
BCK = 32 FS~512 FS  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.14 CLKDET_STATUS Register (Offset = 39h) [reset = 0x00]  
CLKDET_STATUS is shown in Figure 7-26 and described in Table 7-22.  
Return to Table 7-7.  
Figure 7-26. CLKDET_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DET_STATUS  
R
Table 7-22. CLKDET_STATUS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
7-6  
5
RESERVED  
00  
0
This bit is reserved  
DET_STATUS  
This bit indicates whether the BCLK is overrate or underrate  
This bit indicates whether the PLL is overrate  
4
R
0
3
R
0
This bit indicates whether the PLL is locked or not. The PLL will be  
reported as unlocked when it is disabled.  
2
1
R
R
0
0
This bit indicates whether the BCK is missing or not.  
This bit indicates whether the BCK is valid or not. The BCK ratio  
must be stable and in the range of 32-512FS to be valid.  
0
R
0
In auto detection mode(reg_fsmode=0),this bit indicated whether the  
audio sampling rate is valid or not. In non auto detection  
mode(reg_fsmode!=0), Fs error indicates that configured fs is  
different with detected fs. Even FS Error Detection Ignore is set, this  
flag will be also asserted.  
7.6.1.15 DIG_VOL Register (Offset = 4Ch) [reset = 30h]  
DIG_VOL is shown in Figure 7-27 and described in Table 7-23.  
Return to Table 7-7.  
Figure 7-27. DIG_VOL Register  
7
6
5
4
3
2
1
0
PGA_LEFT  
R/W  
Table 7-23. DIG_VOL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PGA  
R/W  
00110000  
Digital Volume  
These bits control both left and right channel digital volume. The  
digital volume is 24 dB to -103 dB in -0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
........  
and 00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: -0.5 dB  
.......  
11111110: -103 dB  
11111111: Mute  
Copyright © 2020 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.16 DIG_VOL_CTRL1 Register (Offset = 4Eh) [reset = 0x33]  
DIG_VOL_CTRL1 is shown in Figure 7-28 and described in Table 7-24.  
Return to Table 7-7.  
Figure 7-28. DIG_VOL_CTRL1 Register  
7
6
5
4
3
2
1
0
PGA_RAMP_UP_STEP  
R/W  
PGA_RAMP_DOWN_SPEED  
R/W  
PGA_RAMP_DOWN_STEP  
R/W  
PGA_RAMP_UP_SPEED  
R/W  
Table 7-24. DIG_VOL_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PGA_RAMP_DOWN_SPE R/W  
ED  
00  
Digital Volume Normal Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
1-0  
PGA_RAMP_DOWN_STE R/W  
P
11  
00  
11  
Digital Volume Normal Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
PGA_RAMP_UP_SPEED R/W  
Digital Volume Normal Ramp Up Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping up.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
PGA_RAMP_UP_STEP  
R/W  
Digital Volume Normal Ramp Up Step  
These bits control the step of the digital volume updates when the  
volume is ramping up.  
00: Increment by 4 dB for each updat  
e 01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.17 DIG_VOL_CTRL2 Register (Offset = 4Fh) [reset = 0x30]  
DIG_VOL_CTRL2 is shown in Figure 7-29 and described in Table 7-25.  
Return to Table 7-7.  
Figure 7-29. DIG_VOL_CTRL2 Register  
7
6
5
4
3
2
1
0
FAST_RAMP_DOWN_SPEED  
R/W  
FAST_RAMP_DOWN_STEP  
R/W  
RESERVED  
R/W  
Table 7-25. DIG_VOL_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
FAST_RAMP_DOWN_SP R/W  
EED  
00  
Digital Volume Emergency Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft  
mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
FAST_RAMP_DOWN_ST R/W  
EP  
11  
Digital Volume Emergency Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down due to clock error or power outage, which  
usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
3-0  
RESERVED  
R/W  
0000  
This bit is reserved  
7.6.1.18 AUTO_MUTE_CTRL Register (Offset = 50h) [reset = 0x07]  
AUTO_MUTE_CTRL is shown in Figure 7-30 and described in Table 7-26.  
Return to Table 7-7.  
Figure 7-30. AUTO_MUTE_CTRL Register  
7
6
5
4
3
2
1
REG_AUTO_MUTE_CTRL  
R/W  
0
RESERVED  
R/W  
Table 7-26. AUTO_MUTE_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
00000  
1
Description  
7-3  
2
R/W  
This bit is reserved  
REG_AUTO_MUTE_CTR R/W  
L
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are  
about to be auto muted.  
1
0
1
1
0: Disable right channel auto mute  
1: Enable right channel auto mute  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
Copyright © 2020 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.19 AUTO_MUTE_TIME Register (Offset = 51h) [reset = 0x00]  
AUTO_MUTE_TIME is shown in Figure 7-31 and described in Table 7-27.  
Return to Table 7-7.  
Figure 7-31. AUTO_MUTE_TIME Register  
7
6
5
AUTOMUTE_TIME_LEFT  
R/W  
4
3
2
1
0
RESERVED  
R/W  
RESERVED  
R/W  
AUTOMUTE_TIME_RIGHT  
R/W  
Table 7-27. AUTO_MUTE_TIME Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0
This bit is reserved  
6-4  
AUTOMUTE_TIME_LEFT R/W  
000  
Auto Mute Time for Left Channel  
These bits specify the length of consecutive zero samples at left  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
RESERVED  
R/W  
0
This bit is reserved  
2-0  
AUTOMUTE_TIME_RIGH R/W  
T
000  
Auto Mute Time for Right Channel  
These bits specify the length of consecutive zero samples at right  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.20 AMUTE_DELAY Register (Offset = 52h) [reset = 0x00]  
AMUTE_DELAY is shown in Figure 7-32 and described in Table 7-28.  
Return to Table 7-7.  
Figure 7-32. AMUTE_DELAY Register  
7
6
5
4
3
2
1
0
AMUTE_DLY  
R/W  
Table 7-28. AMUTE_DELAY Register Field Descriptions  
Bit  
7-0  
Field  
AMUTE_DLY  
Type  
Reset  
Description  
R/W  
00000000  
AMUTE Delay  
These bits control the delay before the complete digital mute to the  
assertion of analog mute. This is to allow the non-mute audio  
