TLC6C5712-Q1 [TI]

汽车类 12 位恒流 LED 灌流驱动器;
TLC6C5712-Q1
型号: TLC6C5712-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 12 位恒流 LED 灌流驱动器

驱动 驱动器
文件: 总69页 (文件大小:2174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
TLC6C5712-Q1 具有 8 位点校正功能的 12 通道全套诊断、恒定灌电流  
LED 驱动器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
在汽车仪表板及其他安全性能至关重要的 LED 驱动器  
应用中,为了确保 LED 亮度与色温的一致性,针对多  
通道 LED 的性能需求日益提升。系统级安全考量因素  
要求检测各种故障情况,因此会加深系统的复杂程度。  
符合 AEC-Q100 标准  
器件温度等级 1:环境运行温度范围为 -40°C  
125°C  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H3A  
TLC6C5712-Q1 器件是一款 12 通道恒定灌电流 LED  
驱动器。凭借 8 位点校正功能和高精度输出电  
流,TLC6C5712-Q1 器件成为校正 LED 亮度和色温变  
化的理想解决方案。该器件针对每个组件提供高级保护  
和诊断功能,可提升系统级稳定性并简化面向安全的设  
计。六个具有可编程映射功能的 PWM 输入支持多种  
LED 颜色调光配置并提供高调光比率。具有诊断功能  
16 位串行外设接口 (SPI) 支持以菊花链方式连接多  
个器件并简化系统级设计。  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
12 条功率双扩散金属氧化物半导体 (DMOS) 晶体  
管输出通道  
最大恒定电流高达 75mA,可通过外部电阻进行  
编程  
最高输出电压高达 7V  
最高压降电压:  
50mA 时为 0.75V/通道  
75mA 时为 1.2V/通道  
器件信息(1)  
出色的输出恒流精度:  
器件型号  
封装  
封装尺寸(标称值)  
通道间的差异:< ±3%(最大值)  
器件间的差异:< ±3%(最大值)  
每通道 8 位、256 步长线性点校正  
TLC6C5712-Q1  
HTSSOP (28)  
4.40mm x 9.70mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用电路原理图  
支持灵活的外部脉宽调制 (PWM) 调光  
3-V to 5.5-V  
Supply Voltage  
6 个具有频率监控功能的 PWM 输入  
V(SUPPLY)  
VCC  
通过串行外设接口 (SPI) 实现可编程通道映射  
ERR  
LATCH  
SCK  
SENSE  
保护和诊断  
相邻引脚短路检测  
OUT0  
OUT1  
在激活和禁用状态下可检测开路负载、短接至地  
以及发光二极管 (LED) 短路  
SDI  
SDO  
热预警与热关断  
开漏错误报告  
VF  
TLC6C5712-Q1  
LED 弱电源诊断  
PWM0  
OUT9  
参考电阻开路或短路检测与保护  
通过 SPI 寄存器锁定实现内容保护  
SPI 完整性诊断的强制错误  
OUT10  
OUT11  
PWM5  
IREF  
R(IREF)  
小型热有效的 28 引脚散热薄型小外形尺寸  
(HTSSOP) 封装 PowerPAD™封装  
GND  
2 应用范围  
仪表板信号装置指示灯  
面板及按钮背光照明  
条形图 LED  
变速器 PRNDL 档位指示灯  
连续转向指示灯  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCO9  
 
 
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 21  
7.5 Register Maps......................................................... 22  
Application and Implementation ........................ 55  
8.1 Application Information............................................ 55  
8.2 Typical Applications ................................................ 55  
Power Supply Recommendations...................... 58  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 7  
6.7 Switching Characteristics.......................................... 7  
6.8 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
8
9
10 Layout................................................................... 58  
10.1 Layout Guidelines ................................................. 58  
10.2 Layout Example .................................................... 59  
11 器件和文档支持 ..................................................... 60  
11.1 文档支持................................................................ 60  
11.2 社区资源................................................................ 60  
11.3 ....................................................................... 60  
11.4 静电放电警告......................................................... 60  
11.5 Glossary................................................................ 60  
12 机械、封装和可订购信息....................................... 60  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2014) to Revision A  
Page  
已发布完整版数据表 ............................................................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
5 Pin Configuration and Functions  
PWP Package  
28-Pin HTSSOP PowerPAD Package  
Top View  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
SCK  
SDI  
GND  
VCC  
2
3
LATCH  
SDO  
IREF  
4
PGND  
SENSE  
OUT11  
OUT10  
OUT9  
5
ERR  
6
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
PWM0  
PWM1  
PWM2  
7
Thermal  
Pad  
8
9
OUT8  
10  
11  
12  
13  
14  
OUT7  
OUT6  
PWM5  
PWM4  
PWM3  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
ERR  
NO.  
5
O
I
Error output, open-drain output, active-low  
Device ground  
GND  
28  
26  
3
IREF  
Connect an external resistor to GND for setting the full-scale current.  
Latch enable  
LATCH  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT10  
OUT11  
PGND  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
SCK  
I
6
O
O
O
O
O
O
O
O
O
O
O
O
I
Open-drain output  
7
Open-drain output  
8
Open-drain output  
9
Open-drain output  
10  
11  
18  
19  
20  
21  
22  
23  
25  
12  
13  
14  
15  
16  
17  
1
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Open-drain output  
Ground for output power  
PWM dimming input 0  
PWM dimming input 1  
PWM dimming input 2  
PWM dimming input 3  
PWM dimming input 4  
PWM dimming input 5  
SPI clock  
I
I
I
I
I
I
SDI  
2
I
Serial-data input  
SDO  
4
O
I
Serial-data output  
SENSE  
VCC  
24  
27  
Sense input (LED supply-voltage monitor)  
Power supply  
I
Copyright © 2015, Texas Instruments Incorporated  
3
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating ambient temperature range. Voltages referenced with respect to GND (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
7
UNIT  
VCC  
Input voltage  
IREF, LATCH, PWMx, SCK, SDI  
VCC  
10  
V
SENSE  
ERR open-drain output  
7
Output voltage  
Ground  
OUTx power DMOS drain-to-source voltage  
10  
V
SDO  
VCC  
0.3  
125  
150  
150  
PGND  
V
Operating ambient temperature, TA  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
°C  
°C  
°C  
–40  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are measured relative to GND.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V
Electrostatic  
discharge  
V(ESD)  
All pins  
V
Corner pins (1, 14, 15, and 28)  
±750  
(1) AEC Q100-002 indicates HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VCC  
VI  
Supply input voltage  
Input voltage  
3
0
5.5  
5.5  
7
V
LATCH, PWMx, SCK, SDI, SDO  
ERR, SENSE  
V
0
VO  
VIL  
VIH  
TA  
TJ  
Output voltage  
OUTx for x = 0 to 11  
0.5  
7
V
V
Input logic-low voltage  
Input logic-high voltage  
Ambient operating temperature  
Junction operating temperature  
LATCH, PWMx, SCK, SDI  
LATCH, PWMx, SCK, SDI  
0.28 VCC  
0.38 VCC  
–40  
0.3 VCC  
0.4 VCC  
0.33 VCC  
0.43 VCC  
125  
V
ºC  
ºC  
–40  
150  
4
Copyright © 2015, Texas Instruments Incorporated  
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
6.4 Thermal Information  
TLC6C5712-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
28 PINS  
39  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
19.5  
16.1  
0.5  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
15.9  
1.7  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
TA = 25°C, over recommended operating conditions (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VCC, PGND, GND)  
VCC = 5 V, PWM = H, RREF = 20.5 kΩ  
VCC = 3.3 V  
3
2.5  
2.6  
2.4  
4.5  
4
ICC  
Supply current  
mA  
V(POR-rising)  
V(POR-falling)  
V(POR-hyst)  
Power-on reset voltage, rising  
Power-on reset voltage, falling  
POR threshold hysteresis  
Rising threshold  
2.7  
2.5  
0.2  
2.8  
2.6  
V
V
V
Falling threshold  
LOGIC INPUTS (PWMx, SDI, LATCH, SCK)  
V(HYS)  
Ilkg  
Input logic hysterisis  
Input leakage current  
PWM pullup resistance  
VCC = 5 V or 3.3 V  
VI = VCC  
0.1 VCC  
150  
V
–1  
1
µA  
kΩ  
RPU  
105  
230  
CONTROL OUTPUTS (ERR, IREF, SDO)  
V(ERR)  
ERR pin open-drain voltage drop  
I(ERR) = 4 mA, VCC = 3.3 V–5 V  
V(ERR) = 5 V  
0.1 VCC  
3
V
µA  
V
Ilkg(ERR)  
V(IREF)  
VOH(SDO)  
VOL(SDO)  
ERR leakage current  
IREF voltage  
R(IREF) = 20.5 kΩ  
I(SDO) = –4 mA  
1.204  
1.229  
1.254  
SDO output-high voltage  
SDO output-low voltage  
0.9 VCC  
V
I(SDO) = 4 mA  
0.1 VCC  
V
OUTPUT STAGE (OUTx)  
V(OUTx) = 0.75 V, R(IREF) = 12.2 kΩ,  
Dot correction = 255  
50  
75  
I(OUTx,max)  
Constant output current  
mA  
V(OUTx) = 1.2 V, R(IREF) = 8.13 kΩ,  
Dot correction = 255  
V(OUTx) = 0.75 V, RREF = 12.2 kΩ,  
dot correction = 255  
I(OUTx,min)  
Minimum current-sink capability  
Constant output current  
0.15  
7.5  
0.165  
10  
0.18  
14  
mA  
mA  
V(OUTx) = 0.75 V, reference fault detected,  
Dot correction = 255  
I(OUTx,default)  
VCC = 3.3 V, R(IREF) = 12.2 kΩ, dot correction = 255  
VCC = 5 V, R(IREF) = 12.2 kΩ, dot correction = 255  
VCC = 5 V, R(IREF) = 8.13 kΩ, dot correction = 255  
0.75  
0.5  
V(OUT,min)  
Minimum output voltage  
V
1.2  
VCC = 5 V, R(IREF) = 12.2 kΩ, (50-mA maximum output  
current)  
–0.6  
–0.08  
–3%  
0.6  
0.08  
3%  
Output-current dot-correction  
differential nonlinearity  
DNL  
mA  
VCC = 5 V, R(IREF) = 61 kΩ, (10-mA maximum output  
current)  
V(OUTx) = 0.75 V, R(IREF) = 12.2 kΩ (50 mA), dot  
correction = 255  
V(OUTx) = 0.75 V, R(IREF) = 20.5 kΩ (30 mA), dot  
correction = 255  
–3%  
3%  
Output current absolute error  
percentage  
ΔI(OUTx)  
V(OUTx) = 0.75 V, R(IREF) = 61 kΩ (10 mA), dot  
correction = 255  
–7.5%  
–3%  
7.5%  
3%  
V(OUTx) = 1.2 V, R(IREF) = 8.13 kΩ (75 mA), dot  
correction = 255  
Copyright © 2015, Texas Instruments Incorporated  
5
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = 25°C, over recommended operating conditions (unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output current dependency on OUTx V(OUTx) = 0.75 V, R(IREF) = 12.2 kΩ (50 mA),  
ΔI(OUT_VOUT)  
–0.5%  
0.5%  
voltage  
ΔI(OUT_VOUT) = (I(OUT_7V) – I(OUT_1V) / I(IDEAL)) × 100  
Ratio of output current to IREF  
current, K = I(OUTx) / I(IREF)  
K(OUT)  
Dot correction = 255  
500  
mA/mA  
[CH_EN_MASKx] = 1, [DIS_OFF_FAULT_DIAG] = 1,  
V(OUTx) = 6.7 V, V(SENSE) = 7 V, TA = 125°C  
Ilkg(OUTx)  
Output leakage current  
0.5  
10  
15  
µA  
µA  
µA  
Ilkg(SENSE)  
I(IREF_octh)  
I(IREF_octh,hyst)  
I(IREF_scth)  
I(IREF_scth,hyst)  
I(OUT_PULLUP)  
Leakage current at SENSE pin  
VCC = 0, V(SENSE) = 5 V  
VCC = 5 V  
IREF resistor open-circuit detection  
threshold  
4.5  
IREF resistor open-circuit detection-  
threshold hysteresis  
VCC = 5 V  
2
µA  
µA  
µA  
µA  
IREF resistor short-circuit detection  
threshold  
VCC = 5 V  
160  
260  
IREF resistor short-circuit detection-  
threshold hysteresis  
VCC = 5 V  
20  
50  
Channel pullup current during  
deactivated state  
VCC = 5 V, V(OUTx) = 1 V  
PROTECTION CIRCUITS  
Weak LED supply-detection threshold  
voltage  
V(WLS)  
[WLS_TH] = 0  
[WLS_TH] = 0  
[WLS_TH] = 1  
[WLS_TH] = 1  
4.1  
2.7  
4.2  
0.1  
4.3  
V
V
V
V
V(WLS_hyst)  
V(WLS_OPT)  
V(WLS_hyst_OPT)  
Weak LED supply hysteresis  
Weak LED supply detection-threshold  
voltage  
2.77  
0.1  
2.85  
Weak LED supply hysteresis  
Short circuit-to-V(SENSE) detection  
threshold, voltage difference between  
V(SENSE) and V(OUTx)  
V(SC_th)  
0.5  
0.7  
0.1  
0.9  
0.3  
V
V
Short circuit-to-V(SENSE) detection  
hysteresis  
V(SC_hyst)  
V(OC_th)  
Open-circuit detection threshold  
Open-circuit-detection hysteresis  
0.1  
0.2  
V
V
V(OC_hyst)  
0.05  
Thermal-shutdown junction  
temperature  
T(TSD)  
T(HYS)  
T(PTW)  
150  
165  
15  
ºC  
ºC  
ºC  
Thermal shutdown or warning  
junction temperature hysteresis  
Pre-thermal warning junction-  
temperature threshold  
125  
135  
150  
6
Copyright © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
MHz  
ns  
f(SCK)  
Clock frequency, cascade operation  
1
10  
tc(SCK)  
SCK cycle time  
100  
380  
50  
tw(LAH), tw(WLAH)  
tw(CKH), tw(WCKH)  
tw(CKL), tw(WCKL)  
tw(SEW), tw(WDI)  
tsu(SEST)  
Pulse duration, LATCH  
SCK high pulse duration  
SCK low pulse duration  
SDI high and low pulse duration  
SDI setup time prior to SCK rise  
SDI hold time after SCK rise  
Output rise time (SCK)  
Output fall time (SCK)  
ns  
ns  
50  
ns  
150  
75  
ns  
ns  
th(SEHD)  
75  
ns  
tr  
50  
50  
ns  
tf  
ns  
6.7 Switching Characteristics  
TA = –40°C to 105°C, VCC = 3 V to 5.5 V  
PARAMETER  
TEST CONDITIONS  
Cascade operation  
MIN  
TYP  
MAX  
UNIT  
MHz  
ns  
f(SCK)  
Clock frequency  
10  
3000  
1000  
3000  
td(LAH)  
tpd(SOH)  
tpd(SOL)  
Latch switching delay  
SDO propagation delay time (L to H)  
SDO propagation delay (H to L)  
ns  
ns  
High to low propagation delay time  
(LATCH – OUT)  
tpd(LAOL)  
750  
3000  
ns  
ns  
ns  
ns  
Low-to-high propagation delay time  
(SCK – LATCH)  
tpd(CKLAH)  
tpd(CKDOH)  
tpd(CKDOHL)  
200  
Low-to-high propagation delay time  
(SCK – SDO)  
30  
30  
75  
75  
High-to-low propagation delay time  
(SCK – SDO)  
tr(o)  
tf(o)  
Rise time, outputs (OFF) SDO  
Fall time, outputs (ON) SDO  
50  
50  
ns  
ns  
PWMx falling threshold from 0.4 VCC  
to I(OUTx) rising threshold 10% of  
I(OUTx,max)  
Output delay time from PWMx to  
I(OUTx)  
td(PWM_ON)  
0.09  
0.09  
0.13  
0.13  
0.2  
0.2  
0.3  
0.8  
0.3  
µs  
µs  
PWMx rising threshold from 0.4 VCC  
to I(OUTx) falling threshold 90% of  
I(OUTx,max)  
td(PWM_OFF) Output delay time PWMx to IOUTx  
Default slew rate, rise time from  
10% to 90% current, 30-pF loading  
capacitance  
tr  
Output rise time  
µs  
µs  
With slow-slew-rate register option,  
rise time from 10% to 90% current,  
30-pF loading capacitance  
Default slew rate, fall time from 90%  
to 10% current, 30-pF loading  
capacitance  
tf  
Output fall time  
With slow-slew-rate register option,  
fall time from 90% to 10% current,  
30-pF loading capacitance  
0.8  
3
t(DEG)  
Output open or short degllitch time  
1
2
µs  
µs  
Reference open or short deglitch  
time  
t(REF_DEG)  
100  
Timer length for PWM edge  
detection  
t(PWM)  
PWM edge detection timer  
17  
20  
23  
ms  
Copyright © 2015, Texas Instruments Incorporated  
7
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
VCC  
LATCH  
40%  
0 V  
td(LAH)  
V(supply)  
OUTPUT  
50%  
OUT0– OUT11  
0.5 V  
VCC  
SCK  
30%  
30%  
0 V  
td(SOH)  
td(SOL)  
VCC  
SDO  
50%  
50%  
0 V  
1. Input Signal Timing Diagram Showing Absolute Minimal Timing  
VCC  
LATCH  
40%  
0 V  
td(LAH)  
V(supply)  
OUTPUT  
OUT0– OUT11  
50%  
0.5 V  
VCC  
SCK  
30%  
30%  
0 V  
td(SOH)  
td(SOL)  
VCC  
SDO  
50%  
50%  
0 V  
2. Output Signal Delay Time  
8
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
6.8 Typical Characteristics  
100.05%  
100%  
60  
50  
40  
30  
20  
10  
0
Ratio_CH0  
Ratio_CH5  
Ratio_CH6  
Ratio_CH11  
99.95%  
99.9%  
99.85%  
99.8%  
99.75%  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
V(OUTx) (V)  
V(OUTx) (V)  
D013  
D001  
VCC = 3.3 V  
R(IREF) = 12.2 kΩ  
TA = 25ºC  
VCC = 5.5 V  
TA = 25ºC  
R(IREF) = 12.2 kΩ  
Dot correction = 255  
Dot correction = 255  
3. Output Current vs Output Voltage  
4. Output Current Ratio vs Output Voltage  
60  
50  
40  
30  
20  
10  
0
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
CH10  
CH11  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
CH10  
CH11  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Reference Current (mA)  
Reference Current (mA)  
D002  
D003  
VCC = 5.5 V  
TA = 25ºC  
Dot correction = 255  
VCC = 5.5 V  
TA = –40ºC  
Dot correction = 255  
5. Output Current vs Reference Current  
6. Output Current vs Reference Current  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
CH9  
CH10  
CH11  
-40èC  
25èC  
125èC  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Reference Current (mA)  
Input Reference Current (mA)  
D004  
D005  
VCC = 5.5 V  
TA = 125ºC  
Dot correction = 255  
VCC = 5.5 V  
Channel = IOUT5  
Dot correction = 255  
7. Output Current vs Reference Current  
8. Output Current vs Reference Current  
版权 © 2015, Texas Instruments Incorporated  
9
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Characteristics (接下页)  
60  
50  
40  
30  
20  
10  
0
1%  
51 mA  
46 mA  
41 mA  
36 mA  
31 mA  
26 mA  
21 mA  
16 mA  
11 mA  
5 mA  
0.5%  
0
-0.5%  
-1%  
0 mA  
-1.5%  
-2%  
-40èC Current Error to 25èC  
125èC Current Error to 25èC  
-2.5%  
0
10  
20  
30  
40  
50  
60  
0
1
2
3
4
5
6
7
8
9
10  
Output Current (mA)  
VOUT(V)  
D006  
D007  
VCC = 5.5 V  
TA = 25ºC  
Dot correction = 255  
VCC = 5.5 V  
TA = 25ºC  
Dot correction = 255  
9. Output Temperature Error vs Output Current  
10. Output Current vs Output Voltage  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
3 V  
5.5 V  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Reference Resistor (kW)  
Reference Current (mA)  
D008  
D009  
VCC = 5.5 V  
TA = 25ºC  
VO = 0.7 V  
Dot correction = 255  
VO = 0.7 V  
TA = 25ºC  
Dot correction = 255  
11. Output Current vs Reference Resistor  
12. Output Current vs Reference Current  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
51.4 mA  
30.8 mA  
10.5 mA  
-40èC  
25èC  
125èC  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
Dot Correction - Decimal  
Dot Correction - Decimal  
D010  
D011  
VO = 0.7 V  
IO = 51.4 mA  
VO = 0.7 V  
TA = 25ºC  
13. Output Current vs Dot Correction  
14. Output Current vs Dot Correction  
10  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7 Detailed Description  
7.1 Overview  
The TLC6C5712-Q1 device is a 12-channel constant-current-sink LED driver. At the TLC6C5712-Q1 output  
stage, 12 regulated current channels provide uniform and constant current for driving LEDs within a wide range  
of forward-voltage variations.  
Users can adjust output current from 10 mA to 75 mA through an external resistor, R(IREF), which provides  
flexibility in controlling the light intensity of the LEDs. The maximum constant-current value (full-scale range) of  
all 12 channels is set by a single external resistor. The current of each individual output can be programmed in  
256 linear steps, allowing further calibration. The design of the TLC6C5712-Q1 device supports up to 7 V at the  
output ports. The serial communication interface is designed for high-throughput data transmission with  
cascaded devices. The device has six PWM input channels and 12 output channels that can be mapped  
arbitrarily to any of the 6 PWM inputs.  
The TLC6C5712-Q1 device has advanced diagnostics, LED open-load detection, shorted-LED detection, short-  
circuit to ground detection, reference resistor open and short protection, PWM input-frequency supervision,  
adjacent-pin short diagnostics, thermal pre-warning and thermal protection. LED open-and-short and output  
short-to-ground detection is available even when an LED channel is off. The diagnostic functions and errors can  
be activated or de-activated individually by functions or channels. Users can configure the open-drain error  
output to signalize various types of errors.  
7.2 Functional Block Diagram  
VCC  
OUT0  
OUT1  
OUT10 OUT11  
IREF  
IO Regulator  
VCC  
R(PU)  
SENSE  
PWM0  
Output Driver  
and  
Error Detection  
PWM  
MUX  
VCC  
R(PU)  
12  
12  
12  
PWM5  
LATCH  
12-Bit Output  
Latch  
Configuration  
Latches  
Open-Drain  
Error Output  
ERR  
SPI  
and  
Control  
Logic  
SCK  
SDI  
12  
16-Bit Shift  
Register  
SDO  
GND  
PGND  
版权 © 2015, Texas Instruments Incorporated  
11  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power-On Reset (POR)  
The device supports two types of POR, start-up or UVLO POR and software POR, with software reset capability.  
7.3.1.1 Start-Up or UVLO POR  
When power is applied to VCC, or when VCC is undervoltage (VCC < V(POR)), an internal power-on reset (POR)  
holds the TLC6C5712-Q1 device in a reset condition with the following conditions until VCC reaches VPOR.  
During RESET:  
The device cannot receive data.  
The SDO pin is held LOW, so the device cannot transmit data.  
The ERR open-drain output is pulled down.  
During POR, communication between the controller and the device is lost. Any data transmitted during this  
period is lost. The state machine inside the device is undefined. After POR, the reset status is released, the  
TLC6C5712-Q1 registers and SPI state machine are re-initialized to default states (see the Default column in 表  
2). [POR_ERR_FLAG] is set to HIGH during start-up or UVLO POR.  
7.3.1.2 Software POR  
A software reset command (<SOFTWARE_POR>) resets all internal register settings to default values. The  
command executes on a LATCH rising edge. All fault bits and diagnostic status are cleared and set to their  
default values. The <SOFTWARE_POR> command also executes the RESET_STATUS] command. The  
[POR_ERR_FLAG] bit in the <READ_STATUS0> register is set to HIGH on a software POR.  
7.3.1.3 Reset POR  
Either start-up or a UVLO POR or a software POR sets [POR_ERR_FLAG] to HIGH. when the device enters  
POR status, the [POR_ERR_FLAG] bit is latched HIGH. To clear the [POR_ERR_FLAG], a RESET_POR  
command must be issued.  
If [POR_ERR_FLAG] is set either by start-up, UVLO, or software, and the device is not in any UVLO state,  
[POR_ERR_FLAG] is latched and does not block any operation.  
7.3.1.4 POR Masking  
[POR_ERR_FLAG] reporting to the ERR output can be masked by the [POR_MASK] bit. If a POR event happens  
when [POR_MASK] is set HIGH, POR events do not trigger the ERR  
̅
output, and [POR_ERR_FLAG] is set  
HIGH.  
POR_MASK  
ERR  
Start-Up and  
UVLO POR  
POR_ERROR_FLAG  
SOFTWARE_POR  
Other Faults  
15. POR Error Report Topology  
See the following addresses in 2: 61h, 62h, 63h, and A2h.  
7.3.2 Error Feedback  
The TLC6C5712-Q1 device supports an active-low open-drain output for error information through the ERR pin  
for the MCU error-monitor interrupt. If any FLAG bit is set to HIGH in the <READ_STATUS0> register, and is not  
masked by a corresponding mask bit in the <WRITE_ERROR_MASK> register, the ERR pin pulls low to indicate  
an ERROR scenario. The MCU should immediately execute the error monitor routine.  
12  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
Feature Description (接下页)  
7.3.2.1 Recovery From Error  
When any fault occurs, all FAULT information can be read in separate FAULT registers, for example,  
<READ_OPEN_FAULT0>. When the error condition recovers, the register information is still latched and the  
ERR pin remains low until the fault is masked or the RESET_STATUS command has been issued. However, if  
the error condition still exists after issuing the RESET_STATUS command, the ERR pin pulls low again and the  
corresponding FAULT register is set HIGH.  
7.3.2.2 RESET_STATUS Command  
The RESET_STATUS command clears all flags in the following registers:  
<READ_ADJSHORT0>  
<READ_ADJSHORT1>  
<READ_SHORT_FAULT0>  
<READ_SHORT_FAULT1>  
<READ_SHORT_GND_FAULT0>  
<READ_SHORT_GND_FAULT1>  
<READ_OPEN_FAULT0>  
<READ_OPEN_FAULT1>  
<READ_PWM_FAULT>  
<READ_STATUS0>, excluding the [POR_ERR_FLAG] bit.  
As mentioned in the POR section, only the RESET_POR command can clear the [POR_ERR_FLAG] bit.  
[POR_ERR_FLAG] bit: Read only (R) bit. HIGH: A POR error has occurred. To reset this flag, issue a  
RESET_POR command.  
[POR_MASK] bit: Read and write (R/W) bit. HIGH: A POR error is stored in the [POR_ERR_FLAG] bit  
and is not reported to ERR.  
RESET_POR: A command to reset [POR_ERR_FLAG].  
SOFTWARE_POR: A command to generate a POR. It also clears STATUS flags.  
See the following addresses in 2: 62h, 9Ah through A2h, A8h, and A9h.  
7.3.3 PWM Input  
The TLC6C5712-Q1 device has six PWM inputs with independently configurable mapping to modulate any of the  
12 channels for external PWM dimming. A PWM monitor can be used to supervise PWM input-signal integrity.  
7.3.3.1 PWM Dimming  
PWM dimming is supported on all 12 channels by six PWM inputs. The input PWMx signal is active-low. Due to  
the minimal pulse duration needed for diagnostics, at 200 Hz the minimum achievable duty cycle is 0.1%, or 5 µs  
minimal on-time. Similarly, the maximum achievable duty cycle is 99.2%, or 40 µs minimum off-time. The setting  
of this boundary allows enough time for diagnostic functions. In the case of 0% or 100% PWM, diagnostics are  
not reported.  
7.3.3.2 PWM Monitor  
Independent rising-edge triggered timers are implemented as PWM monitors for each PWMx input channel.  
when the timer length reaches the threshold tPWM, [PWM_FAULTx] is set to HIGH. If the corresponding masking  
register [PWM_FAULT_MASKx] is also set HIGH, the fault is stored in [PWM_FAULTx] and is not reported to the  
[ANY_PWM_FAULT_FLAG] register. [ANY_PWM_FAULT_FLAG] is set to HIGH and the ERR pin is pulled LOW  
if any of the PWM monitors reported a fault and the mask register [PWM_MASK] is disabled. The PWM rising  
edge resets the timer and restarts counting from 0. For 0% or 100% PWM, the [PWM_FAULTx] registers should  
be independently masked for each PWMx input via the [PWM_FAULT_MASKx] registers.  
版权 © 2015, Texas Instruments Incorporated  
13  
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Feature Description (接下页)  
PWM_FAULT_MASK x  
PWM_MASK  
ERR  
PWM  
Monitor x  
PWM_FAULT x  
ANY_PWM_  
FAULT_FLAG  
Other PWM Faults  
Other Faults  
16. PWM Fault Report Topology  
After being set HIGH, [PWM_FAULTx] FAULT_PWMx is latched even if the corresponding PWM input toggling  
has recovered. The RESET_STATUS command must be issued to clear the [ANY_PWM_FAULT_FLAG] bit.  
7.3.3.3 PWM Mapping  
Each of the 12 output channels has a 3-bit [PWM_MAP_CH] field to assign to one PWMx input. All output  
channels are assigned to PWM0 by default. 1 lists the mapping for each PWMx input..  
1. PWMx Mapping  
BIT 2  
BIT 1  
BIT 0  
PWMx  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM0  
PWM0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7.3.3.4 PWM MAP Register Lock  
To avoid unintended modification of the <PWM MAPx> registers, the <PWM MAPx> registers can be locked via  
the LOCK_MAP command and unlocked via the UNLOCK_MAP command. For details, see the Register  
Protection feature.  
See the following addresses in 2: 40h through 45h, 60h, 62h, 66h through 68h, 6Ch, A0h through A3h, A6h,  
and A7h.  
[PWM_MAP_CH] field:  
[PWM_FAULT_MASKx] bit:  
[PWM_MASK] bit:  
R/W. 3 bits. Mapping output channel PWM source to PWMx input.  
R/W. Active-high. Mask the PWM fault flag PWMx.  
R/W. Active-high. Disable the ANY_PWM_FAULT_FLAG from reporting to  
ERR.  
[PWM_FAULTx] bit:  
R only. Active-high. HIGH: PWM monitor timer has triggered for PWMx.  
[ANY_PWM_FAULT_FLAG] bit: R only. Active-high. HIGH: One or more PWMx inputs have triggered the  
PWM monitor.  
[SLOW_SLEW_RATE] bit:  
R/W. Active-high. HIGH: Slow slew rate.  
14  
版权 © 2015, Texas Instruments Incorporated  
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.3.4 Constant-Current Output  
The TLC6C5712-Q1 device has 12 constant-current output channels. An external resistor, R(IREF), sets the  
maximum current of all channels globally. The current of each channel is individually configurable by  
independent 8-bit current digital-to-analog converters to support dot-correction capability, also known as  
calibration capability. Dot correction can be used to calibrate out brightness differences introduced by LED bin-to-  
bin differences or plastic transmittance variation by software instead of manually selecting matching resistors.  
7.3.4.1 Global Current Reference  
Maximum channel output current (dot-correction register [OUTPUT_DC_CHx] is set at full range, FFh) is globally  
set by reference resistor R(IREF). The V(IREF) voltage biases external reference resistor R(IREF), generating  
reference current I(IREF). I(IREF) is sensed and amplified by the ratio of K(OUT) as the maximum output current.  
Choose the external resistor R(IREF) value using 公式 1, based on maximum current I(OUT,MAX|DC=255  
.
V(IREF)  
R(IREF)  
=
´K(OUT)  
I(OUT)max |Dot Correction = 255  
(1)  
7.3.4.2 Current Reference Monitor and Protection  
The TLC6C5712-Q1 device implements a current-reference monitor for current-reference resistor open-and-short  
diagnostic and protection. The device monitors the current I(IREF) flowing out of the IREF pin. If I(IREF) is higher  
than I(IREF_scth), a reference-short condition is asserted, limiting the I(IREF) output current for short protection. If the  
I(IREF) current is smaller than II(IREF_octh), a reference-open condition is asserted.  
To maintain output function when the IREF resistor is in a short or open condition, device switches to a fail-safe  
current source. In fail-safe mode, the maximum output current is defined as I(OUTx_default). when the external fault  
condition is removed, the external resistor sets the I(IREF) current.  
V
(IREF)  
I(IREF)  
=
R(IREF)  
(2)  
To avoid switching into default current unintentionally, the device implements a digital deglitch filter on the  
reference open and short diagnostics. The filter length is defined as t(REF_deg). On assertion of the reference  
open-or-short fault, the [REF_FAULT_FLAG] bit is set. The [REF_MASK] bit can be used to mask the reference  
fault output to the ERR pin. If [REF_MASK] is enabled, a reference fault is not reported to the ERR output. If  
[REF_MASK] is enabled, a reference fault is not reported to the ERR output. Clearing the [REF_FAULT_FLAG]  
bit requires issuing the RESET_STATUS command.  
REF_MASK  
ERR  
IREF Short  
REF_FAULT_FLAG  
IREF Open  
Other Faults  
17. Reference Fault Report Topology  
7.3.4.3 Channel Activation Control  
[CH_ON_MASKx] are the channel activation mask bits which control each channel output ACTIVATED-  
DEACTIVATED. Logic LOW stands for channel ACTIVATED status.  
DEACTIVTING a channel output does not clear the diagnostics registers.  
版权 © 2015, Texas Instruments Incorporated  
15  
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.3.4.4 Individual Dot Correction Control  
Each channel has an internal 8-bit linear-current digital-to-analog converter for individual dot correction control.  
The 8-bit [OUTPUT_DC_CHx] fields are used to control DAC output current according to 公式 3. Note that the  
minimum current is 1 / 256 of IOUT,MAX. If absolutely zero current is required in some scenarios, the channel can  
be disabled by setting the corresponding channel-enable [CH_ON_MASKx] bit HIGH.  
Dot Correction +1  
I(OUT) = I(OUT)max ´  
256  
(3)  
7.3.4.5 Output Slew-Rate Adjustment  
To accommodate different slew rate requirements for EMC optimization, the [SLOW_SLEW_RATE] bit is  
provided. Setting [SLOW_SLEW_RATE] HIGH makes both the rising and falling times, tr and tf, longer.  
7.3.4.6 Register Lock  
To avoid unintended modification of registers, the [OUTPUT_DC_CHx] fields can be locked with the  
LOCK_CORR command and unlocked with the UNLOCK_CORR command. The [CH_ON_MASKx] bits can be  
locked with the LOCK_MASK command and unlocked with the UNLOCK_MASK command. For details, see the  
Register Protection section.  
7.3.4.7 Deactivated-Channel Internal Pullup  
To avoid floating outputs on a deactivated channel, optional pullup current to the SENSE node I(OUT_PULLUP) is  
provided. The pullup current is disabled by default and can be enabled by setting the [DIS_PULL_UP_CHx] bit  
HIGH.  
See the following addresses in 2: 46h through 43h, 69h, 6Ah, 6Dh, 6Eh, and 86h through 93h.  
[OUTPUT_DC_CHx] field: R/W. 8-bit. Dot correction current DAC setting register for channel x.  
[CH_ON_MASKx]:  
R/W. HIGH: Channel output disabled; LOW: Channel output enabled  
7.3.5 Advanced Diagnostics  
The TLC6C5712-Q1 device supports a variety of diagnostic features, including:  
Pre-thermal warning and thermal shutdown protection  
LED short-to-supply detection  
LED short-to-GND detection  
LED open-load detection  
Deactivated-channel LED-open or -short detection  
Weak-LED-supply detection  
Adjacent-pin short detection  
Reference resistor open or short detection and protection  
PWM frequency monitor  
7.3.5.1 Pre-Thermal Warning and Thermal Shutdown Protection  
When the junction temperature exceeds the pre-thermal-warning threshold T(PTW), [PRE_TSD_FLAG] in the  
<READ_STATUS0> register is set HIGH to signal the pre-thermal warning. The ERR̅ open-drain output is also  
pulled down. The microcontroller should respond to the fault warning and take actions to prevent junction  
temperature rising.  
If junction temperature continues to rise and exceeds thermal-shutdown threshold T(TSD), the overtemperature  
fault bit [TSD_FLAG] in the <READ_STATUS0> register is set HIGH to signal thermal shutdown, the ERR open-  
drain output is also pulled down, and all output channels are turned off for protection.  
[PRE_TSD_FLAG] and [TSD_FLAG] are latched when triggered. To clear either of the flags, issue the  
RESET_STATUS command.  
[TSD_FLAG] is latched after having been set. After the die temperature falls below T(TSD) – T(HYS), the LED  
outputs are activated using the previous settings without re-initializing.  
16  
版权 © 2015, Texas Instruments Incorporated  
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
The flag bits can be individually masked by [PRE_TSD_MASK] and [TSD_MASK]. [PRE_TSD_MASK] prevents  
the ERR open-drain output. [TSD_MASK] prevents the ERR open-drain output and thermal shutdown of all  
channels. Even if the faults are masked, the fault status can still be read in the registers.  
̅
̅
PRE_TSD_MASK  
PRE_TSD_FLAG  
TSD_FLAG  
ERR  
Pre-Thermal  
Detector  
Thermal Shutdown  
Detector  
Other Faults  
Thermal  
Shutdown  
TSD_MASK  
18. Thermal Fault Report Topology  
7.3.5.2 LED Short-to-Supply Detection  
The device has independent LED short-to-supply detection for each channel. Whether the channel PWM source  
is HIGH or LOW, the voltage difference between the SENSE and OUTx pins is monitored.  
If an LED short to the supply is detected, the [SHORT_FAULT_CHx] bit of the channel is set HIGH and the  
[ANY_SHORT_FLAG] bit is set HIGH The [ANY_SHORT_FLAG] also pulls down the ERR̅ open-drain output.  
The LED short-to-supply fault does not disable the corresponding channel output. when the fault condition is  
removed, the LED should resume normal operation. Fault conditions are latched in the [SHORT_FAULT_CHx]  
bits. To clear the [SHORT_FAULT_CHx] bits, issue the RESET_STATUS command.  
The [SHORT_FAULT_CHx] bits can be masked independently for each channel by the [SHORT_MASK_CHx]  
bits. when the [SHORT_MASK_CHx] bit of any channel is set HIGH, the short-to-supply fault on the specific  
channel is not reported to [ANY_SHORT_FLAG].  
7.3.5.3 LED Short-to-GND Detection  
The TLC6C5712-Q1 device is able to distinguish an LED short-to-GND condition from an LED open-detection  
condition by having an internal pullup current to the SENSE node. The pullup is enabled during the PWM OFF  
state or channel-deactivated state.  
If an LED short-to-GND is detected, the [SG_FAULT_CHx] bit for the channel is set HIGH, and the  
[ANY_SHORT_FLAG] bit is also set HIGH. [ANY_SHORT_FLAG] also pulls down the ERR̅ open-drain output.  
An LED short-to-GND fault does not disable the corresponding channel output. when a fault condition is  
removed, the LED should resume normal operation. Fault conditions are latched in the [SG_FAULT_CHx] fault  
bits. Issue a RESET_STATUS command to clear the [SG_FAULT_CHx] fault bits.  
The [SG_FAULT_CHx] channel-fault bits can be masked independently by [SG_MASK_CHx]. when the  
[SG_MASK_CHx] bit of any channel is set HIGH, the short-to-GND fault on the specific channel is not reported to  
[ANY_SHORT_FLAG].  
版权 © 2015, Texas Instruments Incorporated  
17  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
SG_MASK_CHx  
SG_FAULT_CHx  
SHORT_MASK  
ERR  
ANY_SHORT_FLAG  
SHORT_FAULT_CHx  
SHORT_MASK_CHx  
Other Faults  
19. Short Fault Report Topology  
7.3.5.4 LED Open-Load Detection  
The device has independent LED open-load detection for each channel. If an LED open-load condition is  
detected, the [OPEN_FAULT_CHx] bit for the channel is set HIGH, and the [ANY_OPEN_FLAG] bit also is set  
HIGH. [ANY_OPEN_FLAG] also pulls down the ERR open-drain output.  
An LED open-load fault does not disable the corresponding channel output. when a fault condition is removed,  
the LED should resume normal operation. Fault conditions are latched in the [OPEN_FAULT_CHx] fault bits.  
Issue a RESET_STATUS command to clear the [OPEN_FAULT_CHx] fault bits.  
The [OPEN_FAULT_CHx] channel-fault bits can be masked independently by the [OPEN_MASK_CHx] bits.  
when the [OPEN_MASK_CHx] bit of any channel is set HIGH, the open-load fault on the specific channel is not  
reported to the [ANY_OPEN_FLAG] bit.  
[ANY_OPEN_FLAG] is the indicator for open-load detectors. [ANY_OPEN_FLAG] can be masked by  
[OPEN_MASK] to avoid pulling down the ERR̅ open-drain output.  
OPEN_MASK_CHx  
OPEN_FAULT_CHx  
OPEN_MASK  
ERR  
ANY_OPEN_FLAG  
Other Channels  
Other Faults  
20. Open Fault Report Topology  
7.3.5.5 Deactivated-Channel LED Open or Short Detection  
Deactivating a channel by setting [CH_ON_MASKx] automatically enables detection of an off-state LED open  
load, short to the supply, or short to GND. If a fault is detected when the pullup is enabled, the respective fault  
register is set and the ERR̅ open-drain output is pulled down.  
To clear the fault, issue the RESET_STATUS command, the same as for activated-state diagnostics. The fault-  
masking mechanism is also the same as for activated-state diagnostics.  
If an application allows absolutely no current during the channel disabled state, disable the off-state LED open-  
or-short detection feature using the [DIS_OFF_FAULT_DIAG] bit.  
There is a provision for pulling each channel up to SENSE to avoid a floating node during off-state. This function  
can be enabled by setting the [DIS_PULL_UP_CHx] bit to HIGH. If any [DIS_PULL_UP_CHx] bit is set HIGH, the  
[DIS_PULL_UP_FLAG] bit is also set HIGH.  
18  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.3.5.6 Weak LED Supply (WLS) Detection  
The TLC6C5712-Q1 device provides weak-LED-supply detection to avoid reporting false faults due to supply  
failure. Implementation of weak-LED-supply detection is by monitoring the V(SENSE) voltage using the internal  
threshold voltage V(WLS) as a reference.  
The default threshold V(WLS) is set for a 5-V supply. If a 3.3-V LED supply is needed, the threshold voltage can  
be tuned to V(WLS_OPT) by setting the [WLS_TH] bit HIGH.  
when a fault is detected, the [WLS_FAULT_FLAG] bit is set if the [WLS_MASK] masking bit is not active. The  
[WLS_FAULT_FLAG] bit remains latched even if the voltage recovers. To clear the fault, issue the  
RESET_STATUS command.  
WLS_MASK  
ERR  
WLS_FAULT_FLAG  
Other Faults  
21. Weak-LED-Supply Fault-Report Topology  
7.3.5.6.1 Adjacent-Pin Short Detection  
On-demand adjacent-pin short detection is provided. This feature requires off-line diagnostics when the outputs  
are disabled. Otherwise, interruptions in normal operation and visual brightness glitches may result.  
To start adjacent-pin short detection, set the [ADJ_DIAG_START] bit to HIGH. This bit automatically returns to  
LOW when the adjacent pin diagnostic procedure is finished.  
After [ADJ_DIAG_START] has been set to HIGH and back to LOW, if any two adjacent pins are shorted, the  
[ADJ_FLAG_CHx] bit for the faulty channel is set HIGH. The microcontroller can read [ADJ_FLAG_CHx] to  
determine which two adjacent pins are shorted.  
Deactivating all the channels by using the [CH_ON_MASKx] bits is suggested before starting adjacent-pin  
diagnostics.  
when the [ADJ_FLAG_CHx] bit is set, it can only be cleared by issuing the RESET_STATUS command.  
7.3.5.6.2 Force Error  
To validate the ERR pulldown feedback without a real fault, the [FORCE_ERR] bit is provided to enable an ERR  
force-down to simulate a faulty scenario. When [FORCE_ERR] is HIGH, the ERR open-drain output is pulled  
down. To clear the fault, issue the RESET_STATUS command.  
7.3.5.6.3 Reference Resistor Open and Short Detection  
See the Constant-Current Output section.  
7.3.5.6.4 PWM Monitor  
See the PWM Input section.  
版权 © 2015, Texas Instruments Incorporated  
19  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.3.6 Register Protection  
To avoid an unintended change of critical registers, register locking and unlocking functions are provided. when  
the registers are locked, they cannot be overwritten until an unlock command is issued. When the registers are  
locked, they are still available for reading. Critical registers include:  
Dot correction register  
PWM mapping register  
Masking registers  
<WRITE_CORRx>, x = 0–11  
<WRITE_MAPx>, x = 0–5  
<WRITE_CH_ON_MASK0>  
<WRITE_CH_ON_MASK1>  
<WRITE_SHORT_MASK0>  
<WRITE_SHORT_MASK1>  
<WRITE_SHORT_GND_MASK0>  
<WRITE_SHORT_GND_MASK1>  
<WRITE_OPEN_MASK0>  
<WRITE_OPEN_MASK1>  
<WRITE_PWM_FAULT_MASK>  
<WRITE_ERROR_MASK>  
Miscellaneous register  
<WRITE_MISC_CMD>  
7.3.6.1 Dot Correction Register Lock and Unlock  
The <WRITE_CORRx> dot correction register can be locked via the LOCK_CORRcommand. When it is locked,  
no data in the <WRITE_CORRx> registers can be altered. To unlock, issue the UNLOCK_CORR command.  
7.3.6.2 PWM Mapping Register Lock and Unlock  
The <WRITE_MAPx> dot correction register can be locked via the LOCK_MAP command. When it is locked, no  
data in the <WRITE_MAPx> registers can be altered. To unlock, issue the UNLOCK_MAP command.  
7.3.6.3 Masking Register Lock and Unlock  
Masking registers can be locked via LOCK_MASK command. When it is locked, no data in the masking registers  
listed in the Register Protection section can be altered. To unlock, issue the UNLOCK_MASK command.  
7.3.6.4 Miscellaneous Register Lock and Unlock  
Miscellaneous registers can be locked via the LOCK_MISC command. When it is locked, no data in the  
miscellaneous register listed in the Register Protection section can be altered. To unlock, issue the  
UNLOCK_MISC command.  
7.3.6.5 Lock Flag Indication  
The status of all lock registers is stored in the [LOCK_CORR_FLAG], [LOCK_MASK_FLAG],  
[LOCK_MAP_FLAG] and [LOCK_MISC_FLAG] bits of the <READ_STATUS1> register.  
7.3.7 Serial Interface – SPI  
The serial port is used to write data to, read diagnostic status from and configure settings of the TLC6C5712-Q1  
device by transferring the input data to the desired address. During normal operation, an 8-bit serial address and  
8-bit serial data are written into the 16-bit shift register. On an SCK rising-edge input, data is sampled. Data is  
shifted on a SCK falling edge and the shift registers advance, converting the 16 most-recent inputs to parallel  
signals on the LATCH rising edge.  
At the rising edge on the LATCH input, a decoder which controls data transfer between shift and storage  
registers interprets the addresses. Depending on the address, valid data is conveyed from or to the appropriate  
latch or a command is interpreted. On latching a read address, data is read out from a storage register and  
shifted out of SDO to the microcontroller or daisy chained TLC6C5712-Q1 device.  
20  
版权 © 2015, Texas Instruments Incorporated  
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
Because for each address the TLC6C5712-Q1 device shifts out a fixed amount of data at the end of a write-read  
cycle, it is possible to send different address codes to each IC in a daisy chain.  
For a number N of daisy-chained devices, a communication cycle comprises 16 × N SCK cycles with the  
corresponding data, transferred from shift registers to latches or from latches to shift registers on the rising edge  
of LATCH. The falling edge of LATCH indicates the end of a communication cycle.  
The TLC6C5712-Q1 device supports multiple devices in cascaded daisy-chain mode. Each communication  
sequence must only have one LATCH rising edge, and therefore cannot be split into multiple smaller sequences.  
CLK  
W1  
d15  
W1  
d14  
W1  
d13  
W1  
d12  
W1  
d2  
W1  
d1  
W1  
d0  
W2  
d15  
W2  
d14  
SDI  
LATCH  
SDO  
D/C  
TLADZ  
Write,  
Read  
W1  
d14  
W1  
d13  
W1  
d12  
W1  
d11  
W0  
d0  
W1  
d15  
W1  
d0  
W2  
d15  
SHRN (18)  
22. Write-Access Data for a Typical Use Case  
7.3.8 Thermal Information  
TLC6C5712-Q1 has internal thermal shutdown (TSD) protection from device overheating. For continuous  
operation, the junction temperature should not exceed thermal-shutdown threshold. If TSD is not disabled by  
register and junction temperature exceeds thermal shutdown threshold, all outputs are turned off for protection.  
When the junction temperature falls below the thermal threshold minus hysteresis, outputs resume.  
Use 公式 4 to estimate the device power.  
11  
V
(IREF)  
PD(tot) = VCC ´ ICC  
+
V
(
´ I(OUTx) -  
)
(OUTx)  
å
2
R(IREF)  
x=0  
where  
PD(tot) = Total power dissipation of the device  
V(OUTx) = Voltage drop for channel x  
I(OUTx) = Average LED current for channel x  
V(IREF) = Reference voltage  
R(IREF) = Reference resistor  
(4)  
7.4 Device Functional Modes  
7.4.1 Operation With VCC < 2.8 V (Power-On-Reset Threshold)  
The TLC6C5712-Q1 device might not work properly with VCC below 2.8 V. When POR is triggered, the device  
latches a POR fault and reports it through the ERR output. If VCC continuous to drop, the content of the registers  
could be reset to their default value, with all outputs shutting down by default.  
7.4.2 Operation With VCC 2.8 V (Power-On-Reset Threshold)  
The TLC6C5712-Q1 device is fully functional with VCC at or above 2.8 V. The output current depends on the  
channel output voltage, V(OUTx). Given enough headroom for output transistors, the device should sink current as  
programmed. If the headroom voltage is not enough, the output current could be lower than programmed.  
版权 © 2015, Texas Instruments Incorporated  
21  
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5 Register Maps  
2. Register Map  
Register Name  
Addr  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
3Fh  
3Fh  
WRITE_MAP0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PWM_MAP_CH1[2:0]  
PWM_MAP_CH3[2:0]  
PWM_MAP_CH5[2:0]  
PWM_MAP_CH7[2:0]  
PWM_MAP_CH9[2:0]  
PWM_MAP_CH11[2:0]  
PWM_MAP_CH0[2:0]  
PWM_MAP_CH2[2:0]  
PWM_MAP_CH4[2:0]  
PWM_MAP_CH6[2:0]  
PWM_MAP_CH8[2:0]  
PWM_MAP_CH10[2:0]  
WRITE_MAP1  
WRITE_MAP2  
WRITE_MAP3  
WRITE_MAP4  
WRITE_MAP5  
WRITE_CORR0  
OUTPUT_DC_CH0[7:0]  
OUTPUT_DC_CH1[7:0]  
OUTPUT_DC_CH2[7:0]  
OUTPUT_DC_CH3[7:0]  
OUTPUT_DC_CH4[7:0]  
OUTPUT_DC_CH5[7:0]  
OUTPUT_DC_CH6[7:0]  
OUTPUT_DC_CH7[7:0]  
OUTPUT_DC_CH8[7:0]  
OUTPUT_DC_CH9[7:0]  
OUTPUT_DC_CH10[7:0]  
OUTPUT_DC_CH11[7:0]  
CH_ON_MASK3  
WRITE_CORR1  
WRITE_CORR2  
WRITE_CORR3  
WRITE_CORR4  
WRITE_CORR5  
WRITE_CORR6  
WRITE_CORR7  
WRITE_CORR8  
WRITE_CORR9  
WRITE_CORR10  
WRITE_CORR11  
WRITE_CH_ON_MASK0  
WRITE_CH_ON_MASK1  
WRITE_SHORT_MASK0  
WRITE_SHORT_MASK1  
WRITE_SHORT_GND_MASK0  
WRITE_SHORT_GND_MASK1  
WRITE_OPEN_MASK0  
WRITE_OPEN_MASK1  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH_ON_MASK5  
CH_ON_MASK11  
SHORT_MASK_CH5  
SHORT_MASK_CH11  
SG_MASK_CH5  
CH_ON_MASK4  
CH_ON_MASK2  
CH_ON_MASK8  
CH_ON_MASK1  
CH_ON_MASK7  
CH_ON_MASK0  
CH_ON_MASK6  
CH_ON_MASK10  
SHORT_MASK_CH4  
SHORT_MASK_CH10  
SG_MASK_CH4  
CH_ON_MASK9  
SHORT_MASK_CH3  
SHORT_MASK_CH9  
SG_MASK_CH3  
SHORT_MASK_CH2  
SHORT_MASK_CH8  
SG_MASK_CH2  
SHORT_MASK_CH1  
SHORT_MASK_CH7  
SG_MASK_CH1  
SHORT_MASK_CH0  
SHORT_MASK_CH6  
SG_MASK_CH0  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
SG_MASK_CH11  
OPEN_MASK_CH5  
OPEN_MASK_CH11  
SG_MASK_CH10  
SG_MASK_CH9  
SG_MASK_CH8  
SG_MASK_CH7  
SG_MASK_CH6  
OPEN_MASK_CH4  
OPEN_MASK_CH10  
OPEN_MASK_CH3  
OPEN_MASK_CH9  
OPEN_MASK_CH2  
OPEN_MASK_CH8  
OPEN_MASK_CH1  
OPEN_MASK_CH7  
OPEN_MASK_CH0  
OPEN_MASK_CH6  
5Ah–  
5Fh  
RESERVED  
00h  
WRITE_PWM_FAULT_MASK  
RESET_POR  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
RESERVED  
PWM_FAULT_MASK5  
PWM_FAULT_MASK4 PWM_FAULT_MASK3 PWM_FAULT_MASK2  
RESET_POR command is issued if data = 69h  
PWM_FAULT_MASK1  
PWM_FAULT_MASK0  
3Fh  
00h  
00h  
00h  
00h  
00h  
00h  
RESET_STATUS  
RESET_STATUS command is issued if data = 66h  
SOFTWARE_POR  
SOFTWARE_POR command is issued if data = 99h  
WRITE_DIS_PULL_UP_0  
WRITE_DIS_PULL_UP_1  
WRITE_ERROR_MASK  
RESERVED  
RESERVED  
DIS_PULL_UP_CH5  
DIS_PULL_UP_CH11  
OPEN_MASK  
DIS_PULL_UP_CH4  
DIS_PULL_UP_CH10  
SHORT_MASK  
DIS_PULL_UP_CH3  
DIS_PULL_UP_CH9  
PWM_MASK  
DIS_PULL_UP_CH2  
DIS_PULL_UP_CH8  
WLS_MASK  
DIS_PULL_UP_CH1  
DIS_PULL_UP_CH7  
PRE_TSD_MASK  
DIS_PULL_UP_CH0  
DIS_PULL_UP_CH6  
TSD_MASK  
REF_MASK  
POR_MASK  
DIS_OFF_FAULT_  
DI AG  
WRITE_MISC_CMD  
67h  
RESERVED  
ADJ_DIAG_START  
SLOW_SLEW_RAT E  
FORCE_ERR  
WLS_TH  
00h  
LOCK_MAP  
68h  
69h  
LOCK_MAP command is issued if data = A5h  
LOCK_CORR command is issued if data = 55h  
00h  
00h  
LOCK_CORR  
22  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
Register Maps (接下页)  
2. Register Map (接下页)  
Register Name  
LOCK_MASK  
Addr  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
00h  
LOCK_MASK command is issued if data = AAh  
UNLOCK_MISC command is issued if data = 5Ah  
UNLOCK_MAP command is issued if data = CCh  
UNLOCK_CORR command is issued if data = 33h  
UNLOCK_MASK command is issued if data = 3Ch  
UNLOCK_MISC command is issued if data = C3h  
LOCK_MISC  
00h  
UNLOCK_MAP  
UNLOCK_CORR  
UNLOCK_MASK  
UNLOCK_MISC  
00h  
00h  
00h  
00h  
70h–  
7Fh  
RESERVED  
00h  
READ_MAP0  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PWM_MAP_CH1[2:0]  
PWM_MAP_CH0[2:0]  
PWM_MAP_CH2[2:0]  
PWM_MAP_CH4[2:0]  
PWM_MAP_CH6[2:0]  
PWM_MAP_CH8[2:0]  
PWM_MAP_CH10[2:0]  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
3Fh  
00h  
00h  
00h  
00h  
00h  
READ_MAP1  
PWM_MAP_CH3[2:0]  
PWM_MAP_CH5[2:0]  
PWM_MAP_CH7[2:0]  
PWM_MAP_CH9[2:0]  
PWM_MAP_CH11[2:0]  
READ_MAP2  
READ_MAP3  
READ_MAP4  
READ_MAP5  
READ_CORR0  
OUTPUT_DC_CH0[7:0]  
READ_CORR1  
OUTPUT_DC_CH1[7:0]  
OUTPUT_DC_CH2[7:0]  
OUTPUT_DC_CH3[7:0]  
OUTPUT_DC_CH4[7:0]  
OUTPUT_DC_CH5[7:0]  
OUTPUT_DC_CH6[7:0]  
OUTPUT_DC_CH7[7:0]  
OUTPUT_DC_CH8[7:0]  
OUTPUT_DC_CH9[7:0]  
OUTPUT_DC_CH10[7:0]  
OUTPUT_DC_CH11[7:0]  
CH_ON_MASK3  
READ_CORR2  
READ_CORR3  
READ_CORR4  
READ_CORR5  
READ_CORR6  
READ_CORR7  
READ_CORR8  
READ_CORR9  
READ_CORR10  
READ_CORR11  
READ_CH_ON_MASK0  
READ_CH_ON_MASK1  
READ_SHORT_MASK0  
READ_SHORT_MASK1  
READ_SHORT_GND_MASK0  
READ_SHORT_GND_MASK1  
READ_OPEN_MASK0  
READ_OPEN_MASK1  
READ_SHORT_FAULT0  
READ_SHORT_FAULT1  
READ_SHORT_GND_FAULT0  
READ_SHORT_GND_FAULT1  
READ_OPEN_FAULT0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CH_ON_MASK5  
CH_ON_MASK11  
CH_ON_MASK4  
CH_ON_MASK2  
CH_ON_MASK8  
CH_ON_MASK1  
CH_ON_MASK7  
CH_ON_MASK0  
CH_ON_MASK6  
CH_ON_MASK10  
SHORT_MASK_CH4  
SHORT_MASK_CH10  
SG_MASK_CH4  
CH_ON_MASK9  
SHORT_MASK_CH3  
SHORT_MASK_CH9  
SG_MASK_CH6  
SHORT_MASK_CH5  
SHORT_MASK_CH11  
SG_MASK_CH5  
SHORT_MASK_CH2  
SHORT_MASK_CH8  
SG_MASK_CH5  
SHORT_MASK_CH1  
SHORT_MASK_CH7  
SG_MASK_CH7  
SHORT_MASK_CH0  
SHORT_MASK_CH6  
SG_MASK_CH6  
SG_MASK_CH11  
SG_MASK_CH10  
SG_MASK_CH9  
SG_MASK_CH8  
SG_MASK_CH7  
SG_MASK_CH6  
OPEN_MASK_CH5  
OPEN_MASK_CH11  
SHORT_FAULT_CH5  
SHORT_FAULT_CH11  
SG_FAULT_CH5  
OPEN_MASK_CH4  
OPEN_MASK_CH10  
SHORT_FAULT_CH4  
OPEN_MASK_CH3  
OPEN_MASK_CH9  
SHORT_FAULT_CH3  
OPEN_MASK_CH2  
OPEN_MASK_CH8  
SHORT_FAULT_CH2  
SHORT_FAULT_CH8  
SG_FAULT_CH2  
OPEN_MASK_CH1  
OPEN_MASK_CH7  
SHORT_FAULT_CH1  
SHORT_FAULT_CH7  
SG_FAULT_CH1  
OPEN_MASK_CH0  
OPEN_MASK_C H6  
SHORT_FAULT_CH0  
SHORT_FAULT_CH6  
SG_FAULT_CH0  
SHORT_FAULT_CH10 SHORT_FAULT_CH9  
SG_FAULT_CH4  
SG_FAULT_CH10  
OPEN_FAULT_CH4  
SG_FAULT_CH3  
SG_FAULT_CH9  
OPEN_FAULT_CH3  
SG_FAULT_CH11  
OPEN_FAULT_CH5  
SG_FAULT_CH8  
SG_FAULT_CH7  
SG_FAULT_CH6  
OPEN_FAULT_CH2  
OPEN_FAULT_CH1  
OPEN_FAULT_CH0  
版权 © 2015, Texas Instruments Incorporated  
23  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Register Maps (接下页)  
2. Register Map (接下页)  
Register Name  
Addr  
9Fh  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
READ_OPEN_FAULT1  
READ_PWM_FAULT_MASK  
READ_PWM_FAULT  
RESERVED  
RESERVED  
RESERVED  
OPEN_FAULT_CH11  
PWM_FAULT_MASK5  
FAULT_PWM5  
OPEN_FAULT_CH10  
OPEN_FAULT_CH9  
OPEN_FAULT_CH8  
OPEN_FAULT_CH7  
PWM_FAULT_MASK1  
FAULT_PWM1  
OPEN_FAULT_CH6  
PWM_FAULT_MASK0  
FAULT_PWM0  
00h  
3Fh  
00h  
A0h  
A1h  
PWM_FAULT_MASK4 PWM_FAULT_MASK3 PWM_FAULT_MASK2  
FAULT_PWM4  
FAULT_PWM3  
FAULT_PWM2  
REF_FAULT_  
FLAG  
POR_ERR_  
FLAG  
ANY_PWM_  
FAULT_FLAG  
READ_STATUS0  
A2h  
ANY_OPEN_FLAG  
ANY_SHORT_FLAG  
WLS_FAULT_FLAG  
PRE_TSD_FLAG  
TSD_FLAG  
40h  
READ_STATUS1  
A3h  
A4h  
A5h  
A6h  
RESERVED  
DIS_PULL_UP_FLAG  
DIS_PULL_UP_CH4  
DIS_PULL_UP_CH10  
SHORT_MASK  
LOCK_MISC_FLAG  
DIS_PULL_UP_CH3  
DIS_PULL_UP_CH9  
PWM_MASK  
LOCK_MAP_FLAG  
DIS_PULL_UP_CH2  
DIS_PULL_UP_CH8  
WLS_MASK  
LOCK_MASK_FLAG  
DIS_PULL_UP_C H1  
DIS_PULL_UP_C H7  
PRE_TSD_MASK  
LOCK_CORR_FLAG  
DIS_PULL_UP_CH0  
DIS_PULL_UP_CH6  
TSD_MASK  
00h  
00h  
00h  
00h  
READ_DIS_PULL_UP0  
READ_DIS_PULL_UP1  
READ_ERROR_MASK  
RESERVED  
RESERVED  
REF_MASK POR_MASK  
DIS_PULL_UP_CH5  
DIS_PULL_UP_CH11  
OPEN_MASK  
DIS_OFF_FAULT_  
DIAG  
READ_MISC_CMD  
A7h  
RESERVED  
ADJ_DIAG_START  
SLOW_SLEW_RATE  
FORCE_ERR  
WLS_TH  
00h  
READ_ADSHORT0  
READ_ADSHORT1  
A8h  
A9h  
RESERVED  
RESERVED  
AD_FLAG_CH5  
AD_FLAG_CH11  
AD_FLAG_CH4  
AD_FLAG_CH10  
AD_FLAG_CH3  
AD_FLAG_CH9  
AD_FLAG_CH2  
AD_FLAG_CH8  
AD_FLAG_CH1  
AD_FLAG_CH7  
AD_FLAG_CH0  
AD_FLAG_CH6  
00h  
00h  
24  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.1 WRITE_MAP0 Register (address = 40h) [reset = 00h]  
23. WRITE_MAP0 Register, Address 40h  
7
6
5
4
PWM_MAP_CH1[2:0]  
R/W  
3
2
1
PWM_MAP_CH0[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
3. WRITE_MAP0 Register Field Descriptions  
Bit  
7–6  
5–3  
2–0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_MAP_CH1  
PWM_MAP_CH0  
R/W  
R/W  
0h  
Select PWM mapping for channel 1  
Select PWM mapping for channel 0  
0h  
7.5.2 WRITE_MAP1 Register (address = 41h) [reset = 00h]  
24. WRITE_MAP1 Register, Address 41h  
7
6
5
4
PWM_MAP_CH3[2:0]  
R/W  
3
2
1
PWM_MAP_CH2[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
4. WRITE_MAP1 Register Field Descriptions  
Bit  
7–6  
5–3  
2–0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_MAP_CH3  
PWM_MAP_CH2  
R/W  
R/W  
0h  
Select PWM mapping for channel 3  
Select PWM mapping for channel 2  
0h  
7.5.3 WRITE_MAP2 Register (address = 42h) [reset = 00h]  
25. WRITE_MAP2 Register, Address 42h  
7
6
5
4
PWM_MAP_CH5[2:0]  
R/W  
3
2
1
PWM_MAP_CH4[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
5. WRITE_MAP2 Register Field Descriptions  
Bit  
7–6  
5–3  
2–0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_MAP_CH5  
PWM_MAP_CH4  
R/W  
R/W  
0h  
Select PWM mapping for channel 5  
Select PWM mapping for channel 4  
0h  
版权 © 2015, Texas Instruments Incorporated  
25  
 
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.4 WRITE_MAP3 Register (address = 43h) [reset = 00h]  
26. WRITE_MAP3 Register, Address 43h  
7
6
5
4
PWM_MAP_CH7[2:0]  
R/W  
3
2
1
PWM_MAP_CH6[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
6. WRITE_MAP3 Register Field Descriptions  
Bit  
7–6  
5–3  
2–0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_MAP_CH7  
PWM_MAP_CH6  
R/W  
R/W  
0h  
Select PWM mapping for channel 7  
Select PWM mapping for channel 6  
0h  
7.5.5 WRITE_MAP4 Register (address = 44h) [reset = 00h]  
27. WRITE_MAP4 Register, Address 44h  
7
6
5
4
PWM_MAP_CH9[2:0]  
R/W  
3
2
1
PWM_MAP_CH8[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7. WRITE_MAP4 Register Field Descriptions  
Bit  
7–6  
5–3  
2–0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_MAP_CH9  
PWM_MAP_CH8  
R/W  
R/W  
0h  
Select PWM mapping for channel 9  
Select PWM mapping for channel 8  
0h  
7.5.6 WRITE_MAP5 Register (address = 45h) [reset = 00h]  
28. WRITE_MAP5 Register, Address 45h  
7
6
5
4
PWM_MAP_CH11[2:0]  
R/W  
3
2
1
PWM_MAP_CH10[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8. WRITE_MAP5 Register Field Descriptions  
Bit  
7–6  
5–3  
2–0  
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_MAP_CH11  
PWM_MAP_CH10  
R/W  
R/W  
0h  
Select PWM mapping for channel 11  
Select PWM mapping for channel 10  
0h  
26  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.7 WRITE_CORR0 Register (address = 46h) [reset = 00h]  
29. WRITE_CORR0 Register, Address 46h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH0[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
9. WRITE_CORR0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH0  
R/W  
00h  
Dot correction register for channel 0  
7.5.8 WRITE_CORR1 Register (address = 47h) [reset = 00h]  
30. WRITE_CORR1 Register, Address 47h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH1[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
10. WRITE_CORR1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH1  
R/W  
00h  
Dot correction register for channel 1  
7.5.9 WRITE_CORR2 Register (address = 48h) [reset = 00h]  
31. WRITE_CORR2 Register, Address 48h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH2[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
11. WRITE_CORR2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH2  
R/W  
00h  
Dot correction register for channel 2  
7.5.10 WRITE_CORR3 Register (address = 49h) [reset = 00h]  
32. WRITE_CORR3 Register, Address 49h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH3[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
12. WRITE_CORR3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH3  
R/W  
00h  
Dot correction register for channel 3  
版权 © 2015, Texas Instruments Incorporated  
27  
 
 
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.11 WRITE_CORR4 Register (address = 4Ah) [reset = 00h]  
33. WRITE_CORR4 Register, Address 4Ah  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH4[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
13. WRITE_CORR4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH4  
R/W  
00h  
Dot correction register for channel 4  
7.5.12 WRITE_CORR5 Register (address = 4Bh) [reset = 00h]  
34. WRITE_CORR5 Register, Address 4Bh  
7
6
5
4
3
2
1
0
0
0
OUTPUT_DC_CH5[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
14. WRITE_CORR5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH5  
R/W  
00h  
Dot correction register for channel 5  
7.5.13 WRITE_CORR6 Register (address = 4Ch) [reset = 00h]  
35. WRITE_CORR6 Register, Address 4Ch  
7
6
5
4
3
2
1
OUTPUT_DC_CH6[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
15. WRITE_CORR6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH6  
R/W  
00h  
Dot correction register for channel 6  
7.5.14 WRITE_CORR7 Register (address = 4Dh) [reset = 00h]  
36. WRITE_CORR7 Register, Address 4Dh  
7
6
5
4
3
2
1
OUTPUT_DC_CH7[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
16. WRITE_CORR7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH7  
R/W  
00h  
Dot correction register for channel 7  
28  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.15 WRITE_CORR8 Register (address = 4Eh) [reset = 00h]  
37. WRITE_CORR8 Register, Address 4Eh  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH8[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
17. WRITE_CORR8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH8  
R/W  
00h  
Dot correction register for channel 8  
7.5.16 WRITE_CORR9 Register (address = 4Fh) [reset = 00h]  
38. WRITE_CORR9 Register, Address 4Fh  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH9[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
18. WRITE_CORR9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH9  
R/W  
00h  
Dot correction register for channel 9  
7.5.17 WRITE_CORR10 Register (address = 50h) [reset = 00h]  
39. WRITE_CORR10 Register, Address 50h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH10[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
19. WRITE_CORR10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH10  
R/W  
00h  
Dot correction register for channel 10  
7.5.18 WRITE_CORR11 Register (address = 51h) [reset = 00h]  
40. WRITE_CORR11 Register, Address 51h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH11[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
20. WRITE_CORR11 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
OUTPUT_DC_CH11  
R/W  
00h  
Dot correction register for channel 11  
版权 © 2015, Texas Instruments Incorporated  
29  
 
 
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.19 WRITE_CH_ON_MASK0 Register (address = 52h) [reset = 3Fh]  
41. WRITE_CH_ON_MASK0, Address 52h  
7
6
5
4
3
2
1
0
RESERVED  
R
CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
21. WRITE_CH_ON_MASK0 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
CH_ON_MASK5  
R/W  
1h  
Channel-activate mask register for channel 5. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
4
3
2
1
0
CH_ON_MASK4  
CH_ON_MASK3  
CH_ON_MASK2  
CH_ON_MASK1  
CH_ON_MASK0  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Channel-activate mask register for channel 4. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 3. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 2. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 1. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 0. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
7.5.20 WRITE_CH_ON_MASK1 Register (address = 53h) [reset = 3Fh]  
42. WRITE_CH_ON_MASK1, Address 53h  
7
6
5
4
3
2
1
0
RESERVED  
R
CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK  
11  
10  
9
8
7
6
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
22. WRITE_CH_ON_MASK1 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
CH_ON_MASK11  
R/W  
1h  
Channel-activate mask register for channel 11. Active-low.  
HIGH: Channel output deactivated. LOW: Channel output  
activated  
4
CH_ON_MASK10  
R/W  
1h  
Channel-activate mask register for channel 10. Active-low.  
HIGH: Channel output deactivated. LOW: Channel output  
activated  
3
2
1
0
CH_ON_MASK9  
CH_ON_MASK8  
CH_ON_MASK7  
CH_ON_MASK6  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
Channel-activate mask register for channel 9. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 8. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 7. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
Channel-activate mask register for channel 6. Active-low. HIGH:  
Channel output deactivated. LOW: Channel output activated  
30  
版权 © 2015, Texas Instruments Incorporated  
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.21 WRITE_SHORT_MASK0 Register (address = 54h) [reset = 3Fh]  
43. SLVSCO9WRITE_SHORT_MASK0, Address 54h  
7
6
5
4
3
2
1
0
RESERVED  
R
SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK  
_CH5  
_CH4  
_CH3  
_CH2  
_CH1  
_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
23. WRITE_SHORT_MASK0 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SHORT_MASK_CH5  
R/W  
1h  
Short-to-supply fault mask register for channel 5. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
4
3
2
1
0
SHORT_MASK_CH4  
SHORT_MASK_CH3  
SHORT_MASK_CH2  
SHORT_MASK_CH1  
SHORT_MASK_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Short-to-supply fault mask register for channel 4. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 3. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 2. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 1. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 0. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
版权 © 2015, Texas Instruments Incorporated  
31  
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.22 WRITE_SHORT_MASK1 Register (address = 55h) [reset = 3Fh]  
44. WRITE_SHORT_MASK1, Address 55h  
7
6
5
4
3
2
1
0
RESERVED  
R
SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK  
_CH11  
_CH10  
_CH9  
_CH8  
_CH7  
_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
24. WRITE_SHORT_MASK1 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SHORT_MASK_CH11  
R/W  
1h  
Short-to-supply fault mask register for channel 11. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
4
3
2
1
0
SHORT_MASK_CH10  
SHORT_MASK_CH9  
SHORT_MASK_CH8  
SHORT_MASK_CH7  
SHORT_MASK_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Short-to-supply fault mask register for channel 10. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 9. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 8. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 7. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
Short-to-supply fault mask register for channel 6. Active-high.  
HIGH: Short-to-supply fault masked. LOW: Short-to-supply fault  
not masked  
32  
版权 © 2015, Texas Instruments Incorporated  
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.23 WRITE_SHORT_GND_MASK0 Register (address = 56h) [reset = 3Fh]  
45. WRITE_SHORT_GND_MASK0, Address 56h  
7
6
5
4
3
2
1
0
RESERVED  
R
SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
25. WRITE_SHORT_GND_MASK0 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SG_MASK_CH5  
R/W  
1h  
Short-to-GND fault mask register for channel 5. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
4
3
2
1
0
SG_MASK_CH4  
SG_MASK_CH3  
SG_MASK_CH2  
SG_MASK_CH1  
SG_MASK_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Short-to-GND fault mask register for channel 4. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 3. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 2. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 1. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 0. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
7.5.24 WRITE_SHORT_GND_MASK1 Register (address = 57h) [reset = 3Fh]  
46. WRITE_SHORT_GND_MASK1, Address 57h  
7
6
5
4
3
2
1
0
RESERVED  
R
SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH  
11  
10  
9
8
7
6
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
26. WRITE_SHORT_GND_MASK1 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SG_MASK_CH11  
R/W  
1h  
Short-to-GND fault mask register for channel 11. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
4
3
2
1
0
SG_MASK_CH10  
SG_MASK_CH9  
SG_MASK_CH8  
SG_MASK_CH7  
SG_MASK_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Short-to-GND fault mask register for channel 10. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 9. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 8. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 7. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
Short-to-GND fault mask register for channel 6. Active-high. HIGH:  
Short-to-GND fault masked. LOW: Short-to-GND fault not masked  
版权 © 2015, Texas Instruments Incorporated  
33  
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.25 WRITE_OPEN_MASK0 Register (address = 58h) [reset = 3Fh]  
47. WRITE_OPEN_MASK0, Address 58h  
7
6
5
4
3
2
1
0
RESERVED  
R
OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
27. WRITE_OPEN_MASK0 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
OPEN_MASK_CH5  
R/W  
1h  
Open-fault mask register for channel 5. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
4
3
2
1
0
OPEN_MASK_CH4  
OPEN_MASK_CH3  
OPEN_MASK_CH2  
OPEN_MASK_CH1  
OPEN_MASK_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Open-fault mask register for channel 4. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 3. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 2. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 1. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 0. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
7.5.26 WRITE_OPEN_MASK1 Register (address = 59h) [reset = 3Fh]  
48. WRITE_OPEN_MASK1, Address 59h  
7
6
5
4
3
2
1
0
RESERVED  
R
OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_  
CH11  
CH10  
CH9  
CH8  
CH7  
CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
28. WRITE_OPEN_MASK1 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
OPEN_MASK_CH11  
R/W  
1h  
Open-fault mask register for channel 11. Active-high. HIGH:  
Open fault masked. LOW: Open fault not masked  
4
3
2
1
0
OPEN_MASK_CH10  
OPEN_MASK_CH9  
OPEN_MASK_CH8  
OPEN_MASK_CH7  
OPEN_MASK_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
Open-fault mask register for channel 10. Active-high. HIGH:  
Open fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 9. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 8. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 7. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
Open-fault mask register for channel 6. Active-high. HIGH: Open  
fault masked. LOW: Open fault not masked  
34  
版权 © 2015, Texas Instruments Incorporated  
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.27 WRITE_PWM_FAULT_MASK Register (address = 60h) [reset = 3Fh]  
49. WRITE_PWM_FAULT_MASK Register, Address 60h  
7
6
5
4
3
2
1
0
RESERVED  
R
PWM_FAULT_ PWM_FAULT_ PWM_FAULT_ PWM_FAULT_ PWM_FAULT_ PWM_FAULT_  
MASK5  
MASK4  
MASK3  
MASK2  
MASK1  
MASK0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
29. WRITE_PWM_FAULT_MASK Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
PWM_FAULT_MASK5  
R/W  
1h  
PWM-fault mask register for input PWM channel 5. Active-high.  
HIGH: PWM fault masked. LOW: PWM fault not masked  
4
3
2
1
0
PWM_FAULT_MASK4  
PWM_FAULT_MASK3  
PWM_FAULT_MASK2  
PWM_FAULT_MASK1  
PWM_FAULT_MASK0  
R/W  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
1h  
PWM-fault mask register for input PWM channel 4. Active-high.  
HIGH: PWM fault masked. LOW: PWM fault not masked  
PWM-fault mask register for input PWM channel 3. Active-high.  
HIGH: PWM fault masked. LOW: PWM fault not masked  
PWM-fault mask register for input PWM channel 2. Active-high.  
HIGH: PWM fault masked. LOW: PWM fault not masked  
PWM-fault mask register for input PWM channel 1. Active-high.  
HIGH: PWM fault masked. LOW: PWM fault not masked  
PWM-fault mask register for input PWM channel 0. Active-high.  
HIGH: PWM fault masked. LOW: PWM fault not masked  
7.5.28 RESET_POR Register (address = 61h) [reset = 00h]  
50. RESET_POR Register, Address 61h  
7
6
5
4
3
2
1
0
RESET_POR  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
30. RESET_POR Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
RESET_POR  
W
00h  
A RESET_POR command is issued if the register content = 69h.  
The register content is automatically cleared.  
7.5.29 RESET_STATUS Register (address = 62h) [reset = 00h]  
51. RESET_STATUS Register, Address 62h  
7
6
5
4
3
2
1
0
RESET_STATUS  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
31. RESET_STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
RESET_STATUS  
W
00h  
A RESET_STATUS command is issued if the register content =  
66h. The register content is automatically cleared.  
版权 © 2015, Texas Instruments Incorporated  
35  
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.30 SOFTWARE_POR Register (address = 63h) [reset = 00h]  
52. SOFTWARE_POR Register, Address 63h  
7
6
5
4
3
2
1
0
SOFTWARE_POR  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
32. SOFTWARE_POR Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
SOFTWARE_POR  
W
00h  
A SOFTWARE_POR command is issued if the register content =  
99h. The register content is automatically cleared.  
7.5.31 WRITE_DIS_PULL_UP_0 Register (address = 64h) [reset = 00h]  
53. WRITE_DIS_PULL_UP_0 Register, Address 64h  
7
6
5
4
3
2
1
0
RESERVED  
DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP  
_CH5  
_CH4  
_CH3  
_CH2  
_CH1  
_CH0  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
33. WRITE_DIS_PULL_UP_0 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
DIS_PULL_UP_CH5  
R/W  
0h  
Disable deactivated-channel internal pullup register for channel  
5. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
4
3
2
1
0
DIS_PULL_UP_CH4  
DIS_PULL_UP_CH3  
DIS_PULL_UP_CH2  
DIS_PULL_UP_CH1  
DIS_PULL_UP_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Disable deactivated-channel internal pullup register for channel  
4. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
3. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
2. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
1. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
0. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
36  
版权 © 2015, Texas Instruments Incorporated  
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.32 WRITE_DIS_PULL_UP_1 Register (address = 65h) [reset = 00h]  
54. WRITE_DIS_PULL_UP_1 Register, Address 65h  
7
6
5
4
3
2
1
0
RESERVED  
R
DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP DIS_PULL_UP  
_CH11  
_CH10  
_CH9  
_CH8  
_CH7  
_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
34. WRITE_DIS_PULL_UP_1 Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
DIS_PULL_UP_CH11  
R/W  
0h  
Disable deactivated-channel internal pullup register for channel  
11. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
4
3
2
1
0
DIS_PULL_UP_CH10  
DIS_PULL_UP_CH9  
DIS_PULL_UP_CH8  
DIS_PULL_UP_CH7  
DIS_PULL_UP_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
Disable deactivated-channel internal pullup register for channel  
10. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
9. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
8. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
7. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
Disable deactivated-channel internal pullup register for channel  
6. Active-high. HIGH: internal pullup disabled; LOW: internal  
pullup enabled.  
版权 © 2015, Texas Instruments Incorporated  
37  
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.33 WRITE_ERROR_MASK Register (address = 66h) [reset = 00h]  
55. WRITE_ERROR_MASK Register, Address 66h  
7
6
5
4
3
2
1
0
REF_MASK  
POR_MASK  
OPEN_MASK SHORT_MASK  
PWM_MASK  
WLS_MASK  
PRE_TSD_  
MASK  
TSD_MASK  
R/W  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
35. WRITE_ERROR_MASK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REF_MASK  
R/W  
0h  
Reference fault mask bit. Active-high. HIGH: Reference fault is  
masked; LOW: Reference fault is not masked.  
6
5
4
3
2
1
0
POR_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Power-on-reset fault mask bit Active-high. HIGH: POR fault is  
masked; LOW: POR fault is not masked.  
OPEN_MASK  
SHORT_MASK  
PWM_MASK  
WLS_MASK  
Open fault mask bit. Active-high. HIGH: Open fault is masked;  
LOW: Open fault is not masked.  
Short fault mask bit. Active-high. HIGH: Short fault is masked;  
LOW: Short fault is not masked.  
PWM fault mask bit. Active-high. HIGH: PWM fault is masked;  
LOW: PWM fault is not masked.  
Weak-LED-supply (WLS) fault mask bit. Active-high. HIGH: WLS  
fault is masked; LOW: WLS fault is not masked.  
PRE_TSD_MASK  
TSD_MASK  
Pre-thermal-warning fault mask bit. Active-high. HIGH:  
PRE_TSD fault is masked; LOW: PRE_TSD fault is not masked.  
Thermal-shutdown fault mask bit. Active-high. HIGH: TSD fault  
is masked; LOW: TSD fault is not masked.  
7.5.34 WRITE_MISC_CMD Register (address = 67h) [reset = 00h]  
56. WRITE_MISC_CMD Register, Address 67h  
7
6
5
4
3
2
1
0
RESERVED  
DIS_OFF_  
FAULT_DIAG  
ADJ_DIAG_  
START  
SLOW_SLEW_ FORCE_ERR  
RATE  
WLS_TH  
R
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
36. WRITE_MISC_CMD Field Descriptions  
Bit  
7–5  
4
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
DIS_OFF_FAULT_DIAG  
R/W  
0h  
Off-state output fault diagnostics control bit. Active-high. HIGH:  
Off-state fault diagnostics disabled; LOW: Off-state fault  
diagnostics enabled  
3
2
ADJ_DIAG_START  
SLOW_SLEW_RATE  
R/W  
R/W  
0h  
0h  
Adjacent-pin diagnostics start control bit. Active-high, returns low  
when adjacent-pin diagnostic procedure is concluded.  
HIGH: Start adjacent-pin diagnostics or adjacent-pin diagnostics  
are ongoing; LOW: Adjacent-pin diagnostics are not running.  
Slow slew rate control bit. Active-high. HIGH: Output-current  
slew rate is in slow mode. LOW: Output-current slew rate is in  
normal mode.  
1
0
FORCE_ERR  
WLS_TH  
R/W  
R/W  
0h  
0h  
Force error control bit. Active-high. HIGH: ERR output is forced  
low. LOW: ERR output is not forced low.  
Weak-LED-supply threshold-control bit. Active-high. HIGH: WLS  
threshold is set to 3.3-V mode. LOW: WLS threshold is set to 5-  
V mode.  
38  
版权 © 2015, Texas Instruments Incorporated  
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.35 LOCK_MAP Register (address = 68h) [reset = 00h]  
57. LOCK_MAP Register, Address 68h  
7
6
5
4
3
2
1
0
LOCK_MAP  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
37. LOCK_MAP Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LOCK_MAP  
W
00h  
A LOCK_MAP command is issued if the register content = A5h.  
The register content is automatically cleared.  
7.5.36 LOCK_CORR Register (address = 69h) [reset = 00h]  
58. LOCK_CORR Register, Address 69h  
7
6
5
4
3
2
1
0
LOCK_CORR  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
38. LOCK_CORR Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LOCK_CORR  
W
00h  
A LOCK_CORR command is issued if the register content =  
55h. The register content is automatically cleared.  
7.5.37 LOCK_MASK Register (address = 6Ah) [reset = 00h]  
59. LOCK_MASK Register, Address 6Ah  
7
6
5
4
3
2
1
0
LOCK_MASK  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
39. LOCK_MASK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LOCK_MASK  
W
00h  
A LOCK_MASK command is issued if the register content =  
AAh. The register content is automatically cleared.  
7.5.38 LOCK_MISC Register (address = 6Bh) [reset = 00h]  
60. LOCK_MISC Register, Address 6Bh  
7
6
5
4
3
2
1
0
LOCK_MISC  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
40. LOCK_MISC Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
LOCK_MISC  
W
00h  
A LOCK_MISC command is issued if the register content = 5Ah.  
The register content is automatically cleared.  
版权 © 2015, Texas Instruments Incorporated  
39  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.39 UNLOCK_MAP Register (address = 6Ch) [reset = 00h]  
61. UNLOCK_MAP Register, Address 6Ch  
7
6
5
4
3
2
1
0
UNLOCK_MAP  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
41. UNLOCK_MAP Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
UNLOCK_MAP  
W
00h  
An UNLOCK_MAP command is issued if the register content =  
CCh. The register content is automatically cleared.  
7.5.40 UNLOCK_CORR Register (address = 6Dh) [reset = 00h]  
62. UNLOCK_CORR Register, Address 6Dh  
7
6
5
4
3
2
1
0
UNLOCK_CORR  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
42. UNLOCK_CORR Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
UNLOCK_CORR  
W
00h  
An UNLOCK_CORR command is issued if the register content =  
33h. The register content is automatically cleared.  
7.5.41 UNLOCK_MASK Register (address = 6Eh) [reset = 00h]  
63. UNLOCK_MASK Register, Address 6Eh  
7
6
5
4
3
2
1
0
UNLOCK_MASK  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
43. UNLOCK_MASK Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
UNLOCK_MASK  
W
00h  
An UNLOCK_MASK command is issued if the register content =  
3Ch. The register content is automatically cleared.  
7.5.42 UNLOCK_MISC Register (address = 6Fh) [reset = 00h]  
64. UNLOCK_MISC Register, Address 6Fh  
7
6
5
4
3
2
1
0
UNLOCK_MISC  
W
LEGEND: R/W = Read/Write; R = Read only; W = Write only; -n = value after reset  
44. UNLOCK_MISC Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
UNLOCK_MISC  
W
00h  
An UNLOCK_MISC command is issued if the register content =  
C3h. The register content is automatically cleared.  
40  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.43 READ_MAP0 Register (address = 80h) [reset = 00h]  
Address 40h is used for writing the MAP0 data using the register pseudonym WRITE_MAP0, and address 80h is  
used for reading the MAP0 data using the register pseudonym READ_MAP0. See the WRITE_MAP0 Register  
(address = 40h) [reset = 00h] section for a description of the register contents.  
65. READ_MAP0 Register, Address 80h  
7
6
5
4
PWM_MAP_CH1[2:0]  
R/W  
3
2
1
PWM_MAP_CH0[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.44 READ_MAP1 Register (address = 81h) [reset = 00h]  
Address 41h is used for writing the MAP1 data using the register pseudonym WRITE_MAP1, and address 81h is  
used for reading the MAP1 data using the register pseudonym READ_MAP1. See the WRITE_MAP1 Register  
(address = 41h) [reset = 00h] section for a description of the register contents.  
66. READ_MAP1 Register, Address 81h  
7
6
5
4
PWM_MAP_CH3[2:0]  
R/W  
3
2
1
PWM_MAP_CH2[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.45 READ_MAP2 Register (address = 82h) [reset = 00h]  
Address 42h is used for writing the MAP2 data using the register pseudonym WRITE_MAP2, and address 82h is  
used for reading the MAP2 data using the register pseudonym READ_MAP2. See the WRITE_MAP2 Register  
(address = 42h) [reset = 00h] section for a description of the register contents.  
67. READ_MAP2 Register, Address 82h  
7
6
5
4
PWM_MAP_CH5[2:0]  
R/W  
3
2
1
PWM_MAP_CH4[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.46 READ_MAP3 Register (address = 83h) [reset = 00h]  
Address 43h is used for writing the MAP3 data using the register pseudonym WRITE_MAP3, and address 83h is  
used for reading the MAP3 data using the register pseudonym READ_MAP3. See the WRITE_MAP3 Register  
(address = 43h) [reset = 00h] section for a description of the register contents.  
68. READ_MAP3 Register, Address 83h  
7
6
5
4
PWM_MAP_CH7[2:0]  
R/W  
3
2
1
PWM_MAP_CH6[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
版权 © 2015, Texas Instruments Incorporated  
41  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.47 READ_MAP4 Register (address = 84h) [reset = 00h]  
Address 44h is used for writing the MAP4 data using the register pseudonym WRITE_MAP4, and address 84h is  
used for reading the MAP4 data using the register pseudonym READ_MAP4. See the WRITE_MAP4 Register  
(address = 44h) [reset = 00h] section for a description of the register contents.  
69. READ_MAP4 Register, Address 84h  
7
6
5
4
PWM_MAP_CH9[2:0]  
R/W  
3
2
1
PWM_MAP_CH8[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.48 READ_MAP5 Register (address = 85h) [reset = 00h]  
Address 45h is used for writing the MAP5 data using the register pseudonym WRITE_MAP5, and address 85h is  
used for reading the MAP5 data using the register pseudonym READ_MAP5. See the WRITE_MAP5 Register  
(address = 45h) [reset = 00h] section for a description of the register contents.  
70. READ_MAP5 Register, Address 85h  
7
6
5
4
PWM_MAP_CH11[2:0]  
R/W  
3
2
1
PWM_MAP_CH10[2:0]  
R/W  
0
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.49 READ_CORR0 Register (address = 86h) [reset = 00h]  
Address 46h is used for writing the CORR0 data using the register pseudonym WRITE_CORR0, and address  
86h is used for reading the CORR0 data using the register pseudonym READ_CORR0. See the WRITE_CORR0  
Register (address = 46h) [reset = 00h] section for a description of the register contents.  
71. READ_CORR0 Register, Address 86h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH0[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.50 READ_CORR1 Register (address = 87h) [reset = 00h]  
Address 47h is used for writing the CORR1 data using the register pseudonym WRITE_CORR1, and address  
86h is used for reading the CORR1 data using the register pseudonym READ_CORR1. See the WRITE_CORR1  
Register (address = 47h) [reset = 00h] section for a description of the register contents.  
72. READ_CORR1 Register, Address 87h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH1[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
42  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.51 READ_CORR2 Register (address = 88h) [reset = 00h]  
Address 48h is used for writing the CORR2 data using the register pseudonym WRITE_CORR2, and address  
88h is used for reading the CORR2 data using the register pseudonym READ_CORR2. See the WRITE_CORR2  
Register (address = 48h) [reset = 00h] section for a description of the register contents.  
73. READ_CORR2 Register, Address 88h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH2[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.52 READ_CORR3 Register (address = 89h) [reset = 00h]  
Address 49h is used for writing the CORR3 data using the register pseudonym WRITE_CORR3, and address  
89h is used for reading the CORR3 data using the register pseudonym READ_CORR3. See the WRITE_CORR3  
Register (address = 49h) [reset = 00h] section for a description of the register contents.  
74. READ_CORR3 Register, Address 89h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH3[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.53 READ_CORR4 Register (address = 8Ah) [reset = 00h]  
Address 4Ah is used for writing the CORR4 data using the register pseudonym WRITE_CORR4, and address  
8Ah is used for reading the CORR4 data using the register pseudonym READ_CORR4. See the WRITE_CORR4  
Register (address = 4Ah) [reset = 00h] section for a description of the register contents.  
75. READ_CORR4 Register, Address 8Ah  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH4[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.54 READ_CORR5 Register (address = 8Bh) [reset = 00h]  
Address 4Bh is used for writing the CORR5 data using the register pseudonym WRITE_CORR5, and address  
8Bh is used for reading the CORR5 data using the register pseudonym READ_CORR5. See the WRITE_CORR5  
Register (address = 4Bh) [reset = 00h] section for a description of the register contents.  
76. READ_CORR5 Register, Address 8Bh  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH5[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
版权 © 2015, Texas Instruments Incorporated  
43  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.55 READ_CORR6 Register (address = 8Ch) [reset = 00h]  
Address 4Ch is used for writing the CORR6 data using the register pseudonym WRITE_CORR6, and address  
8Ch is used for reading the CORR6 data using the register pseudonym READ_CORR6. See the  
WRITE_CORR6 Register (address = 4Ch) [reset = 00h] section for a description of the register contents.  
77. READ_CORR6 Register, Address 8Ch  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH6[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.56 READ_CORR7 Register (address = 8Dh) [reset = 00h]  
Address 4Dh is used for writing the CORR7 data using the register pseudonym WRITE_CORR7, and address  
8Dh is used for reading the CORR7 data using the register pseudonym READ_CORR7. See the  
WRITE_CORR7 Register (address = 4Dh) [reset = 00h] section for a description of the register contents.  
78. READ_CORR7 Register, Address 8Dh  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH7[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.57 READ_CORR8 Register (address = 8Eh) [reset = 00h]  
Address 4Eh is used for writing the CORR8 data using the register pseudonym WRITE_CORR8, and address  
8Eh is used for reading the CORR8 data using the register pseudonym READ_CORR8. See the WRITE_CORR8  
Register (address = 4Eh) [reset = 00h] section for a description of the register contents.  
79. READ_CORR8 Register, Address 8Eh  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH8[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.58 READ_CORR9 Register (address = 8Fh) [reset = 00h]  
Address 4Fh is used for writing the CORR9 data using the register pseudonym WRITE_CORR9, and address  
8Fh is used for reading the CORR9 data using the register pseudonym READ_CORR9. See the WRITE_CORR9  
Register (address = 4Fh) [reset = 00h] section for a description of the register contents.  
80. READ_CORR9 Register, Address 8Fh  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH9[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
44  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.59 READ_CORR10 Register (address = 90h) [reset = 00h]  
Address 50h is used for writing the CORR10 data using the register pseudonym WRITE_CORR10, and address  
90h is used for reading the CORR10 data using the register pseudonym READ_CORR10. See the  
WRITE_CORR10 Register (address = 50h) [reset = 00h] section for a description of the register contents.  
81. READ_CORR10 Register, Address 90h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH10[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.60 READ_CORR11 Register (address = 91h) [reset = 00h]  
Address 51h is used for writing the CORR11 data using the register pseudonym WRITE_CORR11, and address  
91h is used for reading the CORR11 data using the register pseudonym READ_CORR11. See the  
WRITE_CORR11 Register (address = 51h) [reset = 00h] section for a description of the register contents.  
82. READ_CORR11 Register, Address 91h  
7
6
5
4
3
2
1
0
OUTPUT_DC_CH11[7:0]  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.61 READ_CH_ON_MASK0 Register (address = 92h) [reset = 3Fh]  
Address 52h is used for writing the CH_ON_MASK0 data using the register pseudonym  
WRITE_CH_ON_MASK0, and address 92h is used for reading the CH_ON_MASK0 data using the register  
pseudonym READ_CH_ON_MASK0. See the WRITE_CH_ON_MASK0 Register (address = 52h) [reset = 3Fh]  
section for a description of the register contents.  
83. READ_CH_ON_MASK0, Address 92h  
7
6
5
4
3
2
1
0
RESERVED  
R
CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.62 READ_CH_ON_MASK1 Register (address = 93h) [reset = 3Fh]  
Address 53h is used for writing the CH_ON_MASK1 data using the register pseudonym  
WRITE_CH_ON_MASK1, and address 93h is used for reading the CH_ON_MASK1 data using the register  
pseudonym READ_CH_ON_MASK1. See the WRITE_CH_ON_MASK1 Register (address = 53h) [reset = 3Fh]  
section for a description of the register contents.  
84. READ_CH_ON_MASK1, Address 93h  
7
6
5
4
3
2
1
0
RESERVED  
R
CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK CH_ON_MASK  
11  
10  
9
8
7
6
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
版权 © 2015, Texas Instruments Incorporated  
45  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.63 READ_SHORT_MASK0 Register (address = 94h) [reset = 3Fh]  
Address 54h is used for writing the SHORT_MASK0 data using the register pseudonym  
WRITE_SHORT_MASK0, and address 94h is used for reading the SHORT_MASK0 data using the register  
pseudonym READ_SHORT_MASK0. See the WRITE_SHORT_MASK0 Register (address = 54h) [reset = 3Fh]  
section for a description of the register contents.  
85. READ_SHORT_MASK0, Address 94h  
7
6
5
4
3
2
1
0
RESERVED  
R
SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK  
_CH5  
_CH4  
_CH3  
_CH2  
_CH1  
_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.64 READ_SHORT_MASK1 Register (address = 95h) [reset = 3Fh]  
Address 55h is used for writing the SHORT_MASK1 data using the register pseudonym  
WRITE_SHORT_MASK1, and address 95h is used for reading the SHORT_MASK1 data using the register  
pseudonym READ_SHORT_MASK1. See the WRITE_SHORT_MASK1 Register (address = 55h) [reset = 3Fh]  
section for a description of the register contents.  
86. READ_SHORT_MASK1, Address 95h  
7
6
5
4
3
2
1
0
RESERVED  
R
SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK SHORT_MASK  
_CH11  
_CH10  
_CH9  
_CH8  
_CH7  
_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.65 READ_SHORT_GND_MASK0 Register (address = 96h) [reset = 3Fh]  
Address 56h is used for writing the SHORT_GND_MASK0 data using the register pseudonym  
WRITE_SHORT_GND_MASK0, and address 96h is used for reading the SHORT_GND_MASK0 data using the  
register pseudonym READ_SHORT_GND_MASK0. See the WRITE_SHORT_GND_MASK0 Register (address =  
56h) [reset = 3Fh] section for a description of the register contents.  
87. READ_SHORT_GND_MASK0, Address 96h  
7
6
5
4
3
2
1
0
RESERVED  
R
SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH  
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.66 READ_SHORT_GND_MASK1 Register (address = 97h) [reset = 3Fh]  
Address 57h is used for writing the SHORT_GND_MASK1 data using the register pseudonym  
WRITE_SHORT_GND_MASK1, and address 97h is used for reading the SHORT_GND_MASK1 data using the  
register pseudonym READ_SHORT_GND_MASK1. See the WRITE_SHORT_GND_MASK1 Register (address =  
57h) [reset = 3Fh] section for a description of the register contents.  
88. READ_SHORT_GND_MASK1, Address 97h  
7
6
5
4
3
2
1
0
RESERVED  
R
SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH SG_MASK_CH  
11  
10  
9
8
7
6
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
46  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.67 READ_OPEN_MASK0 Register (address = 98h) [reset = 3Fh]  
Address 58h is used for writing the OPEN_MASK0 data using the register pseudonym WRITE_OPEN_MASK0,  
and address 98h is used for reading the OPEN_MASK0 data using the register pseudonym  
READ_OPEN_MASK0. See the WRITE_OPEN_MASK0 Register (address = 58h) [reset = 3Fh] section for a  
description of the register contents.  
89. READ_OPEN_MASK0, Address 98h  
7
6
5
4
3
2
1
0
RESERVED  
R
OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.68 READ_OPEN_MASK1 Register (address = 99h) [reset = 3Fh]  
Address 59h is used for writing the OPEN_MASK1 data using the register pseudonym WRITE_OPEN_MASK1,  
and address 99h is used for reading the OPEN_MASK1 data using the register pseudonym  
READ_OPEN_MASK1. See the WRITE_OPEN_MASK1 Register (address = 59h) [reset = 3Fh] section for a  
description of the register contents.  
90. READ_OPEN_MASK1, Address 99h  
7
6
5
4
3
2
1
0
RESERVED  
R
OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_ OPEN_MASK_  
CH11  
CH10  
CH9  
CH8  
CH7  
CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.69 READ_SHORT_FAULT0 (address = 9Ah) [reset = 00h]  
91. READ_SHORT_FAULT0, Address 9Ah  
7
6
5
4
3
2
1
0
RESERVED  
R
SHORT_  
FAULT5  
SHORT_  
FAULT4  
SHORT_  
FAULT3  
SHORT_  
FAULT2  
SHORT_  
FAULT1  
SHORT_  
FAULT0  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
45. READ_SHORT_FAULT0 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SHORT_FAULT5  
R
0h  
Channel 5 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
4
3
2
1
0
SHORT_FAULT4  
SHORT_FAULT3  
SHORT_FAULT2  
SHORT_FAULT1  
SHORT_FAULT0  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Channel 4 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 3 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 2 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 1 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 0 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
版权 © 2015, Texas Instruments Incorporated  
47  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.70 READ_SHORT_FAULT1 (address = 9Bh) [reset = 00h]  
92. READ_SHORT_FAULT1, Address 9Bh  
7
6
5
4
3
2
1
0
RESERVED  
R
SHORT_  
FAULT11  
SHORT_  
FAULT10  
SHORT_  
FAULT9  
SHORT_  
FAULT8  
SHORT_  
FAULT7  
SHORT_  
FAULT6  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
46. READ_SHORT_FAULT1 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SHORT_FAULT11  
R
0h  
Channel 11 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
4
3
2
1
0
SHORT_FAULT10  
SHORT_FAULT9  
SHORT_FAULT8  
SHORT_FAULT7  
SHORT_FAULT6  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Channel 10 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 9 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 8 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 7 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
Channel 6 LED short-to-supply fault flag. Active-high. HIGH:  
LED short-to-supply detected; LOW: LED short-to-supply not  
detected.  
7.5.71 READ_SHORT_GND_FAULT0 (address = 9Ch) [reset = 00h]  
93. READ_SHORT_GND_FAULT0, Address 9Ch  
7
6
5
SG_FAULT5  
R
4
SG_FAULT4  
R
3
SG_FAULT3  
R
2
SG_FAULT2  
R
1
SG_FAULT1  
R
0
SG_FAULT0  
R
RESERVED  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
47. READ_SHORT_GND_FAULT0 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SG_FAULT5  
R
0h  
Channel 5 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
4
3
2
1
0
SG_FAULT4  
SG_FAULT3  
SG_FAULT2  
SG_FAULT1  
SG_FAULT0  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Channel 4 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 3 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 2 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 1 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 0 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
48  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.72 READ_SHORT_GND_FAULT1 (address = 9Dh) [reset = 00h]  
94. READ_SHORT_GND_FAULT1, Address 9Dh  
7
6
5
4
3
SG_FAULT9  
R
2
SG_FAULT8  
R
1
SG_FAULT7  
R
0
SG_FAULT6  
R
RESERVED  
R
SG_FAULT11  
R
SG_FAULT10  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
48. READ_SHORT_GND_FAULT1 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
SG_FAULT11  
R
0h  
Channel 11 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
4
3
2
1
0
SG_FAULT10  
SG_FAULT9  
SG_FAULT8  
SG_FAULT7  
SG_FAULT6  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Channel 10 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 9 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 8 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 7 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
Channel 6 LED short-to-GND fault flag. Active-high. HIGH: LED  
short-to-GND detected; LOW: LED short-to-GND not detected.  
7.5.73 READ_OPEN_FAULT0 (address = 9Eh) [reset = 00h]  
95. READ_OPEN_FAULT0, Address 9Eh  
7
6
5
4
3
2
1
0
RESERVED  
R
OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
49. READ_OPEN_FAULT0 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
OPEN_FAULT_CH5  
R
0h  
Channel 5 LED-open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
4
3
2
1
0
OPEN_FAULT_CH4  
OPEN_FAULT_CH3  
OPEN_FAULT_CH2  
OPEN_FAULT_CH1  
OPEN_FAULT_CH0  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Channel 4 LEDopen fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 3 LED-open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 2 LED-open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 1 LED-open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 0 LED-open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
版权 © 2015, Texas Instruments Incorporated  
49  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.74 READ_OPEN_FAULT1 (address = 9Fh) [reset = 00h]  
96. READ_OPEN_FAULT1, Address 9Fh  
7
6
5
4
3
2
1
0
RESERVED  
R
OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_ OPEN_FAULT_  
CH11  
CH10  
CH9  
CH8  
CH7  
CH6  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
50. READ_OPEN_FAULT1 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
OPEN_FAULT_CH11  
R
0h  
Channel 11 LED open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
4
3
2
1
0
OPEN_FAULT_CH10  
OPEN_FAULT_CH9  
OPEN_FAULT_CH8  
OPEN_FAULT_CH7  
OPEN_FAULT_CH6  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Channel 10 LED open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 9 LED open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 8 LED open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 7 LED open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
Channel 6 LED open fault flag. Active-high. HIGH: LED open  
detected; LOW: LED open not detected.  
7.5.75 READ_PWM_FAULT_MASK Register (address = A1h) [reset = 3Fh]  
Address 60h is used for writing the PWM_FAULT_MASK data using the register pseudonym  
WRITE_PWM_FAULT_MASK, and address A0h is used for reading the PWM_FAULT_MASK data using the  
register pseudonym READ_PWM_FAULT_MASK. See the WRITE_PWM_FAULT_MASK Register (address =  
60h) [reset = 3Fh] section for a description of the register contents.  
97. READ_PWM_FAULT_MASK, Address A1h  
7
6
5
4
3
2
1
0
RESERVED  
R
PWM_FAULT_ PWM_FAULT_ PWM_FAULT_ PWM_FAULT_ PWM_FAULT_ SG_MASK_CH  
MASK5  
MASK4  
MASK3  
MASK2  
MASK1  
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
50  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.76 READ_STATUS0 (address = A2h) [reset = 40h]  
98. READ_STATUS0, Address A2h  
7
6
5
4
3
2
1
0
REF_FAULT_  
FLAG  
POR_ERR_  
FLAG  
ANY_OPEN_  
FLAG  
ANY_SHORT_  
FLAG  
ANY_PWM_  
FAULT_FLAG  
WLS_FAULT_  
FLAG  
PRE_TSD_  
FLAG  
TSD_FLAG  
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
51. READ_STATUS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
REF_FAULT_FLAG  
R
0h  
Reference-resistor fault flag. Active-high. HIGH: Reference fault  
detected; LOW: Reference fault not detected.  
6
5
POR_ERR_FLAG  
ANY_OPEN_FLAG  
R
R
1h  
0h  
Power-on-reset error flag. Active-high. HIGH: POR error  
detected; LOW: POR error not detected.  
Any-channel-open fault flag. Active-high. HIGH: One or more  
channels has an open fault; LOW: an open fault is not detected  
or an open fault is masked.  
4
3
2
1
0
ANY_SHORT_FLAG  
ANY_PWM_FAULT_FLAG  
WLS_FAULT_FLAG  
PRE_TSD_FLAG  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Any channel short-to-supply fault flag. Active-high. HIGH: One or  
more channels has a short-to-supply fault; LOW: a short-to-  
supply fault is not detected or a short-to-supply fault is masked.  
Any-input PWM-fault flag. Active-high. HIGH: One or more PWM  
channels has a fault; LOW: a PWM fault is not detected or a  
PWM fault is masked.  
Weak-LED-supply fault flag. Active-high. HIGH: WLS fault  
detected; LOW: a WLS fault is not detected or a WLS fault is  
masked.  
PRE-TSD warning flag. Active-high. HIGH: a PRE TSD warning  
is detected; LOW: a PRE-TSD warning is not detected or a  
PRE_TSD warning is masked.  
TSD_FLAG  
Thermal shutdown flag. Active-high. HIGH: a thermal shutdown  
has been triggered; LOW: a thermal shutdown is not triggered or  
it is masked.  
版权 © 2015, Texas Instruments Incorporated  
51  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.77 READ_STATUS1 (address = A3h) [reset = 00h]  
See the PWM MAP Register Lock section for a list of miscellaneous (MISC), mapping (MAP), masking (MASK),  
and correction (CORR) registers.  
99. READ_STATUS1, Address A3h  
7
6
5
4
3
2
1
0
RESERVED  
DIS_PULL_  
UP_FLAG  
LOCK_MISC_  
FLAG  
LOCK_MAP_  
FLAG  
LOCK_MASK_ LOCK_CORR_  
FLAG  
FLAG  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
52. READ_STATUS1 Register Field Descriptions  
Bit  
7–5  
4
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
DIS_PULL_UP_FLAG  
R
0h  
Off-state pullup disabled flag. Active-high. HIGH: One or more  
channels have off-state pullup disabled. LOW: No channel has  
off-state pullup disabled.  
3
2
1
0
LOCK_MISC_FLAG  
LOCK_MAP_FLAG  
LOCK_MASK_FLAG  
LOCK_CORR_FLAG  
R
R
R
R
0h  
0h  
0h  
0h  
LOCK_MISC status flag. Active-high. HIGH: MISC registers are  
locked. LOW: MISC registers are not locked.  
LOCK_MAP status flag. Active-high. HIGH: MAP registers are  
locked. LOW: MAP registers are not locked.  
LOCK_MASK status flag. Active-high. HIGH: MASK registers  
are locked. LOW: MASK registers are not locked.  
LOCK_CORR status flag. Active-high. HIGH: CORR registers  
are locked. LOW: CORR registers are not locked.  
7.5.78 READ_DIS_PULL_UP_0 Register (address = A4h) [reset = 00h]  
Address 64h is used for writing the DIS_PULL_UP_0 data using the register pseudonym  
WRITE_DIS_PULL_UP_0, and address A4h is used for reading the DIS_PULL_UP_0 data using the register  
pseudonym READ_DIS_PULL_UP_0. See the WRITE_DIS_PULL_UP_0 Register (address = 64h) [reset = 00h]  
section for a description of the register contents.  
100. READ_DIS_PULL_UP_0 Register, Address A4h  
7
6
5
4
3
2
1
0
RESERVED  
R
DIS_PULL_  
UP_CH5  
DIS_PULL_  
UP_CH4  
DIS_PULL_  
UP_CH3  
DIS_PULL_  
UP_CH2  
DIS_PULL_  
UP_CH1  
DIS_PULL_  
UP_CH0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.79 READ_DIS_PULL_UP_1 Register (address = A5h) [reset = 00h]  
Address 65h is used for writing the DIS_PULL_UP_1 data using the register pseudonym  
WRITE_DIS_PULL_UP_1, and address A5h is used for reading the DIS_PULL_UP_1 data using the register  
pseudonym READ_DIS_PULL_UP_1. See the WRITE_DIS_PULL_UP_1 Register (address = 65h) [reset = 00h]  
section for a description of the register contents.  
101. READ_DIS_PULL_UP_1 Register, Address A5h  
7
6
5
4
3
2
1
0
RESERVED  
R
DIS_PULL_  
UP_CH11  
DIS_PULL_  
UP_CH10  
DIS_PULL_  
UP_CH9  
DIS_PULL_  
UP_CH8  
DIS_PULL_  
UP_CH7  
DIS_PULL_  
UP_CH6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
52  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
7.5.80 READ_ERROR_MASK (address = A6h) [reset = 00h]  
Address 66h is used for writing the ERROR_MASK data using the register pseudonym WRITE_ERROR_MASK,  
and address A6h is used for reading the ERROR_MASK data using the register pseudonym  
READ_ERROR_MASK. See the WRITE_ERROR_MASK Register (address = 66h) [reset = 00h] section for a  
description of the register contents.  
102. READ_ERROR_MASK, Address A6h  
7
6
5
4
3
2
1
0
REF_MASK  
POR_MASK  
OPEN_MASK SHORT_MASK  
PWM_MASK  
WLS_MASK  
PRE_TSD_  
MASK  
TSD_MASK  
R/W  
R/W  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
7.5.81 READ_MISC_CMD Register (address = A7h) [reset = 00h]  
Address 67h is used for writing the MISC_CMD data using the register pseudonym WRITE_MISC_CMD, and  
address A7h is used for reading the MISC_CMD data using the register pseudonym READ_MISC_CMD. See the  
WRITE_MISC_CMD Register (address = 67h) [reset = 00h] section for a description of the register contents.  
103. READ_MISC_CMD Register, Address A7h  
7
6
5
4
3
2
1
0
RESERVED  
R
RESERVED  
DIS_OFF_  
FAULT_DIAG  
ADJ_DIAG_  
START  
SLOW_SLEW_ FORCE_ERR  
RATE  
WLS_TH  
R
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
版权 © 2015, Texas Instruments Incorporated  
53  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
7.5.82 READ_ADSHORT0 (address = A8h) [reset = 00h]  
104. READ_ADSHORT0, Address A8h  
7
6
5
4
3
2
1
0
RESERVED  
R
AD_FLAG_  
CH11  
AD_FLAG_  
CH10  
AD_FLAG_CH9 AD_FLAG_CH8 AD_FLAG_CH7 AD_FLAG_CH6  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
53. READ_ADSHORT0 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
AD_FLAG_CH11  
R
0h  
Adjacent-pin short fault flag for channel 11. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
4
3
2
1
0
AD_FLAG_CH10  
AD_FLAG_CH9  
AD_FLAG_CH8  
AD_FLAG_CH7  
AD_FLAG_CH6  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Adjacent-pin short fault flag for channel 10. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 9. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 8. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 7. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 6. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
7.5.83 READ_ADSHORT1 (address = A9h) [reset = 00h]  
105. READ_ADSHORT1, Address A9h  
7
6
5
4
3
2
1
0
RESERVED  
R
AD_FLAG_CH5 AD_FLAG_CH4 AD_FLAG_CH3 AD_FLAG_CH2 AD_FLAG_CH1 AD_FLAG_CH0  
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
54. READ_ADSHORT1 Register Field Descriptions  
Bit  
7–6  
5
Field  
Type  
R
Reset  
0h  
Description  
RESERVED  
AD_FLAG_CH5  
R
0h  
Adjacent-pin short fault flag for channel 5. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
4
3
2
1
0
AD_FLAG_CH4  
AD_FLAG_CH3  
AD_FLAG_CH2  
AD_FLAG_CH1  
AD_FLAG_CH0  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Adjacent-pin short fault flag for channel 4. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 3. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 2. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 1. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
Adjacent-pin short fault flag for channel 0. Active-high. HIGH:  
Adjacent-pin short detected; LOW: adjacent-pin short not detected.  
54  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TLC6C5712-Q1 device is capable of driving different numbers of LEDs with accurate current driving and the  
most-advanced diagnostics. The device is suitable for automotive cluster tell-tale lighting, gear-shifter PRNDL  
indicators, and other safety-critical LED applications.  
8.2 Typical Applications  
8.2.1 Multiple Devices Connected in Cascade  
The TLC6C5712-Q1 design supports multiple devices in cascaded daisy-chain mode. Each communication  
sequence must only have one LATCH rising edge and, therefore, cannot be split into multiple smaller sequences.  
VSUPPLY  
OUT0  
OUT11  
SENSE  
OUT0  
OUT11  
VCC  
VCC  
VCC  
VCC  
VCC  
TLC6C5712-Q1  
TLC6C5712-Q1  
GND  
GND  
PGND  
PGND  
MOSI  
SDI  
SDO  
SDI  
SDO  
ERR  
SCK  
ERR  
ERR  
SCK  
SCK  
LATCH  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
MISO  
LATCH  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
LATCH  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
Controller  
IREF  
RIREF  
RIREF  
106. Application Schematic for TLC6C5712-Q1 Devices Connected in Cascade  
版权 © 2015, Texas Instruments Incorporated  
55  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in 55.  
55. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
20 mA  
(1)  
I(LED_FULLRANGE)  
(2)  
I(LED)  
16 mA  
(1) I(LED_FULLRANGE) is the maximum LED current allowed.  
(2) I(LED) is the required output driving current for this application.  
8.2.1.2 Detailed Design Procedure  
This design has multiple TLC6C5712-Q1 devices connected by a SPI daisy chain. Use 公式 5 to calculate the  
reference resistor value.  
V
1.229 V  
0.02 A  
(IREF)  
R(IREF)  
=
´K(OUT)  
=
´ 500 = 30.725 kW  
I(LED _FULLRANGE)  
(5)  
(6)  
Use 公式 6 to calculate the dot correction for each channel.  
16  
Dot correction =  
´ 256 -1= 204, (0xCC)  
20  
8.2.1.3 Application Curves  
107. PWM Delay and Output Rise Time  
108. PWM Delay and Output Fall Time  
CH3: PWM0, CH4: OUT0  
CH3: PWM0, CH4: OUT0  
8.2.2 Parallel Channels for Driving Higher Current  
In some applications, capability to drive higher current is needed. To deliver higher current while maintaining  
adjacent-short detection capability, channels with odd numbers can be shorted together; similarly, channels with  
even numbers can be shorted together. If odd and even numbers are shorted together, the device reports a false  
error during adjacent-pin short detection.  
56  
版权 © 2015, Texas Instruments Incorporated  
 
 
 
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
VSUPPLY  
OUT9 OUT11  
OUT9 OUT11  
OUT0 OUT2 OUT1 OUT3  
VCC  
OUT0 OUT2 OUT1OUT3  
VCC  
VCC  
VCC  
VCC  
SENSE  
TLC6C5712-Q1  
TLC6C5712-Q1  
GND  
GND  
PGND  
PGND  
MOSI  
SDI  
SDO  
SDI  
SDO  
ERR  
SCK  
ERR  
ERR  
SCK  
SCK  
LATCH  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
MISO  
LATCH  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
LATCH  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
Controller  
IREF  
RIREF  
RIREF  
109. Application Schematic for TLC6C5712-Q1 Devices With Parallel Outputs  
8.2.2.1 Design Requirements  
For this design example, use the parameters listed in 56.  
56. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
(1)  
I(LED_FULLRANGE)  
20 mA  
16 mA  
2
(2)  
I(LED)  
Channels in parallel  
(1) I(LED_FULLRANGE) is the maximum LED current allowed.  
(2) I(LED) is the required output driving current for this application.  
8.2.2.2 Detailed Design Procedure  
This design has multiple TLC6C5712-Q1 devices connected by a SPI daisy chain. Use 公式 7 to calculate the  
reference resistor value.  
V
1.229 V  
(IREF)  
R(IREF)  
=
´ K(OUT)  
=
´ 500 = 878 W  
I(LED _FULLRANGE)  
0.14A / 2  
No. of parallel channels  
(7)  
(8)  
Use 公式 8 to calculate the dot correction for each channel.  
140  
Dot correction =  
´ 256 -1= 255, (0xFF)  
140  
版权 © 2015, Texas Instruments Incorporated  
57  
 
 
 
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
The TLC6C5712-Q1 device is qualified for automotive applications. Because of voltage-level limitations, the  
device requires a first-stage power supply to provide LED and device power. VCC and V(SENSE) voltages can be  
provided by the same voltage supply or independent voltage supplies. The supply voltage range is specified in  
Recommended Operating Conditions.  
10 Layout  
10.1 Layout Guidelines  
To prevent thermal shutdown, the junction temperature, TJ, must be less than 150°C. If the voltage drop across  
the output channels is high, the device power dissipation can be large. The TLC6C5712-Q1 device has very  
good thermal performance because of the thermal pad design; however, the PCB layout is also very important to  
ensure that the device has good thermal performance. Good PCB design can optimize heat transfer, which is  
essential for the long-term reliability of the device.  
Use the following guidelines when designing the device layout:  
Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-  
flow path from the package to the ambient is through copper on the PCB. Maximum copper density is  
extremely important when no heat sinks are attached to the PCB on the other side of the package.  
Add as many thermal vias as possible directly under the package ground pad to optimize the thermal  
conductivity of the board.  
Use either plated shut or plugged and capped vias for all the thermal vias on both sides of the board to  
prevent solder voids. To ensure reliability and performance, the solder coverage should be at least 85%.  
58  
版权 © 2015, Texas Instruments Incorporated  
TLC6C5712-Q1  
www.ti.com.cn  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
10.2 Layout Example  
Power ground  
on top and  
bottom layers  
TLC6C5712-Q1  
1
2
3
4
SCK  
28  
27  
GND  
VCC  
SDI  
LATCH  
SDO  
IREF  
PGND  
26  
25  
24  
5
ERR  
SENSE  
OUT11  
OUT0  
6
7
8
23  
22  
OUT1  
OUT2  
OUT10  
OUT9  
OUT8  
21  
20  
OUT3  
OUT4  
9
10  
OUT7  
OUT6  
PWM5  
19  
18  
OUT5  
PWM0  
PWM1  
11  
12  
13  
14  
17  
16  
15  
PWM4  
PWM3  
PWM2  
110. TLC6C7512-Q1 Layout Diagram  
版权 © 2015, Texas Instruments Incorporated  
59  
TLC6C5712-Q1  
ZHCSEM2A AUGUST 2015REVISED AUGUST 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
相关文档如下:  
TLC6C5712-Q1 评估模块》SLVUAE6  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
60  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC6C5712QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
28  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
6C5712  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLC6C5712QPWPRQ1 HTSSOP PWP  
28  
2000  
330.0  
16.4  
6.9  
10.2  
1.8  
12.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 28  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TLC6C5712QPWPRQ1  
2000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
PWP 28  
4.4 x 9.7, 0.65 mm pitch  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224765/B  
www.ti.com  
PACKAGE OUTLINE  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX  
AREA  
SEATING  
PLANE  
26X 0.65  
28  
1
2X  
9.8  
9.6  
8.45  
NOTE 3  
14  
15  
0.30  
0.19  
28X  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
2X 0.95 MAX  
NOTE 5  
14  
15  
2X 0.2 MAX  
NOTE 5  
0.25  
GAGE PLANE  
1.2 MAX  
5.18  
4.48  
THERMAL  
PAD  
0.15  
0.05  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
1
28  
3.1  
2.4  
4223582/A 03/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.4)  
NOTE 9  
(3.1)  
METAL COVERED  
BY SOLDER MASK  
SYMM  
28X (1.5)  
1
28X (0.45)  
28  
SEE DETAILS  
(R0.05) TYP  
(5.18)  
(0.6)  
26X (0.65)  
SYMM  
(9.7)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.2) TYP  
(
0.2) TYP  
VIA  
14  
15  
(1.2) TYP  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4223582/A 03/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged  
or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0028C  
PowerPADTM TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
(3.1)  
BASED ON  
0.125 THICK  
STENCIL  
28X (1.5)  
METAL COVERED  
BY SOLDER MASK  
1
28X (0.45)  
28  
(R0.05) TYP  
26X (0.65)  
SYMM  
(5.18)  
BASED ON  
0.125 THICK  
STENCIL  
15  
14  
SYMM  
(5.8)  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 8X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.47 X 5.79  
3.10 X 5.18 (SHOWN)  
2.83 X 4.73  
0.125  
0.15  
0.175  
2.62 X 4.38  
4223582/A 03/2017  
NOTES: (continued)  
11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
12. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLC6C5712QPWPRQ1

汽车类 12 位恒流 LED 灌流驱动器 | PWP | 28 | -40 to 125
TI

TLC6C5716-Q1

汽车类 16 通道完整诊断恒流 RGB LED 驱动器
TI

TLC6C5716QDAPRQ1

汽车类 16 通道完整诊断恒流 RGB LED 驱动器 | DAP | 38 | -40 to 125
TI

TLC6C5724-Q1

汽车类 24 通道完整诊断恒流 RGB LED 驱动器
TI

TLC6C5724QDAPRQ1

汽车类 24 通道完整诊断恒流 RGB LED 驱动器 | DAP | 38 | -40 to 125
TI

TLC6C5748-Q1

具有内部电流设置的 48 通道、16 位 PWM LED 驱动器
TI

TLC6C5748QDCARQ1

具有内部电流设置的 48 通道、16 位 PWM LED 驱动器 | DCA | 56 | -40 to 125
TI

TLC6C5816-Q1

具有诊断功能的汽车类电源逻辑 16 位移位寄存器 LED 驱动器
TI

TLC6C5816QPWPRQ1

具有诊断功能的汽车类电源逻辑 16 位移位寄存器 LED 驱动器 | PWP | 28 | -40 to 125
TI

TLC6C5912

TLC6C5912 12 位移位寄存器 LED 驱动器
TI

TLC6C5912-Q1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器
TI

TLC6C5912GQPWRQ1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器 | PW | 20 | -40 to 125
TI