TLC1551IDW [TI]

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS; 10位模拟数字转换器具有并行输出
TLC1551IDW
型号: TLC1551IDW
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
10位模拟数字转换器具有并行输出

转换器 模数转换器 光电二极管 输出元件
文件: 总16页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
D
D
Power Dissipation . . . 40 mW Max  
J
OR DW PACKAGE  
(TOP VIEW)  
Advanced LinEPICSingle-Poly Process  
Provides Close Capacitor Matching for  
Better Accuracy  
REF+  
REF−  
ANLG GND  
AIN  
RD  
WR  
CLKIN  
CS  
D9  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2
D
D
D
D
D
Fast Parallel Processing for DSP and µP  
Interface  
3
4
Either External or Internal Clock Can Be  
Used  
ANLG V  
5
DD  
DGTL GND1  
DGTL GND2  
D8  
6
D7  
7
Conversion Time . . . 6 µs  
Total Unadjusted Error . . . 1 LSB Max  
CMOS Technology  
DGTL V  
D6  
8
DD1  
DGTL V  
DD2  
D5  
9
EOC  
D0  
D1  
D4  
D3  
D2  
10  
11  
12  
description  
The TLC1550x and TLC1551 are data acquisition  
Refer to the mechanical data for the JW  
package.  
analog-to-digital converters (ADCs) using a 10-bit,  
switched-capacitor, successive-approximation net-  
work. A high-speed, 3-state parallel port directly  
interfaces to a digital signal processor (DSP) or  
microprocessor (µP) system data bus. D0 through  
D9 are the digital output terminals with D0 being  
the least significant bit (LSB). Separate power  
terminals for the analog and digital portions  
minimize noise pickup in the supply leads.  
Additionally, the digital power is divided into two  
parts to separate the lower current logic from the  
higher current bus drivers. An external clock can be  
applied to CLKIN to override the internal system  
clock if desired.  
FK OR FN PACKAGE  
(TOP VIEW)  
4
3
2 1 28 27 26  
5
6
7
8
9
AIN  
ANLG V  
DGTL GND1  
25 CS  
24 D9  
DD  
D8  
NC  
D7  
D6  
D5  
23  
22  
21  
20  
19  
NC  
DGTL GND2  
DGTL V  
10  
11  
DD1  
DGTL V  
DD2  
The TLC1550I and TLC1551I are characterized for  
operation from 40°C to 85°C. The TLC1550M is  
characterized over the full military range of 55°C  
to 125°C.  
12 13 14 15 16 17 18  
NC − No internal connection  
AVAILABLE OPTIONS  
PACKAGE  
T
A
CERAMIC CHIP CARRIER PLASTIC CHIP CARRIER  
CERAMIC DIP  
(J)  
SOIC  
(DW)  
(FK)  
(FN)  
TLC1550IFN  
TLC1551IFN  
TLC1550IDW  
TLC1551IDW  
40°C to 85°C  
55°C to 125°C  
TLC1550MFK  
TLC1550MJ  
This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic fields. These  
circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according to MIL-STD-883C,  
Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum-rated  
voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device  
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriated logic voltage level,  
preferably either V  
CC  
or ground.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Advanced LinEPIC is a trademark of Texas Instruments.  
Copyright 2003, Texas Instruments Incorporated  
ꢍ ꢘ ꢙ ꢚ ꢛꢜ ꢝꢞ ꢟꢠ ꢞꢛ ꢡꢙ ꢢꢣ ꢤꢘ ꢟ ꢟꢛ ꢈꢆ ꢁꢉ ꢖꢒ ꢥ ꢉꢦꢧꢄ ꢦꢄꢇ ꢤꢢꢢ ꢙꢤ ꢚ ꢤ ꢡꢨ ꢟꢨꢚ ꢠ ꢤ ꢚ ꢨ ꢟꢨ ꢠꢟꢨ ꢜ  
ꢟ ꢨ ꢠ ꢟꢣ ꢘꢬ ꢛꢮ ꢤ ꢢꢢ ꢙꢤ ꢚ ꢤ ꢡ ꢨ ꢟ ꢨ ꢚ ꢠ ꢫ  
ꢝ ꢘꢢ ꢨꢠꢠ ꢛ ꢟꢩꢨ ꢚ ꢪꢣ ꢠꢨ ꢘ ꢛꢟꢨ ꢜꢫ ꢍ ꢘ ꢤꢢ ꢢ ꢛ ꢟꢩꢨ ꢚ ꢙꢚ ꢛ ꢜꢝꢞ ꢟꢠ ꢇ ꢙꢚ ꢛ ꢜꢝꢞ ꢟꢣꢛ ꢘ  
ꢛꢞ  
ꢘꢬ  
ꢛꢨ  
ꢛꢟ  
ꢨꢚ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢆꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢈꢇ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢃ ꢆ  
ꢃꢅ ꢉꢊꢆ ꢀ ꢋ ꢌꢋ ꢁ ꢍꢎꢉꢀꢍ ꢉꢏꢆ ꢎ ꢆꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑ ꢒꢀꢑꢒ ꢓ  
ꢔꢆ ꢀ ꢕ ꢖꢋ ꢒ ꢋꢁ ꢁ ꢑ ꢁ ꢍ ꢗꢀꢖ ꢗꢀ ꢓ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
functional block diagram  
EOC  
10  
CS  
WR  
RD  
Successive-  
Approximation  
Register  
D0D9  
Control  
Logic  
10  
Frequency  
Divided by 2  
Internal  
Clock  
DGTL  
Comp  
V
DD1  
10-Bit  
100 kΩ  
Capacitor  
NOM  
DAC and S/H  
Clock Detector  
CLKIN  
REF+  
REF−  
AIN  
typical equivalent inputs  
INPUT CIRCUIT IMPEDANCE DURING SAMPLING MODE  
INPUT CIRCUIT IMPEDANCE DURING HOLD MODE  
1 kTYP  
AIN  
AIN  
C = 60 pF TYP  
i
(equivalent input  
capacitance)  
5 MTYP  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢍ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
Terminal Functions  
TERMINAL  
DESCRIPTION  
NAME  
ANLG GND  
AIN  
NO.  
4
NO.  
3
Analog ground. The reference point for the voltage applied on terminals ANLG V , AIN, REF+, and REF−.  
DD  
5
4
Analog voltage input. The voltage applied to AIN is converted to the equivalent digital output.  
ANLG V  
CLKIN  
6
5
Analog positive power supply voltage. The voltage applied to this terminal is designated V .  
DD3  
DD  
26  
22  
Clock input. CLKIN is used for external clocking instead of using the internal system clock. It usually takes a  
few microseconds before the internal clock is disabled. To use the internal clock, CLKIN should be tied high  
or left unconnected.  
CS  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
25  
13  
14  
16  
17  
18  
19  
20  
21  
23  
24  
7
21  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
6
Chip-select. CS must be low for RD or WR to be recognized by the A/D converter.  
Data bus output. D0 is bit 1 (LSB).  
Data bus output. D1 is bit 2.  
Data bus output. D2 is bit 3.  
Data bus output. D3 is bit 4.  
Data bus output. D4 is bit 5.  
Data bus output. D5 is bit 6.  
Data bus output. D6 is bit 7.  
Data bus output. D7 is bit 8.  
Data bus output. D8 is bit 9.  
Data bus output. D9 is bit 10 (MSB).  
DGTL GND1  
DGTL GND2  
Digital ground 1. The ground for power supply DGTL V  
Digital ground 2. The ground for power supply DGTL V  
and is the substrate connection  
DD1  
DD2  
9
7
DGTL V  
DGTL V  
EOC  
10  
8
Digital positive power-supply voltage 1. DGTL V  
DD1  
supplies the logic. The voltage applied to DGTL V is  
DD1  
DD1  
designated V  
.
DD1  
11  
12  
28  
9
10  
24  
Digital positive power-supply voltage 2. DGTL V supplies only the higher-current output buffers. The voltage  
DD2  
DD2  
applied to DGTL V  
is designated V .  
DD2  
DD2  
End-of-conversion. EOC goes low indicating that conversion is complete and the results have been transferred  
to the output latch. EOC can be connected to the µP- or DSP-interrupt terminal or can be continuously polled.  
RD  
Read input. When CS is low and RD is taken low, the data is placed on the data bus from the output latch. The  
output latch stores the conversion results at the most recent negative edge of EOC. The falling edge of RD  
resets EOC to a high within the t  
specifications.  
d(EOC)  
REF+  
2
1
Positive voltage-reference input. Any analog input that is greater than or equal to the voltage on REF+ converts  
to 1111111111. Analog input voltages between REF+ and REFconvert to the appropriate result in a ratiometric  
manner.  
REF−  
WR  
3
2
Negative voltage reference input. Any analog input that is less than or equal to the voltage on REFconverts  
to 0000000000.  
27  
23  
Write input. When CS is low, conversion is started on the rising edge of WR. On this rising edge, the ADC holds  
the analog input until conversion is completed. Before and after the conversion period, which is given by t  
the ADC remains in the sampling mode.  
,
conv  
Terminal numbers for FK and FN packages.  
Terminal numbers for J, DW, and NW packages.  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢆꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢈꢇ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢃ ꢆ  
ꢃꢅ ꢉꢊꢆ ꢀ ꢋ ꢌꢋ ꢁ ꢍꢎꢉꢀꢍ ꢉꢏꢆ ꢎ ꢆꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑ ꢒꢀꢑꢒ ꢓ  
ꢔꢆ ꢀ ꢕ ꢖꢋ ꢒ ꢋꢁ ꢁ ꢑ ꢁ ꢍ ꢗꢀꢖ ꢗꢀ ꢓ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
, V  
, and V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 V  
DD1 DD2  
DD3  
Input voltage range, V (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
Output voltage range, V  
+ 0.3 V  
+ 0.3 V  
I
DD  
DD  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to V  
O
Peak input current (any digital input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 mA  
Peak total input current (all inputs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA  
Operating free-air temperature range, T : TLC1550I, TLC1551I . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C  
A
TLC1550M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
stg  
Case temperature for 10 seconds: FK or FN package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Lead temperature 1,6 mm (1/16 inch) from the case for 10 seconds: J or NW package . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1:  
V
is the voltage measured at DGTL V  
with respect to DGND1. V  
is the voltage measured at DGTL V  
with respect to the  
with respect to AGND. For these specifications, all ground terminals are tied  
DD  
DD1  
DGND2. V  
DD1  
DD2  
DD2  
is the voltage measured at ANLG V  
DD3  
together (and represent 0 V). When V  
, V  
, and V  
are equal, they are referred to simply as V  
.
DD1 DD2 DD3  
DD  
recommended operating conditions  
MIN  
NOM MAX  
UNIT  
V
Supply voltage, V  
, V  
, V  
4.75  
5
5.5  
DD1 DD2 DD3  
Positive reference voltage, V  
(see Note 2)  
V
DD3  
0
V
REF+  
Negative reference voltage, V  
(see Note 2)  
V
REF−  
Differential reference voltage, V  
− V  
REF−  
(see Note 2)  
V
DD3  
V
REF+  
Analog input voltage range  
0
2
V
DD3  
V
High-level control input voltage, V  
IH  
V
Low-level control input voltage, V  
IL  
0.8  
7.8  
V
Input clock frequency, f  
(CLKIN)  
0.5  
0
MHz  
ns  
ns  
ns  
Setup time, CS low before WR or RD goes low, t  
su(CS)  
Hold time, CS low after WR or RD goes high, t  
h(CS)  
0
WR or RD pulse duration, t  
w(WR)  
50  
40% of  
period  
80% of  
period  
Input clock low pulse duration, t  
w(L−CLKIN)  
TLC155xI  
40  
55  
85  
Operating free-air temperature, T  
°C  
A
TLC1550M  
125  
NOTE 2: Analog input voltages greater than that applied to REF+ convert to all 1s (1111111111), while input voltages less than that applied to  
REFconvert to all 0s (0000000000). The total unadjusted error may increase as this differential voltage falls below 4.75 V.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢍ  
ꢐꢑ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
electrical characteristics over recommended operating free-air temperature range,  
V
= V  
= 4.75 V to 5.5 V and V = 0 (unless otherwise noted)  
DD  
REF+  
REF−  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
V
High-level output voltage  
V
= 4.75 V,  
I
= 360 µA  
= 25°C  
A
2.4  
V
OH  
DD  
OH  
T
0.4  
0.5  
10  
V
I
= 4.75 V,  
= 2.4 mA  
DD  
OL  
V
OL  
Low-level output voltage  
V
T
= 55°C to 125°C  
A
V
= V  
DD  
,
CS and RD at V  
O
O
DD  
DD  
I
Off-state (high-impedance-state) output current  
µA  
OZ  
V
= 0,  
CS and RD at V  
−10  
2.5  
I
IH  
I
IL  
I
IL  
High-level input current  
V = V  
I DD  
0.005  
−2.5 0.005  
µA  
µA  
µA  
Low-level input current (except CLKIN)  
Low-level input current (CLKIN)  
V = 0  
I
50  
7
50  
14  
12  
2
V
V
= 5 V,  
= 0,  
T
= 25°C  
= 25°C  
O
A
I
Short-circuit output current  
Operating supply current  
mA  
mA  
pF  
OS  
T
−6  
8
O
A
I
CS low and RD high  
(DD)  
Analog inputs  
Input capacitance  
60  
5
90*  
15*  
C
See typical equivalent inputs TLC1550/1I  
i
Digital inputs  
* On products compliant to MIL-STD-883, Class B, this parameter is not production tested.  
All typical values are at V  
= 5 V, T = 25°C.  
A
DD  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢆꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢈꢇ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢃ ꢆ  
ꢃꢅ ꢉꢊꢆ ꢀ ꢋ ꢌꢋ ꢁ ꢍꢎꢉꢀꢍ ꢉꢏꢆ ꢎ ꢆꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑ ꢒꢀꢑꢒ ꢓ  
ꢔꢆ ꢀ ꢕ ꢖꢋ ꢒ ꢋꢁ ꢁ ꢑ ꢁ ꢍ ꢗꢀꢖ ꢗꢀ ꢓ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
operating characteristics over recommended operating free-air temperature range with internal  
clock and minimum sampling time of 4 µs, V  
noted)  
= V  
= 5 V and V  
= 0 (unless otherwise  
DD  
REF+  
REF−  
PARAMETER  
TLC1550I  
TEST CONDITIONS  
T
A
MIN TYP  
MAX  
0.5  
1
UNIT  
Full range  
Full range  
25°C  
TLC1551I  
E
E
E
Linearity error  
Zero-scale error  
Full-scale error  
See Note 3  
LSB  
L
0.5  
1
TLC1550M  
Full range  
Full range  
Full range  
25°C  
TLC1550I  
TLC1551I  
0.5  
1
See Notes 2 and 4  
LSB  
LSB  
ZS  
FS  
0.5  
1
TLC1550M  
Full range  
Full range  
Full range  
25°C  
TLC1550I  
TLC1551I  
0.5  
1
See Notes 2 and 4  
See Note 5  
0.5  
1
TLC1550M  
Full range  
Full range  
Full range  
25°C  
TLC1550I  
TLC1551I  
TLC1550M  
0.5  
1
Total unadjusted error  
Conversion time  
LSB  
1
f
= 4.2 MHz or  
clock(external)  
internal clock  
t
c
6
µs  
t
t
Data access time after RD goes low  
Data valid time after RD goes high  
35  
ns  
ns  
a(D)  
5
v(D)  
See Figure 3  
Disable time, delay time from RD high to high  
impedance  
t
t
30  
ns  
ns  
dis(D)  
Delay time, RD low to EOC high  
0
15  
d(EOC)  
Full range is 40°C to 85°C for the TL155xI devices and 55°C to 125°C for the TLC1550M.  
All typical values are at V  
= 5 V, T = 25°C.  
DD  
A
NOTES: 2. Analog input voltages greater than that applied to REF+ convert to all 1s (1111111111), while input voltages less than that applied  
to REFconvert to all 0s (0000000000). The total unadjusted error may increase as this differential voltage falls below 4.75 V.  
3. Linearity error is the difference between the actual analog value at the transition between any two adjacent steps and its ideal value  
after zero-scale error and full-scale error have been removed.  
4. Zero-scale error is the difference between the actual mid-step value and the nominal mid-step value at specified zero scale.  
Full-scale error is the difference between the actual mid-step value and the nominal mid-step value at specified full scale.  
5. Total unadjusted error is the difference between the actual analog value at the transition between any two adjacent steps and its  
ideal value. It includes contributions from zero-scale error, full-scale error, and linearity error.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢍ  
ꢐꢑ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
PARAMETER MEASUREMENT INFORMATION  
Source Current = 6 mA  
Test Point  
See Note A  
Output  
Under Test  
V
cp  
= 1 V  
C
= 62 pF  
L
Sink Current = 6 mA  
V
cp  
= voltage commutation point for switching between source and sink currents  
NOTE A: Equivalent load circuit of the Teradyne A500 tester for timing parameter measurement  
Figure 1. Test Load Circuit  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢆꢇ ꢀ ꢁ ꢂ ꢃꢄ ꢄ ꢅ ꢈꢇ ꢀꢁ ꢂꢃ ꢄ ꢄ ꢃ ꢆ  
ꢃꢅ ꢉꢊꢆ ꢀ ꢋ ꢌꢋ ꢁ ꢍꢎꢉꢀꢍ ꢉꢏꢆ ꢎ ꢆꢀꢋꢁ ꢂꢍ ꢌꢐ ꢑ ꢒꢀꢑꢒ ꢓ  
ꢔꢆ ꢀ ꢕ ꢖꢋ ꢒ ꢋꢁ ꢁ ꢑ ꢁ ꢍ ꢗꢀꢖ ꢗꢀ ꢓ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
APPLICATION INFORMATION  
simplified analog input analysis  
Using the circuit in Figure 2, the time required to charge the analog input capacitance from 0 to V within 1/2  
S
LSB can be derived as follows:  
The capacitance charging voltage is given by  
–t ńR C  
c
t
i
Ǔ
(1)  
(2)  
Sǒ1−e  
V
+ V  
C
Where:  
R = R + r  
i
t
s
The final voltage to 1/2 LSB is given by  
V (1/2 LSB) = V − (V /1024)  
C
S
S
Equating equation 1 to equation 2 and solving for time t gives  
c
–t ńR C  
c
t
i
* ǒV ń512 + V  
Ǔ
Sǒ1e  
Ǔ
V
(3)  
(4)  
S
S
and  
t (1/2 LSB) = R × C × ln(1024)  
c
t
i
Therefore, with the values given, the time for the analog input signal to settle is  
t (1/2 LSB) = (R + 1 k) × 60 pF × ln(1024)  
(5)  
c
s
This time must be less than the converter sample time shown in the timing diagrams.  
Driving Source  
TLC1550/1  
R
r
i
s
V
I
V
S
V
C
1 kMAX  
C
i
50 pF MAX  
V
V
= Input voltage at AIN  
= External driving source voltage  
I
S
s
R = Source resistance  
r
= Input resistance  
i
C = Input capacitance  
i
Driving source requirements:  
Noise and distortion for the source must be equivalent to the resolution of the converter.  
R must be real at the input frequency.  
s
Figure 2. Input Circuit Including the Driving Source  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢁꢍ  
ꢐꢑ  
SLAS043G − MAY 1991 − REVISED NOVEMBER 2003  
PRINCIPLES OF OPERATION  
The operating sequence for complete data acquisition is shown in Figure 3. Processors can address the TLC1550  
and TLC1551 as an external memory device by simply connecting the address lines to a decoder and the decoder  
output to CS. Like other peripheral devices, the write (WR) and read (RD) input signals are valid only when CS is low.  
Once CS is low, the onboard system clock permits the conversion to begin with a simple write command and the  
converted data to be presented to the data bus with a simple read command. The device remains in a sampling (track)  
mode from the rising edge of EOC until conversion begins with the rising edge of WR, which initiates the hold mode.  
After the hold mode begins, the clock controls the conversion automatically. When the conversion is complete, the  
end-of-conversion (EOC) signal goes low indicating that the digital data has been transferred to the output latch.  
Lowering CS and RD then resets EOC and transfers the data to the data bus for the processor read cycle.  
t
t
h(CS)  
su(CS)  
CS  
0.8 V  
0.8 V  
0.8 V  
0.8 V  
t
c
t
w(WR)  
2 V  
1.4 V  
1.4 V  
0.8 V  
WR  
RD  
t
h(CS)  
t
su(CS)  
2 V  
0.8 V  
t
v(D)  
t
t
a(D)  
dis(D)  
2 V  
0.8 V  
2 V  
0.8 V  
D0D9  
EOC  
Data Valid  
t
d(EOC)  
2 V  
0.8 V  
Figure 3. TLC1550 or TLC1551 Operating Sequence  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
PACKAGING INFORMATION  
Orderable Device  
TLC1550IDW  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
DW  
24  
24  
24  
24  
28  
28  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC1550IDWG4  
TLC1550IDWR  
TLC1550IDWRG4  
TLC1550IFN  
SOIC  
SOIC  
SOIC  
PLCC  
PLCC  
DW  
DW  
DW  
FN  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
37 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC1550IFNR  
FN  
750 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC1550INW  
TLC1550MFKB  
TLC1550MJ  
OBSOLETE  
OBSOLETE  
OBSOLETE  
OBSOLETE  
ACTIVE  
PDIP  
LCCC  
CDIP  
CDIP  
SOIC  
NW  
FK  
J
24  
28  
24  
24  
24  
TBD  
TBD  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
Call TI  
TLC1550MJB  
TLC1551IDW  
J
DW  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC1551IDWG4  
TLC1551IDWR  
TLC1551IDWRG4  
TLC1551IFN  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
PLCC  
PLCC  
DW  
DW  
DW  
FN  
24  
24  
24  
28  
28  
25 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
37 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TLC1551IFNG4  
FN  
37 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MCDI004A – JANUARY 1995 – REVISED NOVEMBER 1997  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
24 PINS SHOWN  
B
13  
24  
C
12  
1
0.065 (1,65)  
0.045 (1,14)  
Lens Protrusion (Lens Optional)  
0.010 (0.25) MAX  
0.090 (2,29)  
0.060 (1,53)  
0.175 (4,45)  
0.140 (3,56)  
A
Seating Plane  
0.018 (0,46) MIN  
0.125 (3,18) MIN  
0.022 (0,56)  
0.014 (0,36)  
0.100 (2,54)  
0.012 (0,30)  
0.008 (0,20)  
24  
28  
32  
40  
PINS **  
DIM  
”A”  
NARR  
WIDE  
NARR  
WIDE  
NARR  
WIDE  
NARR  
WIDE  
0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85) 0.624(15,85)  
0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99) 0.590(14,99)  
1.265(32,13) 1.265(32,13) 1.465(37,21) 1.465(37,21) 1.668(42,37) 1.668(42,37) 2.068(52,53) 2.068(52,53)  
1.235(31,37) 1.235(31,37) 1.435(36,45) 1.435(36,45) 1.632(41,45) 1.632(41,45) 2.032(51,61) 2.032(51,61)  
0.541(13,74) 0.598(15,19) 0.541(13,74) 0.598(15,19) 0.541(13,74) 0.598(15,19) 0.541(13,74) 0.598(15,19)  
0.514(13,06) 0.571(14,50) 0.514(13,06) 0.571(14,50) 0.514(13,06) 0.571(14,50) 0.514(13,06) 0.571(14,50)  
MAX  
MIN  
MAX  
MIN  
”B”  
”C”  
MAX  
MIN  
4040084/C 10/97  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).  
D. This package can be hermetically sealed with a ceramic lid using glass frit.  
E. Index point is provided on cap for terminal identification.  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MPLC004A – OCTOBER 1994  
FN (S-PQCC-J**)  
PLASTIC J-LEADED CHIP CARRIER  
20 PIN SHOWN  
Seating Plane  
0.004 (0,10)  
0.180 (4,57) MAX  
0.120 (3,05)  
D
0.090 (2,29)  
D1  
0.020 (0,51) MIN  
3
1
19  
0.032 (0,81)  
0.026 (0,66)  
4
18  
D2/E2  
D2/E2  
E
E1  
8
14  
0.021 (0,53)  
0.013 (0,33)  
0.050 (1,27)  
9
13  
0.007 (0,18)  
M
0.008 (0,20) NOM  
D/E  
D1/E1  
D2/E2  
NO. OF  
PINS  
**  
MIN  
0.385 (9,78)  
MAX  
MIN  
MAX  
MIN  
MAX  
0.395 (10,03)  
0.350 (8,89)  
0.356 (9,04)  
0.141 (3,58)  
0.191 (4,85)  
0.291 (7,39)  
0.341 (8,66)  
0.169 (4,29)  
0.219 (5,56)  
0.319 (8,10)  
0.369 (9,37)  
20  
28  
44  
52  
68  
84  
0.485 (12,32) 0.495 (12,57) 0.450 (11,43) 0.456 (11,58)  
0.685 (17,40) 0.695 (17,65) 0.650 (16,51) 0.656 (16,66)  
0.785 (19,94) 0.795 (20,19) 0.750 (19,05) 0.756 (19,20)  
0.985 (25,02) 0.995 (25,27) 0.950 (24,13) 0.958 (24,33) 0.441 (11,20) 0.469 (11,91)  
1.185 (30,10) 1.195 (30,35) 1.150 (29,21) 1.158 (29,41) 0.541 (13,74) 0.569 (14,45)  
4040005/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-018  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TLC1551IDWG4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IDWR

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IDWRG4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IFK

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IFN

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IFNG4

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IFNR

暂无描述
TI

TLC1551IJ

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC1551IN

10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP24
TI

TLC1551INW

10-BIT ANALOG-TO-DIGITAL CONVERTERS WITH PARALLEL OUTPUTS
TI

TLC155D

EPROM/ROM-Based 8-Bit Microcontroller Series
ETC

TLC155ED

EPROM/ROM-Based 8-Bit Microcontroller Series
ETC