TLC5954 [TI]

具有全局亮度控制、LED 开路/短路检测功能和省电模式的 48 通道 LED 驱动器;
TLC5954
型号: TLC5954
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有全局亮度控制、LED 开路/短路检测功能和省电模式的 48 通道 LED 驱动器

驱动 驱动器
文件: 总46页 (文件大小:1843K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLC5954  
ZHCSCD0 APRIL 2014  
TLC5954 48 通道,恒定电流发光二极管 (LED) 驱动器  
具有全局亮度控制,LED 开短路检测和省电模式  
1 特性  
2 应用范围  
1
48 个恒定灌电流输出通道 具有开关控制功能  
电流能力:  
LED 视频显示屏  
可变消息标志 (VMS)  
照明  
32 通道为 34.9mA  
16 通道为 24.4mA  
3 说明  
没有针对电流设置的外部电阻器  
TLC5954 是一款 48 通道,恒定灌电流 LED 驱动器。  
可通过向内部寄存器写入数据来打开或关闭每条通道。  
输出通道 (OUTXn) 被分为三组,每组 16 条通道。 每  
个通道组(RG B)具有 128 步长全局亮度控制  
(BC) 功能。 所有 48 个通道的最大电流值可由 8 步长  
最大电流控制 (MC) 功能进行设置。 此器件具有两个  
错误标志:LED 开路检测 (LOD) LED 短路检测  
(LSD)。 错误标志可由串行接口端口读取。 此器件还  
有一个省电模式,此模式在所有输出关闭时将总流耗设  
定为 7µA(典型值)。  
最大电流控制 (MC)3 位(8 个步长)  
针对每个色彩组的全局亮度控制 (BC)7 位(128  
个步长),3 组  
LED 电源电压:高达 10V  
VCC = 3.0V 3.6V  
恒定电流精度:  
通道到通道 = ±1%(典型值),±3%(最大  
值)  
器件到器件 = ±2%(典型值),±4%(最大  
值)  
数据传输速率:30MHz  
器件信息(1)  
消隐脉冲持续时间:40ns(最小值)  
LED 开路检测 (LOD)  
器件名称  
TLC5954  
封装  
封装尺寸  
8mm x 8mm  
超薄四方扁平无引线  
(VQFN) (56)  
LED 短路检测 (LSD)  
省电模式 (PSM):流耗 7µA,高速恢复  
欠压闭锁设置缺省数据  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
空白  
空白  
空白  
延迟开关最大限度地减少涌入电流  
工作温度范围:-40°C +85°C  
应用电路  
VLED  
+
x48  
GND  
OUTR0  
SIN  
OUTB15  
SOUT  
Input Serial Data  
Output Serial Data  
VCC  
Shift Clock  
Data Latch  
SCLK  
LAT  
VCC  
TLC5954  
BLANK Signal  
BLANK  
GND  
GND  
PowerPAD  
GND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SBVS241  
 
