TAS5828M [TI]

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器;
TAS5828M
型号: TAS5828M
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器

放大器 音频放大器
文件: 总91页 (文件大小:2767K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS5828M  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
Hybrid-Pro 算法TAS5828M 50W 立体声、数字输入、高效闭D 类放大  
1 特性  
2 应用  
• 灵活的音I/O  
电池供电扬声器  
无线、蓝牙扬声器  
条形音箱和低音炮  
散热或效率敏感型音频系统  
– 支32kHz44.1kHz48kHz88.2kHz、  
96kHz 192kHz 采样速率  
– 用于音频监控、子通道或回声消除I2SLJ、  
RJTDM SDOUT  
3 说明  
– 支持三线制数字音频接口MCLK)  
• 高D 类调制  
TAS5828M 是一款立体声、高性能闭环 D 类放大器,  
具有集成的音频处理器和高192kHz 的架构。  
– 电源效率高90%RDSon 90mΩ  
• 支持多路输出配置  
软件控制模式启动后TAS5828M 不仅实现了经典的  
BQ3 DRC AGL还实现Hybrid-Pro 专有  
算法。Hybrid-Pro 算法可检测即将发生的音频功率需  
并通Hybrid-Pro 反馈引(HPFB) 为前直流/直  
流转换器提PWM 格式控制信号。TAS5828M 支持  
用于可预测的包络跟踪、高4ms 的音频信号延迟缓  
冲器这有助于防止因直流/直流电压调整而导致的音  
频削波。  
2 × 50W2.0 (4Ω, 23 V, THD + N = 1%)  
2 × 40W2.0 (6Ω, 24V, THD + N = 1%)  
1 × 100W1.0 (2Ω, 23 V, THD + N = 1%)  
1 × 80W1.0 (3Ω, 24V, THD + N = 1%)  
• 优异的音频性能:  
1W1kHzPVDD = 12V 的条件下THD + N  
0.03%  
SNR 110dBA 加权),ICN 40µVRMS  
• 灵活处理特性  
在设置为硬件控制模式时TAS5828M 通过引脚配置  
支持开关频率、模拟增益、BTL/PBTL 模式和逐周期电  
流限制阈值。此模式专为免去终端系统软件驱动程序集  
成工作而设计。  
3 频带高DRC + 2 BQ + AGL + 2 BQ  
– 每通12 BQ、电平计  
96kHz192kHz 处理器采样  
器件信息  
封装(1)  
– 混合器、音量、动EQ、输出交叉开关  
PVDD 检测Hybrid-Pro 算法音频信号跟踪  
• 灵活的电源配置  
封装尺寸标称值)  
器件型号  
TAS5828M  
TSSOP (32) DAD 11.00mm × 6.20mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
PVDD4.5V 26.4V  
DVDD I/O1.8V 3.3V  
• 出色的集成式自保护功能:  
Speaker  
Channel  
Speaker  
Channel  
L
R
– 过流错(OCE)  
– 逐周期电流限制  
– 过热警(OTW)  
– 过热错(OTE)  
– 欠压和过压锁(UVLO/OVLO)  
PVDD 压降检测  
• 可轻松进行系统集成  
I2C 软件或硬件控制模式  
– 与开环器件相比所需的无源器件更少  
Digital  
Audio  
Source  
System  
Processor  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLASEX7  
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
Table of Contents  
8.6 Register Maps...........................................................48  
9 Application and Implementation..................................76  
9.1 Application Information............................................. 76  
9.2 Typical Applications.................................................. 78  
10 Power Supply Recommendations..............................82  
10.1 DVDD Supply..........................................................82  
10.2 PVDD Supply..........................................................82  
11 Layout...........................................................................84  
11.1 Layout Guidelines................................................... 84  
11.2 Layout Example...................................................... 86  
12 Device and Documentation Support..........................88  
12.1 Device Support....................................................... 88  
12.2 Receiving Notification of Documentation Updates..88  
12.3 Support Resources................................................. 88  
12.4 Trademarks.............................................................89  
12.5 Electrostatic Discharge Caution..............................89  
12.6 Glossary..................................................................89  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings .............................................................. 7  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................8  
6.6 Timing Requirements ...............................................12  
6.7 Typical Characteristics..............................................13  
7 Parameter Measurement Information..........................27  
8 Detailed Description......................................................28  
8.1 Overview...................................................................28  
8.2 Functional Block Diagram.........................................28  
8.3 Feature Description...................................................28  
8.4 Device Functional Modes..........................................35  
8.5 Programming and Control.........................................40  
Information.................................................................... 89  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (June 2021) to Revision A (December 2021)  
Page  
• 将文档状态从预告信更改为数据.........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
5 Pin Configuration and Functions  
AGND  
AVDD  
GVDD  
PDN  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVDD  
2
PVDD  
3
OUT_B+  
BST_B+  
PGND  
4
SCL  
5
SDA  
6
PGND  
SDIN  
7
OUT_B-  
BST_B-  
BST_A-  
OUT_A-  
PGND  
BCLK  
LRCLK  
GPIO2  
GPIO1  
GPIO0  
ADR  
8
Thermal  
Pad  
9
10  
11  
12  
13  
14  
15  
16  
PGND  
BST_A+  
OUT_A+  
PVDD  
VR_DIG  
DVDD  
DGND  
PVDD  
Not to scale  
5-1. DAD (TSSOP) Package, 32-Pin PadUp, Software Mode, Top View  
5-1. Pin Functions - Software Mode  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AGND  
AVDD  
GVDD  
PDN  
NO.  
1
G
P
Analog ground.  
2
Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices.  
Gate drive internal regulator output. This pin must not be used to drive external devices.  
Power down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators.  
I2C serial control clock input.  
3
P
4
DI  
SCL  
5
DI  
SDA  
6
DI/O  
DI  
I2C serial control data interface input/output.  
SDIN  
BCLK  
7
Data line to the serial data port.  
8
DI  
Bit clock for the digital signal that is active on the input data line of the serial data port.  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ and RJ, this  
corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync  
boundary.  
LRCLK  
9
DI  
General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and  
0x62h). Can be configured to be open drain output or push-pull output.  
GPIO2  
GPIO1  
GPIO0  
10  
11  
12  
DI/O  
DI/O  
DI/O  
General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and  
0x61h). Can be configured to be open drain output or push-pull output.  
General-purpose input/output, function of this pin can be programmed by register (Register Address 0x60h and  
0x63h). Can be configured to be open drain output or push-pull output.  
ADR  
13  
14  
AI  
P
A table of resistor value (Pull down to GND) decides the device I2C address. See 8-7.  
VR_DIG  
Internally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
5-1. Pin Functions - Software Mode (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
DVDD  
DGND  
NO.  
15  
16  
17  
18  
31  
32  
21  
22  
27  
28  
19  
P
G
P
P
P
P
G
G
G
G
O
3.3-V or 1.8-V digital power supply.  
Digital ground.  
PVDD  
PGND  
PVDD voltage input.  
Ground reference for power device circuitry. Connect this pin to system ground.  
Positive pin for differential speaker amplifier output A.  
OUT_A+  
BST_A+  
OUT_A-  
BST_A-  
Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_A+.  
20  
23  
24  
P
O
P
Negative pin for differential speaker amplifier output A.  
Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_A-.  
Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_B-.  
BST_B-  
OUT_B-  
BST_B+  
OUT_B+  
25  
26  
29  
30  
P
O
P
Negative pin for differential speaker amplifier output B.  
Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_B+.  
O
P
Positive pin for differential speaker amplifier output B.  
PowerPAD™  
Ground, connect to grounded heat sink for best system performance.  
(1) AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional (input and output), P =  
Power, G = Ground (0 V)  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
AGND  
AVDD  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
PVDD  
2
PVDD  
GVDD  
3
OUT_B+  
BST_B+  
PGND  
PDN  
4
HW_SEL0  
HW_SEL1  
SDIN  
5
6
PGND  
7
OUT_B-  
BST_B-  
BST_A-  
OUT_A-  
PGND  
BCLK  
8
Thermal  
Pad  
LRCLK  
MUTE  
9
10  
11  
12  
13  
14  
15  
16  
FAULT  
PD_DET  
HW_MODE  
VR_DIG  
DVDD  
PGND  
BST_A+  
OUT_A+  
PVDD  
DGND  
PVDD  
Not to scale  
5-2. DAD (TSSOP) Package, 32-Pin PadUp, Hardware Mode,Top View  
5-2. Pin Functions - Hardware Mode  
PIN  
NAME  
TYPE1  
DESCRIPTION  
NO.  
1
AGND  
G
P
Analog ground.  
AVDD  
2
Internally regulated 5-V analog supply voltage. This pin must not be used to drive external devices.  
Gate drive internal regulator output. This pin must not be used to drive external devices.  
Power down, active-low. PDN place the amplifier in Shutdown, turn off all internal regulators.  
GVDD  
3
P
PDN  
4
DI  
Analog gain and BTL/PBTL mode selection in Hardware Mode . Pull up to DVDD or Pull down to ground with  
different resistor. See 8-6.  
HW_SEL0  
HW_SEL1  
5
6
DI  
DI  
PWM Switching Frequency and Spread Spectrum Enable/Disable selection in Hardware Mode. Pull up to DVDD  
or Pull down to ground with different resistor. See 8-5.  
SDIN  
BCLK  
7
8
DI  
DI  
Data line to the serial data port.  
Bit clock for the digital signal that is active on the input data line of the serial data port.  
Word select clock for the digital signal that is active on the serial port's input data line. In I2S, LJ and RJ, this  
corresponds to the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync  
boundary.  
LRCLK  
MUTE  
9
DI  
DI  
Speaker amplifier Mute. Which must be pulled low (connect to DGND) to MUTE the device and pulled high  
(connected to DVDD) to exit MUTE state. In Mute state, device output keep in Hi-Z state.  
10  
FAULT  
11  
12  
13  
14  
15  
DO  
DO  
AI  
Fault terminal,which is pulled LOW when an internal fault occurs.  
PVDD Drop detection, which is pulled LOW when the PVDD drop below 8V.  
Connect to DVDD directly to ensure device enter into Hardware Control Mode.  
Internally regulated 1.5-V digital supply voltage. This pin must not be used to drive external devices.  
3.3-V or 1.8-V digital power supply.  
PD_DET  
HW_MODE  
VR_DIG  
DVDD  
P
P
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
5-2. Pin Functions - Hardware Mode (continued)  
PIN  
TYPE1  
DESCRIPTION  
NAME  
NO.  
16  
17  
18  
31  
32  
21  
22  
27  
28  
19  
DGND  
G
P
P
P
P
G
G
G
G
O
Digital ground.  
PVDD  
PGND  
PVDD voltage input.  
Ground reference for power device circuitry. Connect this pin to system ground.  
Positive pin for differential speaker amplifier output A.  
OUT_A+  
BST_A+  
OUT_A-  
BST_A-  
Connection point for the OUT_A+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_A+.  
20  
23  
24  
P
O
P
Negative pin for differential speaker amplifier output A.  
Connection point for the OUT_A- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_A-.  
Connection point for the OUT_B- bootstrap capacitor which is used to create a power supply for the high-side gate  
drive for OUT_B-.  
BST_B-  
OUT_B-  
BST_B+  
OUT_B+  
25  
26  
29  
30  
P
O
P
Negative pin for differential speaker amplifier output B.  
Connection point for the OUT_B+ bootstrap capacitor which is used to create a power supply for the high-side  
gate drive for OUT_B+.  
O
P
Positive pin for differential speaker amplifier output B.  
PowerPAD™  
Ground, connect to grounded heat sink for best system performance.  
1. AI = Analog input, AO = Analog output, DI = Digital Input, DO = Digital Output, DI/O = Digital Bi-directional  
(input and output), P = Power, G = Ground (0 V)  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
0.5  
0.3  
40  
-40  
MAX  
UNIT  
V
DVDD  
PVDD  
VI(DigIn)  
VI(SPK_OUTxx)  
TA  
Low-voltage digital supply  
PVDD supply  
3.9  
30  
V
DVDD referenced digital inputs(2)  
Voltage at speaker output pins  
Ambient operating temperature  
Operating junction temperature  
Storage temperature  
VDVDD + 0.5  
V
32  
85  
V
°C  
°C  
°C  
TJ  
150  
125  
Tstg  
40  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) DVDD referenced digital pins include: ADR/FAULT, LRCLK, SCLK, SDIN, SDOUT, SCL, SDA, PDN  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002.(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
26.4  
3.63  
UNIT  
V
PVDD  
DVDD  
V(POWER)  
Power supply inputs  
1.62  
V
4.5V-24V Operating PVDD Range,  
BTL Mode  
3.2  
RSPK  
Minimum Speaker Load  
4.5V-24V Operating PVDD Range,  
PBTL Mode  
1.6  
VIH(DigIn)  
VIL(DigIn)  
LOUT  
Input logic high for DVDD referenced digital inputs  
Input logic low for DVDD referenced digital inputs  
Minimum inductor value in LC filter under short-circuit condition  
0.9 × VDVDD  
DVDD  
V
V
0.1 × VDVDD  
1
µH  
6.4 Thermal Information  
TAS5828M - TSSOP32 (DAD) - 32 PINS  
THERMAL METRIC(1)  
UNIT  
JEDEC STANDARD 4-LAYER PCB  
RθJA(top)  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.2  
1.2  
21  
°C/W  
°C/W  
°C/W  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.5 Electrical Characteristics  
Free-air room temperature 25°C, 1SPW Mode, LC filter=10uH+0.68uF, Fsw=384kHz, Class D Bandwidth=80kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Digital I/O  
Input logic high current level  
for DVDD referenced digital  
input pins  
|IIH|  
VIN(DigIn) = VDVDD  
10  
uA  
uA  
Input logic low current level  
for DVDD referenced digital  
input pins  
|IIL|  
VIN(DigIn) = 0 V  
10  
Input logic high threshold for  
DVDD referenced digital  
inputs  
VIH(Digin)  
70%  
80%  
VDVDD  
Input logic low threshold for  
DVDD referenced digital  
inputs  
VIL(Digin)  
30%  
VDVDD  
Output logic high voltage  
level  
VOH(Digin)  
IOH = 4 mA  
VDVDD  
VDVDD  
VOL(Digin)  
Output logic low voltage level  
20%  
400  
IOH = 4 mA  
I2C CONTROL PORT  
Allowable load capacitance  
CL(I2C)  
pF  
for each I2C Line  
fSCL(fast)  
fSCL(slow)  
SERIAL AUDIO PORT  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
Support SCL frequency  
Required LRCLK/FS to SCLK  
rising edge delay  
tDLY  
5
ns  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
Supported input sample rates  
Supported SCLK frequencies  
SCLK frequency  
40%  
32  
60%  
192  
kHz  
fS  
32  
64  
24.576  
MHz  
AMPLIFIER OPERATING MODE AND DC PRAMETERS  
Quiescent supply current of  
DVDD  
PDN = 2 V, DVDD = 3.3 V, Play mode,  
General Audio Process flow with full DSP running  
ICC  
ICC  
ICC  
ICC  
23  
1
mA  
mA  
mA  
uA  
Quiescent supply current of  
DVDD  
PDN = 2 V, DVDD = 3.3 V,Sleep mode  
Quiescent supply current of  
DVDD  
PDN = 2 V, DVDD = 3.3 V,Deep Sleep mode  
PDN = 0.8 V, DVDD = 3.3 V,Shutdown mode  
1
Quiescent supply current of  
DVDD  
16  
PDN = 2 V, PVDD = 18 V, No Load, LC filter =  
10 μH + 0.68 μF, FSW = 384 kHz, 1SPW  
Modulation, Play Mode  
Quiescent supply current of  
PVDD  
ICC  
39  
mA  
PDN = 2 V, PVDD = 18 V, No Load, LC filter =  
10 μH + 0.68 μF, FSW = 384 kHz, Output Hiz  
Mode  
Quiescent supply current of  
PVDD  
ICC  
ICC  
ICC  
11  
7.5  
10  
mA  
mA  
uA  
PDN = 2 V, PVDD = 18 V, No Load, LC filter =  
10 μH + 0.68 μF, FSW = 384 kHz, Sleep Mode  
Quiescent supply current of  
PVDD  
PDN = 2 V, PVDD = 18 V, No Load, LC filter =  
10 μH + 0.68 μF, FSW = 384 kHz, Deep Sleep  
Mode  
Quiescent supply current of  
PVDD  
PDN = 2 V, PVDD = 18 V, No Load, LC filter =  
10 μH + 0.68 μF, FSW = 384 kHz, Shutdown  
Mode  
Quiescent supply current of  
PVDD  
ICC  
10  
uA  
Value represents the "peak voltage" disregarding  
clipping due to lower PVDD  
Measured at 0 dB input(1FS)  
AV(SPK_AMP)  
Programmable Gain  
Amplifier gain error  
13.75  
29.4  
dBV  
dB  
Gain = 26.4dBV  
0.5  
ΔAV(SPK_AMP)  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C, 1SPW Mode, LC filter=10uH+0.68uF, Fsw=384kHz, Class D Bandwidth=80kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
384  
480  
768  
480  
768  
MAX  
UNIT  
kHz  
kHz  
kHz  
kHz  
kHz  
Software Mode  
Hardware Mode  
Switching frequency of the  
speaker amplifier.  
fSPK_AMP  
Drain-to-source on resistance  
of the individual output  
MOSFETs  
FET + Metallization. VPVDD=24V, I(OUT)=500mA,  
TJ=25℃  
RDS(on)  
90  
m  
PROTECTION  
Over-Current Error Threshold Speaker Output Current (Post LC filter), Speaker  
OCETHRES  
7.5  
3.7  
27  
8
4
8.5  
4.2  
A
V
(Speaker current)  
current, LC Filter=10uH+0.68uF, BTL Mode  
PVDD under voltage error  
threshold  
UVETHRES(PVDD)  
OVETHRES(PVDD)  
DCETHRES  
PVDD over voltage error  
threshold  
28.1  
1.7  
29.2  
V
Output DC Error protection  
threshold  
Class D Amplifier's output DC voltage cross  
speaker load to trigger Output DC Fault protection  
V
Class D Amplifier's output remain at or above  
DCETHRES  
TDCDET  
Output DC Detect time  
570  
165  
10  
ms  
Over temperature error  
threshold  
OTETHRES  
°C  
°C  
°C  
°C  
Over temperature error  
hysteresis  
OTEHystersis  
OTWTHRES  
OTWTHRES  
OTWTHRES  
OTWTHRES  
Over temperature warning  
level  
Read by register 0x73 bit0  
Read by register 0x73 bit1  
Read by register 0x73 bit2  
Read by register 0x73 bit3  
112  
122  
134  
146  
Over temperature warning  
level  
Over temperature warning  
level  
Over temperature warning  
level  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C, 1SPW Mode, LC filter=10uH+0.68uF, Fsw=384kHz, Class D Bandwidth=80kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMACNE (STEREO BTL)  
Measured differentially with zero input data,  
programmable gain configured with 29.4dBV  
analog gain, VPVDD range:12V~24V  
|VOS  
|
Amplifier offset voltage  
5
mV  
W
W
W
W
W
W
W
W
5  
VPVDD = 18 V, LC Filter=10uH+0.68uF, RSPK = 4  
Ω, f = 1 KHz, THD+N =  
10%  
43  
35  
31  
25  
55  
44  
54  
43  
VPVDD = 18 V, LC Filter=10uH+0.68uF, RSPK = 4  
Ω, f = 1 KHz, THD+N =  
1%  
VPVDD = 18 V, LC Filter=10uH+0.68uF, RSPK = 6  
Ω, f = 1 KHz, THD+N =  
10%  
VPVDD = 18 V, LC Filter=10uH+0.68uF, RSPK = 6  
Ω, f = 1 KHz, THD+N =  
1%  
PO(SPK)  
Output Power (Per Channel)  
VPVDD = 21 V, LC Filter=10uH+0.68uF, RSPK = 4  
Ω, f = 1 KHz, THD+N =  
10%  
VPVDD = 21 V, LC Filter=10uH+0.68uF, RSPK = 4  
Ω, f = 1 KHz, THD+N =  
1%  
VPVDD = 24 V, LC Filter=10uH+0.68uF, RSPK = 6 Ω,  
f = 1 KHz, THD+N =  
10%  
VPVDD = 24 V, LC Filter=10uH+0.68uF, RSPK = 6 Ω,  
f = 1 KHz, THD+N =  
1%  
Total harmonic distortion and  
noise  
(PO = 1 W, f = 1 KHz)  
0.08  
0.06  
%
%
VPVDD = 18 V,LC Filter=10uH+0.68uF, Load=4Ω  
VPVDD = 24 V,LC Filter=10uH+0.68uF,Load=6Ω  
THD+NSPK  
VPVDD = 18 V, LC Filter=10uH+0.68uF, Load=4 Ω,  
Fsw=768kHz, BD Modulation  
40  
35  
35  
35  
µVrms  
µVrms  
µVrms  
µVrms  
VPVDD = 18 V, LC Filter=10uH+0.68uF,Load=4 Ω,  
Fsw=384kHz, 1SPW Modulation  
Idle channel noise(Aweighted,  
AES17)  
ICN(SPK)  
VPVDD = 24 V, LC Filter=10uH+0.68uF,,Load=6 Ω,  
Fsw=768kHz, BD Modulation  
VPVDD = 24 V, LC Filter=10uH+0.68uF,Load=6 Ω,  
Fsw=384kHz, 1SPW Modulation  
A-Weighted, -60 dBFS method. VPVDD = 24  
V,Load=6Ω  
Analog Gain = 29.4dBV  
DR  
Dynamic range  
111  
dB  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=24V, load=6Ω  
111  
106  
72  
dB  
dB  
dB  
SNR  
Signal-to-noise ratio  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=18V, Load=4Ω  
Injected Noise = 1 KHz, 1 Vrms, VPVDD = 24 V,  
input audio signal = digital zero  
PSRR  
Power supply rejection ratio  
Cross-talk (worst case  
between left-to-right and  
right-to-left coupling)  
f = 1 KHz, based on Inductor (DFEG7030D-4R7)  
from Murata  
X-talkSPK  
100  
dB  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.5 Electrical Characteristics (continued)  
Free-air room temperature 25°C, 1SPW Mode, LC filter=10uH+0.68uF, Fsw=384kHz, Class D Bandwidth=80kHz, (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AUDIO PERFORMANCE (MONO PBTL)  
Measured differentially with zero input data,  
programmable gain configured with 29.4dBV  
Analog gain, VPVDD = 12V-24V range, 1SPW  
mode  
|VOS  
|
Amplifier offset voltage  
5
mV  
5  
VPVDD = 24 V, RSPK = 3 Ω, f = 1KHz, THD+N =  
1%  
84  
104  
67  
W
W
W
W
VPVDD = 24 V, RSPK = 3 Ω, f = 1KHz, THD+N =  
10%  
PO(SPK)  
Output Power  
VPVDD = 18 V, RSPK = 2 Ω, f = 1KHz, THD+N =  
1%  
VPVDD = 18 V, RSPK = 2 Ω, f = 1KHz, THD+N =  
10%  
80  
Total harmonic distortion and  
noise  
(PO = 1 W, f = 1 KHz)  
0.07  
0.05  
%
%
VPVDD = 18 V, LC-filter=10uH+0.68uF, RSPK = 2 Ω  
VPVDD = 24 V, LC-filter=10uH+0.68uF, RSPK = 3 Ω  
THD+NSPK  
DR  
A-Weighted, -60 dBFS method, VPVDD=24V, RSPK  
= 3 Ω.  
Dynamic range  
111  
108  
106  
72  
dB  
dB  
dB  
dB  
A-Weighted, referenced to 1% THD+N Output  
Level, VPVDD=24V, RSPK = 3 Ω  
SNR  
Signal-to-noise ratio  
Power supply rejection ratio  
A-Weighted,referenced to 1% THD+N Output  
Level, VPVDD=18V, RSPK = 2 Ω  
Injected Noise = 1 KHz, 1 Vrms,VPVDD = 18 V,  
input audio signal = digital zero  
PSRR  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
UNIT  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
Serial Audio Port Timing - Target Mode  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
1.024  
40  
16  
16  
8
MHz  
ns  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCLK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
I2C Bus Timing Standard  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
4.7  
tLOW  
tHI  
4.7  
High period of the SCL clock  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
4
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
4.7  
4
250  
Data hold time  
0
3450  
1000  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
1000  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Cb  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
1000  
1000  
1000  
ns  
ns  
ns  
µs  
pf  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Capacitive load for each bus line  
400  
400  
I2C Bus Timing Fast  
fSCL  
SCL clock frequency  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
1.3  
tLOW  
tHI  
1.3  
600  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
600  
600  
100  
Data hold time  
0
900  
300  
Rise time of SCL signal  
20 + 0.1CB  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
300  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
pf  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Pulse width of spike suppressed  
Capacitive load for each bus line  
50  
Cb  
400  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.7 Typical Characteristics  
6.7.1 Bridge Tied Load (BTL) Configuration Curves with BD Modulation  
Free-air room temperature 25°C (unless otherwise noted). Measurements were made using Audio Precision  
System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio  
frequency set to 1 kHz and device PWM frequency set to 384kHz, 80 kHz Class D Amplifier Loop Bandwidth, LC  
filter with 10μH / 0.68 μF, unless otherwise noted.  
10  
5
10  
5
PVCC=12V  
TA=25°C  
RL=4  
PVCC=12V  
TA=25°C  
RL=8  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BD Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
BTL Mode  
BD Modulation  
FSW=384kHz Load = 8  
PO=1W,2.5W,5W  
BTL Mode  
6-1. THD+N vs Frequency-BTL  
6-2. THD+N vs Frequency-BTL  
10  
5
10  
5
PVCC=18V  
TA=25°C  
RL=4  
PVCC=18V  
TA=25°C  
RL=8  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BD Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
BTL Mode  
BD Modulation  
FSW=384kHz Load = 8  
PO=1W,2.5W,5W  
BTL Mode  
6-3. THD+N vs Frequency-BTL  
6-4. THD+N vs Frequency-BTL  
10  
5
10  
5
PVCC=24V  
TA=25°C  
RL=4  
PVCC=24V  
TA=25°C  
RL=8  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BD Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
BTL Mode  
BD Modulation  
FSW=384kHz Load = 8  
PO=1W,2.5W,5W  
BTL Mode  
6-5. THD+N vs Frequency-BTL  
6-6. THD+N vs Frequency-BTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
20  
10  
5
20  
10  
5
                                                                                                                                                                                   