samples to completely flow out through analog parts before the  
assertion of the analog mute.  
00000000: No delay  
00000001: 1 LRCK delay  
00000010: 2 LRCK delay  
......  
11111111: 255 LRCK delay  
Copyright © 2020 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.21 ANA_CTRL Register (Offset = 53h) [reset = 0x00]  
ANA_CTRL is shown in Figure 7-33 and described in Table 7-29.  
Return to Table 7-7.  
Figure 7-33. ANA_CTRL Register  
7
6
5
4
3
2
1
0
ANA_CTRL  
R/W  
Table 7-29. ANA_CTRL Register Field Descriptions  
Bit  
Field  
ANA_CTRL  
Type  
Reset  
Description  
7
R/W  
0
Fast Hiz control enable in clock halt  
6-5  
00  
Class-D bandwidth control, "00": 80kHz; "01": 100kHz; "10": 120kHz;  
"11": 175kHz.  
With 768kHz or 1.024MHz switching frequency, bandwidth need set  
to 175kHz for best audio performance  
4-1  
0
0000  
0
These bits are reserved  
Channel L and R PWM output of phase control .  
1: In phase  
0: Out of phase  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.22 AGAIN Register (Offset = 54h) [reset = 0x00]  
AGAIN is shown in Figure 7-34 and described in Table 7-30.  
Return to Table 7-7.  
Figure 7-34. AGAIN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
ANA_GAIN  
R/W  
Table 7-30. AGAIN Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4-0  
RESERVED  
ANA_GAIN  
000  
This bit is reserved  
00000  
Analog Gain Control  
This bit controls the analog gain.  
00000: 0 dB (29.5V peak voltage)  
00001:-0.5db  
11111: -15.5 dB  
7.6.1.23 BQ_WR_CTRL1 Register (Offset = 5Ch) [reset = 0x00]  
BQ_WR_CTRL1 is shown in Figure 7-35 and described in Table 7-31.  
Return to Table 7-7.  
Figure 7-35. BQ_WR_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
BQ_WR_FIRST  
_COEF  
R/W  
R/W  
Table 7-31. BQ_WR_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000000  
0
Description  
7-1  
0
RESERVED  
This bit is reserved  
BQ_WR_FIRST_COEF  
Indicate the first coefficient of a BQ is starting to write.  
Copyright © 2020 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.24 DAC_CTRL Register (Offset = 5Dh) [reset = 0xF8]  
DAC_CTRL is shown in Figure 7-36 and described in Table 7-32.  
Return to Table 7-7.  
Figure 7-36. DAC_CTRL Register  
7
6
5
4
3
2
1
0
DAC_FREQUE  
NCY_SEL  
DAC_DITHER_EN  
DAC_DITHER  
R/W  
DAC_CTRL_DEM_SEL  
R/W  
R/W  
R/W  
Table 7-32. DAC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DAC_FREQUENCY_SEL R/W  
1
DAC Frequency Selection  
0: 6.144MHz  
1: 3.072MHz  
6-5  
4-2  
DAC_DITHER_EN  
DAC_DITHER  
R/W  
R/W  
11  
DITHER_EN,  
00: Disable both stage dither  
01: Enable main stage dither  
10: Enable second stage dither  
11: Enable both stage dither  
110  
Dither level  
100: -2^-7  
101: -2^-8  
110: -2^-9  
111: -2^-10  
000: -2^-13  
001: -2^-14  
010: -2^-15  
011: -2^-16  
1-0  
DAC_CTRL_DEM_SEL  
R/W  
00  
00: Enable DAC DEM (Dynamic-Element-Matching)  
11: Disable DAC DEM (Dynamic-Element-Matching)  
7.6.1.25 ADR_PIN_CTRL Register (Offset = 60h) [reset = 0h]  
ADR_PIN_CTRL is shown in Figure 7-37 and described in Table 7-33.  
Return to Table 7-7.  
Figure 7-37. ADR_PIN_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
ADR_OE  
R/W - 0x0  
Table 7-33. ADR_PIN_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000000  
0
Description  
7-1  
0
RESERVED  
ADR_OE  
This bit is reserved  
ADR Output Enable  
This bit sets the direction of the ADR pin  
0: ADR is input  
1: ADR is output  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.26 ADR_PIN_CONFIG Register (Offset = 61h) [reset = 0x00]  
ADR_PIN_CONFIG is shown in Figure 7-38 and described in Table 7-34.  
Return to Table 7-7.  
Figure 7-38. ADR_PIN_CONFIG Register  
7
6
5
4
3
2
ADR_PIN_CONFIG  
R/W  
1
0
RESERVED  
Table 7-34. ADR_PIN_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-5  
4-0  
RESERVED  
ADR_PIN_CONFIG  
000  
This bit is reserved  
00000: off (low)  
00000  
00011: Auto mute flag (asserted when both L and R channels are  
auto muted)  
00100: Auto mute flag for left channel  
00101: Auto mute flag for right channel  
00110: Clock invalid flag (clock error or clock missing)  
00111: Reserved  
01000: Reserved  
01001: Reserved  
01011: ADR as FAULTZ output  
7.6.1.27 DSP_MISC Register (Offset = 66h) [reset = 0h]  
DSP_MISC is shown in Figure 7-39 and described in Table 7-35.  
Return to Table 7-7.  
Figure 7-39. DSP_MISC Register  
7
6
5
4
3
2
1
0
BYPASS_CONTROL  
R/W  
Table 7-35. DSP_MISC Register Field Descriptions  
Bit  
Field  
BYPASS CONTROL  
Type  
Reset  
0000  
0
Description  
7-4  
3
R/W  
These bits are reserved  
1: Left and Right will have use unique coef  
0: Right channel will share left channel coefficient  
2
1
0
0
0
0
This bit is reserved  
1: Bypass DRC  
1: Bypass EQ  
7.6.1.28 DIE_ID Register (Offset = 67h) [reset = 0h]  
DIE_ID is shown in Figure 7-40 and described in Table 7-36.  
Return to Table 7-7.  
Figure 7-40. DIE_ID Register  
7
6
5
4
3
2
1
0
DIE_ID  
R-0h  
Copyright © 2020 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table 7-36. DIE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIE_ID  
R
0h  
DIE ID  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.29 POWER_STATE Register (Offset = 68h) [reset = 0x00]  
POWER_STATE is shown in Figure 7-41 and described in Table 7-37.  
Return to Table 7-7.  
Figure 7-41. POWER_STATE Register  
7
6
5
4
3
2
1
0
STATE_RPT  
R
Table 7-37. POWER_STATE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000  
00  
Description  
7-2  
1-0  
Reserved  
R
These bits are reserved  
STATE_RPT  
R
00: Deep sleep  
01: Seep  
10: HIZ  
11: Play  
Copyright © 2020 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.30 AUTOMUTE_STATE Register (Offset = 69h) [reset = 0x00]  
AUTOMUTE_STATE is shown in Figure 7-42 and described in Table 7-38.  
