THS7530QPWPRQ1 [TI]

汽车类、300MHz、全差分、连续可变增益放大器 | PWP | 14 | -40 to 125;
THS7530QPWPRQ1
型号: THS7530QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类、300MHz、全差分、连续可变增益放大器 | PWP | 14 | -40 to 125

放大器 光电二极管
文件: 总28页 (文件大小:1421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
THS7530-Q1 高速、全差分、连续  
可变增益放大器  
1 特性  
通信中的系统增益校准  
仪表中的可变增益  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
3 说明  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
THS7530-Q1 器件采用德州仪器 (TI) 先进的 BiCom III  
SiGe 互补双极工艺制造。THS7530-Q1 是一款带有压  
控增益的直流耦合高带宽放大器。该放大器具有高阻抗  
差分输入和低阻抗差分输出,提供高带宽增益控制、输  
出共模控制和输出电压钳位功能。  
器件人体放电模式 (HBM) 分类等级 2  
器件组件充电模式 (CDM) 分类等级 C6  
低噪声:Vn = 1.1nV/Hz,  
噪声系数 = 9dB  
低失真:  
该器件在 300MHz 带宽下  
频率为 32MHz 时:HD2 = –65dBcHD3 =  
的动态性能优异。当频率为 32MHz,同时将 1 VPP 输  
出施加于 400负载,三次谐波失真为 –61dBc。  
–61dBc  
频率为 70MHz 时:IMD3 = –62dBcOIP3 =  
21dBm  
增益控制(单位:dB)呈线性变化。在 0V 0.9V 电  
压范围内,增益以 38.8dB/V 的斜率由 11.6dB 变化为  
46.5dB。  
300MHz 带宽  
连续可变增益范围:11.6dB  
46.5dB  
输出电压限制功能用于限制输出电压摆幅并避免后续级  
发生饱和。  
增益斜率:38.8dB/V  
全差分输入和输出  
输出共模电压控制  
输出电压限制  
该器件可在汽车级温度范围内(–40°C +125°C)额  
定运行。  
器件信息(1)  
2 应用  
器件型号  
封装  
封装尺寸(标称值)  
超声波应用、声纳和雷达中的  
时间增益放大器  
THS7530-Q1  
HTSSOP (14)  
5.00mm x 4.40mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
通信和和视频中的  
自动增益控制  
典型应用电路  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
24.9 W  
0.1 mF  
6.8 mF  
33 pF  
24.9 W  
VCL+  
VCL-  
0.1 mF  
0.1 mF  
0.1 mF  
24.9 W  
VIN+  
VOUT-  
VOCM  
THS7530  
0.1 mF  
PD  
VOUT+  
VIN-  
24.9 W  
VG-  
0.1 mF  
33 pF  
VG+  
VS-  
VREF  
AGC Detect  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLOS932  
 
 
 