PVCC=12V  
TA=25C  
PVCC=18V  
TA=25C  
BTL Mode  
BTL Mode  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
Load=4  
Load=6  
Load=8  
Load=4  
Load=6  
Load=8  
0.002  
0.001  
0.0005  
0.002  
0.001  
0.0005  
0.01  
0.1  
1
10 20  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
BD Modulation  
Load = 4, 6, 8  
BD Modulation  
Load = 4, 6, 8  
FSW = 384 kHz  
BTL Mode  
FSW = 384 kHz  
BTL Mode  
6-7. THD+N vs Output Power-BTL  
6-8. THD+N vs Output Power-BTL  
20  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVCC=24V  
TA=25C  
BTL Mode  
THD+N=1%, RL=4  
THD+N=10%, RL=4  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
Load=4  
Load=6  
Load=8  
0.002  
0.001  
0.0005  
BTL Mode  
TA=25C  
0.01  
0.1  
1
10 20  
100  
Output Power (W)  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
Supply Voltage (V)  
BD Modulation  
FSW = 384 kHz  
Load = 4, 6, 8  
BTL Mode  
BD Modulation  
FSW=384kHz  
Load = 4  
BTL Mode  
6-9. THD+N vs Output Power-BTL  
6-10. Output Power vs Supply Voltage  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
THD+N=1%, RL=6  
THD+N=10%, RL=6  
THD+N=1%, RL=8  
THD+N=10%, RL=8  
BTL Mode  
TA=25C  
BTL Mode  
TA=25C  
0
0
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
Supply Voltage (V)  
Supply Voltage (V)  
BD Modulation  
Load = 6  
BD Modulation  
Load = 8  
FSW=384kHz  
BTL Mode  
FSW=384kHz  
BTL Mode  
6-11. Output Power vs Supply Voltage  
6-12. Output Power vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
FSW=384k, BD Modulation  
18 20 25  
FSW=384k, BD Modulation  
0
5
10  
15  
5
10  
15  
18 20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D03007  
D00370  
BD Modulation  
BD Modulation  
FSW=384kHz  
Load = 8  
BTL Mode  
FSW=384kHz  
Load = 4  
BTL Mode  
6-14. Idle Channel Noise vs Supply Voltage  
6-13. Idle Channel Noise vs Supply Voltage  
0
0
PVDD=12V. 384kHz, LC filter=10uH+0.68uF  
Ch 1 to Ch 2  
PVDD=24V. 384kHz, LC filter=10uH+0.68uF  
Ch 1 to Ch 2  
-20  
-40  
Ch 2 to Ch 1  
-20  
-40  
Ch 2 to Ch 1  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
D001  
PVDD=12V  
BD Modulation  
20  
100  
1k  
10k 20k  
FSW=384kHz  
Load = 4  
BTL Mode  
Frequency (Hz)  
D001  
6-15. Crosstalk  
PVDD=24V  
BD Modulation  
FSW=384kHz  
Load = 4  
BTL Mode  
6-16. Crosstalk  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain=29.5dB  
TA=25C  
RL=4  
Gain=29.5dB  
TA=25C  
RL=6  
PVCC = 12 V  
PVCC = 16 V  
PVCC = 24 V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
D024  
D024  
BD Modulation  
BD Modulation  
FSW=384kHz  
Load = 4  
BTL Mode  
FSW=384kHz  
Load = 6  
BTL Mode  
6-17. Efficiency vs Output Power  
6-18. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Gain=29.5dB  
TA=25C  
RL=8  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Power (W)  
D024  
BD Modulation  
FSW=384kHz  
Load = 8  
BTL Mode  
6-19. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.7.2 Bridge Tied Load (BTL) Configuration Curves with 1SPW Modulation  
Free-air room temperature 25°C (unless otherwise noted). Measurements were made using Audio Precision  
System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio  
frequency set to 1 kHz and device PWM frequency set to 384 kHz, 80 kHz Class D Loop Bandwidth, the LC filter  
used was 10μH / 0.68 μF, unless otherwise noted.  
20  
20  
10 PVCC=12V  
10 PVCC=12V  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
TA=25°C  
TA=25°C  
5
5
RL=4  
RL=8  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
1SPW Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
BTL Mode  
1SPW Modulation  
FSW=384kHz Load = 8  
PO=1W,2.5W,5W  
BTL Mode  
6-20. THD+N vs Frequency-BTL  
6-21. THD+N vs Frequency-BTL  
20  
20  
10 PVCC=18V  
10 PVCC=18V  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
TA=25°C  
TA=25°C  
5
5
RL=4  
RL=8  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
1SPW Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
BTL Mode  
1SPW Modulation  
FSW=384kHz Load = 8  
PO=1W,2.5W,5W  
BTL Mode  
6-22. THD+N vs Frequency-BTL  
6-23. THD+N vs Frequency-BTL  
20  
20  
10 PVCC=24V  
10 PVCC=24V  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
TA=25°C  
TA=25°C  
5
5
RL=4  
RL=8  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
1SPW Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
BTL Mode  
1SPW Modulation  
FSW=384kHz Load = 8  
PO=1W,2.5W,5W  
BTL Mode  
6-24. THD+N vs Frequency-BTL  
6-25. THD+N vs Frequency-BTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
20  
10  
5
20  
10  
5
                                                                                                                                                                                   