Return to Table 7-7.  
Figure 7-42. AUTOMUTE_STATE Register  
7
6
5
4
3
2
1
0
RESERVED  
R
ZERO_RIGHT_ ZERO_LEFT_M  
MON  
ON  
R
R
Table 7-38. AUTOMUTE_STATE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000000  
0
Description  
7-2  
1
RESERVED  
R
This bit is reserved  
ZERO_RIGHT_MON  
R
This bit indicates the auto mute status for right channel.  
0: Not auto muted  
1: Auto muted  
0
ZERO_LEFT_MON  
R
0
This bit indicates the auto mute status for left channel.  
0: Not auto muted  
1: Auto muted  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.31 PHASE_CTRL Register (Offset = 6Ah) [reset = 0x00]  
PHASE_CTRL is shown in Figure 7-43 and described in Table 7-39.  
Return to Table 7-7.  
Figure 7-43. PHASE_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
RAMP_PHASE_SEL  
R/W  
I2S_SYNC_EN PHASE_SYNC  
_EN  
R/W  
R/W  
R/W  
Table 7-39. PHASE_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
0000  
00  
Description  
7-4  
3-2  
RESERVED  
This bit is reserved  
RAMP_PHASE_SEL  
Select ramp clock phase when multi devices integrated in one  
system to reduce EMI and peak supply peak current, it is  
recomended set all devices the same RAMP frequency and same  
spread spectrum. it must be set before driving device into PLAY  
mode if this feature is needed.  
00: phase 0  
01: phase1  
10: phase2  
11: phase3  
1
0
I2S_SYNC_EN  
R/W  
R/W  
0
0
Use I2S to synchronize output PWM phase  
0: Disable  
1: Enable  
PHASE_SYNC_EN  
0: RAMP phase sync disable  
1: RAMP phase sync enable  
Copyright © 2020 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.32 SS_CTRL0 Register (Offset = 6Bh) [reset = 0x00]  
SS_CTRL0 is shown in Figure 7-44 and described in Table 7-40.  
Return to Table 7-7.  
Figure 7-44. SS_CTRL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
SS_PRE_DIV_ SS_MANUAL_  
RESERVED  
R/W  
SS_RDM_EN  
SS_TRI_EN  
SEL  
MODE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 7-40. SS_CTRL0 Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
0
0
0
This bit is reserved  
This bit is reserved  
6
RESERVED  
5
SS_PRE_DIV_SEL  
SS_MANUAL_MODE  
RESERVED  
Select pll clock divide 2 as source clock in manual mode  
Set ramp ss controller to manual mode  
This bit is reserved  
4
3-2  
1
SS_RDM_EN  
Random SS enable  
0
SS_TRI_EN  
Triangle SS enable  
7.6.1.33 SS_CTRL1 Register (Offset = 6Ch) [reset = 0x00]  
SS_CTRL1 is shown in Figure 7-45 and described in Table 7-41.  
Return to Table 7-7.  
Figure 7-45. SS_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
SS_RDM_CTRL  
R/W  
SS_TRI_CTRL  
R/W  
Table 7-41. SS_CTRL1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0
This bit is reserved  
6-4  
3-0  
SS_RDM_CTRL  
SS_TRI_CTRL  
000  
0000  
Random SS range control  
Triangle SS frequency and range control  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.34 SS_CTRL2 Register (Offset = 6Dh) [reset = 0x50]  
SS_CTRL2 is shown in Figure 7-46 and described in Table 7-42.  
Return to Table 7-7.  
Figure 7-46. SS_CTRL2 Register  
7
6
5
4
3
2
1
0
TM_FREQ_CTRL  
R/W  
Table 7-42. SS_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
TM_FREQ_CTRL  
Type  
Reset  
Description  
R/W  
01010000  
Control ramp frequency in manual mode, F=61440000/N  
7.6.1.35 SS_CTRL3 Register (Offset = 6Eh) [reset = 0x11]  
SS_CTRL3 is shown in Figure 7-47 and described in Table 7-43.  
Return to Table 7-7.  
Figure 7-47. SS_CTRL3 Register  
7
6
5
4
3
2
1
0
TM_DSTEP_CTRL  
R/W  
TM_USTEP_CTRL  
R/W  
Table 7-43. SS_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
SS_TM_DSTEP_CTRL  
R/W  
0001  
Control triangel mode spread spectrum fall step in ramp ss manual  
mode  
3-0  
SS_TM_USTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum rise step in ramp ss manual  
mode  
7.6.1.36 SS_CTRL4 Register (Offset = 6Fh) [reset = 0x24]  
SS_CTRL4 is shown in Figure 7-48 and described in Table 7-44.  
Return to Table 7-7.  
Figure 7-48. SS_CTRL4 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
TM_AMP_CTRL  
R/W  
SS_TM_PERIOD_BOUNDRY  
R/W  
Table 7-44. SS_CTRL4 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0
This bit is reserved  
6-5  
4-0  
TM_AMP_CTRL  
01  
Control ramp amp ctrl in ramp ss manual model  
SS_TM_PERIOD_BOUND R/W  
RY  
00100  
Control triangle mode spread spectrum boundary in ramp ss manual  
mode  
Copyright © 2020 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.37 CHAN_FAULT Register (Offset = 70h) [reset = 0x00]  
CHAN_FAULT is shown in Figure 7-49 and described in Table 7-45.  
Return to Table 7-7.  
Figure 7-49. CHAN_FAULT Register  
7
6
5
4
3
CH1_DC_1  
R
2
CH2_DC_1  
R
1
0
CH2_OC_I  
R
RESERVED  
R
CH1_OC_I  
R
Table 7-45. CHAN_FAULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000  
0
Description  
7-4  
3
RESERVED  
CH1_DC_1  
R
This bit is reserved  
Left channel DC fault.  
R
Once there is a DC fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10).  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
2
1
0
CH2_DC_1  
CH1_OC_I  
CH2_OC_I  
R
R
R
0
0
0
Right channel DC fault.  
Once there is a DC fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10).  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
Left channel over current fault.  
Once there is an OC fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10).  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
Right channel over current fault.  
Once there is an OC fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10).  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
7.6.1.38 GLOBAL_FAULT1 Register (Offset = 71h) [reset = 0h]  
GLOBAL_FAULT1 is shown in Figure 7-50 and described in Table 7-46.  
Return to Table 7-7.  
Figure 7-50. GLOBAL_FAULT1 Register  
7
6
5
4
3
2
1
0
OTP_CRC_ER BQ_WR_ERRO  
CLK_FAULT_I  
PVDD_OV_I  
PVDD_UV_I  
ROR  
R
R
R
R
R
R
Table 7-46. GLOBAL_FAULT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
OTP_CRC_ERROR  
BQ_WR_ERROR  
RESERVED  
R
0h  
Indicate OTP CRC check error.  
The recent BQ is written failed  
This bit is reserved  
Clock fault.  
R
0h  
5-3  
2
R
0h  
CLK_FAULT_I  
R
0h  
Once there is a Clock fault, this bit will set to 1. Class D output will  
set to Hi-Z. Report by FAULT pin (Pin 10).  
Clock fault works with an auto-recovery mode, once the clock error  
removes, device automatically returns to the previous state.  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Table 7-46. GLOBAL_FAULT1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
PVDD_OV_I  
R
0h  
PVDD OV fault.  
Once there is an OV fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10). OV fault works with an auto-  
recovery mode, once the OV error removes, device automatically  
returns to the previous state.  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
Once OV fault been cleared by Register 0x78, even the OV fault still  
exist (Device still keeps in Hi-Z state due to High PVDD),  
PVDD_OV_I keeps 0 unless the OV fault been triggered again  
(PVDD drop below the OV  
threshold and rise again).  
0
PVDD_UV_I  
R
0h  
PVDD UV fault.  
Once there is an UV fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10).  
UV fault works with an auto-recovery mode, once the UV error  
removes, device automatically returns to the previous state.  
Clear this fault by setting bit 7 of Section 7.6.1.44 to 1 or this bit  
keeps 1.  
Once UV fault been cleared by Register 0x78, even the UV fault still  
exist (Device still keep in Hi-Z state due to Low PVDD), PVDD_UV_I  
keeps 0 unless the UV fault been triggered again (PVDD rise above  
the UV threshold and fall again).  
Copyright © 2020 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.39 GLOBAL_FAULT2 Register (Offset = 72h) [reset = 0h]  
GLOBAL_FAULT2 is shown in Figure 7-51 and described in Table 7-47.  
Return to Table 7-7.  
Figure 7-51. GLOBAL_FAULT2 Register  
7
6
5
RESERVED  
R
4
3
2
1
0
OTSD_I  
R
RESERVED  
R
Table 7-47. GLOBAL_FAULT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
0000000  
0
Description  
7-1  
0
RESERVED  
OTSD_I  
R
This bit is reserved  
R
Over temperature shut down fault.  
Once there is an OT fault, this bit will set to 1. Class D output will set  
to Hi-Z. Report by FAULT pin (Pin 10).  
OT fault works with an auto-recovery mode by setting bit 4 of Section  
7.6.1.43 to 1, once the OT error removes, device automatically  
returns to the previous state.  
Once OT fault been cleared by Register 0x78, even the OT still exist  
(Junction temperature exceed 160°C), device will start playing. This  
is a risk may destroy device, so suggest to set device to OT  
autorecovery mode or keep Hi-Z state until the OT warning  
disappear.  
OTSD_I keeps 0 unless the OT fault been triggered again  
(Temperature drop below the threshold and exceed the threshold  
again).  
7.6.1.40 OT WARNING Register (Offset = 73h) [reset = 0x00]  
OT_WARNING is shown in Figure 7-52 and described in Table 7-48.  
Return to Table 7-7.  
Figure 7-52. OT_WARNING Register  
7
6
5
4
3
2
OTW  
R
1
0
RESERVED  
R
RESERVED  
RESERVED  
R
R
R
R
Table 7-48. OT_WARNING Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3
RESERVED  
RESERVED  
OTW  
R
00  
This bit is reserved  
This bit is reserved  
Over temperature warning ,135C  
This bit is reserved  
R
00  
R
0
2-0  
RESERVED  
R
000  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.41 PIN_CONTROL1 Register (Offset = 74h) [reset = 0x00]  
PIN_CONTROL1 is shown in Figure 7-53 and described in Table 7-49.  
Return to Table 7-7.  
Figure 7-53. PIN_CONTROL1 Register  
7
6
5
4
3
2
1
0
MASK_OTSD  
Reserved  
Reserved  
MASK_CLK_FA MASK_PVDD_ MASK_PVDD_  
MASK_DC  
MASK_OC  
ULT  
UV  
OV  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 7-49. PIN_CONTROL1 Register Field Descriptions  
Bit  
7
Field  
MASK_OTSD  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
0
0
0
0
0
0
0
0
Mask OTSD fault report  
This bit is reserved  
This bit is reserved  
6
RESERVED  
5
RESERVED  
4
MASK_CLK_FAULT  
MASK_PVDD_UV  
MASK_PVDD_OV  
MASK_DC  
Mask clock fault report by setting this bit to 1.  
Mask PVDD UV fault report by setting this bit to 1.  
Mask PVDD OV fault report by setting this bit to 1.  
Mask DC fault report by setting this bit to 1.  
Mask OC fault report by setting this bit to 1.  
3
2
1
0
MASK_OC  
7.6.1.42 PIN_CONTROL2 Register (Offset = 75h) [reset = 0xF8]  
PIN_CONTROL2 is shown in Figure 7-54 and described in Table 7-50.  
Return to Table 7-7.  
Figure 7-54. PIN_CONTROL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
CLKFLT_LATC OTSD_LATCH_ OTW_LATCH_  
MASK_OTW  
RESERVED  
H_EN  
EN  
EN  
R/W  
R/W  
R/W  
R/W  
Table 7-50. PIN_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
7-6  
5
RESERVED  
11  
1
This bit is reserved  
CLKFLT_LATCH_EN  
OTSD_LATCH_EN  
OTW_LATCH_EN  
MASK_OTW  
Enable clock fault latch by setting this bit to 1.  
4
1
Enable OTSD fault latch by setting this bit to 1.  
Enable OT warning latch by setting this bit to 1.  
Mask OT warning report by setting this bit to 1.  
This bit is reserved  
3
1
2
0
1-0  
RESERVED  
00  
Copyright © 2020 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.43 MISC_CONTROL Register (Offset = 76h) [reset = 0x00]  
MISC_CONTROL is shown in Figure 7-55 and described in Table 7-51.  
Return to Table 7-7.  
Figure 7-55. MISC_CONTROL Register  
7
6
5
4
3
2
1
0
DET_STATUS_  
LATCH  
RESERVED  
R/W  
OTSD_AUTO_  
REC_EN  
RESERVED  
R/W  
R/W  
R/W  
Table 7-51. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DET_STATUS_LATCH  
R/W  
0
1:Latch clock detection status  