 
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application .................................................. 15  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics: Main Amplifier.................. 5  
6.6 Package Thermal Data ............................................. 6  
6.7 Typical Characteristics.............................................. 7  
Parameter Measurement Information ................ 10  
7.1 Test Circuits ............................................................ 10  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
9
10 Power Supply Recommendations ..................... 17  
11 Layout................................................................... 18  
11.1 Layout Guidelines ................................................. 18  
11.2 Layout Examples................................................... 20  
12 器件和文档支持 ..................................................... 22  
12.1 器件支持 ............................................................... 22  
12.2 文档支持................................................................ 22  
12.3 社区资源................................................................ 22  
12.4 ....................................................................... 22  
12.5 静电放电警告......................................................... 22  
12.6 Glossary................................................................ 22  
13 机械、封装和可订购信息....................................... 22  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
5 Pin Configuration and Functions  
PWP Package  
14-Pin HTSSOP With PowerPAD™  
Top View  
VCL+  
VCL-  
VOCM  
VOUT-  
VOUT+  
VS+  
NC  
NC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
VIN+  
VIN-  
VG+  
VG-  
VS-  
8
PD  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
1
NC  
No internal connection  
2
Power down, PD = logic low puts the device into low power mode; PD = logic high or open for normal  
operation  
PD  
7
VCL–  
VCL+  
VG-  
13  
14  
6
I
I
Output negative clamp voltage input  
Output positive clamp voltage input  
Gain setting negative input  
I
VG+  
5
I
Gain setting positive input  
VIN–  
VIN+  
VOCM  
VOUT–  
VOUT+  
VS–  
4
I
Inverting amplifier input  
3
I
Noninverting amplifier input  
12  
11  
10  
8
I
Output common-mode voltage input  
Inverted amplifier output  
O
O
I
Noninverted amplifier output  
Negative amplifier power-supply input  
Positive amplifier power-supply input  
VS+  
9
I
Copyright © 2015, Texas Instruments Incorporated  
3
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range, unless otherwise noted.(1)  
MIN  
MAX  
5.5  
±VS  
65  
UNIT  
V
VS+ – VS–  
Supply voltage  
VI  
Input voltage  
V
IO  
Output current  
mA  
V
VID  
Differential input voltage  
Continuous power dissipation  
Maximum junction temperature  
Maximum junction temperature for long term stability(2)  
Storage temperature  
±4  
See Thermal Information  
150  
125  
150  
°C  
°C  
°C  
TJ  
Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The maximum junction temperature for continuous operation is limited by package constraints. Operation above this temperature may  
result in reduced reliability and/or lifetime of the device.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN NOM  
MAX UNIT  
[VS– to VS+  
]
Supply voltage  
4.5  
5
2.5  
2.5  
5.5  
V
V
Input common mode voltage  
Output common mode voltage  
Operating free-air temperature  
[VS– to VS+] = 5 V  
[VS– to VS+] = 5 V  
V
TA  
–40  
125  
°C  
6.4 Thermal Information  
THS7530  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
14 PINS  
75.3  
35  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
28.9  
1.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
28.6  
3.2  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
6.5 Electrical Characteristics: Main Amplifier  
VS+ = 5 V, VS– = 0 V, VOCM = 2.5 V, VICM = 2.5 V, VG- = 0 V, VG+ = 1 V (maximum gain), TA = 25°C, AC performance measured  
using the AC test circuit shown in Figure 16 (unless otherwise noted). DC performance is measured using the DC test circuit  
shown in Figure 17 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AC PERFORMANCE  
Small-signal bandwidth  
Slew rate(1)  
Settling time to 1%(1)  
All gains, PIN = –45 dBm  
300  
1250  
11  
MHz  
V/µs  
ns  
1-VPP Step, 25% to 75%, minimum gain  
1-VPP Step, minimum gain  
Harmonic distortion, 2nd harmonic  
Harmonic distortion, 3rd harmonic  
f = 32 MHz, VO(PP) = 1 V, RL(diff)= 400  
f = 32 MHz, VO(PP) = 1 V, RL(diff)= 400 Ω  
–65  
–61  
dBc  
dBc  
PO = –10 dBm each tone, fC= 70 MHz,  
200-kHz tone spacing  
Third-order intermodulation distortion  
–62  
dBc  
Third-order output intercept point  
Noise figure (with input termination)  
Total input voltage noise  
fC= 70 MHz, 200-kHz tone spacing  
Source impedance: 50 Ω  
f > 100 kHz  
21  
9
dBm  
dB  
1.1  
nV/Hz  
DC PERFORMANCE—INPUTS  
TA = 25°C  
20  
39  
40  
Input bias current  
µA  
pA  
V
TA = –40°C to +125°C  
Input bias current offset  
Minimum input voltage  
<150  
1.5  
Minimum gain, TA = 25°C  
Minimum gain, TA = –40°C to +125°C  
Minimum gain, TA = 25°C  
Minimum gain, TA = –40°C to +125°C  
TA = 25°C  
1.6  
1.7  
3.2  
3.15  
56  
3.3  
114  
Maximum input voltage  
V
Common-mode rejection ratio  
dB  
TA = –40°C to +125°C  
44  
Differential input impedance  
8.5 || 3  
±100  
3.5  
k|| pF  
DC PERFORMANCE—OUTPUTS  
All gains, TA = 25°C  
All gains, TA = –40°C to +125°C  
TA = 25°C  
±410  
±480  
Output offset voltage  
mV  
V
3.25  
3
Maximum output voltage high  
Minimum output voltage low  
TA = –40°C to +125°C  
TA = 25°C  
1.5  
1.8  
2
V
TA = –40°C to +125°C  
TA = 25°C  
±16  
±16  
±30  
Output current  
mA  
TA = –40°C to +125°C  
Output impedance  
15  
OUTPUT COMMON-MODE VOLTAGE CONTROL  
Small-signal bandwidth  
Gain  
32  
1
MHz  
V/V  
TA = 25°C  
4.5  
12  
Common-mode offset voltage  
mV  
TA = –40°C to +125°C  
13.8  
Minimum input voltage  
Maximum input voltage  
Input impedance  
1.75  
3.25  
25 || 1  
2.5  
V
V
k|| pF  
V
Default voltage, with no connect  
Input bias current  
<1  
µA  
GAIN CONTROL  
Gain control differential voltage range  
Minus gain control voltage  
Minimum gain  
VG+  
0 to 1  
–0.6 to 0.8  
11.6  
V
V
VG– – VS–  
VG+ = 0 V  
VG+ = 0.9 V  
VG+ = 0 V to 0.9 V  
dB  
dB  
dB/V  
Maximum gain  
46.5  
Gain slope  
38.8  
(1) Slew rate and settling time measured at amplifier output.  
Copyright © 2015, Texas Instruments Incorporated  
5
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
Electrical Characteristics: Main Amplifier (continued)  
VS+ = 5 V, VS– = 0 V, VOCM = 2.5 V, VICM = 2.5 V, VG- = 0 V, VG+ = 1 V (maximum gain), TA = 25°C, AC performance measured  
using the AC test circuit shown in Figure 16 (unless otherwise noted). DC performance is measured using the DC test circuit  
shown in Figure 17 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
±1.5  
±4  
MAX  
UNIT  
Gain slope variation  
VG+ = 0 V to 0.9 V  
dB/V  
VG+ = 0 V to 0.15 V  
VG+ = 0.15 V to 0.9 V  
Gain error  
dB  
±2.25  
<1  
Gain control input bias current  
Gain control input resistance  
Gain control bandwidth  
µA  
kΩ  
40  
Small signal –3 dB  
15  
MHz  
VOLTAGE CLAMPING  
Device In voltage limiting mode, TA = 25°C  
Device In voltage limiting mode, TA = –40°C to +125°C  
Device in voltage limiting mode  
±25  
±40  
Output voltages (VOUT±) relative to clamp  
mV  
voltages (VCL±  
)
±180  
Clamp voltage (VCL±) input resistance  
Clamp voltage (VCL±) limits  
POWER SUPPLY  
3.3  
kΩ  
VS– to VS+  
V
TA = 25°C  
5
40  
77  
5.5  
5.5  
48  
Specified operating voltage  
Maximum quiescent current  
V
TA = –40°C to +125°C  
TA = 25°C  
mA  
dB  
TA = –40°C to +125°C  
TA = 25°C  
49  
70  
45  
Power supply rejection (±PSRR)  
TA = –40°C to +125°C  
POWER DOWN  
TTL low = shut down, TA = 25°C  
1.4  
1.4  
Enable voltage threshold  
Disable voltage threshold  
V
V
TTL low = shut down,  
TA = –40°C to +125°C  
1
TTL high = normal operation, TA = 25°C  
TTL high = normal operation,  
TA = –40°C to +125°C  
1.65  
TA = 25°C  
0.35  
±9  
0.4  
0.55  
±16  
Power-down quiescent current  
Input current high  
mA  
µA  
µA  
TA = –40°C to +125°C  
TA = 25°C  
TA = –40°C to +125°C  
TA = 25°C  
±19  
±109  
±116  
±130  
Input current low  
TA = –40°C to +125°C  
Input impedance  
50 || 1  
820  
500  
80  
k|| pF  
ns  
Turnon time delay  
Measured to 50% quiescent current  
Measured to 50% quiescent current  
Turnoff time delay  
ns  
Forward isolation in power down  
Input resistance in power down  
Output resistance in power down  
dB  
> 1  
MΩ  
kΩ  
16  
6.6 Package Thermal Data  
PACKAGE  
TA = 25°C  
PCB  
POWER RATING(1)  
PWP (14-pin)(2)  
See Layout.  
3 W  
(1) This data was taken using 2 oz trace and copper pad that is soldered directly to a 3 in × 3 in PCB.  
(2) The THS7530-Q1 incorporates a PowerPAD on the underside of the chip. The PowerpAD acts as a heatsink and must be connected to  
a thermally dissipative plane for proper power dissipation. Failure to do so may result in exceeding the maximum junction temperature  
which could permanently damage the device. See TI technical briefs SLMA002 and SLMA004 for more information about using the  
PowerPAD thermally enhanced package.  
6
Copyright © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
6.7 Typical Characteristics  
Measured using the AC test circuit shown in Figure 16 (unless otherwise noted).  
Table 1. Table Of Graphs  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 24  
Figure 25  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Voltage Gain to Load  
Gain and Gain Error  
vs Frequency (Input at 45 dBm)  
vs VG+  
Noise Figure  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
vs Frequency  
Output Intercept Point  
1-dB Compression Point  
Total Input Voltage Noise  
Intermodulation Distortion  
Harmonic Distortion  
S-Parameters  
Differential Input Impedance of Main Amplifier  
Differential Output Impedance of Main Amplifier vs Frequency  
VG+ Input Impedance  
vs Frequency  
vs Frequency  
vs Frequency  
vs Time  
VOCM Input Impedance  
Common-Mode Rejection Ratio  
Step Response: 2 VPP  
Step Response: Rising Edge  
Step Response: Falling Edge  
vs Time  
vs Time  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.4  
0.2  
0
Gain  
Gain Error  
Maximum Gain  
40  
30  
20  
10  
Gain  
-0.2  
-0.4  
Gain Error  
Minimum Gain  
0
-0.6  
-0.8  
-10  
0
1
10  
100  
Frequency (MHz)  
1000  
0
200  
400  
600  
800  
1000  
VG+ Voltage (mV)  
Gain is taken at load.  
PIN = –45 dBm  
Add 6 dB to refer to amplifier output  
Figure 1. Voltage Gain to Load vs Frequency  
Figure 2. Gain and Gain Error vs VG+  
Copyright © 2015, Texas Instruments Incorporated  
7
 
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
35  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
Gain = 20 dB  
OIP2  
OIP3  
Gain = 30 dB  
Gain = 40 dB  
30  
25  
20  
15  
10  
5
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Frequency (MHz)  
Frequency (MHz)  
Terminated input  
Figure 3. Noise Figure vs Frequency  
Taken at load.  
Add 3 dB to refer to amplifier output.  
Figure 4. Output Intercept Point vs Frequency  
15  
14  
13  
12  
11  
10  
9
100  
8
10  
7
6
5
4
3
2
1
0
1
0
50  
100  
150  
200  
250  
300  
10  
100  
1 k  
10 k  
100 k  
1 M  
10 M 100 M  
Frequency (Hz)  
Frequency (MHz)  
Taken at load.  
Add 3 dB to refer to amplifier output.  
Figure 6. Total Input Voltage Noise vs Frequency  
Figure 5. 1-dB Compression Point vs Frequency  
-50  
-45  
HD2  
IMD2  
HD3  
-52  
IMD3  
-50  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
-68  
-70  
-55  
-60  
-65  
-70  
-75  
-80  
0
10  
20  
30  
40  
50  
60  
70  
0
50  
100  
150  
200  
Frequency (MHz)  
Frequency (MHz)  
VG+ = 1 V  
VO = 1 VPP  
RL = 400 Ω  
VG+ = 1 V  
VO = 1 VPP (composite)  
RL = 400 Ω  
Figure 8. Harmonic Distortion vs Frequency  
Figure 7. Intermodulation Distortion vs Frequency  
8
Copyright © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
1
10  
100  
Frequency (MHz)  
1000  
0.1  
1
10  
Frequency (MHz)  
Figure 9. Differential Output Impedance of Main Amplifier  
Figure 10. VG+ Input Impedance vs Frequency  
vs Frequency  
25  
-10  
-20  
-30  
-40  
-50  
-60  
20  
15  
10  
5
0
0.1  
1
10  
100  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Figure 11. VOCM Input Impedance vs Frequency  
Figure 12. Common-Mode Rejection Ratio vs Frequency  
1.5  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
0
2
4
6
8
10  
12  
0
200  
400  
600  
800  
1000  
Time (ns)  
Time (ns)  
RL = 400 Ω  
At amplifier output and minimum gain  
RL = 400 Ω  
At amplifier output and minimum gain  
Figure 13. Step Response  
Figure 14. Step Response: Rising Edge  
Copyright © 2015, Texas Instruments Incorporated  
9
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
0
2
4
6
8
10  
12  
Time (ns)  
RL = 400 Ω  
At amplifier output and minimum gain  
Figure 15. Step Response: Falling Edge  
7 Parameter Measurement Information  
7.1 Test Circuits  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
0.1 mF  
6.8 mF  
VCL+  
VCL-  
33 pF  
50 W  
Coax  
Coax  
VIN  
VOUT  
1:1  
1:1  
50-W  
50-W  
24.9 W  
Source  
Load  
VOCM  
THS7530  
PD  
24.9 W  
VG-  
VG+  
0.1 mF  
33 pF  
VS-  
Figure 16. AC Test Circuit  
VS+ = 5 V  
VCL+  
VCL-  
0.1 mF  
800 W  
6.8 mF  
VOUT-  
VOUT+  
VIN+  
VOCM  
VIN-  
THS7530  
PD  
VG-  
0.1 mF  
VS-  
VG+  
Figure 17. DC Test Circuit  
10  
Copyright © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
8 Detailed Description  
8.1 Overview  
The THS7530-Q1 device is a fully-differential amplifier with 300-MHz bandwidth and with continually-variable  
gain from 11.6 dB to 46.5 dB. This amplifier together with an automatic gain control (AGC) circuit will precisely  
established a desired amplitude at its output.  
The input architecture is a modified Gilbert cell. The output from the Gilbert cell is converted to a voltage and  
buffered to the output as a fully-differential signal. A summing node between the outputs is used to compare the  
output common-mode voltage to the VOCM input. The VOCM error amplifier then servos the output common-mode  
voltage to maintain it equal to the VOCM input. Left unterminated, VOCM is set to midsupply by internal resistors.  
The gain control input is conditioned to give linear-in-dB gain control (block H). The gain control input is a  
differential signal from 0 V to 0.9 V which varies the gain from 11.6 dB to 46.5 dB.  
VCL+ and VCL– provide inputs that limit the output voltage swing of the amplifier.  
8.2 Functional Block Diagram  
VCL+  
VCL-  
VS+  
VOUT+  
Output  
Buffer  
x1  
VOCM Error  
Amplifier  
VOUT-  
VOCM  
VIN+  
VIN-  
Power  
Control  
PD  
VS-  
VG+  
VG-  
H
THS7530  
8.3 Feature Description  
The main features of the THS7530-Q1 device are continually-variable gain control, common-mode voltage  
control, output voltage clamps, and power-down mode.  
8.3.1 Continually-Variable Gain Control  
The amplifier gain in dB is a linear function of the gain control voltage, which has a range of 0 V to 0.9 V. The  
slope of the gain control input is 38.8 dB/V with a gain range of 11.6 dB to 46.5 dB, which is 3.8 to 211.3 V/V,  
respectively. The bandwidth of the gain control is 15 MHz, typically.  
The gain control is a differential input to reduce noise due to ground bounce, coupling, and so forth. The negative  
gain-control input VG– can be below the negative supply by as much as 600 mV.  
8.3.2 Common-Mode Voltage Control  
The common-mode voltage control sets the common-mode voltage of the differential output. The gain of the  
control voltage is 1 V/V with a range of 1.75 V to 3.25 V above the negative supply. If unconnected, the common-  
mode voltage control is at mid-supply, typically 2.5 V above the negative supply. The bandwidth of the common-  
mode voltage control is an impressive 32 MHz.  
Copyright © 2015, Texas Instruments Incorporated  
11  
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Output Voltage Clamps  
Separate inputs, VCL– and VCL+, establish the minimum and maximum output voltages, respectively. The typical  
error of the output voltage compared to the clamp voltage is only 25 mV. This feature can be used to avoid  
saturating the inputs of a receiving device, thereby precluding long recovery times in the signal path.  
8.3.4 Power-Down Mode  
To minimize power consumption when idle, the THS7530-Q1 device has an active-low power-down control that  
reduces the quiescent current from 40 mA to 350 µA. The turnon delay is only 820 ns.  
When in power-down mode, the THS7530-Q1 device has a 80-dB forward isolation to allow other devices to  
drive the same signal path with minimal interference from the idle THS7530-Q1 device.  
8.4 Device Functional Modes  
The THS7530-Q1 device has two functional modes: full-power mode and power-down mode. The power-down  
mode reduces the quiescent current of the device to 350 µA from a typical value of 40 mA.  
With a turnon time of only 820 ns and a turnoff time of 500 ns, the power-down mode can be used to greatly  
reduce the average power consumption of the device without sacrificing system performance.  
12  
Copyright © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The THS7530-Q1 device is designed to work in a wide variety of applications requiring continuously variable gain  
and a fully-differential signal path. The common-mode voltage control and the output voltage clamps enable the  
THS7530-Q1 device to drive a diverse array of receiving circuits.  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
0.1 mF  
6.8 mF  
33 pF  
50 W  
VCL+  
VCL-  
24.9 W  
1:1  
1:1  
VIN  
VOUT  
VOCM  
THS7530  
PD  
24.9 W  
0.1 mF  
VG-  
33 pF  
VS-  
VG+  
Figure 18. EVM Schematic: Designed for Use With Typical 50-RF Test Equipment  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
49.9 W  
0.1 mF  
6.8 mF  
33 pF  
49.9 W  
VCL+  
VCL-  
0.1 mF  
0.1 mF  
24.9 W  
VIN  
VOUT-  
VOCM  
THS7530  
0.1 mF  
PD  
VOUT+  
24.9 W  
VG-  
0.1 mF  
33 pF  
VS-  
VG+  
Figure 19. AC-Coupled Single-Ended Input With AC-Coupled Differential Output  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
Application Information (continued)  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
0.1 mF  
6.8 mF  
33 pF  
24.9 W  
24.9 W  
VCL+  
VCL-  
0.1 mF  
0.1 mF  
0.1 mF  
24.9 W  
VIN+  
VOUT-  
VOCM  
THS7530  
0.1 mF  
PD  
VOUT+  
VIN-  
24.9 W  
VG-  
0.1 mF  
33 pF  
VS-  
VG+  
Figure 20. AC-Coupled Differential Input With AC-Coupled Differential Output  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
49.9 W  
0.1 mF  
6.8 mF  
33 pF  
49.9 W  
VCL+  
VCL-  
0.1 mF  
24.9 W  
VIN  
VOUT-  
VOCM  
THS7530  
PD  
VOUT+  
24.9 W  
VG-  
0.1 mF  
33 pF  
VS-  
VG+  
Figure 21. DC-Coupled Single-Ended Input With DC-Coupled Differential Output  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
24.9 W  
0.1 mF  
6.8 mF  
33 pF  
24.9 W  
VCL+  
VCL-  
24.9 W  
VIN+  
VOUT-  
VOCM  
THS7530  
PD  
VOUT+  
VIN-  
24.9 W  
VG-  
0.1 mF  
33 pF  
VS-  
VG+  
Figure 22. DC-Coupled Differential Input With DC-Coupled Differential Output  
14  
Copyright © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
9.2 Typical Application  
VS+ = 5 V  
1 kW  
1 kW  
0.1 mF  
0.1 mF  
6.8 mF  
33 pF  
24.9 W  
24.9 W  
VCL+  
VCL-  
0.1 mF  
0.1 mF  
0.1 mF  
0.1 mF  
24.9 W  
VIN+  
VOUT-  
VOCM  
THS7530  
PD  
VOUT+  
VIN-  
24.9 W  
VG-  
0.1 mF  
33 pF  
VG+  
VS-  
VREF  
AGC Detect  
Figure 23. Typical Application Circuit  
9.2.1 Design Requirements  
A typical application circuit is shown in Figure 23. Two noteworthy aspects of this circuit are the customer’s  
automatic gain control (AGC) circuit and the THS7530-Q1 input bias circuit.  
The proper design of the AGC circuit is essential for the THS7530-Q1 device to operate properly in the  
customer’s application. The method of detecting the amplitude of the differential output of the THS7530-Q1  
device and creating the gain-control voltage, VG+, from the detected amplitude and the reference amplitude, Vref,  
are application-specific and beyond the scope of this document. The bandwidth of the amplitude of the THS7530-  
Q1 amplitude control is 15 MHz, which allows for rapid corrections of amplitude errors but which also allows  
noise from DC to 15 MHz to create an amplitude error. The trade-off between rapid amplitude correction and  
amplitude modulation due to noise is an important design consideration.  
The input bias currents of the differential inputs of the THS7530-Q1 device are typically 20 µA. When the  
differential inputs are AC-coupled, the bias currents must be supplied as shown in Figure 23. In this circuit, the  
DC bias voltage is mid-supply and the AC differential input impedance is 50 . The 0.1-µF capacitor between the  
two 24.9-resistors creates an AC ground for the driving circuit.  
9.2.2 Detailed Design Procedure  
The THS7530-Q1 device is designed for nominal 5-V power supply from VS+ to VS–.  
The amplifier has fully differential inputs, VIN+ and VIN–, and fully differential outputs, VOUT+ and VOUT– The inputs  
are high impedance and outputs are low impedance. External resistors are recommended for impedance  
matching and termination purposes.  
The inputs and outputs can be DC-coupled, but for best performance, the input and output common-mode  
voltage should be maintained at the midpoint between the two supply pins. The output common-mode voltage is  
controlled by the voltage applied to VOCM. Left unterminated, VOCM is set to midsupply by internal resistors. A 0.1-  
µF bypass capacitor should be placed between VOCM and ground to reduce common-mode noise. The input  
common-mode voltage defaults to midrail when left unconnected. For voltages other than midrail, VOCMmust be  
biased by external means. VIN+ and VIN– both require a nominal 30-µA bias current for proper operation.  
Therefore, ensure equal input impedance at each input to avoid generating an offset voltage that varies with  
gain.  
Voltage applied from VG– to VG+ controls the gain of the part with 38.8-dB/V gain slope. The input can be  
differential or single ended. VG– must be maintained within –0.6 V and 0.8 V of VS–for proper operation. The  
negative gain input should typically be tied directly to the negative power supply.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
Typical Application (continued)  
VCL+ and VCL– are inputs that limit the output voltage swing of the amplifier. The voltages applied set an absolute  
limit on the voltages at the output. Input voltages at VCL+ and VCL– clamp the output, ensuring that neither output  
exceeds those values.  
The power-down input is a TTL compatible input, referenced to the negative supply voltage. A logic low puts the  
THS7530-Q1 device in power-saving mode. In power-down mode the part consumes less than 1-mA current, the  
output goes high impedance, and a high amount of isolation is maintained between the input and output.  
Power-supply bypass capacitors are required for proper operation. A 6.8-µF tantalum bulk capacitor is  
recommended if the amplifier is located far from the power supply and may be shared among other devices. A  
ceramic 0.1-µF capacitor is recommended within 0.1-in of the device power pin. The ceramic capacitors should  
be located on the same layer as the amplifier to eliminate the use of vias between the capacitors and the power  
pin.  
Table 2. THS7530EVM Bill of Materials  
ITEM  
NO.  
DESCRIPTION  
SIZE  
REFERENCE DESIGNATOR  
QTY  
PART NUMBER  
1
Bead, ferrite, 3 A, 80 Ω  
1206  
D
FB1  
C2  
1
1
1
8
(Steward) HI1206N800R–00  
(AVX) TAJD685K035R  
2
Capacitor, tantalum, 6.8 mF, 35 V, 10%  
Capacitor, ceramic, 0.1 mF, X7R, 16V  
Capacitor, ceramic, 0.1 mF, X7R, 50 V  
3
508  
805  
C1  
(AVX) 0508YC104KAT2A  
(AVX) 08055C104KAT2A  
5
C3, C7, C12, C13, C14, C15,  
C16, C17  
6
7
Diode, Schottky, 20 V, 0.5 A  
SOD-123  
805  
D1  
1
3
(Diodes Inc.) B0520LW–7  
Resistor, 10 Ω, 1/8 W, 1%  
R24, R25, R26  
(PHYCOMP)  
9C08052A10R0FKHFT  
8
Resistor, 24.9 Ω, 1/8 W, 1%  
Resistor, 1 kΩ, 1.8W, 1%  
Resistor, 3.92 kΩ , 1/8 W, 1%  
Resistor, 0 Ω, 1/4 W  
805  
R9, R15  
R7, R12  
R1  
2
2
1
2
1
(PHYCOMP)  
9C08052A24R9FKHFT  
9
805  
(PHYCOMP)  
9C08052A1001FKHFT  
10  
11  
12  
805  
(PHYCOMP)  
9C08052A3921FKHFT  
1206  
1206  
C4, C5  
R4  
(PHYCOMP)  
9C12063A0R00JLHFT  
Resistor, 49.9 Ω, 1/4 W, 1%  
(PHYCOMP)  
9C12063A49R9FKRFT  
13  
14  
15  
16  
17  
18  
Pot., ceramic, 1/4 inch square, 1 kΩ  
Pot., ceramic, 1/4 inch square, 10 kΩ  
IC, TLV2371  
R2  
1
3
3
2
2
2
(Bourns) 3362P–1–102  
(Bourns) 3362P–1–103  
(TI) TLV2371IDBVT  
R21, R22, R23  
U2, U3, U4  
T1, T2  
SOT-23  
CD542  
Transformer, 1:1  
(Mini-Circuits) ADT1-1WT  
(Johnson) 142–0701–801  
(HH Smith) 101  
Connector, edge, SMA PCB Jack  
J3, J4  
Jack, banana receptacle, 0.25-in diameter  
hole  
J1, J2  
19  
20  
21  
22  
23  
24  
25  
26  
Header, 0.1-in Ctrs, 0.025-in square pins  
Shunts  
2 POS.  
JP1  
1
1
3
4
4
4
1
1
(Sullins) PZC36SAAN  
(Sullins) SSC02SYAN  
(Keystone) 5001  
JP1  
Test point, black  
TP2, TP3, TP4  
TP1, TP8, TP9, TP10  
Test points, red  
(Keystone) 5000  
Standoff, 4–40 Hex, 0.625-in Length  
Screw, Phillips, 4–40, .250-in  
IC, THS7530-Q1  
(Keystone) 1804  
SHR–0440–016–SN  
(TI) THS7530QPWPRQ1  
(TI) EDGE # 6441987  
U1  
Board, printed circuit  
16  
Copyright © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
9.2.3 Application Curves  
Figure 24 and Figure 25 highlight the input characteristics of the THS7530-Q1 device that should be used to  
design the circuit driving the THS7530-Q1 device.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
10  
9
8
7
6
5
4
3
2
1
0
S11  
S12  
S22  
0.1  
1
10  
100  
300  
0.1  
1
10  
100  
1000  
Frequency (MHz)  
Frequency (MHz)  
Figure 25. Differential Input Impedance of Main Amplifier  
vs Frequency  
Figure 24. S-Parameters vs Frequency  
10 Power Supply Recommendations  
The THS7530-Q1 device is principally intended to operate with a nominal single-supply voltage of 5 V. Supply  
voltage tolerances of ±10% are supported. The absolute maximum supply is 5.5 V.  
Supply decoupling is required, as described in Application and Implementation.  
Split (or bipolar) supplies can be used with the THS7530-Q1 device, as long as the total value across the device  
remains less than 5.5 V (absolute maximum).  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The THS7530-Q1 device is available in a thermally-enhanced PowerPAD™ package. Figure 26 shows the  
recommended number of vias and thermal land size recommended for best performance. Thermal vias connect  
the thermal land to internal or external copper planes and should have a drill diameter sufficiently small so that  
the via hole is effectively plugged when the barrel of the via is plated with copper. This plug is needed to prevent  
wicking the solder away from the interface between the package body and the thermal land on the surface of the  
board during solder reflow. The experiments conducted jointly with Solectron Texas indicate that a via drill  
diameter of 0.33 mm (13 mils, or .013 in) or smaller works well when 1-ounce copper is plated at the surface of  
the board and simultaneously plating the barrel of the via. If the thermal vias are not plugged when the copper  
plating is performed, then a solder mask material should be used to cap the vias with a dimension equal to the  
via diameter + 0.1 mm minimum. This prevents the solder from being wicked through the thermal via and  
potentially creating a solder void in the region between the package bottom and the thermal land on the surface  
of the PCB.  
TSSOP  
14-Pin PWP Package  
2 ´ 3  
3.4  
5
Figure 26. Recommended Thermal Land Size and Thermal Via Patterns (Dimensions in mm)  
See TI's Technical Brief titled, PowerPAD™ Thermally Enhanced Package (SLMA002) for a detailed discussion  
of the PowerPAD™ package, its dimensions, and recommended use.  
18  
Copyright © 2015, Texas Instruments Incorporated  
 
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
Layout Guidelines (continued)  
Figure 27. EVM Schematic  
Copyright © 2015, Texas Instruments Incorporated  
19  
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
11.2 Layout Examples  
Figure 28. Layout Diagram (Top)  
Figure 29. Layout Diagram (Ground)  
20  
版权 © 2015, Texas Instruments Incorporated  
THS7530-Q1  
www.ti.com.cn  
ZHCSEH5 DECEMBER 2015  
Layout Examples (continued)  
Figure 30. Layout Diagram (Power)  
Figure 31. Layout Diagram (Bottom)  
版权 © 2015, Texas Instruments Incorporated  
21  
THS7530-Q1  
ZHCSEH5 DECEMBER 2015  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.1.2 开发支持  
有关 THS7530 PSPICE 模型,请参见 SLOJ139。  
有关 THS7530 TINA-TI SPICE 模型,请参见 SLAM020。  
有关 THS7530 TINA-TI 参考设计,请参见 SLAC091。  
12.2 文档支持  
12.2.1 相关文档  
相关文档如下:  
THS7530 EVM 用户指南》SLOU161  
高速运算放大器噪声分析》,SBOA066  
TI 模拟信号链指南》SLYB174  
PowerPAD™ 耐热增强型封装》SLMA002  
PowerPAD™ 速成》SLMA004  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
THS7530QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
14  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
T7530Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
PWP 14  
4.4 x 5.0, 0.65 mm pitch  
PowerPAD TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224995/A  
www.ti.com  
PACKAGE OUTLINE  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X (0.6)  
NOTE 5  
2X (0.4)  
NOTE 5  
THERMAL  
PAD  
7
8
0.25  
1.2 MAX  
GAGE PLANE  
2.59  
1.89  
15  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
1
14  
DETAIL A  
TYPICAL  
2.6  
1.9  
4229706/A 06/2023  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(2.6)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
14X (1.5)  
(1.2) TYP  
14  
14X (0.45)  
1
(5)  
NOTE 9  
(R0.05) TYP  
SYMM  
(0.6)  
15  
(2.59)  
12X (0.65)  
7
8
(
0.2) TYP  
VIA  
SEE DETAILS  
(1.1) TYP  
SOLDER MASK  
DEFINED PAD  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4229706/A 06/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014K  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(2.6)  
BASED ON  
0.125 THICK  
STENCIL  
METAL COVERED  
BY SOLDER MASK  
14X (1.5)  
14X (0.45)  
14  
1
(R0.05) TYP  
(2.59)  
SYMM  
15  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
7
8
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.91 X 2.90  
2.60 X 2.59 (SHOWN)  
2.37 X 2.36  
0.125  
0.15  
0.175  
2.20 X 2.19  
4229706/A 06/2023  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

THS75680RJ

Aluminium Housed Power Resistors
MACOM

THS770006

Broadband, Fully-Differential, 14-/16-Bit ADC DRIVER AMPLIFIER
TI

THS770006IRGER

Broadband, Fully-Differential, 14-/16-Bit ADC DRIVER AMPLIFIER
TI

THS770006IRGET

Broadband, Fully-Differential, 14-/16-Bit ADC DRIVER AMPLIFIER
TI

THS770006_10

Broadband, Fully-Differential, 14-/16-Bit ADC DRIVER AMPLIFIER
TI

THS770006_14

Broadband, Fully-Differential, 14-/16-Bit ADC DRIVER AMPLIFIER
TI

THS770012

Broadband, Fully-Differential, 14-/16-Bit ADC Driver Amplifier
TI

THS770012IRGER

Broadband, Fully-Differential, 14-/16-Bit ADC Driver Amplifier
TI

THS770012IRGET

Broadband, Fully-Differential, 14-/16-Bit ADC Driver Amplifier
TI

THS770012_14

Broadband, Fully-Differential, 14-/16-Bit ADC Driver Amplifier
TI

THS788

QUAD-CHANNEL TIME MEASUREMENT UNIT (TMU)
TI

THS788PFD

QUAD-CHANNEL TIME MEASUREMENT UNIT (TMU)
TI