 
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description ................................................ 18  
8.4 Device Functional Modes........................................ 23  
8.5 Register Maps......................................................... 27  
Applications and Implementation ...................... 33  
9.1 Application Information............................................ 33  
9.2 Typical Application .................................................. 33  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 Handling Ratings....................................................... 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 8  
Parameter Measurement Information ................ 11  
9
10 Power Supply Recommendations ..................... 36  
11 Layout................................................................... 36  
11.1 Layout Guidelines ................................................. 36  
11.2 Layout Example .................................................... 37  
12 器件和文档支持 ..................................................... 38  
12.1 器件支持................................................................ 38  
12.2 文档支持................................................................ 38  
12.3 Trademarks........................................................... 38  
12.4 Electrostatic Discharge Caution............................ 38  
12.5 Glossary................................................................ 38  
13 机械封装和可订购信息 .......................................... 38  
7
8
7.1 Pin Equivalent Input and Output Schematic  
Diagrams.................................................................. 11  
7.2 Test Circuits ............................................................ 11  
7.3 Timing Diagrams..................................................... 12  
Detailed Description ............................................ 16  
4 修订历史记录  
日期  
修订版本  
注释  
2014 4 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
5 Pin Configuration and Functions  
RTQ Package  
VQFN-56  
(Top View)  
56 55 54 53 52 51 50 49  
48 47 46 45 44 43  
42  
GND  
OUTR14  
OUTG14  
OUTB14  
OUTR15  
OUTG15  
OUTB15  
1
SOUT  
2
3
4
5
6
7
41  
40  
39  
38  
37  
36  
OUTB9  
OUTG9  
OUTR9  
OUTB8  
OUTG8  
OUTR8  
Thermal Pad  
(Solder Side, GND Terminal)  
OUTR0  
OUTG0  
8
9
35  
34  
OUTB7  
OUTG7  
OUTB0  
OUTR1  
OUTG1  
OUTB1  
OUTR2  
10  
11  
12  
13  
14  
33  
32  
31  
30  
29  
OUTR7  
OUTB6  
OUTG6  
OUTR6  
BLANK  
15 16 17 18 19 20 21 22  
23 24 25 26 27 28  
Copyright © 2014, Texas Instruments Incorporated  
3
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
Pin Functions  
PIN  
NAME  
NO.  
I/O DESCRIPTION  
GND  
1, 56  
Ground. All GND pins are connected internally.  
Red LED constant-current outputs (OUTRn).  
2, 5, 8, 11, 14, 17, 20,  
23, 30, 33, 36, 39, 44,  
47, 50, 53  
OUTR0 to  
OUTR15  
Multiple outputs can be tied together to increase the constant-current capability. Different voltages can be  
applied to each output. These outputs are turned on or off by the BLANK signal and the data in the output on  
or off control data latch.  
O
Green LED constant-current outputs (OUTGn).  
3, 6, 9, 12, 15, 18, 21,  
24, 31, 34, 37, 40, 45,  
48, 51, 54  
OUTG0 to  
OUTG15  
Multiple outputs can be tied together to increase the constant-current capability. Different voltages can be  
applied to each output. These outputs are turned on or off by the BLANK signal and the data in the output on  
or off control data latch.  
O
O
I
Blue LED constant-current outputs (OUTBn).  
4, 7, 10, 13, 16, 19, 22,  
25, 32, 35, 38, 41, 46,  
49, 52, 55  
OUTB0 to  
OUTB15  
Multiple outputs can be tied together to increase the constant-current capability. Different voltages can be  
applied to each output. These outputs are turned on or off by the BLANK signal and the data in the output on  
or off control data latch.  
Serial data input of the 49-bit common shift register, Schmitt buffer input.  
When SIN is high, the LSB is set to 1 for only one SCLK input rising edge. If two SCLK rising edges are input  
while SIN is high, then the 49-bit shift register LSB and LSB+1 are set to 1. When SIN is low, the LSB is set to  
0 at the SCLK input rising edge.  
SIN  
26  
27  
28  
Edge-triggered latch, Schmitt buffer input.  
The LAT rising edge latches data from the common shift register either into the output on or off data latch or  
the maximum current control (MC), brightness control (BC), or function control (FC) data latch. When the  
common shift register data are latched into the on or off data latch, data in the common shift register are  
simultaneously replaced with SID, which is selected by SIDLD. Refer to the Output On or Off Data Latch and  
Status Information Data (SID) sections for more details.  
LAT  
I
I
Serial data shift clock, Schmitt buffer input.  
Data present on SIN are shifted to the 49-bit common shift register LSB with the SCLK rising edge. Data in the  
shift register are shifted towards the MSB at each SCLK rising edge. The common shift register MSB appears  
on SOUT.  
SCLK  
Blank all outputs, Schmitt buffer input.  
BLANK  
29  
42  
I
When BLANK is high, all constant-current outputs (OUTXn) are forced off. When BLANK is low, all OUTXn are  
controlled by the on or off control data in the data latch.  
Serial data output of the 49-bit common shift register.  
SOUT is connected to the MSB of the register. Data are clocked out at the SCLK rising edge.  
SOUT  
VCC  
O
43  
Power-supply voltage  
Thermal pad  
Ground. The thermal pad must be connected to GND on the printed circuit board (PCB).  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
4.0  
UNIT  
VCC  
VIN  
Supply voltage(2)  
V
V
V
Input voltage range  
SIN, SCLK, LAT, BLANK  
SOUT  
VCC + 0.3  
VCC + 0.3  
VOUT  
Output voltage range  
OUTR0 to OUTR15, OUTG0 to OUTG15,  
OUTB0 to OUTB15  
–0.3  
11  
V
TJ (max)  
Operating junction temperature  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to device ground pin.  
4
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
6.2 Handling Ratings  
MIN  
MAX  
UNIT  
Tstg  
Storage temperature range  
–55  
150  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
–200  
–500  
2000  
500  
V
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
At TA= –40°C to +85°C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
NOM  
MAX  
UNIT  
DC CHARACTERISTICS (VCC = 3 V to 3.6 V)  
VCC  
Supply voltage  
3.0  
3.6  
10  
V
V
OUTR0 to OUTR15, OUTG0 to  
OUTG15, OUTB0 to OUTB15  
VO  
Voltage applied to output  
VIH  
VIL  
IOH  
IOL  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
SIN, SCLK, LAT, BLANK  
SIN, SCLK, LAT, BLANK  
SOUT  
0.7 × VCC  
GND  
VCC  
V
V
0.3 × VCC  
–2  
2
mA  
mA  
SOUT  
Operating free-air temperature  
range  
TA  
TJ  
–40  
–40  
+85  
°C  
°C  
Operating junction temperature  
range  
+125  
AC CHARACTERISTICS (VCC = 3 V to 3.6 V)  
fCLK (SCLK)  
tWH0  
Data shift clock frequency  
SCLK  
30  
MHz  
ns  
SCLK  
10  
10  
15  
60  
40  
4
tWL0  
SCLK  
ns  
tWH1  
Pulse duration  
LAT  
ns  
tWH2  
BLANK  
ns  
tWL2  
BLANK  
ns  
tSU0  
SIN to SCLK  
LATto SCLK↑  
ns  
tSU1  
20  
ns  
SCLKresumes normal mode,  
BLANK, PSMODE bit = 01b  
tSU2  
12  
µs  
Setup time  
Hold time  
LATfor all data latching except all  
0s resumes normal mode, BLANK,  
PSMODE bit = 10b  
tSU3  
12  
µs  
tH0  
tH1  
SCLKto SIN  
3
ns  
ns  
SCLKto LAT↑  
10  
Copyright © 2014, Texas Instruments Incorporated  
5
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
6.4 Thermal Information  
TLC5954  
RTQ (VQFN)  
56 PINS  
29.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.3  
7.7  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ψJB  
7.7  
RθJCbot  
2.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
At TA = –40°C to +85°C and VCC = 3.0 V to 3.6 V, unless otherwise noted. Typical values are at TA = +25°C and VCC = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
IOH = –2 mA at SOUT  
VCC – 0.4  
VCC  
V
VOL  
IOL = 2 mA at SOUT  
LODVLT = 000b  
0.4  
V
VLOD0  
VLOD1  
VLOD2  
VLOD3  
VLOD4  
VLSD0  
VLSD1  
VLSD2  
IIN  
0.15  
0.25  
0.35  
0.45  
0.55  
0.20  
0.30  
0.40  
0.50  
0.60  
0.25  
0.35  
0.45  
0.55  
0.65  
V
LODVLT = 001b, 101b, 110b, 111b  
LODVLT = 010b  
V
LED open-detection threshold  
V
LODVLT = 011b  
V
LODVLT = 100b  
V
LSDVLT = 00b  
0.45 × VCC 0.50 × VCC 0.55 × VCC  
0.65 × VCC 0.70 × VCC 0.75 × VCC  
0.85 × VCC 0.90 × VCC 0.95 × VCC  
V
LED short-detection threshold  
Input current  
LSDVLT = 01b  
V
LSDVLT = 10b, 11b  
V
VIN = VCC or GND at SIN, SCLK, LAT, and BLANK  
–1  
1
μA  
SIN, SCLK, LAT = GND, BLANK = VCC, VOUTXn = 1 V,  
BCX = 7Fh, MC = 0h (IOUTRn, IOUTGn = 2.9-mA target,  
IOUTBn = 2.0-mA target)(1)  
ICC0  
15  
19  
mA  
SIN, SCLK, LAT = GND, BLANK = VCC, VOUTXn = 1 V,  
BCX = 7Fh, MC = 5h (IOUTRn, IOUTGn = 17.4-mA target,  
IOUTBn = 12.2-mA target)  
ICC1  
ICC2  
ICC3  
ICC4  
IOLC0  
IOLC1  
17.5  
17.5  
20.5  
7
22  
22  
mA  
mA  
mA  
µA  
Supply current (VCC  
)
SIN, SCLK, LAT, BLANK = GND, all OUTXn = on,  
VOUTXn = 1 V, BCX = 7Fh, MC = 5h  
SIN, SCLK, LAT, BLANK = GND, all OUTXn = on,  
VOUTXn = 1 V, BCX = 7Fh, MC = 7h (IOUTRn, IOUTGn  
34.9-mA target, IOUTBn = 24.4-mA target)  
=
25.5  
60  
In power-save mode, SIN, SCLK, LAT = GND,  
BLANK = VCC  
All OUTXn = on, VOUTXn = VOUTfix = 1 V, BC = 7Fh,  
MC = 7h, at OUTR0 to OUTR15 and OUTG0 to  
OUTG15  
32.5  
22.7  
34.9  
24.4  
37.3  
26.1  
mA  
mA  
Constant output current  
Output leakage current  
All OUTXn = on, VOUTXn = VOUTfix = 1 V, BC = 7Fh,  
MC = 7h, at OUTB0 to OUTB15  
TJ = +25°C  
0.1  
0.2  
0.5  
µA  
µA  
µA  
BLANK = VCC, VOUTXn = VOUTfix  
= 10 V, MC = 7h, at OUTXn  
IOLKG  
TJ = +85°C  
TJ = +125°C  
Constant-current error  
(channel-to-channel)(2)  
All OUTXn = on, BCX = 7Fh, VOUTXn = VOUTfix = 1 V,  
MC = 7h, at same color group (OUTXn)  
ΔIOLC0  
±1%  
±3%  
(1) X = R, G, and B. n = 0 to 15.  
(2) The deviation of each output in the same color group (OUTRn, OUTGn, OUTBn) from the average of the same OUTXn group constant-  
current. Deviation is calculated by the formula:  
IOUTXn  
- 1  
IOUTX0 + IOUTX1 + ... + IOUTX14 + IOUTX15  
16  
D (%) =  
´ 100  
, where X = R, G, or B, and n = 0 to 15.  
6
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
Electrical Characteristics (continued)  
At TA = –40°C to +85°C and VCC = 3.0 V to 3.6 V, unless otherwise noted. Typical values are at TA = +25°C and VCC = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Constant-current error  
(device-to-device)(3)  
All OUTXn = on, BCX = 7Fh, VOUTXn = VOUTfix = 1 V,  
MC = 7h, at same color group (OUTXn)  
ΔIOLC1  
ΔIOLC2  
ΔIOLC3  
±0.5%  
±3%  
All OUTXn = on, BCX = 7Fh, VOUTXn = VOUTfix = 1 V,  
MC = 7h, at OUTXn  
Line regulation(4)  
Load regulation(5)  
±0.5  
±1  
±1  
±3  
%/V  
%/V  
All OUTXn = on, BCX = 7Fh, VOUTXn = 1 V to 3 V,  
VOUTfix = 1 V, MC = 7h, at OUTXn  
(3) The deviation of the OUTXn constant-current average from the ideal constant-current value. Deviation is calculated by the formula:  
IOUTX0 + IOUTX1 + ... + IOUTX15  
- (Ideal Output Current)  
16  
D (%) =  
´ 100  
Ideal Output Current  
Ideal current is 34.9 mA for OUTRn and OUTGn. Ideal current is 24.4 mA for OUTBn with MC data equal to 7h.  
, where X = R, G, or B, and n = 0 to 15.  
(4) Line regulation is calculated by the formula:  
(IOUTXn at VCC = 3.6 V) - (IOUTXn at VCC = 3.0 V)  
D (%/V) =  
100  
´
IOUTXn at VCC = 3.0 V  
3.6 V - 3.0 V  
X = R, G, or B. n = 0 to 15.  
(5) Load regulation is calculated by the equation:  
(IOUTXn at VOUTXn = 3 V) - (IOUTXn at VOUTXn = 1 V)  
D (%/V) =  
100  
´
IOUTXn at VOUTXn = 1 V  
3 V - 1 V  
, where X = R, G, or B, and n = 0 to 15.  
6.6 Switching Characteristics  
At TA = –40°C to +85°C, VCC = 3.0 V to 3.6 V, CL = 15 pF, RL = 100 for OUTRn and OUTGn, RL = 150 Ω for OUTBn,  
MC = 7h, and VLED = 4.5 V, unless otherwise noted. Typical values at TA = +25°C and VCC = 3.3 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2
MAX  
5
UNIT  
ns  
tR0  
tR1  
tF0  
tF1  
tD0  
tD1  
tD2  
SOUT  
OUTXn, BCX = 7Fh(1)  
Rise time  
20  
2
50  
5
ns  
SOUT  
ns  
Fall time  
OUTXn, BCX = 7Fh  
SCLKto SOUT  
20  
13  
30  
30  
50  
23  
60  
60  
ns  
ns  
LATto OUTR0 on to off or OUTR0 off to on, BCX = 7Fh  
BLANK↓↑ to OUTR0 on to off or OUTR0 off to on, BCX = 7Fh  
ns  
ns  
Propagation delay(2)  
OUTRn on to OUTGn on, OUTGn on to OUTBn on, and OUTBn on to  
the next OUTRn on, BCX = 7Fh  
tD3  
1.5  
5
ns  
OUTRn off to OUTGn off, OUTGn off to OUTBn off, and OUTBn off to  
the next OUTRn off, BCX = 7Fh  
tD4  
1.5  
5
300  
35  
ns  
ns  
ns  
tD5  
LATto power-save mode by writing data for all OUTXn off  
150  
OUTXn on or off data = all 1s, BCX = 7Fh, 40-ns BLANK low-level one-  
shot pulse input  
tON_ERR  
Output on-time error(3)  
–35  
(1) X = R, G, or B. n = 0 to 15.  
(2) tD3 (OUTRn on to OUTGn on, OUTGn on to OUTBn on, and OUTBn on to the next OUTRn on) and tD4 (OUTRn off to OUTGn off,  
OUTGn off to OUTBn off, and OUTBn off to the next OUTRn off) are calculated by:  
tD3 (ns) = (the propagation delay between OUTR0 on to OUTB7 on) / 47 and  
tD4 (ns) = (the propagation delay between OUTR0 off to OUTB7 off) / 47.  
(3) Output on-time error (tON_ERR) is calculated by the formula: tON_ERR (ns) = tOUT_ON – BLANK low-level pulse duration.  
tOUT_ON is the actual on-time of OUTXn.  
Copyright © 2014, Texas Instruments Incorporated  
7
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
6.7 Typical Characteristics  
At TA = +25°C and VCC = 3.3 V, unless otherwise noted.  
45  
35  
30  
25  
20  
15  
10  
5
MC = 0  
MC = 1  
MC = 2  
MC = 3  
MC = 4  
MC = 5  
MC = 6  
MC = 7  
MC = 1  
MC = 2  
MC = 3  
MC = 4  
MC = 5  
MC = 6  
MC = 7  
MC = 8  
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.5  
1
1.5  
Output Voltage (V)  
2
2.5  
3
0
0.5  
1
1.5  
Output Voltage (V)  
2
2.5  
3
D001  
D002  
BCR, BCG = 7Fh  
BCB = 7Fh  
Figure 1. Output Current vs Output Voltage  
Figure 2. Output Current vs Output Voltage  
(OUTRn, OUTGn)  
(OUTBn)  
27  
26  
25  
24  
23  
22  
21  
38  
37  
36  
35  
34  
33  
32  
TA = 25qC  
TA = 40qC  
TA = 85qC  
TA = 25qC  
TA = 40qC  
TA = 85qC  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Voltage (V)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Voltage (V)  
1
D003  
D004  
BCR = BCG = 7Fh  
MC = 7  
BCB = 7Fh  
MC = 7  
Figure 3. Output Current vs Output Voltage  
Figure 4. Output Current vs Output Voltage  
(OUTRn, OUTGn)  
(OUTBn)  
3
2
3
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
Min  
Max  
Min  
Max  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Output Current (mA)  
Output Current (mA)  
D005  
D006  
BCR = 7Fh  
MC = 7  
BCG = 7Fh  
MC = 7  
Figure 5. Constant-Current Error vs Output Current  
Figure 6. Constant-Current Error vs Output Current  
(Channel-to-Channel, OUTRn)  
(Channel-to-Channel, OUTGn)  
8
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
Typical Characteristics (continued)  
At TA = +25°C and VCC = 3.3 V, unless otherwise noted.  
3
3
2
2
1
1
0
0
-1  
-1  
-2  
-3  
-2  
Min  
Max  
Min  
Max  
-3  
0
5
10  
15  
20  
25  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
Output Current (mA)  
Ambient Temperature (qC)  
D007  
D008  
BCB = 7Fh  
MC = 7  
BCR = 7Fh  
MC = 7h  
Figure 7. Constant-Current Error vs Output Current  
Figure 8. Constant-Current Error vs Ambient Temperature  
(Channel-to-Channel, OUTBn)  
(Channel-to-Channel, OUTRn)  
3
3
2
2
1
1
0
0
-1  
-2  
-3  
-1  
-2  
Min  
Max  
Min  
Max  
-3  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (qC)  
Ambient Temperature (qC)  
D009  
D010  
BCG = 7Fh  
MC = 7h  
BCB = 7Fh  
MC = 7  
Figure 9. Constant-Current Error vs Ambient Temperature  
Figure 10. Constant-Current Error vs Ambient Temperature  
(Channel-to-Channel, OUTGn)  
(Channel-to-Channel, OUTBn)  
40  
40  
MC = 0  
MC = 1  
MC = 2  
MC = 3  
MC = 4  
MC = 5  
MC = 6  
MC = 7  
MC = 0  
MC = 1  
MC = 2  
MC = 3  
MC = 4  
MC = 5  
MC = 6  
MC = 7  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
0
16  
32  
48  
64  
80  
96  
112  
128  
0
16  
32  
48  
64  
80  
96  
112  
128  
Brightness Control Data (dec)  
Brightness Control Data (dec)  
D011  
D012  
BCR = BCG = 7Fh  
BCB = 7Fh  
Figure 11. Global Brightness Control Linearity  
Figure 12. Global Brightness Control Linearity  
(OUTRn, OUTGn)  
(OUTBn)  
Copyright © 2014, Texas Instruments Incorporated  
9
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = +25°C and VCC = 3.3 V, unless otherwise noted.  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
-40  
-20  
0
20  
40  
60  
80  
100  
Red, Green Output Current (mA)  
SCLK = 30 MHz  
All OUTXn = On  
VOUT = 0.8 V  
Temperature (qC)  
D013  
D014  
SIN = 15 MHz  
MC = 0h to 7h  
BCX = 7Fh  
BLANK = Low  
SIN = 15 MHz  
BCX = 7Fh  
MC = 5h  
All OUTXn = On  
SCLK = 30 MHz  
BLANK = Low  
VOUT = 0.8 V  
SOUT = No Load  
SOUT = No Load  
TA = –40°C to +85°C  
Figure 13. Supply Current vs Output Current  
Figure 14. Supply Current vs Ambient Temperature  
Ch1: BLANK (2V/div)  
Ch2: OUTR0 (2V/div)  
Ch3: OUTG0 (2V/div)  
Ch4: OUTB0 (2V/div)  
VCC = 3.3 V  
MC = 7h  
BCX = 7Fh  
VLED = 4.5 V  
RL = 100 Ω (OUTRn, OUTGn)  
RL = 150 Ω (OUTBn)  
CL = 15 pF  
BLANK Low Pulse Duration = 40 ns  
Figure 15. Constant-Current Output Voltage Waveform  
10  
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
7 Parameter Measurement Information  
7.1 Pin Equivalent Input and Output Schematic Diagrams  
VCC  
VCC  
OUTPUT  
INPUT  
GND  
GND  
Figure 16. SIN, SCLK, LAT, BLANK  
Figure 17. SOUT  
VCC  
OUTR0  
VCC  
(1)  
OUTXn  
(1)  
GND  
OUTB15  
VOUTXn  
VOUTfix  
(1) X = R, G, or B. n = 0 to 15.  
Figure 18. OUTXn  
7.2 Test Circuits  
RL  
CL  
VCC  
VCC  
VCC  
(2)  
OUTXn  
VCC  
VLED  
(1)  
SOUT  
GND  
(1)  
CL  
GND  
(1) CL includes measurement probe and jig capacitance.  
(2) X = R, G, or B. n = 0 to 15.  
(1) CL includes measurement probe and jig capacitance.  
Figure 20. Rise and Fall Time Test Circuit for  
SOUT  
Figure 19. Rise and Fall Time Test Circuit for  
OUTXn  
VCC  
OUTR0  
VCC  
(1)  
OUTXn  
(1)  
GND  
OUTB15  
VOUTXn  
VOUTfix  
(1) X = R, G, or B. n = 0 to 15.  
Figure 21. Constant-Current Test Circuit for OUTXn  
Copyright © 2014, Texas Instruments Incorporated  
11  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
7.3 Timing Diagrams  
tWH0, tWL0, tWH1, tWH2, tWL2  
VCC  
Input(1)  
50%  
GND  
tWH  
tWL  
tSU0, tSU1, tH0, tH1  
VCC  
Clock Input(1)  
50%  
GND  
VCC  
tSU  
tH  
Data and Control Input(1)  
50%  
GND  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
Figure 22. Input Timing  
tR0, tR1, tF0, tF1, tD0, tD1, tD2, tD3, tD4, tD5  
:
VCC  
Input(1)  
50%  
GND  
tD  
tD5  
(2)  
VOH or VOUTXnH  
90%  
50%  
10%  
Output  
VOL or VOUTXnL  
tR or tF  
(1) Input pulse rise and fall time is 1 ns to 3 ns.  
(2) X = R, G, or B. n = 0 to 15.  
Figure 23. Output Timing  
12  
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
Timing Diagrams (continued)  
Output on or off data write.  
FC, BC, MC data write.  
ON ON ON  
ON  
ON  
ON  
B15B G15B R15B B14B G14B R14B  
MC  
1
ON ON  
B0B G0B  
ON  
R0B  
MC  
2
MC  
0
ON  
R0A  
H
L
H
L
L
H
SIN  
t
t
SU0  
H0  
f
t
CLK(SCLK)  
t
WH0  
SU1  
SCLK  
LAT  
1
2
3
4
5
6
1
2
3
4
47  
48  
49  
47  
48  
49  
t
t
t
WH1  
WL0  
H1  
t
t
WH2  
WL2  
SID are not loaded into the common  
shift register at the LAT signal rising  
time for BC, FC data writes.  
BLANK  
SID are loaded into the common  
shift register at the LAT signal  
rising time for on or off data writes.  
Common Shift Register Bit 0  
(Internal)  
ON ON  
B14B G14B  
ON  
ON  
ON  
B0B G0B R0B  
SID  
R0B  
MC  
2
MC  
1
MC  
0
SID  
R0A  
ON  
ON  
B15B G15B R15B  
ON  
L
H
H
L
L
Common Shift Register Bit 1  
(Internal)  
BC  
R0  
MC  
2
ON  
G0B  
SID  
G0B  
SID  
R0B  
SID  
R0A  
ON  
ON  
ON  
B15B G15B R15B B14B  
ON  
ON ON  
R1B B0B  
MC  
1
SID  
G0A  
H
L
L
H
Common Shift Register Bit 47  
(Internal)  
SID  
B15A  
SID  
R0B  
SID  
SID  
G15A R15A B14A G14A  
SID SID  
SID  
SID  
ON  
G0A R0A B15B  
SID SID  
B15B G15B  
SID  
G14B  
SID SID  
R14A B13A  
SID SID  
R15B B14B  
H
H
On or Off Data Latch  
(Internal)  
New Data  
(OUTBn, OUTGn = All 1s , OUTRn = All 0s)  
Old Data  
Old Data (B15A to R0A = All 1s)  
Global BC, FC Data Latch  
(Internal)  
New Data  
t
, t  
t
R0 F0  
D0  
SID  
G0B  
SID  
B15A  
SID SID  
G14A R14A  
SID SID  
G0A R0A  
SID  
B15B G15B R15B B14B  
SID  
SID  
SID  
SID  
R0B  
SID  
SID  
SID  
G15A R15A B14A  
L
t
L
H
SOUT  
t
t
(Common shift register bit48)  
D2  
D2  
t
t
R1  
D1  
F1  
D3  
t
V
OUTXnH  
OFF  
V
OUTR0  
OUTXnL  
ON  
t
t
D4  
Output current is changed  
by BC data changes.  
OFF  
ON  
OUTG0  
OUTB0  
t
D3  
D4  
OFF  
ON  
t
D4  
t
D3  
OFF  
ON  
OUTR1  
OFF  
ON  
OUTG7  
OUTB7  
OFF  
ON  
(1) X = R, G, or B. n = 0 to 15.  
Figure 24. Data Write and OUTXn On or Off Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
Timing Diagrams (continued)  
H
L
SIN  
SCLK  
1
2
3
1
2
47  
48  
49  
48  
49  
LAT  
t
SU2  
H
L
BLANK  
PSMODE Bit in  
FC Data  
(Internal)  
01b  
(Outputs are not all off.)  
On or Off Control  
Data Latch  
(Internal)  
Data are all 0  
(outputs are all off).  
Data are not all 0 (outputs are not all off).  
Old On or Off Data  
OFF  
OFF  
OFF  
OUTR0  
OUTG0  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
OFF  
OFF  
ON  
OFF  
ON  
OUTB7  
Power-Save Mode  
(PSM) Status  
(Internal)  
Normal Mode  
Normal Mode  
Normal Mode  
Power-Save Mode  
Normal Mode  
t
D5  
The measured point is 90% ICC.  
ICC  
(VCC Current)  
Figure 25. Power-Save Mode Timing Diagram (PSMODE = 01b)  
14  
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
Timing Diagrams (continued)  
H
L
SIN  
SCLK  
1
2
3
47  
48  
49  
1
2
47  
48  
49  
LAT  
t
SU3  
H
L
BLANK  
PSMODE Bit in  
FC Data  
(Internal)  
10b  
On or Off Control  
Data Latch  
(Internal)  
New Data Are All 0  
(Outputs Are All Off)  
Old On or Off Data  
(Outputs Are Not All Off)  
Data Are Not All 0 (Outputs Are Not All Off)  
OFF  
OFF  
OFF  
OFF  
OUTR0  
OUTG0  
ON  
ON  
OFF  
OFF  
ON  
ON  
OFF  
ON  
OFF  
OFF  
ON  
OUTB7  
Power-Save Mode  
(PSM) Status  
(Internal)  
Power-Save  
Mode  
Normal Mode  
Normal Mode  
Power-Save Mode  
Normal Mode  
The measured point is 90% ICC.  
t
D5  
ICC  
(VCC Current)  
Figure 26. Power-Save Mode Timing Diagram (PSMODE = 10b)  
Copyright © 2014, Texas Instruments Incorporated  
15  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLC5954 is 48-channel, 34.9-mA or 24.4-mA, constant-current LED driver that can control the LED on of off  
settings with the BLANK signal for grayscale (GS) control. The minimum 40-ns BLANK signal pulse duration can  
be input to generate very short LED on-time.  
The device has a 128-step, 7-bit, output current control function termed global brightness control (BC) that can  
control each color group output. The BC function can adjust the red, green, and blue LED intensity for true white  
with constant-current control. The device contributes higher image quality to LED displays with fine white balance  
tuning by using these BLANK pulse durations and MC, BC functions.  
The display controller can locate LED lamp failures via the device because the controller can detect LED lamp  
failures with the LED open detection (LOD) and LED short detection (LSD) functions. Furthermore, the reliability  
of the display can be improved by the LOD and LSD function.  
The device maximum constant-current output value can be set by an internal register data function referred to as  
maximum current control (MC), instead of the general method of using an external resistor setting. Thus, any  
failure modes that occur from the external resistor can be eliminated. One resistor can also be eliminated with  
the MC function.  
The device constant-current output can drive approximately 17.4 mA at a 0.32-V output voltage and a +25°C  
ambient temperature. This voltage is called knee voltage. This 0.32-V, low-knee voltage can contribute to the  
design of a lower-power display system.  
The total number of LED drivers on one LED display panel can be reduced because 48 LED lamps can be driven  
by one LED driver. Therefore, designing fine-pitch LED displays is simplified.  
16  
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
8.2 Functional Block Diagram  
VCC  
48-Bit LOD or LSDData  
VCC  
UVLO  
RESET  
LSB  
MSB  
SIN  
SOUT  
49-Bit Common Shift Register  
8
48  
0
SCLK  
Bits 47-40  
bit 48  
1
48  
LSB  
MSB  
48  
ALLOFF  
48-Bit Output On or Off Data Latch  
0
47  
40  
LSB  
MSB  
2
8-Bit  
Decoder  
40-Bit MC, BC, FC Data Latch  
10110010b  
39  
0
LAT  
33  
SIDLD  
2
48  
2
BLANK  
PSMODE  
Power-  
Save  
Control  
To All  
Analog  
Circuits  
SID  
Holder  
On or Off Control with  
Output Delay  
ALLOFF  
RESET  
48  
21  
7
BC  
8
7
7
7-Bit Global  
BC for OUTRn  
7-Bit Global  
BC for OUTGn  
7-Bit Global  
BC for OUTBn  
2
MC  
3
7
32  
7
16  
7
48  
32-Channel  
Constant-Current Sink Driver  
16-Channel Constant-  
Current Sink Driver  
Reference  
Current  
Control  
GND  
GND  
5
LODVLT, LSDVLT  
Detection  
Voltage  
LED Open Detection (LOD)  
LED Short Detection (LSD)  
Thermal  
Pad  
GND  
OUTR0  
OUTG0  
OUTG15  
OUTB0  
OUTB15  
OUTR15  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Output Current Calculation  
The output current value controlled by MC and BC can be calculated by Equation 1.  
BCX  
IOUTn (mA) = IOLCMax (mA) ´  
0.06 + 0.94 ´  
127  
where:  
IOLCMax = the maximum constant-current value for all OUTXn for each color group programmed by MC data,  
BCX = the global brightness control value (0h to 7Fh),  
X = R, G, or B for the red, green, or blue color group, and  
n = 0 to 15.  
(1)  
Each output sinks the IOLCMax current when they turn on and the global brightness control (BC) data are set to the  
maximum value of 7Fh (127d).  
8.3.2 Status Information Data (SID)  
The status information data (SID) contains the status of the LED open detection (LOD) and LED short detection  
(LSD).  
When the output on-off data latch is written, the SID selected by the SIDLD bits are loaded into lower 48 bits in  
the common shift register at the LAT rising edge after the original data in the common shift register are copied to  
the on-off data latch. When the BC and FC data are written, SID data are not loaded to the common shift  
register. After SID data are copied into the common shift register, new SID data are not loaded until new data are  
written into the common shift register even if a LAT rising edge is input.  
When the device resumes normal operation after the power-save mode, a BLANK rising edge must be input after  
tSU2 or tSU3 elapses in order to retain correct LOD and LSD data in the SID holder because the SID analog circuit  
does not function during power-save mode. The SID load configuration and SID read timing are shown in  
Figure 27 and Figure 28, respectively.  
Selected SID (48 bits) by SIDLD data in the function control data latch.  
Selected Selected Selected Selected Selected  
SID for SID for SID for SID for SID for  
OUTB15 OUTG15 OUTR15 OUTB14 OUTG14  
Selected  
SID for  
OUTB1  
Selected Selected Selected Selected  
SID for  
OUTR0  
Selected  
SID for  
OUTG1  
SID for  
OUTR1  
SID for  
OUTB0  
SID for  
OUTG0  
Selected SID by FCdata  
are loaded to the lower  
48 bits of the common  
shift register when the  
LAT rising edge is input  
with 0 MSB data of the  
common shift register.  
SIN  
SCK  
Bit 48  
(0)  
Bit 5  
Bit 47  
Bit 46  
Bit 45  
Bit 44  
Bit 43  
Bit4  
Bit 3  
SOUT  
Bit 2  
Bit 1  
Bit 0  
LSB  
MSB  
Common Shift Register (49 bits)  
Figure 27. SID Load Configuration  
18  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
Feature Description (continued)  
ON  
G0A  
ON  
R0A  
ON  
B15B  
ON  
B15C  
ON  
ON  
G15B R15B B6B  
ON  
ON  
ON  
ON  
R1B B0B G0B  
ON  
R0B  
ON ON  
G15C R15C  
L
SIN  
L
SCLK  
LAT  
47  
48  
49  
1
2
3
---  
1
2
3
4
5
46  
47  
48  
49  
Shift Register  
LSB Data  
(Internal)  
ON  
B0A  
ON  
G0A  
ON  
R0A  
SID  
0A  
SID  
0B  
ON  
B15B  
ON ON  
G15B R6B  
ON  
ON  
R1B B0B G0B  
ON  
ON  
B15C  
L
L
ON  
R0B  
Shift Register  
LSB +1 Data  
(Internal)  
SID  
1A  
ON  
G0A  
ON ON  
B15B G15B  
ON  
G1B R1B B0B  
ON  
ON  
SID  
0A  
SID  
1B  
SID  
0B  
ON  
R1A  
ON  
B0A  
L
L
ON  
G0B  
Shift Register  
MSB-1 Data  
(Internal)  
ON  
B15A  
SID  
0
SID  
47A  
SID  
47B  
SID SID  
46A 45A  
SID  
44A  
SID  
43A  
SID  
1A  
SID  
0A  
SID SID  
46B 45B  
L
L
SID data selected by the SIDLD bit of FC data are loaded into the  
common shift register at the LAT rising edge except SIDLD = 00b.  
ON  
B15B  
Shift Register  
MSB Data  
(Internal)  
SID  
1
SID  
0
SID SID  
47A 46A  
SID  
45A  
SID  
44A  
SID  
2A  
SID  
1A  
SID  
0A  
SID SID  
47B 46B  
L
L
Output On or Off  
Data Latch  
(Internal)  
New On or Off Data (B15A-R0A)  
Old On or Off Data  
New On or Off Data (B15B-R0B)  
SIDLD in FC  
Data Latch  
(Internal)  
XXb  
LOD data are selected when SIDLD = 01h. LSD data are selected when SIDLD is set to 10b.  
No SID data are loaded when SIDLD is 00h or 11h.  
SID  
1
SID  
0
SID SID  
47A 46A  
SID  
45A  
SID  
44A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
47B  
SID  
46B  
L
L
SOUT  
48-Bit SID Data  
BLANK  
Selected detector data by SIDLD are held in the SID holder when BLANK is high. The held data are loaded into the common shift register  
as SID except when SIDLD is 00h.  
SID Holder Data  
(Internal)  
Detector Data  
XXXXh  
Detector Data  
XXXXh  
LOD data go through the SID holder when BLANK is low.  
48-Bit LOD or LSD  
Circuit Output Data  
(Internal)  
Detector Data  
0000h  
Detector  
XXXXh  
Detector Data  
0000h  
Detector Data  
XXXXh  
The detector data are not stable immediately after the BLANK signal goes low.  
Figure 28. SID Read Timing Diagram  
Copyright © 2014, Texas Instruments Incorporated  
19  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 LED Open Detection (LOD)  
LOD detects a fault caused by an open circuit in the nth LED string, or a short from OUTXn to ground with low  
impedance, by comparing the OUTXn voltage to the LOD detection threshold voltage level set by LODVLT in the  
function control data latch (see Table 6 and Table 8). If the OUTXn voltage is lower than the programmed  
voltage, the corresponding output LOD bit is set to 1 to indicate a shorted LED. Otherwise, the LOD bit is set to  
0. LOD data are only valid for outputs that are set to 1 in the output on-off data latch. LOD data are always 0 for  
outputs that are set to 0 in the output on-off data latch.  
LOD data are stored in a 48-bit register called the SID holder (see the Functional Block Diagram) at the BLANK  
rising edge when the SIDLD bits are set to 01b (see Table 7). The loaded LOD data can be read out through the  
common shift register as SID data at the SOUT pin. LOD data are not valid for 1 μs after the output is turned on.  
If the OUTXn controlled by the BLANK pin is less than 1 µs, the LOD data must be ignored.  
When the device resumes operation from power-save mode, all OUTXn can be controlled by the internal on-off  
control data and the BLANK level after the setup time (tSU2) elapses. LOD data are valid after the propagation  
delay. Figure 29 illustrates an LOD and LSD circuit, Table 1 shows the SID bit settings for LOD and LSD, and  
Figure 30 illustrates the LED open-detection operating timing diagram.  
VLED  
LED Lamp  
LSD Data  
OUTXn  
1 = Error  
VLSD  
2.9 mA to 34.9 mA (for OUTRn, OUTGn)  
2.0 mA to 24.4 mA (for OUTBn)  
On or Off  
Control  
with Maximum BC Data  
LOD Data  
1 = Error  
VLOD  
GND  
Figure 29. LOD, LSD Circuit  
Table 1. LOD, LSD Truth Table  
CORRESPONDING BIT  
LOD  
LSD  
IN SID  
LED is not open (VOUTXn > VLOD  
)
LED is not shorted (VOUTXn VLSD  
)
0
LED is shorted between anode and cathode, or  
shorted to higher voltage side (VOUTXn > VLSD  
LED is open or shorted to GND (VOUTXn VLOD  
)
1
)
20  
Copyright © 2014, Texas Instruments Incorporated  
 
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
SIDLD in FC  
Data Latch  
(Internal)  
01b  
H
BLANK  
L
2 mA to 34.9 mA (for OUTRn, OUTGn),  
1.4 mA to 24.4 mA (for OUTBn)  
when BC data are maximum.  
OUTXn Current  
for LED Lighting  
0mA  
0 mA  
48-bit LOD data are not stable for  
1 µs after BLANK goes low.  
48-Bit LOD  
Circuit Output Data  
(Internal)  
LOD = 0000h  
LOD = 0000h  
LOD = XXXXh  
LOD data go through the SID holder  
when BLANK is low.  
48-bit data are held in the  
SID holder when BLANK is high.  
SID Holder Data  
(Internal)  
LOD = XXXXh  
Old data  
LAT  
48-Bit Output  
On or Off Data Latch  
(Internal)  
Old output on or off data.  
New output on or off data.  
48-Bit Common  
Shift Register  
(Internal)  
LOD data (XXXXh) are loaded  
into the shift register.  
Latched in output on or off data.  
Figure 30. LOD Operation Timing Diagram  
8.3.4 LED Short Detection (LSD)  
LSD data detect a fault caused by a shorted LED by comparing the OUTXn voltage to the LSD detection  
threshold voltage level set by LSDVLT in the function control data latch (see Table 6 and Table 9). If the OUTXn  
voltage is higher than the programmed voltage, the corresponding output LSD bit is set to 1 to indicate a shorted  
LED. Otherwise, the LSD bit is set to 0. LSD data are only valid for outputs that are set to 1 in the output on-off  
data latch. LSD data are always 0 for outputs that are set to 0 in the output on-off data latch.  
LSD data are loaded into a 48-bit register called the SID holder at the BLANK rising edge when the SIDLD bits  
are set to 10b (see Table 7). The loaded LSD data can be read out through the common shift register as SID  
data at the SOUT pin. LSD data are not valid for 1 μs after the output is turned on. If the OUTXn controlled by  
the BLANK pin is less than 1 µs, the LSD data must be ignored.  
Copyright © 2014, Texas Instruments Incorporated  
21  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
When the device resumes operation from power-save mode, all OUTXn can be controlled by the internal on-off  
control data and the BLANK level after the setup time (tSU2) elapses. LSD data are valid after the propagation  
delay. Figure 29 illustrates an LOD and LSD circuit and Figure 31 shows LED short-detection operating timing  
diagram.  
SIDLD in FC  
Data Latch  
(Internal)  
10b  
H
BLANK  
L
2 mA to 34.9 mA (for OUTRn, OUTGn),  
1.4 mA to 24.4 mA (for OUTBn)  
when BC data are maximum.  
OUTXn Current  
for LED Lighting  
0 mA  
0 mA  
48-bit LSD data are not stable for  
1 ms after BLANK goes low.  
48-Bit LSD  
Circuit Output Data  
(Internal)  
LSD = 0000h  
LSD = 0000h  
Old Data  
LSD = XXXXh  
LOD data go through the SID holder  
when BLANK is low.  
48-bit data are held in the SID holder  
when BLANK is high.  
SID Holder Data  
(Internal)  
LSD = XXXXh  
LAT  
48-Bit Output  
On or Off Data  
(Internal)  
Old output on or off data.  
New output on or off data.  
48-Bit Common  
Shift Register  
(Internal)  
LSD data (XXXXh) are loaded  
into the shift register.  
Latched output on or off data.  
Figure 31. LSD Operation Timing Diagram  
8.3.5 Noise Reduction  
Large surge currents may flow through the device and the board on which the device is mounted if all 48 LED  
channels turned on simultaneously when BLANK toggles from high to low. These large current surges can  
induce detrimental noise and electromagnetic interference (EMI) into other circuits. The device turns on the LED  
channels in a series delay to provide a circuit soft-start feature. A small delay circuit is implemented between  
each output. When all bits of the on-off data latch are set to 1, each constant-current output turns on in the  
following order: OUTR0, OUTG0, OUTB0, OUTR15, OUTG15, OUTB15, OUTR1, OUTG1, OUTB1, OUTR14,  
OUTG14, OUTB14, OUTR2, OUTG2, OUTB2, OUTR13, OUTG13, OUTB13, OUTR3, OUTG3, OUTB3,  
OUTR12, OUTG12, OUTB12, OUTR4, OUTG4, OUTB4, OUTR11, OUTG11, OUTB11, OUTR5, OUTG5,  
OUTB5, OUTR10, OUTG10, OUTB10, OUTR6, OUTG6, OUTB6, OUTR9, OUTG9, OUTB9, OUTR7, OUTG7,  
OUTB7, OUTR8, OUTG8, and OUTB8 with a small delay for each OUTXn after BLANK goes low or LAT goes  
high, see Figure 24. Both turn-on and turn-off times are delayed.  
22  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
8.4 Device Functional Modes  
8.4.1 Maximum Constant Sink Current  
The maximum output current of each channel (IOLCMax) is programmed by maximum current (MC) data and can  
be set by the serial interface.  
IOLCMax is the highest current for each output. Each OUTXn sinks IOLCMax current when they turn on with the  
global brightness control (BC) data set to the maximum value of 7Fh (127d). MC data are updated when the  
same data are written to the MC bits twice. When the device is powered on, the MC data latch is set to 0.  
Table 2 shows the characteristics of the constant-current sink versus the MC control data.  
Table 2. Maximum Constant-Current Output versus MC  
Data  
MC DATA  
IOLCMax (mA)  
OUTRn,  
OUTGn  
BINARY  
DECIMAL  
HEX  
OUTBn  
000 (default)  
001  
0 (default)  
0 (default)  
2.9  
2.0  
3.1  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
4.4  
010  
5.8  
4.1  
011  
8.7  
6.1  
100  
11.6  
17.4  
23.2  
34.9  
8.1  
101  
12.2  
16.3  
24.4  
110  
111  
8.4.2 Global Brightness Control (BC) Function: Sink Current Control  
The device is capable of simultaneously adjusting the output current of each color group (OUTR0 to OUTR15,  
OUTG0 to OUTG15, and OUTB0 to OUTB15). This function is called global brightness control (BC). The BC  
function allows the global BC data of LEDs connected to the three color groups to be adjusted. All OUTXn can  
be adjusted in 128 steps from 6% to 100% of the maximum output current, IOLCMax. The BC data are transmitted  
to the device by the serial interface. When BC data change, the output current also changes immediately.  
Table 3 shows the BC data versus the constant-current ratio against IOLCMax  
.
Table 3. BC Data versus Current Ratio and Set Current Value  
BC DATA  
OUTPUT CURRENT (mA, typ)  
OUTRn, OUTGn OUTBn  
MC = 7h MC = 0h  
(IOLCMax = 34.9 (IOLCMax = 2.9 (IOLCMax = 24.4 (IOLCMax = 2.0  
OUTPUT  
CURRENT  
RATIO TO  
IOLCMax  
BINARY  
MC = 7h  
MC = 0h  
MSB  
LSB  
DECIMAL  
HEX  
00  
(%, typ)  
mA)  
2.09  
2.35  
2.61  
mA)  
0.17  
0.20  
0.22  
mA)  
1.47  
1.65  
1.83  
mA)  
0.12  
0.14  
0.15  
000 0000  
000 0001  
000 0010  
0
1
6.0  
6.7  
01  
2
02  
7.5  
111 1101  
111 1110  
111 1111  
125  
126  
127  
7D  
7E  
7F  
98.5  
99.3  
100.0  
34.4  
34.7  
34.9  
2.86  
2.88  
2.90  
24.1  
24.3  
24.4  
1.96  
1.98  
2.00  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
 
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
8.4.3 Constant-Current Output On or Off Control  
When BLANK is low, each OUTXn is controlled by the data in the output on or off data latch. When data  
corresponding to an output equal 1, the output turns on; when data corresponding to an output equal 0, the  
output turns off. When BLANK is high, all OUTXn are forced off. When the device is powered on, the data in the  
output on or off data latch are set to 0. A truth table for the on or off control data is shown in Table 4.  
Table 4. On or Off Control Data Truth Table  
ON OR OFF CONTROL DATA  
CONSTANT-CURRENT OUTPUT STATUS  
0 (default)  
1
Off  
On  
8.4.4 Power-Save Mode  
The power-save mode control bits are assigned in the BC and FC data latch. The device dissipation current  
becomes 7 μA (typ) in this mode. In PSM, all analog circuits (such as the constant-current outputs and the LOD  
and LSD circuit) do not function. However, logic circuits (such as the common shift register, on-off data latch, and  
BC and FC data latch) do function. When the two bits in PSMODE are 01b, 10b, or 11b, the power-save mode is  
enabled. When the two bits are 11b, the device is always in power-save mode. When the two bits are set to 00b,  
the device is always in normal operation. If all 0s are written in the output on-off data latch, the device goes into  
power-save mode when the two bits are 01b or 10b. When a rising edge is generated at SCLK with the two  
PSMODE bits set to 01b, the device exits PSM and returns to normal operation. When data in the output on-off  
data latch are not all 0s, and when the two PSMODE bits set to 10b, the device exits PSM and returns to normal  
operation. All OUTXn are turned on after the device exits PSM. Figure 32 and Figure 33 provide power-save  
mode timing diagrams for PSMODE set to 01b and 10b, respectively. The BLANK level should go low after tSU2  
or tSU3 when the device exists PSM and returns to normal mode because the output current may be unstable  
immediately after starting normal mode.  
24  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
L
L
SIN  
SCLK  
LAT  
49  
1
2
49  
1
1
2
1
2
49  
When the device resumes normal mode, BLANK should be low after  
the setup time (for at least t ) from the SCLK rising edge input time  
su2  
H
for stable output current.  
L
BLANK  
48-Bit Common  
Shift Register  
(Internal)  
SID = XXXXh  
SID = 0000h  
SID = XXXXh  
Data Are Not 0  
SID holder data are loaded to the shift register at the LAT rising edge.  
Data Are Not 0  
48-Bit Output  
On or Off Data  
(Internal)  
Data Are Not 0  
All Data Are 0  
L
L
SOUT  
ON or OFF  
all OFF  
ON or OFF  
ON or OFF  
OUTXn  
SIDLD Bit in  
FC Data Latch  
(Internal)  
01b  
LOD data are all0because all outputs are off.  
LOD = XXXXh  
LOD = 0000h  
48-Bit LOD  
Circuit Output Data  
(Internal)  
LOD = 0000h  
LOD = XXXXh  
LOD = XXXXh  
48-bit LOD data are not stable  
for 1 µs after BLANK goes low.  
LOD = XXXXh  
SID Holder Data  
(Internal)  
LOD = 0000h  
LOD = XXXXh  
LOD = XXXXh  
PSMODE Bit in  
FC Data Latch  
(Internal)  
01b  
Power-Save  
Mode Status  
Normal  
Mode  
Power-Save  
Mode  
Normal Mode  
Normal Mode  
more than 1mA  
ICC  
(VCC Current)  
7 µA (typ)  
Figure 32. Power-Save Mode (FC Data PSMODE Bits = 01b)  
Copyright © 2014, Texas Instruments Incorporated  
25  
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
L
L
SIN  
SCLK  
LAT  
49  
1
2
49  
1
1
2
1
2
49  
When the device resumes normal mode, BLANK should be low  
from the SCLK rising edge  
after the setup time for at least t  
su3  
input time for stable output current.  
H
L
BLANK  
48-Bit Common  
Shift Register  
(Internal)  
SID = XXXXh  
SID = 0000h  
SID = XXXXh  
Data Are Not 0  
SID holder data are loaded to the shift register at the LAT rising edge.  
All Data = 0 Data Are Not 0  
48-Bit Output  
On or Off Data  
(Internal)  
Data Are Not 0  
L
L
SOUT  
ON  
or OFF  
ON or OFF  
OUTXn  
All OFF  
ON or OFF  
SIDLD Bit in  
FC Data Latch  
(Internal)  
01b  
LOD data are all 0 because all  
outputs are off.  
LOD = XXXXh  
48-Bit LOD  
Circuit Output Data  
(Internal)  
LOD =  
XXXXh  
LOD = 0000h  
LOD = XXXXh  
LOD = 0000h  
48-bit LOD data are not stable  
for 1 ms after BLANK goes low.  
LOD = XXXXh  
SID Holder Data  
(Internal)  
LOD =  
XXXXh  
LOD = 0000h  
LOD = XXXXh  
PSMODE Bit in  
FC Data Latch  
(Internal)  
10b  
Power-Save  
Mode Status  
Normal Mode  
Power-Save Mode  
Normal Mode  
More than 1 mA  
ICC (VCC Current)  
7 µA (typ)  
Figure 33. Power-Save Mode (FC Data PSMODE Bits = 10b)  
26  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
8.5 Register Maps  
8.5.1 Register and Data Latch Configuration  
The device has one common shift register and four control data latches. These data latches are the output on or  
off data latch, the maximum current control (MC) data latch, the global brightness control (BC) data latch, and the  
function control (FC) data latch.  
The common shift register is 49 bits long, the output on or off data latch is 48 bits long, and another 48-bit data  
latch is comprised of the 40-bit MC, BC, and FC data latches with an 8-bit write command decoder. If the  
common shift register MSB is 0, the least significant 48 bits of data from the 49-bit common shift register are  
latched into the output on or off data latch. If the MSB (bit 48) from the 49-bit common shift register is 1 and MSB  
1 through MSB 9 (bits [47:40]) are 96h (10010110b) for the write command data, the middle 37 bits (bits [39:3])  
in the common shift register are latched into the BC and FC data latch. MC data are updated when the same  
data are written to the MC bits twice with the write command data (96h) and the MSB (bit 48) set to 1. Figure 34  
shows the configuration of the common shift register and the four data latches.  
Common Shift Register (49 Bits)  
LSB  
MSB  
Common Common Common Common  
Data bit  
47  
Common Common Common Common Common  
Data bit  
4
Common  
Data bit  
43  
Common  
Data bit  
0
SIN  
Data  
Select bit  
Data bit Data bit  
46 45  
Data bit  
44  
Data bit  
5
Data bit  
3
Data bit Data bit  
1
SOUT  
2
SCK  
48  
47  
46 45  
44  
43  
---  
3
2
1
0
5
4
48 Bits  
This latch pulse is  
generated when LAT  
rising edge is input  
with “0” MSB data of  
common shift register  
(Data select bit).  
48 Bits  
Output On or Off Data Latch (48 Bits)  
LSB  
MSB  
48 Bits  
OUTB15  
On  
OUTB1  
On  
OUTG15 OUTR15 OUTB14 OUTG14  
On  
OUTG1  
On  
OUTR1  
On  
OUTB0  
On  
OUTG0  
On  
OUTR0  
On  
On  
On  
On  
47  
46  
45  
44  
43  
---  
3
2
1
0
5
4
Lower 3 Bits  
Higher 8 Bits  
Middle 37 Bits  
3 Bits  
3 Bits  
Pre-MC Data Latch  
(3 Bits)  
The  
previous  
MC data  
Xlat  
RESET from UVLO  
Xreset  
3 Bits  
3 Bits  
LatMC  
3 Bits  
MSB  
LSB  
MSB  
LSB  
LSB  
MSB  
MC for  
All  
FC for SIDLD, LODVLT,  
LSDVLT, PSMODE and  
7-Bit Reserved Bit  
8-Bit Write  
Command Decoder,  
96h (10010110b)  
BC for  
OUTB0-15  
BC for  
OUTG0-15  
BC for  
OUTR0-15  
---  
3
Latch  
OUTXn  
39  
---  
---  
0
47  
---  
40  
24  
---  
---  
9
16  
23  
17  
10  
2
BC, FC Data Latch (37 Bits)  
MC Data Latch (3 Bits)  
This latch pulse is generated when the LATrising edge is input  
with the MSB data of thecommon shift register = 1 (data select bit).  
Figure 34. Common Shift Register and Data Latch Configuration  
Copyright © 2014, Texas Instruments Incorporated  
27  
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
Register Maps (continued)  
8.5.1.1 Common Shift Register  
The 49-bit common shift register is used to shift data from the SIN pin into the device. The data shifted into the  
register are used for the output on or off control, MC, BC, and several FC functions, and the write command. The  
LSB of the common shift register is connected to SIN and the MSB is connected to SOUT. On each SCLK rising  
edge, the data on SIN are shifted into the LSB and all 49 bits are shifted towards the MSB. The register MSB is  
always connected to SOUT. In addition, the status information data (SID) selected by the SIDLD bits in the FC  
data latch are loaded to the lower 48 bits of the 49-bit common shift register when a rising edge is input on LAT  
for the output on or off control data write operation except when SIDLD = 00b and 11b (see Table 7). When the  
device is powered on, all 49 bits of the common shift register are set to 0.  
8.5.1.2 Output On or Off Data Latch  
The output on or off data latch is 48 bits long and sets the on or off status for each constant-current output  
(OUTRn, OUTGn, OUTBn). When BLANK is low, the output corresponding to the specific bit in the output on or  
off data latch is turned on if the data are 1 and remains off if the data are 0. When BLANK is high, all outputs are  
forced off, but the data in the latch do not change as long as LAT does not latch in new data. When the MSB of  
the common shift register is set to 0, the lower 48 bits are written to the output on or off data latch on the LAT  
rising edge. When the device is powered on, all bits in the data latch are set to 0. The output on or off data latch  
bit assignment is shown in Table 5. See Figure 35 for an output on or off data write timing diagram.  
Table 5. On or Off Control Data Latch Bit Assignment  
CONTROL  
LED  
CONTROL  
LED  
BIT  
BIT  
NUMBER  
BIT NAME CHANNEL  
DESCRIPTION  
NUMBER  
BIT NAME CHANNEL  
DESCRIPTION  
0
1
OUTR0ON  
OUTG0ON  
OUTB0ON  
OUTR1ON  
OUTG1ON  
OUTB1ON  
OUTR2ON  
OUTG2ON  
OUTB2ON  
OUTR3ON  
OUTG3ON  
OUTB3ON  
OUTR4ON  
OUTG4ON  
OUTB4ON  
OUTR5ON  
OUTG5ON  
OUTB5ON  
OUTR6ON  
OUTG6ON  
OUTB6ON  
OUTR7ON  
OUTG7ON  
OUTB7ON  
OUTR0  
OUTG0  
OUTB0  
OUTR1  
OUTG1  
OUTB1  
OUTR2  
OUTG2  
OUTB2  
OUTR3  
OUTG3  
OUTB3  
OUTR4  
OUTG4  
OUTB4  
OUTR5  
OUTG5  
OUTB5  
OUTR6  
OUTG6  
OUTB6  
OUTR7  
OUTG7  
OUTB7  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
OUTR8ON  
OUTG8ON  
OUTB8ON  
OUTR8  
OUTG8  
2
OUTB8  
3
OUTR9ON  
OUTG9ON  
OUTB9ON  
OUTR9  
4
OUTG9  
5
OUTB9  
6
OUTR10ON  
OUTG10ON  
OUTB10ON  
OUTR11ON  
OUTG11ON  
OUTB11ON  
OUTR12ON  
OUTG12ON  
OUTB12ON  
OUTR13ON  
OUTG13ON  
OUTB13ON  
OUTR14ON  
OUTG14ON  
OUTB14ON  
OUTR15ON  
OUTG15ON  
OUTB15ON  
OUTR10  
OUTG10  
OUTB10  
OUTR11  
OUTG11  
OUTB11  
OUTR12  
OUTG12  
OUTB12  
OUTR13  
OUTG13  
OUTB13  
OUTR14  
OUTG14  
OUTB14  
OUTR15  
OUTG15  
OUTB15  
7
8
9
0 = Output off  
1 = Output on with  
BLANK low.  
When the device is  
powered on, all bits are  
set to 0.  
0 = Output off  
1 = Output on with  
BLANK low.  
When the device is  
powered on, all bits are  
set to 0.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
28  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
Table 6. MC, BC, and FC Data Latch and Write Command Bit Description  
DEFAULT  
BIT  
BIT  
VALUE  
NUMBER  
NAME  
(BINARY)  
DESCRIPTION  
Maximum current control (MC) data for all OUTXn  
(data = 0h to 7h, see Table 2)  
[2:0]  
[9:3]  
MAXCUR (MC)  
BCR (BC)  
000b  
Global brightness control (BC) data for RED color group  
(data = 00h to 7Fh, see Table 3)  
Global brightness control (BC) data for GREEN color group  
(data = 00h to 7Fh, see Table 3)  
[16:10]  
[23:17]  
BCG (BC)  
Global brightness control (BC) data for BLUE color group  
(data = 00h to 7Fh, see Table 3)  
BCB (BC)  
SID load control. These two bits select the SID loaded to the common register  
when the LAT rising edge is input for on or off data writes. Table 7 shows the  
selected data truth table.  
[25:24]  
[28:26]  
[30:29]  
SIDLD (FC)  
LODVLT (FC)  
LSDVLT (FC)  
LOD detection voltage select. These three bits select the detection threshold  
voltage for the LED open detection (LOD). Table 8 shows the detect voltage  
truth table.  
LSD detection voltage select. These two bits select the detection threshold  
voltage for the LED short detection (LSD). Table 9 shows the detect voltage  
truth table.  
Power-save mode select. These two bits select the power-save mode between  
the four modes. Table 10 shows the power-save mode truth table. Figure 32  
and Figure 33 illustrate the power-save mode operation timing diagrams.  
[32:31]  
[39:33]  
[47:40]  
PSMODE (FC)  
RSV  
11b  
Reserved data, don’t care.  
Write command. When this data are 96h (10010110b), MC, BC, and FC data  
can be updated. In order to update MC data, the same data must be written  
twice to the MC bit.  
WRTCMD  
Table 7. SID Load Control Truth Table  
SIDLD  
STATUS INFORMATION DATA (SID) LOADED TO THE COMMON SHIFT  
BIT 25  
BIT 24  
REGISTER  
0
0
1
1
0
1
0
1
No data are loaded (default value)  
LED open detection (LOD) data are loaded  
LED short detection (LSD) data are loaded  
No data are loaded  
Table 8. LOD Threshold Voltage Truth Table  
LODVLT  
BIT 28  
BIT 27  
BIT 26  
LED OPEN DETECTION (LOD) THRESHOLD VOLTAGE  
VLOD0 (0.20 V, typ)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VLOD1 (0.30 V, typ)  
VLOD2 (0.40 V, typ)  
VLOD3 (0.50 V, typ)  
VLOD4 (0.60 V, typ)  
VLOD1 (0.30 V, typ)  
VLOD1 (0.30 V, typ)  
VLOD1 (0.30 V ,typ)  
Copyright © 2014, Texas Instruments Incorporated  
29  
 
 
 
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
Table 9. LSD Threshold Voltage Truth Table  
LSDVLT  
BIT 30  
BIT 29  
LED SHORT DETECTION (LSD) THRESHOLD VOLTAGE  
0
0
1
1
0
1
0
1
VLSD0 (0.50 × VCC, typ)  
VLSD1 (0.70 × VCC, typ)  
VLSD2 (0.90 × VCC, typ)  
VLSD2 (0.90 × VCC, typ)  
Table 10. Power-Save Mode Truth Table  
PSMODE  
BIT 32  
BIT 31  
POWER-SAVE MODE FUNCTION  
0
0
Power-save mode is disabled in every condition.  
When all zeroes (0s) are written to the output on or off data latch, the device goes  
to power-save mode. When an SCLK rising edge occurs, the device goes to  
normal operation and starts to control the output current. However, after the setup  
time (tSU2) elapses from the SCLK input timing, BLANK must go low. Otherwise,  
the output current may not reach the set constant-current value. If these two bits  
are set to 01b from 10b or 11b when the device is in power-save mode (PSM), the  
device remains in PSM and does not resume normal mode. When an SCLK rising  
edge is input after PSMODE = 01 is selected, the device returns to normal mode.  
0
1
When all zeroes (0s) are written to the output on or off data latch, the device goes  
to power-save mode. When the data (except all 0s) are written to the output on or  
off data latch, the device goes to normal operation and starts to control the output  
current. However, after the setup time (tSU3) elapses from the LAT input timing,  
BLANK must go low. Otherwise, the output current may not reach the set constant-  
current value. If this bit set is selected from other bit set to this bit set when the  
device is in PSM, the device remains in power-save mode. When data that are not  
all set to off are written to the on or off data latch after this bit set is selected, the  
device goes to normal mode.  
1
0
1 (default)  
1 (default)  
Power-save mode is enabled in every condition.  
30  
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
ON ON  
G15B R15B  
ON  
B15B  
ON  
B14B  
ON  
B15C  
ON  
R0A  
ON  
R1B B0B G0B  
ON  
ON  
ON  
R0B  
ON  
ON  
G15C R15C B14C G14C  
ON  
ON  
L
L
SIN  
SCLK  
LAT  
1
2
3
4
5
1
2
3
4
5
6
46  
47  
48  
49  
Common Shift  
Register LSB  
(Internal)  
SID  
0B  
SID  
0A  
ON  
R0A  
ON  
B15B G15B R15B  
ON  
ON  
ON  
ON  
R1B B0B G0B  
ON  
ON  
G15C  
ON  
ON  
ON  
R15C B14C G14C  
ON  
B15C  
L
ON  
R0B  
Common Shift  
Register LSB +1  
(Internal)  
SID  
1A  
ON  
G0A  
SID  
0A  
ON  
ON  
ON  
G1B R1B B0B  
SID  
1B  
SID  
0B  
ON ON  
R15C B14C  
ON ON  
B15B G15B  
ON  
ON  
B15C G15C  
L
ON  
G0B  
Common Shift  
Register MSB -1  
(Internal)  
ON SID  
B15A 47A  
SID  
46A  
SID  
0A  
SID SID  
46B 45B  
SID  
44B  
SID SID  
43B 42B  
SID  
45A  
SID  
44A  
SID  
43A  
SID  
1A  
SID  
47B  
L
ON  
B15B  
Common Shift  
Register MSB  
(Internal)  
SID SID  
47A 46A  
SID  
45A  
SID  
44A  
SID  
2A  
SID  
1A  
SID  
0A  
SID SID  
47B 46B  
SID  
45B  
SID SID  
44B 43B  
L
L
Output On or Off  
Data Latch  
(Internal)  
On or Off Data  
(B15A-R0A)  
On or Off Data (B15B-R0B)  
BC data are not changed.  
BC Data Latch  
(Internal)  
SID SID  
47A 46A  
SID  
45A  
SID  
44A  
SID  
2A  
SID  
1A  
SID  
0A  
SID  
47B  
SID  
46B  
SID  
45B  
SID  
44B  
SID  
43B  
L
L
SOUT  
BLANK  
OUTXn(1)  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OUTXn(2)  
OUTXn(3)  
OUTXn(4)  
OFF  
ON  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
ON  
ON  
OFF  
OFF  
ON  
(1) On or off latched data are 1.  
(2) On or off latched data change from 1 to 0 at the second LAT signal.  
(3) On or off latched data change from 0 to 1 at the second LAT signal.  
(4) On or off latched data are 0.  
Figure 35. Output On or Off Timing Diagram: Data Write and OUTXn Control  
Copyright © 2014, Texas Instruments Incorporated  
31  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
8.5.1.3 Maximum Current Control (MC), Global Brightness Control (BC), and Function Control (FC) Data  
Latch  
The MC, BC, and FC data latch (FC contains the PSMODE, LSDVLT, LODVLT, and SIDLD bits) is 40 bits long  
and is used to adjust the output current of all OUTXn (OUTRn, OUTGn, OUTBn), to select the status information  
data (SID) load data, to select LED open detection (LOD) and LED short detection (LSD) voltage, and to select  
the power-save mode (PSM).  
Data are latched from the lower 40 bits of the 49-bit common shift register into the MC, BC, and FC data latch at  
the LAT rising edge when the MSB of the common shift register is set to 1 and the MSB 1 to MSB 9 bit data (bits  
[47:40]) of the common shift register MSB side is 96h (10010110b). However, MC data are only updated when  
the same data as the previous written data are written. Table 6 lists the MC, BC, and FC data latch bit  
assignment. The MC, BC, and FC data write timing diagram is shown in Figure 36. When the device is powered  
on, the MC data latch is set to 000b and the PSMODE bits in the FC data latch are set to 11b.  
MC  
0A  
BC  
R0B  
MC  
2B  
MC  
1B  
MC  
0B  
L
H
L
L
H
H
L
H
H
L
H
SIN  
MC, BC, FC data writes are selected when MSB -1 to MSB-9 bits are 96h (HLLHLHHL).  
MC, BC, FC are selected when  
the MSB is high.  
SCLK  
1
2
3
4
5
1
2
3
4
5
6
46  
47  
48  
49  
LAT  
Common Shift  
Register LSB  
(Internal)  
BC  
R0B  
MC  
2B  
MC  
1B  
MC  
0B  
MC  
0A  
H
L
H
H
L
L
L
H
H
L
L
H
L
H
Common Shift  
Register LSB +1  
(Internal)  
MC  
1B  
MC  
1A  
MC  
0A  
MC  
0B  
BC BC  
R1B R0B  
MC  
2B  
H
H
Common Shift  
Register MSB-1  
(Internal)  
MC  
1A  
MC  
0A  
H
L
L
H
L
L
L
H
L
L
H
H
H
L
L
L
L
H
H
Common Shift  
Register MSB  
(Internal)  
MC  
2A  
MC  
1A  
MC  
0A  
H
H
H
H
Output On or Off  
Data latch  
(Internal)  
On or off control data are not changed.  
MC data in the data latch are updated to new data only when the  
same data are written twice with write command.  
(MC0B to MC2B data must be the same as MC0A to MC2A).  
New MC data  
Old MC Data  
MC Data Latch  
(Internal)  
New BC data  
Old BC Data  
Old FC Data  
BC Data Latch  
(Internal)  
BC and FC data in the data latch are updated to new data when the  
MSB of the common shift resistor is 1 and write command bit  
(MSB-1 ~ MSB9) is 96h (10010110b).  
New FC data  
FC Data Latch  
(Internal)  
MC  
2A  
MC  
1A  
MC  
0A  
H
L
L
H
L
SOUT  
H
L
L
H
H
H
Figure 36. Maximum Current Control (MC), Global Brightness Control (BC), and Function Control (FC)  
Data Write Timing Diagram  
32  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
9 Applications and Implementation  
9.1 Application Information  
The device is a 48-channel, constant sink current, LED driver. This device is typically connected in series to drive  
many LED lamps with only a few controller ports. Output current control data and on or off control data can be  
written from the SIN input pin. The on or off timing can be controlled by the BLANK signal. Also, the LED open  
and short error flag can be read out from the SOUT output pin.  
9.2 Typical Application  
In this application, the device VCC and LED lamp anode voltages are supplied from different power supplies.  
VLED  
¼
¼
¼
¼
¼
¼
¼
¼
OUTR0  
SIN  
OUTB15  
OUTR0  
SIN  
OUTB15  
DATA  
SCLK  
LAT  
SOUT  
SOUT  
VCC  
VCC  
SCLK  
LAT  
SCLK  
LAT  
Device 1  
Device n  
VCC  
GND  
VCC  
GND  
BLANK  
BLANK  
BLANK  
Controller  
PowerPAD  
PowerPAD  
GND  
GND  
3
SID Read  
Figure 37. Typical Application Circuit (Multiple Daisy-Chained Devices)  
9.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
Table 11. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VCC input voltage range  
3.0 V to 3.6 V  
LED lamp (VLED) input voltage range  
Maximum LED forward voltage (VF) + 0.4 V (knee voltage)  
Low level = GND, high level = VCC  
SIN, SCLK, LAT, and BLANK voltage range  
Copyright © 2014, Texas Instruments Incorporated  
33  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Step-by-Step Design Procedure  
To begin the design process, a few parameters must be decided upon. The designer needs to know the  
following:  
Maximum output constant-current value for all colors of the LED ramp.  
Maximum LED forward voltage (VF).  
Current ratio of red, green, and blue LED lamps for the best white balance.  
Is the LED open detect (LOD) function used? If so, which detection level (0.20 V, 0.30 V, 0.40 V, 0.50 V, or  
0.60 V) is used?  
Is the LED short detect (LSD) function used? If so, which detection level (50% VCC, 70% VCC, or 90% VCC)  
is used?  
9.2.2.2 Maximum Current (MC) Data  
There are a total of three bits of MC data that set the output current of all constant-current outputs (OUTXn).  
Select the MC data to be greater than the target LED ramp current if the output current is reduced white  
balanced by the global brightness control data and write the data with other control data.  
9.2.2.3 Global Brightness Control (BC) Data  
There are a total of three sets of 7-bit BC data for the red, green, and blue LED ramp. Select the BC data for the  
best white balance of the red, green, and blue LED ramp and write the data with other control data.  
9.2.2.4 On or Off Data  
There are a total of 48 bits of on or off data for the on or off control of each output. Select the on or off data of  
the LED lamp on or off status control and write the data.  
9.2.2.5 Other Control Data  
There are a total of 8 bits of control data to set the function mode for the status information data (SID) load  
control, LOD voltage setting, LSD voltage setting, and power save mode (PSM) explained in the Device  
Functional Modes section. Write the 8-bit control data for the appropriate operation of the display system with MC  
and BC data as the control data.  
9.2.2.6 Grayscale Control  
All constant-current outputs are controlled by the BLANK pin logic level. When BLANK is GND, all constant-  
current outputs are turned on except that the output is set to 0 in the 48-bit output on-off data latch. When  
BLANK is VCC, all outputs are forced off. The LED lamp grayscale can be controlled by the BLANK low pulse  
duration.  
34  
Copyright © 2014, Texas Instruments Incorporated  
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
9.2.3 Application Curves  
One LED connected to each output. BLANK low pulse duration = 40 ns.  
Ch1: VCC (2V/div)  
Ch1: VCC (2V/div)  
Ch2: VLED (2V/div)  
Ch2: VLED (2V/div)  
Ch3: Output current of VOUTR0 (10mA/div, RED LED  
Ch3: Output current of VOUTG0 (10mA/div, GREEN LED  
Ch4: BLANK (2V/div)  
Ch4: BLANK (2V/div)  
MCX = 5  
BCX = 7Fh  
VLED = 4.2 V  
MCX = 5  
BCX = 7Fh  
VLED = 4.2 V  
VCC = 3.3 V  
SIDLD = LODVLT = LSDVLT = PSMODE = 0  
VCC = 3.3 V  
SIDLD = LODVLT = LSDVLT = PSMODE = 0  
Figure 38. OUTR0 Output Current Waveform  
Figure 39. OUTG0 Output Current Waveform  
Ch1: VCC (2V/div)  
Ch2: VLED (2V/div)  
Ch3: Output current of VOUTB0 (10mA/div, BLUE LED  
Ch4: BLANK (2V/div)  
MCX = 5  
BCX = 7Fh  
VLED = 4.2 V  
VCC = 3.3 V  
SIDLD = LODVLT = LSDVLT = PSMODE = 0  
Figure 40. OUTB0 Output Current Waveform  
Copyright © 2014, Texas Instruments Incorporated  
35  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
10 Power Supply Recommendations  
The VCC power-supply voltage should be well regulated. An electrolytic capacitor must be used to reduce the  
voltage ripple to less than 5% of the input voltage. Furthermore, the VLED voltage should be set to the voltage  
calculated by Equation 2:  
VLED LED Maximum VF × Number of LED Lamps Connected in Series + 0.4 V (5 mA for MC Data Example)  
where:  
VF = Forward voltage  
(2)  
Because the total current of the constant-current output is large, some electrolytic capacitors must be used to  
prevent the OUTXn pin voltage from dropping lower than the calculated voltage from Equation 2.  
11 Layout  
11.1 Layout Guidelines  
1. The decoupling capacitor should be placed near the VCC and GND pin.  
2. The GND pattern should be routed as widely as possible for large GND currents. Maximum GND current is  
approximately 1.52 A.  
3. The routing between the LED cathode side and the device OUTXn should be routed to be as short and  
straight as possible to reduce wire inductance.  
4. The PowerPAD should be connected to the GND layer because the pad is connected to GND internally. The  
PowerPAD also should be connected to the heat sink layer to reduce device temperature.  
36  
Copyright © 2014, Texas Instruments Incorporated  
 
TLC5954  
www.ti.com.cn  
ZHCSCD0 APRIL 2014  
11.2 Layout Example  
VIA  
Top-Side PCB Pattern  
Bottom-Side PCB Pattern  
To  
To  
To  
To  
PowerPAD  
Next Next Next Next  
SIN SCLK BLANK LAT  
To Next GND  
To Next VCC  
To Next VLED  
SOUT  
OUTB9  
OUTG9  
GND  
POWER  
OUTR14  
OUTG14  
OUTB14  
OUTR9  
OUTB8  
OUTG8  
OUTR15  
OUTG15  
OUTB15  
OUTR0  
OUTR8  
OUTB7  
OUTG7  
OUTG0  
OUTB0  
OUTR1  
OUTR7  
OUTB6  
OUTG6  
OUTR6  
OUTG1  
OUTB1  
OUTR2  
BLANK  
VLED  
SIN  
BLANK  
GND  
VCC  
SCLK  
LAT  
Figure 41. Layout Example  
Copyright © 2014, Texas Instruments Incorporated  
37  
TLC5954  
ZHCSCD0 APRIL 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
要获得 LED 驱动器解决方案,请访问 http://www.ti.com.cn/solution/cn/lighting_signage。  
12.2 文档支持  
12.2.1 相关文档ꢀ  
相关文档如下:  
PowerPAD™ 耐热增强型封装应用报告》,SLMA002  
12.3 Trademarks  
All trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms and definitions.  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
38  
Copyright © 2014, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2014, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC5954RTQR  
TLC5954RTQT  
ACTIVE  
ACTIVE  
QFN  
QFN  
RTQ  
RTQ  
56  
56  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
TLC5954  
TLC5954  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RTQ 56  
8 x 8, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224653/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RTQ0056G  
PLASTIC QUAD FLATPACK-NO LEAD  
8.15  
7.85  
A
B
8.15  
7.85  
PIN 1 INDEX AREA  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.6±0.1  
(0.2) TYP  
15  
28  
52X 0.5  
14  
29  
57  
4X  
6.5  
SYMM  
5.6±0.1  
1
42  
0.30  
0.18  
56X  
PIN 1 ID  
(OPTIONAL)  
43  
56  
0.1  
C A B  
C
0.5  
0.3  
56X  
SYMM  
0.05  
4225369 / A 10/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RTQ0056G  
PLASTIC QUAD FLATPACK-NO LEAD  
(0.78)  
(5.6)  
8X (1.33)  
6X (1.22)  
43  
56X (0.6)  
56  
1
42  
56X (0.24)  
6X (1.22)  
8X (1.33)  
52X (0.5)  
SYMM  
(7.8)  
(5.6)  
57  
(R0.05)  
TYP  
14  
29  
(Ø0.2) TYP  
VIA  
15  
28  
SYMM  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225369 / A 10/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments  
literature number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their  
locations shown on this view. it is recommended thar vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RTQ0056G  
PLASTIC QUAD FLATPACK-NO LEAD  
(7.8)  
8X (0.665)  
8X (1.33)  
43  
56X (0.6)  
56  
56X (0.24)  
1
42  
57  
8X (1.33)  
52X (0.5)  
SYMM  
(7.8)  
8X (0.665)  
(R0.05) TYP  
16X  
(
1.13)  
14  
29  
METAL  
TYP  
15  
28  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
66% PRINTED COVERAGE BY AREA  
SCALE: 10X  
4225369 / A 10/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations..  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLC5954RTQR

具有全局亮度控制、LED 开路/短路检测功能和省电模式的 48 通道 LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5954RTQT

具有全局亮度控制、LED 开路/短路检测功能和省电模式的 48 通道 LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5955

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器
TI

TLC5955DCA

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器 | DCA | 56 | -40 to 85
TI

TLC5955DCAR

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器 | DCA | 56 | -40 to 85
TI

TLC5955RTQR

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5955RTQT

具有点校正、亮度控制和开路/短路检测功能的 48 通道、16 位 PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5957

具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器
TI

TLC5957RTQR

具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5957RTQT

具有预充电 FET、LED 开路检测和 Caterpillar 消除功能的 48 通道、16 位 ES-PWM LED 驱动器 | RTQ | 56 | -40 to 85
TI

TLC5958

具有预充电 FET、LED 开路检测功能和 48k 位存储器的 48 通道、16 位 ES-PWM LED 驱动器
TI

TLC59581

具有预充电 FET、LOD Caterpillar 且支持 32 路多路复用的 48 通道 16 位 ESPWM LED 驱动器
TI