0:Don't latch clock detection status  
6-5  
4
RESERVED  
R/W  
R/W  
R/W  
00  
This bit is reserved  
OTSD_AUTO_REC_EN  
RESERVED  
0
OTSD auto recovery enable by setting this bit to 1.  
This bit is reserved  
3-0  
0000  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
7.6.1.44 FAULT_CLEAR Register (Offset = 78h) [reset = 0x00]  
FAULT_CLEAR is shown in Figure 7-56 and described in Table 7-52.  
Return to Table 7-7.  
Figure 7-56. FAULT_CLEAR Register  
7
6
5
4
3
2
1
0
ANALOG_FAUL  
T_CLEAR  
RESERVED  
W
R/W  
Table 7-52. FAULT_CLEAR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ANALOG_FAULT_CLEAR  
RESERVED  
W
0
WRITE CLEAR BIT once write this bit to 1, device will clear analog  
fault  
6-0  
R/W  
0000000  
This bit is reserved  
Copyright © 2020 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
8 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
This section details the information required to configure the device for several popular configurations and  
provides guidance on integrating the TAS5822M device into the larger system.  
8.2 Typical Applications  
8.2.1 2.0 (Stereo BTL) System  
In the 2.0 system, two channels are presented to the amplifier via the digital input signal. These two channels  
are amplified and then sent to two separate speakers. In some cases, the amplified signal is further separated  
based upon frequency by a passive crossover network after the L-C filter. Even so, the application is considered  
2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
/ꢇ  
287/ꢋ  
10—+  
39''  
39''  
&ꢄꢅ  
ꢁꢂꢀꢃ—)  
/ꢎ&KDQQHOꢎ6SHDNHU  
&ꢇꢅ  
ꢆꢅꢁ—)  
&ꢀꢁ  
ꢆꢅꢁ—)  
&ꢆꢊ  
ꢄꢄ—)  
&ꢆꢄ  
ꢁꢂꢊ—)  
&ꢆꢆ  
&ꢆꢉ  
ꢄꢄ—)  
ꢁꢂꢊ—)  
*1'  
*1'  
*1'  
*1'  
/ꢀ  
&ꢆꢀ  
ꢊꢁꢁꢁS)  
&ꢆꢈ  
ꢊꢁꢁꢁS)  
287/ꢌ  
10—+  
*1'  
*1'  
*1'  
*1'  
*1'  
&ꢆꢃ  
*1'  
ꢁꢂꢀꢃ—)  
'9''  
*1'  
*1'  
/ꢈ  
&ꢉꢁ  
ꢁꢂꢊ—)  
&ꢆꢅ  
ꢉꢂꢈ—)  
8ꢊ  
2875ꢋ  
10—+  
287B$ꢋ  
287B$ꢌ  
39''  
287B$ꢋ  
287B$ꢌ  
&ꢉꢊ  
5ꢎ&KDQQHOꢎ6SHDNHU  
39''  
ꢁꢂꢀꢃ—)  
*1'  
*1'  
ꢆꢄ  
ꢆꢆ  
ꢆꢉ  
ꢆꢈ  
287B%ꢋ  
287B%ꢌ  
39''  
39''  
287B%ꢋ  
287B%ꢌ  
&ꢉꢄ  
ꢊꢈ  
ꢆꢁ  
%67B$ꢋ  
%67B$ꢌ  
%67B%ꢋ  
%67B%ꢌ  
'9''  
1&  
%67B$ꢋ  
%67B$ꢌ  
%67B%ꢋ  
%67B%ꢌ  
/ꢃ  
&ꢉꢉ  
ꢊꢁꢁꢁS)  
&ꢉꢇ  
ꢊꢁꢁꢁS)  
&ꢉꢆ  
ꢁꢂ47—)  
&ꢉꢈ  
&ꢉꢀ  
2875ꢌ  
ꢆꢇ  
ꢆꢃ  
ꢁꢂ47—)  
&ꢉꢃ  
$9''  
—)  
ꢁꢂ47—)  
10—+  
ꢁꢂ47—)  
&ꢇꢄ  
*1'  
&ꢇꢊ  
ꢊꢊ  
ꢄꢀ  
6'287  
95B',*  
6'287  
ꢁꢂꢀꢃ—)  
—)  
ꢄꢊ  
ꢄꢁ  
ꢄꢇ  
ꢄꢆ  
ꢄꢉ  
ꢊꢀ  
ꢄꢄ  
*1'  
*1'  
1&  
1&  
1&  
1&  
1&  
1&  
ꢊꢅ  
ꢊꢃ  
1&  
1&  
1&  
'9''  
6'$  
6&/  
ꢄꢈ  
ꢄꢃ  
6'$  
6&/  
ꢆꢀ  
3*1'  
3*1'  
$*1'  
)520  
ꢊꢁ  
ꢄꢅ  
$'5ꢍ)$8/7  
3'1  
$'5ꢍ)$8/7  
3'1  
ꢆꢊ  
5ꢄꢊ  
ꢊꢇꢂꢁN  
&21752//(5  
ꢊꢄ  
'*1'  
'*1'  
/5&/.  
6&/.  
6',1  
ꢊꢆ  
ꢊꢉ  
ꢊꢇ  
/5&/.  
6&/.  
6',1  
6'$  
6&/  
ꢆꢅ  
3$'  
$'5ꢍ)$8/7  
3'1  
7$6ꢇꢃꢀꢀ0  
*1'  
,ꢄ& $GGUHVVꢎ  ꢁ[ꢇ$  
/5&/.  
6&/.  
6',1  
6'287  
Figure 8-1. 2.0 (Stereo BTL) System Application Schematic  
Copyright © 2020 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
8.2.2 MONO PBTL) System  
In MONO mode, TAS5822M can be used as PBTL mode to drive sub-woofer with more output power.  
Figure 8-2. Mono (PBTL) System Application Schematic  
39''  
39''  
/ꢅ  
287ꢇ  
10—+  
&ꢅ  
ꢌꢊꢀ—)  
&ꢂ  
ꢌꢊꢀ—)  
&ꢄ  
ꢄꢄ—)  
&ꢌ  
ꢀꢁꢅ—)  
&ꢆ  
&ꢉ  
ꢄꢄ—)  
&ꢄꢅ  
ꢀꢁꢅ—)  
ꢀꢁꢂꢃ—)  
*1'  
*1'  
*1'  
*1'  
*1'  
*1'  
*1'  
6XEZRRIHU  
'9''  
&ꢃ  
ꢀꢁꢅ—)  
&ꢋ  
ꢆꢁꢋ—)  
8ꢄ  
39''  
287B$ꢇ  
287B$ꢈ  
39''  
&ꢅꢂ  
&ꢅꢋ  
*1'  
*1'  
ꢌꢄ  
ꢌꢌ  
ꢌꢆ  
ꢌꢋ  
ꢀꢁ47—)  
ꢀꢁ47—)  
39''  
39''  
287B%ꢇ  
287B%ꢈ  
ꢅꢋ  
ꢌꢀ  
%67B$ꢇ  
%67B$ꢈ  
%67B%ꢇ  
%67B%ꢈ  
'9''  
1&  
%67B$ꢇ  
%67B$ꢈ  
%67B%ꢇ  
%67B%ꢈ  
/ꢄ  
&ꢅꢌ  
&ꢅꢊ  
ꢌꢉ  
ꢌꢃ  
$9''  
&ꢅꢃ  
287ꢈ  
—)  
ꢀꢁ47—)  
ꢀꢁ47—)  
10—+  
*1'  
&ꢅꢆ  
ꢅꢅ  
ꢄꢂ  
6'287  
95B',*  
6'287  
&ꢄꢆ  
—)  
ꢀꢁꢂꢃ—)  
ꢄꢅ  
ꢄꢀ  
ꢄꢉ  
ꢄꢌ  
1&  
1&  
1&  
1&  
ꢅꢊ  
ꢅꢃ  
1&  
1&  
*1'  
ꢄꢆ  
ꢄꢄ  
ꢅꢂ  
1&  
1&  
1&  
'9''  
6'$  
6&/  
ꢄꢋ  
ꢄꢃ  
6'$  
6&/  
ꢌꢂ  
3*1'  
3*1'  
$*1'  
)520  
ꢅꢀ  
ꢄꢊ  
$'5ꢍ)$8/7  
3'1  
$'5ꢍ)$8/7  
3'1  
ꢌꢅ  
5ꢅ  
ꢅꢉꢁꢀN  
&21752//(5  
ꢅꢄ  
'*1'  
'*1'  
/5&/.  
6&/.  
6',1  
ꢅꢌ  
ꢅꢆ  
ꢅꢉ  
/5&/.  
6&/.  
6',1  
6'$  
6&/  
ꢌꢊ  
3$'  
$'5ꢍ)$8/7  
3'1  
7$6ꢉꢃꢀꢀ0  
*1'  
,ꢄ& $GGUHVVꢎ  ꢀ[ꢉ$  
/5&/.  
6&/.  
6',1  
6'287  
8.2.2.1 Design Requirements  
Table 8-1. Design Parameters  
PARAMETER  
PVDD  
VALUE  
4.5V-24V  
DVDD  
1.8V or 3.3V  
Speaker Load  
LC Filter  
6Ω/8Ω in BTL Mode, 3Ω/4Ω in PBTL Mode  
10uH+0.68uF  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Bootstrap Capacitors  
The output stage of the TAS5822M uses a high-side NMOS driver, rather than a PMOS driver. To generate the  
gate driver voltage for the high-side NMOS, a bootstrap capacitor for each output terminal acts as a floating  
power supply for the switching cycle. Use 0.47-µF capacitors to connect the appropriate output pin (OUT_X) to  
the bootstrap pin (BST_X). For example, connect a 0.47-µF capacitor between OUT_A and BST_A for  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
bootstrapping the A channel. Similarly, connect another 0.47-µF capacitor between the OUT_B and BST_B pins  
for the B channel inverting output.  
8.2.2.2.2 Inductor Selections  
It is required that the peak current is smaller than the OCP (Over current protection) value which is 7A (Typical) ,  
there are 3 cases which cause high peak current flow through inductor.  
1. During power up (idle state, no audio input), the duty cycle increases from 0 to θ. There has a start-up current  
which flow through inductor to set up the common mode voltage (PVDD×θ).  
Note  
θ = 0.5 (BD Modulation), 0.14 (1SPW Modulation), 0.14 (Hybrid Modulation)  
Start-up Current shows the start-up current related to different Fsw, PVDD, Inductance and different PWM  
modulation scheme. Start-up current should within device's OCETHRES  
.
Table 8-2. Start-up Current  
Modulation  
Scheme  
PVDD (V)  
FSW ((kHz))  
LC filter  
Startup Peak Current (A)  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
4.7 µH + 0.68 µF  
10 µH + 0.68 µF  
2.88  
2
384  
13.5  
2.64  
1.84  
3.84  
2.64  
3.52  
2.4  
768  
384  
768  
384  
768  
384  
768  
384  
768  
384  
768  
BD  
18  
24  
5.4  
3.76  
5
3.12  
1.28  
0.96  
1.12  
0.72  
1.84  
1.2  
13.5  
18  
1SPW  
1.52  
1.04  
2.6  
1.6  
24  
2.4  
1.36  
Figure 8-3 and Figure 8-4 shows how modulation scheme affect the start-up current. OUTP_PWM is Class D  
amplifier's PWM output, OUTP_FILTER is the common mode voltage on the capacitor of LC filter.  
2. During music playing, some audio burst signal (high frequency) with very hard PVDD clipping will cause  
PWM duty cycle increase dramatically. This is the worst case and it rarely happens.  
Ipeak _clipping ö PVDDì(1-  
q
)/(F ì L)  
sw  
(1)  
Copyright © 2020 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
3. Peak current due to Max output power. Ignore the ripple current flow through capacitor.  
Ipeak _ output _ power ö 2ì Max _Output _ Power / Rspea ker_ Load  
(2)  
Same PVDD and switching frequency, larger inductance means smaller idle current for lower power dissipation.  
It's suggested that inductor's saturation current Isat, is larger than the amplifier's peak current during power-up  
and playing audio. In addition, the effective inductance at the peak current is required to be at least 80% of the  
inductance value in LC filter recommendation to meet datasheet specifications.  
Table 8-3. LC filter recommendation  
Recommended Minimum Inductance (uH) for LC filter  
Switching Frequency (kHz)  
Modulation Scheme  
design  
1024  
768  
3.3 µH (or larger) + Capacitor (0.22uF~0.68uF)  
4.7 µH (or larger) + Capacitor (0.22uF~0.68uF)  
10 µH (or larger) +Capacitor (0.22uF~0.68uF)  
8.2uH (or Larger) +Capacitor (0.22uF~0.68uF)  
1SPW  
BD  
384 or 480  
384~1024  
8.2.2.2.3 Power Supply Decoupling  
To ensure high efficiency, low THD, and high PSRR, proper power supply decoupling is necessary. Noise  
transients on the power supply lines are short duration voltage spikes. These spikes can contain frequency  
components that extend into the hundreds of megahertz. The power supply input must be decoupled with some  
good quality, low ESL, Low ESR capacitors larger than 22 µF. These capacitors bypasses low frequency noise to  
the ground plane. For high frequency decoupling, place 1-µF or 0.1-µF capacitors as close as possible to the  
PVDD pins of the device.  
8.2.2.2.4 Output EMI Filtering  
The TAS5822M device is often used with a low-pass filter, which is used to filter out the carrier frequency of the  
PWM modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a  
simple ferrite bead or a ferrite bead plus a capacitor can replace the tradition large inductor and capacitor that  
are commonly used. In other high-power applications, large toroid inductors are required for maximum power  
and film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter  
Design (SLOA119) for a detailed description on the proper component selection and design of an L-C filter  
based upon the desired load and response.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
8.2.2.3 Application Performance Plots  
Figure 8-3. Start-up Current  
Figure 8-4. Start-up Current  
(Fsw = 768 kHz, LC filter = 4.7 µH + 0.68 µF, PVDD = (Fsw = 768 kHz, LC filter = 4.7 µH + 0.68 µF, PVDD =  
24 V, BD Modulation) 24 V, 1SPW Modulation)  
Copyright © 2020 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
9 Power Supply Recommendations  
The device requires three power supplies for proper operation. A high-voltage supply calls PVDD is required to  
power the output stage of the speaker amplifier and its associated circuitry. One low-voltage power supply which  
is calls DVDD is required to power the various low-power portions of the device. The allowable voltage range for  
both PVDD and DVDD supply are listed in the Recommended Operating Conditions table. The two power  
supplies do not have a required power-up sequence. The power supplies can be powered on in any order. But  
once the device has been initialized, PVDD must keep within the normal operation voltage. Once PVDD lower  
than 3.5V, all registers need re-initialize again. Recommends waiting 1 ms to 5 ms for the DVDD power supplies  
to stabilize before starting I2C communication and providing stable I2S clock before enabling the device outputs.  
Internal Digital  
Digital IO  
Circuitry  
DVDD  
1.8V/3.3VÅ  
VR_DIG  
1.5V  
LDO  
External Filtering/Decoupling  
DVDD  
Gate Drive/Internal  
Analog Circuitry  
Output Stage  
Power Supply  
PVDD  
4.5V~26.4V  
AVDD  
5V  
LDO  
External Filtering/Decoupling  
PVDD  
Copyright © 2018, Texas Instruments Incorporated  
Figure 9-1. Power Supply Function Block Diagram  
9.1 DVDD Supply  
The DVDD supply that is required from the system is used to power several portions of the device. As shown in  
Figure 9-1, it provides power to the DVDD pin. Proper connection, routing and decoupling techniques are  
highlighted in the Section 8 section and the Section 10.2 section and must be followed as closely as possible for  
proper operation and performance.  
Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply.  
To simplify the power supply requirements for the system, the TAS5822M device includes an integrated low  
dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD  
supply and its output is presented on the VR_REG pin, providing a connection point for an external bypass  
capacitor. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuity. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and  
operation of the device.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TAS5822M  
 
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
9.2 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques  
are highlighted in the EVM and must be followed as closely as possible for proper operation and performance.  
Due to the high-voltage switching of the output stage, it is particularly important to properly decouple the output  
power stages in the manner described in the TAS5822M device . Lack of proper decoupling, like that shown in  
the Section 8, results in voltage spikes which can damage the device.  
A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker  
amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD pin is  
provided for the attachment of decoupling capacitor for the gate drive voltage regulator. It is important to note  
that the linear regulator integrated in the device has only been designed to support the current requirements of  
the internal circuitry, and should not be used to power any additional external circuitry. Additional loading on this  
pin could cause the voltage to sag, negatively affecting the performance and operation of the device.  
Another separate power supply is derived from the PVDD supply via an integrated linear regulator is AVDD.  
AVDD pin is provided for the attachment of decoupling capacitor for the TAS5822M internal circuitry. It is  
important to note that the linear regulator integrated in the device has only been designed to support the current  
requirements of the internal circuitry, and should not be used to power any additional external circuitry. Additional  
loading on this pin could cause the voltage to sag, negatively affecting the performance and operation of the  
device.  
Copyright © 2020 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
10.1.1 General Guidelines for Audio Amplifiers  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout.  
Ideally, the guidance provided in the applications section with regard to device and component selection can be  
followed by precise adherence to the layout guidance shown in the Section 10.2 section. These examples  
represent exemplary baseline balance of the engineering trade-offs involved with lying out the device. These  
designs can be modified slightly as needed to meet the needs of a given application. In some applications, for  
instance, solution size can be compromised to improve thermal performance through the use of additional  
contiguous copper neat the device. Conversely, EMI performance can be prioritized over thermal performance  
by routing on internal traces and incorporating a via picket-fence and additional filtering components. In all  
cases, it is recommended to start from the guidance shown in the Section 10.2 section and work with TI field  
application engineers or through the E2E community to modify it based upon the application specific goals.  
10.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network  
Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This  
applies to DVDD, AVDD and PVDD. However, the capacitors on the PVDD net for the TAS5822M device  
deserve special attention.  
The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as  
possible. Not only dose placing these device far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS5822M device can cause ringing on the output pins that can cause the voltage on the output  
pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the  
deice . For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the Section 10.2 section.  
10.1.3 Optimizing Thermal Performance  
Follow the layout example shown in the Figure 10-1 to achieve the best balance of solution size, thermal, audio,  
and electromagnetic performance. In some cases, deviation from this guidance can be required due to design  
constraints which cannot be avoided. In these instances, the system designer should ensure that the heat can  
get out of the device and into the ambient air surrounding the device. Fortunately, the heat created in the device  
naturally travels away from the device and into the lower temperature structures around the device.  
10.1.3.1 Device, Copper, and Component Layout  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat producing components or structures near the amplifier (including above or below in  
the end equipment).  
If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5822M device  
and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top  
and bottom layer.  
Place the TAS5822M device away from the edge of the PCB when possible to ensure that the heat can travel  
away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5822MM device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5782M  
device.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TAS5822M  
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane  
from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible.  
10.1.3.2 Stencil Pattern  
The recommended drawings for the TAS5822M device PCB foot print and associated stencil pattern are shown  
at the end of this document in the package addendum. Additionally, baseline recommendations for the via  
arrangement under and around the device are given as a starting point for the PCB design. This guidance is  
provided to suit the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all  
other performance criteria. In elevated ambient temperature or under high-power dissipation use-cases, this  
guidance may be too conservative and advanced PCB design techniques may be used to improve thermal  
performance of the system.  
Note  
The customer must verify that deviation from the guidance shown in the package addendum, including  
the deviation explained in this section, meets the customer’s quality, reliability, and manufacturability  
goals.  
10.1.3.2.1 PCB footprint and Via Arrangement  
The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the  
shape and position of the copper patterns to which the TAS5822M device will be soldered. This footprint can be  
followed directly from the guidance in the package addendum at the end of this data sheet. It is important to  
make sure that the thermal pad, which connects electrically and thermally to the PowerPADof the TAS5822M  
device, be made no smaller than what is specified in the package addendum. This ensures that the TAS5822M  
device has the largest interface possible to move heat from the device to the board.  
The via pattern shown in the package addendum provides an improved interface to carry the heat from the  
device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings)  
present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away  
from the device and into the surrounding structures and air. By increasing the number of vias, as shown in the  
Section 10.2 section, this interface can benefit from improved thermal performance.  
Note  
Vias can obstruct heat flow if they are not constructed properly.  
More notes on the construction and placement of vias are as follows:  
Remove thermal reliefs on thermal vias, because they impede the flow of heat through the via.  
Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the  
additional cost of filled vias.  
The diameter of the drull must be 8 mm or less. Also, the distance between the via barrel and the surrounding  
planes should be minimized to help heat flow from the via into the surrounding copper material. In all cases,  
minimum spacing should be determined by the voltages present on the planes surrounding the via and  
minimized wherever possible.  
Vias should be arranged in columns, which extend in a line radially from the heat source to the surrounding  
area. This arrangement is shown in the Section 10.2 section.  
Ensure that vias do not cut off power current flow from the power supply through the planes on internal  
layers. If needed, remove some vias that are farthest from the TAS5822M device to open up the current path  
to and from the device.  
10.1.3.2.2 Solder Stencil  
During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste  
on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity  
and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most  
cases, the aperture for each of the component pads is almost the same size as the pad itself. However, the  
thermal pad on the PCB is large and depositing a large, single deposition of solder paste would lead to  
Copyright © 2020 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TAS5822M  
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder paste  
to out gas during the assembly process and reduce the risk of solder bridging under the device. This structure is  
called an aperture array, and is shown in the Section 10.2 section. It is important that the total area of the  
aperture array (the area of all of the small apertures combined) covers between 70% and 80% of the area of the  
thermal pad itself.  
10.2 Layout Example  
Top Layer 3D layout  
Bot Layer 3D layout  
Figure 10-1. 2.0 (Stereo BTL) 3-D View  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TAS5822M  
 
 
TAS5822M  
SLASEV8 – DECEMBER 2020  
www.ti.com  
11 Device and Documentation Support  
11.1 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.2 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
All trademarks are the property of their respective owners.  
11.3 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.4 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TAS5822M  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5822MDCPR  
ACTIVE  
HTSSOP  
DCP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
TAS5822M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5822MDCPR  
TAS5822MDCPR  
HTSSOP DCP  
HTSSOP DCP  
38  
38  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
6.9  
6.9  
10.2  
10.2  
1.8  
1.8  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS5822MDCPR  
TAS5822MDCPR  
HTSSOP  
HTSSOP  
DCP  
DCP  
38  
38  
2000  
2000  
367.0  
350.0  
367.0  
350.0  
38.0  
43.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DCP 38  
4.4 x 9.7, 0.22 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224560/A  
www.ti.com  
PACKAGE OUTLINE  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
36X 0.5  
38  
1
2X  
9
9.8  
9.6  
NOTE 3  
19  
20  
0.27  
0.17  
0.08  
38X  
4.5  
4.3  
B
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
19  
20  
2X 0.95 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
39  
4.70  
3.94  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
38  
2.90  
2.43  
4218816/A 10/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
METAL COVERED  
BY SOLDER MASK  
(2.9)  
SYMM  
38X (1.5)  
38X (0.3)  
SEE DETAILS  
38  
1
(R0.05) TYP  
36X (0.5)  
3X (1.2)  
SYMM  
39  
(4.7)  
(9.7)  
NOTE 9  
(0.6) TYP  
SOLDER MASK  
DEFINED PAD  
(
0.2) TYP  
VIA  
20  
19  
(1.2)  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4218816/A 10/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCP0038A  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.9)  
BASED ON  
0.125 THICK  
STENCIL  
38X (1.5)  
38X (0.3)  
METAL COVERED  
BY SOLDER MASK  
1
38  
(R0.05) TYP  
36X (0.5)  
(4.7)  
SYMM  
39  
BASED ON  
0.125 THICK  
STENCIL  
19  
20  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.24 X 5.25  
2.90 X 4.70 (SHOWN)  
2.65 X 4.29  
0.125  
0.15  
0.175  
2.45 X 3.97  
4218816/A 10/2018  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TAS5822MDCPR

TAS5822M 35-W, Digital Input, Stereo, Closed-Loop Class-D Audio Amplifier with 96kHz Enhanced Processing
TI

TAS5825M

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器
TI

TAS5825MRHBR

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825MRHBT

具有 192kHz 架构的 38W 立体声、65W 单声道、4.5V 至 26V、数字输入 D 类智能音频放大器 | RHB | 32 | -25 to 85
TI

TAS5825P

具有超低空闲电流和出色效率的 4.5V 至 26.4V H 类控制数字输入 D 类音频放大器
TI

TAS5825PRHBR

具有超低空闲电流和出色效率的 4.5V 至 26.4V H 类控制数字输入 D 类音频放大器 | RHB | 32 | -25 to 85
TI

TAS5828M

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器
TI

TAS5828MDADR

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器 | DAD | 32 | -40 to 85
TI

TAS6421-Q1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6421QDKQRQ1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6422-Q1

具有负载突降保护功能的汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6422E-Q1

汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI