TLC6C5716-Q1 [TI]

汽车类 16 通道完整诊断恒流 RGB LED 驱动器;
TLC6C5716-Q1
型号: TLC6C5716-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 16 通道完整诊断恒流 RGB LED 驱动器

驱动 驱动器
文件: 总55页 (文件大小:1001K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
TLC6C5716-Q1 车用 16 通道完整诊断恒流 LED 驱动器  
1 特性  
TLC6C5716-Q1 器件是一款车用 16 通道恒定电流  
1
RGB LED 驱动器,其可在 LED 进行测试。  
TLC6C5716-Q1 器件可提供最高 50mA 的输出电流  
(由外部电阻器设置)。该器件具有一个 7 位点校  
正,每路输出 2 个范围。该器件还具有一个针对每个  
颜色组输出的 8 位亮度控件。  
符合面向汽车应用的 AEC-Q100 标准, 具有  
器件温度等级 1–40°C 125°CTA  
16 个恒定电流阱输出通道  
50mA 最大输出电流  
8V 最大输出电压  
两个输出组:OUTRnOUTBn  
可通过 12 位、10 位或 8 位灰度控制调整每个输出的  
亮度。该器件的电路能够检测各种系统故障,其中包括  
LED 故障、邻近引脚短路故障、基准电阻器故障等。  
压摆率控件具有 2 个可调节位置,可最大限度的降低  
系统噪声。输出电平由一个 LED 组流向另一个 LED  
组时,其变化存在一定的时间间隔。此时间间隔有助于  
降低起动电流。SDI SDO 引脚允许串联多个器件,  
并通过 1 个串行接口控制。  
输出电流调整  
7 位点校正 (DC),适用于每个通道  
8 位亮度控制功能 (BC),适用于每个组  
集成 PWM 灰度发生器  
可为每个单独通道进行 PWM 调光  
可调节全局灰度模式:12 位、10 位和 8 位  
保护和诊断  
LED 开路检测 (LOD)LED 短路检测 (LSD)、  
器件信息(1)  
输出 GND 短路检测 (OSD)  
邻近的引脚短路 (APS) 检测  
预热警告 (PTW)、热关断 (TSD)  
器件型号  
封装  
封装尺寸(标称值)  
TLC6C5716-Q1  
HTSSOP (38)  
6.20mm x 12.50mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
IREF 电阻器开路 (IOF) 及短路检测 (ISF) 和保  
用于 GCLK 错误检测和 LOD_LSD 寄存器错误  
检查的负位切换  
典型应用原理图  
VCC = 3 V - 5.5 V  
LED Supply  
LOD_LSD 电路自检  
可编程输出转换率  
输出通道组延迟  
串行数据接口  
VCC  
SENSE  
SDI  
SCK  
OUTR0  
OUTB0  
OUTR1  
LATCH  
GCLK  
BLANK  
SDO  
µC  
2 应用  
车用仪表盘  
车用局部调光显示屏  
车用面板  
ERR  
OUTB6  
OUTR7  
OUTB7  
车用 HVAC 控制面板  
车用中心堆栈显示屏  
车内 RGB 环境照明  
车用线控换档和变速器  
IREF  
3 说明  
汽车行业 需要 指示灯和 LCD 局部调光背光照明应  
用。对于此类 应用,多数人认为多通道恒定电流 LED  
驱动器是必要的。要求是获取相同的 LED 亮度和色  
温。从系统级安全方面考虑,LED 驱动器必须能够检  
测故障。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEB5  
 
 
 
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 31  
7.5 Programming .......................................................... 31  
7.6 Register Maps......................................................... 37  
Application and Implementation ........................ 48  
8.1 Application Information............................................ 48  
8.2 Typical Application ................................................. 48  
Power Supply Recommendations...................... 50  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 8  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 20  
Detailed Description ............................................ 21  
7.1 Overview ................................................................. 21  
7.2 Functional Block Diagram ....................................... 21  
7.3 Feature Description................................................. 22  
8
9
10 Layout................................................................... 50  
10.1 Layout Guidelines ................................................. 50  
10.2 Layout Example .................................................... 50  
11 器件和文档支持 ..................................................... 51  
11.1 接收文档更新通知 ................................................. 51  
11.2 社区资源................................................................ 51  
11.3 ....................................................................... 51  
11.4 静电放电警告......................................................... 51  
11.5 术语表 ................................................................... 51  
12 机械、封装和可订购信息....................................... 51  
7
4 修订历史记录  
Changes from Original (July 2018) to Revision A  
Page  
Changed the description for GCLK in .................................................................................................................................... 4  
Changed "indicates" to "initiates" in the Global Reset section ............................................................................................. 30  
Added "the SID" to the Fault Mode section to identify the register where the overtemperature fault is latched.................. 31  
Changed "APS time" to "APS detection time" for bit 199 in 12 ....................................................................................... 32  
Changed "24 zones" to "16 zones" and "six TLC6C5716-Q1 units" to "eight TLC6C5716-Q1 units" in the Detailed  
Design Procedure section ................................................................................................................................................... 49  
Added a new sentence preceding 32 .............................................................................................................................. 49  
Added the Application Curves section.................................................................................................................................. 49  
Added two sentences to the Power Supply Recommendations section .............................................................................. 50  
2
Copyright © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
5 Pin Configuration and Functions  
DAP PowerPAD™ Package  
38-Pin HTSSOP With Exposed Thermal Pad  
Top View  
SDI  
SCK  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
SENSE  
NC  
2
LATCH  
GCLK  
GCLK  
GCLK  
NU  
3
BLANK  
4
V
CC  
5
IREF  
6
GND  
7
NU  
OUTR0  
OUTB0  
NU  
8
OUTR7  
OUTB7  
NU  
9
Thermal  
Pad  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
OUTR1  
OUTB1  
NU  
OUTR6  
OUTB6  
NU  
OUTR2  
OUTB2  
NU  
OUTR5  
OUTB5  
NU  
OUTR3  
OUTB3  
SDO  
OUTR4  
OUTB4  
ERR  
Not to scale  
NC – No internal connection  
NU – Make no external connection  
Copyright © 2018, Texas Instruments Incorporated  
3
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Blank all outputs. BLANK low forces all channels off. The grayscale counter resets  
and the grayscale PWM timing controller is initialized. BLANK high starts the  
grayscale PWM timing controller. Channels are controlled by the PWM timing  
controller.  
BLANK  
36  
I
ERR  
20  
O
I
Open-drain error feedback  
Clock input for the grayscale PWM counter, three pins are internally connected  
together  
GCLK  
4, 5, 6  
GND  
IREF  
LATCH  
NC  
33  
34  
3
I
Power ground  
Reference-current pin for setting the full-scale output current  
Latch-enable input pin  
I
37  
No internal connection  
7, 10, 13,16,  
23, 26, 29, 32  
NU  
O
O
Not used, keep floating  
9, 12, 15, 18,  
21, 24, 27, 30  
OUTB0–OUTB7  
OUTR0–OUTR7  
Constant-current outputs for group B  
Constant-current outputs for group R  
8, 11, 14,17,  
22, 25, 28, 31  
SCK  
2
I
I
Input pin for the data-shift clock  
Serial data-in pin  
SDI  
1
SDO  
19  
38  
35  
O
I
Serial data-out pin  
SENSE  
VCC  
LED supply sensing pin  
I
Power supply pin  
Thermal pad  
Connect to ground to improve thermal performance  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0
MAX  
UNIT  
VCC  
6
Input voltage  
SENSE  
8
VCC + 0.3  
VCC + 0.3  
8
V
BLANK, GCLK, LATCH, SCK, SDI  
ERR, IREF, SDO  
Output voltage  
V
OUTR0–OUTR7, OUTB0–OUTB7  
OUTR0–OUTR7, OUTB0–OUTB7  
Output current  
50  
mA  
°C  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–55  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under Recommended  
OperatingConditions. Exposure to absolute-maximum-rated conditions for extended periods mayaffect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
(1)  
Human-body model (HBM), per AEC Q100-002,  
HBM ESD classification level H2  
±2000  
V(ESD)  
Electrostatic discharge  
V
All pins  
±500  
±750  
Charged-device model (CDM), AEC Q100  
classification C4B, per AEC Q100-011  
Corner pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
NOM  
MAX UNIT  
VCC  
VSENSE  
VO  
Device supply voltage  
LED supply voltage  
Output voltage  
3
5.5  
V
V
8
8
V
VIL  
Input logic-low voltage  
Input logic-high voltage  
High-level output current  
BLANK, GCLK, LATCH, SCK, SDI  
0
0.3 VCC  
VCC  
1
V
VIH  
BLANK, GCLK, LATCH, SCK, SDI  
0.7 VCC  
V
IOH  
SDO  
mA  
mA  
mA  
mA  
°C  
°C  
SDO  
1
IOL  
Low-level input current  
ERR  
5
IO  
Constant output sink current  
Operating ambient temperature  
Operating junction temperature  
OUTR0–OUTR7, OUTB0–OUTB7  
2
–40  
–40  
50  
TA  
TJ  
125  
150  
Copyright © 2018, Texas Instruments Incorporated  
5
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.4 Thermal Information  
TLC6C5716-Q1  
THERMAL METRIC(1)  
DAP (HTSSOP)  
UNIT  
38 PINS  
39.6  
31.2  
18.0  
0.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
18.1  
2.0  
RθJC(bot)  
(1) For more information about traditional and newthermalmetrics, see SemiconductorandICPackageThermal Metrics .  
6.5 Electrical Characteristics  
VCC = 3 V to 5.5 V, TJ=–40°Cto150°C,VSENSE = 5 V, GS = FFFh, BC = FFh, DC = 7Fh with upper dotcorrection(DC)range  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLIES (VCC, GND)  
SDI, SCK, LATCH = L, BLANK = L, GCLK  
= L, VOUT = 1 V, IOUT = 2 mA  
4.2  
7.7  
5.5  
9
SDI, SCK, LATCH = L, BLANK = L, GCLK  
= L, VOUT = 1 V, IOUT = 20 mA  
SDI, SCK, LATCH = L, BLANK = H, GCLK  
= 8 MHz, VOUT = 1 V, IOUT = 20 mA , auto-  
repeat on  
ICC  
Supply current  
mA  
8.3  
10  
16  
SDI, SCK, LATCH = L, BLANK = H, GCLK  
= 8 MHz, VOUT = 1 V, IOUT = 50 mA , auto-  
repeat on  
13.5  
LOGIC INPUTS (SDI, SCK, LATCH, GCLK, BLANK)  
VI at SCK, LATCH, GCLK = VCC; VI at  
SDI, SCK, LATCH, BLANK, GCLK = GND  
IIkg  
Input leakage current  
–1  
1
µA  
Pulldown resistance at  
BLANK, GCLK  
Rpd  
250  
500  
1.2  
750  
kΩ  
CONTROL OUTPUTS (IREF, ERR, SDO)  
VIREF  
VOH  
VOL  
IREF voltage  
RIREF = 0.96 kΩ  
1.17  
1.23  
VCC  
0.4  
V
V
V
High-level output voltage  
Low-level output voltage  
At SDO, IOH = –1 mA  
At SDO, IOL = 1 mA  
VCC – 0.4  
ERR pin open-drain voltage  
drop  
VERR  
IERR = 4 mA  
VERR = 5 V  
0.1 VCC  
1
V
Ilkg(ERR)  
ERR pin leakage current  
µA  
OUTPUT STAGE  
VCC = 3.6 V, IOUT = 50 mA  
VCC = 3 V, IOUT = 50 mA  
0.67  
0.7  
V(OUT,min)  
Minimum output voltage  
Ratio of output current to  
V
K(OUT)  
IREF current, K = I(OUTx)  
I(IREF)  
/
40  
mA/mA  
µA  
BLANK = L, VOUT = 7 V, VSENSE = 7 V,  
IOUT = 50 mA  
Ilkg(OUT)  
Output leakage current  
0.1  
6
Copyright © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Electrical Characteristics (continued)  
VCC = 3 V to 5.5 V, TJ=–40°Cto150°C,VSENSE = 5 V, GS = FFFh, BC = FFh, DC = 7Fh with upper dotcorrection(DC)range  
(unless otherwise noted)  
PARAMETER  
CHANNEL ACCURACY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT = 1 V, RIREF = 24 kΩ  
1.86  
46.5  
7
2
50  
10  
2.14  
53.5  
13  
I(OUT)  
Constant output current  
VOUT = 1 V, RIREF = 0.96 kΩ  
mA  
VOUT = 1V, RIREF open or short  
Current accuracy (channel- VOUT = 1 V, IOUT = 50 mA  
to-channel in same color  
–4%  
4%  
(1)  
ΔI(Ch-Ch)  
VOUT = 1 V, IOUT = 2 mA  
group)  
–4%  
4%  
VOUT= 1 V, IOUT = 50 mA  
VOUT = 1 V, IOUT = 2 mA  
VOUT = 1 V, IOUT = 50 mA  
VOUT = 1 V, IOUT = 2 mA  
VOUT = 1 V, IOUT = 50 mA  
VOUT = 1 V, IOUT = 2 mA  
VOUT = 1 V to 3 V, IOUT = 50 mA  
VOUT = 1 V to 3 V, IOUT = 2 mA  
–4%  
–4%  
–7%  
–7%  
–0.7  
–0.7  
–0.7  
–0.7  
4%  
4%  
7%  
7%  
0.7  
0.7  
0.7  
0.7  
Current accuracy (device-  
to-device)  
(2)  
(3)  
ΔI(Dev-Dev)  
Current accuracy (channel-  
to-ideal output)  
ΔI(Ch-Ideal)  
(4)  
ΔI(OUT-VCC)  
Line regulation  
Load regulation  
%/V  
(5)  
ΔI(OUT-VOUT)  
PROTECTION CIRCUITS  
LED open-circuit detection  
LOD_VOLTAGE = 0b  
LOD_VOLTAGE = 1b  
0.275  
0.48  
0.3  
0.5  
0.32  
0.52  
VLOD  
V
threshold  
(1) Channel to channel accuracy in the same color group iscalculated by the formula below. (X = color group; i,j = 0 to 7 )  
÷
8ìIOUTXi  
÷
DI(Ch-Ch)  
=
-1 ì100%  
7
÷
I
ƒ OUTXj  
÷
j=0  
«
(2) Device to device accuracy is calculated by the formulabelow.  
7
÷
÷
÷
÷
÷
I
+ IOUTBi  
(
)
ƒ  
OUTRi  
i=0  
-IOUT,ideal  
16  
IOUT,ideal  
DI(Dev-Dev)  
=
ì100%  
÷
÷
«
V
IREF  
IOUT,ideal  
=
ìK(OUT)  
RIREF  
(3) Channel to ideal accuracy is calculated by the formulabelow.  
IOUTXi  
DI(Ch-Ideal)  
=
-1 ì100%  
÷
÷
IOUT,ideal  
«
(4) Line regulation accuracy is calculated by the formulabelow.  
I(OUTXi,VCC=5.5V -I(OUTXi,VCC=3V  
100  
)
)
«
÷
÷
DI(OUT-VCC)  
=
ì
% / V  
I(OUTXi,VCC=3V  
5.5 - 3  
)
(5) Load regulation accuracy is calculated by the formulabelow.  
I(OUTXi,VOUT=3V -I(OUTXi,VOUT=1V  
100  
)
)
«
÷
÷
DI(OUT-VOUT  
=
ì
% / V  
)
I(OUTXi,VOUT=1V  
3 -1  
)
Copyright © 2018, Texas Instruments Incorporated  
7
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
VCC = 3 V to 5.5 V, TJ=–40°Cto150°C,VSENSE = 5 V, GS = FFFh, BC = FFh, DC = 7Fh with upper dotcorrection(DC)range  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VSENSE  
VSENSE  
VSENSE  
LSD_VOLTAGE = 0b  
0.4  
0.3  
0.2  
LED short-circuit detection  
threshold  
VLSD  
V
VSENSE  
VSENSE  
VSENSE  
LSD_VOLTAGE = 1b  
VCC = 5 V  
0.8  
0.7  
0.6  
IREF resistor open-circuit  
detection threshold  
IIREF_OC  
8
2
10  
12  
µA  
µA  
IREF resistor open-circuit  
detection threshold  
hysteresis  
IIREF_OCHYS  
VCC = 5 V  
VCC = 5 V  
VCC = 5 V  
5
IREF resistor short-circuit-  
detection threshold  
IIREF_SC  
2.7  
0.3  
3.2  
mA  
mA  
IREF resistor short-circuit-  
detection threshold  
hysteresis  
IIREF_SCHYS  
Pre-thermal warning flag  
threshold  
TPTW  
125  
150  
135  
10  
145  
170  
°C  
°C  
°C  
°C  
Pre-thermal warning flag  
hysteresis  
THYS_PTW  
TSD  
Thermal error flag  
threshold  
160  
10  
Thermal error flag  
hysteresis  
THYS_TEF  
6.6 Timing Requirements  
VCC = 3 V to 5.5 V,TJ=–40°Cto150°C.  
MIN  
NOM  
MAX  
UNIT  
MHz  
MHz  
ns  
fCLK(SCK)  
SCK data-shift clock frequency  
4
8
fCLK(GCLK) GCLK grayscale clock frequency  
tWH0  
tWL0  
tWH1  
tWL1  
tWL2  
tWH3  
tWL3  
tSU0  
tSU1  
tSU2  
SCK high pulse duration  
SCK low pulse duration  
LATCH high pulse duration  
LATCH low pulse duration  
BLANK pulse duration  
60  
60  
80  
80  
80  
40  
40  
55  
60  
200  
ns  
ns  
ns  
ns  
GCLK high pulse duration  
GCLK low pulse duration  
SDI– SCKsetup time  
BLANK– GCLKsetup time  
LATCH–SCKsetup time  
ns  
ns  
ns  
ns  
ns  
LATCHfor GS data–GCLKwhen display timing reset mode is disabled,  
setup time  
tSU3  
tSU4  
90  
ns  
ns  
LATCHfor GS data–GCLKwhen display timing reset mode is enabled,  
setup time  
150  
tH0  
tH1  
tH2  
tRI0  
tRI1  
tFI0  
tFI1  
SCK– SDIhold time  
SCK– LATCHhold time  
SCK–LATCHhold time  
SDI SCK LATCH rise time  
GCLK rise time  
55  
85  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
50  
30  
50  
30  
SDI SCK LATCH fall time  
GCLK fall time  
8
Copyright © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
6.7 Switching Characteristics  
over operating junction temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Rise time from 10% VSDO to 90%  
VSDO  
tro0  
tro1  
tro2  
tfo0  
tfo1  
60  
ns  
Rise time from 10% VOUT to 90%  
VOUT  
IOUT = 50 mA, SLEW_RATE = 0b  
IOUT = 50 mA, SLEW_RATE = 1b  
200  
100  
30  
ns  
ns  
ns  
ns  
Rise time from 10% VOUT to 90%  
VOUT  
60  
140  
Fall time from 90% VSDO to 10%  
VSDO  
Fall time from 90% VOUT to 10%  
VOUT  
IOUT = 50 mA , SLEW_RATE = 0b  
IOUT = 50 mA, SLEW_RATE = 1b  
200  
Fall time from 90% VOUT to 10%  
VOUT  
tfo2  
30  
100  
130  
80  
140  
180  
130  
200  
220  
ns  
ns  
ns  
tpd0  
tpd1  
Propagation delay, SCKto SDO  
Propagation delay, LATCHto  
SDO  
Propagation delay, BLANKto  
OUTR0, -B0, -R4, -B4 off  
tpd2  
tpd3  
tpd4  
tpd5  
tpd6  
10  
80  
120  
160  
200  
250  
280  
260  
260  
330  
370  
400  
ns  
ns  
ns  
ns  
ns  
Propagation delay, GCLKto  
OUTR0, -B0, -R4, -B4 on  
Propagation delay, GCLKto  
OUTR1, -B1, -R5, -B5 on  
120  
160  
190  
Propagation delay, GCLKto  
OUTR2, -B2, -R6, -B6 on  
Propagation delay, GCLKto  
OUTR3, -B3, -R7, -B7 on  
Changing by dot correction control  
(control data are 0Ch72h or 72h0Ch  
with upper DC range), BC -R, -B = FFh  
Propagation delay, LATCHto  
VOUT  
tpd7  
tpd8  
tpd9  
10  
10  
80  
130  
5
120  
200  
ns  
ns  
ns  
Changing by global brightness control  
(control data are 19hE6h or E6h19h  
with DC -Rn, -Bn = 7Fh with upper DC  
range  
Propagation delay, LATCHto  
VOUT  
Propagation delay, LATCHto  
APS register and APS flag  
change  
SINK_CURRENT = 0b  
Propagation delay, LATCHto  
APS register and APS flag  
change  
tpd10  
SINK_CURRENT = 1b  
10  
24  
ns  
ns  
Propagation delay, LATCHto  
LOD self-flag change  
tpd11  
No failure in LOD-LSD detector circuit  
版权 © 2018, Texas Instruments Incorporated  
9
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
GSR0  
0A  
GSB7  
11B  
GSB7  
10B  
GSB7  
9B  
GSB7  
8B  
GSB7  
7B  
GSR0  
3B  
GSR0  
2B  
GSR0  
1B  
GSR0  
0B  
GSB7  
11C  
GSB7  
10C  
GSB7  
9C  
GSB7  
8C  
GSB7  
7C  
GSB7  
6C  
GSB7  
5C  
GSB7  
4C  
GSB7  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH1  
tWH1  
LATCH  
tSU3  
BLANK  
GCLK  
SDO  
tSU1  
fCLK(GCLK)  
tWL2  
tpd0  
tpd1  
GSB7  
11A  
GSB7  
10A  
GSB7  
9A  
GSB7  
8A  
GSB7  
7A  
GSB7  
6A  
GSR0  
2A  
GSR0  
1A  
GSR0  
0A  
GSB7  
11B  
GSB7  
10B  
GSB7  
9B  
GSB7  
8B  
GSB7  
7B  
GSB7  
6B  
GSB7  
5B  
GSB7  
4B  
GSB7  
3B  
GSB7  
2B  
GSB7  
1B  
tpd3  
tpd4  
tD5  
tpd2  
OUTR0/4  
OUTB0/4  
Output Voltage  
OFF  
ON  
tro1  
tfo1  
OUTR1/5  
OUTB1/5  
ON  
OFF  
Output Voltage  
Output Voltage  
OUTR2/6  
OUTB2/6  
ON  
OFF  
tD6  
OUTR3/7  
OUTB3/7  
Output Voltage  
ON  
OFF  
1. Grayscale Data (GS) Write  
10  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
GSR0  
SDI  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
DCR0  
3B  
DCR0  
2B  
DCR0  
1B  
DCA0  
0B  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
0A  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
BLANK  
GCLK  
SDO  
fCLK(GCLK)  
tWL2  
tSU1  
tpd0  
tro0, tfo0  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
CMD  
6B  
CMD  
5B  
CMD  
4B  
CMD  
3B  
CMD  
2B  
CMD  
1B  
tpd3  
tpd4  
tpd5  
tpd6  
tpd7,tpd8  
tpd2  
OUTR0/4  
OUTB0/4  
OFF  
ON  
tfo1  
OUTR1/5  
OUTB1/5  
OFF  
ON  
OUTR2/6  
OUTB2/6  
ON  
OFF  
OUTR3/7  
OUTB3/7  
OFF  
ON  
2. Function-Control, Brightness-Control, and Dot-Correction (FC-BC-DC) Data Write  
版权 © 2018, Texas Instruments Incorporated  
11  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
12bit Command code CMD11 to CMD0 is 5AFh, indicate this is a GS Read command, the original GS data in GS data latch are loaded into common shift register  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
CMD  
2C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
SDO  
tpd0  
tro0, tfo0  
tpd1  
GSB7  
2
GSB7  
1
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11B  
GSB7  
11  
GSB7  
10  
GSB7  
9
GSB7  
8
GSB7  
7
GSB7  
6
GSB7  
5
GSB7  
4
GSB7  
3
Since decoded as GS Read command, the grayscale data in GS data latch is latched into common shift register at this moment  
3. Grayscale (GS) Data Read  
12bit Command code CMD11 to CMD0 is 5A3h, indicate this is a SID Read command, the 96bits LOD1/2, LSD1/2 detection result, 1bit NEG1, 1bit NEG2, 10bit  
Error Status and 24bits Adjacent pin short result are loaded into common shift register  
CMD  
2C  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
SDO  
tpd0  
tro0, tfo0  
tpd1  
Reserv  
ed  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11B  
LOD2  
OUTB7  
LOD2  
OUTB6  
LOD2  
OUTB5  
LOD2  
OUTB4  
LOD2  
OUTB3  
LOD2  
OUTB2  
LOD2  
OUTB1  
LOD2  
OUTB0  
Reserv  
ed  
Since decoded as SID Read command, the LOD1/2, LSD1/2 detection result, NEG1, NEG2, Error Status and Adjacent pin  
short result in the corresponding registers are latched into common shift register at this moment  
4. Status Information Data (SID) Read  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
12bit Command code CMD11 to CMD0 is 53Ah, indicate this is a APS Check command, IC will automatically detect all the adjacent pin short condition, and set APS  
register(16bits) and APS_Flag in Error status register. BLANK should be kept low during this test  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
BLANK  
tpd9, tpd10  
APS Register  
Previous Data  
Updated Data  
Updated Data  
APS_Flag  
(Error Status Register)  
Previous Data  
Since decoded as APS Check command, the adjacent pin short self test is executed, the result is latched into APS register and APS_FLAG of  
Error Status register at this moment  
5. Adjacent-Pin-Short (APS) Check  
12bit Command code CMD11 to CMD0 is 55Ah, indicate this is a NEG_BIT Toggle command, the Negate bit will be toggled and LOD_LSD data will be inverted  
GSR0  
SDI  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
0A  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
tpd12  
Negate Bit  
Previous Data  
Updated Data  
Since decoded as NEG_BIT Toggle command, the Negate bit is toggled at this moment and  
LOD_LSD register value will be inverted.  
6. Negate Bit Toggle  
版权 © 2018, Texas Instruments Incorporated  
13  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
12bit Command code CMD11 to CMD0 is 535h, indicate this is a LOD_LSD Self Test command, IC will execute LOD_LSD detector circuit self test and set LOD_LSD_FLAG  
in Error Status register. BLANK should be kept low during this test  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
BLANK  
tpd11  
LOD_LSD_FLAG  
(Error Status Register)  
Previous Data  
Updated Data  
Since decoded as LOD_LSD Self Test command, the LOD_LSD detector circuit self-test is executed, the result is latched into LOD_LSD_FLAG of  
Error Status register at this moment  
7. LOD_LSD Self-Test  
12bit Command code CMD11 to CMD0 is 5ACh, indicate this is a FC-BC-DC Read command. the 205bits FC-BC-DC data are loaded into common shift register; This reading  
function can also be achieved by latching GS data from common shifter to GS data latch  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
LATCH  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
tpd1  
Common Shift Register  
Previous Data  
Lowest 205bit are updated with latest FC-BC-DC data  
Since decoded as FC-BC-DC Read command, the data in FC-BC-DC data latch are latched  
into common shift register at this moment  
8. Function Control, Brightness Control, and Dot Correction (FC-BC-DC) Data Read  
14  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
12bit Command code CMD11 to CMD0 is A53h, indicate this is a ERROR Clear command, the 96bits LOD1/2, LSD1/2 detection result, 1bit NEG1, 1bit NEG2, 10bit Error  
Status and 24bits Adjacent pin short result are loaded into common shift register, and then the Error status register and APS register will be reset to 0.  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
tpd1  
APS Register  
Previous Data  
Reset to Zero  
Reset to Zero  
Error Status Register  
Previous Data  
tpd0  
tro0, tfo0  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11B  
LOD2  
OUTB7  
LOD2  
OUTB6  
LOD2  
OUTB5  
LOD2  
OUTB4  
LOD2  
OUTB3  
LOD2  
OUTB2  
LOD2  
OUTB1  
LOD2  
OUTB0  
Reserv  
ed  
Reserv  
ed  
SDO  
Since decoded as ERROR Clear command, LOD1/2, LSD1/2 detection result, NEG1, NEG2, Error Status and Adjacent pin  
short result are loaded into common shift register, and then the Error status register and APS register will be reset to 0.  
9. ERROR Clear  
版权 © 2018, Texas Instruments Incorporated  
15  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
12bit Command code CMD11 to CMD0 is A5Ch, indicate this is a Global Reset command, not only the Error status register, LOD-LSD register and APS register will be reset to default, but  
also GS data, FC-BC-DC data will be reset to default. Besides, all output channels will be turn off, PWM timing will be initialized. This command has the same function as power on reset  
GSR0  
0A  
CMD  
11B  
CMD  
10B  
CMD  
9B  
CMD  
8B  
CMD  
7B  
Dont  
Care  
Dont  
Care  
Dont  
Care  
Dont  
Care  
CMD  
11C  
CMD  
10C  
CMD  
9C  
CMD  
8C  
CMD  
7C  
CMD  
6C  
CMD  
5C  
CMD  
4C  
CMD  
3C  
SDI  
tSU0  
tH0  
fCLK(SCK)  
tWH0  
tWL0  
tH1  
tSU2  
SCK  
285  
1
2
3
4
5
284  
286  
287  
288  
1
2
3
4
5
6
7
8
9
10  
tH2  
tWL1  
LATCH  
LOD-LSD Register  
Previous Data  
Previous Data  
Previous Data  
Reset to default  
Reset to default  
Reset to default  
Channel Off  
APS Register  
Error Status Register  
OUTn  
Since decoded as Global Reset command, the Error status register, LOD-LSD register, APS register, GS data latch and FC-BC-DC data latch will  
be reset to default at this moment. Besides, all output channels will be turn off, PWM timing will be initialized at this moment.  
10. Global Reset  
16  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
GS counter starts to count GCLK after BLANK goes high  
GCLK  
2047  
1
2
3
4
5
2046  
2048  
2049  
2050  
2051  
2052  
4093  
4094  
4095  
4096  
4097  
4098  
1
2
3
4
BLANK  
OFF  
ON  
OUTn Output Voltage  
GS data = 000h  
Output Voltage  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OUTn  
OFF  
GS data = 001h  
OUTn  
OFF  
Output Voltage  
Output Voltage  
ON  
OFF  
GS data = 002h  
OUTn  
OFF  
OFF  
ON  
ON  
GS data = 003h  
OUTn  
OFF  
Output Voltage  
Output Voltage  
GS data = 7FFh  
OUTn  
ON  
ON  
OFF  
GS data = 800h  
Output Voltage  
OUTn  
OFF  
GS data = 801h  
OFF  
OUTn  
Output Voltage  
Output Voltage  
ON  
ON  
GS data = FFDh  
OUTn  
OFF  
GS data = FFEh  
Output Voltage  
OUTn  
OFF  
OUTx does not turn on again until BLANK goes low once when disable auto repeat mode  
ON  
GS data = FFFh  
OUTn turns on at first rising edge of GCLK after BLANK goes high except when  
Grayscale data is zero.  
Note1: The internal blank signal is generated when LATCH is input for GS data with display timing reset enable. Also the signal is generated at  
4096th GCLK when auto repeat mode is enabled. BLANK can be connected to VCC when TIMING_RESET or AUTO_REPEAT is enabled.  
11. 12-Bit Mode PWM Counter Without Auto-Repeat Mode  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
GS counter starts to count GSCKR/G/B after BLANK goes high level.  
GCLK  
257  
1
2
3
4
255  
256  
258  
1023  
1024  
1025  
1026  
4093  
4094  
4095  
4096  
4097  
4098  
1
2
3
4
BLANK  
OUTn  
8-bit Mode  
GS data = FFFh  
ON  
ON  
OFF  
ON  
ON  
ON  
Output Voltage  
Output Voltage  
Output Voltage  
OFF  
OUTn  
10-bit Mode  
GS data = FFFh  
OUTn  
12-bit Mode  
OFF  
ON  
GS data = FFFh  
12. 8-, 10-, 12-Bit Mode PWM Counter Without Auto-Repeat Mode  
GS counter starts to count GSCKR/G/B after BLANK goes high level.  
GCLK  
1
257  
1
2
255  
256  
1024  
1025  
4095  
4096  
4095  
4096  
1
3
1
BLANK  
OUTn  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Output Voltage  
8-bit Mode  
OFF Period * 15  
OUTn is forced off even if  
GS data is more than 0FFh.  
OFF Period * 11  
GS data = 0FFh - FFFh  
OFF Period * 2  
OFF  
OFF  
OFF  
OFF  
Output Voltage  
Output Voltage  
OFF  
OUTn  
10-bit Mode  
OFF  
OFF  
OUTn is forced off even if  
GS data is more than 3FFh.  
OFF Period * 3  
OFF Period * 2  
GS data = 3FFh - FFFh  
OUTn  
12-bit Mode  
ON  
GS data = FFFh  
13. 8-, 10-, 12-Bit Mode PWM Counter With Auto-Repeat Mode  
18  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
GCLK  
4093  
1
2
3
8
9
4092  
4094  
4095  
4096  
1
2
3
4
5
6
7
8
9
10  
LATCH  
LOD1-LSD1 registers are updated  
at 9th GCLK rising edge  
LOD1-LSD1  
Old LOD1-LSD1 Data  
New LOD1-LSD1 Data  
LOD2-LSD2 registers are updated  
at 4095th GCLK rising edge  
LOD2-LSD2  
Old LOD2-LSD2 Data  
New LOD2-LSD2 Data  
14. LOD-LSD Register Update Timing  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
6.8 Typical Characteristics  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
-40°C  
25°C  
125°C  
0
0
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7  
3
RIREF (kW)  
VOUT (V)  
D006  
D005  
VCC = 3.3 V  
BC = FFh  
GS = FFFh  
DC = 7Fh in high range  
15. I(OUT)max vs RIREF  
16. IOUT vs VOUT  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
High DC Range  
Low DC Range  
-40°C  
25°C  
125°C  
50  
45  
40  
35  
30  
25  
20  
15  
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
DC  
DC  
D003  
D004  
VCC = 3.3 V  
BC = FFh  
TA = 25°C  
GS = FFFh  
VCC = 3.3 V  
BC = FFh in the high DC range  
GS = FFFh  
18. IOUT vs Dot Correction at Different Ambient  
Temperatures  
17. IOUT vs Dot Correction in Different DC Ranges  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
DC = 7Fh with High Range  
DC = 00h with High Range  
DC = 7Fh with Low Range  
-40°C  
25°C  
125°C  
0
0
0
30  
60  
90  
120 150 180 210 240 270  
BC  
0
30  
60  
90  
120 150 180 210 240 270  
BC  
D001  
D002  
VCC = 3.3 V  
TA = 25°C  
GS = FFFh  
VCC = 3.3 V  
DC = 7Fh with high range  
GS = FFFh  
19. IOUT vs Brightness Control in Different DC Ranges  
20. IOUT vs Brightness Control at Different Ambient  
Temperatures  
20  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
7 Detailed Description  
7.1 Overview  
In automotive indicator and local dimming backlighting applications, the demand for multi-channel constant  
current LED drivers is increasing to achieve uniformity of LED brightness and color temperature. System-level  
safety considerations require fault detection capability and device self-check features.  
The TLC6C5716-Q1 is an automotive 16-channel constant-current LED driver with LED diagnostics. The  
TLC6C5716-Q1 provides up to 50 mA of output current set by an external resistor. The current can be adjusted  
by 7-bit dot correction with two subranges for individual outputs, and an 8-bit brightness control for all the outputs  
of each color group. The brightness can be adjusted individually for each channel through a 12-, 10-, or 8-bit  
grayscale control. Fault-detection circuits are available to detect system faults including LED faults, adjacent-pin  
short faults, reference-resistor faults, and more. Negate bit toggle and LOD-LSD self-test provide a device self-  
check function to improve system reliability. Configurable slew-rate control optimizes the noise generation of the  
system and improves the system EMC performance. Output-channel group delay helps to reduce inrush current  
to optimize the system design. The SDI and SDO pins allow more than one device to be connected in a daisy  
chain for control through one serial interface.  
7.2 Functional Block Diagram  
ERR  
LED_ERR_MASK  
IOF/ISF  
LOD-LSD Self Test  
LOD-LSD Self  
Test  
Thermal  
Detection  
Logic  
LOD-LSD info  
NEG-BIT Toggle  
2
3
2
APS Check  
3
APS Detection  
Error Status Register  
LOS-LSD info  
Negate Bit  
24  
APS_Current  
LOD-LSD Register  
99  
APS Register  
24  
10  
SDI  
SCK  
SOUT  
288-bit Common Shift Register  
Lower 205  
288  
288  
Read GS  
Latch  
GS  
Latch  
Selection  
288-bit GS Data  
LATCH  
205  
SENSE  
VCC  
Latch  
FC  
12-bit CMD  
APS_CURRENT  
Command  
Decoder  
205-bit FC-BC-DC Data  
3
GS Read  
SID Read  
APS Check  
...  
288  
205  
4
GCLK  
GS Counter  
12bit/10bit/8bit PWM Timing Control  
48  
200  
BLANK  
IREF  
197  
Reference  
Current  
GND  
16-CH Constant Sink with Group Delay  
3
ISF/IOF  
IREF Open/  
Short Detector  
LED Open/Short Detection  
...  
OUTR0  
OUTB0  
OUTB7  
版权 © 2018, Texas Instruments Incorporated  
21  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Maximum Constant-Sink-Current Setting  
LED full-scale current can be set using an external resistor connected between the IREF pin and GND. The  
RIREF resistor value is calculated with the following formula.  
V
IREF  
RIREF = K ì  
I(OUT)max  
where  
VIREF is the reference voltage  
K is the IREF current to output current ratio  
I(OUT)max is full-scale current for each output  
(1)  
15 shows the reference-resistor calculation curve.  
7.3.2 Brightness Control and Dot Correction  
The TLC6C5716-Q1 device implements an 8-bit group brightness control (BC) and 7-bit individual dot correction  
(DC) to calibrate the output current. The 16 output channels are divided into two groups: OUTRn and OUTBn.  
Each group contains 8 output channels. There are two configurable ranges for the DC value of each group. One  
is the low DC range with output current from 0 to 66.7% I(OUT)max, the other is the high DC range with output  
current from 33.3% I(OUT)max to 100% I(OUT)max. The IREF resistor, BC, DC, and DC range together determine the  
channel output current, as shown in 21. 公式 2 and 公式 3 are the detailed output current calculation formulas.  
公式 2 determines the output sink current for each group when DC is in high adjustment range.  
1
2
3
DC  
BC  
IOUT = ( ìI(OUT)max  
+
ìI(OUT)max  
ì
)ì  
127 255  
3
(2)  
(3)  
公式 3 determines the output sink current for each group when DC is in the low adjustment range.  
2
3
DC BC  
IOUT  
=
ìI(OUT)max ì ì  
127 255  
22  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Feature Description (接下页)  
OUTR0  
Individual DC  
7-bit DC  
GND  
OUTR1  
Group BC  
High/  
Low  
DC  
Digital  
8-bit BC  
Setting  
7-bit DC  
Range  
GND  
I(OUT)max  
IREF  
OUTR7  
7-bit DC  
GND  
GND  
OUTR  
OUTB  
21. Brightness Control and Dot Correction Block Diagram  
7.3.3 Grayscale Configuration  
The TLC6C5716-Q1 device implements a grayscale configuration function to realize an individual PWM dimming  
function for the output channels. The grayscale has three global configuration modes, 12-bit, 10-bit and 8-bit. The  
GCLK input provides the clock source for the internal PWM generator. The GS counter counts the GCLK number  
and compares the number with channel grayscale register value, and the output channel turns off when the GS  
counter value reaches the grayscale register value. 22 shows the detailed block diagram of the PWM  
generator.  
To start a new PWM cycle, users can use two methods. One is to toggle the BLANK pin after the GS counter  
reaches the maximum count value, because BLANK low resets the GS counter and BLANK high restarts the GS  
counter. Another is to pull BLANK high and set the AUTO_REPEAT&TIMING_RESET register bit to 1, 12.  
The PWM starts a new cycle automatically after the GS counter reaches its maximum count value.  
版权 © 2018, Texas Instruments Incorporated  
23  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Feature Description (接下页)  
GS Counter  
Max Count  
OUTB1_GS  
OUTB1_GS  
OUTR1_GS  
OUTR1_GS  
Time  
Time  
Time  
OUTR1 Current  
25% Duty Cycle  
OUTB1 Current  
75% Duty Cycle  
12-bit GS mode, Max Count = 4096  
10-bit GS mode, Max Count = 1024  
8-bit GS mode, Max Count = 256  
VLED  
OUTn  
OUTn_GS [11:0]  
PWM Generator  
GS Counter  
12/10/8-Bit  
GCLK  
GS Mode  
GND  
22. PWM Generator  
7.3.3.1 PWM Auto Repeat  
The PWM auto repeat function is configured by the AUTO_REPEAT bit. The AUTO_REPEAT bit is 0 by default,  
and the PWM auto repeat function is disabled in this condition. The PWM cycle only executes once, so users  
must toggle BLANK to start a new PWM cycle. 11 and 12 show the PWM operation in this mode. When the  
AUTO_REPEAT bit is 1, the PWM auto repeat function is enabled, and the PWM cycle automatically repeats as  
long as BLANK is high and GCLK is present, as shown in 13.  
24  
版权 © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Feature Description (接下页)  
7.3.3.2 PWM Timing Reset  
The PWM timing reset function is configured by the TIMING_RESET bit. The PWM timing reset function can  
restart a PWM cycle with a newly configured duty cycle after a GS data write. The TIMING_RESET bit is 0 by  
default, and the PWM timing reset function is disabled in this condition. The PWM cycle is not influenced by a  
GS data write, and the newly configured PWM duty cycle only is valid after the current PWM cycle finishes.  
When the TIMING_RESET bit is 1, the PWM timing reset function is enabled, and the PWM cycle restarts with  
new PWM duty cycle immediately after the GS data write.  
7.3.4 Diagnostics  
The TLC6C5716-Q1 device integrates a full LED diagnostics function, such as LED-open detection (LOD), LED-  
short detection (LSD), and output short-to-GND detection (OSD), which helps to improve the system safety.  
7.3.4.1 LED Diagnostics  
An LOD-LSD detection circuit compares the output voltage with the LOD threshold and LSD threshold, and 1  
shows the output results.  
1. LOD-LSD Detection  
DETECTOR OUTPUT BIT VALUE  
OUTPUT VOLTAGE CONDITION  
LOD  
LSD  
VOUTn < LOD_VOLTAGE  
1
0
0
0
0
1
LOD_VOLTAGE < VOUTn < LSD_VOLTAGE  
VOUTn > LSD_VOLTAGE  
The LOD threshold can be configured by the LOD_VOLTAGE bit in the FC-BC-DC register, 12 . The threshold  
is 0.3 V when LOD_VOLTAGE = 0, and the threshold is 0.5 V when LOD_VOLTAGE = 1.  
2. LOD Threshold  
LOD_VOLTAGE BIT  
LOD THRESHOLD  
0 (Default)  
1
0.3 V  
0.5 V  
The LSD threshold is configured by the LSD_VOLTAGE bit in the FC-BC-DC register, 12. The threshold is  
VVSENSE – 0.3 V when LSD_VOLTAGE = 0, and the threshold is VVSENSE – 0.7 V when LSD_VOLTAGE = 1.  
3. LSD Threshold  
LSD_VOLTAGE BIT  
LSD THRESHOLD  
VSENSE – 0.3 V  
VSENSE – 0.7 V  
0 (Default)  
1
There are two sets of LOD-LSD registers in the device, one is the LOD1-LSD1 registers, the other is the LOD2-  
LSD2 registers. Each group of registers consists of 24 bits of LOD data and 24 bits of LSD data, corresponding  
to the 24 channel outputs. The device updates the LOD1-LSD1 registers at the 9th GCLK rising edge. The  
device updates the LOD2-LSD2 registers at the Nth GCLK rising edge. N is the maximum GCLK number in a  
PWM period minus 1, see 4.  
To detect all kinds of LED faults, the output channel should turn ON at the 9th GCLK rising edge, and turn OFF  
at the Nth GCLK rising edge.  
The device integrates an internal pullup circuit for LED diagnostics, shown in 23. The circuit turns off during  
the channel on-state, but turns on to charge the output pin during the channel-off state. For an LED-short fault,  
both LSD1 and LSD2 are 1. For an LED-open fault, both LOD1 and LSD2 are 1. For an output short-to-GND  
fault, both LOD1 and LOD2 are 1. 5 shows the details.  
版权 © 2018, Texas Instruments Incorporated  
25  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
VSENSE  
VSENSE  
OUTn  
Channel OFF  
OUTn  
Channel ON  
GND  
GND  
23. Internal Pullup Circuit  
4. LOD-LSD Register Latch Timing  
GS COUNTER MODE  
LOD1-LSD1  
LOD2-LSD2  
12-bit  
10-bit  
8-bit  
9th GCLK rising edge  
9th GCLK rising edge  
9th GCLK rising edge  
4095th GCLK rising edge  
1023rd GCLK rising edge  
255th GCLK rising edge  
5. LED Status Lookup Table  
LOD-LSD RESULT  
LED STATUS  
LOD1-LSD1 Updated at 9th GCLK  
LOD2-LSD2 Updated at Nth GCLK(1)  
LOD1  
LSD1  
LOD1  
LSD1  
LOD1  
LSD1  
LOD1  
LSD1  
0
0
1
0
0
1
1
0
LOD2  
LSD2  
LOD2  
LSD2  
LOD2  
LSD2  
LOD2  
LSD2  
0
1
0
1
0
1
1
0
LED Ok  
LED open  
LED short  
Output short-to-GND  
(1) N = 4095 for 12-bit GS mode, 1023 for 10-bit GS mode, 255 for 8-bit GS mode.  
In some cases, users may need to turn off output channels before the 9th GCLK to disable the output channels,  
or turn on the output channels at the Nth GCLK to get more brightness. LOD_LSD faults are reported as shown  
in 6. Users can ignore the fault according to the GS register setting value.  
26  
版权 © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
6. PWM Status Lookup Table  
LOD-LSD Result  
PWM STATUS  
LOD1-LSD1 UPDATED AT 9th GCLK  
LOD2-LSD2 UPDATED AT Nth GCLK  
(1)  
LOD1  
LSD1  
LOD1  
LSD1  
LOD1  
LSD1  
0
0
0
1
0
0
LOD2  
LSD2  
LOD2  
LSD2  
LOD2  
LSD2  
0
1
0
1
0
0
PWM OK  
Channel off before 9th  
GCLK  
Channel on at Nth GCLK  
(1) N = 4095 for 12-bit GS mode, 1023 for 10-bit GS mode, 255 for 8-bit GS mode  
The LOD_LSD status is updated every PWM cycle. 14 is an example of the LOD-LSD register update timing  
for the 12-bit GS mode.  
7.3.4.2 Adjacent-Pin-Short Check  
The device implements an APS check function to detect the adjacent-pin-short failure during system initialization.  
TI recommends to do an APS check when the channels are all off. The APS check can be executed by writing  
the APS check command.  
If there is no adjacent-pin-short failure, the device passes the APS check and 011b is latched into the APS FLAG  
in the error status register. The 24-bit APS register is 0. If there are two adjacent pins shorted, 110b is latched  
into the APS_FLAG in the error status register. The corresponding bit in the APS register is set to 1. Users can  
read out the 24-bit data from APS register to check if two channels have this short fault. 7 shows the details of  
the APS_FLAG and APS register. 8 shows the bit arrangement of APS register. To read these APS  
information, see Status Information Data Read in the Status Information Data Read section.  
7. APS Flag and APS Register  
REGISTER  
VALUE  
011b  
110b  
0b  
DESCRIPTION  
Pass, no adjacent pins short  
APS_FLAG  
Fail, adjacent pins short  
This OUTn pin is not shorted with other pins  
This OUTn pin is shorted with other pins  
Bit in APS register (24-bit total)  
1b  
版权 © 2018, Texas Instruments Incorporated  
27  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
8. Bit Arrangement of APS register  
BITS OF APS REGISTERS  
CORRESPONDING OUTPUTS  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
OUTB7  
OUTB6  
OUTB5  
OUTB4  
OUTB3  
OUTB2  
OUTB1  
OUTB0  
Pin 7  
Pin 10  
Pin 13  
Pin 16  
Pin 23  
Pin 26  
Pin 29  
Bit 8  
Pin 32  
Bit 7  
OUTR7  
OUTR6  
OUTR5  
OUTR4  
OUTR3  
OUTR2  
OUTR1  
OUTR0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
The APS_FLAG and APS registers are all 0 by default. After an APS check command, the APS_FLAG should be  
011b or 110b. Otherwise, there is a failure on the APS check circuit. If the APS check result fails, the ERR pin is  
pulled low, the APS_FLAG value is 110b and the ERR pin status stays unchanged until the fault is removed and  
the user executes an ERROR clear command. 5 and 4 show more detail.  
As different LEDs have different parasitic capacitance, to make sure the APS Check function is suitable for all  
kinds of LEDs, the device provides two configuration bits for APS current and APS time. The APS current is  
selected by APS_CURRENT as 9. The APS time is selected by APS_TIME as shown in 10.  
9. APS Current Selection  
APS_CURRENT BIT  
APS CURRENT  
20 µA  
0b  
1b  
40 µA  
10. APS Time Selection  
APS_TIME BIT  
ADJACENT-PIN SHORT-DETECTION TIME  
0b  
1b  
10 µs  
20 µs  
7.3.4.3 IREF-Short and IREF-Open Detection  
To protect the device from reference resistor short and open faults, the device integrates IREF short and open  
protection. In an IREF short or open fault condition, the device reports the fault and sets the output current to a  
default value to help improve the system safety.  
28  
版权 © 2018, Texas Instruments Incorporated  
 
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
By default, the ISF and IOF flags are 0. When the IREF current exceeds the fault detection threshold, the ERR  
pin is pulled down, the ISF or IOF flag is set to 1, and the error flag and ERR pin status stay unchanged until the  
fault is removed and there is an ERROR clear command.  
Once there is an ISF or IOF failure, the output current is set to a default value, and I(OUT)max is 10 mA; see 11.  
Once the ISF or IOF failure is removed, the output current returns back to the set IREF value immediately.  
11. Criteria of ISF and IOF Judgement and Corresponding Actions  
IIREF  
ISF  
0
IOF  
1
OUTPUT  
I(OUT)max= 10 mA  
I
IREF 10 µA  
10 µA < IIREF 3 mA  
0
0
I(OUT)max = VIREF × 40 / RIREF  
I(OUT)max = 10 mA  
IIREF > 3 mA  
1
0
7.3.4.4 Pre-Thermal Warning Flag  
The TLC6C5716-Q1 device implements a pre-thermal warning (PTW) function. Once the junction temperature  
exceeds the PTW threshold, the ERR pin is pulled low, the PTW flag in the error status register is set to 1, and  
the PTW_FLAG and ERR pin status stay unchanged until the junction temperature drops below TPTW – THYS_PTW  
and there is an ERROR clear command.  
7.3.4.5 Thermal Error Flag  
The TLC6C5716-Q1 device monitors the junction temperature all the time. Once the junction temperature  
exceeds the thermal shutdown threshold, all of the constant-current outputs turn off, the ERR pin is pulled low,  
and the thermal error flag and ERR pin status are set to 1 and stay unchanged until the fault is removed and  
there is an ERROR clear command. During this state, all the digital functions work normally, and users can read  
or write data through the common shift registers. After the junction temperature drops below TTEF – THYS_TEF, the  
device goes back to normal operation again. Users can reset the TEF flag by sending an ERROR clear  
command.  
7.3.4.6 Negate-Bit Toggle  
TLC6C5716-Q1 implements a negate-bit toggle function to check the LOD-LSD registers and GCLK signal,  
which is useful for safety-related applications.  
There are NEG1 and NEG2 bits in the registers, and their values are both 0 by default. After executing the  
negate-bit toggle command, both NEG1 and NEG2 change to 1. The LOD-LSD results are reversed in this  
condition. If the LOD-LSD registers get stuck, the LOD-LSD results are not be toggled, which means there is a  
fault in the LOD-LSD registers.  
The LOD1-LSD1 registers only update on the 9th GCLK rising edge, and the LOD2-LSD2 registers only update  
on the Nth GCLK rising edge. So after a negate-bit toggle command, users must wait for at least one GS counter  
cycle (4096 GCLKs for the 12-bit GS counter mode, 1024 GCLKs for the 10-bit GS counter mode, and 256  
GCLKs for the 8-bit GS counter mode) before reading the SID registers. So if the GCLK signal is lost, the loss  
can also be detected by the negate-bit toggle function.  
7.3.4.7 LOD_LSD Self-Test  
The TLC6C5716-Q1 device implements an LOD_LSD self-test function to check the LOD_LSD detection circuit  
to help improve the system reliability. If the LOD_LSD detection circuit fails to detect the LED failure, the  
LOD_LSD self-test function can identify and report the malfunction.  
The LOD_LSD self-test function can be executed by sending the LOD_LSD self-test command. The  
LOD_LSD_FLAG is 000b by default. After the LOD_LSD self-test command, if there is no fault on the LOD_LSD  
detection circuit, the LOD_LSD_FLAG value is 011b. If there are failures on LOD_LSD detection circuits, the  
LOD_LSD_FLAG value is 110b, the ERR pin is pulled low, and the bit values stay unchanged until the fault is  
removed and an ERROR clear command is executed. If the LOD_LSD_FLAG is neither 011b nor 110b, there  
should be something wrong in the self-test procedure.  
版权 © 2018, Texas Instruments Incorporated  
29  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
7.3.4.8 ERR Pin  
The TLC6C5716-Q1 device supports an active-low open-drain error output. 24 shows the error pulldown block  
diagram. Ten bits of error status information control the error pulldown circuit directly. But an LED failure can be  
masked by the LED_ERR_MASK bit. The LED_ERR_MASK default value is 1, and the LED failure is masked  
from the error pulldown circuit. Even if there is an LED failure, the ERR pin is not pulled down by this LED failure.  
If the LED_ERR_MASK is 0, the ERR pin is pulled down by the LED failure to indicate an error scenario. Users  
can use an MCU interrupt to read out the fault information.  
APS Check  
LOD_LSD Self Test  
TEF SENSOR  
APS_FLAG  
LOD_LSD_FLAG  
TEF FLAG  
PTW SENSOR  
ISF DETECTION  
IOF DETECTION  
PTW FLAG  
ISF FLAG  
ERR  
IOF FLAG  
LOD1  
LSD1  
LOD2  
LSD2  
LED_ERR_MASK  
OUTRn  
OUTBn  
24. ERR Pin Pulldown Scheme  
7.3.4.9 ERROR Clear  
This command is used to clear the error flags in the error status register and APS register. The A53h 12-bit  
command code initiates an ERROR clear command. After executing an ERROR clear command, the 96-bit  
LOD_LSD registers, 1-bit NEG1, 1-bit NEG2, 10-bit error status, and 24-bit adjacent-pin-short results are loaded  
into the common shift register, and the error status registers and APS registers are reset to 0 if the error is  
removed. See 9 for more detail.  
7.3.4.10 Global Reset  
This command is used to implement a power-on reset with software input. The A5Ch 12-bit command code  
initiates a global reset command. After executing a global reset command, all internal registers are reset to their  
default values. See 10 for more detail.  
30  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
7.3.4.11 Slew Rate Control  
To improve system EMI performance, the TLC6C5716-Q1 device implements a programmable slew rate control  
for the output channels. This output slew rate is configured by the SLEW_RATE bit in the FC-BC-DC register.  
The SLEW_RATE bit is 0 by default, with output rise and fall times of 200 ns. When the SLEW_RATE bit is 1,  
the rise and falll times of each output are 100 ns.  
7.3.4.12 Channel Group Delay  
Large surge currents may flow through the system if all 24 channels turn on simultaneously. These large current  
surges could induce detrimental noise and electromagnetic interference (EMI) into other circuits. The  
TLC6C5716-Q1 device implements channel turnon delay for each group to reduce the surge current. The output  
channels are grouped into four groups.  
Group 1: OUTR0, -B0, OUTR4, -B4.  
Group 2: OUTR1, -B1, OUTR5, -B5.  
Group 3: OUTR2, -B2, OUTR6, -B6.  
Group 4: OUTR3, -B3, OUTR7, -B7.  
All group 2 channels turn on and off 50 ns later then group 1 channels, all group 3 channels turn on and off 50 ns  
later than group 2 channels, and all group 4 channels turn on and off 50 ns later than group 3 channels. 1  
shows the details.  
7.4 Device Functional Modes  
7.4.1 Power Up  
To make the device work normally, users must provide two power supples to the TLC6C5716-Q1 device. One is  
VCC, 3 V–5.5 V, for device internal logic power; the other is a supply up to 8 V, which is the power supply for the  
LED loads. To make sure the LED diagnostic features work normally, the LED supply must connect to the  
SENSE pin directly.  
7.4.2 Device Initialization  
After device power on, users must send the error clear command and global reset command to initialize the  
device and make sure there are no existing faults in the circuit.  
7.4.3 Fault Mode  
The TLC6C5716-Q1 has full diagnostics features. The device can detect faults and latch the faults into registers.  
For device faults such as IREF resistor open or short, the device enters a self-protection state, in which it reports  
the faults and sets the output current to a default value. For the overtemperature fault, the device turns off the  
output channels and latches the fault into the SID register. Except for these two faults, for all other faults  
including LED faults, the device only detects and reports the faults, but does not take actions to handle the faults,  
and the channels keep their configured status. Users must read out faults and decide how to handle the faults.  
7.4.4 Normal Operation  
Users must program the device through the serial interface for normal operation. Users write to the FC-BC-DC  
registers to set the operation mode and output current, write to the grayscale registers to set the PWM duty cycle  
for each channel, and read the SID registers to get device fault information.  
7.5 Programming  
7.5.1 Register Write and Read  
The TLC6C5716-Q1 device is programmable via serial interface. It contains a 288-bit common shift register to  
shift data from SDI into the device. The register LSB connects to SDI and the MSB connects to SDO. On each  
SCK rising edge, the data on SDI shifts into the register LSB and all 288-bit data shifts towards the MSB. The  
data appears on SDO when the 288-bit common shift register overflows.  
The TLC6C5716-Q1 data write command contains 288-bit data. According to the following different criteria, there  
are three types of data write commands: FC-BC-DC write, GS data write, and special commands.  
版权 © 2018, Texas Instruments Incorporated  
31  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Programming (接下页)  
When LATCH is high at the 288th SCK rising edge, and the 12 MSBs of the 288-bit data are 0, the 205 LSBs  
of the 288-bit data shift to the function control (FC), brightness control (BC). and dot correction (DC) registers  
on the LATCH rising edge, as shown in 2.  
When LATCH is low at the 288th SCK rising edge, all 288-bit data shifts into the grayscale (GS) configuration  
registers on the LATCH rising edge, as shown in 1.  
When LATCH is high at the 288th SCK rising edge, and the 12 MSBs of the 288-bit data match any of the  
eight 12-bit command codes, the device executes the corresponding command after the LATCH rising edge,  
as shown in Special Command Function.  
When the device powers on, the default value of the 288-bit common shift register is 0.  
MSB  
LSB  
Common  
Data  
Bit 287  
Common  
Data  
Bit 286  
Common  
Data  
Bit 285  
Common  
Data  
Bit 284  
Common  
Data  
Bit 283  
Common  
Data  
Bit 283  
Common  
Data  
Bit 5  
Common  
Data  
Bit 4  
Common  
Data  
Bit 3  
Common  
Data  
Bit 2  
Common  
Data  
Bit 1  
Common  
Data  
Bit 0  
SDI  
SDO  
25. TLC6C5716-Q1 Common Register  
7.5.1.1 FC-BC-DC Write  
The device latches the 205 LSBs of data in the 288-bit common shift register into the FC-BC-DC registers at the  
rising edge of the latch signal when the 12 MSBs of the 288-bit data are 0.  
When the device is powered on, the FC-BC-DC data latch is reset to all 0s. Therefore, data must be written to  
the 288-bit common shift register and latched into the FC-BC-DC registers before turning on the constant-current  
outputs. It is better to keep BLANK low to prevent the outputs from turning on.  
MSB  
LSB  
287 - 276  
275 - 205  
Reserved  
204 - 192  
191 - 184  
183 - 176  
Reserved  
175 - 168  
167 - 161  
160 - 154  
Reserved  
153 - 147  
41 - 35  
34 - 28  
27 -21  
20 - 14  
13 - 7  
6 - 0  
BC Data  
OUTB Group  
Bit 7-0  
BC Data  
OUTR Group  
Bit 7-0  
DC Data  
OUTB7  
Bit 6-0  
DC Data  
OUTR7  
Bit 6-0  
DC Data  
OUTB1  
Bit 6-0  
DC Data  
OUTR1  
Bit 6-0  
DC Data  
OUTB0  
Bit 6-0  
DC Data  
OUTR0  
Bit 6-0  
CMD  
Bit 11-0  
FC Data  
Bit 12-0  
Reserved  
Reserved  
SDO  
SDI  
Command  
Code  
Function  
Control  
Reserved  
Global Brightness Control  
Dot Correction  
26. FC-BC-DC Register  
7.5.1.1.1 FC Data Write  
The FC data is 13 bits in length, located from bit 204 to bit 192. See 12 for the detailed description. The  
default value for all FC data is 0, except for the LED_ERR_MASK bit which is 1.  
12. Function-Control Data-Bit Assignment  
BIT  
NAME  
DESCRIPTION  
LOD-LSD failure or PWM error information mask bit  
204  
LED_ERR_MASK  
0b = Any LOD-LSD failure or PWM error pulls down the ERR pin  
1b = LOD-LSD failure or PWM error is masked from affecting the ERR pin  
Turnon and turnoff speed configuration bit  
0b = 200-ns rise and fall times.  
1b = 100-ns rise and fall times.  
203  
202  
201  
200  
199  
SLEW_RATE  
LOD_VOLATGE  
LSD_VOLTAGE  
APS_CURRENT  
APS_TIME  
LED open-detection (LOD) threshold  
0b = LOD threshold is 0.3 V  
1b = LOD threshold is 0.5 V  
LED short-detection (LSD) threshold  
0b = LSD threshold is VSENSE – 0.3 V  
1b = LSD threshold is VSENSE – 0.7 V  
Adjacent-pin short-detection sink current  
0b = 20-µA APS current  
1b = 40-µA APS current  
Adjacent-pin short-detection time  
0b = 10-µs APS detection time  
1b = 20-µs APS detection time  
32  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Programming (接下页)  
12. Function-Control Data-Bit Assignment (接下页)  
BIT  
NAME  
DESCRIPTION  
Grayscale-counter mode selection.  
00 or 01b = 12-bit mode  
10b = 10-bit mode  
198–197  
GS_MODE  
11b = 8-bit mode  
Display-timing reset mode  
0b = Disabled  
1b = Enabled  
196  
195  
TIMING_RESET  
AUTO_REPEAT  
Auto-display repeat mode  
0b = Disabled  
1b = Enabled  
Dot-correction adjustment range for the BLUE color output  
0b = Low range, 0%–66.7%  
1b = High range, 33.3%–100%  
194  
193  
192  
DC_RANGE_B  
Reserved  
Reserved  
Dot–correction adjustment range for the RED color output  
0b = Low range, 0%–66.7%  
DC_RANGE_R  
1b = High range, 33.3%–100%  
The grayscale counter has 12-bit, 10-bit, and 8-bit configurations. Bits 198–197 in the FC register configure the  
grayscale counter mode.  
13. GS Counter Mode Table  
GRAYSCALE COUNTER MODE (GS_MODE)  
FUNCTION MODE  
Bit 198  
Bit 197  
0
Don't care  
12-bit counter mode  
10-bit counter mode, the lowest 10 bits of the  
12-bit GS data are valid  
1
0
1
8-bit counter mode, the lowest 8 bits of the  
12-bit GS data are valid  
1
7.5.1.1.2 BC Data Write  
The BC data is 24 bits in length, located from bit 191 to bit 168. The data of the BC data latch are used to adjust  
the constant-current values for eight channels of constant-current drivers for each color group. The current can  
be adjusted by a brightness control with 8-bit resolution from 0% to 100% of maximum for each output.  
14. Brightness-Control Data-Bit Assignments  
BITS  
BRIGHTNESS CONTROL DATA  
OUTB0-OUTB7 group  
Reserved  
191–184  
183–176  
175–168  
OUTR0-OUTR7 group  
7.5.1.1.3 DC Data Write  
The DC data is 168 bits in length, which located from bit 167 to bit 0. The TLC6C5716-Q1 device can adjust the  
output current of each channel using the DC function. Each DC function has two adjustment ranges with 7-bit  
resolution. 15 shows the DC data assignments in the DC registers. The high adjustment range DC can adjust  
output current from 33.3% to 100% of I(OUT)max. The low adjustment range DC can configure output current from  
0% to 66.7% of I(OUT)max. The range control bits, which are bits 194–192 in the function control data latch, select  
the high or low adjustment. Bit 194 controls the OUTB DC range. Bit 192 controls the OUTR DC range. For  
details, see 12.  
版权 © 2018, Texas Instruments Incorporated  
33  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
15. DC Data Assignments  
BITS  
DATA  
BITS  
83–77  
76–70  
69–63  
62–56  
55–49  
48–42  
41–35  
34–28  
27–21  
20–14  
13–7  
DATA  
167–161  
160–154  
153–147  
146–140  
139–133  
132–126  
125–119  
118–112  
111–105  
104–98  
97–91  
OUTB7  
Reserved  
OUTR7  
OUTB6  
OUTB3  
Reserved  
OUTR3  
OUTB2  
Reserved  
OUTR6  
OUTB5  
Reserved  
OUTR2  
OUTB1  
Reserved  
OUTR5  
OUTB4  
Reserved  
OUTR1  
OUTB0  
Reserved  
OUTR4  
Reserved  
OUTR0  
90–84  
6–0  
16. Output Current vs High DC Range  
CURRENT  
(I(OUT)max = 40  
mA)  
DC DATA  
(BINARY)  
DC DATA  
(DECIMAL)  
CURRENT  
DC DATA (HEX) BC DATA (HEX)  
RATIO (%)  
CURRENT  
(I(OUT)max = 2 mA)  
000 0000  
000 0001  
000 0010  
...  
0
1
00  
01  
02  
...  
FF  
FF  
FF  
...  
33.3  
33.9  
34.4  
...  
13.33  
13.54  
13.75  
...  
0.67  
0.68  
0.69  
...  
2
...  
111 1101  
111 1110  
111 1111  
125  
126  
127  
7D  
7E  
7F  
FF  
FF  
FF  
99  
39.58  
39.79  
40  
1.98  
1.99  
2
99.5  
100  
17. Output Current vs Low DC Range  
CURRENT  
(I(OUT)max = 40  
mA)  
CURRENT  
(I(OUT)max = 2 mA  
)
DC DATA  
(BINARY)  
DC DATA  
(DECIMAL)  
CURRENT  
DC DATA (HEX) BC DATA (HEX)  
RATIO (%)  
000 0000  
000 0001  
000 0010  
...  
0
1
00  
01  
02  
...  
FF  
FF  
FF  
...  
0
0.  
0
0.5  
1
0.21  
0.42  
...  
0.01  
0.02  
...  
2
...  
...  
111 1101  
111 1110  
111 1111  
125  
126  
127  
7D  
7E  
7F  
FF  
FF  
FF  
65.6  
66.1  
66.7  
26.25  
26.46  
26.67  
1.31  
1.32  
1.33  
18. Output Current vs BC (High DC Range)  
CURRENT  
(I(OUT)max = 40  
mA)  
CURRENT  
(I(OUT)max = 2 mA  
)
BC DATA  
(BINARY)  
BC DATA  
(DECIMAL)  
CURRENT  
BC DATA (HEX) BC DATA (HEX)  
RATIO (%)  
0000 0000  
0000 0001  
0000 0010  
...  
0
1
00  
01  
02  
...  
7F  
7F  
7F  
...  
0
0
0
0.4  
0.8  
...  
0.16  
0.32  
...  
0.01  
0.02  
...  
2
...  
1111 1101  
1111 1110  
1111 1111  
253  
254  
255  
FD  
FE  
FF  
7F  
7F  
7F  
99.2  
99.6  
100  
39.69  
39.84  
40  
1.98  
1.99  
2
34  
版权 © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
7.5.1.2 Grayscale Data Write  
The grayscale data is 288 bits long, and contains a 12-bit grayscale value for each output. The grayscale value  
sets the channel turnon time.27 shows the GS register configuration. 1 is the GS write timing diagram.  
Data is latched from the 288-bit common shift register into the GS data latch at the rising edge of the LATCH pin.  
When data is latched into the GS registers, the new data is immediately available on the constant-current  
outputs. If the data is latched with BLANK high, the outputs may turn on or off unexpectedly. So users should  
update the GS data when BLANK is low.  
The 12-bit GS function has 4096 brightness steps, from 0% to 99.97% brightness. The GS function is controlled  
by a 12-bit GS counter. The GS counter increments on each rising edge of the grayscale reference clock GCLK.  
The falling edge of BLANK resets the GS counter value to 0. The GS counter value stays at 0 while BLANK is  
low, even if there is a GCLK input. Pulling BLANK high enables the 12-bit GS counter. The first rising edge of a  
GS clock after BLANK goes high increments the GS counter by one and turns on the outputs. Each additional  
rising edge increases the GS counter by one. The GS counter monitors the number of clock pulses on the GCLK  
pin. The output stays on while the counter value is less than or equal to the GS setting value. The output turns  
off at the rising edge of the GS counter value when the counter is larger than the GS setting value. 20 is the  
on-time duty cycle of each GS data bit when the 12-bit GS counter mode is selected.  
When the device is powered up, the 288-bit common shift register and GS data latch are reset to 0.  
公式 4 describes each output on-time.  
tON = tGCLK ìGS  
where  
tGCLK is the GS clock period  
GS is the programmed grayscale value for each output.  
(4)  
公式 5 shows the duty-cycle calculation equation.  
GS  
Dutycycle =  
4096  
(5)  
MSB  
LSB  
287 - 276  
275 - 264  
Reserved  
264 - 253  
252 - 241  
240 - 239  
Reserved  
238 - 227  
71 - 60  
59 - 48  
47 - 36  
35 - 24  
23 - 12  
11 - 0  
GS Data  
OUTB7  
Bit 11-0  
GS Data  
OUTR7  
Bit 11-0  
GS Data  
OUTB6  
Bit 11-0  
GS Data  
OUTR6  
Bit 11-0  
GS Data  
OUTB1  
Bit 11-0  
GS Data  
OUTR1  
Bit 11-0  
GS Data  
OUTB0  
Bit 11-0  
GS Data  
OUTR0  
Bit 11-0  
Reserved  
Reserved  
SDI  
SDO  
27. TLC6C5716-Q1 Grayscale Register  
Once the GS data is latched into the GS registers at the rising edge of the LATCH signal, the FC-BC-DC data  
latch shifts into the lowest 205 bits of the common shift register. So, the FC-BC-DC data can be read out from  
SDO in GS write. This FC-BC-DC read function can also be realized by the read FC-BC-DC command, see FC-  
BC-DC Read and 8 for the timing diagram.  
19. Grayscale Data Bit Assignments  
BITS  
DATA  
OUTB7  
Reserved  
OUTR7  
OUTB6  
Reserved  
OUTR6  
OUTB5  
Reserved  
OUTR5  
OUTB4  
Reserved  
OUTR4  
BITS  
143–132  
131–120  
119–108  
107–96  
95–84  
DATA  
OUTB3  
Reserved  
OUTR3  
OUTB2  
Reserved  
OUTR2  
OUTB1  
Reserved  
OUTR1  
OUTB0  
Reserved  
OUTR0  
287–276  
275–264  
263–252  
251–240  
239–228  
227–216  
215–204  
203–192  
191–180  
179–168  
167–156  
155–144  
83–72  
71–60  
59–48  
47–36  
35–24  
35–24  
11–0  
版权 © 2018, Texas Instruments Incorporated  
35  
 
 
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
20. GS Data vs Output On Time  
ON-TIME BASED ON 33-  
MHz GS CLOCK (ns)  
GS DATA (BINARY)  
GS DATA (DECIMAL)  
GS DATA (HEX)  
DUTY CYCLE (%)  
0000 0000 0000  
0000 0000 0001  
0000 0000 0010  
...  
0
000  
001  
002  
...  
0
0
1
0.02  
0.05  
...  
30  
2
61  
...  
...  
0111 1111 1111  
1000 0000 0000  
1000 0000 0001  
...  
2047  
2048  
2049  
...  
7FF  
800  
801  
...  
49.97  
50.00  
50.02  
...  
62 030  
62 061  
62 091  
...  
1111 1111 1101  
1111 1111 1110  
1111 1111 1111  
4093  
4094  
4095  
FFD  
FFE  
FFF  
99.93  
99.95  
99.98  
124 030  
124 061  
124 091  
7.5.1.3 Special Command Function  
There are eight special command codes defined in the TLC6C5716-Q1 device, shown in 21. To input the  
command, the level of LATCH at the last SCK before the LATCH rising edge must be high, and the highest 12  
bits should be one of the below 8 command codes. In this condition, the device ignores other bits and no data  
are latched into FC-BC-DC registers. Normally users can write other bits to 0 in the special command. The  
corresponding command function executes after the rising edge of LATCH signal.  
If no special command code is identified, the command is a NULL command and no special command is  
executed. The command is the same as the FC-BC-DC write function.  
21. Special Command Codes  
COMMAND  
GS read  
COMMAND CODE  
5AFh (0101 1010 1111b)  
5A3h (0101 1010 0011b)  
FUNCTION  
Load GS data into common register.  
SID read  
Load SID data into common register.  
Load FC-BC-DC data into common register. This reading function  
can also be achieved by GS data write.  
FC-BC-DC read  
APS check  
5ACh (0101 1010 1100b)  
53Ah (0101 0011 1010b)  
535h (0101 0011 0101b)  
Adjacent pin short detection, APS test starts at the rising edge of  
Latch signal, then set APS register(24bits) and APS_Flag in SID  
register according to the test result. Keep all channels off during this  
test.  
LOD-LSD detector circuit self test and set LOD_LSD_FLAG in SID  
register according to the test result.  
LOD_LSD self-test  
Toggle Negate Bit. When Negate Bit = 0, the 48 bits LOD-LSD  
detector output data will be latched into LOD1-LSD1 and LOD2-LSD2  
register without invert. When Negate Bit =1, the 48 bits LOD-LSD  
detector output data will invert, and latch into LOD1-LSD1 and LOD2-  
LSD2 register.  
Negate bit toggle  
55Ah (0101 0101 1010b)  
Load SID data into common register, and then reset the Error status  
register and APS register to 0.  
ERROR clear  
A53h (1010 0101 0011b)  
A5Ch (1010 0101 1100b)  
All internal registers are reset. The command has the same function  
as power on reset.  
GLOBAL reset  
NULL  
Different from any of the above commands The same function as FC-BC-DC write.  
7.5.1.3.1 GS Read  
The GS read command loads the 288-bit GS data into the common register. By applying 288 SCK clocks, the  
GS data shifts out from SDO pin. For details, see 3.  
7.5.1.3.2 FC-BC-DC Read  
There are two ways to read the FC-BC-DC data latch.  
36  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
One way is latching data into the GS data latch. After the GS write finishes, the FC-BC-DC data latches into the  
lowest 205 bits of the common shift register.  
Another way is using the FC-BC-DC read command. After the FC-BC-DC read command finishes, the FC-BC-DC  
data latches into the lowest 205 bits of the common shift register.  
By applying 288 SCK clocks, the FC-BC-DC data shifts out from the SDO pin. For details, see 8  
7.5.1.3.3 Status Information Data Read  
Status information data (SID) is 132 bits long and contains device status information and LED fault information.  
22 describes the bit mapping when the SID data loads into the common shift register.  
Bits 287–240 are the LED-open information for the output channels, bits 203–144 are the LED-short information  
for the output channels, bits 239–216 are the adjacent-pin-short information for the output channels, bits  
215–206 are the error status registers, bits 205–204 are the negate bits, and the others are reserved registers.  
After power on, all error status registers are set to 0. If any one of the error-status-register flags (bits 215-206)  
asserts, the registers latch the faults until a reset error command is executed to clear the faults. But the  
LOD_LSD data continues to update every PWM cycle.  
22. SID Register  
BITS OF COMMON  
DESCRIPTION  
SHIFT REGISTER  
287–280  
279–272  
271–264  
263–256  
255–248  
247–240  
239–232  
231–224  
223–216  
215  
LOD2 data for OUTB7–OUTB0  
Reserved  
LOD2 data for OUTR7–OUTR0  
LOD1 data for OUTB7–OUTB0  
Reserved  
LOD1 data for OUTR7–OUTR0  
APS data for OUTB7–OUTB0  
APS data for NU pins [pin 7, pin 10, pin 13, pin 16, pin 23, pin 26, pin 29, pin 32]  
APS data for OUTR7–OUTR0  
Thermal error flag (TEF). 0b = Normal temperature condition, 1b = High-temperature condition.  
Pre-thermal warning (PTW). 0b = No pre-thermal warning, 1b = Pre-thermal threshold triggered.  
Adjacent-pin short-check result (APS_FLAG). 011b: pass, 110b: fail.  
IREF-resistor short flag (ISF). 0b = IREF resistor is not shorted, 1b = IREF resistor short detected.  
IREF-resistor open flag (IOF). 0b = IREF Resistor is not open, 1b = IREF resistor open detected.  
LOD-LSD detection circuit self-test result (LOD_LSD_FLAG). 011b: pass, 110b: fail.  
Negate bit for LOD1-LSD1 register (NEG1)  
214  
213–211  
210  
209  
208–206  
205  
204  
Negate bit for LOD2-LSD2 register (NEG2)  
203–192  
191–184  
183–176  
175–168  
167–160  
159–152  
151–144  
143–0  
Reserved  
LSD2 data for OUTB7–OUTB0  
Reserved  
LSD2 data for OUTR7–OUTR0  
LSD1 data for OUTB7–OUTB0  
Reserved  
LSD1 data for OUTR7–OUTR0  
Reserved  
7.6 Register Maps  
The TLC6C5716-Q1 register map includes three sections: GS registers, FC_BC_DC registers, and SID registers.  
Users can write to the GS registers and FC_BC_DC registers through the serial interface. Status information can  
be read out though the serial interface.  
Copyright © 2018, Texas Instruments Incorporated  
37  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Register Maps (continued)  
7.6.1 GRAYSCALE Registers  
Table 23 lists the memory-mapped registers for the GRAYSCALE. All register offset addresses not listed in  
Table 23 should be considered as reserved locations and the register contents should not be modified.  
Grayscale Register  
Table 23. GRAYSCALE Registers  
Offset  
Acronym  
Register Name  
Section  
0h  
OUTn_GS  
OUTn_GS Register  
Go  
Complex bit access types are encoded to fit into small table cells. Table 24 shows the codes that are used for  
access types in this section.  
Table 24. GRAYSCALE Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.1.1 OUTn_GS Register (Offset = 0h)  
OUTn_GS is shown in Figure 28 and described in Table 25.  
Return to Summary Table.  
OUTn Grayscale Register  
Figure 28. OUTn_GS Register  
287  
275  
263  
251  
239  
227  
215  
286  
274  
262  
250  
238  
226  
214  
285  
273  
261  
249  
237  
225  
213  
284  
272  
260  
248  
236  
224  
212  
283  
271  
259  
247  
235  
223  
211  
282  
OUTB7_GS  
R/W-0h  
281  
280  
268  
256  
244  
232  
220  
208  
279  
267  
255  
243  
231  
219  
207  
278  
266  
254  
242  
230  
218  
206  
287  
265  
253  
241  
229  
217  
205  
286  
264  
252  
240  
228  
216  
204  
270  
269  
RESERVED  
R/W-0h  
258  
257  
OUTR7_GS  
R/W-0h  
246  
245  
OUTB6_GS  
R/W-0h  
234  
233  
RESERVED  
R/W-0h  
222  
221  
OUTR6_GS  
R/W-0h  
210  
209  
OUTB5_GS  
R/W-0h  
38  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
203  
202  
190  
178  
166  
154  
142  
130  
118  
106  
94  
201  
189  
177  
165  
153  
141  
129  
117  
105  
93  
200  
188  
176  
164  
152  
140  
128  
116  
104  
92  
199  
187  
175  
163  
151  
139  
127  
115  
103  
91  
198  
RESERVED  
R/W-0h  
197  
196  
184  
172  
160  
148  
136  
124  
112  
100  
88  
195  
183  
171  
159  
147  
135  
123  
111  
99  
194  
182  
170  
158  
146  
134  
122  
110  
98  
193  
181  
169  
157  
145  
133  
121  
109  
97  
192  
180  
168  
156  
144  
132  
120  
108  
96  
191  
179  
167  
155  
143  
131  
119  
107  
95  
186  
185  
OUTR5_GS  
R/W-0h  
174  
173  
OUTB4_GS  
R/W-0h  
162  
161  
RESERVED  
R/W-0h  
150  
149  
OUTR4_GS  
R/W-0h  
138  
137  
OUTB3_GS  
R/W-0h  
126  
125  
RESERVED  
R/W-0h  
114  
113  
OUTR3_GS  
R/W-0h  
102  
101  
OUTB2_GS  
R/W-0h  
90  
89  
87  
86  
85  
84  
RESERVED  
R/W-0h  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
OUTR2_GS  
R/W-0h  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
OUTB1_GS  
R/W-0h  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
RESERVED  
R/W-0h  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
OUTR1_GS  
R/W-0h  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
OUTB0_GS  
R/W-0h  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
RESERVED  
R/W-0h  
11  
10  
9
8
7
6
5
4
3
2
1
0
OUTR0_GS  
R/W-0h  
Copyright © 2018, Texas Instruments Incorporated  
39  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Table 25. OUTn_GS Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
287–276  
OUTB7_GS[11:0]  
R/W  
0h  
Grayscale register for OUTB7  
Reserved  
275–264  
263–252  
251–240  
239–228  
227–216  
215–204  
203–192  
191–180  
179–168  
167–156  
155–144  
143–132  
131–120  
119–108  
107–96  
95–84  
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
OUTR7_GS[11:0]  
OUTB6_GS[11:0]  
RESERVED  
Grayscale register for OUTR7  
Grayscale register for OUTB6  
Reserved  
OUTR6_GS[11:0]  
OUTB5_GS[11:0]  
RESERVED  
Grayscale register for OUTR6  
Grayscale register for OUTB5  
Reserved  
OUTR5_GS[11:0]  
OUTB4_GS[11:0]  
RESERVED  
Grayscale register for OUTR5  
Grayscale register for OUTB4  
Reserved  
OUTR4_GS[11:0]  
OUTB3_GS[11:0]  
RESERVED  
Grayscale register for OUTR4  
Grayscale register for OUTB3  
Reserved  
OUTR3_GS[11:0]  
OUTB2_GS[11:0]  
RESERVED  
Grayscale register for OUTR3  
Grayscale register for OUTB2  
Reserved  
83–72  
OUTR2_GS[11:0]  
OUTB1_GS[11:0]  
RESERVED  
Grayscale register for OUTR2  
Grayscale register for OUTB1  
Reserved  
71–60  
59–48  
47–36  
OUTR1_GS[11:0]  
OUTB0_GS[11:0]  
RESERVED  
Grayscale register for OUTR1  
Grayscale register for OUTB0  
Reserved  
35–24  
23–12  
11–0  
OUTR0_GS[11:0]  
Grayscale register for OUTR0  
7.6.2 FC-BC-DC Registers  
Table 26 lists the memory-mapped registers for the CONFIGURATION. All register offset addresses not listed in  
Table 26 should be considered as reserved locations and the register contents should not be modified.  
Configuration Register  
Table 26. FC-BC-DC Registers  
Offset  
Acronym  
Register Name  
Section  
1h  
Config  
Configuration Register  
Go  
Complex bit access types are encoded to fit into small table cells. Table 27 shows the codes that are used for  
access types in this section.  
40  
Copyright © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Table 27. FC-BC-DC Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.2.1 FC-BC-DC Register (Offset = 1h)  
FC-BC-DC is shown in Figure 29 and described in Table 28.  
Return to Summary Table.  
FC-BC-DC Register  
Figure 29. FC-BC-DC Register  
287  
271  
255  
239  
223  
207  
286  
270  
254  
238  
222  
285  
269  
253  
237  
221  
205  
284  
268  
252  
236  
220  
204  
283  
267  
251  
235  
219  
203  
282  
CMD  
R/W-0h  
266  
281  
280  
279  
278  
262  
246  
230  
214  
198  
277  
261  
245  
229  
213  
197  
276  
260  
244  
228  
212  
196  
275  
259  
243  
227  
211  
195  
274  
273  
272  
256  
240  
224  
208  
192  
RESERVED  
R/W-0h  
265  
249  
233  
217  
201  
264  
263  
258  
242  
226  
210  
194  
257  
241  
225  
209  
193  
RESERVED  
R/W-0h  
250  
234  
218  
202  
248  
247  
RESERVED  
R/W-0h  
232  
231  
RESERVED  
R/W-0h  
216  
215  
RESERVED  
R/W-0h  
206  
200  
199  
RESERVED  
LED_E SLEW LOD_ LSD_V APS_ APS_T  
GS_MODE  
TIMIN AUTO DC_R RESE DC_R  
G_RE _REP ANGE RVED ANGE  
RR_M _RAT VOLT OLTA CURR  
IME  
ASK  
E
AGE  
GE  
ENT  
SET  
EAT  
_B  
_R  
R/W-0h  
190  
R/W-  
1h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
R/W-  
0h  
191  
175  
159  
189  
173  
157  
188  
187  
186  
170  
154  
138  
185  
169  
153  
137  
184  
168  
152  
183  
167  
151  
135  
182  
166  
181  
165  
149  
133  
180  
179  
178  
162  
146  
130  
177  
176  
OUTB_BC  
R/W-0h  
172 171  
RESERVED  
R/W-0h  
174  
158  
142  
164  
163  
147  
131  
161  
160  
OUTR_BC  
R/W-0h  
OUTB7_DC  
R/W-0h  
156  
155  
150  
148  
145  
144  
RESERVED  
R/W-0h  
OUTR7_DC  
R/W-0h  
OUTB6_DC  
R/W-0h  
143  
141  
140  
139  
136  
134  
132  
129  
128  
OUTB6_DC  
R/W-0h  
RESERVED  
R/W-0h  
OUTR6_DC  
R/W-0h  
Copyright © 2018, Texas Instruments Incorporated  
41  
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
127  
126  
125  
109  
93  
124  
123  
107  
91  
122  
121  
105  
89  
120  
104  
88  
119  
103  
118  
102  
86  
117  
116  
100  
84  
115  
114  
98  
113  
112  
OUTR6_DC  
R/W-0h  
OUTB5_DC  
R/W-0h  
RESERVED  
R/W-0h  
111  
110  
108  
106  
101  
99  
83  
67  
97  
96  
OUTR5_DC  
R/W-0h  
OUTB4_DC  
R/W-0h  
RESERVED  
R/W-0h  
95  
94  
92  
90  
87  
85  
69  
53  
82  
81  
80  
RESERVED  
R/W-0h  
OUTR4_DC  
R/W-0h  
OUTB3_DC  
R/W-0h  
79  
78  
77  
76  
60  
44  
75  
74  
73  
72  
71  
55  
39  
70  
68  
66  
65  
64  
OUTB3_DC  
R/W-0h  
RESERVED  
R/W-0h  
OUTR3_DC  
R/W-0h  
63  
62  
46  
30  
61  
45  
59  
58  
42  
26  
10  
57  
41  
25  
56  
54  
52  
51  
35  
19  
3
50  
34  
18  
49  
48  
OUTB2_DC  
R/W-0h  
RESERVED  
R/W-0h  
47  
43  
27  
11  
40  
38  
37  
21  
5
36  
20  
4
33  
32  
OUTR2_DC  
R/W-0h  
OUTB1_DC  
R/W-0h  
RESERVED  
R/W-0h  
31  
29  
28  
24  
23  
7
22  
17  
16  
0
RESERVED  
R/W-0h  
OUTR1_DC  
R/W-0h  
OUTB0_DC  
R/W-0h  
15  
14  
13  
12  
9
8
6
2
1
OUTB0_DC  
R/W-0h  
RESERVED  
R/W-0h  
OUTR0_DC  
R/W-0h  
Table 28. FC-BC-DC Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
287–276  
CMD[11:0]  
R/W  
0h  
Command function  
25Ch = Global reset  
535h = LOD_LSD self-test  
53Ah = APS check  
55Ah = NEG-BIT toggle  
5A3h = SID read  
5ACh = FC_BC_DC read  
5AFh = GS read  
A53h = ERROR clear  
All other values = NULL  
275–205  
204  
RESERVED  
R/W  
R/W  
0h  
1h  
Reserved  
LED_ERR_MASK  
LED error mask  
0h = Unmask LED error  
1h = Mask LED error  
203  
202  
201  
SLEW_RATE  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Output slew-rate  
0h = 100 ns  
1h = 200 ns  
LOD_VOLTAGE  
LSD_VOLTAGE  
LED-open detection voltage  
0h = 0.3 V  
1h = 0.5 V  
LED-short detection voltage  
0h = VVSENSE – 0.3 V  
1h = VVSENSE – 0.7 V  
42  
Copyright © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Table 28. FC-BC-DC Register Field Descriptions (continued)  
Bit  
Field  
Type  
Default  
Description  
200  
APS_CURRENT  
R/W  
0h  
Adjacent-pin short-detection sink current  
0h = 20 µA  
1h = 40 µA  
199  
APS_TIME  
R/W  
R/W  
0h  
0h  
Adjacent-pin short-detection time  
0h = 10 µs  
1h = 20 µs  
198–197  
GS_MODE[1:0]  
Grayscale counter mode  
0h or 1h = 12-bit counter mode  
2h = 10-bit counter mode  
3h = 8-bit counter mode  
196  
195  
194  
TIMING_RESET  
AUTO_REPEAT  
DC_RANGE_B  
R/W  
R/W  
R/W  
0h  
0h  
0h  
Display timing reset  
0h = Disabled  
1h = Enabled  
Auto repeat  
0h = Disabled  
1h = Enabled  
Dot correction range for OUTB group  
0h = Low range  
1h = High range  
193  
192  
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
DC_RANGE_R  
Dot correction range for OUTR group  
0h = Low range  
1h = High range  
191–184  
183–176  
175–168  
167–161  
160–154  
153–147  
146–140  
139–133  
132–126  
125–119  
118–112  
111–105  
104–98  
97–91  
OUTB_BC[7:0]  
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Brightness control for OUTB group  
Reserved  
OUTR_BC[7:0]  
OUTB7_DC[6:0]  
RESERVED  
Brightness control for OUTR group  
Dot correction for OUTB7  
Reserved  
OUTR7_DC[6:0]  
OUTB6_DC[6:0]  
RESERVED  
Dot correction for OUTR7  
Dot correction for OUTB6  
Reserved  
OUTR6_DC[6:0]  
OUTB5_DC[6:0]  
RESERVED  
Dot correction for OUTR6  
Dot correction for OUTB5  
Reserved  
OUTR5_DC[6:0]  
OUTB4_DC[6:0]  
RESERVED  
Dot correction for OUTR5  
Dot correction for OUTB4  
Reserved  
90–84  
OUTR4_DC[6:0]  
OUTB3_DC[6:0]  
RESERVED  
Dot correction for OUTR4  
Dot correction for OUTB3  
Reserved  
83–77  
76–70  
69–63  
OUTR3_DC[6:0]  
OUTB2_DC[6:0]  
Dot correction for OUTR3  
Dot correction for OUTB2  
62–56  
Copyright © 2018, Texas Instruments Incorporated  
43  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Table 28. FC-BC-DC Register Field Descriptions (continued)  
Bit  
Field  
Type  
Default  
Description  
55–49  
RESERVED  
R/W  
0h  
Reserved  
48–42  
41–35  
34–28  
27–21  
20–14  
13–7  
OUTR2_DC[6:0]  
OUTB1_DC[6:0]  
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Dot correction for OUTR2  
Dot correction for OUTB1  
Reserved  
OUTR1_DC[6:0]  
OUTB0_DC[6:0]  
RESERVED  
Dot correction for OUTR1  
Dot correction for OUTB0  
Reserved  
6–0  
OUTR0_DC[6:0]  
Dot correction for OUTR0  
7.6.3 SID Registers  
Table 29 lists the memory-mapped registers for the SID. All register offset addresses not listed in Table 29  
should be considered as reserved locations and the register contents should not be modified.  
SID Register  
Table 29. SID Registers  
Offset  
Acronym  
Register Name  
Section  
2h  
SID  
SID Register  
Go  
Complex bit access types are encoded to fit into small table cells. Table 30 shows the codes that are used for  
access types in this section.  
Table 30. SID Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Reset or Default Value  
-n  
Value after reset or the default  
value  
7.6.3.1 SID Register (Offset = 2h)  
SID is shown in Figure 30 and described in Table 31.  
Return to Summary Table.  
Status information data  
Figure 30. SID Register  
287  
271  
255  
239  
286  
270  
254  
238  
285  
269  
253  
237  
284  
283  
282  
266  
250  
234  
281  
265  
249  
233  
280  
264  
248  
232  
279  
263  
247  
231  
278  
262  
246  
230  
277  
261  
245  
229  
276  
275  
274  
258  
242  
226  
273  
257  
241  
225  
272  
256  
240  
224  
OUTB_LOD2  
R-0h  
RESERVED  
R-0h  
268  
267  
260  
259  
OUTR_LOD2  
R-0h  
OUTB_LOD1  
R-0h  
252  
251  
244  
243  
RESERVED  
R-0h  
OUTR_LOD1  
R-0h  
236  
235  
228  
227  
OUTB_APS  
R-0h  
NU_PIN_APS  
R-0h  
44  
Copyright © 2018, Texas Instruments Incorporated  
 
 
 
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
223  
222  
221  
205  
220  
219  
218  
202  
217  
201  
216  
200  
215  
TEF  
R-0h  
214  
PTW  
R-0h  
213  
197  
212  
APS_FLAG  
R-0h  
211  
210  
ISF  
209  
IOF  
208  
OUTR_APS  
R-0h  
R-0h  
R-0h  
207  
206  
204  
203  
199  
198  
196  
195  
194  
193  
192  
LOD_LSD_ NEG1 NEG0  
FLAG  
RESERVED  
R-0h  
190  
R-0h  
189  
R-0h  
188  
R-0h  
191  
187  
186  
170  
154  
138  
122  
106  
90  
185  
169  
153  
137  
121  
105  
89  
184  
168  
152  
136  
183  
167  
151  
135  
182  
166  
150  
134  
118  
102  
86  
181  
165  
149  
133  
117  
101  
85  
180  
179  
178  
162  
146  
130  
114  
98  
177  
161  
145  
129  
113  
97  
176  
160  
144  
128  
112  
96  
OUTB_LSD2  
R-0h  
RESERVED  
R-0h  
175  
159  
143  
127  
111  
95  
174  
158  
142  
126  
110  
94  
173  
157  
141  
125  
109  
93  
172  
171  
164  
163  
OUTR_LSD2  
R-0h  
OUTB_LSD1  
R-0h  
156  
155  
148  
147  
RESERVED  
R-0h  
OUTR_LSD1  
R-0h  
140  
124  
108  
92  
139  
123  
107  
91  
132  
116  
100  
84  
131  
115  
99  
83  
67  
51  
35  
19  
3
RESERVED  
R-0h  
120  
119  
RESERVED  
R-0h  
104  
103  
RESERVED  
R-0h  
88  
87  
82  
81  
80  
RESERVED  
R-0h  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
66  
65  
64  
RESERVED  
R-0h  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
50  
49  
48  
RESERVED  
R-0h  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
34  
33  
32  
RESERVED  
R-0h  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
18  
17  
16  
RESERVED  
R-0h  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
2
1
0
RESERVED  
R-0h  
Table 31. SID Register Field Descriptions  
Bit  
Field  
Type  
Default  
Description  
287–280  
OUTB_LOD2[7:0]  
R
0h  
LOD2 for OUTB7–OUTB0. For each channel:  
0h = No fault detected  
1h = Fault detected  
279–272  
RESERVED  
R
0h  
Reserved  
Copyright © 2018, Texas Instruments Incorporated  
45  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
Table 31. SID Register Field Descriptions (continued)  
Bit  
Field  
Type  
Default  
Description  
271–264  
OUTR_LOD2[7:0]  
R
0h  
LOD2 for OUTR7–OUTR0. For each channel:  
0h = No fault detected  
1h = Fault detected  
263–256  
OUTB_LOD1[7:0]  
R
0h  
LOD1 for OUTB7–OUTB0. For each channel:  
0h = No fault detected  
1h = Fault detected  
255–248  
247–240  
RESERVED  
R
R
0h  
0h  
Reserved  
OUTR_LOD1[7:0]  
LOD1 for OUTR7–OUTR0. For each channel:  
0h = No fault detected  
1h = Fault detected  
239–232  
231–224  
OUTB_APS[7:0]  
R
R
0h  
0h  
APS status for OUTB7–OUTB0. For each channel:  
0h = No fault detected  
1h = Fault detected  
NU_PIN_APS[7:0]  
APS status of not-used pins , NU_PIN_APS[7:0] = [pin7, pin10,  
pin13, pin16, pin23, pin26, pin29, pin32]  
0h = No fault detected  
1h = Fault detected  
223–216  
215  
OUTR_APS[7:0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
APS status for OUTR7–OUTR0. For each channel:  
0h = No fault detected  
1h = Fault detected  
TEF  
Thermal error flag  
0h = No fault detected  
1h = Fault detected  
214  
PTW  
Pre-thermal warning flag  
0h = No fault detected  
1h = Fault detected  
213–211  
210  
APS_FLAG[2:0]  
APS test flag fault  
3h = APS test passes  
6h = APS test fails  
ISF  
IOF  
ISF fault  
0h = No fault detected  
1h = Fault detected  
209  
IOF fault  
0h = No fault detected  
1h = Fault detected  
208– 206 LOD_LSD_FLAG[2:0]  
LOD_LSD self-test flag  
3h = LOD_LSD self-test passes  
6h = LOD_LSD self-test fails  
205  
204  
NEG1  
R
R
R
R
0h  
0h  
0h  
0h  
Neg1 bit value  
Neg0 bit value  
Reserved  
NEG0  
203–192  
191–184  
RESERVED  
OUTB_LSD2[7:0]  
LSD2 for OUTB7–OUTB0. For each channel:  
0h = No fault detected  
1h = Fault detected  
183–176  
RESERVED  
R
0h  
Reserved  
46  
Copyright © 2018, Texas Instruments Incorporated  
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Table 31. SID Register Field Descriptions (continued)  
Bit  
Field  
Type  
Default  
Description  
175–168  
OUTR_LSD2[7:0]  
R
0h  
LSD2 for OUTR7–OUTR0. For each channel:  
0h = No fault detected  
1h = Fault detected  
167–160  
OUTB_LSD1[7:0]  
R
0h  
LSD1 for OUTB7– OUTB0. For each channel:  
0h = No fault detected  
1h = Fault detected  
159–152  
151–144  
RESERVED  
R
R
0h  
0h  
Reserved  
OUTR_LSD1[7:0]  
LSD1 for OUTR7–OUTR0. For each channel:  
0h = No fault detected  
1h = Fault detected  
143–0  
RESERVED  
R
0h  
Reserved  
版权 © 2018, Texas Instruments Incorporated  
47  
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
Below is a typical application for an automotive local dimming application.  
8.2 Typical Application  
In automotive LCD display applications such as a solid-state cluster or center information display, LED  
backlighting is one of the key parts of the display. Today most LED backlighting is the traditional edge-lit type,  
which means the backlighting is globally dimmed. This method consumes much power and causes light leakage  
from the liquid crystals in the black areas, because the backlighting is always turned on. Recently, local-dimming  
backlighting, a direct-lit type of backlighting, has been proposed to overcome this drawback. The lighting level of  
the backlighting follows the display contents. The lighting level is dynamically adjusted by the content of the  
image blocks for local-dimming control. When an image block is bright, the lighting level of the backlighting turns  
high also. Conversely, the backlighting level is adjusted to low in a black region. This arrangement reduces  
power dissipation and light leakage from the LCD and creates pure black, increasing the image contrast ratio.  
Users can use the TLC6C5716-Q1 device to drive LED backlighting in such local dimming applications.  
Depending how many zones are in the display, users can connect different numbers of TLC6C5716-Q1s in a  
daisy chain to drive the LEDs.  
LED supply  
GND  
OUTR0  
SENSE  
SDI  
OUTB7  
SDO  
ERR  
SENSE  
SDI  
OUTR0  
OUTB7  
SDO  
ERR  
SCK  
SCK  
LATCH  
LATCH  
µC  
TLC6C5716-Q1  
TLC6C5716-Q1  
GCLK  
GCLK  
BLANK  
IREF  
VCC  
VCC  
BLANK  
IREF  
GND  
GND  
GND  
GND  
31. Typical Block Diagram for Local Dimming  
48  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
Typical Application (接下页)  
8.2.1 Design Requirements  
32 shows the design requirements for the local dimming application.  
32. Design Requirements  
PARAMETER  
LCD size  
VALUE  
12.3 inches  
128  
Zones  
Number of LEDs per string  
LED current  
1
50 mA  
8.2.2 Detailed Design Procedure  
As the backlighting includes 128 zones, each TLC6C5716-Q1 device can drive 16 zones, so a total of eight  
TLC6C5716-Q1 units are needed.  
According to Maximum Constant-Sink-Current Setting, to realize 50-mA output current, users can choose a  
0.96–kΩ reference resistor.  
Users can use a daisy chain connection to control all of the eight TLC6C5716-Q1 devices through one serial  
interface, just as 31 shows. 32 shows how to send the data into cascaded devices, where M is the number  
of cascaded devices.  
If more current is needed, users can parallel two outputs together to get more current.  
M*288 bits  
M*288 bits  
M*288 bits  
M*288 bits  
SDI  
LATCH  
Write FC-BC-DC Data  
Write FC-BC-DC Data  
Write GS Data  
Write GS Data  
32. Cascading Data Write  
8.2.3 Application Curves  
Below are two test waveforms. 33 shows different PWM duty cycles for different output channels, which can  
realize a local dimming feature. 34 shows a data-write waveform typical for each write of M × 288 bits of data  
into the serial interface.  
33. Individual PWM Dimming for Each Channel  
34. Data Write Through the Serial Interface  
版权 © 2018, Texas Instruments Incorporated  
49  
 
 
 
TLC6C5716-Q1  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
www.ti.com.cn  
9 Power Supply Recommendations  
The TLC6C5716-Q1 device requires two power supplies. One is VCC, which can range from 3 V to 5.5 V. The  
other is VLED, which can be up to 8 V. Users must add a capacitor on the VCC power supply to filter noise. Place  
the capacitor as close to the VCC pin and SENSE pin as possible.  
10 Layout  
10.1 Layout Guidelines  
35 shows a layout example for the TLC6C5716-Q1 device. To improve the thermal performance, TI  
recommends to use the GND plane to dissipate the heat. To filter the supply noise, users can put the capacitor  
as close to the VCC and SENSE pins as possible. The IREF resistor also should be connected as close to IREF  
pin as possible.  
10.2 Layout Example  
To µC  
To µC  
To µC  
SDI  
SCK  
SENSE  
NC  
LED Supply  
LATCH  
GCLK  
GCLK  
GCLK  
NU  
BLANK  
VCC  
To µC  
VCC = 3 to 5.5V  
To µC  
IREF  
GND  
NU  
OUTR0  
OUTB0  
NU  
OUTR7  
OUTB7  
NU  
TLC6C5716-Q1  
OUTR1  
OUTB1  
NU  
OUTR6  
OUTB6  
NU  
OUTR2  
OUTB2  
OUTR5  
OUTB5  
NU  
NU  
OUTR3  
OUTB3  
SDO  
OUTR4  
OUTB4  
ERR  
To µC  
To µC  
35. TLC6C5716-Q1 Example Layout Diagram  
50  
版权 © 2018, Texas Instruments Incorporated  
 
TLC6C5716-Q1  
www.ti.com.cn  
ZHCSIG2A JULY 2018REVISED AUGUST 2018  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航面板。  
版权 © 2018, Texas Instruments Incorporated  
51  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLC6C5716QDAPRQ1  
ACTIVE  
HTSSOP  
DAP  
38  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TLC6C5716Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TLC6C5716QDAPRQ1

汽车类 16 通道完整诊断恒流 RGB LED 驱动器 | DAP | 38 | -40 to 125
TI

TLC6C5724-Q1

汽车类 24 通道完整诊断恒流 RGB LED 驱动器
TI

TLC6C5724QDAPRQ1

汽车类 24 通道完整诊断恒流 RGB LED 驱动器 | DAP | 38 | -40 to 125
TI

TLC6C5748-Q1

具有内部电流设置的 48 通道、16 位 PWM LED 驱动器
TI

TLC6C5748QDCARQ1

具有内部电流设置的 48 通道、16 位 PWM LED 驱动器 | DCA | 56 | -40 to 125
TI

TLC6C5816-Q1

具有诊断功能的汽车类电源逻辑 16 位移位寄存器 LED 驱动器
TI

TLC6C5816QPWPRQ1

具有诊断功能的汽车类电源逻辑 16 位移位寄存器 LED 驱动器 | PWP | 28 | -40 to 125
TI

TLC6C5912

TLC6C5912 12 位移位寄存器 LED 驱动器
TI

TLC6C5912-Q1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器
TI

TLC6C5912GQPWRQ1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器 | PW | 20 | -40 to 125
TI

TLC6C5912PWR

TLC6C5912 12 位移位寄存器 LED 驱动器 | PW | 20 | -40 to 105
TI

TLC6C5912QDWRQ1

汽车类电源逻辑 12 位移位寄存器 LED 驱动器 | DW | 20 | -40 to 125
TI