PVCC=12V  
TA=25C  
PVCC=18V  
TA=25C  
BTL Mode  
BTL Mode  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
Load=4  
Load=6  
Load=8  
Load=4  
Load=6  
Load=8  
0.002  
0.001  
0.0005  
0.002  
0.001  
0.0005  
10m  
100m  
1
10 20  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
1SPW Modulation  
Load = 4, 6, 8  
1SPW Modulation  
Load = 4, 6, 8  
FSW = 384 kHz  
BTL Mode  
FSW = 384 kHz  
BTL Mode  
6-26. THD+N vs Output Power-BTL  
6-27. THD+N vs Output Power-BTL  
20  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVCC=24V  
TA=25C  
BTL Mode  
THD+N=1%, RL=4  
THD+N=10%, RL=4  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
Load=4  
Load=6  
Load=8  
0.002  
0.001  
0.0005  
BTL Mode  
TA=25C  
0.01  
0.1  
1
10 20  
100  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
Output Power (W)  
Supply Voltage (V)  
1SPW Modulation  
1SPW Modulation  
Load = 4  
FSW = 384 kHz  
Load = 4, 6, 8  
BTL Mode  
FSW=384kHz  
BTL Mode  
6-28. THD+N vs Output Power-BTL  
6-29. Output Power vs Supply Voltage  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
THD+N=1%, RL=6  
THD+N=10%, RL=6  
THD+N=1%, RL=8  
THD+N=10%, RL=8  
BTL Mode  
TA=25C  
BTL Mode  
TA=25C  
0
0
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
Supply Voltage (V)  
Supply Voltage (V)  
1SPW Modulation  
Load = 6  
1SPW Modulation  
Load = 8  
FSW=384kHz  
BTL Mode  
FSW=384kHz  
BTL Mode  
6-30. Output Power vs Supply Voltage  
6-31. Output Power vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
FSW=384k, 1SPW Modulation  
18 20 25  
FSW=384k, 1SPW Modulation  
0
5
10  
15  
5
10  
15  
18 20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D03007  
D00370  
1SPW Modulation  
1SPW Modulation  
FSW=384kHz  
Load = 4  
BTL Mode  
FSW=384kHz  
Load = 8  
BTL Mode  
6-32. Idle Channel Noise vs Supply Voltage  
6-33. Idle Channel Noise vs Supply Voltage  
0
0
PVDD=12V 384kHz, LC filter=10uH+0.68uF  
Ch 1 to Ch 2  
PVDD=24V. 384kHz, LC filter=10uH+0.68uF  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
-20  
-40  
-20  
-40  
Ch 2 to Ch 1  
-60  
-60  
-80  
-80  
-100  
-100  
-120  
20  
100  
1k  
10k  
20k  
Frequency (Hz)  
D001  
-120  
PVDD=12V  
FSW=384kHz  
1SPW Modulation  
Load = 4  
20  
100  
1k  
10k 20k  
BTL Mode  
Frequency (Hz)  
D001  
6-34. Crosstalk  
PVDD=24V  
FSW=384kHz  
1SPW Modulation  
Load = 4  
BTL Mode  
6-35. Crosstalk - old  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Gain=29.5dB  
TA=25C  
RL=4  
Gain=29.5dB  
TA=25C  
RL=6  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Power (W)  
Output Power (W)  
D024  
D024  
1SPW Modulation  
1SPW Modulation  
FSW=384kHz  
Load = 4  
BTL Mode  
FSW=384kHz  
Load = 6  
BTL Mode  
6-36. Efficiency vs Output Power  
6-37. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Gain=29.5dB  
TA=25C  
RL=8  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Power (W)  
D024  
1SPW Modulation  
FSW=384kHz  
Load = 8  
BTL Mode  
6-38. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.7.3 Parallel Bridge Tied Load (PBTL) Configuration With BD Modulation  
Free-air room temperature 25°C (unless otherwise noted). Measurements were made using Audio Precision  
System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio  
frequency set to 1 kHz and device PWM frequency set to 384 kHz, 80 kHz Class D Amplifier Loop Bandwidth,  
LC filter with 10 μH / 0.68 μF Post-Filter PBTL, the merging of the two output channels after the inductor  
portion of the output filter, see details in 9.2.4, unless otherwise noted.  
10  
5
10  
5
PVCC=12V  
TA=25°C  
RL=2  
PVCC=12V  
TA=25°C  
RL=4  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BD Modulation  
FSW=384kHz Load = 2  
PO=1W,2.5W,5W  
PBTL Mode  
BD Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
PBTL Mode  
6-39. THD+N vs Frequency-PBTL  
6-40. THD+N vs Frequency-PBTL  
10  
5
10  
5
PVCC=18V  
TA=25°C  
RL=2  
PVCC=18V  
TA=25°C  
RL=4  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BD Modulation  
FSW=384kHz Load = 2  
PO=1W,2.5W,5W  
PBTL Mode  
BD Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
PBTL Mode  
6-41. THD+N vs Frequency-PBTL  
6-42. THD+N vs Frequency-PBTL  
10  
5
10  
5
PVCC=24V  
TA=25°C  
RL=2  
PVCC=24V  
TA=25°C  
RL=4  
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
BD Modulation  
FSW=384kHz Load = 2  
PO=1W,2.5W,5W  
PBTL Mode  
BD Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
PBTL Mode  
6-43. THD+N vs Frequency-PBTL  
6-44. THD+N vs Frequency-PBTL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
15  
15  
10  
5
10  
PVCC=18V  
TA=25C  
PBTL Mode  
PVCC=12V  
TA=25C  
PBTL Mode  
5
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.005  
0.02  
0.01  
0.005  
Load=2  
Load=3  
Load=4  
Load=2  
Load=3  
Load=4  
0.002  
0.001  
0.002  
0.001  
0.01  
0.1  
1
10 20  
100  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
BD Modulation  
Load = 2, 3, 4  
BD Modulation  
Load = 2, 3, 4  
FSW = 384 kHz  
PBTL Mode  
FSW = 384 kHz  
PBTL Mode  
6-46. THD+N vs Output Power-PBTL  
6-45. THD+N vs Output Power-PBTL  
15  
195  
10  
THD+N=1%, RL=2  
THD+N=10%, RL=2  
PVCC=24V  
TA=25C  
PBTL Mode  
180  
165  
150  
135  
120  
105  
90  
5
2
1
0.5  
0.2  
0.1  
0.05  
75  
0.02  
0.01  
60  
45  
Load=2  
Load=3  
Load=4  
0.005  
30  
PBTL Mode  
TA=25C  
15  
0.002  
0.001  
0
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
0.01  
0.1  
1
10 20  
100  
Supply Voltage (V)  
Output Power (W)  
BD Modulation  
Load = 2  
BD Modulation  
Load = 2, 3, 4  
FSW=384kHz  
PBTL Mode  
FSW = 384 kHz  
PBTL Mode  
6-48. Output Power vs Supply Voltage  
6-47. THD+N vs Output Power-PBTL  
130  
100  
THD+N=1%, RL=3  
THD+N=10%, RL=3  
THD+N=1%, RL=4  
THD+N=10%, RL=4  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PBTL Mode  
TA=25C  
PBTL Mode  
TA=25C  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
Supply Voltage (V)  
Supply Voltage (V)  
BD Modulation  
Load = 3  
BD Modulation  
Load = 4  
FSW=384kHz  
PBTL Mode  
FSW=384kHz  
PBTL Mode  
6-49. Output Power vs Supply Voltage  
6-50. Output Power vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
FSW=384k, BD Modulation  
18 20 25  
FSW=384k, BD Modulation  
0
5
10  
15  
5
10  
15  
18 20  
25  
Supply Voltage (V)  
Supply Voltage (V)  
D03007  
D00370  
BD Modulation  
BD Modulation  
FSW=384kHz  
Load = 2  
PBTL Mode  
FSW=384kHz  
Load = 4  
PBTL Mode  
6-51. Idle Channel Noise vs Supply Voltage  
6-52. Idle Channel Noise vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Gain=29.5dB  
TA=25C  
RL=2  
Gain=29.5dB  
TA=25C  
RL=3  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
10  
0
10  
0
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
D024  
D024  
BD Modulation  
BD Modulation  
FSW=384kHz  
Load = 2  
PBTL Mode  
FSW=384kHz  
Load = 3  
PBTL Mode  
6-53. Efficiency vs Output Power  
6-54. Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Gain=29.5dB  
TA=25C  
RL=4  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Power (W)  
D024  
BD Modulation  
FSW=384kHz  
Load = 4  
PBTL Mode  
6-55. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
6.7.4 Parallel Bridge Tied Load (PBTL) Configuration With 1SPW Modulation  
Free-air room temperature 25°C (unless otherwise noted). Measurements were made using Audio Precision  
System 2722 with Analog Analyzer filter set to 20-kHz brickwall filter. All measurements taken with audio  
frequency set to 1 kHz and device PWM frequency set to 384 kHz, 80 kHz Class D Amplifier Loop Bandwidth,  
the LC filter used was 10 μH / 0.68 μF Post-Filter PBTL, the merging of the two output channels after the  
inductor portion of the output filter, see connect method in 9.2.4, unless otherwise noted.  
10  
5
10  
5
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
PVCC=12V  
TA=25°C  
RL=2  
PVCC=12V  
TA=25°C  
RL=4  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
1SPW Modulation  
FSW=384kHz Load = 2  
PO=1W,2.5W,5W  
PBTL Mode  
1SPW Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
PBTL Mode  
6-56. THD+N vs Frequency-PBTL  
6-57. THD+N vs Frequency-PBTL  
10  
5
10  
5
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
PVCC=18V  
TA=25°C  
RL=2  
PVCC=18V  
TA=25°C  
RL=4  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
1SPW Modulation  
FSW=384kHz Load = 2  
PO=1W,2.5W,5W  
PBTL Mode  
1SPW Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
PBTL Mode  
6-58. THD+N vs Frequency-PBTL  
6-59. THD+N vs Frequency-PBTL  
10  
5
10  
5
PO=1W  
PO=2.5W  
PO=5W  
PO=1W  
PO=2.5W  
PO=5W  
PVCC=24V  
TA=25°C  
RL=2  
PVCC=24V  
TA=25°C  
RL=4  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
1SPW Modulation  
FSW=384kHz Load = 2  
PO=1W,2.5W,5W  
PBTL Mode  
1SPW Modulation  
FSW=384kHz Load = 4  
PO=1W,2.5W,5W  
PBTL Mode  
6-60. THD+N vs Frequency-PBTL  
6-61. THD+N vs Frequency-PBTL  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
15  
10  
5
15  
10  
5
PVCC=18V  
TA=25C  
PBTL Mode  
PVCC=12V  
TA=25C  
PBTL Mode  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.005  
0.02  
0.01  
0.005  
Load=2  
Load=3  
Load=4  
Load=2  
Load=3  
Load=4  
0.002  
0.001  
0.002  
0.001  
10m  
100m  
1
10 20  
100  
0.01  
0.1  
1
10 20  
Output Power (W)  
Output Power (W)  
1SPW Modulation  
Load = 2, 3, 4  
1SPW Modulation  
Load = 2, 3, 4  
FSW = 384 kHz  
PBTL Mode  
FSW = 384 kHz  
PBTL Mode  
6-63. THD+N vs Output Power-PBTL  
6-62. THD+N vs Output Power-PBTL  
15  
195  
10  
THD+N=1%, RL=2  
THD+N=10%, RL=2  
PVCC=24V  
TA=25C  
PBTL Mode  
180  
165  
150  
135  
120  
105  
90  
5
2
1
0.5  
0.2  
0.1  
0.05  
75  
0.02  
0.01  
60  
45  
Load=2  
Load=3  
Load=4  
0.005  
30  
PBTL Mode  
TA=25C  
15  
0.002  
0.001  
0
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
0.01  
0.1  
1
10 20  
100  
Supply Voltage (V)  
Output Power (W)  
1SPW Modulation  
1SPW Modulation  
Load = 2, 3, 4  
FSW=384kHz  
Load = 2  
PBTL Mode  
FSW = 384 kHz  
PBTL Mode  
6-65. Output Power vs Supply Voltage  
6-64. THD+N vs Output Power-PBTL  
195  
195  
THD+N=1%, RL=3  
THD+N=10%, RL=3  
THD+N=1%, RL=4  
THD+N=10%, RL=4  
180  
165  
150  
135  
120  
105  
90  
180  
165  
150  
135  
120  
105  
90  
75  
75  
60  
60  
45  
45  
30  
30  
PBTL Mode  
TA=25C  
PBTL Mode  
TA=25C  
15  
15  
0
0
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
4.5  
8.5  
12.5  
16.5  
20.5  
24.5  
28  
Supply Voltage (V)  
Supply Voltage (V)  
1SPW Modulation  
1SPW Modulation  
FSW=384kHz  
Load = 3  
PBTL Mode  
FSW=384kHz  
Load = 4  
PBTL Mode  
6-66. Output Power vs Supply Voltage  
6-67. Output Power vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
FSW=384k, 1SPW Modulation  
15 18 20 25  
FSW=384k, 1SPW Modulation  
15 18 20 25  
0
5
10  
5
10  
Supply Voltage (V)  
Supply Voltage (V)  
D00370  
D03007  
1SPW Modulation  
1SPW Modulation  
FSW=384kHz  
Load = 4  
PBTL Mode  
FSW=384kHz  
Load = 2  
PBTL Mode  
6-69. Idle Channel Noise vs Supply Voltage  
6-68. Idle Channel Noise vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
20  
Gain=29.5dB  
PVCC = 12 V  
Gain=29.5dB  
PVCC = 12V  
TA=25C  
PVCC = 18 V  
10  
TA=25C  
PVCC = 18 V  
10  
RL=3  
RL=2  
PVCC = 24 V  
PVCC = 24 V  
0
0
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
0
10 20 30 40 50 60 70 80 90 100 110  
Output Power (W)  
D024  
D024  
1SPW Modulation  
1SPW Modulation  
FSW=384kHz  
Load = 3  
PBTL Mode  
FSW=384kHz  
Load = 2  
PBTL Mode  
6-71. Efficiency vs Output Power  
6-70. Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Gain=29.5dB  
TA=25C  
RL=4  
PVCC = 12 V  
PVCC = 18 V  
PVCC = 24 V  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Output Power (W)  
D024  
1SPW Modulation  
FSW=384kHz  
Load = 4  
PBTL Mode  
6-72. Efficiency vs Output Power  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
7 Parameter Measurement Information  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
0.5 × DVDD  
7-1. Serial Audio Port Timing in Target Mode  
Repeated  
START  
START  
STOP  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
7-2. I2C Communication Port Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8 Detailed Description  
8.1 Overview  
The TAS5828M device combines 4 main building blocks into a single cohesive device that maximizes sound  
quality, flexibility, and ease of use. The 4 main building blocks are listed as follows:  
A stereo digital to PWM modulator.  
An Audio DSP subsystem.  
A flexible close-loop amplifier capable of operating in stereo or mono, at several different switching  
frequencies, and with a variety of output voltages and loads.  
An I2C control port for communication with the device  
The device requires only two power supplies for proper operation. A DVDD supply is required to power the low  
voltage digital circuitry. Another supply, called PVDD, is required to provide power to the output stage of the  
audio amplifier. Two internal LDOs convert PVDD to 5 V for GVDD and AVDD and to 1.5 V for DVDD  
respectively.  
8.2 Functional Block Diagram  
1.5V Regulator  
5V Regulator  
5V Regulator  
(For Digital Core)  
( Analog Power Supply )  
(Internal Gate Drive  
Internal Voltage Supplies  
I -> V  
Closed Loop Class D Amplifier  
Analog Gain Setting  
CDSP  
Full Bridge  
Power  
Stage A  
+
Gate  
Drives  
OUT_A+  
OUT_A-  
DAC  
œ
Analog  
to  
Output  
Current  
Flexible  
Monitoring  
(OC protection)  
Process Flow  
PWM  
Modulator  
SCLK  
LRCLK  
SDIN  
OUT_B+  
OUT_B-  
Full Bridge  
Power  
Stage B  
Serial  
Audio  
Port  
+
Gate  
Drives  
DAC  
œ
Die Temperature Monitoring  
and UV/OV/OT Protection  
Clock Monitoring  
and Error Protection  
Error Reporting  
SDOUT  
Internal Control Registers and State Machines  
GPIO0/FAULT  
ADR/HW_MODE  
GPIO1/PWM_CTRL  
GPIO2/SDOUT  
SDOUT  
SCL/HW_SEL0  
SDA/HW_SEL1  
PDN  
8.3 Feature Description  
8.3.1 Power Supplies  
For system design, TAS5828M needs a 3.3-V or 1.8-V supply in addition to the (typical) 12 V or 24 V power-  
stage supply. Two internal voltage regulators provide suitable voltage levels for the gate drive circuitry and  
internal circuitry. The external pins are provided only as a connection point for off-chip bypass capacitors to filter  
the supply. Connecting external circuitry to these regulator outputs may result in reduced performance and  
damage to the device. Additionally, all circuitry requiring a floating voltage supply, that is, the high-side gate  
drive, is accommodated by built-in bootstrap circuitry requiring only a few external capacitors. To provide good  
electrical and acoustical characteristics, the PWM signal path for the output stage is designed as identical,  
independent half-bridges. For this reason, each half-bridge has separate bootstrap pins (BST_x). The gate drive  
voltages (GVDD) are derived from the PVDD voltage. Special attention should be paid to placing all decoupling  
capacitors as close to their associated pins as possible. In general, inductance between the power-supply pins  
and decoupling capacitors must be avoided. For a properly functioning bootstrap circuit, a small ceramic  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
capacitor must be connected from each bootstrap pin (BST_x) to the power-stage output pin (OUT_x). When the  
power-stage output is low, the bootstrap capacitor is charged through an internal diode connected between the  
gate-drive regulator output pin (GVDD) and the bootstrap pin. When the power-stage output is high, the  
bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for  
the high-side gate driver.  
8.3.2 Device Clocking  
The TAS5828M devices have flexible systems for clocking. Internally, the device requires a number of clocks,  
mostly at related clock rates to function correctly. All of these clocks can be derived from the Serial Audio  
Interface.  
DACCLK  
LRCLK/FS  
DSPCLK  
OSRCLK  
DSP  
(Including  
interpolator)  
Serial Audio  
Interface (Input)  
Delta Sigma  
Modulator  
Audio In  
DAC  
8-1. Audio Flow with Respective Clocks  
8-1 shows the basic data flow and clock Distribution.  
The Serial Audio Interface typically has 3 connection pins which are listed as follows:  
SCLK (Bit Clock)  
LRCLK/FS (Left/Right Word Clock or Frame Sync)  
SDIN (Input Data)  
The device has an internal PLL that is used to take SCLK and create the higher rate clocks required by the DSP  
and the DAC clock.  
The TAS5828M device has an audio sampling rate detection circuit that automatically senses which frequency  
the sampling rate is operating. Common audio sampling frequencies of 32 kHz, 44.1kHz 48 kHz, 88.2 kHz –  
96 kHz, 176.4 kHz 192 kHz are supported. The sampling frequency detector sets the clock for DAC and DSP  
automatically.  
If the input LRCLK/SCLK stopped during music playing, the TAS5828M DSP switches to sleep state and waiting  
for the clock recovery (Class D output switches to Hiz automatically ), once LRCLK/SCLK recovered, TAS5828M  
auto recovers to the play mode. There is no need to reload the DSP code.  
8.3.3 Serial Audio Port Clock Rates  
The serial audio interface port is a 3-wire serial port with the signals LRCLK/FS , SCLK , and SDIN. SCLK is the  
serial audio bit clock, used to clock the serial data present on SDIN into the serial shift register of the audio  
interface. Serial data is clocked into the TAS5828M device with SCLK. The LRCLK/FS pin is the serial audio left/  
right word clock or frame sync when the device is operated in TDM Mode.  
8-1. Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCLK/FS FREQUENCY  
FORMAT  
DATA BITS  
SCLK RATE (fS)  
(kHz)  
32 to 192  
32  
I2S/LJ/RJ  
32, 24, 20, 16  
64, 32  
128  
44.1,48  
96  
128,256,512  
128,256  
128  
TDM  
32, 24, 20, 16  
192  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
When Clock halt, non-supported SCLK to LRCLK(FS) ratio is detected, the device reports Clock Error in  
Register 113 (Register Address 0x71).  
8.3.4 Clock Halt Auto-recovery  
As some of host processor will Halt the I2S clock when there is no audio playing. When Clock halt, the device  
puts all channels into the Hi-Z state and reports Clock Error in Register 113 (Register Address 0x71). After audio  
clocks recovery, the device automatically returns to the previous state.  
8.3.5 Sample Rate on the Fly Change  
TAS5828M supports LRCLK(FS) rate on the fly change. For example, change LCRLK from 32kHz to 48kHz or  
96kHz or 192kHz, Host processor needs to put the LRCLK(FS)/SCLK to Halt state at least 100us before  
changing to the new sample rate.  
8.3.6 Serial Audio Port - Data Formats and Bit Depths  
The device supports industry-standard audio data formats, including standard I2S, left-justified, right-justified and  
TDM/DSP data. Data formats are selected via Register (Register Address 0x33h -D[5:4]). If the high width of  
LRCLK/FS in TDM/DSP mode is less than 8 cycles of SCK, the register (Register Address 0x33h -D[3:2]) should  
set to 01. All formats require binary two's complement, MSB-first audio data; up to 32-bit audio data is accepted.  
All the data formats, word length and clock rate supported by this device are shown in Table 1. The data formats  
are detailed in 8-2 through 8-6. The word length are selected via Register (Register Address 0x33h -  
D[1:0]). The offsets of data are selected via Register (Register Address 0x33h -D[7]) and Register (Register  
Address 0x34h -D[7:0]). Default setting is I2S and 24 bit word length.  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
1
1
2
2
2
15 16  
MSB  
LSB  
MSB  
MSB  
MSB  
LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
23 24  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
31 32  
MSB  
LSB  
LSB  
8-2. Left Justified Audio Data Format  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
1
1
2
2
2
15 16  
MSB LSB  
MSB LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
23 24  
MSB  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
31 32  
MSB  
MSB  
LSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
8-3. I2S Audio Data Format  
1 tS  
LRCLK/FS  
SCLK  
Right-channel  
Left-channel  
Audio data word = 16-bit, SCLK = 32, 64fs  
DATA  
1
2
15 16  
1
2
15 16  
MSB LSB  
MSB LSB  
Audio data word = 24-bit, SCLK = 64fs  
DATA  
1
2
23 24  
1
2
23 24  
MSB  
MSB  
LSB  
LSB  
Audio data word = 32-bit, SCLK = 64fs  
DATA  
1
2
31 32  
1
2
31 32  
MSB  
MSB  
LSB  
LSB  
Right-Justified Data Format; L-channel = HIGH, R-channel = LOW  
Right Justified Data Format; L-channel = HIGH, R-channel = LOW  
8-4. Right Justified Audio Data Format  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
1 /fS .  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
,
-
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
8-5. TDM 1 Audio Data Format  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SCLK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
8-6. TDM 2 Audio Data Format  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.3.7 Digital Audio Processing  
TAS5828M digital audio processing includes three main functions: basic audio tuning blocks, Hybrid-Pro  
algorithm and advanced features.  
Basic audio tuning blocks are SRC (sample rate converter), stereo channel Input Mixer, 15 BQs for each  
channel, pop click free Volume, multi-bands DRC, and AGL. Detailed introduction of each block can be found  
with TAS5825M Process Flows.  
Hybrid-Pro can be used in conjunction with Hybrid Modulation, which is an innovative Class-D internal PWM  
modulation scheme to improve efficiency even more without compromising THD+N performance. Hybrid-Pro  
goes beyond Hybrid PWM modulation from system efficiency perspective, by tracking audio signal envelope with  
advanced look-ahead DSP structure, controlling the external PVDD supply voltage rail, and maintaining just  
enough margin to provide high dynamic range without clipping distortion to save as much power as possible.  
Refer TAS5828M User Guide for more configurable options:  
Optional 8 steps 384 kHz PWM format or 16 steps 192 kHz PWM format Hybrid-Pro control waveform for  
external DC-DC converter.  
Configurable max 4 ms look-ahead audio signal delay buffer, which provides capability to fit various  
applications systems' DC-DC bandwidth and power supply coupling capacitance.  
Max 512 samples audio signal peak hold to optimize power supply voltage rail transition from large audio  
input to small level, which is useful to avoid clipping distortion.  
Hybrid-Pro Margin automatically adjusts audio signal trigger level and each step level. Fine tune it to achieve  
the balance between efficiency and envelope tracking speed.  
Advanced features include PVDD Sensing (Dynamic Headroom Tracking), Thermal Foldback and Hybrid PWM  
modulation. They are implemented based on integrated 8-bit PVDD sense ADC and 4 level temperature sensor.  
Refer to application note:TAS5825M Advanced Features.  
8.3.8 Class D Audio Amplifier  
Following the digital clipper, the interpolated audio data is next sent to the Closed Loop Class-D amplifier, whose  
first stage is Digital to PWM Conversion (DPC) block. In this block, the stereo audio data is translated into two  
pairs of complimentary pulse width modulated (PWM) signals which are used to drive the outputs of the speaker  
amplifier. Feedback loops around the DPC ensure constant gain across supply voltages, reduce distortion, and  
increase immunity to power supply injected noise and distortion. The analog gain is also applied in the Class-D  
amplifier section of the device. The gain structures are discussed in detail below for both 8-7 and 8-2. The  
switching rate of the amplifier is configurable by register (Register Address 0x02h -D[6:4])  
8.3.8.1 Speaker Amplifier Gain Select  
A combination of digital gain and analog gain is used to provide the overall gain of the speaker amplifier. As  
seen in 8-7, the audio path of the TAS5828M consists of a digital audio input port, a digital audio path, a  
digital to PWM converter (DPC), a gate driver stage, a Class D power stage, and a feedback loop which feeds  
the output information back into the DPC block to correct for distortion sensed on the output pins. The total  
amplifier gain is comprised of digital gain, shown in the digital audio path and the analog gain from the input of  
the analog modulator to the output of the speaker amplifier power stage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
DSP Volume  
DAC Volume  
Analog Gain  
Book 0x78, Page 0x2A  
Register 0x24/0x28/0x30  
Book 0x00, Page 0x00  
Register 0x4C  
Book 0x00, Page 0x00  
Register 0x54  
I -> V  
Closed Loop Class D Amplifier  
Analog Gain Setting  
DSP  
Full Bridge  
Power  
Stage A  
+
Gate  
Drives  
OUT_A+  
OUT_A-  
DAC  
œ
Analog  
Output  
Current  
Monitoring  
(OC protection)  
SCLK  
LRCLK  
SDIN  
Serial  
Audio  
Port  
ROM Fixed  
Process Flow  
to  
PWM  
Modulator  
OUT_B+  
OUT_B-  
Full Bridge  
Power  
Stage B  
+
Gate  
Drives  
DAC  
œ
8-7. Speaker Amplifier Gain  
As shown in 8-7, the first gain stage for the speaker amplifier is present in the digital audio path. It consists of  
the volume control and the digital boost block. The volume control is set to 0 dB by default, it does not change.  
For all settings of the register 0x54, AGAIN[4:0], the digital boost block remains at 0 dB. These gain settings  
ensure that the output signal is not clipping at different PVDD levels. 0dBFS output is 29.5-V peak output voltage  
8-2. Analog Gain Setting  
AMPLIFIER OUTPUT PEAK  
VOLTAGE (VP/FS)  
AMPLIFIER OUTPUT PEAK  
VOLTAGE (dBVP/FS)  
AGAIN <4:0>  
GAIN (dBFS)  
00000  
00001  
00010  
00011  
…….  
0
29.5  
27.85  
26.29  
24.82  
…….  
4.95  
29.4  
28.9  
28.4  
27.9  
…….  
13.9  
-0.5  
-1.0  
-1.5  
……..  
-15.5  
11111  
8.3.8.2 Class D Loop Bandwidth and Switching Frequency Setting  
TAS5828M closed loop structure provides Loop bandwidth setting option (Setting by register 83 -Register  
address 0x53h-D[6-5]) to co-work with different switching frequency (Setting by register 2 -Register address  
0x02h-D[6-4] ). 8-3 shows recommended settings for the Loop Bandwidth and Switching Frequency selection.  
Same Fsw, Better THD+N performance with higher BW.  
8-3. Loop Bandwidth and Switching Frequency Setting  
Modulation  
Scheme  
Fsw  
BW (Loop Band Width)  
Notes  
384kHz  
480kHz  
576kHz  
768kHz  
384kHz  
480kHz  
576kHz  
768kHz  
80kHz  
80kHz, 100kHz  
Principle: Fsw (Switching Frequency) 4.2 × Loop  
Hybrid, 1SPW  
Bandwidth  
80kHz, 100kHz, 120kHz  
80kHz, 100kHz, 120kHz, 175kHz  
80kHz, 100kHz, 120kHz  
80kHz, 100kHz, 120kHz  
80kHz, 100kHz, 120kHz, 175kHz  
80kHz, 100kHz, 120kHz, 175kHz  
Principle: Fsw (Switching Frequency) 3 × Loop  
BD  
Bandwidth  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.4 Device Functional Modes  
8.4.1 Software Control  
The TAS5828M device is configured via an I2 C communication port.  
The I2C Communication Protocol is detailed in the I2C Communication Port section. The I2C timing requirements  
are described in the .Timing Requirements - I2C Bus Timing.  
8.4.2 Speaker Amplifier Operating Modes  
The TAS5828M device can be configured as two different amplifier configurations through Register 0x02h -D[2]:  
BTL Mode  
PBTL Mode  
8.4.2.1 BTL Mode  
In BTL mode, the TAS5828M amplifies two independent signals, which represent the left and right portions of a  
stereo signal. The amplified left signal is presented on differential output pair shown as OUT_A+ and OUT_A-,  
the amplified right signal is presented on differential output pair shown as OUT_B+ and OUT_B-.  
8.4.2.2 PBTL Mode  
The PBTL mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the device. On the output side of the  
TAS5828M device, the summation of the devices can be done before the filter in a configuration called Pre-Filter  
Parallel Bridge Tied Load (PBTL). However, the two outputs can be required to merge together after the inductor  
portion of the output filter. Doing so does require two additional inductors, but allows smaller, less expensive  
inductors to be used because the current is divided between the two inductors. The process is called Post-Filter  
PBTL. On the input side of the TAS5828M device, the input signal to the PBTL amplifier is left frame of I2S or  
TDM data.  
8.4.3 Low EMI Modes  
TAS5828M employs several modes to minimize EMI during playing audio, and they can be used based on  
different applications.  
8.4.3.1 Spread Spectrum  
Spread spectrum is used in some inductor free or inductor less case to minimize EMI noise. The TAS5828M  
supports Spread Spectrum with triangle mode.  
User need configure register SS_CTRL0 (0x6B) to Enable triangle mode and enable spread spectrum, select  
spread spectrum frequency and range with SS_CTRL1 (0x6C). For 768kHz FSW which configured by  
DEVICE_CTRL1 (0x02), the spread spectrum frequency and range are described in 8-4.  
8-4. Triangle Mode Spread Spectrum Frequency and Range Selection  
SS_TRI_CTRL[3:0]  
0
1
2
3
4
5
6
7
Triangle Freq  
24k  
48k  
Spread Spectrum  
Range  
5%  
10%  
20%  
25%  
5%  
10%  
20%  
25%  
User Application example: Central Switching Frequency is 768kHz, Triangle Frequency is 48kHz.  
Register 0x02 = 0x41 // 768kHz Fsw, BTL Mode, 1SPW mode.  
Register 0x6b = 0x03 // Enable Spread Spectrum  
Register 0x6c = 0x03 // SS_CTRL[3:0]=0011, Triangle Frequency = 48kHz, Spread Spectrum Range should be  
10% (729kHz~807kHz)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TAS5828M  
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.4.3.2 Channel to Channel Phase Shift  
This device supports channel to channel 180-degree PWM phase shift to minimize the EMI. Bit 0 of Register  
0x53 can be used to disable or enable the phase shift.  
8.4.3.3 Multi-Devices PWM Phase Synchronization  
TAS5828M support up to 4 phases selection for the multi devices application system. For example, when a  
system integrated 4 TAS5828M devices, user can select phase0/1/2/3 for each device by register  
PHASE_CTRL(0x6A), which means there is a 45 degree phase shift between each device to minimize the EMI.  
There are two methods for Multi-Device PWM phase synchronization. Phase Synchronization With I2S Clock In  
Startup Phase or Phase Synchronization With GPIO.  
8.4.3.3.1 Phase Synchronization With I2S Clock In Startup Phase  
1. Step 1, Halt I2S clock.  
2. Step 2, Configure each device phase selection and enable the phase synchronization. For example:  
Register 0x6A=0x03 for device 0; Register 0x6A=0x07 for device 1; Register 0x6A=0x0B for device 2;  
Register 0x6A=0x0F for device 3.  
3. Step 3, Configure each device into HIZ mode.  
4. Step 4, Provide I2S to each device. Phase synchronization for all 4 devices is automatically done by internal  
sequence.  
5. Step 5, Initialize the DSP code (This step can be skipped if only need to do the Phase Synchronization).  
6. Step 6, Device to Device PWM phase shift should be fixed with 45 degree.  
8.4.3.3.2 Phase Synchronization With GPIO  
1. Step 1, Connect GPIOx pin of each device to the SOC GPIO pin on PCB.  
2. Step 2, Configure each device GPIOx as phase sync input usage by registers GPIO_CTRL (0X60) and  
GPIO_INPUT_SEL (0x64).  
3. Step 3, Select different phase for each device and enable phase synchronization by register PHASE_CTRL  
(0x6A).  
4. Step 4, Configure each device into PLAY mode by register DEVICE_CTRL2 (0x03) and monitor the  
POWER_STATE register (0x68) until device changed to HIZ state.  
5. Step 5, Give a 0 to 1 toggle on SOC GPIO. Then all 4 devices nter into PLAY mode, and device-to-device  
PWM phase shift should be fixed with 45 degree.  
6. Step 6, Phase Synchronization has been finished. Configure the GPIOx pin to other function based on the  
application.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.4.4 Thermal Foldback  
The Thermal Foldback (TFB) is designed to protect TAS5828M from excessive die temperature increases, in  
case the device operates beyond the recommended temperature/power limit, or with a weaker thermal system  
design than recommended. It allows the TAS5828M to play as loud as possible without triggering unexpected  
thermal shutdown. When the die temperature triggers the over-temperature warning (OTW) level (TAS5828M  
has four different temperature threshold, each threshold is indicated in I2C register 0x73 bits 0,1,2 and 3 ), an  
internal AGL (Automatic Gain Limiter) reduces the digital gain gradually, lower value of OTW, smaller attenuation  
added, with the OTW waring goes higher, more attenuation added. Once the die temperature drops below the  
OTW, the devices digital gain gradually returns to the former setting. Both the attenuation gain and adjustable  
rate are programmable. The TFB gain regulation speed (attack rate and release rate) settings are the same as a  
regular AGL, which is also configurable with TAS5828M App in PurePathTM Console3.  
8.4.5 Device State Control  
Except Shutdown Mode, TAS5828M has other 4 states for different power dissipation which listed in the  
Electrical Characteristics Table.  
Deep Sleep Mode. Register 0x03h -D[1:0]=00, Device stays in Deep Sleep Mode. In this mode, I2 C block  
keep works. This mode can be used to extend the battery life time in some portable speaker application case,  
once the host processor stopped playing audio for a long time, TAS5828M can be set to Deep Sleep Mode to  
minimize power dissipation until host processor start playing audio again. Device returns back to Play Mode  
by setting Register 0x03h -D[1:0] to 11. Compare with Shutdown Mode (Pull PDN Low), enter or exit Deep  
Sleep Mode, DSP keeps active.  
Sleep Mode. Register 0x03h -D[1:0]=01, Device stays in Sleep Mode. In this mode, I2 C block, Digital core,  
DSP Memory , 5 V Analog LDO keep works. Compare with Shutdown Mode (Pull PDN Low), enter or exit  
Sleep Mode, DSP keeps active.  
Output Hiz Mode. Register 0x03h -D[1:0]=10, Device stays in Hiz Mode. In this mode, Only output driver set  
to be Hiz state, all other block work normally.  
Play Mode. Register 0x03h -D[1:0]=11, Device stays in Play Mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.4.6 Device Modulation  
TAS5828M has 3 modulation schemes: BD modulation, 1SPW modulation and Hybrid modulation. Select  
modulation schemes for TAS5828M with Register 0x02 [1:0]-DAMP_MOD.  
8.4.6.1 BD Modulation  
This is a modulation scheme that allows operation without the classic LC reconstruction filter when the amp is  
driving an inductive load with short speaker wires. Each output is switching from 0 volts to the supply voltage.  
The OUTPx and OUTNx are in phase with each other with no input so that there is little or no current in the  
speaker. The duty cycle of OUTPx is greater than 50% and OUTNx is less than 50% for positive output voltages.  
The duty cycle of OUTPx is less than 50% and OUTNx is greater than 50% for negative output voltages. The  
voltage across the load sits at 0 V throughout most of the switching period, reducing the switching current, which  
reduces any I2R losses in the load.  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
OUTP-OUTN  
-
PVCC  
0A  
Speaker  
Current  
8-8. BD Mode Modulation  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.4.6.2 1SPW Modulation  
The 1SPW mode alters the normal modulation scheme in order to achieve higher efficiency with a slight penalty  
in THD degradation and more attention required in the output filter selection. In Low Idle Current mode the  
outputs operate at ~17% modulation during idle conditions. When an audio signal is applied, one output  
decreases and one increases. The decreasing output signal rails to GND. At this point all the audio modulation  
takes place through the rising output. The result is that only one output is switching during a majority of the audio  
cycle. Efficiency is improved in this mode due to the reduction of switching losses.  
OUTP  
OUTN  
No Output  
0V  
OUTP-OUTN  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVCC  
OUTP-OUTN  
0V  
Speaker  
Current  
0A  
OUTP  
Negative Output  
OUTN  
0V  
-PVCC  
OUTP  
-OUTN  
0
A
Speaker  
Current  
8-9. 1SPW Mode Modulation  
8.4.6.3 Hybrid Modulation  
Hybrid Modulation is designed for minimized power loss without compromising the THD+N performance, and is  
optimized for battery-powered applications. With Hybrid modulation, TAS5828M detects the input signal level  
and adjust PWM duty cycle dynamically based on PVDD. Hybrid modulation achieves ultra low idle current and  
maintains the same audio performance level as the BD Modulation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
备注  
As Hybrid Modulation need the internal DSP to detect the input signal level and adjust PWM duty  
cycle dynamically. To use the Hybrid Modulation, users need to select the corresponding process  
flows which support Hybrid Modulation in TAS5828M PPC3 App. Look into TAS5828M PPC3 App for  
more information about TAS5828M flexible audio process flows.  
8.5 Programming and Control  
8.5.1 I2 C Serial Communication Bus  
The device has a bidirectional serial control interface that is compatible with I2C bus protocol and supports 100  
and 400-kHz data transfer rates for random and sequential write and read operations as a target device.  
Because the TAS5828M register map and DSP memory spans multi pages, the user should change from page  
to page before writing individual register or DSP memory. Changing from page to page is accomplished via  
register 0 on each page. This register value selects the page address, from 0 to 255. All registers listed in  
TAS5828M Datasheet belongs to Page 0  
8.5.2 Hardware Control Mode  
For the system which does not require the advanced flexiblity of the I2C registers control or does not have an  
avaliable I2C host controller, the TAS5828M can be used in Hardware Control Mode. Then the device operates  
in Hardware mode default configurations and any change is accomplished via the Hardware control pins. The  
audio performance between Hardware and Software Control mode with same configuration is identical, however  
more features are accessible under Software Control Mode through registers.  
Several I/O's on the TAS5828M need to be took into consideration during schematic design for desired startup  
settings. The method going into Hardware Control Mode is to pull high HW_MODE pin13 to DVDD.  
The TAS5828M default Hardware configuration with optimized audio, thermal and BOM is BTL mode, 768-kHz  
switching frequency, 1 SPW mode, 175 kHz Class D amplifier loop bandwidth, 29.5 Vp/FS analog gain, CBC  
threshold with 80% of OCP threshold. It requires the HW_SEL0 pin 5 and HW_SEL1 pin 6 directly tied low GND.  
8-5. Hardware Control - HW_SEL0 Pin5  
Pin Configuration  
0 Ωto GND  
Analog Gain  
29.5 VP/FS  
20.9 VP/FS  
14.7 VP/FS  
7.4 VP/FS  
H-Bridge Output Configuration  
BTL  
BTL  
1 kΩto GND  
BTL  
4.7 kΩto GND  
15 kΩto GND  
33 kΩto DVDD  
6.8 kΩto DVDD  
1.5 kΩto DVDD  
0 Ωto DVDD  
BTL  
7.4 VP/FS  
PBTL  
PBTL  
PBTL  
PBTL  
14.7 VP/FS  
20.9 VP/FS  
29.5 VP/FS  
8-6. Hardware Control - HW_SEL1 Pin6  
Pin Configuration  
FSW&Class D Loop  
Bandwidth  
Cycle By Cycle Current  
Limit Threshold  
Spread Spectrum  
Modulation  
768 kHz FSW, 175 kHz BW CBC Threshold = 80%  
OCP  
Disable  
1SPW  
0 Ωto GND  
768 kHz FSW, 175 kHz BW CBC Disable  
Disable  
Disable  
1SPW  
1SPW  
1 kΩto GND  
768 kHz FSW, 175 kHz BW CBC Threshold = 40%  
OCP  
4.7 kΩto GND  
768 kHz FSW, 175 kHz BW CBC Threshold = 60%  
OCP  
Disable  
Enable  
1SPW  
BD  
15 kΩto GND  
33 kΩto DVDD  
480 kHz FSW, 100 kHz BW CBC Disable  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-6. Hardware Control - HW_SEL1 Pin6 (continued)  
Pin Configuration  
FSW&Class D Loop  
Bandwidth  
Cycle By Cycle Current  
Limit Threshold  
Spread Spectrum  
Modulation  
480 kHz FSW, 100 kHz BW CBC Threshold = 80%  
OCP  
Enable  
BD  
BD  
BD  
6.8 kΩto DVDD  
1.5 kΩto DVDD  
0 Ωto DVDD  
480 kHz FSW, 100 kHz BW CBC Threshold = 40%  
OCP  
Enable  
480 kHz FSW, 100 kHz BW CBC Threshold = 60%  
OCP  
Enable  
Example 1:  
BTL Mode, FSW = 768 kHz, 1 SPW Modulation, 175 kHz Loop Bandwidth, CBC Threshold = 80% OCP, Analog  
Gain = 29.5 VP/FS, Spread spectrum disable.  
8-10. Typical Hardware Control Mode Application Schematic-BTL Mode  
0.1  
F
22  
F
390 F  
32-Pin I TSSOP I PadUp  
Top View  
1
F
1 F  
PVDD  
PVDD  
AGND  
AVDD  
PDN  
DVDD  
DVDD  
DVDD  
10  
GVDD  
PDN  
OUT_B+  
BST_B+  
0.68  
F
R2  
R1  
R4  
R3  
HW_SEL0  
HW_SEL1  
SDIN  
PGND  
PGND  
SDIN  
SCLK  
10 ꢀ  
OUT_B-  
BST_B-  
BST_A-  
0.68  
0.68  
F
F
SCLK  
LRCLK  
DVDD DVDD  
DVDD  
LRCLK  
10 ꢀ  
OUT_A-  
MUTE  
FAULT  
MUTE  
FAULT  
PGND  
PGND  
BST_A+  
PD_DET  
PD_DET  
DVDD  
HW_MODE  
10 ꢀ  
F
0.47  
VR_DIG  
DVDD  
OUT_A+  
PVDD  
0.68  
F
DVDD  
1
F
DGND  
PVDD  
0.1  
F
4.7  
F
390  
F
22  
F
0.1  
F
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
Example 2:  
PBTL Mode, FSW = 768 kHz, 1 SPW Modulation, 175 kHz Loop Bandwidth, CBC Threshold = 80% OCP,  
Analog Gain = 29.5 VP/FS, Spread spectrum disable.  
8-11. Typical Hardware Control Mode Application Schematic-PBTL Mode  
0.1  
F
22  
F
390 F  
32-Pin I TSSOP I PadUp  
Top View  
1
F
1 F  
PVDD  
PVDD  
AGND  
AVDD  
PDN  
DVDD  
DVDD  
DVDD  
10  
GVDD  
PDN  
OUT_B+  
BST_B+  
0.68  
F
R2  
R1  
R4  
R3  
HW_SEL0  
HW_SEL1  
SDIN  
PGND  
PGND  
SDIN  
SCLK  
10 ꢀ  
OUT_B-  
BST_B-  
BST_A-  
0.68  
0.68  
F
F
SCLK  
LRCLK  
DVDD DVDD  
DVDD  
LRCLK  
10 ꢀ  
OUT_A-  
MUTE  
FAULT  
MUTE  
FAULT  
PGND  
PGND  
BST_A+  
PD_DET  
PD_DET  
DVDD  
HW_MODE  
F
0.47  
VR_DIG  
DVDD  
OUT_A+  
PVDD  
0.68  
F
DVDD  
1
F
DGND  
PVDD  
0.1  
F
4.7  
F
390  
F
22  
F
0.1  
F
8.5.3 I2 C Target Address  
The TAS5828M device has 7 bits for the target address. The user-defined address through ADR pin is listed in  
8-7.  
8-7. I2 C Target Address Configuration  
ADR PIN Configuration  
0 to GND  
MSBs  
User Define  
LSB  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
R/ W  
1kto GND  
4.7kto GND  
15kto GND  
33kto DVDD  
6.8kto DVDD  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.5.3.1 Random Write  
As shown in 8-12, a single-byte data-write transfer begins with the controller device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C device address  
and the read/write bit, the device responds with an acknowledge bit. Next, the controller transmits the address  
byte corresponding to the internal memory address being accessed. After receiving the address byte, the device  
again responds with an acknowledge bit. Next, the controller device transmits the data byte to be written to the  
memory address being accessed. After receiving the data byte, the device again responds with an acknowledge  
bit. Finally, the controller device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
8-12. Random Write Transfer  
8.5.3.2 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the controller to the device as shown in 8-13. After receiving each data byte, the device  
responds with an acknowledge bit and the I2 subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
R/W ACK  
A4 A3  
A0  
ACK  
ACK  
ACK  
ACK  
D0  
A6  
A1  
A7  
A6  
A5  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
8-13. Sequential Write Transfer  
8.5.3.3 Random Read  
As shown in 8-14, a single-byte data-read transfer begins with the controller device transmitting a start  
condition followed by the I2C device address and the read/write bit. For the data-read transfer, both a write  
followed by a read are actually done. Initially, a write is done to transfer the address byte of the internal memory  
address to be read. As a result, the read/write bit is a 0. After receiving the address and the read/write bit, the  
device responds with an acknowledge bit. In addition, after sending the internal memory address byte, the  
controller device transmits another start condition followed by the address and the read/write bit again. This time  
the read/write bit is a 1, indicating a read transfer. After receiving the address and the read/write bit, the device  
again responds with an acknowledge bit. Next, the device transmits the data byte from the memory address  
being read. After receiving the data byte, the controller device transmits a not-acknowledge followed by a stop  
condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
Subaddress  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Data Byte  
8-14. Random Read Transfer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TAS5828M  
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.5.3.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes are  
transmitted by the device to the controller device as shown in 8-15. Except for the last data byte, the controller  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
sub address by one. After receiving the last data byte, the controller device transmits a not-acknowledge  
followed by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
8-15. Sequential Read Transfer  
8.5.3.5 DSP Memory Book, Page and BQ update  
On Page 0x00 of each book, Register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a Page first write 0x00 to Register 0x00 to switch to Page 0 then write the book  
number to Register 0x7f on Page 0. To switch between pages in a book, simply write the page number to  
register 0x00.  
All the Biquad Filters coefficients are addressed in book 0xAA. The five coefficients of every Biquad Filter should  
be written entirely and sequentially from the lowest address to the highest address. The address of all Biquad  
Filters can be found in Register Maps  
All DSP/Audio Process Flow Related Register are listed in Application Note, TAS5825M Process Flows  
8.5.3.6 Checksum  
This device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum and an  
Exclusive (XOR) checksum. Register reads do not change checksum, but writes to even nonexistent registers  
changes the checksum. Both checksums are 8-bit checksums and both are available together simultaneously.  
The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00) to their respective 4-byte register  
locations.  
8.5.3.6.1 Cyclic Redundancy Check (CRC) Checksum  
The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell  
delineation, (1 + x1 + x2 + x8)). A major advantage of the CRC checksum is that it is input order sensitive. The  
CRC supports all I2C transactions, excluding book and page switching. The CRC checksum is read from register  
0x7E on page0 of any book (B_x, Page_0, Reg_126). The CRC checksum can be reset by writing 0x00 to the  
same register locations where the CRC checksum is valid.  
8.5.3.6.2 Exclusive or (XOR) Checksum  
The Xor checksum is a simpler checksum scheme. It performs sequential XOR of each register byte write with  
the previous 8-bit checksum register value. XOR supports only Book 0x8C, and excludes page switching and all  
registers in Page 0x00 of Book 0x8C. XOR checksum is read from location register 0x7D on page 0x00 of book  
0x8C (B_140, Page_0, Reg_125). The XOR Checksum can be reset by writing 0x00 to the same register  
location where it is read.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.5.4 Control via Software  
Startup Procedures  
Shutdown Procedures  
8.5.4.1 Startup Procedures  
1. Configure ADR pin with proper setting for I2C device address or Hardware Mode with proper HW_SEL0 and  
HW_SEL1 settings.  
2. Bring up power supplies (it does not matter if PVDD or DVDD comes up first).  
3. Once power supplies are stable, wait at least 100 μs, bring up PDN to High to enable internal LDO.  
4. I2C control port to configure desired settings. This process includes Deep Sleep to Hiz, register map  
configurations, DSP coefficients, and set into Play mode. Hardware Mode does not need this step I2C  
writing.  
5. Once I2S clocks are stable, TAS5828M is going to normal operation music playing.  
Ini aliza on  
Normal Opera on  
DVDD  
PVDD  
0 ns  
100 ns  
PDNz  
I2C  
0 ns  
Deep sleep  
(Page-0)  
HiZ - DSP enable  
(Page-0)  
DSP ready to con gure  
Play  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
I2S  
No special sequence requirement for I2S, but it’s necessary to be ready before Play mode.  
Otherwise, TAS5828M will go into Clock Fault Status.  
8-16. TAS5828M Startup Sequence  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.5.4.2 Shutdown Procedures  
1. The device is in normal operation.  
2. Configure the Register 0x03h -D[1:0]=10 (Hiz) via the I2C control port or Pull PDN low.  
3. Wait at least 6ms (this time depends on the LRCLK rate ,digital volume and digital volume ramp down rate).  
4. Bring down power supplies.  
5. The device is now fully shutdown and powered off.  
PDN  
6ms  
4.5V  
PVDD  
0ms  
DVDD  
6ms  
I2C  
I2C  
I2C  
I2C  
Output Hiz  
ñ
ñ
Before PVDD/DVDD power down, Class D Output driver needs to be disabled by PDN or by I2C.  
At least 6ms delay needed based on LRCLK (Fs) = 48kHz,Digital volume ramp down update every sample period,  
decreased by 0.5dB for each update, digital volume =24dB. Change the value of register 0x4C and 0x4E or change  
the LRCLK rate, the delay changes.  
8-17. Power-Down Sequence  
8.5.5 Protection and Monitoring  
8.5.5.1 Overcurrent Limit (Cycle-By-Cycle)  
In stead of direct Overcurrent Shutdown to mute audio output, TAS5828M also provides CBC current limiting  
protection. The purpose is to reduce output current ahead of Overcurrent Shutdown level by insert pulse into  
PWM switching, and the thredhold (list in Electrical Characteristics - OCETHRES) is configurable through Register  
0x77h -D[4:3] Reg_CBC_Level_Sel.  
The overall effect on the audio is quite similar a voltage-clipping, which temporarily limits music signal peak  
power to maintain continues music playing without disruption on removal of the overload.  
8.5.5.2 Overcurrent Shutdown (OCSD)  
If there is severe short-circuit event, such as output short to PVDD or ground, the TAS5828M starts shutdown  
process less than 100ns once peak-current detector is over Overcurrent Threshold (list in Electrical  
Characteristics - OCETHRES ). The shutdown speed depends on a number of factors, such as the impedance of  
the short circuit, supply voltage, and switching frequency.  
If an OCSD event occurs, the fault GPIO is pulled low and I2C fault register fault status is reported, then outputs  
transfer to high impedance Hiz status, signifying a fault. This is a latched error, and the user needs to restart  
output via I2C clear fault operation.  
8.5.5.3 DC Detect Error  
If the TAS5828M detects a DC offset in the output voltage cross speaker over DC error protection threshold  
DCRTHRES, and this status period is over TDCDET (list in Electrical Characteristics - Protection), the FAULTZ line  
is pulled low and the OUTxx outputs transition to high impedance, signifying a fault. This latched DC Protection  
error requires I2C clear fault operation to restart audio output.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.5.5.4 Overtemperature Shutdown (OTSD)  
The TAS5828M device continuesly monitors die temperature to ensure it does not exceed the over temperature  
threshold specified in Electrical Characteristics - OCETHRES. If an OTE event occurs, the fault GPIO is pulled low  
and I2C fault status is reported, then audio output trasfers to high empedance Hiz mode, signifying a fault. This is  
a latched error, and it requires I2C clear fault operation to restart audio playing.  
8.5.5.5 PVDD Overvoltage and Undervoltage Error  
If the voltage presented on the PVDD supply rises over the OVETHRES(PVDD) or drops below the UVETHRES(PVDD)  
listed in Electrical Characteristics - Protection, the fault GPIO is pulled to low and I2C fault status is reported,  
then audio output transfers to high impedance Hiz mode. These are self-clearing error, which means that once  
PVDD level is back to normal operation, the device resumes audio playing.  
8.5.5.6 PVDD Drop Detection  
TAS5828M not only provides PVDD Undervoltage Shutdown protection, but also optional PVDD drop detection.  
Based on internal PVDD real-time sensing voltage, TAS5828M is able to be configured to expected behavior,  
which could toggle pin10 PD_DET from high to low to indicate PVDD drops below specific level (default 8 V),  
and whether TAS5828M automatically goes into Hiz mode to shutdown audio output. All these settings is  
accessible through Register 0x04h and 0x05h.  
The purpose is to feedback PVDD voltage drop information through GPIO to user product control system, which  
is able to implement flexible protection strategy. For example, SOC could starts audio volume fade out process  
once PD_DET pin goes to low. This process could provide effective pop-click free control shutdown.  
8.5.5.7 Clock Fault  
When a clock error is detected on incoming data clock, the TAS5828M device switches to an internal oscillator  
and continues to the driving DAC, whicl attenuating the data from the last known value. Once this process is  
completed, the DAC output is hard muted to ground and audio output stops. This non-latched clock fault status  
is reported I2C fault status, and device audomatically returns to play mode once correct clock is back.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6 Register Maps  
8.6.1 CONTROL PORT Registers  
8-8 lists the memory-mapped registers for the CONTROL PORT. All register offset addresses not listed in 表  
8-8 should be considered as reserved locations and the register contents should not be modified.  
8-8. CONTROL PORT Registers  
Offset  
1h  
Acronym  
Register Name  
Section  
RESET_CTRL  
DEVICE_CTRL1  
DEVICE_CTRL2  
PVDD_DROP_DETECTION_CTRL1  
PVDD_DROP_DETECTION_CTRL2  
I2C_PAGE_AUTO_INC  
SIG_CH_CTRL  
CLOCK_DET_CTRL  
SDOUT_SEL  
Register 1  
8.6.1.2  
8.6.1.3  
8.6.1.4  
8.6.1.5  
8.6.1.6  
8.6.1.7  
8.6.1.8  
8.6.1.9  
8.6.1.10  
8.6.1.11  
8.6.1.12  
8.6.1.13  
8.6.1.14  
8.6.1.15  
8.6.1.16  
8.6.1.17  
8.6.1.18  
8.6.1.19  
8.6.1.20  
8.6.1.21  
8.6.1.22  
8.6.1.23  
8.6.1.24  
8.6.1.25  
8.6.1.26  
8.6.1.27  
8.6.1.28  
8.6.1.29  
8.6.1.30  
8.6.1.31  
8.6.1.32  
8.6.1.33  
8.6.1.34  
8.6.1.35  
8.6.1.36  
8.6.1.37  
8.6.1.38  
8.6.1.39  
2h  
Register 2  
3h  
Register 3  
4h  
Register 4  
5h  
Register 5  
Fh  
Register 15  
Register 40  
Register 41  
Register 48  
Register 49  
Register 51  
Register 52  
Register 53  
Register 55  
Register 56  
Register 57  
Register 64  
Register 70  
Register 76  
Register 78  
Register 79  
Register 80  
Register 81  
Register 83  
Register 84  
Register 94  
Register 96  
Register 97  
Register 98  
Register 99  
Register 100  
Register 101  
Register 102  
Register 103  
Register 104  
Register 105  
Register 106  
Register 107  
28h  
29h  
30h  
31h  
33h  
34h  
35h  
37h  
38h  
39h  
40h  
46h  
4Ch  
4Eh  
4Fh  
50h  
51h  
53h  
54h  
5Eh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
67h  
68h  
69h  
6Ah  
6Bh  
I2S_CTRL  
SAP_CTRL1  
SAP_CTRL2  
SAP_CTRL3  
FS_MON  
BCK (SCLK)_MON  
CLKDET_STATUS  
DSP_PGM_MODE  
DSP_CTRL  
DIG_VOL  
DIG_VOL_CTRL1  
DIG_VOL_CTRL2  
AUTO_MUTE_CTRL  
AUTO_MUTE_TIME  
ANA_CTRL  
AGAIN  
PVDD_ADC  
GPIO_CTRL  
GPIO1_SEL  
GPIO2_SEL  
GPIO0_SEL  
GPIO_INPUT_SEL  
GPIO_OUT  
GPIO_OUT_INV  
DIE_ID  
POWER_STATE  
AUTOMUTE_STATE  
PHASE_CTRL  
SS_CTRL0  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-8. CONTROL PORT Registers (continued)  
Offset  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
71h  
72h  
73h  
74h  
75h  
76h  
77h  
78h  
Acronym  
Register Name  
Register 108  
Register 109  
Register 110  
Register 111  
Register 112  
Register 113  
Register 114  
Register 115  
Register 116  
Register 117  
Register 118  
Register 119  
Register 120  
Section  
SS_CTRL1  
8.6.1.40  
8.6.1.41  
8.6.1.42  
8.6.1.43  
8.6.1.44  
8.6.1.45  
8.6.1.46  
8.6.1.47  
8.6.1.48  
8.6.1.49  
8.6.1.50  
8.6.1.51  
8.6.1.52  
SS_CTRL2  
SS_CTRL3  
SS_CTRL4  
CHAN_FAULT  
GLOBAL_FAULT1  
GLOBAL_FAULT2  
WARNING  
PIN_CONTROL1  
PIN_CONTROL2  
MISC_CONTROL  
CBC_CONTROL  
FAULT_CLEAR  
Complex bit access types are encoded to fit into small table cells. 8-9 shows the codes that are used for  
access types in this section.  
8-9. CONTROL PORT Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
][l.,  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.1 RESET_CTRL Register (Offset = 1h) [reset = 0x00]  
RESET_CTRL is shown in 8-14 and described in 8-10.  
Return to 8-8.  
8-14. RESET_CTRL Register  
7
6
5
4
RST_MOD  
W
3
2
RESERVED  
R
1
0
RST_REG  
W
RESERVED  
R/W  
8-10. RESET_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
R/W  
000  
This bit is reserved  
RST_DIG_CORE  
W
0
WRITE CLEAR BIT  
Reset DIG_CORE  
WRITE CLEAR BIT Reset Full Digital Core. This bit resets the Full  
Digital Signal Path (Include DSP coefficient RAM and I2C Control  
Port Registers), Since the DSP is also reset, the coeffient RAM  
content is also cleared by the DSP.  
0: Normal  
1: Reset Full Digital Signal Path  
3-1  
0
RESERVED  
RST_REG  
R
000  
0
This bit is reserved  
W
WRITE CLEAR BIT  
Reset Registers  
This bit resets the mode registers back to their initial values. Only  
reset Control Port Registers, The RAM content is not cleared.  
0: Normal  
1: Reset I2C Control Port Registers  
8.6.1.2 DEVICE_CTRL_1 Register (Offset = 2h) [reset = 0x00]  
DEVICE_CTRL_1 is shown in 8-15 and described in 8-11.  
Return to 8-8.  
8-15. DEVICE_CTRL_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
FSW_SEL  
R/W  
RESERVED  
R/W  
DAMP_PBTL  
R/W  
DAMP_MOD  
R/W  
8-11. DEVICE_CTRL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
FSW_SEL  
R/W  
0
This bit is reserved  
6-4  
R/W  
000  
SELECT FSW  
000:384K  
010:480K  
011:576K  
100:768K  
001:Reserved  
101:Reserved  
110:Reserved  
111:Reserved  
3
RESERVED  
R/W  
0
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-11. DEVICE_CTRL_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
DAMP_PBTL  
DAMP_MOD  
R/W  
0
0: SET DAMP TO BTL MODE  
1:SET DAMP TO PBTL MODE  
1-0  
R/W  
00  
00:BD MODE 01:1SPW MODE 10:HYBRID MODE  
8.6.1.3 DEVICE_CTRL2 Register (Offset = 3h) [reset = 0x10]  
DEVICE_CTRL2 is shown in 8-16 and described in 8-12.  
Return to 8-8.  
8-16. DEVICE_CTRL2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DIS_DSP  
R/W  
MUTE_LEFT  
R/W  
RESERVED  
R/W  
CTRL_STATE  
R/W  
8-12. DEVICE_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
DIS_DSP  
R/W  
000  
This bit is reserved  
R/W  
1
DSP reset  
When the bit is made 0, DSP starts powering up and send out data.  
This needs to be made 0 only after all the input clocks are settled so  
that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
3
MUTE  
R/W  
0
Mute both Left and Right Channel  
This bit issues soft mute request for both left and right channel. The  
volume is smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
2
RESERVED  
R/W  
R/W  
0
This bit is reserved  
1-0  
CTRL_STATE  
00  
device state control register  
00: Deep Sleep  
01: Sleep  
10: Hiz,  
11: PLAY  
8.6.1.4 PVDD_DROP_DETECTION_CTRL1 Register (Offset = 4h) [reset = 0x00]  
PVDD_DROP_DETECTION_CTRL1 is shown in 8-17 and described in 8-13.  
Return to 8-8.  
8-17. PVDD_DROP_DETECTION_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
PVDD_DROP_ PVDD_DROP_DET_AVE_SAMP PVDD_DROP_  
DET_SEQUEN  
CE  
LES  
DET_BYPASS  
R/W  
R/W  
R/W  
8-13. PVDD_DROP_DETECTION_CTRL1 Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-13. PVDD_DROP_DETECTION_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PVDD_DROP_DET_State R/W  
_Control  
0
This bit controls whether device automatically set into Hiz or still play  
once PVDD drop detection happens.  
0: The device keeps in play mode even PVDD drops configured  
threshold  
1: The device goes into Hiz once PVDD drops configured threshold  
2-1  
PVDD_DROP_DET_AVE_ R/W  
SAMPLES  
00  
PVDD sense average samples for drop detection  
This bit is used to set PVDD voltage sense average samples for drop  
detection.  
00: 1 sample - cycle by cycle, no average  
01: 16 samples  
10: 32 samples  
11: 64 samples  
0
PVDD_DROP_DET_Enabl R/W  
e
0
PVDD drop detection Enable  
This bit controls enable or bypass PVDD drop detection.  
0: Bypass PVDD drop detection  
1: Enable PVDD drop detection  
8.6.1.5 PVDD_DROP_DETECTION_CTRL2 Register (Offset = 5h) [reset = 0x44]  
PVDD_DROP_DETECTION_CTRL2 is shown in 8-18 and described in 8-14.  
Return to 8-8.  
8-18. PVDD_DROP_DETECTION_CTRL2 Register  
7
6
5
4
3
2
1
0
PVDD Drop Detection Voltage Threshold  
R/W  
8-14. PVDD_DROP_DETECTION_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PVDD Drop Detection  
Voltage Threshold  
R/W  
00000000  
This bit is used to set PVDD Drop Detection Threshold. The radio to  
0xFFh equals to full scale voltage 30V. For example, 8V threshold:  
8V/30V = 0x44h/0xFFh. PVDD Drop Threshold is configured as:  
00: 0V  
01: 0.117V  
...  
44: 8V  
...  
FF: 30V  
8.6.1.6 I2C_PAGE_AUTO_INC Register (Offset = Fh) [reset = 0x00]  
I2C_PAGE_AUTO_INC is shown in 8-19 and described in 8-15.  
Return to 8-8.  
8-19. I2C_PAGE_AUTO_INC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
PAGE_AUTOIN  
C_REG  
RESERVED  
R/W  
R/W  
8-15. I2C_PAGE_AUTO_INC Register Field Descriptions  
Bit  
7-4  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-15. I2C_PAGE_AUTO_INC Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PAGE_AUTOINC_REG  
R/W  
0
Page auto increment disable  
Disable page auto increment mode. for non -zero books. When end  
of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0 th location of current  
page itself like in older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2-0  
RESERVED  
R/W  
000  
This bit is reserved  
8.6.1.7 SIG_CH_CTRL Register (Offset = 28h) [reset = 0x00]  
SIG_CH_CTRL is shown in 8-20 and described in 8-16.  
Return to 8-8.  
8-20. SIG_CH_CTRL Register  
7
6
5
4
3
2
1
0
SCLK_RATIO_CONFIGURE  
R/W  
FSMODE  
R/W  
RESERVED  
R/W  
8-16. SIG_CH_CTRL Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
SCLK_RATIO_CONFIGU R/W  
RE  
0000  
These bits indicate the configured SCLK ratio, the number of SCLK  
clocks in one audio frame. Device sets this ratio automatically.  
4'b0011:32FS  
4'b0101:64FS  
4'b0111:128FS  
4'b1001:256FS  
4'b1011:512FS  
3
FSMODE  
R/W  
0
FS Speed Mode These bits select the FS operation mode, which  
must be set according to the current audio sampling rate. Need set it  
manually If the input Fs is 44.1kHz/88.2kHz/176.4kHz.  
4 'b0000 Auto detection  
4 'b0100 Reserved  
4 'b0110 32KHz  
4 'b1000 44.1KHz  
4 'b1001 48KHz  
4'b1010 88.2KHz  
4 'b1011 96KHz  
4 'b1100 176.4KHz  
4 'b1101 192KHz  
Others Reserved  
2-0  
RESERVED  
R/W  
000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TAS5828M  
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.8 CLOCK_DET_CTRL Register (Offset = 29h) [reset = 0x00]  
CLOCK_DET_CTRL is shown in 8-21 and described in 8-17.  
Return to 8-8.  
8-21. CLOCK_DET_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
DIS_DET_PLL DIS_DET_SCL DIS_DET_FS DIS_DET_SCL DIS_DET_MISS RESERVED  
RESERVED  
K_RANGE  
K
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-17. CLOCK_DET_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
DIS_DET_PLL  
Type  
Reset  
Description  
7
R/W  
0
This bit is reserved  
Ignore PLL overate Detection  
6
R/W  
0
This bit controls whether to ignore the PLL overrate detection. The  
PLL must be slow than 150MHz or an error is reported. When  
ignored, a PLL overrate error does not cause a clock error.  
0: Regard PLL overrate detection  
1: Ignore PLL overrate detection  
5
DIS_DET_SCLK_RANGE R/W  
0
Ignore BCK Range Detection  
This bit controls whether to ignore the SCLK range detection. The  
SCLK must be stable between 256 KHz and 50 MHz or an error is  
reported. When ignored, a SCLK range error does not cause a clock  
error.  
0: Regard BCK Range detection  
1: Ignore BCK Range detection  
4
3
DIS_DET_FS  
R/W  
R/W  
0
0
Ignore FS Error Detection  
This bit controls whether to ignore the FS Error detection. When  
ignored, FS error does not cause a clock error.But  
CLKDET_STATUS reports fs error.  
0: Regard FS detection  
1: Ignore FS detection  
DIS_DET_SCLK  
Ignore SCLK Detection  
This bit controls whether to ignore the SCLK detection against  
LRCK. The SCLK must be stable between 32FS and 512FS  
inclusive or an error is reported. When ignored, a SCLK error does  
not cause a clock error.  
0: Regard SCLK detection  
1: Ignore SCLK detection  
2
DIS_DET_MISS  
R/W  
0
Ignore SCLK Missing Detection  
This bit controls whether to ignore the SCLK missing detection.  
When ignored, an SCLK missing does not cause a clock error.  
0: Regard SCLK missing detection  
1: Ignore SCLKmissing detection  
1
0
RESERVED  
RESERVED  
R/W  
R/W  
0
0
This bit is reserved  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.9 SDOUT_SEL Register (Offset = 30h) [reset = 0x00]  
SDOUT_SEL is shown in 8-23 and described in 8-18.  
Return to 8-8.  
8-22. SDOUT_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
RESERVED  
R/W  
SDOUT_SEL  
R/W  
8-18. SDOUT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RESERVED  
SDOUT_SEL  
R/W  
0000000  
These bits are reserved  
R/W  
0
SDOUT Select. This bit selects what is being output as SDOUT pin.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
8.6.1.10 I2S_CTRL Register (Offset = 31h) [reset = 0x00]  
I2S_CTRL is shown in 8-23 and described in 8-19.  
Return to 8-8.  
8-23. I2S_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
SCLK_INV  
R/W  
RESERVED  
R/W  
RESERVED  
RESERVED  
R
RESERVED  
R/W  
R
8-19. I2S_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
SCLK_INV  
R/W  
00  
This bit is reserved  
R/W  
0
SCLK Polarity  
This bit sets the inverted SCLK mode. In inverted SCLK mode, the  
DAC assumes that the LRCK and DIN edges are aligned to the rising  
edge of the SCLK. Normally they are assumed to be aligned to the  
falling edge of theSCLK  
0: Normal SCLKmode  
1: Inverted SCLK mode  
4
3
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R
0
This bit is reserved  
This bit is reserved  
These bits are reserved  
This bit is reserved  
0
2-1  
0
R
00  
0
R/W  
8.6.1.11 SAP_CTRL1 Register (Offset = 33h) [reset = 0x02]  
SAP_CTRL1 is shown in 8-24 and described in 8-20.  
Return to 8-8.  
8-24. SAP_CTRL1 Register  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-24. SAP_CTRL1 Register (continued)  
I2S_SHIFT_MS  
B
RESERVED  
R/W  
DATA_FORMAT  
I2S_LRCLK_PULSE  
WORD_LENGTH  
R/W  
R/W  
R/W  
R/W  
8-20. SAP_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2S_SHIFT_MSB  
RESERVED  
R/W  
0
I2S Shift MSB  
6
R/W  
R/W  
0
This bit is reserved  
I2S Data Format  
5-4  
DATA_FORMAT  
00  
These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: TDM/DSP  
10: RTJ  
11: LTJ  
3-2  
1-0  
I2S_LRCLK_PULSE  
WORD_LENGTH  
R/W  
R/W  
00  
10  
01: LRCLK pulse < 8 SCLK  
I2S Word Length  
These bits control both input and output audio interface sample word  
lengths for DAC operation.  
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
8.6.1.12 SAP_CTRL2 Register (Offset = 34h) [reset = 0x00]  
SAP_CTRL2 is shown in 8-25 and described in 8-21.  
Return to 8-8.  
8-25. SAP_CTRL2 Register  
7
6
5
4
3
2
1
0
I2S_SHIFT  
R/W  
8-21. SAP_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
I2S_SHIFT  
Type  
Reset  
Description  
R/W  
00000000  
I2S Shift LSB  
These bits control the offset of audio data in the audio frame for both  
input and output. The offset is defined as the number of SCLK from  
the starting (MSB) of audio frame to the starting of the desired audio  
sample. MSB [8] locates in 8.6.1.12  
000000000: offset = 0 SCLK (no offset)  
000000001: ofsset = 1 SCLK  
000000010: offset = 2 SCLKs  
and  
111111111: offset = 512 SCLKs  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.13 SAP_CTRL3 Register (Offset = 35h) [reset = 0x11]  
SAP_CTRL3 is shown in 8-26 and described in 8-22.  
Return to 8-8.  
8-26. SAP_CTRL3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
LEFT_DAC_DPATH  
R/W  
RESERVED  
R/W  
RIGHT_DAC_DPATH  
R/W  
8-22. SAP_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7-6  
5-4  
RESERVED  
00  
These bits are reserved  
LEFT_DAC_DPATH  
01  
Left DAC Data Path. These bits control the left channel audio data  
path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
3-2  
1-0  
RESERVED  
R/W  
R/W  
00  
01  
These bits are reserved  
RIGHT_DAC_DPATH  
Right DAC Data Path. These bits control the right channel audio data  
path connection.  
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
8.6.1.14 FS_MON Register (Offset = 37h) [reset = 0x00]  
FS_MON is shown in 8-27 and described in 8-23.  
Return to 8-8.  
8-27. FS_MON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
SCLK_RATIO_HIGH  
R
FS  
R
8-23. FS_MON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-0  
RESERVED  
SCLK_RATIO_HIGH  
FS  
R/W  
00  
This bit is reserved  
R
R
00  
2 msbs of detected SCLK ratio  
0000  
These bits indicate the currently detected audio sampling rate.  
4 'b0000 FS Error  
4 'b0100 16KHz  
4 'b0110 32KHz  
4 'b1000 Reserved  
4 'b1001 48KHz  
4 'b1011 96KHz  
4 'b1101 192KHz  
Others Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.15 BCK (SCLK)_MON Register (Offset = 38h) [reset = 0x00]  
BCK_MON is shown in 8-28 and described in 8-24.  
Return to 8-8.  
8-28. BCK (SCLK)_MON Register  
7
6
5
4
3
2
1
0
BCLK (SCLK)_RATIO_LOW  
R
8-24. BCK_MON Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
BCLK  
(SCLK)_RATIO_LOW  
R
00000000  
These bits indicate the currently detected BCK (SCLK) ratio, the  
number of BCK (SCLK) clocks in one audio frame.  
BCK (SCLK) = 32 FS~512 FS  
8.6.1.16 CLKDET_STATUS Register (Offset = 39h) [reset = 0x00]  
CLKDET_STATUS is shown in 8-29 and described in 8-25.  
Return to 8-8.  
8-29. CLKDET_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
DET_STATUS  
R
8-25. CLKDET_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RESERVED  
R/W  
00  
This bit is reserved  
DET_STATUS  
R
000000  
bit0: In auto detection mode(reg_fsmode=0),this bit indicated  
whether the audio sampling rate is valid or not. In non auto detection  
mode(reg_fsmode!=0), Fs error indicates that configured fs is  
different with detected fs. Even FS Error Detection Ignore is set, this  
flag is also asserted.  
bit1: This bit indicates whether the SCLK is valid or not. The SCLK  
ratio must be stable and in the range of 32-512FS to be valid.  
bit2: This bit indicates whether the SCLK is missing or not.  
bit3:This bit indicates whether the PLL is locked or not. The PLL is  
reported as unlocked when it is disabled.  
bits4:This bit indicates whether the PLL is overrate  
bits5:This bit indicates whether the SCLK is overrate or underrate  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.17 DSP_PGM_MODE Register (Offset = 40h) [reset = 0x01]  
DSP_PGM_MODE is shown in 8-30 and described in 8-26.  
Return to 8-8.  
8-30. DSP_PGM_MODE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
CH1_HIZ  
CH2_HIZ  
MODE_SEL  
R/W  
8-26. DSP_PGM_MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4
RESERVED  
CH1_HIZ  
R/W  
000  
This bit is reserved  
Hi-Z Mode Channel-1  
Stops output switching and sets channel-1 to Hi-Z mode.  
0: Normal Operation  
R/W  
R/W  
R/W  
0
1: Hi-Z state  
3
CH2_HIZ  
0
Hi-Z Mode Channel-2  
Stops output switching and sets channel-2 to Hi-Z mode.  
0: Normal Operation  
1: Hi-Z state  
2-0  
MODE_SEL  
00001  
DSP Program Selection  
These bits select the DSP program to use for audio processing.  
000 => ram mode  
001 => rom mode 1  
8.6.1.18 DSP_CTRL Register (Offset = 46h) [reset = 0x01]  
DSP_CTRL is shown in 8-31 and described in 8-27.  
Return to 8-8.  
8-31. DSP_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
USER_DEFINED_PROCESSING RESERVED BOOT_FROM_I USE_DEFAULT  
_RATE  
RAM  
_COEFFS  
R/W  
R/W  
R
R/W  
R/W  
8-27. DSP_CTRL Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-5  
4-3  
R/W  
000  
This bit is reserved  
USER_DEFINED_PROCE R/W  
SSING_RATE  
00  
00:input  
01:48k  
10:96k  
11:192k  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R
0
0
1
This bit is reserved  
This bit is reserved  
This bit is reserved  
R
R/W  
8.6.1.19 DIG_VOL Register (Offset = 4Ch) [reset = 30h]  
DIG_VOL is shown in 8-32 and described in 8-28.  
Return to 8-8.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-32. DIG_VOL Register  
7
6
5
4
3
2
1
0
PGA_LEFT  
R/W  
8-28. DIG_VOL Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
PGA  
R/W  
00110000  
Digital Volume  
These bits control both left and right channel digital volume. The  
digital volume is 24 dB to -103 dB in -0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
........  
and 00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: -0.5 dB  
.......  
11111110: -103 dB  
11111111: Mute  
8.6.1.20 DIG_VOL_CTRL1 Register (Offset = 4Eh) [reset = 0x33]  
DIG_VOL_CTRL1 is shown in 8-33 and described in 8-29.  
Return to 8-8.  
8-33. DIG_VOL_CTRL1 Register  
7
6
5
4
3
2
1
0
PGA_RAMP_DOWN_SPEED  
R/W  
PGA_RAMP_DOWN_STEP  
R/W  
PGA_RAMP_UP_SPEED  
R/W  
PGA_RAMP_UP_STEP  
R/W  
8-29. DIG_VOL_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
PGA_RAMP_DOWN_SPE R/W  
ED  
00  
Digital Volume Normal Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
PGA_RAMP_DOWN_STE R/W  
P
11  
00  
Digital Volume Normal Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
PGA_RAMP_UP_SPEED R/W  
Digital Volume Normal Ramp Up Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping up.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-29. DIG_VOL_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
PGA_RAMP_UP_STEP  
R/W  
11  
Digital Volume Normal Ramp Up Step  
These bits control the step of the digital volume updates when the  
volume is ramping up.  
00: Increment by 4 dB for each updat  
e 01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
8.6.1.21 DIG_VOL_CTRL2 Register (Offset = 4Fh) [reset = 0x30]  
DIG_VOL_CTRL2 is shown in 8-34 and described in 8-30.  
Return to 8-8.  
8-34. DIG_VOL_CTRL2 Register  
7
6
5
4
3
2
1
0
FAST_RAMP_DOWN_SPEED  
R/W  
FAST_RAMP_DOWN_STEP  
R/W  
RESERVED  
R/W  
8-30. DIG_VOL_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
FAST_RAMP_DOWN_SP R/W  
EED  
00  
Digital Volume Emergency Ramp Down Frequency  
These bits control the frequency of the digital volume updates when  
the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft  
mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
FAST_RAMP_DOWN_ST R/W  
EP  
11  
Digital Volume Emergency Ramp Down Step  
These bits control the step of the digital volume updates when the  
volume is ramping down due to clock error or power outage, which  
usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
3-0  
RESERVED  
R/W  
0000  
This bit is reserved  
8.6.1.22 AUTO_MUTE_CTRL Register (Offset = 50h) [reset = 0x00]  
AUTO_MUTE_CTRL is shown in 8-35 and described in 8-31.  
Return to 8-8.  
8-35. AUTO_MUTE_CTRL Register  
7
6
5
4
3
2
1
REG_AUTO_MUTE_CTRL  
R/W  
0
RESERVED  
R/W  
8-31. AUTO_MUTE_CTRL Register Field Descriptions  
Bit  
7-3  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
00000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-31. AUTO_MUTE_CTRL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
REG_AUTO_MUTE_CTR R/W  
L
000  
bit0:  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
bit1:  
0: Disable right channel auto mute  
1: Enable right channel auto mute  
bit2:  
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are  
about to be auto muted.  
8.6.1.23 AUTO_MUTE_TIME Register (Offset = 51h) [reset = 0x00]  
AUTO_MUTE_TIME is shown in 8-36 and described in 8-32.  
Return to 8-8.  
8-36. AUTO_MUTE_TIME Register  
7
6
5
AUTOMUTE_TIME_LEFT  
R/W  
4
3
2
1
AUTOMUTE_TIME_RIGHT  
R/W  
0
RESERVED  
R/W  
RESERVED  
R/W  
8-32. AUTO_MUTE_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-4  
AUTOMUTE_TIME_LEFT R/W  
000  
Auto Mute Time for Left Channel  
These bits specify the length of consecutive zero samples at left  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and scales with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
RESERVED  
R/W  
0
This bit is reserved  
2-0  
AUTOMUTE_TIME_RIGH R/W  
T
000  
Auto Mute Time for Right Channel  
These bits specify the length of consecutive zero samples at right  
channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and scales with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
8.6.1.24 ANA_CTRL Register (Offset = 53h) [reset = 0h]  
ANA_CTRL is shown in 8-37 and described in 8-33  
Return to 8-8  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-37. ANA_CTRL Register  
7
6
5
4
3
2
1
0
AMUTE_DLY  
R/W  
8-33. ANA_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0
This bit is reserved  
6-5  
Class D bandwidth control R/W  
00  
00: 100kHz  
01: 80kHz  
10: 120kHz  
11:175kHz  
With Fsw=384kHz, 100kHz bandwidth is selected for high audio  
performance. With Fsw=768kHz, 175kHz bandwidth should be  
selected for high audio performance.  
4-1  
0
RESERVED  
R/W  
R/W  
0000  
0
These bits are reserved  
L and R PWM output  
phase control  
0: out of phase  
1: in phase  
8.6.1.25 AGAIN Register (Offset = 54h) [reset = 0x00]  
AGAIN is shown in 8-38 and described in 8-34.  
Return to 8-8.  
8-38. AGAIN Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
ANA_GAIN  
R/W  
8-34. AGAIN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RESERVED  
ANA_GAIN  
R/W  
000  
This bit is reserved  
R/W  
00000  
Analog Gain Control  
This bit controls the analog gain.  
00000: 0 dB (29.5V peak voltage)  
00001:-0.5db 11111: -15.5 dB  
8.6.1.26 PVDD_ADC Register (Offset = 5Eh) [reset = 0h]  
PVDD_ADC is shown in 8-39 and described in 8-35.  
Return to 8-8.  
8-39. PVDD_ADC Register  
7
6
5
4
3
2
1
0
ADC_DATA_OUT  
R
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-35. PVDD_ADC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PVDD_ADC[7:0]  
R
00000000  
PVDD Voltage = PVDD_ADC[7:0] / 8.428 (V)  
223: 26.45V  
222: 26.34V  
221:26.22V  
...  
39: 4.63V  
38: 4.51V  
37: 4.39V  
8.6.1.27 GPIO_CTRL Register (Offset = 60h) [reset = 0x00]  
GPIO_CTRL is shown in 8-40 and described in 8-36.  
Return to 8-8.  
8-40. GPIO_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
GPIO0_OE  
R/W  
GPIO2_OE  
R/W  
GPIO1_OE  
R/W  
8-36. GPIO_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
GPIO0_OE  
R/W  
0000  
This bit is reserved  
R/W  
R/W  
R/W  
0
0
0
GPIO2 Output Enable. This bit sets the direction of the GPIO0 pin  
0: GPIO0 is input  
1: GPIO0 is output  
1
0
GPIO2_OE  
GPIO1_OE  
GPIO2 Output Enable This bit sets the direction of the GPIO2 pin  
0: GPIO2 is input  
1: GPIO2 is output  
GPIO1 Output Enable This bit sets the direction of the GPIO1 pin  
0: GPIO1 is input  
1: GPIO1 is output  
8.6.1.28 GPIO1_SEL Register (Offset = 61h) [reset = 0x00]  
GPIO1_SEL is shown in 8-41 and described in 8-37.  
Return to 8-8.  
8-41. GPIO1_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
GPIO1_SEL  
R/W  
8-37. GPIO1_SEL Register Field Descriptions  
Bit  
7-4  
Field  
RESERVED  
Type  
Reset  
Description  
R/W  
0000  
This bit is reserved  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-37. GPIO1_SEL Register Field Descriptions (continued)  
Bit  
Field  
GPIO1_SEL  
Type  
Reset  
Description  
3-0  
R/W  
0000  
0000: off (low)  
1000: GPIO1 as WARNZ output  
1001: GPIO1 as Serial audio interface data output (SDOUT)  
1011: GPIO1 as FAULTZ output  
1100: GPIO1 as PVDD Drop Detection Flag  
1101: GPIO1 as Class-H  
8.6.1.29 GPIO2_SEL Register (Offset = 62h) [reset = 0x00]  
GPIO2_SEL is shown in 8-42 and described in 8-38.  
Return to 8-8.  
8-42. GPIO2_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
GPIO2_SEL  
R/W  
8-38. GPIO2_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
GPIO2_SEL  
R/W  
0000  
This bit is reserved  
R/W  
0000  
0000: off (low)  
1000: GPIO2 as WARNZ output  
1001: GPIO2 as Serial audio interface data output (SDOUT)  
1011: GPIO2 as FAULTZ output  
1100: GPIO2 as PVDD Drop Detection Flag  
1101: GPIO2 as Class-H  
8.6.1.30 GPIO0_SEL Register (Offset = 63h) [reset = 0x00]  
GPIO0_SEL is shown in 8-43 and described in 8-39.  
Return to 8-8.  
8-43. GPIO0_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
GPIO0_SEL  
R/W  
8-39. GPIO0_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-0  
RESERVED  
GPIO0_SEL  
R/W  
0000  
This bit is reserved  
R/W  
0000  
0000: off (low)  
1000: GPIO0 as WARNZ output  
1001: GPIO0 as Serial audio interface data output (SDOUT)  
1011: GPIO0 as FAULTZ output  
1100: GPIO0 as PVDD Drop Detection Flag  
1101: GPIO0 as Class-H  
8.6.1.31 GPIO_INPUT_SEL Register (Offset = 64h) [reset = 0x00]  
GPIO_INPUT_SEL is shown in 8-44 and described in 8-40.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
Return to 8-8.  
8-44. GPIO_INPUT_SEL Register  
7
6
5
4
3
2
1
0
GPIO_SPI_MISO_SEL  
R/W  
GPIO_PHASE_SYNC_SEL  
R/W  
GPIO_RESETZ_SEL  
R/W  
GPIO_MUTEZ_SEL  
R/W  
8-40. GPIO_INPUT_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
GPIO_SPI_MISO_SEL  
R/W  
00  
00: N/A  
01: GPIO1  
10: GPIO2  
11: GPIO0  
5-4  
3-2  
1-0  
GPIO_PHASE_SYNC_SE R/W  
L
00  
00  
00  
00: N/A  
01: GPIO1  
10: GPIO2  
11: GPIO0  
GPIO_RESETZ_SEL  
GPIO_MUTEZ_SEL  
R/W  
R/W  
00: N/A  
01: GPIO1  
10: GPIO2  
11: GPIO0 can not be reset by GPIO reset  
00: N/A  
01: GPIO1  
10: GPIO2  
11: GPIO0  
MUTEZ pin active-low, output driver is set to HiZ state, Class D  
amplifier's output stop switching.  
8.6.1.32 GPIO_OUT Register (Offset = 65h) [reset = 0x00]  
GPIO_OUT is shown in 8-45 and described in 8-41.  
Return to 8-8.  
8-45. GPIO_OUT Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
GPIO_OUT  
R/W  
8-41. GPIO_OUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2-0  
RESERVED  
GPIO_OUT  
R/W  
00000  
This bit is reserved  
R/W  
000  
bit0: GPIO1 output  
bit1: GPIO2 output  
bit2: GPIO0 output  
8.6.1.33 GPIO_OUT_INV Register (Offset = 66h) [reset = 0x00]  
GPIO_OUT_INV is shown in 8-46 and described in 8-42.  
Return to 8-8.  
8-46. GPIO_OUT_INV Register  
7
6
5
4
3
2
1
0
RESERVED  
GPIO_OUT  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-46. GPIO_OUT_INV Register (continued)  
R/W  
R/W  
8-42. GPIO_OUT_INV Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
GPIO_OUT  
R/W  
00000  
This bit is reserved  
2-0  
R/W  
000  
bit0: GPIO1 output invert  
bit1: GPIO2 output invert  
bit2: GPIO0 output invert  
8.6.1.34 DIE_ID Register (Offset = 67h) [reset = 95h]  
DIE_ID is shown in 8-47 and described in 8-43.  
Return to 8-8.  
8-47. DIE_ID Register  
7
6
5
4
3
2
1
0
DIE_ID  
R
8-43. DIE_ID Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
DIE_ID  
R
10010101  
DIE ID  
8.6.1.35 POWER_STATE Register (Offset = 68h) [reset = 0x00]  
POWER_STATE is shown in 8-48 and described in 8-44.  
Return to 8-8.  
8-48. POWER_STATE Register  
7
6
5
4
3
2
1
0
STATE_RPT  
R
8-44. POWER_STATE Register Field Descriptions  
Bit  
7-0  
Field  
STATE_RPT  
Type  
Reset  
Description  
R
00000000  
0: Deep sleep  
1: Seep  
2: HIZ  
3: Play  
Others: reserved  
8.6.1.36 AUTOMUTE_STATE Register (Offset = 69h) [reset = 0x00]  
AUTOMUTE_STATE is shown in 8-49 and described in 8-45.  
Return to 8-8.  
8-49. AUTOMUTE_STATE Register  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-49. AUTOMUTE_STATE Register (continued)  
RESERVED  
ZERO_RIGHT_ ZERO_LEFT_M  
MON  
ON  
R
R
R
8-45. AUTOMUTE_STATE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
RESERVED  
R
000000  
This bit is reserved  
1
ZERO_RIGHT_MON  
ZERO_LEFT_MON  
R
R
0
0
This bit indicates the auto mute status for right channel.  
0: Not auto muted  
1: Auto muted  
0
This bit indicates the auto mute status for left channel.  
0: Not auto muted  
1: Auto muted  
8.6.1.37 PHASE_CTRL Register (Offset = 6Ah) [reset = 0]  
PHASE_CTRL is shown in 8-50 and described in 8-46.  
Return to 8-8.  
8-50. PHASE_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
RAMP_PHASE_SEL  
R/W  
PHASE_SYNC PHASE_SYNC  
_SEL  
_EN  
R/W  
R/W  
8-46. PHASE_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-2  
RESERVED  
R/W  
0000  
This bit is reserved  
RAMP_PHASE_SEL  
R/W  
00  
select ramp clock phase when multi devices integrated in one  
system to reduce EMI and peak supply peak current, it is  
recomended set all devices the same RAMP frequency and same  
spread spectrum. it must be set before driving device into PLAY  
mode if this feature is needed.  
2'b00: phase 0  
2'b01: phase 1  
2'b10: phase 2  
2'b11: phase 3 all of above have a 45 degree of phase shift  
1
0
PHASE_SYNC_SEL  
PHASE_SYNC_EN  
R/W  
R/W  
0
0
ramp phase sync sel,  
0: is gpio sync;  
1: intenal sync  
ramp phase sync enable  
8.6.1.38 RAMP_SS_CTRL0 Register (Offset = 6Bh) [reset = 0x00]  
RAMP_SS_CTRL0 is shown in 8-51 and described in 8-47.  
Return to 8-8.  
8-51. SS_CTRL0 Register  
7
6
5
4
3
2
1
0
RESERVED  
RESERVED  
SS_PRE_DIV_ SS_MANUAL_  
SEL MODE  
RESERVED  
SS_RDM_EN  
SS_TRI_EN  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-51. SS_CTRL0 Register (continued)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-47. RAMP_SS_CTRL0 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7
R/W  
0
This bit is reserved  
This bit is reserved  
6
5
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
SS_PRE_DIV_SEL  
SS_MANUAL_MODE  
RESERVED  
0
Select pll clock divide 2 as source clock in manual mode  
Set ramp ss controller to manual mode  
This bit is reserved  
4
0
3-2  
1
00  
0
SS_RDM_EN  
Random SS enable  
0
SS_TRI_EN  
0
Triangle SS enable  
8.6.1.39 SS_CTRL1 Register (Offset = 6Ch) [reset = 0x00]  
SS_CTRL1 is shown in 8-52 and described in 8-48.  
Return to 8-8.  
8-52. SS_CTRL1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W  
SS_RDM_CTRL  
R/W  
SS_TRI_CTRL  
R/W  
8-48. SS_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-4  
3-0  
SS_RDM_CTRL  
SS_TRI_CTRL  
R/W  
R/W  
000  
Add Dither  
0000  
Triangle SS frequency and range control  
8.6.1.40 SS_CTRL2 Register (Offset = 6Dh) [reset = 0xA0]  
SS_CTRL2 is shown in 8-53 and described in 8-49.  
Return to 8-8.  
8-53. SS_CTRL2 Register  
7
6
5
4
3
2
1
0
TM_FREQ_CTRL  
R/W  
8-49. SS_CTRL2 Register Field Descriptions  
Bit  
7-0  
Field  
TM_FREQ_CTRL  
Type  
Reset  
Description  
R/W  
10100000  
Control ramp frequency in manual mode, F=61440000/N  
8.6.1.41 SS_CTRL3 Register (Offset = 6Eh) [reset = 0x11]  
SS_CTRL3 is shown in 8-54 and described in 8-50.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
Return to 8-8.  
8-54. SS_CTRL3 Register  
7
6
5
4
3
2
1
0
TM_DSTEP_CTRL  
R/W  
TM_USTEP_CTRL  
R/W  
8-50. SS_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
SS_TM_DSTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum fall step in ramp ss manual  
mode  
3-0  
SS_TM_USTEP_CTRL  
R/W  
0001  
Control triangle mode spread spectrum rise step in ramp ss manual  
mode  
8.6.1.42 SS_CTRL4 Register (Offset = 6Fh) [reset = 0x24]  
SS_CTRL4 is shown in 8-55 and described in 8-51.  
Return to 8-8.  
8-55. SS_CTRL4 Register  
7
6
5
4
3
2
SS_TM_PERIOD_BOUNDRY  
R/W  
1
0
RESERVED  
R/W  
TM_AMP_CTRL  
R/W  
8-51. SS_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R/W  
0
This bit is reserved  
6-5  
4-0  
TM_AMP_CTRL  
R/W  
01  
Control ramp amp ctrl in ramp ss manual model  
SS_TM_PERIOD_BOUND R/W  
RY  
00100  
Control triangle mode spread spectrum boundary in ramp ss manual  
mode  
8.6.1.43 CHAN_FAULT Register (Offset = 70h) [reset = 0x00]  
CHAN_FAULT is shown in 8-56 and described in 8-52.  
Return to 8-8.  
8-56. CHAN_FAULT Register  
7
6
5
4
3
CH1_DC_1  
R
2
CH2_DC_1  
R
1
CH1_OC_I  
R
0
CH2_OC_I  
R
RESERVED  
R
8-52. CHAN_FAULT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
RESERVED  
CH1_DC_1  
R
0000  
This bit is reserved  
R
0
Left channel DC fault. Once there is a DC fault, this bit is set to be 1.  
Class D output is set to Hi-Z. Report by FAULT pin (GPIO). Clear this  
fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-52. CHAN_FAULT Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
CH2_DC_1  
CH1_OC_I  
CH2_OC_I  
R
0
Right channel DC fault. Once there is a DC fault, this bit is set to be  
1. Class D output is set to Hi-Z. Report by FAULT pin (GPIO). Clear  
this fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
1
0
R
R
0
0
Left channel over current fault. Once there is a OC fault, this bit is set  
to be 1. Class D output is set to Hi-Z. Report by FAULT pin (GPIO).  
Clear this fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
Right channel over current fault. Once there is a OC fault, this bit is  
set to be 1. Class D output is set to Hi-Z. Report by FAULT pin  
(GPIO). Clear this fault by setting bit 7 of 8.6.1.52 to 1 or this bit  
keeps 1.  
8.6.1.44 GLOBAL_FAULT1 Register (Offset = 71h) [reset = 0h]  
GLOBAL_FAULT1 is shown in 8-57 and described in 8-53.  
Return to 8-8.  
8-57. GLOBAL_FAULT1 Register  
7
6
5
4
3
2
1
0
OTP_CRC_ER BQ_WR_ERRO LOAD_EEPRO  
RESERVED  
RESERVED  
CLK_FAULT_I  
R
PVDD_OV_I  
PVDD_UV_I  
ROR  
R
M_ERROR  
R
R
R
R
R
R
R
8-53. GLOBAL_FAULT1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
OTP_CRC_ERROR  
BQ_WR_ERROR  
R
0
Indicate OTP CRC check error.  
R
0
0
The recent BQ is written failed  
LOAD_EEPROM_ERROR R  
0: EEPROM boot load was done successfully  
1: EEPROM boot load was done unsuccessfully  
4
3
2
RESERVED  
RESERVED  
CLK_FAULT_I  
R
R
R
0
0
0
This bit is reserved  
This bit is reserved  
Clock fault. Once there is a Clock fault, this bit is set to be 1. Class D  
output is set to Hi-Z. Report by FAULT pin (GPIO). Clock fault works  
with an auto-recovery mode, once the clock error removes, device  
automatically returns to the previous state.  
Clear this fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
1
0
PVDD_OV_I  
PVDD_UV_I  
R
R
0
0
PVDD OV fault. Once there is a OV fault, this bit is set to be 1. Class  
D output is set to Hi-Z. Report by FAULT pin (GPIO). OV fault works  
with an auto-recovery mode, once the OV error removes, device  
automatically returns to the previous state.  
Clear this fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
PVDD UV fault. Once there is a UV fault, this bit is set to be 1. Class  
D output is set to Hi-Z. Report by FAULT pin (GPIO). OV fault works  
with an auto-recovery mode, once the OV error removes, device  
automatically returns to the previous state.  
Clear this fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TAS5828M  
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8.6.1.45 GLOBAL_FAULT2 Register (Offset = 72h) [reset = 0h]  
GLOBAL_FAULT2 is shown in 8-58 and described in 8-54.  
Return to 8-8.  
8-58. GLOBAL_FAULT2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R
CBC_FAULT_C CBC_FAULT_C  
OTSD_I  
H2_I  
H1_I  
R
R
R
8-54. GLOBAL_FAULT2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
2
RESERVED  
R
0000  
This bit is reserved  
CBC_FAULT_CH2_I  
CBC_FAULT_CH1_I  
OTSD_I  
R
R
R
0
0
0
Right channel cycle by cycle over current fault  
Left channel cycle by cycle over current fault  
Over temperature shut down fault.  
1
0
Once there is a OT fault, this bit is set to be 1. Class D output is set  
to Hi-Z. Report by FAULT pin (GPIO). OV fault works with an auto-  
recovery mode, once the OV error removes, device automatically  
returns to the previous state.  
Clear this fault by setting bit 7 of 8.6.1.52 to 1 or this bit keeps 1.  
8.6.1.46 WARNING Register (Offset = 73h) [reset = 0x00]  
WARNING is shown in 8-59 and described in 8-55.  
Return to 8-8.  
8-59. WARNING Register  
7
6
5
4
3
2
1
0
RESERVED  
R
CBCW_CH1_I CBCW_CH2_I OTW_LEVEL4_ OTW_LEVEL3_ OTW_LEVEL2_ OTW_LEVEL1_  
I
I
I
I
R
R
R
R
R
R
8-55. WARNING Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RESERVED  
R
0
This bit is reserved  
CBCW_CH1_I  
CBCW_CH2_I  
OTW_LEVEL4_I  
OTW_LEVEL3_I  
OTW_LEVEL2_I  
OTW_LEVEL1_I  
R
R
R
R
R
R
0
0
0
0
0
0
Left channel cycle by cycle over current warning  
Right channel cycle by cycle over current warning  
Over temperature warning leve4, 146C  
Over temperature warning leve3, 134C  
Over temperature warning leve2, 122C  
Over temperature warning leve1, 112C  
4
3
2
1
0
8.6.1.47 PIN_CONTROL1 Register (Offset = 74h) [reset = 0x00]  
PIN_CONTROL1 is shown in 8-60 and described in 8-56.  
Return to 8-8.  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-60. PIN_CONTROL1 Register  
7
6
5
4
3
2
1
0
MASK_OTSD MASK_DVDD_ MASK_DVDD_ MASK_CLK_FA RESERVED  
MASK_PVDD_  
UV  
MASK_DC  
MASK_OC  
UV  
OV  
ULT  
R/W  
R/W  
R/W  
R/W  
R
R/W  
R/W  
R/W  
8-56. PIN_CONTROL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
2
1
0
MASK_OTSD  
R/W  
0
Mask OTSD fault report  
Mask DVDD UV fault report  
Mask DVDD OV fault report  
MASK_DVDD_UV  
MASK_DVDD_OV  
MASK_CLK_FAULT  
RESERVED  
R/W  
R/W  
R/W  
R
0
0
0
0
0
0
0
Mask clock fault report  
This bit is reserved  
MASK_PVDD_UV  
MASK_DC  
R/W  
R/W  
R/W  
Mask PVDD UV fault report mask PVDD OV fault report  
Mask DC fault report  
MASK_OC  
Mask OC fault report  
8.6.1.48 PIN_CONTROL2 Register (Offset = 75h) [reset = 0xF8]  
PIN_CONTROL2 is shown in 8-61 and described in 8-57.  
Return to 8-8.  
8-61. PIN_CONTROL2 Register  
7
6
5
4
3
2
1
0
CBC_FAULT_L CBC_WARN_L CLKFLT_LATC OTSD_LATCH_ OTW_LATCH_  
MASK_OTW  
MASK_CBCW MASK_CBC_F  
AULT  
ATCH_EN  
ATCH_EN  
H_EN  
EN  
EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8-57. PIN_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CBC_FAULT_LATCH_EN R/W  
CBC_WARN_LATCH_EN R/W  
1
Enable CBC fault latch by setting this bit to 1  
Enable CBC warning latch by setting this bit to 1  
Enable clock fault latch by setting this bit to 1  
Enable OTSD fault latch by setting this bit to 1  
Enable OT warning latch by setting this bit to 1  
Mask OT warning report by setting this bit to 1  
Mask CBC warning report by setting this bit to 1  
Mask CBC fault report by setting this bit to 1  
6
5
4
3
2
1
0
1
1
1
1
0
0
0
CLKFLT_LATCH_EN  
OTSD_LATCH_EN  
OTW_LATCH_EN  
MASK_OTW  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
MASK_CBCW  
MASK_CBC_FAULT  
8.6.1.49 MISC_CONTROL Register (Offset = 76h) [reset = 0x00]  
MISC_CONTROL is shown in 8-62 and described in 8-58.  
Return to 8-8.  
8-62. MISC_CONTROL Register  
7
6
5
4
3
2
1
0
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-62. MISC_CONTROL Register (continued)  
DET_STATUS_  
LATCH  
RESERVED  
OTSD_AUTO_  
REC_EN  
RESERVED  
R/W  
R/W  
R/W  
R/W  
8-58. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DET_STATUS_LATCH  
R/W  
0
1:Latch clock detection status  
0:Don't latch clock detection status  
6-5  
4
RESERVED  
R/W  
R/W  
R/W  
00  
These bits are reserved  
OTSD auto recovery enable  
This bit is reserved  
OTSD_AUTO_REC_EN  
RESERVED  
0
3-0  
0000  
8.6.1.50 CBC_CONTROL Register (Offset = 77h) [reset = 0x00]  
CBC_CONTROL is shown in 8-63 and described in 8-59.  
Return to 8-8.  
8-63. CBC_CONTROL Register  
7
6
5
4
3
2
1
0
RESERVED  
CBC_LEVEL_SEL  
R/W  
CBC_EN  
CBC_WARN_E CBC_FAULT_E  
N
N
R/W  
R/W  
R/W  
R/W  
8-59. CBC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-3  
RESERVED  
R/W  
000  
These bits are reserved  
CBC_LEVE 00  
L_SEL  
This bit sets CBC level, which is percentage to Over-Current  
Threshold:  
00: 80%  
10: 60%  
01: 40%  
2
1
0
CBC_EN  
R/W  
R/W  
R/W  
0
0
0
Enable CBC function  
Enable CBC warning  
Enable CBC fault  
CBC_WARN_EN  
CBC_FAULT_EN  
8.6.1.51 FAULT_CLEAR Register (Offset = 78h) [reset = 0x00]  
FAULT_CLEAR is shown in 8-64 and described in 8-60.  
Return to 8-8.  
8-64. FAULT_CLEAR Register  
7
6
5
4
3
2
1
0
ANALOG_FAUL  
T_CLEAR  
RESERVED  
R/W  
W
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
8-60. FAULT_CLEAR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ANALOG_FAULT_CLEAR  
RESERVED  
W
0
WRITE CLEAR BIT once write this bit to 1, device clears analog fault  
This bit is reserved  
6-0  
R/W  
0000000  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
This section details the information required to configure the device for several popular configurations and  
provides guidance on integrating the TAS5828M device into the larger system.  
9.1.1 Inductor Selections  
It is required that the peak current is smaller than the OCP (Over current protection) value which is 7.5 A, there  
are 3 cases which cause high peak current flow through inductor.  
1. During power up (idle state, no audio input), the duty cycle increases from 0 to θ. There is a start-up current  
which flow through inductor to set up the common mode voltage (PVDD×θ).  
备注  
θ= 0.5 (BD Modulation), 0.14 (1 SPW Modulation), 0.14 (Hybrid Modulation)  
2. During music playing, some audio burst signal (high frequency) with very hard PVDD clipping causes PWM  
duty cycle increase dramatically. This is the worst case and it rarely happens.  
Ipeak _clipping ö PVDDì(1-q)/(F ì L)  
sw  
(1)  
3. Peak current due to Max output power. Ignore the ripple current flow through capacitor here.  
Ipeak _ output _ power ö 2ì Max _Output _ Power / Rspea ker_ Load  
(2)  
It is suggested that inductor saturation current Isat, is larger than the amplifier peak current during power-up and  
play audio.  
ISAT í max(Ipeak_ power_up,I peak_clipping,Ipeak_output_ power  
)
(3)  
9-1. Inductor Requirements  
PVDD (V)  
12  
Switching Frequency (kHz)  
Minimum Inductance (L) (µH)  
384  
384  
4.7  
10  
> 12  
For higher switching frequencies (Fsw), select the inductors with minimum inductance to be 384 kHz / Fsw × L.  
Same PVDD and switching frequency, larger inductance means smaller idle current for lower power dissipation.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
9.1.2 Bootstrap Capacitors  
The output stage of the TAS5828M uses a high-side NMOS driver, rather than a PMOS driver. To generate the  
gate driver voltage for the high-side NMOS, a bootstrap capacitor for each output terminal acts as a floating  
power supply for the switching cycle. Use 0.47-µF capacitors to connect the appropriate output pin (OUT_X) to  
the bootstrap pin (BST_X). For example, connect a 0.47-µF capacitor between OUT_A and BST_A for  
bootstrapping the A channel. Similarly, connect another 0.47-µF capacitor between the OUT_B and BST_B pins  
for the B channel inverting output.  
9.1.3 Power Supply Decoupling  
To ensure high efficiency, low THD, and high PSRR, proper power supply decoupling is necessary. Noise  
transients on the power supply lines are short duration voltage spikes. These spikes can contain frequency  
components that extend into the hundreds of megahertz. The power supply input must be decoupled with some  
good quality, low ESL, Low ESR capacitors larger than 22 µF. These capacitors bypasses low frequency noise to  
the ground plane. For high frequency decoupling, place 1-µF or 0.1-µF capacitors as close as possible to the  
PVDD pins of the device.  
9.1.4 Output EMI Filtering  
The device is often used with a low-pass filter, which is used to filter out the carrier frequency of the PWM  
modulated output. This filter is frequently referred to as the L-C Filter, due to the presence of an inductive  
element L and a capacitive element C to make up the 2-pole filter.  
The L-C filter removes the carrier frequency, reducing electromagnetic emissions and smoothing the current  
waveform which is drawn from the power supply. The presence and size of the L-C filter is determined by several  
system level constraints. In some low-power use cases that have no other circuits which are sensitive to EMI, a  
simple ferrite bead or a ferrite bead plus a capacitor can replace the tradition large inductor and capacitor that  
are commonly used. In other high-power applications, large toroid inductors are required for maximum power  
and film capacitors can be used due to audio characteristics. Refer to the application report Class-D LC Filter  
Design (SLOA119) for a detailed description on the proper component selection and design of an L-C filter  
based upon the desired load and response.  
For EMI performance and EMI Design consideration, reference to application report: TAS5825M Design  
Considerations for EMC.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
9.2 Typical Applications  
9.2.1 2.0 (Stereo BTL) System  
In the 2.0 system, two channels are presented to the amplifier via the digital input signal. These two channels  
are amplified and then sent to two separate speakers. In some cases, the amplified signal is further separated  
based upon frequency by a passive crossover network after the L-C filter. Even so, the application is considered  
2.0.  
Most commonly, the two channels are a pair of signals called a stereo pair, with one channel containing the  
audio for the left channel and the other channel containing the audio for the right channel. While certainly the two  
channels can contain any two audio channels, such as two surround channels of a multi-channel speaker  
system, the most popular occurrence in two channels systems is a stereo pair.  
9-1 shows the 2.0 (Stereo BTL) system application.  
L1  
PVDD  
PVDD  
Left+  
10uH  
C1  
680nF  
50V  
C2  
10uF  
35V  
C3  
10uF  
35V  
C4  
0.1uF  
C8  
390uF  
C5  
0.1uF  
C6  
10uF  
35V  
C7  
10uF  
35V  
C9  
390uF  
0xC0  
0xC2  
0xC4  
0xC6  
GND  
Channel L  
L2  
GND  
GND  
GND  
GND  
Left-  
DNP  
DNP  
DNP  
DNP  
33k  
6.8k  
1.5k  
0
0xC8  
0xCA  
GND  
GND  
GND  
GND  
10uH  
C10  
680nF  
50V  
DVDD  
Reserved  
Hardware Control Mode  
U1  
FROM CONTROLLER  
C11  
4.7uF  
C12  
0.1uF  
GND  
OUT_A+  
OUT_A-  
17  
19  
23  
LRCLK  
SCLK  
SDIN  
PVDD  
OUT_A+  
OUT_A-  
18  
31  
32  
L3  
PVDD  
PVDD  
PVDD  
OUT_B+  
OUT_B-  
Right+  
GND  
GND  
GND  
10uH  
C13  
680nF  
50V  
15  
14  
30  
26  
DVDD  
OUT_B+  
OUT_B-  
C14  
C16  
C18  
C20  
C15  
1µF  
BST_A+ 470nF  
BST_A-  
VR_DIG  
470nF  
Channel R  
DVDD  
DVDD  
R2  
DVDD  
R3  
DVDD  
R4  
DVDD  
1µFC17  
BST_B+  
BST_B-  
GND  
2
3
20  
24  
AVDD  
GVDD  
BST_A+  
BST_A-  
C19  
1µF  
470nF  
470nF  
L4  
LRCLK  
SCLK  
SDIN  
Right-  
9
8
7
29  
25  
LRCLK  
SCLK  
SDIN  
BST_B+  
BST_B-  
R1  
0
R5  
10.0k  
10uH  
C21  
10.0k  
1.0k  
10.0k  
680nF  
50V  
ADR  
13  
12  
11  
10  
4
ADR/HW_MODE  
GPIO0/FAULT  
GPIO1/PWM_CTRL/MUTE  
GPIO2/SDOUT/PD_DET  
PDN  
SCL/HW_SEL0  
SDA/HW_SEL1  
GPIO0_FAULT  
GPIO1_Hybrid_Pro  
GPIO2_WARN  
PDN  
AMP_SCL  
AMP_SDA  
1
GPIO0_FAULT  
GPIO1_Hybrid_Pro  
GPIO2_WARN  
PDN  
AGND  
DGND  
PGND  
PGND  
PGND  
PGND  
16  
21  
22  
27  
28  
GND  
5
6
AMP_SCL  
AMP_SDA  
TAS5828MDADR  
R6  
0
GND  
H1  
GND  
1
2
HEATSINK100W_25X50X25  
GND  
9-1. 2.0 (Stereo BTL) System Application Schematic  
le  
mb  
me  
li  
me  
le  
pli  
mp  
is  
id  
in  
in  
it  
ot  
it  
ion  
esig  
ll  
ic  
il  
in  
le  
io  
ic  
nd  
im le  
io  
ic  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
9.2.2 Design Requirements  
Power supplies:  
3.3-V supply  
5-V to 24-V supply  
Communication: host processor serving as I2C compliant controller  
External memory (such as EEPROM and FLASH) used for coefficients.  
The requirements for the supporting components for the TAS5828M device in a Stereo 2.0 (BTL) system is  
provide in 9-2.  
9-2. Supporting Component Requirements for Stereo 2.0 (BTL) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
CAP, AL, 390 uF, 35 V, ± 20%, SMD  
C8, C9  
390µF  
0.1µF  
10µF  
SMD  
0402  
0805  
0603  
0603  
0603  
0603  
0805  
C4,C5  
C2,C3, C6, C7  
C11  
CAP, CERM, 10 uF, 35 V, ± 10%, X5R, 0805  
CAP,CERM, 22 µF, 35 V, ±20%, JB, 0805  
CAP,CERM, 4.7 µF, 10 V, ±10%, X5R, 0603  
CAP,CERM, 0.1 µF, 16 V, ±10%, X7R, 0603  
CAP,CERM, 1 µF, 16 V, ±10%, X5R, 0603  
CAP,CERM, 0.47 µF, 16 V, ±10%, X7R, 0603  
CAP,CERM, 0.68 µF, 50 V, ±10%, X7R, 0805  
4.7µF  
0.1µF  
1µF  
C12  
C15,C17, C19  
C14,C16, C18, C20  
C1,C10, C13, C21  
L1,L2, L3, L4  
0.47µF  
0.68µF  
10µH  
Inductor, Shielded Drum Core, Ferrite, 10 uH, 7.1 A,  
0.01294 ohm, SMD, 7447709100  
R1, R6  
R2,R4, R5  
R3  
0402  
0402  
0402  
RES,0, 5%, 0.063 W, 0402  
RES,10.0 k, 1%, 0.063 W, 0402  
RES,1.0 k, 1%, 0.063 W, 0402  
0Ω  
10kΩ  
1kΩ  
9.2.3 Detailed Design procedures  
This Design procedures can be used for both Stereo 2.0, Advanced 2.1 and Mono Mode.  
9.2.3.1 Step One: Hardware Integration  
Using the Typical Application Schematic as a guide, integrate the hardware into the system schematic.  
Following the recommended component placement, board layout, and routing given in the example layout  
above, integrate the device and its supporting components into the system PCB file.  
The most critical sections of the circuit are the power supply inputs, the amplifier output signals, and the  
high-frequency signals, all of which go to the serial audio port. Constructing these signals to ensure they  
are given precedent as design trade-offs are made is recommended.  
For questions and support go to the E2E forums (e2e.ti.com). If deviating from the recommended layout is  
necessary, go to the E2E forum to request a layout review.  
9.2.3.2 Step Two: Hardware Integration  
Using the TAS5828MEVM evaluation module and the PPC3 app to configure the desired device settings.  
9.2.3.3 Step Three: Software Integration  
Using the End System Integration feature of the PPC3 app to generate a baseline configuration file.  
Generate additional configuration files based upon operating modes of the end-equipment and integrate  
static configuration information into initialization files.  
Integrate dynamic controls (such as volume controls, mute commands, and mode-based EQ curves) into the  
main system program.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
9.2.4 MONO (PBTL) Systems  
In MONO mode, TAS5828M can be used as PBTL mode to drive sub-woofer with more output power.  
L1  
PVDD  
PVDD  
10uH  
C1  
680nF  
50V  
C2  
10uF  
35V  
C3  
10uF  
35V  
C4  
0.1uF  
C8  
390uF  
C5  
0.1uF  
C6  
10uF  
35V  
C7  
10uF  
35V  
C9  
390uF  
0xC0  
0xC2  
0xC4  
0xC6  
GND  
Woofer  
GND  
GND  
GND  
GND  
DNP  
DNP  
DNP  
DNP  
33k  
6.8k  
1.5k  
0
0xC8  
0xCA  
GND  
GND  
GND  
GND  
DVDD  
Reserved  
Hardware Control Mode  
U1  
FROM CONTROLLER  
C11  
4.7uF  
C12  
0.1uF  
17  
19  
23  
LRCLK  
SCLK  
SDIN  
PVDD  
OUT_A+  
OUT_A-  
18  
31  
32  
L3  
PVDD  
PVDD  
PVDD  
GND  
GND  
GND  
10uH  
C13  
680nF  
50V  
15  
14  
30  
26  
DVDD  
OUT_B+  
OUT_B-  
C14  
C16  
C18  
C20  
C15  
1µF  
470nF  
470nF  
470nF  
470nF  
VR_DIG  
DVDD  
DVDD  
R2  
DVDD  
R3  
DVDD  
R4  
DVDD  
1µFC17  
GND  
2
3
20  
24  
AVDD  
GVDD  
BST_A+  
BST_A-  
C19  
1µF  
LRCLK  
SCLK  
SDIN  
9
8
7
29  
25  
LRCLK  
SCLK  
SDIN  
BST_B+  
BST_B-  
R1  
0
R5  
10.0k  
10.0k  
1.0k  
10.0k  
ADR  
13  
12  
11  
10  
4
ADR/HW_MODE  
GPIO0/FAULT  
GPIO1/PWM_CTRL/MUTE  
GPIO2/SDOUT/PD_DET  
PDN  
SCL/HW_SEL0  
SDA/HW_SEL1  
GPIO0_FAULT  
GPIO1_Hybrid_Pro  
GPIO2_WARN  
PDN  
AMP_SCL  
AMP_SDA  
1
GPIO0_FAULT  
GPIO1_Hybrid_Pro  
GPIO2_WARN  
PDN  
AGND  
DGND  
PGND  
PGND  
PGND  
PGND  
16  
21  
22  
27  
28  
5
6
AMP_SCL  
AMP_SDA  
TAS5828MDADR  
R6  
0
GND  
H1  
GND  
1
2
HEATSINK100W_25X50X25  
GND  
9-2. Sub-woofer (PBTL) Application Schematic  
9-3. Supporting Component Requirements for Sub-woofer (PBTL) Systems  
REFERENCE  
DESIGNATOR  
VALUE  
SIZE  
DETAILED DESCRIPTION  
CAP, AL, 390 uF, 35 V, ± 20%, SMD  
C8, C9  
C4,C5  
390µF  
0.1µF  
10µF  
SMD  
0402  
0805  
0603  
0603  
0603  
0603  
CAP, CERM, 10 uF, 35 V, ± 10%, X5R, 0805  
CAP,CERM, 22 µF, 35 V, ±20%, JB, 0805  
CAP,CERM, 4.7 µF, 10 V, ±10%, X5R, 0603  
CAP,CERM, 0.1 µF, 16 V, ±10%, X7R, 0603  
CAP,CERM, 1 µF, 16 V, ±10%, X5R, 0603  
CAP,CERM, 0.47 µF, 16 V, ±10%, X7R, 0603  
CAP,CERM, 0.68 µF, 50 V, ±10%, X7R, 0805 mb  
C2,C3, C6, C7  
C11  
4.7µF  
0.1µF  
1µF  
C12  
C15,C17, C19  
C14,C16, C18, C20  
C1,C13  
0.47µF  
0.68µF  
10µH  
le  
0805  
me  
li  
le  
pli  
mp  
is  
in  
in  
it  
ot  
ion  
esig  
me  
ll  
ic  
il  
in  
le  
io  
it  
ic  
id  
nd  
im le  
io  
ic  
L1,L3  
Inductor, Shielded Drum Core, Ferrite, 10 uH, 7.1 A,  
0.01294 ohm, SMD, 7447709100  
R1, R6  
0402  
0402  
RES,0, 5%, 0.063 W, 0402  
0Ω  
R2,R4, R5  
RES,10.0 k, 1%, 0.063 W, 0402  
10kΩ  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
9.2.5 Advanced 2.1 System (Two TAS5828M Devices)  
In higher performance systems, the subwoofer output can be enhanced using digital audio processing as was  
done in the high-frequency channels. To accomplish this, two TAS5828M devices are used - one for the high  
frequency left and right speakers and one for the mono subwoofer speaker. In this system, the audio signal can  
be sent from the TAS5828M device through the SDOUT pin. Alternatively, the subwoofer amplifier can accept  
the same digital input as the stereo, which might come from a central systems processor.9-3 shows the 2.1  
(Stereo BTL with Two TAS5828M devices) system application.  
L1  
PVDD  
PVDD  
Left+  
10uH  
C1  
680nF  
50V  
C2  
10uF  
35V  
C3  
10uF  
35V  
C4  
0.1uF  
C5  
390uF  
C6  
0.1uF  
C7  
10uF  
35V  
C8  
10uF  
35V  
C9  
390uF  
GND  
Channel  
L
L2  
GND  
GND  
GND  
GND  
Left-  
GND  
GND  
GND  
GND  
10uH  
C10  
680nF  
50V  
DVDD  
U1  
C11  
4.7uF  
C12  
0.1uF  
GND  
17  
19  
23  
LRCLK  
SCLK  
SDIN  
PVDD  
OUT_A+  
OUT_A-  
18  
31  
32  
L3  
PVDD  
PVDD  
PVDD  
Right+  
GND  
GND  
GND  
10uH  
C13  
15  
14  
30  
26  
680nF  
50V  
DVDD  
OUT_B+  
OUT_B-  
C14  
C16  
C18  
C20  
C15  
1µF  
470nF  
470nF  
470nF  
470nF  
VR_DIG  
Channel  
R
DVDD  
R1  
DVDD  
R2  
DVDD  
1µFC17  
GND  
2
3
20  
24  
AVDD  
GVDD  
BST_A+  
BST_A-  
C19  
1µF  
L4  
LRCLK  
SCLK  
SDIN  
Right-  
9
8
7
29  
25  
LRCLK  
SCLK  
SDIN  
BST_B+  
BST_B-  
R3  
10.0k  
10uH  
C21  
680nF  
50V  
10.0k  
1.0k  
H1  
ADR1  
FAULT1  
Hybrid_Pro  
SDOUT  
PDN1  
AMP_SCL  
AMP_SDA  
13  
12  
11  
10  
4
ADR/HW_MODE  
GPIO0/FAULT  
GPIO1/PWM_CTRL/MUTE  
GPIO2/SDOUT/PD_DET  
PDN  
SCL/HW_SEL0  
SDA/HW_SEL1  
1
FAULT1  
Hybrid_Pro  
AGND  
DGND  
PGND  
PGND  
PGND  
PGND  
16  
21  
22  
27  
28  
GND  
PDN1  
5
6
1
2
AMP_SCL  
AMP_SDA  
HEATSINK100W_25X50X25  
TAS5828MDADR  
R4  
0
GND  
GND  
L5  
GND  
PVDD  
PVDD  
10uH  
C22  
680nF  
50V  
FROM CONTROLLER  
C23  
10uF  
35V  
C24  
10uF  
35V  
C25  
0.1uF  
C26  
390uF  
C27  
0.1uF  
C28  
10uF  
35V  
C29  
10uF  
35V  
C30  
390uF  
GND  
Woofer  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SDOUT  
DVDD  
U2  
C31  
4.7uF  
C32  
0.1uF  
17  
19  
23  
PVDD  
OUT_A+  
OUT_A-  
18  
31  
32  
L6  
PVDD  
PVDD  
PVDD  
GND  
GND  
GND  
10uH  
C33  
680nF  
50V  
15  
14  
30  
26  
DVDD  
OUT_B+  
OUT_B-  
C34  
C36  
C38  
C40  
C35  
1µF  
470nF  
470nF  
470nF  
470nF  
VR_DIG  
DVDD  
DVDD  
DVDD  
1µFC37  
GND  
2
3
20  
24  
AVDD  
GVDD  
BST_A+  
BST_A-  
C39  
1µF  
LRCLK  
SCLK  
SDIN  
9
8
7
29  
25  
LRCLK  
SCLK  
SDIN  
BST_B+  
BST_B-  
R5  
10.0k  
R6  
1.0k  
R8  
10.0k  
ADR2  
13  
12  
11  
10  
4
H2  
ADR/HW_MODE  
GPIO0/FAULT  
GPIO1/PWM_CTRL/MUTE  
GPIO2/SDOUT/PD_DET  
PDN  
SCL/HW_SEL0  
SDA/HW_SEL1  
FAULT2  
Hybrid_Pro  
SDOUT2  
PDN2  
AMP_SCL  
AMP_SDA  
1
FAULT2  
PDN2  
AGND  
DGND  
PGND  
PGND  
PGND  
PGND  
16  
21  
22  
27  
28  
5
6
1
2
TAS5828MDADR  
HEATSINK100W_25X50X25  
R9  
1k  
GND  
GND  
GND  
9-3. 2.1 (2.1 CH with Two TAS5828M Devices) Application Schematic  
le  
mb  
me  
li  
me  
le  
pli  
mp  
is  
id  
in  
in  
it  
ot  
ion  
esig  
ll  
ic  
il  
in  
le  
io  
it  
ic  
nd  
im le  
io  
ic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TAS5828M  
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
10 Power Supply Recommendations  
The TAS5828M device requires two power supplies for proper operation. A high-voltage supply calls PVDD is  
required to power the output stage of the speaker amplifier and its associated circuitry. Additionally, one low-  
voltage power supply which is calls DVDD is required to power the various low-power portions of the device. The  
allowable voltage range for both PVDD and DVDD supply are listed in the Recommended Operating Conditions  
table. The two power supplies do not have a required powerup sequence. The power supplies can be powered  
on in any order.  
Internal Digital  
Circuitry  
Digital IO  
DVDD  
VR_DIG  
1.5V  
1.8V/3.3V'  
LDO  
External Filtering/Decoupling  
DVDD  
Output Stage  
Power Supply  
Gate Drive  
Voltage  
PVDD  
4.5V~26.4V  
GVDD  
5V  
LDO  
LDO  
External Filtering/Decoupling  
Internal Analog  
Circuitry  
PVDD  
AVDD  
5V  
External Filtering/Decoupling  
Copyright © 2017, Texas Instruments Incorporated  
10-1. Power Supply Function Block Diagram  
10.1 DVDD Supply  
The DVDD supply that is required from the system is used to power several portions of the device. As shown in  
10-1, it provides power to the DVDD pin. Proper connection, routing and decoupling techniques are  
highlighted in the Application and Implementation section and the Layout Example section and must be followed  
as closely as possible for proper operation and performance.  
Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply.  
To simplify the power supply requirements for the system, the TAS5828M device includes an integrated low  
dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD  
supply and its output is presented on the DVDD_REG pin, providing a connection point for an external bypass  
capacitor. It is important to note that the linear regulator integrated in the device has only been designed to  
support the current requirements of the internal circuitry, and should not be used to power any additional external  
circuity. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and  
operation of the device.  
10.2 PVDD Supply  
The output stage of the speaker amplifier drives the load using the PVDD supply. This is the power supply which  
provides the drive current to the load during playback. Proper connection, routing, and decoupling techniques  
are highlighted in the TAS5828MEVM and must be followed as closely as possible for proper operation and  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
performance. Due to the high-voltage switching of the output stage, it is particularly important to properly  
decouple the output power stages in the manner described in the TAS5828M device Application and  
Implementation. Lack of proper decoupling, like that shown in the Application and Implementation, results in  
voltage spikes which can damage the device.  
A separate power supply is required to drive the gates of the MOSFETs used in the output stage of the speaker  
amplifier. This power supply is derived from the PVDD supply via an integrated linear regulator. A GVDD pin is  
provided for the attachment of decoupling capacitor for the gate drive voltage regulator. It is important to note  
that the linear regulator integrated in the device has only been designed to support the current requirements of  
the internal circuitry, and should not be used to power any additional external circuitry. Additional loading on this  
pin could cause the voltage to sag, negatively affecting the performance and operation of the device.  
Another separate power supply is derived from the PVDD supply via an integrated linear regulator is AVDD.  
AVDD pin is provided for the attachment of decoupling capacitor for the TAS5828M internal circuitry. It is  
important to note that the linear regulator integrated in the device has only been designed to support the current  
requirements of the internal circuitry, and should not be used to power any additional external circuitry. Additional  
loading on this pin could cause the voltage to sag, negatively affecting the performance and operation of the  
device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
11 Layout  
11.1 Layout Guidelines  
11.1.1 General Guidelines for Audio Amplifiers  
Audio amplifiers which incorporate switching output stages must have special attention paid to their layout and  
the layout of the supporting components used around them. The system level performance metrics, including  
thermal performance, electromagnetic compliance (EMC), device reliability, and audio performance are all  
affected by the device and supporting component layout.  
Ideally, the guidance provided in the applications section with regard to device and component selection can be  
followed by precise adherence to the layout guidance shown in the Layout Example section. These examples  
represent exemplary baseline balance of the engineering trade-offs involved with lying out the device. These  
designs can be modified slightly as needed to meet the needs of a given application. In some applications, for  
instance, solution size can be compromised to improve thermal performance through the use of additional  
contiguous copper neat the device. Conversely, EMI performance can be prioritized over thermal performance  
by routing on internal traces and incorporating a via picket-fence and additional filtering components. In all  
cases, it is recommended to start from the guidance shown in the Layout Example section and work with TI field  
application engineers or through the E2E community to modify it based upon the application specific goals.  
11.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network  
Placing the bypassing and decoupling capacitors close to supply has long been understood in the industry. This  
applies to DVDD, AVDD, GVDD and PVDD. However, the capacitors on the PVDD net for the TAS5828M device  
deserve special attention.  
The small bypass capacitors on the PVDD lines of the DUT must be placed as close to the PVDD pins as  
possible. Not only dose placing these device far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS5828M device can cause ringing on the output pins that can cause the voltage on the output  
pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the  
deice . For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the Layout Example section.  
11.1.3 Optimizing Thermal Performance  
Follow the layout example shown in the 11-1 to achieve the best balance of solution size, thermal, audio, and  
electromagnetic performance. In some cases, deviation from this guidance can be required due to design  
constraints which cannot be avoided. In these instances, the system designer should ensure that the heat can  
get out of the device and into the ambient air surrounding the device. Fortunately, the heat created in the device  
naturally travels away from the device and into the lower temperature structures around the device.  
11.1.3.1 Device, Copper, and Component Layout  
Primarily, the goal of the PCB design is to minimize the thermal impedance in the path to those cooler structures.  
These tips should be followed to achieve that goal:  
Avoid placing other heat producing components or structures near the amplifier (including above or below in  
the end equipment).  
If possible, use a higher layer count PCB to provide more heat sinking capability for the TAS5828M device  
and to prevent traces and copper signal and power planes from breaking up the contiguous copper on the top  
and bottom layer.  
Place the TAS5828M device away from the edge of the PCB when possible to ensure that the heat can travel  
away from the device on all four sides.  
Avoid cutting off the flow of heat from the TAS5828M device to the surrounding areas with traces or via  
strings. Instead, route traces perpendicular to the device and line up vias in columns which are perpendicular  
to the device.  
Unless the area between two pads of a passive component is large enough to allow copper to flow in  
between the two pads, orient it so that the narrow end of the passive component is facing the TAS5828M  
device.  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
Because the ground pins are the best conductors of heat in the package, maintain a contiguous ground plane  
from the ground pins to the PCB area surrounding the device for as many of the ground pins as possible.  
11.1.3.2 Stencil Pattern  
The recommended drawings for the TAS5828M device PCB foot print and associated stencil pattern are shown  
at the end of this document in the package addendum. Additionally, baseline recommendations for the via  
arrangement under and around the device are given as a starting point for the PCB design. This guidance is  
provided to suit the majority of manufacturing capabilities in the industry and prioritizes manufacturability over all  
other performance criteria. In elevated ambient temperature or under high-power dissipation use-cases, this  
guidance may be too conservative and advanced PCB design techniques may be used to improve thermal  
performance of the system.  
备注  
The customer must verify that deviation from the guidance shown in the package addendum, including  
the deviation explained in this section, meets the customers quality, reliability, and manufacturability  
goals.  
11.1.3.2.1 PCB footprint and Via Arrangement  
The PCB footprint (also known as a symbol or land pattern) communicates to the PCB fabrication vendor the  
shape and position of the copper patterns to which the TAS5828M device is soldered. This footprint can be  
followed directly from the guidance in the package addendum at the end of this data sheet. It is important to  
make sure that the thermal pad, which connects electrically and thermally to the PowerPADof the TAS5828M  
device, be made no smaller than what is specified in the package addendum. This ensures that the TAS5828M  
device has the largest interface possible to move heat from the device to the board.  
The via pattern shown in the package addendum provides an improved interface to carry the heat from the  
device through to the layers of the PCB, because small diameter plated vias (with minimally-sized annular rings)  
present a low thermal-impedance path from the device into the PCB. Once into the PCB, the heat travels away  
from the device and into the surrounding structures and air. By increasing the number of vias, as shown in the  
Layout Example section, this interface can benefit from improved thermal performance.  
备注  
Vias can obstruct heat flow if they are not constructed properly.  
More notes on the construction and placement of vias are as follows:  
Remove thermal reliefs on thermal vias, because they impede the flow of heat through the via.  
Vias filled with thermally conductive material are best, but a simple plated via can be used to avoid the  
additional cost of filled vias.  
The diameter of the drull must be 8 mm or less. Also, the distance between the via barrel and the surrounding  
planes should be minimized to help heat flow from the via into the surrounding copper material. In all cases,  
minimum spacing should be determined by the voltages present on the planes surrounding the via and  
minimized wherever possible.  
Vias should be arranged in columns, which extend in a line radially from the heat source to the surrounding  
area. This arrangement is shown in the Layout Example section.  
Ensure that vias do not cut off power current flow from the power supply through the planes on internal  
layers. If needed, remove some vias that are farthest from the TAS5828M device to open up the current path  
to and from the device.  
11.1.3.2.2 Solder Stencil  
During the PCB assembly process, a piece of metal called a stencil on top of the PCB and deposits solder paste  
on the PCB wherever there is an opening (called an aperture) in the stencil. The stencil determines the quantity  
and the location of solder paste that is applied to the PCB in the electronic manufacturing process. In most  
cases, the aperture for each of the component pads is almost the same size as the pad itself. However, the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
thermal pad on the PCB is large and depositing a large, single deposition of solder paste would lead to  
manufacturing issues. Instead, the solder is applied to the board in multiple apertures, to allow the solder paste  
to outgas during the assembly process and reduce the risk of solder bridging under the device. This structure is  
called an aperture array, and is shown in the Layout Example section. It is important that the total area of the  
aperture array (the area of all of the small apertures combined) covers between 70% and 80% of the area of the  
thermal pad itself.  
11.2 Layout Example  
2
11cm  
From  
System  
Processor  
11-1. 2.0 (Stereo BTL) 3-D View  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
11-2. 2.0 (Stereo BTL) Top Copper View  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TAS5828M  
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Device Nomenclature  
The glossary section is a general glossary with commonly used acronyms and words which are defined in  
accordance with a broad TI initiative to comply with industry standards such as JEDEC, IPC, IEEE, and others.  
The glossary provided in this section defines words, phrases, and acronyms that are unique to this product and  
documentation, collateral, or support tools and software used with this product. For any additional questions  
regarding definitions and terminology, please see the e2e Audio Amplfier Forum.  
Bridge tied load (BTL) is an output configuration in which one terminal of the speaker is connected to one half-  
bridge and the other terminal is connected to another half-bridge.  
DUT refers to a device under test to differentiate one device from another.  
Closed-loop architecture describes a topology in which the amplifier monitors the output terminals, comparing  
the output signal to the input signal and attempts to correct for non-linearities in the output.  
Dynamic controls are those which are changed during normal use by either the system or the end-user.  
GPIO is a general purpose input/output pin. It is a highly configurable, bi-directional digital pin which can perform  
many functions as required by the system.  
Host processor (also known as System Processor, Scalar, Host, or System Controller) refers to device  
which serves as a central system controller, providing control information to devices connected to it as well as  
gathering audio source data from devices upstream from it and distributing it to other devices. This device often  
configures the controls of the audio processing devices (like the TAS5828M) in the audio path in order to  
optimize the audio output of a loudspeaker based on frequency response, time alignment, target sound pressure  
level, safe operating area of the system, and user preference.  
Maximum continuous output power refers to the maximum output power that the amplifier can continuously  
deliver without shutting down when operated in a 25°C ambient temperature. Testing is performed for the period  
of time required that their temperatures reach thermal equilibrium and are no longer increasing  
Parallel bridge tied load (PBTL) is an output configuration in which one terminal of the speaker is connected to  
two half-bridges which have been placed in parallel and the other terminal is connected to another pair of half  
bridges placed in parallel  
rDS(on) is a measure of the on-resistance of the MOSFETs used in the output stage of the amplifier.  
Static controls/Static configurations are controls which do not change while the system is in normal use.  
Vias are copper-plated through-hole in a PCB.  
12.1.2 Development Support  
For RDGUI software, please consult your local field support engineer.  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TAS5828M  
 
 
 
 
TAS5828M  
www.ti.com.cn  
ZHCSO77A JUNE 2021 REVISED DECEMBER 2021  
12.4 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TAS5828M  
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5828MDADR  
ACTIVE  
HTSSOP  
DAD  
32  
2000 RoHS & Green  
Call TI  
Level-3-260C-168 HR  
-40 to 85  
TAS  
5828M  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS5828MDADR

具有集成音频处理器的 50W 立体声、数字输入、高性能、闭环、D 类音频放大器 | DAD | 32 | -40 to 85
TI

TAS6421-Q1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6421QDKQRQ1

具有负载突降保护功能的汽车类 75W、2MHz、单通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6422-Q1

具有负载突降保护功能的汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6422E-Q1

汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6422EQDKQRQ1

汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6422QDKQRQ1

具有负载突降保护功能的汽车类 75W、2MHz、2 通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424-Q1

汽车类 75W、2MHz、4 通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6424E-Q1

汽车类 75W、2MHz、四通道、4.5V 至 26.4V 数字输入 D 类音频放大器
TI

TAS6424EQDKQRQ1

汽车类 75W、2MHz、四通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424L-Q1

具有负载突降保护功能的汽车类 27W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器
TI

TAS6424LQDKQRQ1

具有负载突降保护功能的汽车类 27W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI