TLIN14313RGYRQ1 [TI]

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125;
TLIN14313RGYRQ1
型号: TLIN14313RGYRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125

文件: 总103页 (文件大小:3754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
带集成高侧开关和看门狗TLIN1431-Q1 汽车LIN SBC  
1 特性  
2 应用  
AEC-Q1001):符合汽车应用要求  
功能安全型  
车身电子装置和照明  
混合动力、电动和动力总成系统  
信息娱乐系统与仪表组  
电器  
可提供用于功能安全系统设计的文档  
• 符合本地互连网(LIN) 物理层规LIN 2.2A、  
ISO 179874:2016 SAE J2602:2021 要求  
• 由引脚或串行外设接SPI 配置的集成看门狗监控  
3 说明  
TLIN1431x-Q1 是一款本地互联网络 (LIN) 系统基础芯  
(SBC)集成了看门狗、高侧开关、跛行回家功能和  
高度可配置的 WAKE 输入引脚。该器件在上电时自行  
确定控制方法、引脚或串行外设接口 (SPI)。看门狗默  
认为适合两种控制方法的窗口看门狗但为了实现灵活  
在使用 SPI 控制时可以将器件配置为具有超过  
20 个不同时间窗口的窗口看门狗或超时看门狗。  
• 支12V 应用的增强功能  
±58V LIN 总线故障保护  
– 采12V 电源供电时支125mA 电流3.3V  
(TLIN14313-Q1) 5V (TLIN14315-Q1) LDO  
输出  
– 开路负载和短路检测10 PWM 或计时器控  
制的高侧开关  
– 可配置为高侧开关LIMP 引脚  
– 支持不同输入阈值或方法的可配WAKE 引脚  
– 睡眠模式超低电流消耗支持以下类型的唤醒事  
:  
LIN 收发器为终端编程提供 200 kbps 快速模式。为板  
LED 提供带诊断功能的高侧开关。高度可配置的  
WAKE 引脚可与高侧开关一同使用以实现循环检  
而降低 ECU 眠电流。可为数字唤醒输出  
(WKRQ) 配置 WKRQ/INH 引脚或为外部电源配置基  
VSUP 的抑(INH) 使能引脚。  
LIN 总线  
• 通WAKE 引脚实施的本地唤醒  
器件信息  
封装(1)  
– 循环和静态感测  
• 保护特性:  
封装尺寸标称值)  
器件型号  
TLIN1431x-Q1  
VQFN (RGY)(20)  
4.50mm x 3.50mm  
ESD 保护  
VSUP VCC 欠压保护  
TXD 显性超(DTO) 保护  
– 热关断保护  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 集成式电池电压监测器  
• 采用无引线QFN (20) 封装具有改善的自动光学  
(AOI) 功能  
空白  
VBAT  
VBAT  
VSUP  
VSUP  
470  
470  
VSUP  
100 nF  
100 nF  
VDD  
For INH on WKRQ/INH pin leave  
floating or  
1
M
pull-down  
VSUP  
100 nF  
3
k
10 µF  
VDD33  
SW  
VCC  
VBAT  
VDD  
VSUP  
100 nF  
10 µF  
3
SW  
k
3.3  
k
VCC  
V
V
WAKE  
B
A
T
S
U
P
VDD  
VDD  
10 nF  
VDD  
3.3  
k
10  
k
LIMP  
HSS  
WAKE  
LIMP  
10  
k
nRST  
10 nF  
nRST  
DIV_ON  
PV  
WKRQ  
100  
k
20 pF  
MCU  
I/O  
WDT can be connect to GND,  
VCC or left floating depending  
upon watchdog window timing  
requirements  
HSS  
nCS  
CLK  
WKRQ  
WDT  
SDI  
SDO  
nINT  
FSO  
MCU  
100  
k
Responder  
Node  
I/O  
Responder  
Node  
HSSC  
WDI  
VSUP  
DIV_ON  
PV  
nWDR  
VSUP  
Commander  
EN  
PIN  
Commander  
Node  
Pullup  
Node  
Pullup  
20 pF  
10  
k
1
k
1
k
LIN  
LIN Bus  
LIN Controller  
Or  
SCI/UART  
LIN  
LIN Bus  
RXD  
TXD  
LIN Controller  
Or  
SCI/UART  
RXD  
TXD  
220 pF  
GND  
GND  
220 pF  
GND  
GND  
简化版原理图SPI 控制  
简化版原理图引脚控制  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFE4  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................23  
8.3 Feature Description...................................................24  
8.4 Device Functional Modes..........................................49  
8.5 Programming............................................................ 65  
8.6 Registers...................................................................69  
9 Application and Implementation..................................90  
9.1 Application Information............................................. 90  
9.2 Typical Application.................................................... 91  
9.3 Power Supply Recommendations.............................96  
9.4 Layout....................................................................... 97  
10 Device and Documentation Support..........................99  
10.1 Documentation Support.......................................... 99  
10.2 接收文档更新通知................................................... 99  
10.3 支持资源..................................................................99  
10.4 商标.........................................................................99  
10.5 Electrostatic Discharge Caution............................100  
10.6 术语表................................................................... 100  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 ESD Ratings, IEC Specification..................................4  
6.4 Recommended Operating Conditions.........................5  
6.5 Thermal Information....................................................5  
6.6 Power Supply Characteristics.....................................5  
6.7 Electrical Characteristics.............................................7  
6.8 AC Switching Characteristics....................................11  
6.9 Typical Characteristics..............................................14  
7 Parameter Measurement Information..........................15  
7.1 Test Circuit: Diagrams and Waveforms.....................15  
8 Detailed Description......................................................22  
8.1 Overview...................................................................22  
Information.................................................................. 100  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (May 2022) to Revision A (December 2022)  
Page  
• 将数据表状态从预告信更改为数据.........................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC  
nRST  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
LIMP  
HSS  
WDT/CLK  
nWDR/SDO  
WDI/SDI  
WAKE  
WKRQ/INH  
LIN  
Thermal  
Pad  
PIN/nCS  
GND  
EN/nINT  
RXD  
HSSC/FSO  
TXD  
5-1. RGY Package, 20-Pin QFN  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
VSUP  
VCC  
NO.  
1
I
Device supply voltage (connected to battery in series with external reverse blocking diode)  
Output voltage from integrated voltage regulator  
2
O
nRST  
3
I/O  
Reset input/output (active low)  
Pin control: WDT - Programmable watchdog window set input (3 levels)  
SPI control: CLK - SPI clock input  
WDT/CLK  
4
5
I
Pin control: nWDR - Watchdog failure output trigger  
SPI control: SDO - SPI serial data output  
nWDR/SDO  
O
Pin control: WDI - Watchdog timer trigger input active on both rising and falling edges (Must be driven at  
WDI/SDI  
PIN/nCS  
6
7
I
I
all times)  
SPI control: SDI - SPI serial data input  
Pin or SPI control selection pin at power up.  
Pin control: does not change  
SPI control: nCS - SPI chip select (active low)  
Pin control: EN - Device mode change input pin  
SPI control: nINT - Device interrupt output pin  
EN/nINT  
8
9
I/O  
I/O  
Pin control: HSSC - High side switch control input pin  
SPI control: FSO - Function output pin  
HSSC/FSO  
PV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
O
I
Internal VBAT voltage divider output  
DIV_ON  
TXD  
Input to turn on the internal VBAT voltage divider, active high  
TXD input interface to control state of LIN output  
RXD output interface reporting state of LIN bus voltage  
Ground  
I
RXD  
O
GND, Pad  
LIN  
I/O  
O
I
LIN bus single-wire transmitter and receiver  
Digital output for wake or high voltage inhibit output depending upon state of pin at power up  
High voltage local wake up (LWU) pin  
WKRQ/INH  
WAKE  
HSS  
O
O
I
High side switch  
LIMP  
Used for LIMP home, watchdog event causes this pin to switch VSUP  
Supply voltage divider sense input (connected to battery)  
VBAT  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over recommended operating range (unless otherwise noted)(1)  
MIN  
0.3  
24  
58  
0.3  
0.3  
0.3  
MAX  
42  
UNIT  
V
VSUP  
VBAT  
Supply voltage range (ISO/DIS 17987)  
Battery sense input  
42  
V
VLIN  
LIN Bus input voltage (ISO/DIS 17987)  
Regulated 5 V Output Supply  
Regulated 3.3 V Output Supply  
WAKE pin input voltage range  
58  
V
VCC50  
VCC33  
VWAKE  
6
V
4.5  
42  
V
V
42 and VO  
VSUP+0.3  
VHSS  
High side switch pin output voltage range  
Inhibit pin output voltage range  
V
V
V
0.3  
0.3  
0.3  
42 and VO  
VSUP+0.3  
VINH  
42 and VO  
VSUP+0.3  
VLIMP  
LIMP pin output voltage range  
VnRST  
Reset output voltage  
Logic input voltage  
VCC + 0.3  
V
V
0.3  
0.3  
0.3  
VLOGIC_INPUT  
6
6
VLOGIC_OUTPUT  
Logic output voltage  
Digital pin output current  
Reset output current  
Junction temperature  
Storage temperature range  
V
IO  
8
mA  
mA  
°C  
°C  
IO(nRST)  
5
5  
40  
65  
TJ  
160  
165  
Storage temperature, Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum  
Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under  
Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the  
Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability,  
functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level H2: VBAT, VSUP, LIN, and WAKE  
with respect to ground  
±10000  
±4000  
±750  
Human body model (HBM) classification level 3A: all other pins, per AEC  
Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM) classification level  
All pins  
C5, per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 ESD Ratings, IEC Specification  
VALUE  
UNIT  
Contact discharge (VSUP, WAKE, HSS, LIMP,  
±8000  
Electrostatic discharge per IEC 62228-2 (1)  
V
LIN)  
V(ESD)  
Indirect ESD discharge (LIN)  
Contact discharge  
Air discharge  
Pulse 1  
±14000  
±8000  
±25000  
-100  
V(ESD)  
Powered electrostatic discharge SAE J2962-1(3)  
V
V
Pulse 2a  
75  
ISO 7637-2 and IEC 62215-3 Transients  
according to IBEE LIN EMC test spec(2)  
Transient  
Pulse 3a  
-150  
Pulse 3b  
100  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.3 ESD Ratings, IEC Specification (continued)  
VALUE  
UNIT  
Direct coupling capacitor "slow transient pulse"  
with 100 nF coupling capacitor - powered  
Transient  
ISO 7637-3 Slow Transients Pulse (4)  
±30  
V
(1) IEC 62228-2 ESD testing performed at third party. Different system-level configurations may lead to different results.  
(2) ISO 7637-2 according to IEC 62228-2 are system-level transient tests. Different system-level configurations may lead to different  
results.  
(3) SAE J2962-1 Testing performed at 3rd party US3 approved EMC test facility.  
(4) ISO 7637-3 is a system-level transient test. Different system-level configurations may lead to different results.  
6.4 Recommended Operating Conditions  
parameters valid over 40TJ 150 range (unless otherwise noted)  
MIN  
5.5  
5.5  
0
NOM  
MAX  
28  
UNIT  
V
VSUP  
Supply voltage  
VBAT  
Supply voltage  
28  
V
VLIN  
LIN bus input voltage  
28  
V
VLOGIC5  
VLOGIC33  
IOH(DO)  
IOL(DO)  
IO(LIMP)  
Logic pin voltage  
0
5.25  
3.465  
V
Logic pin voltage  
0
V
Digital terminal HIGH level output current  
Digital terminal LOW level output current  
LIMP output current when configured as LIMP  
-2  
mA  
mA  
mA  
2
1
High side switch output current; LIMP output current when configured as high  
side switch  
IO(HSS)  
100  
6
mA  
IO(INH)  
C(VSUP)  
C(VCC)  
ESRCO  
Δt/ΔV  
TJ  
Inhibit output current  
mA  
nF  
VSUP supply capacitance  
100  
10  
VCC supply capacitance; no load to full load  
Output ESR capacitance requirements  
Input transition rise and fall rate (WDI, WDT, WDR)  
Operating junction temperature range  
µF  
0.001  
2
100  
150  
Ω
ns/V  
°C  
40  
6.5 Thermal Information  
TLIN1431x  
THERMAL METRIC(1)  
RGY  
20 PINS  
37.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
32.4  
15.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJT  
15.7  
ψJB  
RθJC(bot)  
4.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Power Supply Characteristics  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply Voltage and Current  
470 Ωseries resistor with 100nF cap to  
ground  
VBAT  
VBAT sense pin voltage  
5.5  
28  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Power Supply Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
470 Ωseries resistor with 100nF cap to  
ground with DIV_ON high, VBAT = 5.5 V to  
28 V  
IBAT  
VBAT sense pin current  
220  
µA  
470 Ωseries resistor with 100nF cap to  
ground with DIV_ON high VBAT = 24 V  
IBATREV  
VBAT sense pin reverse current  
mA  
V
1  
Operational supply voltage (ISO/DIS 17987 Device is operational beyond the LIN  
VSUP  
5.5  
36  
Param 10)  
defined nominal supply voltage range  
Normal(2) and Standby Modes  
Sleep Mode  
5.5  
5.5  
4.7  
4
28  
28  
V
V
V
V
Nominal supply voltage (ISO/DIS 17987  
Param 10):  
VSUP  
UVSUPR  
UVSUPF  
Under voltage VSUP threshold  
Under voltage VSUP threshold  
Ramp Up  
5.3  
4.6  
Ramp Down  
Delta hysteresis voltage for VSUP under  
voltage threshold  
UVHYS  
0.70  
V
VSUP power on reset release rising  
threshold  
VnPORR  
VnPORF  
Ramp Up  
3.5  
1.9  
4.2  
2.9  
V
V
VSUP power on reset falling threshold  
Ramp down  
Transceiver normal mode dominant plus  
LDO output; where LDO load current is 125  
mA  
ISUP  
Transceiver and LDO supply current  
135  
5.2  
mA  
mA  
Normal Mode: EN = VCC (Pin control mode  
otherwise SPI enabled), bus dominant: total  
2.3  
1
bus load where RLIN 500 and CLIN  
10 nF, LDO = no load  
ISUPTRXDOM  
Supply current  
Standby Mode: EN = 0 V (Pin control mode  
otherwise SPI disabled), bus dominant: total  
1.9  
mA  
bus load where RLIN 500 and CLIN  
10 nF, LDO = no load  
Normal Mode: EN = VCC  
Bus recessive: LIN = VSUP, LDO = no load  
,
ISUPTRXREC  
Normal mode recessive supply current  
Standby mode recessive supply current  
0.9  
1.3  
mA  
µA  
Standby Mode: EN = 0 V (Pin control mode  
otherwise SPI disabled), LIN = recessive =  
VSUP, LDO = no load  
ISUPTRXREC  
210  
350  
5.5 V < VSUP 14 V, LIN = VSUP, WAKE =  
GND, EN = 0 V (Pin control mode otherwise  
SPI disabled), TXD and RXD floating, LDO  
= no load  
20  
25  
32  
µA  
ISUPTRXSLP  
Sleep mode supply current  
14 V < VSUP 28 V, LIN = VSUP, WAKE  
=
GND, EN = 0 V (Pin control mode  
36  
110  
95  
µA  
µA  
µA  
otherwise SPI disabled), TXD and RXD  
floating, LDO = no load  
Additional standby mode current from high  
side switch, no load.  
ISUPHSS  
High side switch current - no load  
WKRQ/INH current due to pull-down  
Additional standby mode current due to the  
pull-down resister on the WKRQ/INH pin to  
determine pin function, 100 kfor WKRQ or  
1 Mfor INH.  
ISUPWKRQ_INH  
Regulated Output VCC  
VCC  
Regulated output  
VSUP = 5.5 to 28 V, ICC = 1 to 125 mA  
VSUP = 5.5 to 28 V, ΔVCC, ICC = 10 mA  
ICC = 1 to 125 mA, VSUP = 14 V, ΔVCC  
-2.5  
2.5  
50  
%
Line regulation  
mV  
mV  
mV  
mV  
VCC(VSUP)  
VCC(VSUPL)  
VDROP1  
Load regulation  
50  
Dropout voltage (5 V LDO output)  
Dropout voltage (5 V LDO output)  
100  
550  
150  
650  
V
SUP VCC, ICC = 15 mA  
SUP VCC, ICC = 125 mA  
VDROP2  
V
VCC short circuit threshold to enter sleep  
mode  
VSC  
2
2.5  
4.9  
V
V
SUP VPOR  
UVCC5R  
UVCC5F  
UVCC33R  
Under voltage 5 V VCC threshold  
Under voltage 5 V VCC threshold  
Under voltage 3.3 V VCC threshold  
Ramp Up  
4.7  
4.45  
2.9  
V
V
V
Ramp Down  
Ramp Up  
4.1  
3.1  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6 Power Supply Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.75  
5.6  
MAX  
6.0  
UNIT  
V
UVCC33F  
OVCC5R  
OVCC5F  
OVCC33R  
OVCC33F  
ICCOUT  
Under voltage 3.3 V VCC threshold  
Over voltage 5 V VCC threshold (1)  
Over voltage 5 V VCC threshold (1)  
Over voltage 3.3 V VCC threshold (1)  
Over voltage 3.3 V VCC threshold (1)  
Output current  
Ramp Down  
Ramp Up  
2.5  
V
Ramp Down  
Ramp Up  
5.28  
5.5  
V
3.79  
3.73  
3.98  
V
Ramp Down  
3.58  
1
V
VCC in regulation with 14V VSUP  
VCC short to ground  
125  
275  
mA  
mA  
ICCOUTL  
Output current limit  
VRIP = 0.5 VPP, Load = 10 mA, ƒ= 100 Hz,  
CO = 10 μF, VSUP = 12 V and ambient  
temperature = 27 ℃  
PSRR  
Power supply rejection ripple rejection (1)  
60  
15  
dB  
TSDR  
Thermal shutdown temperature (1)  
Thermal shutdown temperature (1)  
Thermal shutdown hysteresis (1)  
Internal junction temperature; rising  
Internal junction temperature; falling  
VSUP = 12 V  
160  
150  
185  
170  
°C  
°C  
°C  
TSDF  
TSDHYS  
(1) Specified by design  
(2) Normal Mode: Ramp VSUP while LIN signal is a 10 kHz square wave with 50 % duty cycle and 18 V swing.  
6.7 Electrical Characteristics  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.8  
TYP  
MAX  
UNIT  
RXD Output Terminal  
VOH  
High level output voltage  
Low level output voltage  
Unpowered leakage current  
VCC  
VCC  
µA  
IO = 2 mA, VCC = Active  
VOL  
IO = 2 mA, VCC = Active  
0.2  
1
ILKG(OFF)  
Outputs = 5.25/3.465 V, VCC = VSUP = 0 V  
1  
TXD Input Terminal  
VIL  
Low level input voltage  
0.8  
5.5  
5
V
V
0.3  
2
VIH  
IIH  
High level input voltage  
High level input leakage current  
Internal pull-up resistor value  
TXD = VIH  
0
µA  
kΩ  
5  
125  
RTXD  
350  
800  
LIN Terminal (Referenced to VSUP  
)
LIN recessive, TXD = high, IO = 0 mA, VSUP  
= 5.5 V to 28 V  
VOH  
HIGH level output voltage(5)  
LOW level output voltage(5)  
0.85  
VSUP  
VSUP  
V
LIN dominant, TXD = low, VSUP = 5.5 V to  
28 V  
VOL  
0.2  
45  
VSUP where impact of recessive LIN bus < 5%  
(ISO/DIS 17987 Param 11)  
VSUP_NON_OP  
TXD & RXD open VLIN = 5.5 V to 45 V  
0.3  
40  
TXD = 0 V, VLIN = 28 V, RMEAS = 440 ,  
VSUP = 28 V,  
I BUS_LIM  
Limiting current (ISO/DIS 17987 Param 12)  
90  
200  
mA  
V
BUSdom 0.251 * VSUP  
VLIN = 0 V, VSUP = 12 V Driver off/recessive  
LIN VSUP, 5.5 V VSUP 28 V Driver  
Receiver leakage current, dominant (ISO/DIS  
17987 Param 13)  
I BUS_PAS_dom  
I BUS_PAS_rec1  
I BUS_PAS_rec2  
I BUS_NO_GND  
IBUS_NO_BAT  
VBUSdom  
mA  
µA  
1  
Receiver leakage current, recessive (ISO/DIS  
17987 Param 14)  
V
20  
5
off  
Receiver leakage current, recessive (ISO/DIS  
17987 Param 14)  
VLIN = VSUP, Driver off  
µA  
5  
1  
Leakage current, loss of ground (ISO/DIS 17987  
Param 15)  
GND = VSUP, VSUP = 12 V, 0 V VLIN 28  
V
1
mA  
µA  
Leakage current, loss of supply (ISO/DIS 17987  
Param 16)  
10  
0.4  
0 V VLIN 28 V, VSUP = GND  
LIN dominant (including LIN dominant for  
wake up); 7-2  
Low level input voltage (ISO/DIS 17987 Param  
17)  
VSUP  
VSUP  
High level input voltage (ISO/DIS 17987 Param  
18)  
VBUSrec  
0.6  
LIN recessive; 7-2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver center threshold (ISO/DIS 17987 Param  
19)  
VBUS_CNT  
VHYS  
VSERIAL_DIODE  
RLIN  
0.475  
0.5  
0.525  
VSUP  
VBUS_CNT = (VIL + VIH)/2; 7-2  
Hysteresis voltage (ISO/DIS 17987 Param 20)(6)  
0.175  
1.0  
VSUP  
V
VHYS = (VIL - VIH); 7-2  
(7)  
Serial diode LIN term pull-up path (ISO/DIS  
17987 Param 21)  
By design and characterization  
Normal and Standby modes  
0.4  
0.7  
45  
Internal pull-up resistor to VSUP on LIN (ISO/DIS  
17987 Param 26)  
20  
60  
kΩ  
IRSLEEP  
Pull-up current source to VSUP  
Capacitance of the LIN pin  
Sleep mode, VSUP = 12 V, LIN = GND  
By design and characterization  
µA  
pF  
20  
2  
CLIN,PIN  
25  
EN Input Terminal  
VIH  
VIL  
High level input voltage  
Low level input voltage  
Hysteresis voltage  
2
5.5  
0.8  
500  
8
V
V
VHYS  
IIL  
By design and characterization  
EN = Low  
30  
8  
125  
mV  
µA  
Low level input current  
Internal pull-down resistor  
REN  
350  
800  
kΩ  
LIMP Output Terminal (High Voltage Open-drain Output)  
Hi-level voltage drop for LIMP with respect to  
VSUP  
0.42  
7
1.2  
V
ΔVH  
ILIMP = 60 mA  
Rdson  
LIMP output drain-to-source on resistance  
Leakage current  
20  
1
IO = 60 mA  
ILKG(LIMP)  
LIMP = 0 V, Sleep Mode  
µA  
1  
HSS, INH high voltage open drain output pin  
VDET_INH  
ΔVHINH  
ΔVHHSS  
Rdson  
Voltage on INH/WKRQ pin during tDET_INH time  
VSUP = 14V  
1.5  
1
V
V
V
Hi-level voltage drop for INH with respect to VSUP  
Hi-level voltage drop for HSS with respect to VSUP  
HSS output drain-to-source on resistance  
Output current support  
0.5  
0.42  
7
IINH = 6 mA  
1.2  
17  
IHSS = 60 mA  
IO = 60 mA  
IO(HSS)  
VSUP = 14 V,  
60  
100  
300  
mA  
mA  
mA  
mA  
µA  
IOC(HSS)  
IOL(HSS)  
IOLHYS(HSS)  
Ilkg  
HSS overcurrent limit  
VSUP = 14 V  
150  
2.5  
0.05  
1  
HSS open load current  
VSUP = 14 V  
HSS open load current hysteresis  
Leakage current  
VSUP = 14 V  
0.45  
1
1
INH, HSS = 0 V, Sleep Mode  
5.5 V VSUP 28 V, ILOAD = 60 mA, RL  
220 , 80%/20%  
=
tR/F  
Output rise and fall times (HSS)  
0.6  
2.5  
60  
V/µs  
µs  
Switching on delay (HSS) from SPI command to VSUP = 14 V, ILOAD = 60 mA, VOUT = 80% of  
on VSUP  
tHSS_on  
tHSS_off  
Switching off delay (HSS) from SPI command to VSUP = 14 V, ILOAD = 60 mA, VOUT = 20% of  
140  
µs  
off  
VSUP  
tOCFLTR  
tOLFLTR  
tOCOFF  
HSS overcurrent filter time(2)  
HSS open load filter time(2)  
HSS overcurrent shut off time  
VSUP = 14 V  
VSUP = 14 V  
IO(HSS) > IOC(HSS)  
16  
64  
µs  
µs  
µs  
200  
4
300  
WAKE Input Terminal  
VIH  
VIL  
IIL  
High-level input voltage  
Sleep or Standby Mode, WAKE pin enabled  
Sleep or Standby Mode, WAKE pin enabled  
WAKE = 1 V  
V
V
Low-level input voltage  
2
Low-level input leakage current  
15  
25  
µA  
Wake up hold time from a wake edge on WAKE in  
standby or sleep mode for static sensing..  
tWAKE  
140  
µs  
µs  
See 8-44 and 8-45  
See 8-44 and 8-45  
WAKE pin pulses shorter than this will be filtered  
out in standby or sleep mode for static and cyclic  
sensing.  
tWAKE_INVALID  
10  
WDI, SDI, CLK, nCS Input Terminal  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
2.19  
V
V
0.8  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1  
TYP  
MAX  
UNIT  
µA  
IIH  
High-level input leakage current  
Low-level input leakage current  
Input Capacitance  
Inputs = VCC  
1
IIL  
Inputs = 0 V, VCC = Active  
4 MHz  
µA  
50  
CIN  
10  
15  
1
pF  
ILKG(OFF)  
RWDI_SDIpu  
RCLKpu  
RnCSpu  
Unpowered leakage current  
Inputs = 5.25/3.465 V, VCC = VSUP = 0 V  
µA  
1  
100  
100  
100  
Internal pull-up resistor on WDI/SDI pin  
Internal pull-up resistor on WDT/CLK pin  
Internal pull-up resistor on PIN/nCS pin  
240  
240  
240  
400  
400  
400  
kΩ  
kΩ  
kΩ  
SPI control only for CLK  
SPI control only for nCS  
WDT Input Terminal  
VIH  
High-level input voltage  
Inputs = VCC  
0.8  
VCC  
VCC  
VCC  
µA  
VIL  
Low-level input voltage  
Inputs = VCC  
0.2  
0.6  
VIM(WDT)  
IIH  
WDT Mid-level input voltage(1)  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
Inputs = VCC  
0.4  
2.5  
0.5  
Inputs = VCC  
25  
IIL  
Inputs = 0 V, VCC = Active  
Inputs = 5.25/3.465 V, VCC = VSUP = 0 V  
µA  
25  
3  
2.5  
3
ILKG(OFF)  
µA  
SDO Output Terminal  
VOH  
High level output voltage  
0.8  
1  
5  
VCC  
VCC  
µA  
IO = 2 mA, VCC = Active  
VOL  
Low level output voltage  
IO = 2 mA, VCC = Active  
0.2  
1
ILKG(OFF)  
Unpowered leakage current  
Outputs = 5.25/3.465 V, VCC = VSUP = 0 V  
nRST Terminal; input/output reset (Open-drain)  
ILKG  
VOL  
Leakage current, high-level  
Low-level output voltage  
Low-level output current, open drain  
Switching threshold voltage  
Pull-up resistance  
LIN = VSUP, nRST = VCC  
5
µA  
VCC  
mA  
VCC  
kΩ  
Based upon external pull up to VCC  
LIN = 0 V, nRST = 0.4 V  
0.2  
IOL  
1.5  
0.25  
30  
Vth(sw)  
RPU  
nINT, nWDR, WKRQ Terminal  
0.75  
65  
45  
VOH  
VOL  
High level output voltage  
0.8  
VCC  
VCC  
IO = 2 mA, VCC = Active  
Low-level output voltage  
IO = 2 mA, VCC = Active  
0.2  
1
Unpowered leakage current (nINT and nWDR  
pins)  
ILKG(OFF)  
Outputs = 5.25/3.465 V, VCC = VSUP = 0 V  
µA  
1  
HSSC  
VIH  
High-level input voltage  
Low-level input voltage  
Low-level input current  
Pull-down resistor  
2
5.5  
0.8  
1
V
V
VIL  
IIL  
VIN = 0 V  
µA  
1  
RHSSC  
fSW  
150  
350  
800  
400  
kΩ  
Switching frequency  
VHSS = 14 V, IO(HSS) = 60 mA  
Hz  
WDI, WDT TIMING and SWITCHING CHARACTERISTIC (RL = 1 MΩ, CL = 50 pF and TJ = -40°C to 150°C)  
tW  
Filter time to avoid false input  
WDT = GND  
30  
32  
µs  
ms  
ms  
s
WDI pulse width; see 7-8  
40  
600  
6
48  
720  
7.2  
tWINDOW  
WDT = VCC  
480  
4.8  
Closed Window + Open Window; See 7-8  
WDT = Floating  
DIV_ON  
VIH  
High-level input voltage  
Low-level input voltage  
Low-level input current  
Pull-down resistor  
2
5.5  
0.8  
1
V
V
VIL  
IIL  
VDIV_ON = 0 V  
µA  
1  
RDIV_ON  
PV  
150  
370  
800  
kΩ  
Ratio  
Ratio  
Divider ratio 5 V VCC  
Divider ratio 3.3 V VCC  
VBAT = 5.5 V to 28 V  
VBAT = 5.5 V to 20 V  
1:7  
1:9  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ERR  
Divider ratio error  
VBAT = 5.5 V to 28 V  
2
%
2  
RLOAD = 470 Ω± 5% and CLOAD = 10 nF ±  
10%; When capacitive load only 20 pF ±  
20%, 5.5 V VBAT 28 V  
VBATLIN5  
Linear voltage range for VBAT for 5 V LDO (3)  
0.735  
0.561  
4.05  
2.27  
5.1  
V
V
V
V
V
RLOAD = 470 Ω± 5% and CLOAD = 10 nF ±  
10%; When capacitive load only 20 pF ±  
20%, 5.5 V VBAT 20 V  
Linear voltage range for VBAT for 3.3 V LDO and  
when I/O is 3.3 V with 5 V LDO (4)  
VBATLIN3  
28 V < VBAT 42 V, 470 Ω± 5% and  
CLOAD = 10 nF ± 10%; When capacitive  
load only 20 pF ± 20%  
VMAX5V  
Maximum VPVOUT  
20 V < VBAT 42 V, 470 Ω± 5% and  
CLOAD = 10 nF ± 10%; When capacitive  
load only 20 pF ± 20%  
Maximum VPVOUT for 3.3 V LDO and when I/O is  
3.3 V with 5 V LDO  
VMAX3.3V  
3.36  
3.36  
RLOAD = 470 Ω± 5% and CLOAD = 10 nF ±  
10%; When capacitive load only 20 pF ±  
20% and I/O voltage is 3.6 V  
VVCC5V_VIO3V  
Voltage when VCC = 5 V and I/O is at 3.3 V  
CPIN  
tSET  
Pin capacitance  
12  
pF  
µs  
470 Ω± 5% and CLOAD = 10 nF ± 10%;  
When capacitive load only 20 pF ± 20%  
Settling time of the buffer  
50  
Duty Cycle Characteristics  
THREC(MAX) = 0.744 x VSUP  
,
THDOM(MAX) = 0.581 x VSUP  
,
Duty Cycle 1 (ISO/DIS 17987 Param 27 and  
VSUP = 7 V to 18 V, tBIT = 50/52 µs,  
D1 = tBUS_rec(min)/(2 x tBIT) (See 7-3, 图  
7-4)  
D1  
0.396  
J2602 Normal battery)(8) (9)  
THREC(MIN) = 0.422 x VSUP  
,
THDOM(MIN) = 0.284 x VSUP, VSUP = 7.6 V to  
18 V,  
Duty Cycle 2 (ISO/DIS 17987 Param 28 and  
J2602 Normal battery)(8) (9)  
D2  
D3  
D4  
0.581  
tBIT = 50/52 µs, D2 = tBUS_rec(MAX)/(2 x tBIT  
)
(See 7-3, 7-4)  
THREC(MAX) = 0.778 x VSUP, THDOM(MAX)  
=
0.616 x VSUP, VSUP = 7.0 V to 18 V, tBIT = 96  
µs, D3 = tBUS_rec(min)/(2 x tBIT) (See 7-3,  
7-4)  
Duty Cycle 3 (ISO/DIS 17987 Param 29 and  
J2602 Normal battery)(8) (9)  
0.417  
THREC(MIN) = 0.389 x VSUP  
,
THDOM(MIN) = 0.251 x VSUP  
,
Duty Cycle 4 (ISO/DIS 17987 Param 30 and  
J2602 Normal battery)(8) (9)  
VSUP = 7.6 V to 18 V, tBIT = 96 µs,  
D4 = tBUS_rec(MAX)/(2 x tBIT) (See 7-3, 图  
7-4)  
0.59  
THREC(MAX) = 0.665 x VSUP, THDOM(MAX)  
0.499 x VSUP, VSUP = 5.5 V to 7 V, tBIT  
50/52 µs, D1 = tBUS_rec(min)/(2 x tBIT) (See 图  
7-3, 7-4)  
=
=
Duty Cycle 1  
D1LB  
D2LB  
D3LB  
D4LB  
0.396  
J2602 Low battery(9) (10)  
THREC(MIN) = 0.496 x VSUP, THDOM(MIN)  
=
0.361 x VSUP, VSUP = 6.1 V to 7.6 V, tBIT  
50/52 µs, D2 = tBUS_rec(MAX)/(2 x tBIT) (See  
7-3, 7-4)  
=
Duty Cycle 2  
0.581  
J2602 Lowl battery(9) (10)  
THREC(MAX) = 0.665 x VSUP, THDOM(MAX)  
=
0.499 x VSUP, VSUP = 5.5 V to 7 V, tBIT = 96  
µs, D1 = tBUS_rec(min)/(2 x tBIT) (See 7-3, 图  
7-4)  
Duty Cycle 3  
0.417  
J2602 Low battery(9) (10)  
THREC(MIN) = 0.496 x VSUP, THDOM(MIN)  
=
0.361 x VSUP, VSUP = 6.1 V to 7.6 V, tBIT  
96 µs, D2 = tBUS_rec(MAX)/(2 x tBIT) (See 图  
7-3, 7-4)  
=
Duty Cycle 4  
0.59  
J2602 Lowl battery(9) (10)  
(1) This is the measured voltage at the WDT pin when left floating. The WDT pin should be connected directly to VCC, GND or left floating.  
(2) Specified by design  
(3) VBATLIN5 = [(1/7) * VBAT] +/- 50 mV for the linear range of the PV buffer  
(4) VBATLIN3 = [(1/9) * VBAT] +/- 50 mV for the linear range of the PV buffer  
(5) SAE J2602 loads include: commander node: 5.5 nF; 4 kand for a responder node: 5.5 nF; 875 Ω  
(6) VHYS is defined for both ISO 17987 and SAE J2602-1.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
(7) VHYS = (Vth_rec - Vth_dom) where Vth_rec and Vth_dom are the actual voltage values from VBUSrec and VBUSdom  
(8) ISO 17987 loads include 1 nF; 1 k/ 6.8nF; 660 / 10 nF; 500 ; with tBIT values of 50 µs and 96 µs  
(9) SAE J2602 loads include: commander node: 5.5 nF; 4 k/ 899 pF; 20 kand for a responder node: 5.5 nF; 875 / 899 pF; 900 ;  
with tBIT values of 52 µs and 96 µs  
(10) ISO 17987 does not have a low battery specification. Using the ISO 17987 loads these low battery duty cycle parameters are covered  
for tBIT values of 50 µs and 96 µs  
6.8 AC Switching Characteristics  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device Switching Characteristics  
trx_pdr  
trx_pdf  
Receiver rising/falling propagation delay time  
(ISO/DIS 17987 Param 31)  
RRXD = 2.4 k, CRXD = 20 pF (See 7-3,  
7-4)  
6
2
µs  
µs  
µs  
Rising edge with respect to falling edge,  
Symmetry of receiver propagation delay time  
Receiver rising propagation delay time (ISO/DIS (trx_sym = trx_pdf trx_pdr), RRXD = 2.4 k,  
17987 Param 32)  
trs_sym  
2  
CRXD = 20 pF (See 7-3, 7-4)  
LIN wakeup time (minimum dominant time on  
LIN bus for wakeup)  
tLINBUS  
25  
100  
45  
150  
See 7-6, 8-11 and 8-12  
Time to clear false wakeup prevention logic if  
LIN bus had a bus stuck dominant fault  
(recessive time on LIN bus to clear bus stuck  
dominant fault)  
tCLEAR  
10  
60  
µs  
See 8-12  
tTXD_DTO  
tEN  
Dominant state time out  
20  
3
80  
12  
ms  
µs  
Time enable pin state change before  
initiating mode change or sampling TXD  
pin  
Enable pin deglitch time  
Time to change from normal mode to sleep  
mode through EN pin: See 7-5  
tMODE_CHANGE  
tDETECT  
Mode change delay time  
100  
2
µs  
µs  
µs  
Time to detect Pin vs SPI and I/O voltage level  
at power up(1)  
Time from coming out of UVCC and device  
determines these states  
Time to detect which output INH or WKRQ at  
power up  
Time from coming out of UVCC and device  
determines these states  
tDET_INH  
25  
Time for normal mode to initialize and data  
on RXD pin to be valid, includes  
tMODE_CHANGE for standby mode to normal  
mode See 7-5  
tNOMINIT  
Normal mode initialization time  
45  
µs  
Time required for VCC UVCC to leave Restart  
mode  
tRSTN_act  
tnRSTIN  
1.5  
2
2.5  
ms  
µs  
V
CC UVCC  
Input pulse required on the nRST pin to  
recognize a device reset.  
120  
reg 29h[5] = 0 (Default value in SPI  
control. Value in pin control except for  
watchdog failure.)  
1.5  
10  
2
2.5  
20  
ms  
ms  
ms  
tNRST_TOG  
nRST pin output toggle high to low to high time  
reg 29h[5] = 1 (Value in pin control for  
watchdog failure.)  
15  
Initial long watchdog window time required to  
tINITWD  
trigger first watchdog input trigger when entering WDI input trigger or SPI write command  
Standby mode or Normal mode  
150  
200  
Timer for inactivity coming out of sleep mode  
Default values and can be programmed to  
and when coming out of failsafe mode to  
different values in SPI control.  
tINACT_FS  
4
5
6
min  
determine if caused event has been cleared (1)  
Time from VSUP exceeding UVSUP until INH  
active  
VCC > UVCC, INH = VSUP, VCC load of 50  
mA @ 22 µF capacitance  
3
3
ms  
ms  
tPWRUP  
Time from VSUP exceeding UVSUP and VCC  
exceeding UVCC until WKRQ active  
VCC > UVCC, WKRQ = VCC, VCC load of 50  
mA @ 22 µF capacitance  
tTOGGLE  
tUVFLTR  
tVSC  
RXD pulse width when waking from sleep mode register 'h12[2] = 1  
Undervoltage detection delay time for VCC  
5
3
15  
4
µs  
ms  
µs  
Short to ground on VCC detection delay time  
75  
100  
130  
Time LDO is on to determine if a short circuit  
event is present after a previous uncleared  
detection  
tLDOON  
2
3
ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 AC Switching Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standby to normal mode change time based  
upon SPI write  
tMODE_STBY_NOM  
70  
µs  
Time from SPI sleep command where LIN  
transceiver is off and RXD doesn't reflect  
the LIN bus  
tMODE_NOM_SLP  
tMODE_NOM_STBY  
tWKRQ_SLP  
SPI write to go to sleep from normal  
200  
70  
µs  
µs  
µs  
SPI write to go to standby from normal mode  
Dependent upon LDO turning on and ramp  
time. Time provided is based upon 1 µs  
ramp and LDO being at 2 V.  
Time WKRQ turns on after a wake event when  
device is in sleep mode  
450  
Time INH turns on after a wake event when  
device is in sleep mode  
tINH_SLP  
210  
70  
µs  
µs  
SPI write to go to sleep from normal mode and  
INH turns off  
tINH_NOM_SLP  
Minimum WAKE Pin pulse width Register  
8'h11[3:2] = 00b; See 8-46  
10  
20  
40  
80  
ms  
ms  
ms  
ms  
Minimum WAKE Pin pulse width Register  
8'h11[3:2] = 01b; See 8-46  
Minimum WAKE pin pulse width (SPI mode  
only) (2) (3) (4)  
tWK_WIDTH_MIN  
Minimum WAKE Pin pulse width Register  
8'h11[3:2] = 10b; See 8-46  
Minimum WAKE Pin pulse width Register  
8'h11[3:2] = 11b; See 8-46  
Maximum WAKE Pin pulse width that is  
considered invalid Register 8'h11[3:2] =  
00b; See 8-46  
5
10  
20  
40  
ms  
ms  
ms  
ms  
Maximum WAKE Pin pulse width that is  
considered invalid Register 8'h113:2] =  
01b; See 8-46  
Maximum Pulse width that is considered invalid  
(SPI mode only) (2) (3)  
tWK_WIDTH_INVALID  
Maximum WAKE Pin pulse width that is  
considered invalid Register 8'h11[3:2] =  
10b; See 8-46  
Maximum WAKE Pin pulse width that is  
considered invalid Register 8'h11[3:2] =  
11b; See 8-46  
Maximum WAKE Pin pulse window  
Register 8'h11[1:0] = 00b; See 8-46  
750  
1000  
1500  
2000  
950  
1250  
1875  
2500  
ms  
ms  
ms  
ms  
Maximum WAKE Pin pulse window  
Register 8'h11[1:0] = 01b; See 8-46  
Maximum WAKE pin pulse width to be  
considered valid (SPI mode only) (2)  
tWK_WIDTH_MAX  
Maximum WAKE Pin pulse window  
Register 8'h11[1:0] = 10b; See 8-46  
Maximum WAKE Pin pulse window  
Register 8'h11[1:0] = 11b; See 8-46  
Register 8'h12[5] = 0  
Register 8'h12[5] = 1  
10  
60  
30  
75  
40  
90  
µs  
µs  
Sampling window for cyclic sensing wake;  
Standby or Sleep mode; see 8-49  
tWK_CYC  
Fast Mode  
5.5 V VSUP 18 V, RLIN = 500 Ωand  
CLIN(bus) = 600 pF  
DR  
Data Rate  
200  
5
kbps  
µs  
trx_pdr  
trx_pdf  
Receiver rising/falling propagation delay time  
(ISO/DIS 17987 Param 31)  
RRXD = 2.4 k, CRXD = 20 pF (See 7-3,  
7-4  
5.5 V VSUP 18 V, RLIN = 500 Ωand  
CLIN(bus) = 600 pF, 80%/20%  
ttxr/f  
LIN transmitter rise and fall time  
1.5  
110  
25  
µs  
µs  
µs  
Fast mode determination time for entering or  
leaving  
tFM_CHANGE  
tFMTXD  
Based upon EN and TXD voltage levels  
70  
5
90  
Pulse must start after tEN and finish before  
tFM_CHANGE  
TXD pin pulse width to enter fast mode  
SPI Switching Characteristics  
fSCK  
SCK, SPI clock frequency (1)  
tSCK  
SCK, SPI clock period (1)  
4
MHz  
ns  
250  
See 7-7  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.8 AC Switching Characteristics (continued)  
parameters valid over 40TJ 150 range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
40  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRSCK  
tFSCK  
tSCKH  
tSCKL  
tACC  
tCSS  
tCSH  
tCSD  
tSISU  
tSIH  
SCK rise time (1)  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
See 7-7  
SCK fall time (1)  
40  
SCK, SPI clock high (1)  
SCK, SPI clock low (1)  
First read access time from chip select (1)  
Chip select setup time (1)  
Chip select hold time (1)  
Chip select disable time (1)  
Data in setup time (1)  
Data in hold time (1)  
125  
125  
50  
100  
100  
50  
50  
50  
tSOV  
tRSO  
tFSO  
Data out valid (1)  
80  
40  
40  
SO rise time (1)  
SO fall time (1)  
(1) Specified by design  
(2) This parameter is valid only when register 11h[7:6] = 11b  
(3) This is the minimum pulse width for a WAKE pin input that device will detect as a good pulse. Values between the min tWK_WIDTH_MIN  
and max tWK_WIDTH_INVALID is indeterminant and may or may not be considered valid.  
(4) This parameter is set based upon the programmed value for tWK_WIDTH_INVALID register 11h[3:2]  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
6.9 Typical Characteristics  
3.5  
3
140  
120  
100  
80  
2.5  
2
1.5  
1
60  
–40°C  
25°C  
50°C  
85°C  
105°C  
125°C  
–40°C  
40  
25°C  
50°C  
85°C  
105°C  
125°C  
0.5  
0
20  
-0.5  
0
0
5
10  
15  
20  
VSUP (V)  
25  
30  
35  
40  
0
5
10  
15  
20  
VSUP (V)  
25  
30  
35  
40  
VCC = 3.3 V ICC = 125 mA load  
Temperature =  
Ambient  
VCC = 3.3 V ICC = 125 mA load  
Temperature =  
Ambient  
Mode = Power up  
to Standby  
LIN = Recessive  
Mode = Power up  
to Standby  
LIN = Recessive  
6-1. TLIN14313RGYQ1 VCC versus VSUP Ramping Up  
6-2. TLIN14313RGYQ1 ISUP versus VSUP Ramping Up  
120  
5.5  
5
–40°C  
25°C  
50°C  
85°C  
105°C  
100  
4.5  
4
125°C  
80  
3.5  
3
60  
40  
20  
0
2.5  
2
–40°C  
25°C  
50°C  
1.5  
1
85°C  
105°C  
125°C  
150°C  
0.5  
0
-20  
-0.5  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
0
5
10  
15  
20  
25  
30  
35  
40  
VSUP (V)  
VSUP (V)  
VCC = Off  
ICC = Off  
Temperature =  
Ambient  
VCC = 5 V ICC = 125 mA load  
Temperature =  
Ambient  
Mode = Sleep  
LIN = Recessive  
Mode = Power up  
to Standby  
LIN = Recessive  
6-3. TLIN14313RGYQ1 ISUP versus VSUP Ramping Down  
6-4. TLIN14315RGYQ1 VCC versus VSUP Ramping Up  
35  
140  
120  
100  
80  
30  
25  
20  
15  
60  
10  
25°C  
50°C  
85°C  
105°C  
125°C  
40  
20  
0
–40°C  
25°C  
50°C  
85°C  
105°C  
125°C  
5
0
-5  
0
5
10  
15  
20  
25  
30  
35  
40  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
VSUP (V)  
VSUP (V)  
VCC = 5 V ICC = 125 mA load  
Temperature =  
Ambient  
VCC = Off  
ICC = Off  
Temperature =  
Ambient  
Mode = Power up  
to Standby  
LIN = Recessive  
Mode = Sleep  
LIN = Recessive  
6-6. TLIN14315RGYQ1 ISUP versus VSUP Ramping Down  
6-5. TLIN14315RGYQ1 ISUP versus VSUP Ramping Up  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Test Circuit: Diagrams and Waveforms  
Delta t = + 5 µs (tBIT  
Trigger Point  
= 50 µs)  
RX  
2 * tBIT = 100 µs (20 kBaud)  
7-1. RX Response: Operating Voltage Range  
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
7-2. LIN Bus Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
tBIT  
tBIT  
RECESSIVE  
D = 0.5  
TXD (Input)  
DOMINANT  
THREC(MAX)  
Thresholds  
RX Node 1  
THDOM(MAX)  
LIN Bus  
Signal  
VSUP  
THREC(MIN)  
Thresholds  
RX Node 2  
THDOM(MIN)  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
D = tBUS_REC(MIN)/(2 x tBIT  
)
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
D = tBUS_REC(MAX)/(2 x tBIT  
)
7-3. Definition of Bus Timing  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
LIN Bus  
Signal  
VSUP  
Thresholds  
RX Node 2  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
7-4. Propagation Delay  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
tMODE_CHANGE  
Wake Event  
tMODE_CHANGE  
tNOMINT  
tEN  
EN  
tEN  
Can be high or low  
TXD  
V
CC > UVCC  
tRSTN_act  
EN  
Restart  
VCC LDO turned on and  
ramping  
Filter/TXD  
Sampling  
Window  
Enable  
Filter  
Transi on  
Sleep  
Standby  
Transi on  
Normal  
Normal  
MODE  
Can be high or low  
TXD  
EN  
Filter/TXD  
Sampling  
Window  
Enable  
Filter  
Transi on  
Standby  
Transi on  
Normal  
Normal  
MODE  
High from normal  
mode un l wake event  
then low  
ꢀꢁFloa ng for sleep  
ꢀꢁHigh for standby ꢁ  
Wake Request  
RXD = Low  
Mirrors  
Bus  
RXD  
Indeterminate Ignore  
Indeterminate Ignore  
Mirrors Bus  
7-5. Mode Transitions (Pin Control)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
0.6 x VSUP  
LIN  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
RXD  
Weak Internal Pullup  
Floa ng  
tTOGGLE  
Floa ng  
RXD  
VCC  
UVCC  
nRST  
tRSTN_act  
MODE  
Restart  
Sleep  
Standby  
7-6. Wakeup through LIN  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
tCSD  
nCS  
tCSH  
tFSCK  
tRSCK  
tCSS  
CLK  
SDI  
tSISU  
tSIH  
LSB In  
MSB In  
tSOV  
tACC  
tFSO  
tRSO  
SDO  
MSB Out  
LSB Out  
7-7. SPI AC Characteristic for Read and Write  
Watchdog Window  
Closed Window  
Open Window  
tWDOUT min  
Watchdog Window  
Closed Window  
Open Window  
tWDOUT max  
tWINDOW min  
tWINDOW max  
Safe Trigger area  
tW  
WDI state change  
or SPI write  
tW - filter time for the input  
WDI Trigger  
Rising or Falling  
Edge  
to be recognized to avoid  
false triggers  
Standby  
Mode  
tINITWD  
7-8. Watchdog Window Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
High  
VSUP  
Normal to  
Sleep CMD  
SPI Mode  
Change  
High  
VSUP – 1V  
INH  
tINH_NOM_SLP  
VCC off and ramp time are  
system dependent and  
not specified  
UVCC  
VCC  
nRST  
Normal  
Mode  
Sleep Mode  
Mode  
NOM SLP  
tMODE_NOM_SLP  
Transceiver  
7-9. Normal to Sleep via SPI  
High  
VSUP  
SPI Mode  
Change  
Normal to  
Standby CMD  
High  
High  
WKRQ/INH  
High  
VCC  
Mode  
Standby Mode  
Normal Mode  
NOM STBY  
tMODE_NOM_STBY  
Transceiver  
7-10. Normal to Standby via SPI  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
High  
VSUP  
Wake Event  
WUP or LWU  
tINH_SLP  
High  
VSUP – 1V  
INH  
WKRQ  
WKRQ/INH  
tWKRQ_SLP is dependent upon LDO ramp  
times which are system dependent  
tWKRQ_SLP  
VCC on and ramp time are system  
dependent and not specified  
VCC  
nRST  
Mode  
RXD  
VCC UVCC  
tLDOON  
tRSTN_act  
Sleep  
Mode  
Restart  
Mode  
Standby  
Mode  
RXD floating  
7-11. Sleep to Restart to Standby Mode from Wake Event  
备注  
Throughout the document timing diagrams may have three colors associated to them.  
Red are signals on device pins  
Teal represent the WKRQ pin when configured as WKRQ  
Black will represent either internal signals or an external signal that will impact device behavior  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TLIN1431x-Q1 LIN transceiver is a Local Interconnect Network (LIN) physical layer transceiver, compliant to  
LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A, ISO 179874:2016, and SAE J2602:2021 with integrated wake-up and  
protection features. The LIN bus is a single-wire, bi-directional bus that typically is used in low speed in-vehicle  
networks with data rates that range up to 20 kbps. The device LIN receiver works up to 100 kbps supporting in-  
line programming in normal mode. When the device is placed into fast mode, both the transmitter and receiver  
support up to 200 kbps. The device converts the LIN protocol data stream on the TXD input into a LIN bus signal  
using a current-limited wave-shaping driver which reduces electromagnetic emissions (EME). The receiver  
converts the data stream to logic level signals that are sent to the microprocessor through the RXD pin. The LIN  
bus has two states: dominant state (voltage near ground) and recessive state (voltage near battery). In the  
recessive state, the LIN bus is pulled high by the internal pull-up resistor (45 k) and a series diode.  
Ultra-low current consumption is possible using the sleep mode. The TLIN1431x-Q1 provides three methods to  
wake up from sleep mode: EN pin, WAKE pin and LIN bus in pin control mode and two in SPI control mode,  
WAKE pin and LIN bus. The device integrates a low dropout voltage regulator with a wide input from VSUP  
providing 5 V ±2.5% or 3.3 V ±2.5% with up to 125 mA of current depending upon system implementation.  
The TLIN1431x-Q1 integrates a window-based watchdog supervisor which has a programmable delay and  
window ratio determined by pin strapping or SPI communication. The device watchdog is controlled by pin  
configuration or SPI depending upon the state of pin 7 at power up. During power up, if pin 7 is externally pulled  
to ground, the device is configured for pin control and all digital IO voltage levels will be dependent upon VCC. If  
pin 7 is left floating or pulled up to VCC the device is controlled by SPI communication and the pin becomes the  
nCS pin. For the 5 V VCC version, the digital IO voltage levels are also determined during power up when the  
device is configured for SPI communication control. If pin 7 is left floating at power up, the internal pull up  
configures the device for 3.3 V SPI control. This means that all the digital IO for the device will be configured for  
3.3 V electrical levels. If the processor needs 5 V IO, a 500 kΩpull up resistor to the TLIN14315-Q1 VCC pin will  
configure all digital IOs 5 V electrical levels. This allows the 5 V version of the device to work with both 3.3 V  
processors or 5 V processors. SPI communication is used for device configuration. This sets not only the SPI  
pins but also WKRQ, nRST, FSO, nINT, TXD and RXD pins. In pin configuration, nRST is asserted high when  
VCC increases above UVCC and stays high as long as VCC is above this threshold and the device is not in restart  
mode.  
When the watchdog is controlled by the device pins, the state of the WDT pin determines the window time. WDI  
is used as the watchdog input trigger which is expected in the open window. If a watchdog error event takes  
place, the nWDR pin goes low to reset the processors. When using SPI writing FFh to register 15h,  
WD_INPUT_TRIG, during the open window restarts the watchdog timer. The supervised processor must trigger  
the WDI pin or WD_INPUT_TRIG register within the defined window. When using SPI, the nRST pin can  
become the watchdog event output trigger for the processor if programmed this way, but the nRST function is  
lost. The watchdog timer has a long initial window when entering standby, normal and fast modes that a  
watchdog input trigger is expected.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.2 Functional Block Diagram  
20  
1
VSUP  
19  
LIMP  
2
VBAT  
VCC  
3.3 V or 5 V LDO  
VINT  
INH  
Supply Monitors and  
control  
WKRQ/INH  
16  
WKRQ  
DIV_ON  
11  
VCC  
PV  
10  
+
-
SPI and Control  
VINT  
VINT  
HSS  
18  
WAKE  
17  
WAKE  
VINT  
CRC&  
SPI  
CNTL  
VINT  
45 k  
PIN/nCS  
7
PIN/nCS  
WDT/CLK  
WDI/SDI  
CNTL  
Register  
nRST  
3
nRST  
WDT/CLK  
4
WDI/SDI  
6
PWM/  
Timers  
WDOG  
nWDR/SDO  
5
nWDR/SDO  
Wake  
CNTL  
VINT  
SWE  
nINT  
EN/nINT  
8
EN  
Mode  
CNTL  
350 k  
VINT  
HSSC  
HSSC  
FSO  
HSSC/FSO  
9
350 k  
VINT  
VSUP  
TRX  
CNTL  
GND  
14  
45 k  
350 k  
TRX  
CNTL  
TXD  
12  
VINT  
LIN TRX  
LIN  
15  
RXD  
13  
8-1. High Level Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VCC  
VSUP  
VINT  
5.0 V or 3.3 V LDO  
VINT  
UV  
CNTL POR  
DET  
45 k  
nRST  
VINT can be 3.3 V or  
5 V and may not be  
the same as VCC  
VSUP  
LIMP  
VSUP  
VSUP/2  
Comp  
RXD  
EN_TRX  
45  
k
Filter  
WAKE  
WAKE  
Wake Up  
State &  
LIMP CTL  
Fault  
VINT  
LIN  
Detection  
& Protection  
350 k  
DR/  
Slope  
CTL  
Dominant  
State  
Timeout  
TXD  
GND  
8-2. Transceiver plus VREG Functional Block Diagram  
8.3 Feature Description  
8.3.1 LIN (Local Interconnect Network) Bus  
This high voltage input or output pin is a single wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 58 V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
8.3.1.1 LIN Transmitter Characteristics  
The transmitter meets thresholds and AC parameters according to the LIN specification. The transmitter is a low  
side transistor with internal current limitation and thermal shutdown. During a thermal shutdown condition, the  
transmitter is disabled to protect the device. There is an internal pull-up resistor with a serial diode structure to  
VSUP, so no external pull-up components are required for the LIN responder node applications. An external pull-  
up resistor and series diode to VSUP must be added when the device is used for a commander node application.  
In fast mode, the transmitter can support 200 kbps data rates.  
8.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are ratiometric with the device supply pin according to the LIN  
specification.  
The receiver is capable of receiving higher data rates (>100 kbps) than supported by LIN or SAEJ2602  
specifications. This allows the TLIN1431x-Q1 to be used for high speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system. In fast mode the receiver can support 200 kbps.  
8.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1 k) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification (ISO  
17987-4).  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-3 shows a Commander Node configuration and how the voltage levels are defined.  
VBAT  
Voltage drop across the  
diodes in the pullup path  
Simplified Transceiver  
VLIN_Bus  
VSUP  
VSUP/2  
VBattery  
RXD  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 k  
45 kΩ  
LIN  
LIN  
Bus  
VINT  
350 kꢀ  
TXD  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
8-3. Commander Node Configuration with Voltage Levels  
8.3.2 TXD (Transmit Input and Output)  
TXD is the interface to the node processor LIN protocol controller that is used to control the state of the LIN  
output. When TXD is low, the LIN output is dominant (near ground). When TXD is high, the LIN output is  
recessive (near VSUP). See 8-3. The TXD input structure is compatible with processors with 3.3 V and 5 V  
logic I/O. TXD has an internal pull-up resistor to an internal voltage rail that either matches the processor I/O  
voltage rail or the LDO output rail, VCC which is determined by the state of pin 7 at power up. The LIN bus is  
protected from being stuck dominant through a system failure driving TXD low through the dominant state  
timeout timer. The TXD pin is also used to help determine what mode to enter in pin control mode.  
8.3.3 RXD (Receive Output)  
RXD is the interface to the processors LIN protocol controller or SCI and UART, which reports the state of the  
LIN bus voltage. LIN recessive (near VSUP) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. This device architecture allows the device to be used with  
3.3 V and 5 V I/O processors. The RXD pin is a push-pull buffer and as such an external pull-up is not needed.  
In restart mode, the RXD pin is driven high. When VCC > UVCC for tRSTN_act, the device automatically transitions  
to standby mode causing RXD is then pulled low to indicate a wake-up request. The RXD pin can be  
programmed to toggle low or high to indicate a wake up request with a pulse width of tTOGGLE, see 7-6 as an  
example of this feature.  
8.3.4 WAKE (High Voltage Local Wake Up Input)  
WAKE pin is used for a high voltage device local wake up (LWU). This function is explained further in Local  
Wake Up (LWU) via WAKE Terminal section. The pin is both rising and falling edge trigger, meaning it  
recognizes a LWU on either edge of WAKE pin transition. The pin can be configured to accept a pulse, see 图  
8-46 for timing diagram of this behavior. WAKE pin is also used as part of the cyclic sensing wake, see Cyclic  
Sense Wake. Registers WAKE_PIN_CONFIG1 Register (Address  
=
11h) [reset  
=
04h] and  
WAKE_PIN_CONFIG2 Register (Address = 12h) [reset = 2h] provide the various configurations for the WAKE  
pin.  
8.3.5 WDT or CLK (Pin Programmable Watchdog Delay Input or SPI Clock)  
When configured for pin control, the WDT or CLK pin becomes the pin programmable watchdog delay input,  
WDT. This pin sets the upper boundary of the window watchdog. It can be connected to VCC, connected to GND,  
or left floating. When connected directly to VCC or GND or left open, the window frame takes on one of three  
value ranges: GND 32 ms to 48 ms, VCC 480 ms to 720 ms or left open 4.8 s to 7.2 s. The closed  
versus open windows are based upon 50%/50%.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
When configured for SPI control, the WDT/CLK pin becomes the SPI input clock, CLK. When configured as the  
CLK pin there is a 240 kΩpull-up to VINT enabled.  
8.3.6 WDI or SDI (Watchdog Timer Input or SPI Serial Data In)  
When configured for pin control, the WDI or SDI pin becomes the watchdog timer input trigger, WDI. This resets  
the timer with either a positive or negative transition from the processor. A filter time of tW is used to avoid false  
triggers.  
When configured for SPI control, the WDI/SDI pin becomes the SPI serial data input pin, SDI.  
8.3.7 PIN or nCS (Pin Watchdog Select or SPI Chip Select)  
This pin determines if the TLIN1431x-Q1 watchdog and mode changes are controlled by pin or SPI. At power up,  
the device monitors this pin and determine which method is to be used. When tied to GND, the device is pin  
programmable, see 8-5. When connected to a high-Z processor IO pin or pulled up, the device is set up to  
support SPI, see 8-6. In SPI control mode, if the LDO is being used to power up circuitry other than the  
processor a mismatch can take place. An example of this is using the TLIN14315-Q1 VCC to power up a 5 V  
sensor and the processor supports 3.3 V IO electrical levels. This is accomplished by letting the PIN/nCS pin  
float at power up which configures the internal IO electrical levels to VINT which is 3.3 V. For the IO to be 5 V, an  
external 500 kΩ resistor needs to be pulled up to the 5 V VCC pin. This makes the IO 5 V. See 8-4 to  
understand the three ways this pin can be connected for the 5 V LDO device.  
备注  
The behavior of the microprocessor used must be understood if connecting to this pin to control  
whether the device is to be pin controlled or SPI controlled. There is an internal pull-up that sets the  
device in SPI control mode. If the processor pin drives low during power up, the device is in pin control  
mode. To specify pin control mode place and external pull-down resister to ground.  
VCC  
(5 V)  
3.3 V  
3.3 V  
3.3 V  
5 V SPI  
PIN Mode  
3.3 V SPI  
PIN/nCS  
PIN/nCS  
PIN/nCS  
GND  
8-4. PIN/nCS configuration  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VSUP  
4.7 V UVSUPR 5.3 V  
3.5 V VnPORR 4.2 V  
nPOR  
VCC  
~ 4.7 V (5 V LDO)  
~ 2.9 (3.3 V LDO)  
Time for VCC to > UVCC is  
system dependent  
tLDOON  
Control mode  
determination  
(pin 7)  
Determined low and  
pin control mode  
tDETECT  
WKRQ/INH pin state  
determination  
WKRQ/  
INH  
tDET_INH  
VSUP  
WKRQ/INH pin state determination:  
If 1 M pulled to GND then INH pin  
tPWRUP  
INH  
VDET_INH  
VCC or VINT  
tPWRUP  
WKRQ  
WKRQ/INH pin state determination: If  
100k pulled to ground then WKRQ pin  
VDET_INH  
tRSTN_act  
tPWRUP  
Init  
Standby  
Mode  
Power up  
Restart  
tRSTN_act  
nRST  
RXD  
Off and floating  
When tLDOON times out the device checks the status of VCC to determine if a  
short or over-voltage is present. VCC may or may not have reached regulation  
8-5. Power up timing diagram for pin 7 connected to ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VSUP  
4.7 V UVSUPR 5.3 V  
3.5 V VnPORR 4.2 V  
nPOR  
> UVCC  
VCC  
~ 4.7 V (5 V LDO)  
~ 2.9 (3.3 V LDO)  
Time for VCC to > UVCC is  
system dependent  
tLDOON  
Control mode  
determination  
(pin 7)  
Determined high and SPI mode  
tDETECT  
I/O voltage  
determination  
(nCS pull up)  
I/O voltage set to pull up value  
3.3 V or 5 V  
tDETECT  
WKRQ/  
INH  
WKRQ/INH pin state  
tDET_INH  
VSUP  
determination  
tPWRUP  
INH  
WKRQ/INH pin state determination:  
If 1 M pulled to GND then INH pin  
VDET_INH  
VCC or VINT  
tPWRUP  
WKRQ  
WKRQ/INH pin state determination: If  
100k pulled to ground then WKRQ pin  
VDET_INH  
tPWRUP  
Init  
tRSTN_act  
Standby  
Mode  
Power up  
Restart  
tRSTN_act  
nRST  
RXD  
Off and floating  
When tLDOON times out the device checks the status of VCC to determine if a  
short or over-voltage is present. VCC may or may not have reached regulation  
8-6. Power up timing diagram for pin 7 pulled high up  
8.3.8 LIMP (Limp Home Output High Voltage Open Drain Output)  
The default configuration for the LIMP pin is used for the limp home function. When in the LIMP configuration,  
the pin is connected to external circuitry for a limp home function due to various fault conditions explained in the  
device functional mode sections. The LIMP pin can be configured as other functions in SPI control mode, but  
only performs the limp home function in pin control mode.  
8.3.8.1 LIMP in Pin Control Mode  
In pin control mode, LIMP is the only function the LIMP pin can perform. The LIMP pin turns on for all faults that  
cause the device to enter fail-safe mode to provide the limp home function. To exit fail-safe mode, a wake event  
must take place and the fault condition is cleared or the SWE timer times out. When any non-watchdog fault  
caused the device to enter fail-safe mode, the LIMP pin will turn off automatically after exiting fail-safe mode.  
When exiting fail-safe mode due to a watchdog fault, the LIMP pin is still on until the device transitions to  
standby mode and three correct watchdog input events take place thus turning off the LIMP pin. If this first event  
is missed, the device enters fail-safe.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.8.2 LIMP in SPI Control Mode  
In SPI control mode, the LIMP pin defaults to the limp home function. When fail-safe mode is enabled (default  
on) the pin behaves the same as stated in pin control mode with the exception of every watchdog error causing  
a reset. Programming register 8'h1A[3:2], LIMP_SEL_RESET, determines the condition for the LIMP pin to turn  
off. The three modes that the LIMP pin changes state is normal, fail-safe and standby mode. When in normal  
and standby mode the LIMP pin is off unless there is a watchdog failure event, which turns on the LIMP pin.  
When entering these two modes, there is an initial long window requiring a watchdog input trigger. This is treated  
as a WD failure and LIMP pin turns on if the window is missed. Any event that causes the device to enter fail-  
safe mode also turns on the LIMP pin. LIMP is turned off once the device enters standby mode from fail-safe  
mode except for a watchdog error as described previously. When fail-safe mode is disabled, a WD input failure  
causes the LIMP pin to turn on, and the device enters restart mode.  
If the LIMP function is not needed, this pin can be configured to support either a high side switch in SPI mode by  
using register 8'h1B[7:6] = 01b or to the INH function by setting register 8'h1B[7:6] = 10b. When configured as a  
high side switch, the pin can support the same load as the HSS pin, but does not have the open load and over  
current detection features. When used as a high side switch, timing control is configurable using on/off, PWM or  
timer based. When using PWM, PWM1 or PWM2 can be assigned. When using the timer, timer1 or timer2 and  
be assigned.  
8.3.9 nWDR/SDO (Watchdog Timeout Reset Output/SPI Serial Data Out)  
When configured for pin control, the nWDR/SDO pin becomes the watchdog reset output pin, nWDR. When the  
watchdog times out, this pin goes low for time of 15 ms and then releases back to VCC  
.
When configured for SPI control, the nWDR/SDO pin becomes the SPI serial data output pin, SDO.  
8.3.10 HSS (High-side Switch)  
This pin supports a high-side switch supporting up to a 100 mA load with 60 mA being typical with a 14 V VSUP  
.
In SPI mode, the HSS can be programmed to support a 200 Hz or 400 Hz 10-bit PWM. PWM1 or PWM2 can be  
assigned to the HSS. The HSS can be configured to use one of two timers that allows it to work with the WAKE  
pin. This supports cyclic sensing for sleep mode thus reducing sleep mode current. In pin mode this pin is  
controlled by the HSSC pin.  
The switch supports open load detection and over current detection. When an over current is detected, there is a  
filter time, tOCFLTR, to determine if over current is valid. If valid there is a shut off time, tOCOFF, time for the HSS to  
shut off. When the HSS shuts off due to an over current event the HSS has to be re-enabled. This is  
accomplished differently depending upon whether the device is in pin control or SPI control. If in SPI control it  
will also depend upon how the HSS is configured.  
Pin Control:  
HSS is controlled by the input signal on the HSSC pin.  
Once the over current fault is removed a high to low transition on the HSSC pin will re-enable the HSS  
output.  
SPI Control and HSS_EN; 8'h1E[7] = 1b (enabled):  
When HSS is configured as On or HSSC controlled, HSS_CNTL 8'h1E[6:4] = 000b or 101b, the HSS will  
have to have the HSS_EN; 8'h1E[7] set to 0b (disabled) and then reset to 1b (enabled) or will turn on when  
HSSC receives the signal described above in "Pin Control."  
When HSS is configured utilizing a PWM or Timer, HSS_CNTL 8'h1E[6:4] = PWM1, PWM2, Timer1 or  
Timer2, the HSS will automatically turn on.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
备注  
For resistive loads, an external capacitor to ground in not required.  
For inductive loads, an external 100 nF capacitor to ground is needed.  
When using the 10-bit PWM with the HSS or LIMP configured as a HSS, it is possible to select  
values that are unrealizable due to the on and off times of the switch. An example of this would be  
00 0000 0001b  
8.3.11 HSSC or FSO (High-side Switch Control or Function Output)  
In pin control mode, this pin is the high-side switch control pin. When in SPI control mode, the pin becomes a  
function output pin that can be selected from register 8'h29[3:1]. In SPI mode this pin can be switched back to  
HSSC input by using register 8'h1E[6:4] = 101b.  
8.3.12 WKRQ or INH (Wake Request or Inhibit)  
Upon power up, the state of this pin determines if it is WKRQ or INH. When externally pulled low with a 100 kΩ  
resistor, the WKRQ function is enabled which is an active high, digital output supporting the internal voltage rail  
(VINT) or VCC as described in PIN or nCS (Pin Watchdog Select or SPI Chip Select). When left floating or pulled  
low by a 1 MΩ resistor, this pin becomes the high voltage inhibit (INH) output which is used to support the  
enable pin of a power device. If a capacitor to ground is used off of this pin, it must be less than or equal to 50  
pF. When WKRQ is selected, the pin behavior is based off of the LDO, so any event that causes the LDO to be  
turned off will turn off the WKRQ pin.  
WKRQ  
100 k  
INH  
1 M  
Floating or 1 M pull-  
down make pin INH  
VSUP  
VSUP  
GND  
GND  
WKRQ/  
INH  
WKRQ/  
INH  
VINT  
VINT  
Control  
Control  
8-7. WKRQ or INH Pin Select  
8.3.13 PV  
This output pin is the divided down value from VBAT. The output is buffered to keep the output from exceeding  
the specified values when VBAT exceeds the recommended value. It is connected directly to the ADC of the  
microcontroller. It is connected by either an RC network or with just a capacitor to GND, see 8-8. It is switched  
on when a high is present on the DIV_ON pin. When off, the PV pin is in a high-Z state.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VBAT  
DIV_ON  
DIV_ON  
MCU  
ADC  
MCU  
GND  
GND  
VCC  
VCC  
470  
PV  
PV  
20 pF  
+
-
+
-
ADC  
10 nF  
On for 3.3 V  
Off for 5 V  
On for 3.3 V  
Off for 5 V  
GND  
GND  
GND  
GND  
8-8. PV Connections to MCU  
8.3.14 DIV_ON  
This is a logic input pin used to enable the voltage divider PV output. This is an active high pin and is disabled in  
certain modes of operation.  
8.3.15 VBAT (Battery Voltage)  
This pin is connected to the battery input prior to the reverse blocking diode. This pin is used in conjunction with  
the PV and DIV_ON pins.  
8.3.16 VSUP (Supply Voltage)  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse battery-blocking  
diode (see 8-3). The VSUP pin is a high-voltage-tolerant pin. Decoupling capacitors of 100 nF are  
recommended to be connected close to this pin to improve the transient performance. If there is a loss of power  
at the ECU level, the device has extremely low leakage from the LIN pin, which does not load the bus down. This  
is optimal for LIN systems in which some of the nodes are unpowered (ignition supplied) while the rest of the  
network remains powered (battery supplied). When VSUP drops low enough the regulated output drops out of  
regulation. The LIN bus works with a VSUP as low as 5.5 V, but at a lower voltage, the performance is  
indeterminate and not guaranteed. If VSUP voltage level drops enough, it triggers the UVSUP, and if it keeps  
dropping, at some point it passes the POR threshold.  
8.3.17 GND (Ground)  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage. If there is a loss of ground at the ECU level, the  
device has extremely low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN  
systems in which some of the nodes are unpowered (ignition supplied) while the rest of the network remains  
powered (battery supplied).  
8.3.18 EN or nINT (Enable Input or Interrupt Output)  
When configured as pin control, this pin becomes the transceiver enable control, EN. EN controls the operational  
modes of the device. When EN is high, the device can enter normal or fast operating modes allowing a  
transmission path from TXD to LIN and from LIN to RXD. When EN is low, the device can enter standby or sleep  
mode depending upon the state of the TXD pin. The device can enter normal mode only after wake up. EN has  
an internal pull-down resistor to ensure the device remains in low power mode even if EN floats. EN should be  
held low until VSUP reaches the expected system voltage level.  
When configured as SPI control, this pin becomes the processor interrupt pin. When the TLIN1431x-Q1 requires  
the attention of the processor, this pin is pulled low.  
8.3.19 nRST (Reset Input and Reset Output)  
The nRST pin is a bi-directional open-drain low side driver that serves three functions, a VCC monitor output for  
under-voltage events, restart mode indicator and a device input reset. The pin is nRST in Pin Control Mode and  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
the defaulted function for SPI mode. This pin is internally pulled up to VINT by a 45 kΩ resistor. VINT represents  
the TLIN1431-Q1 IO voltage level and may or may not be VCC. It is recommended to use an external 10 kΩpull-  
up to the processor IO voltage rail. The pin can determine when an input pulse of tnRSTIN is applied causing the  
device to enter restart mode. When an under-voltage event takes place, the nRST is latched low after a 30 µs  
filter and the device transitions to restart mode, fail-safe mode disabled, or fail-safe mode after the tUVFLTR has  
expired. When in restart and VCC exceeds the UVCCR threshold, the tRSTN_act timer starts. After this timer times  
out, the device transitions to standby mode, and the nRST pin is released. If a thermal shutdown event takes  
place, the signal is pulled to ground. When the device is configured by SPI, the pin can be programmed to  
become the watchdog output trigger to reset the processor. When the watchdog times out, this signal is pulled  
low for time of tNRST_TOG and then released back to VCC. If both are needed for SPI configuration it is  
recommended to add an external circuit off the LIMP pin to serve as the watchdog output trigger to reset the  
processor. Note the LIMP pin output is a high voltage output based upon VSUP and care must be taken when  
connecting to a lower voltage device.  
8.3.20 VCC (Supply Output)  
The VCC terminal is the regulated output based on the applicable voltage, 3.3 V or 5 V with up to 125 mA from  
12 V supply voltage. This pin is used to power external devices and when using high-k boards and thermal  
management best practices full capability can be realized. The regulated voltage accuracy is ±2.5%.  
When powering up the TLIN1431x-Q1, VCC must be above UVCC and without any faults. VCC is used  
to determine the state of several pins that establishes several device functions, such as pin control or  
SPI control. If a fault, such as VCCSC, is present at power up the device cannot determine the state of  
these pins. Fault needs to be cleared and power up performed again.  
8.3.21 VBAT Voltage Divider  
The voltage divider is a reverse polarity protected resistor divider connected to VBAT with fast response times.  
The divider is based upon the LDO value. For 5 V VCC, the ratio is 1:7. For 3.3 V VCC, the ratio is 1:9. The  
voltage divider is activated by a high on the DIV_ON pin. The divided output voltage is available on the PV pin  
for the microcontroller to read. See 8-1 for the modes that the DIV_ON functionality is enabled and disabled.  
When VBAT exceeds 28 V for the 5 V LDO and 20 V for the 3.3 V LDO the voltage is clamped to prevent  
damage to microcontroller. See 8-9 and 8-10 for the relationship between VBAT and PV output voltage.  
8-1. Voltage Divider Functionality Control by Mode  
Mode of Operation  
DIV_ON  
PV Output State  
Low  
Off  
On  
Off  
Off  
Normal/Fail-Safe/Fast/ Standby  
High  
Low  
Sleep/Pin Init/SPI Init/Restart  
High  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
5
4.5  
4
3.5  
3
2.5  
2
40°C  
25°C  
50°C  
85°C  
105°C  
125°C  
1.5  
1
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
VBAT (V)  
8-9. VBAT vs PV for TLIN14315RGYQ1 for Different Ambient Temperatures  
3.5  
3
2.5  
2
1.5  
1
- 40°C  
25°C  
50°C  
85°C  
105°C  
125°C  
0.5  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
VBAT (V)  
8-10. VBAT vs PV for TLIN14315RGYQ1 for Different Ambient Temperatures  
8.3.22 Protection Features  
The device has several protections features that are described as follows.  
8.3.22.1 Sleep Wake Error (SWE) Timer  
The TLIN1431x-Q1 implements a sleep wake error timer, tINACT_FS. The purpose of the SWE timer is to keep the  
device and the node from being stuck in a high-power state. This timer is used to place the device into fail-safe  
or sleep mode due to fault conditions. In Pin mode, the SWE timer starts automatically when entering fail-safe  
and restart modes. A wake event causes the device to move from sleep mode to restart mode and if VCC does  
not exceed UVCC before the SWE timer times out the device re-enters sleep mode. This happens in either SPI or  
pin control modes.  
In SPI mode, the SWE timer, when enabled, automatically starts when the device enters fail-safe, restart and  
standby modes. When the device leaves restart mode and enters standby mode, the processor must initiate a  
SPI transaction before the SWE timer times out or the device will enter fail-safe mode if enabled or sleep mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
This timer can be disabled at register 8'h1C[7] = 1. If the SWE timer duration is changed, this is accomplished  
register 8'h1C[6:3]. It can be changed from default of 5 min to between 30 sec to 10 min.  
8.3.22.2 Device Reset  
The TLIN1431 device can be reset in various ways. In SPI mode, there are three methods to reset the device.  
Two are accomplished with SPI commands soft reset and hard reset. Soft reset and hard reset are  
accomplished by writing 02h or 01h respectively to DEVICE_RST (Address 19h) register. nRST pin can also be  
used to reset the device by pulling nRST low for tnRSTIN and releasing the pin. nRST pin reset works for both SPI  
and PIN mode.  
When performing a soft reset (SPI Mode), the following takes place:  
Device transitions to restart mode, nRST pin is pulled low for tNRST_TOG and then transitions to standby mode.  
All registers are reset to default values  
All pending interrupts are cleared (unless a fault persists). PWRON interrupt is not cleared by soft reset.  
VCC stays in the same state it was in  
INH stays ON  
When performing a hard reset (SPI Mode), the following takes place:  
Similar behavior as power-up  
Device transitions to Init mode VCC is re-enabled, INH/WKRQ is re-sampled, SPI/PIN mode determination  
is made  
All registers are reset to default values  
PWRON flag is set is with a hard reset (if previously cleared)  
When pulling nRST pin low and releasing (SPI or PIN Mode), the following takes place:  
Device transitions to restart mode, nRST pin is pulled low for tNRST_TOG and then transitions to standby mode.  
All registers retain the same value as before nRST reset  
VCC stays in the same state it was in  
All pending interrupts are retained  
INH stays ON  
8.3.22.3 TXD Dominant Time Out (DTO)  
During normal mode, if TXD is inadvertently driven permanently low by a hardware or software application  
failure, the LIN bus is protected by the dominant state timeout timer. This timer is triggered by a falling edge on  
the TXD pin. If the low signal remains on TXD for longer than tTXD_DTO, the transmitter is disabled, thus allowing  
the LIN bus to return to recessive state and communication to resume on the bus. The protection is cleared and  
the tTXD_DTO timer is reset by a rising edge on TXD. The TXD pin has an internal pull-up to make sure the device  
fails to a known recessive state if TXD is disconnected. During this fault, the transceiver remains in normal mode  
(assuming no change of stated request on EN), the RXD pin reflects the LIN bus and the LIN bus pull-up  
termination remains on. The TLIN1431x-Q1 can turn off TXD dominant state timeout when in SPI mode by using  
register 8'h1D[5] = 1b.  
8.3.22.4 Bus Stuck Dominant System Fault: False Wake Up Lockout  
The device contains logic to detect bus stuck dominant system faults and prevents the device from waking up  
falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus. If the bus  
is dominant, the wake-up logic is locked out until a valid recessive on the bus clearsthe bus stuck dominant,  
preventing excessive current use. 8-11 and 8-12 show the behavior of this protection.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
RXD  
EN/SPI  
LIN Bus  
< tLINBUS  
tLINBUS  
< tLINBUS  
8-11. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wake Up  
RXD  
EN/SPI  
LIN Bus  
tLINBUS  
tLINBUS  
tLINBUS  
tCLEAR  
< tCLEAR  
8-12. Bus Fault: Entering Sleep Mode with Bus Stuck Dominant Fault, Clearing, and Wake Up  
8.3.22.5 Thermal Shutdown  
The TLIN1431x-Q1 has multiple thermal sensors in the device to monitor the junction temperature of the die.  
The VCC LDO, LIN transmitter, and high side switch/LIMP cells are monitored. Depending upon which cell's  
junction temperature are exceeded will determine the action taken by the device. Exceeding the maximum  
junction temperature for the LIN transmitter or LDO will cause the LIN transmitter into the recessive state and  
turns off the VCC regulator. The nRST pin is pulled to ground during a LIN or VCC LDO TSD event. Once the over  
temperature fault condition has been removed and the junction temperature has cooled beyond the hysteresis  
temperature, the transmitter can be re-enabled. Exceeding the max junction temperature of the high side switch  
or LIMP cells will cause the cells to be turned off.  
In pin control mode, a TSD event on the LIN transceiver or VCC LDO causes the device enters a fail-safe mode.  
Once the TSD fault has been removed and a wake event takes place, the device enters restart mode. If a wake  
event takes place and the TSD fault has not cleared, the device enters sleep mode immediately. Exceeding the  
max junction temperature for the high side switch and LIMP high side switch cause the switches to be turned off  
until junction temperature falls below TSDF  
.
In SPI mode, there are two interrupts that can be set due to a thermal event. If the LIN transceiver or VCC LDO  
junction temperature is exceeded, the TSD_VCC_LIN interrupt is set and the devices takes the action previously  
described. If the high side switch or LIMP high side switch max junction temperature is exceeded, the  
TSD_HSS_LIMP interrupt is set. The device takes the action previously described. In SPI mode, the device  
defaults to support fail-safe mode. The device enters fail-safe mode upon an TSD_VCC_LIN event and LIMP is  
turned on (see 8-25). Exiting fail-safe mode is the same as when the device is pin controlled. When fail-safe  
mode is disabled, the device enters sleep mode upon a TSD_VCC_LIN event.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.22.6 Under-voltage on VSUP  
The device monitors VSUP for two low voltage thresholds, UVSUP and VnPOR. When VSUP drops below UVSUPF  
and is above VnPORF, the device is in an under-voltage power state. Once VSUP ramps above UVSUPR, the  
device enters restart mode and turns on the VCC LDO, see Restart Mode. When VSUP drops below VnPORF, the  
device goes into a power off state. Once VSUP ramps above VnPORR, the device prepares the digital core to wake  
up. The device waits for VSUP to rise above UVSUPR and then turns on the VCC LDO. Once VSUP and VCC are  
above their under-voltage levels, the device enters Init mode, see Init Mode. The described under-voltage events  
are also considered brown out events and more information can be found at Device Brownout information.  
8.3.22.7 Unpowered Device and LIN Bus  
In automotive applications, some LIN nodes in a system can be unpowered (ignition supplied) while others in the  
network remains powered by the battery. The device has extremely low unpowered leakage current from the  
bus, so an unpowered node does not affect the network or load it down.  
8.3.22.8 Floating Pins  
There are internal pull ups and pull downs on critical terminals to place the device into known states if the  
terminal floats. See 8-2 for details on terminal bias conditions.  
8-2. Internal Pull-ups and Pull-downs on Device Pins  
Pin  
TXD  
Pull-up or Pull-down  
Typical Value  
Comment  
Pull-up  
350 kΩ  
WDT/CLK  
Pull-up  
When device configured for SPI control, CLK  
240 kΩ  
WDI/SDI  
PIN/nCS  
Pull-up  
Pull-up  
240 kΩ  
When device configure for SPI control, nCS  
240 kΩ  
DIV_ON  
Pull-down  
370 kΩ  
LIN  
Pull-up  
45 kΩ  
EN/nINT  
HSSC/FSO  
Pull-down  
Pull-down  
350 kΩ  
350 kΩ  
45 kΩ  
nRST  
Pull-up  
8.3.22.9 VCC Voltage Regulator  
The device has an integrated high-voltage input LDO that operates over a 5.5 V to 28 V input voltage range for  
both 3.3 V and 5 V VCC. The device has an output current capability of 125 mA and support fixed output voltages  
of 3.3 V (TLIN14313-Q1) or 5 V (TLIN14315-Q1). It features thermal shutdown and short-circuit protection to  
prevent damage during over-temperature and over current conditions  
8.3.22.9.1 Under or Over Voltage and Short Circuit  
The VCC pin is the current limited regulated output based supporting an accuracy of ±2.5%. In the event that the  
regulator drops out of regulation, the output tracks the input minus a drop based on the load current. When the  
input voltage drops below the UVSUP threshold, the regulator turns off until the input voltage returns above the  
UVSUPR level. When 5 V LDO is used, the device uses the voltage regulator during Init mode to determine the  
WKRQ/INH function, and the IO voltage. The device monitors VCC for under-voltage, over-voltage, short to  
ground and thermal events. The device control method and whether fail-safe mode is enabled determine the  
behavior of the of the device for these events. Fail-safe mode is always active when the device is in pin control.  
In SPI control, the state diagram shows two paths: fail-safe mode enabled and fail-safe mode disabled. The path  
followed depends on whether fail-safe mode is enabled or disabled in 8'h17[0] FSM_DIS.  
For an under-voltage event, VCC is less than or equal to UVCCF. After a 30us filter time, the device pulls nRST  
low and after the tUVFLTR time, the interrupt flag is set and device transitions to restart mode, if fail-safe disabled,  
or fail-safe mode. When entering either mode, the SWE timer tINACT_FS starts, and, in SPI control, the mode  
counter increments and the appropriate interrupt flags are set. To exit fail-safe mode, the under-voltage has to  
clear and a wake event takes place prior to the SWE timer timing out. If the under-voltage event has not cleared  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
when the wake event takes place or if the SWE timer times out, the device enters sleep mode. 8-13 shows  
how a UVCC event is handled..  
Any Mode  
VCC LDO on  
VCC drops below  
UVCC threshold >  
30 µs filter  
nRST latched low  
tUVFLTR timer starts  
tUVFLTR  
expires  
No  
VCC < UVCC  
Current Mode  
Yes  
0b =  
Enabled  
1b =  
Disabled  
Fail-safe Mode  
FSM CNTR + 1  
nRST: low  
Restart Mode  
Restart CNTR +1  
nRST: low  
8'h17[0]  
FSM_DIS  
SWE starts  
Yes  
Execute  
FSM_CNTR_ACT  
8'h17[7:4]  
Restart CNTR  
Exceeded?  
Yes  
FSM CNTR  
Exceeded?  
No  
No  
VCC  
<
UVCC  
VCC < UVCC  
Wake Event  
VCC UVCC  
and tRSTN_act  
times out  
VCC  
UVCC  
<
VCC < UVCC  
Sleep Mode  
Standby Mode  
VCC  
VCC UVCC  
UVCC  
and tRSTN_act  
times out  
Restart Mode  
Restart CNTR +1  
nRST: low  
If the exit events do not take place before the SWE  
timer timeouts the device will enter sleep mode  
8-13. UVCC flow chart  
备注  
If an over-voltage or short circuit event takes place while the device is in fail-safe mode due to a  
under-voltage event on VCC, the device will behave as shown in the OVCC and VCCSC flow charts.  
For an over-voltage event, OVCC, the device turns off the VCC LDO, and transitions to either sleep mode, fail-  
safe mode disabled, or fail-safe mode. When a wake event takes place, the VCC LDO is turned on for tLDOON to  
determine if the over-voltage is still present. If cleared, the device enters restart mode from either sleep or fail-  
safe modes. When in fail-safe mode, if the over-voltage has not cleared when the wake event takes place the  
device transitions to sleep mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
备注  
If an over-voltage event takes place while the device is in Init mode the following will happen:  
The device will sample the pins and determine whether the device is Pin or SPI control  
The device will determine the input/output voltage level if the TLIN14315-Q1  
The device will determine if WKRQ/INH pin is WKRQ or INH  
The device will transition to fail-safe mode  
Any Mode  
VCC LDO on  
Yes  
Current Mode  
VCC < OVCC  
No  
Turn off VCC LDO  
& set interrupt  
0b =  
Enabled  
Fail-safe Mode  
FSM CNTR + 1  
nRST: low  
8'h17[0]  
FSM_DIS  
SWE starts  
1b =  
Disabled  
Sleep Mode  
nRST: low  
Execute  
FSM_CNTR_ACT  
8'h17[7:4]  
Yes  
FSM CNTR  
Exceeded?  
No  
Wake Event  
Turn on VCC tLDOON  
~ 3 ms  
Yes  
VCC > OVCCF  
No  
Restart Mode  
nRST: low  
If the exit events do not take place before the SWE timer  
timeouts the device will enter sleep mode  
8-14. OVCC flow chart  
For a short to ground event, VCCSC, the device turns off the VCC LDO and transitions to either sleep mode, fail-  
safe mode disabled, or fail-safe mode. When a wake event takes place, the VCC LDO is turned on for tLDOON to  
determine if the short to ground is still present. If cleared, the device enters restart mode from either sleep or fail-  
safe modes. When in fail-safe mode, if the short to ground has not cleared when the wake event takes place the  
device will transition to sleep mode.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
备注  
If a short circuit event is detected while the device is in Init mode the device will transition to sleep  
mode. The device will not have determined the state of the pins and default to Pin control and will  
need to be powered cycled if the default state is different than what is expected.  
Any Mode  
VCC LDO on  
No  
Current Mode  
VCC < VCCSC  
Yes  
tVSC timer starts  
~ 100 µs  
Turn off VCC LDO  
& set interrupt  
0b =  
Enabled  
Fail-safe Mode  
FSM CNTR + 1  
nRST: low  
8'h17[0]  
FSM_DIS  
SWE starts  
1b =  
Disabled  
Sleep Mode  
nRST: low  
Execute  
FSM_CNTR_ACT  
8'h17[7:4]  
Yes  
FSM CNTR  
Exceeded?  
No  
Wake Event  
Yes  
Turn on VCC tLDOON  
~ 3 ms  
Yes  
VCCSC  
present  
No  
Restart Mode  
nRST: low  
If the exit events do not take place before the SWE timer  
timeouts the device will enter sleep mode  
8-15. VCCSC, short to ground  
8.3.22.9.2 Output Capacitance Selection  
For stable operation over the full temperature range and with load currents up to 125 mA on VCC, a certain  
capacitance is expected, and depends upon the minimum load current. To support no load to full load, a value of  
10 µF and ESR smaller than 2 Ω is needed. For 50 µA to full load, a smaller capacitance can be used but is  
system dependent and should be selected that will meet LIN to VCC cross talk compliance during DPI testing.  
The low ESR recommendation is to improve the load transient performance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.22.9.3 Low-Voltage Tracking  
At low input voltages, the regulator drops out of regulation and the output voltage tracks input minus a voltage  
based on the load current (IL) and switch resistor. This tracking allows for a smaller input capacitance and can  
possibly eliminate the need for a boost converter during cold-crank conditions.  
8.3.22.9.4 Power Supply Recommendation  
The device is designed to operate from an input-voltage supply range between 5.5 V and 28 V. This input supply  
must be well regulated, if the input supply is located more than a few inches from the device. The recommended  
minimum capacitance at the pin is 100 nF. The max voltage range is for the LIN functionality. Exceeding 24 V for  
the LDO reduces the effective current sourcing capability due to thermal considerations.  
8.3.22.10 Watchdog  
The TLIN1431x-Q1 has an integrated watchdog function. This can be programmed by pin control or SPI  
communication control based upon the state of the PIN or nCS pin at power up. The device defaults to windows  
based watchdog at power up. When entering normal and fast modes, the programmed watchdog timer starts  
based upon the pin configuration for pin mode or register configuration in SPI control mode. When entering  
standby mode from restart mode, there is a nRST transition from low to high. This transition starts the tINITWD  
timer. A WD trigger input must take place prior to this initial long window times out. If WD is disabled in standby  
mode the same long window is implemented in normal mode. The LIMP pin provides a limp home capability  
when connected to external circuitry. When in sleep mode, the limp pin is off. When the error counter reaches  
the watchdog trigger event level, the LIMP pin turns on connecting VSUP to the pin as described in the LIMP pin  
section and the device transitions to restart mode at which time the nRST pin will be pulled low.  
8.3.22.10.1 Watchdog in Pin Control Mode  
The state of the WDT pin determines the window watchdog timing for three different windows. Timeout watchdog  
is not available in pin control. The watchdog timer starts once the device has entered standby. The mode the  
device enters is based upon other pins, EN and TXD. Fast mode can be used as a software development mode  
as the WD is enabled but does not cause any action to take place. The watchdog feature cannot be disabled in  
pin control mode. See 8-16 for state diagrams on how the WD behaves.  
Power up  
Init Mode - Pin  
Restart Mode  
1st WD trigger by  
Standby Mode  
tINITWD and then based  
WD = On  
upon Pin program  
Valid  
Restart Mode  
nRST = low  
nWDR = low  
Invalid  
WD  
Triggered  
15 ms  
tNRST_TOG  
times out  
Normal/Fast  
Mode  
WD = On  
Standby Mode  
WD = On  
1st WD trigger by tINITWD  
and then based upon  
Pin program  
8-16. Watchdog state diagram in pin mode  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.3.22.10.2 Watchdog in SPI Control Mode  
In SPI control, the window has extensive configurability including the ability to select the timeout watchdog.  
Watchdog is default enabled for standby mode, but can be disabled by setting register 8'h14[0] = 1b. Register  
8'h13[7:6] can be set to 00b to disable the WD. There is a WD error counter available in SPI control mode, see  
Watchdog Error Counter for description of this counter. When a WD error occurs and if the WD error counter  
reaches programmed count, the device transitions to restart mode and pulls nRST low for tNRST_TOG. Once this  
time has been met, the device transitions to standby mode and sets nRST pin high. See 8-17 and 8-18 for  
state diagrams on how the WD behaves.  
Power up  
Init Mode  
Restart Mode  
SPI  
CMD  
Standby Mode  
8'h14[0] = 0b  
WD = Timeout – Long  
first window, tINITWD  
After nRST  
released long  
window starts  
Valid  
WD CNTR -1  
Invalid Long  
First window  
Invalid  
WD CNTR +1  
Set WD interrupt  
WD Triggered  
No  
WD CNTR  
limit met?  
Standby Mode  
SPI  
CMD  
Current Mode  
WD = Timeout – Long  
first window, tINITWD  
Start SWE timer  
nRST = high  
Normal Mode  
WD = On as per  
programming  
Yes  
Restart Mode  
RSTRT CNTR +1  
Start SWE mer  
Restart  
Mode  
1b =  
disabled  
Sleep Mode  
RSTRT CNTR  
cleared  
Yes  
RSTRT CNTR  
limit met?  
FSM_DIS  
8'h17[0]  
0b =  
enabled  
No  
Fail-safe  
Mode  
Fail-safe Mode  
FSM CNTR +1  
Start SWE mer  
RSTRT CNTR  
cleared  
nRST pulled low  
for tNRST_TOG  
Note: Fast mode WD sets flag but takes no action  
Wake  
event  
Execute  
FSM_CNTR_ACT  
8'h17[7:4]  
Yes  
FSM CNTR  
limit met?  
8-17. Watchdog state diagram in SPI mode; Standby Mode Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Power up  
Init Mode - SPI  
Restart Mode  
SPI  
CMD  
Standby Mode  
8'h14[0] = 0b  
WD = Timeout – Long  
first window, tINITWD  
After nRST  
released long  
window starts  
Valid  
WD CNTR -1  
Invalid Long  
First window  
Invalid  
WD CNTR +1  
Set WD interrupt  
WD Triggered  
No  
WD CNTR  
Exceeded?  
Normal Mode  
SPI  
CMD  
Standby Mode  
WD = off  
Start SWE timer  
nRST = high  
Current Mode  
WD =long first  
window, tINITWD, and  
then on as per  
Yes  
programming  
Restart Mode  
RSTRT CNTR +1  
Restart  
Mode  
1b =  
disabled  
Sleep Mode  
RSTRT CNTR  
cleared  
Yes  
FSM_DIS  
8'h17[0]  
RSTRT CNTR  
limit met?  
0b =  
enabled  
No  
Fail-safe  
Mode  
nRST pulled low  
for tNRST_TOG  
Fail-safe Mode  
FSM CNTR +1  
Start SWE mer  
RSTRT CNTR  
cleared  
Note: Fast mode WD sets flag but takes no action  
Wake  
event  
Execute  
FSM_CNTR_ACT  
8'h17[7:4]  
Yes  
FSM CNTR  
Exceeded?  
8-18. Watchdog state diagram in SPI mode; Standby Mode Disabled  
备注  
When the mode is changed while the timeout or window watchdog is running, it restarts once  
entering the new mode, fast, normal and standby.  
If the watchdog configuration is changed on-the-fly while the watchdog is running, it resets the  
error counter to 1 and resets the watchdog timers.  
8.3.22.10.3 Watchdog Error Counter  
The TLIN1431x-Q1 has a watchdog error counter used in SPI control mode. This counter is an up down counter  
that increments for every missed window or incorrect input watchdog trigger event. In SPI control, the error  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
counter is set at one by default. The counter decrements for every correct input trigger and increments on every  
incorrect input trigger, but it never drops below zero. When the programmed counter is reached, the device  
transitions to restart mode, error counter is reset back to one, and the nRST pin pulls low for tNRST_TOG. At the  
end of this time, the device transitions back to standby mode releasing the nRST pin to high. This counter can be  
changed to 1 (every error), 5, 9, or 15 using 8'h16[7:6]. The error counter can be read at register 8'h14[4:1]. In  
pin control, nWDR is pulled low for every watchdog error.  
If the watchdog error count is set at one, the first input failure causes the device to transition to restart. This  
allows the system to check the counter after the first input trigger to see if a valid input was sent. Every incorrect  
watchdog input causes the interrupt to be set and nINT is pulled low.  
8.3.22.10.4 Pin Control Mode  
When using pin control for programming the watchdog, the WDT pin is used for this function. WDT sets the total  
window size of the window watchdog. It can be connected to VCC, GND or left open. See 8.3.5 or 6.7 for  
details on window timings. The ratio between the upper (open window) and lower (closed window) is 50/50. WDI  
pin is used by the controller to trigger the watchdog input. The WDI input is an edge-triggered event and  
supports both rising and falling edges. A filter time of tW is used to avoid noise or glitches causing a false trigger.  
A pulse would be treated as a two input trigger events and cause the nWDR and nRST pins to be pulled low.  
nWDR pin can connected to the controller reset pin and if a watchdog event happens this pin is pulled low. The  
nRST pin may also be used for this function but includes other possible errors, like under-voltage or entering  
restart mode.  
8.3.22.10.5 SPI Control Programming  
In SPI control, registers 8h13 through 8h16 control the watchdog function. The device watchdog can be set  
as a timeout watchdog or window watchdog by setting 8h13[7:6] to the method of choice. The timer is based  
upon register 8h13[5:4] WD prescaler and register 8h14[7:5] WD timer and is in ms. See 8-3 for the  
achievable times.  
8.3.22.10.6 Watchdog Register Relationship  
8-3. Watchdog Window and Timeout Timer Configuration (ms)  
WD_TIMER  
Register 8'h13[5:4] WD_PRE  
(ms)  
Register  
8'14[7:5]  
00  
01  
10  
11  
000  
4
8
12  
96  
16  
128  
001  
32  
64  
010  
128  
256  
384  
512  
011  
256  
384  
512  
768  
100  
512  
1024  
4096  
20240  
RSVD  
1536  
6144  
RSVD  
RSVD  
2048  
8192  
RSVD  
RSVD  
101  
2048  
10240  
RSVD  
110  
1111  
8.3.22.10.7 Watchdog Timing  
The TLIN1431x-Q1 provides two methods for setting up the watchdog when in SPI communication mode:  
window watchdog or timeout watchdog. If more frequent (i.e. <16 ms) input trigger events are desired it is  
suggested to use the timeout watchdog. When using timeout watchdog, the input trigger can occur anywhere  
before the timeout and is not tied to an open window.  
When using the window watchdog, it is important to understand the closed and open window aspects. The  
device is set up with a 50%/50% open and closed window and is based on an internal oscillator with a ± 10%  
accuracy range. To determine when to provide the input trigger, this variance needs to be considered. For  
example, using the 64 ms nominal total window provides a closed and open window that are each 32 ms. Taking  
the ±10% internal oscillator into account means the total window could range from 57.6 ms to 70.4 ms. The  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
closed and open window could then range from 22.4 ms to 35.2 ms. From the 57.6 ms total window and 35.2 ms  
closed window, the total open window is 22.4 ms. The trigger event needs to happen at 46.4 ms ± 11.2 ms. The  
same method is used for the other window values. 7-8 provides the above information graphically.  
8.3.23 Channel Expansion  
The TLIN1431x-Q1 has the ability to control an external LIN or CAN FD transceiver or a general purpose LIN or  
CAN FD SBC. The processor controls the mode of the external transceiver by using the FSO pin from the  
TLIN1431x-Q1 to the external transceiver. This is accomplished using the TLIN1431-Q1 SPI port, controlling the  
FSO pin as an EN/STB/nSTB/S output pin to the external transceiver. This capability allows the system designer  
to develop nodes with many different configurations, for example:  
Two LIN transceivers by using a simple eight pin LIN transceiver (see 8-19)  
Two LIN transceivers with two WAKE and INH capability by using an enhanced eight pin LIN transceiver (see  
8-20)  
Two LIN transceivers with two LDO outputs by using an eight pin LIN SBC (see 8-21)  
One LIN and one CAN FD transceiver by using a simple eight pin CAN FD transceiver (see 8-22)  
One LIN and one CAN FD transceiver with two LDO outputs by using a CAN FD SBC (see 8-23)  
8.3.23.1 Channel Expansion for LIN  
The TLIN1431x-Q1 has the ability to control an external LIN transceiver like the TLIN1039-Q1 or TLIN1021A-Q1  
or a general purpose LIN SBC like the TLIN1028x-Q1. The FSO pin is configured as a general purpose output  
pin. The FSO output level can be changed to meet the needs of the transceiver. The supply voltage of this  
transceiver can be connected to VSUP or controlled by the HSS pin from the TLIN1431x-Q1. To configure the  
device to support an external LIN device the following registers and bits need to be configured:  
Register 8'h29[3:1] = 110b sets the FSO pin to a general-purpose output pin.  
Register 8'h29[4] sets the voltage level of the FSO pin when configured as a general-purpose output pin and  
can be used to control the EN pin of an external LIN transceiver or SBC.  
To use the high-side switch (HSS) as the power to the external transceiver, turn on HSS. Note that when the  
device enters sleep mode, the HSS pin is turned off.  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
100 nF  
470  
100 nF  
1 M pull-down or  
leave floating for INH  
3.3 V  
LDO  
VDD33  
VBAT  
VSUP  
1 M  
INH  
VCC = 3.3V/5V  
10 µ F  
500 k  
nCS  
CLK  
SDI  
VDD  
WAKE  
LIMP  
SDO  
VDD  
TLIN1431x-Q1  
10 k  
I/O  
nRST  
nINT  
DIV_ON  
PV  
Micro  
20 pF  
LIN  
TXD  
RXD  
FSO  
EN  
HSS  
VSUP  
LIN Controller  
Or  
SCI/UART  
TXD  
RXD  
LIN  
TLIN1039  
8-19. Channel Expansion: LIN Transceiver  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
100 nF  
470  
1 M pull-down or  
leave floating for INH  
100 nF  
3.3 V  
LDO  
VDD33  
VBAT  
VSUP  
VCC = 3.3V/5V  
1 M  
INH/  
WKRQ  
10 µ F  
500 k  
nCS  
CLK  
VDD  
HSS  
SDI  
SDO  
VDD  
WAKE  
LIMP  
TLIN1431x-Q1  
10 k  
I/O  
nRST  
nINT  
DIV_ON  
PV  
Micro  
20 pF  
LIN  
TXD  
RXD  
VSUP  
FSO  
LIN Controller  
Or  
SCI/UART  
WAKE 2  
VSUP  
WAKE EN  
INH  
LIN  
TXD  
TLIN1021A  
RXD  
8-20. Channel Expansion: Enhanced LIN Transceiver  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
100 nF  
470  
1 M pull-down or  
leave floating for INH  
100 nF  
3.3 V  
LDO  
VDD33  
VBAT  
VSUP  
VCC = 3.3V/5V  
1 M  
INH  
10 µ F  
500 k  
nCS  
CLK  
SDI  
VDD  
HSS  
SDO  
VDD  
WAKE  
LIMP  
10 k  
TLIN1431x-Q1  
nRST  
nINT  
I/O  
DIV_ON  
PV  
Micro  
20 pF  
LIN  
TXD  
RXD  
VSUP  
FSO  
EN  
LIN Controller  
Or  
SCI/UART  
VSUP  
VCC = 3.3V/5V  
LIN  
TXD  
RXD  
TLIN1028  
nRST  
8-21. Channel Expansion: LIN SBC  
8.3.23.2 Channel Expansion for CAN Transceiver  
It is possible to add an external CAN transceiver or general purpose CAN SBC. For a simple CAN transceiver,  
the 5 V VCC from the TLIN14315-Q1 can power the external transceiver. When the TLIN14315-Q1 enters sleep  
mode the LDO is turned off which turns off the 5 V to the transceiver. There are other instances that this can take  
place depending upon various fault conditions like thermal shut down. Using the 3.3 V version of the device can  
power a 3.3 V CAN transceiver. If an external general purpose SBC is used, VCC can be used to power up other  
components as the SBC will also receive its input power from VSUP. The FSO pin when configured as a general-  
purpose output pin is used as the STB/nSTB/S control pin in order to control the mode of the external CAN  
transceiver or SBC.  
Register 8'h29[3:1] = 110b sets the FSO pin as a general-purpose output pin EN/STB/nSTB/S pin.  
Register 8'h29[4] sets the level of the FSO pin and can be connected to the external CAN transceiver or SBC  
STB/nSTB/S pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
100 nF  
470  
1 M pull-down or  
leave floating for INH  
100 nF  
3.3 V  
LDO  
VDD33  
VBAT  
VSUP  
1 M  
INH/  
WKRQ  
500 k  
nCS  
CLK  
SDI  
HSS  
VDD  
WAKE  
LIMP  
SDO  
VDD  
TLIN14315-Q1  
10 k  
nRST  
I/O  
nINT  
DIV_ON  
PV  
Micro  
20 pF  
LIN  
TXD  
RXD  
LIN Controller  
Or  
SCI/UART  
VCC = 5V  
10 µ F  
FSO  
3.3 V  
100 nF  
VIO  
VCC  
STB  
CANH  
CANL  
TCAN1044VA  
TXD  
RXD  
CAN  
Controller  
8-22. Channel Expansion: CAN Transceiver  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
100 nF  
470  
100 nF  
1 M pull-down or  
leave floating for INH  
3.3 V  
LDO  
VDD33  
VBAT  
TLIN14315-Q1  
FSO  
VSUP  
1 M  
VCC = 3.3V/5V  
10 µ F  
INH  
500 k  
nCS  
CLK  
HSS  
VDD  
WAKE  
LIMP  
SDI  
SDO  
VDD  
10 k  
nRST  
I/O  
nINT  
DIV_ON  
PV  
20 pF  
Micro  
LIN Controller  
Or  
SCI/UART  
LIN  
TXD  
RXD  
3.3 V  
STB  
VIO  
VCC = 3.3V  
CANH  
CANL  
TXD  
RXD  
CAN  
Controller  
TCAN11623  
WAKE  
INH  
nRST  
TS  
8-23. Channel Expansion: CAN SBC  
8.4 Device Functional Modes  
The TLIN1431x-Q1 has multiple functional modes of operation, Init, pin/SPI Init, normal, standby, sleep, restart  
and fail-safe. The next sections describe these modes as well as how the device moves between the different  
modes. 8-24 and 8-25 graphically shows the relationship while 8-4 and tables show the state of pins in  
each control mode. Upon power up, and once VCC UVCC prior to tINACT_FS timing out the device enters an  
initialization mode (INIT). While in this mode, VCC is ramping, nRST ramps with VCC, all other pins are off except  
for monitoring the state of the Pin/nCS pin to determine which control method is being implemented. Once the  
control method is determined, the device follows the pin control or SPI control path of the state diagram.  
8-4. Operating PIN Mode  
Function  
Restart Mode  
Sleep Mode  
Standby Mode  
Normal Mode  
Fail-safe Mode  
Fast Mode  
EN  
NA  
Low  
Low  
High  
NA  
Pulse then high  
Low for a wake event and  
power up event otherwise  
high  
RXD  
High  
Floating  
Mirrors LIN bus  
Floating  
Mirrors LIN bus  
LIN BUS  
Termination  
Weak current pull-up  
Weak current pull-up  
Weak current pull-up  
45 kΩ(typical)  
45 kΩ(typical)  
45 kΩ(typical)  
Vbat Voltage  
Divider  
Off  
Off  
Off  
Off  
On  
Off  
On  
On  
Fault dependent  
Off  
On  
Transmitter  
On (Slope control off)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-4. Operating PIN Mode (continued)  
Function  
Watchdog  
nRST Pin  
WAKE Pin  
Restart Mode  
Sleep Mode  
Standby Mode  
Normal Mode  
Fail-safe Mode  
Fast Mode  
Off  
Low  
Off  
Off  
Low  
On  
On with long first pulse  
On  
High  
Off  
Off  
LDO state dependent  
On  
On but only sets flag  
High  
On  
High  
Off  
INH - On; WKRQ - Fault  
dependent  
WKRQ/INH  
On  
Off  
Off  
On  
On  
On  
Same as previous  
state when due to a  
WD fault  
Previous state prior to  
entering STBY due to WD  
fault  
Previous state prior to  
entering normal mode  
due to WD fault  
Previous state prior to entering  
fast mode due to WD fault  
Turns off when  
exiting fail-safe  
mode due to any  
other fault  
LIMP  
On  
On and controlled by  
HSSC pin  
On and controlled by  
HSSC pin  
On and controlled by HSSC  
pin  
HSS  
VCC  
Off  
Off  
Off  
Off  
Ramping  
On  
On  
Fault dependent  
On  
nRST is internally  
connected to the LDO  
output which in sleep  
mode is off  
Wake up event detected,  
waiting on processors to  
set EN  
LIN transmission up to  
20 kbps  
LDO off for TSD, VCCSC  
or OVCC events  
LIN transmission up to 200  
kbps  
Comment  
备注  
LDO state for fault dependent in fail-safe mode is as follows:  
Watchdog error - On  
Thermal shut down - Off  
UVCC - On  
OVCC over-voltage - Off  
VCCSC - Off  
Restart counter exceeded - On  
SWE timer expiration - On  
If TXD is held dominant when device enters normal or fast modes, the LIN transmitter does not turn on  
until the TXD pin goes recessive.  
If VSUP is UVSUP WKRQ/INH is off.  
WKRQ depends upon the LDO being on, so any event that causes the LDO to be turned off will turn  
off WKRQ.  
Any WD failure in Fast Mode will only set interrupt and not take any other action (will not set LIMP,  
transition to Fail-safe or Restart or take any WD fail action)  
nRST depends upon the LDO state. When LDO is on, nRST reflects the LDO value.  
When LDO is on, nRST reflects the LDO or I/O voltage value except for a UVCC event where  
nRST is low.  
When LDO is off, nRST is low.  
8-5. Operating SPI Mode  
Function  
Restart Mode  
Sleep Mode  
Standby Mode  
Normal Mode  
Fail-safe Mode  
Fast Mode  
Low for a wake event and  
power up event otherwise  
high  
Fault  
RXD  
High  
Floating  
Mirrors LIN bus  
Mirrors LIN bus  
dependent  
LIN BUS  
Termination  
Weak current pull-up  
Weak current pull-up  
Weak current pull-up  
45 kΩ(typical)  
45 kΩ(typical)  
45 kΩ(typical)  
Vbat Voltage  
Divider  
Off  
Off  
Off  
Off  
On  
Off  
On  
On  
Fault dependent  
Off  
On  
Transmitter  
On (Slope control off)  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-5. Operating SPI Mode (continued)  
Function  
Restart Mode  
Sleep Mode  
Standby Mode  
Normal Mode  
Fail-safe Mode  
Fast Mode  
On  
If programmed off in  
standby mode when  
entering normal mode a  
long first window is  
implemented  
Default on with long first  
window but  
programmable off  
Watchdog  
Off  
Off  
Off  
On but only sets flag  
SPI pins  
nINT pin  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
Fault dependent  
Fault dependent  
LDO state dependent  
On  
On  
On  
nRST pin  
WAKE Pin  
Low  
Off  
Low  
On  
High  
On  
High  
Off  
High  
Off  
INH - On; WKRQ - Fault  
dependent  
WKRQ/INH  
On  
Off  
On  
On  
On  
Same as previous  
state when due to a  
WD fault  
When exiting fail-  
safe mode due to  
any other fault how  
8'h1A[3:2] is  
Previous state prior to  
entering STBY due to WD  
fault  
Previous state prior to  
entering normal mode  
due to WD fault  
Previous state prior to entering  
fast mode due to WD fault  
LIMP  
Off  
On  
programmed  
determines how  
LIMP is cleared  
Off unless cyclic  
sensing enabled  
HSS  
VCC  
Off  
On  
On  
On  
On  
Off  
On  
On  
Ramping  
Off  
Fault dependent  
nRST is internally  
connected to the LDO Wake up event detected, LIN transmission up to 20 LDO off for TSD, VCCSC  
LIN transmission up to 200  
kbps  
Comment  
output which in sleep  
mode is off  
waiting on processors  
kbps  
or OVCC events  
备注  
Function status when in fail-safe mode that states fault dependent are defined in 8-6  
If TXD is held dominant when device enters normal or fast modes, the LIN transmitter does not turn on  
until the TXD pin goes recessive.  
If VSUP is UVSUP WKRQ/INH is off.  
WKRQ depends upon the LDO being on, so any event that causes the LDO to be turned off will turn  
off WKRQ.  
Any WD failure in Fast Mode will only set interrupt and not take any other action (will not set LIMP,  
transition to Fail-safe or Restart or take any WD fail action)  
8-6. Fault Dependent States In Fail-safe Mode  
Restart Counter  
Exceeded  
Function  
Watchdog Error  
Thermal Shutdown  
UVCC  
VCC Over Voltage  
VCCSC  
LDO (2)  
INH  
On  
Off  
On  
Off  
Off  
On  
On  
Off  
On  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
On (1)  
Programmed  
Programmed  
On  
On  
WKRQ  
SPI  
On  
On  
(1) LDO is on in fail-safe mode if the restart counter causes the change when fail-safe mode is enabled.  
(2) LDO is on in fail-safe mode if the SWE timer times out causing the device to enter fail-safe mode if enabled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Unpowered  
System  
VSUP < VnPOR  
POR  
UVSUP  
UVSUP > VSUP < VnPOR  
VSUP > VnPOR  
VCC > UVCC  
SPI Control Mode  
Pin Control Mode  
HD_RST  
VSUP > UVSUP  
Restart Mode  
Restart Mode  
nCS/PIN = High  
or Floating  
Init Mode  
nRST  
nCS/PIN = GND  
VCC: Mode entrance  
dependent  
nRST: low  
SWE timer starts  
VCC: Mode entrance  
dependent  
nRST: low  
SWE timer starts  
VCC: on  
nRST: low  
Pin status determined  
WD Failure Event  
When Vcc UVcc and  
timer (tRSTN_act 1.5ms to  
2.5ms)  
Note *  
To exit fail-safe mode the fault must first be cleared then  
a wake event take place prior to SWE timer timing out  
SWE timer  
times out  
Note *  
UVCC Events  
EN = Low > tEN  
AND TXD = Low  
AND nRST = High  
Fail-safe Mode  
Sleep Mode  
Normal Mode  
VCC Overvoltage  
Event  
Note &  
VCC: Fault dependent  
SWE timer starts  
VCC: off  
nRST: low  
VCC: on  
nRST: high  
TSD Event  
EN = High >  
tFM_CHANGE  
AND nRST = High  
Note &  
VCC SC Event  
ꢀꢁSWE timer starts upon entering fail-safe mode.  
This is the length of time for the fault to clear  
before moving to sleep mode. If a wake event  
takes place and fault still present the device will  
enter sleep mode.  
EN = Pulse < tFM_CHANGE  
AND nRST = HIGH  
EN = Low > tFM_CHANGE  
AND TXD = High  
AND nRST = High  
EN = Low > tFM_CHANGE  
AND TXD = High  
AND nRST = High  
Fast Mode  
Standby Mode  
VCC: on  
nRST: high  
LIN up to 200kbps  
VCC: on  
nRST: high  
EN = High > tEN  
AND TXD = Low pulse  
AND nRST = High  
8-24. Pin control state diagram  
备注  
Normal mode can be entered from Fast mode with TXD in either state:  
TXD = high, EN = pulse < tFM_CHANGE and nRST = high  
TXD = low, nRST = high and EN pulse can be any width  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Unpowered  
System  
POR  
VSUP < VnPOR  
UVSUP  
UVSUP > VSUP < VnPOR  
SPI Control Mode  
VSUP > VnPOR  
VCC > UVCC  
Pin Control Mode  
HD_RST  
VSUP > UVSUP  
Restart Mode  
Init Mode  
Restart Mode  
nRST  
nCS/PIN = High  
or Floating  
nCS/PIN = GND  
VCC: Mode entrance  
dependent  
nRST: llow  
SWE timer starts  
VCC: on  
VCC: Mode entrance  
dependent  
nRST: low  
SWE timer starts  
SOFT_RST  
nRST: low  
Pins status  
determined  
Note *  
To exit fail-safe mode the fault must first be  
cleared then a wake event take place prior to  
Note *  
SWE timer timing out  
TSD Event  
SWE timer times out  
in standby mode  
Normal Mode  
Restart  
Mode  
VCC: on  
nRST: high  
Cyclic sense: on  
Fail-safe Mode  
FSM disabled  
VCC UV event  
UVCC Event  
VCC: Fault Dependent  
SWE timer starts  
SPI CMD  
WUP event  
WAKE event  
Faults cleared:  
ꢀꢁVCC SC event  
ꢀꢁTSD event  
SPI  
CMD  
Fast Mode  
VCCSC Event  
ꢀꢁRSRT_CNTR  
VCC: on  
nRST: high  
LIN up to 200kbps  
SPI  
CMD  
SPI  
CMD  
VCC Overvoltage  
Event  
Note &  
Note &  
SPI  
ꢀꢁSWE timer starts upon entering fail-safe mode.  
This is the length of time for the fault to clear  
before moving to sleep mode. If a wake event  
takes place and fault still present the device will  
enter sleep mode.  
CMD  
SPI  
CMD  
SPI  
CMD  
Standby Mode  
VCC Overvoltage  
Event  
Sleep Mode  
Sleep  
Mode  
VCC: on  
nRST: high  
SWE timer starts  
FSM disabled  
VCC: off  
nRST: low  
SPI  
CMD  
TSD Event  
FSM disabled  
Fast  
Mode  
Note !  
VCC SC Event  
FSM disabled  
SWE timer  
times out  
Note ! – SWE timer timing out causes the device to enter sleep mode under  
these conditions  
ꢀꢁFail-safe mode is disabled  
ꢀꢁFail-safe mode enabled and timer times out while in fail-safe mode  
8-25. SPI control state diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.1 Init Mode  
This is the initial mode of operation upon powering up. This is a transitional mode that is entered once VCC  
UVCC. The device is in this mode for 350 µs as it determines the states of pin 7, PIN/nCS and pin 16, WKRQ/  
INH; see 8-5 and 8-6. The VCC fault monitoring will be active to determine if there is a TSD, OVCC or VCCSC  
faults which takes approximately 2.5 ms. If one of these faults are detected, the device will perform as described  
in 8.3.22.5 and 8.3.22.9.1. If VCC < UVCC, The device will remain in Init mode until VCC > UVCC. If a fault  
takes place that keeps the device from determining the state of the pins, the device will default to pin control.  
Unpowered System  
VSUP < VnPOR  
POR  
VSUP > VnPOR  
VCC > UVCC  
Init Mode  
VCC ramping up and on & UVCC  
WD = Off  
HD_RST  
nCS/PIN = GND  
Pin Restart  
Mode  
nRST = Low  
LIN = Off  
WAKE = Off  
nCS/PIN = High  
or Floating  
SPI Restart  
Mode  
nCS/PIN status determination  
Processor I/O voltage level determined  
INH or WKRQ function determined  
8-26. Init Mode  
8.4.2 Normal Mode  
In normal operational mode, the receiver and transmitter are active and the LIN transmission up to the LIN  
specified maximum of 20 kbps is supported. The receiver detects the data stream on the LIN bus and outputs it  
on RXD for the LIN controller. A recessive signal on the LIN bus is a digital high and a dominant signal on the  
LIN bus is a digital low. The driver transmits input data from TXD to the LIN bus. When entering normal mode, it  
takes tMODE_CHANGE before data on RXD pin reflects the LIN bus. Normal mode can be entered from Fast mode  
and standby mode. See 8-24 for the conditions necessary to enter normal mode when in pin control.  
In SPI control mode, Normal mode is entered by SPI commands at register 8'h1D[7:6] = 10b. See 8-25 for the  
conditions necessary to enter normal mode when in pin control.  
Faults  
Normal Mode  
SPI CMD  
FSM Enabled  
Fail-safe Mode  
VCC = On  
WD = On - Window WD (Default)  
SPI = On  
Normal Mode  
Fast Mode  
Restart Mode  
WD failure  
nRST = High  
VCC = On  
WD = On  
nRST = High  
LIN = On  
WAKE = Off  
Sleep Mode  
Faults  
Fast Mode  
nINT = On if enabled  
LIN = On  
WAKE = Off  
INH or WKRQ = On  
FSM Disabled  
Sleep Mode  
Restart Mode  
WD & UVCC  
Restart Mode  
WD failure  
LIMP = As programmed during Norm Mode -  
On if failure condition  
HSS = Programming dependent  
Standby Mode  
INH or WKRQ = On  
LIMP = Previous state prior to entering  
HSS = HSSC  
Standby Mode  
Sleep Mode  
Fail-safe Mode  
8-27. Normal Mode Pin Control  
8-28. Normal Mode SPI Control  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.3 Fast Mode  
Fast mode removes the slope control for the LIN transmitter allowing the LIN bus to support data rates up to 200  
kbps. Fast mode is also the system software programing mode and debug mode. The watchdog is active but  
only indicates a WD failure and does not cause any resets or mode changes. Fast mode can be entered in either  
SPI or pin control modes. In SPI mode it is entered from normal or standby modes. In pin mode, it can be  
entered from standby mode. To enter fast mode from standby, the EN pin must be high with a high-low-high  
pulse on the TXD pin of duration tFMTXD takes place prior to tFM_CHANGE timing out, see 8-31. In pin control  
mode, to leave fast mode the enable pin and TXD pins are used. If TXD pin is high and the EN pin is pulsed from  
high too low too high for tFM_CHANGE, the device enters standby mode, see 8-32. If the EN pin is pulsed high  
too low too high with the pulse being < tFM_CHANGE, the device enters normal mode, see 8-33.  
Fast Mode  
SPI CMD  
Faults  
Fast Mode  
Normal  
Mode  
VCC = On  
WD = On but does not cause  
reset  
SPI = On  
nRST = High  
LIN = On - Slope CNTL off  
WAKE = Off  
INH or WKRQ = High  
LIMP = Off  
FSM Enabled  
Fail-safe Mode  
VCC = On  
WD = On but doesn’t cause  
failure  
nRST = High  
LIN = Slope CNTL off  
WAKE = Off  
Normal Mode  
Standby  
Mode  
FSM Disabled  
Restart Mode  
UVCC  
Standby Mode  
Non-WD Faults  
Fail-safe  
Mode  
Sleep  
Mode  
INH or WKRQ = High  
LIMP = Off  
Sleep Mode  
HSS = Depends on programming  
HSS = HSSC  
8-29. Fast Mode Pin Control  
8-30. Fast Mode SPI Control  
tFM_CHANGE  
tFM_CHANGE  
tEN  
tEN  
tNOMINIT  
EN  
EN  
tFMTXD  
TXD = High  
TXD  
TXD  
TXD = High  
EN  
EN  
Filter/TXD  
Sampling  
Window  
Filter/TXD  
Sampling  
Window  
Transion  
Transion  
Fast Mode  
Standby Mode  
Standby Mode  
Fast Mode  
MODE  
MODE  
RXD  
Indeterminate Ignore  
Mirrors Bus  
RXD  
Indeterminate Ignore  
Pulled Low  
Mirrors Bus  
8-31. Entering Fast Mode from Standby Mode  
8-32. Exiting Fast Mode to Standby Mode  
< tFM_CHANGE  
tNOMINIT  
EN  
tEN  
EN  
Filter  
Transion  
Normal Mode  
Mirrors bus  
Fast Mode  
MODE  
RXD  
Indeterminate Ignore  
Mirrors Bus  
8-33. Exiting Fast Mode to Normal Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.4 Sleep Mode  
Sleep Mode is the power saving mode for the TLIN1431x-Q1. Even with extremely low current consumption in  
this mode, the device can still wake up from the LIN bus through a wake up signal or local wake via WAKE pin.  
Upon a wake event the SWE timer, tINACT_FS, starts and the device enters restart mode. If UVCC is still present  
after this time, the device re-enters sleep mode. The LIN bus is filtered to prevent false wake up events. The  
wake-up events must be active for the respective time periods (tLINBUS).  
In pin control mode, sleep mode is entered by setting EN low for longer than tEN and TXD pin is low when  
entered from normal mode.  
In SPI control mode, setting register 8'h1D[7:6] = 01b transitions the device into sleep mode. If the reset counter  
exceeds three, the device enters sleep mode from restart mode. The reset counter increments on an UVCC  
event, or a watchdog error event that causes the device to enter restart mode when fail-safe mode is disabled.  
The reset counter must be cleared through a SPI command.  
While the device is in sleep mode, the following conditions exist.  
The LIN bus driver is disabled and the internal LIN bus termination is switched off (to minimize power loss if  
LIN is short circuited to ground). However, the weak current pull-up is active to prevent false wake up events  
in case an external connection to the LIN bus is lost.  
The normal receiver is disabled.  
LIN wake up receiver is active.  
WAKE pin is active.  
Sleep Mode  
FSM Enabled  
Sleep Mode  
Fail-safe Mode  
Restart Mode  
VCC = Off  
WD = Off  
SPI = Off  
nRST = Low  
nINT = Off  
FSM Disabled  
SWE time-out  
SPI CMD  
VCC = Off  
WD: Off  
nRST = Low  
Normal Mode  
Restart Mode  
Fail-safe Mode  
Normal Mode  
TSD  
LIN = Off but WUP wake able  
WAKE = On  
Restart Mode  
LIN = Off but WUP wake able  
WAKE = Programmable but for us On  
INH or WKRQ = Off  
LIMP = As Programmed On or Off  
HSS = Programming dependent  
VCC SC  
Standby Mode  
Fast Mode  
INH or WKRQ = Off  
LIMP = Off  
OVCC  
HSS = Off  
Restart counter  
8-34. Sleep Mode Pin Control  
8-35. Sleep Mode SPI Control  
8.4.5 Standby Mode  
This mode is entered from various other modes based upon which control method is implemented, the pin  
control 8-24 or SPI control 8-25. The LIN bus responder node termination circuit is turned on when standby  
mode is entered. Standby mode is signaled through a low level on RXD. See Standby Mode Application Note for  
more application information.  
When EN (in Pin Control Mode) is set high for longer than tFM_CHANGE while the device is in standby mode the  
device returns to normal mode and the normal transmission paths from TXD to LIN bus and LIN bus to RXD are  
enabled.  
During power up, the device automatically enters standby mode from restart mode. EN has an internal pull-down  
resistor ensuring EN is pulled low if the pin is left floating in the system.  
In both pin and SPI modes, the watchdog is default on in standby mode. There is a long timeout initial window  
that is tINITWD that a WD trigger event must take place. In SPI mode, watchdog can be disabled when entering  
standby mode except for cases that the device has had a POR event.  
The device automatically enters standby mode from restart mode when VCC UVCC and tRSTN_act time has  
expired. When in SPI communication mode, the TLIN1431x-Q1 can enter standby mode by writing a 00 to  
register 8'h1D[7:6] from normal or fast modes. The watchdog function is default on in standby mode. When using  
SPI to configure the device, the watchdog function can be configured.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Standby Mode  
Faults  
VCC = On  
WD = On (default)  
SPI = On  
nRST = High  
nINT = On if enabled  
LIN = Off  
Restart Mode  
FSM Enabled  
Fail-safe Mode  
Standby Mode  
SPI CMD  
VCC = On  
WD = On  
nRST = High  
Normal Mode  
Restart Mode  
Faults  
Fast Mode  
FSM Disabled  
RXD = Indicates a wake event  
WAKE = Default on  
INH or WKRQ = High  
LIMP = As programmed - On if failure  
condition  
LIN = Off  
RXD = Indicates a wake event  
WAKE = On  
Restart Mode  
WD, UVCC  
Fast Mode  
Restart Mode  
WD  
Normal Mode  
INH or WKRQ = High  
LIMP = Previous state  
HSS = HSSC  
Sleep Mode  
Sleep Mode  
Fail-safe Mode  
Non-WD  
HSS = Active  
8-36. Standby Mode Pin Control  
8-37. Standby Mode SPI Control  
8.4.6 Restart Mode  
Restart mode is a transitional mode. This mode can be entered from any of the other modes depending upon  
whether fail-safe mode is disabled. In this mode, the LDO is ramping when coming from sleep mode or fail-safe  
mode where the LDO was turned off, like a TSD event. Once VCC UVCC for tRSTN_act (~2 ms), the device  
enters standby mode. While in restart mode, the nRST pin is latched low. Each time restart mode is entered the  
restart mode counter is incremented.  
备注  
The SWE timer starts when the device enters restart mode. If the SWE timer times out, the device  
enters fail-safe mode. If fail-safe mode is disabled, the device enters sleep mode.  
Faults  
Restart Mode  
FSM Enabled  
VCC = Ramping up (Entrance dependent)  
VCC = On (Entrance dependent)  
SPI = Off  
Reset counter  
SWE time-out  
nRST Pulse  
Soft_RST  
Init Mode  
Restart Mode – Pin Control  
WD = Off  
FSM Disabled  
UVCC  
nRST (Power up & Wake) = Low  
nRST (other) = Pulled low for tNRST_TOG  
RXD = High  
VCC = Ramping up (Entrance dependent)  
VCC = On (Entrance dependent)  
WD = Off  
nRST (Power up & Wake event) = Low  
nRST (other) = Pulled low for tNRST_TOG  
LIN = Off  
WD Failure  
nRST Pulse  
Sleep Mode  
Standby Mode  
Faults  
WD Failure  
SPI = Off  
nINT = High  
LIN = Off  
WAKE = Off  
Sleep Mode  
Wake Event  
Sleep Mode  
FSM Disabled  
Sleep Mode  
SWE timer  
WAKE = Off  
INH or WKRQ = High  
LIMP = Same as previous Mode unless WD failure and  
LIMP is on  
Reset counter  
Fail-safe Mode  
INH or WKRQ = High  
LIMP = Same as previous Mode  
HSS = Programming dependent  
Fail-safe Mode  
Fail-safe Mode  
SWE time-out  
HSS = Off  
8-38. Restart Mode Pin Control  
8-39. Restart Mode SPI Control  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
High  
High  
VSUP  
VCC  
High  
WKRQ  
/INH  
Restart  
Mode  
Event/  
Mode  
WD failure  
nRST, Soft reset  
Standby  
Mode  
~200 ns  
tnRSTIN  
nRST  
Input  
nRST  
tNRST_TOG  
Output  
RXD  
Mode dependent  
RXD latched low  
Transceiver  
备注  
A watchdog failure, soft reset or nRST event resets tNRST_TOG to default value of typically 2 ms  
The typical time between the release of a nRST input pulse for device to enter restart mode is ~  
200 ns  
8-40. Entering Restart Mode  
8.4.6.1 Restart Counter  
This counter is programed by register 8'h28[7:4] which sets the number of times restart can be entered before  
transitioning to sleep or fail-safe mode, up to 14 times but should be programmed for greater than 1 to avoid  
possible loops. The default value is 4. Register 8'h28[3:0] is the counter. To prevent the transition to sleep or fail-  
safe mode, the counter should be cleared periodically. Entering sleep mode or fail-safe mode due to a meeting  
the restart counter automatically clears the restart counter.  
8.4.6.2 nRST Behavior in Restart Mode  
The nRST output pin behavior depends upon the reason the device entered restart mode. When entered from  
other modes due to a watchdog failure, soft reset or an external nRST toggle, the nRST pin is pulled low for  
tnRST_TOG which is a default pulse width of 2 ms. This pulse width can be configured to 15 ms by changing  
register 8'h29[5] = 1b. In pin control, the pulse width on nRST is always nominally 15 ms for a watchdog failure.  
Once the timer expires, the device enters standby mode. From power up, sleep and certain fail-safe modes, the  
nRST behaves like the UVCC event, pulling nRST low until VCC > UVCC and tRSTN_act times out. See 8-41 on  
how the nRST pin behaves when entering restart mode.  
The nRST pin is also a TLIN1431x-Q1 reset input which transitions the device into restart mode when the pin is  
pulled low for tnRSTIN  
.
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Event  
Restart Mode  
SWE timer starts  
Restart counter + 1  
FSM  
disabled  
FSM  
enabled  
Yes  
Yes  
Fail-safe Mode  
RSTRT CNTR  
cleared  
Sleep Mode  
RSTRT CNTR  
cleared  
Counter  
limit met?  
No  
Power or  
Wake event  
WD, soft reset,  
nRST toggle  
Reason  
Entered  
nRST pulled low  
for tNRST_TOG  
nRST held low  
VCC UVCC and  
tRSTN_act times out  
Standby Mode  
nRST: high  
Note:  
1. Wake event means entered from sleep or fail-safe modes  
2. If SWE timer times out device will enter sleep or fail-safe mode  
3. nRST toggle reason is an external toggle of nRST pin to reset device  
4. A soft reset or external nRST toggle will reset tNRST_TOG to default value, typically 2 ms  
8-41. nRST Behavior in Restart Mode  
8.4.7 Fail-safe Mode  
When the TLIN1431x-Q1 has certain fault conditions, the device enters a fail-safe mode (FSM). This feature can  
be disabled in SPI control mode, but is always on in pin control mode. This mode turns on LIMP and brings all  
other function into lower power mode states. Fault conditions are over-voltage on VCC, thermal shutdown, VCC  
under-voltage events and reaching restart counter limit in SPI control mode. When entering FSM, a fail-safe  
mode counter is incremented. The counter limit is set at register 8'h18[7:4], FSM_CNTR_SET and should be set  
to greater than 1. To avoid unwanted actions the counter should be cleared by writing 0h to 8'h18[3:0]. If the limit  
is reached a programmed action will be executed, register 8'h17[7:4], FSM_CNTR_ACT. Once the fault  
conditions are cleared, the device can be put back into restart mode from a wake event. If a fault condition is still  
in effect after the wake event the device enters sleep. If no wake event takes place, the device enters sleep  
mode after the programmed SWE timer, tINACT_FS, times out.  
Fail-Safe Mode  
Faults  
Faults  
Standby Mode  
SWE timer expires  
UVCC under-voltage  
Fail-Safe Mode  
VCC = Fault dependent  
Driver = Off  
RXD = Fault dependent  
Termination = Weak pullup  
WD = Off  
INH = On  
WKRQ = Fault dependent  
LIMP = On  
Restart Mode  
Faults cleared  
& Wake event  
VCC = Fault dependent  
Driver = Off  
RXD = Floating  
Termination = Weak pullup  
WD = Off  
INH = On  
WKRQ = Fault dependent  
LIMP = On  
Restart Mode  
Faults cleared  
& Wake event  
SWE timer expires  
OVCC over-voltage  
VCCSC SC Event  
UVCC  
VCC overvoltage  
VCC SC Event  
Sleep Mode  
Wake event &  
Faults not cleared  
or SWE time-out  
Sleep Mode  
Wake event &  
Faults not cleared  
or SWE time-out  
TSD  
WD Failure  
Restart counter  
TSD  
HSS = Off  
HSS = Off  
8-42. Fail-safe Mode Pin Control  
8-43. Fail-safe Mode SPI Control  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
备注  
When the device enters fail-safe mode, the SWE timer automatically starts.  
If SWE timer times out, the device enters sleep mode  
If a wake event takes place prior to the SWE timer timing out, the device determines if fault is still  
present.  
If fault is present, the device enters sleep mode.  
If fault has cleared, the device enters restart mode.  
When fail-safe mode is entered due to a thermal shutdown (TSD), VCC over-voltage (OVCC) or a VCC  
short circuit (VCCSC) event the following takes place:  
LDO is turned off  
If the device receives a wake event, the LDO is turned on for tLDOON to determine if the TSD, OVCC  
or VCCSC event is still present.  
During this window, if a TSD or OVCC is detected the device immediately enters sleep mode.  
At the end of tLDOON window, if a VCCSC is detected the device enters sleep mode.  
If fault is cleared, the device enters restart mode.  
If the device enters fail-safe mode and VCC is on, the tLDOON timer is started and expires before the  
device transitions to restart mode.  
8.4.8 Wake Up Events  
There are three ways to wake-up from sleep mode depending upon control mode, pin or SPI:  
1. Remote wake up initiated by the falling edge of a recessive (high) to dominant (low) state transition on the  
LIN bus where the dominant state is held for tLINBUS filter time. After this tLINBUS filter time has been met and  
a rising edge on the LIN bus going from dominant state to recessive state initiates a remote wake-up event  
eliminating false wake ups from disturbances on the LIN bus or if the bus is shorted to ground. Active for  
both pin and SPI control modes.  
2. Local wake up through EN being set high for longer than tMODE_CHANGE. Active for pin control mode.  
3. Local wake up through WAKE pin  
Being set high or low for longer than tMODE_CHANGE. Active for both pin and SPI mode.  
Only active during on-time cyclic sense period. Active for SPI mode.  
备注  
Remote and local wake up are also valid wake events when the device enters fail-safe mode. The  
EN pin will not wake the device if it has entered fail-safe mode.  
When a wake event takes place and INH is selected, it is turned on with in tINH_SLP  
.
When WKRQ is used, a wake event requires the LDO to be on and the voltage level to exceed 2 V.  
Once this happens, the WKRQ pin ramps with VCC until it expected voltage level.  
8.4.8.1 Wake Up Request (RXD)  
When the TLIN1431x-Q1 encounters a wake up event from the LIN bus the device transitions to restart mode. In  
restart mode, the LDO is turned on and ramps until VCC > UVCC at which time the device enters either Normal  
mode, Fast mode or Standby mode depending upon the device control method. In Restart mode, RXD is pulled  
high. After VCC has exceeded UVCC for tRSTN_act, the device transitions to standby mode and RXD is latched low.  
Once the device enters normal mode, the RXD pin releases the wake up request signal and the RXD pin then  
reflects the receiver output from the LIN bus. RXD can be programmed to toggle low or high when in standby  
mode from a wake event.  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.4.8.2 Local Wake Up (LWU) via WAKE Terminal  
The WAKE terminal is a ground referenced input terminal supporting high voltage wake inputs used for local  
wake up (LWU) request via a voltage transition. The terminal triggers an LWU event on either a low to high or  
high to low transition as it has bi-directional input thresholds. This terminal may be used with a switch to VSUP  
or ground. If the terminal is not used it should be pulled to ground to avoid unwanted parasitic wake up events.  
There are two methods for using the WAKE pin:  
1. Static wake  
2. Cyclic sensing wake  
8.4.8.2.1 Static WAKE  
The WAKE terminal defaults to bi-directional input but can be configured for rising edge and falling edge  
transitions by using register 8'h11[7:6] WAKE_CONFIG (see 8-44 and 8-45). Once the device enters sleep  
mode the WAKE terminal voltage level needs to be at either a low state or high state for tWAKE before a state  
transition for a WAKE input can be determined. A pulse width less than tWAKE_INVALID is filtered out.  
The LWU circuitry is active in sleep mode, standby and fail-safe modes. If a valid LWU event occurs, the device  
transitions to restart mode. The LWU circuitry is not active in normal, fast and restart modes. To minimize system  
level current consumption, the internal bias voltages of the terminal follows the state on the terminal with a delay  
of tWAKE. A constant low level on WAKE has an internal pull-down to ground. On power up, this may look like a  
LWU event and could be flagged as such. The device provides a WAKE pin status change update using register  
8'h11[5:4]. The status change will lock in a change in the WAKE pin and needs to be cleared.  
t
tWAKE  
Wake  
Threshold  
Not Crossed  
t
tWAKE_INVALID  
No Wake  
UP  
Local Wake Request  
Wake UP  
Wake  
Local Wake Request  
UVCC  
Cleared  
WKRQ/INH  
tRSTN_act  
RXD latched low  
RXD is off and floating  
RXD  
tRSTN_act  
RXD is off and floating  
RXD  
RXD programmed to toggle  
tTOGGLE  
Mode  
nRST  
Sleep Mode  
Restart Mode  
Standby Mode  
tRSTN_act  
8-44. Local Wake Up (LWU) - Rising Edge  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Wake  
Threshold  
Not Crossed  
t
tWAKE  
t tWAKE_INVALID  
No Wake  
UP  
Local Wake Request  
Wake UP  
WAKE  
Local Wake Request  
UVCC  
Cleared  
WKRQ/INH  
tRSTN_act  
RXD latched low  
RXD is off and floating  
RXD  
RXD  
tRSTN_act  
RXD is off and floating  
RXD programmed to toggle  
tTOGGLE  
Mode  
nRST  
Sleep Mode  
Restart Mode  
Standby Mode  
tRSTN_act  
8-45. Local Wake Up (LWU) - Falling Edge  
备注  
These figures show the state of the RXD pin after a WAKE pin event. The transition to standby mode  
is shown in the state diagrams but is based upon the following:  
PIN Mode: All must take place  
WAKE pin event recognized  
VCC goes above UVCC for > tRSTN_act  
EN pin is High for > tEN  
SPI Mode: All must take place  
WAKE pin event recognized  
VCC goes above UVCC for > tRSTN_act  
The WAKE terminal can be configured for a pulse, see 8-46, by using WAKE_CONFIG register 11h[7:6]. The  
terminal can be configured to work off a pulse only. The pulse must be between tWK_WIDTH_MIN and  
tWK_WIDTH_MAX, see 8-46. This figure provides three examples of pulses and whether the device will wake or  
not wake. tWK_WIDTH_MIN is determined by the value for tWK_WIDTH_INVALID is set to in register 8'h11[3:2]. There  
are two regions where  
a
pulse may or may not be detected. By using register 8'h1B[1],  
WAKE_WIDTH_MAX_DIS, the pulse mode can be configured as a filtered wake input. Writing a 1b to this bit  
disables tWK_WIDTH_MAX, and the WAKE input is based upon the configuration of register 8'h11[3:2] which selects  
a tWK_WIDTH_INVALID and tWK_WIDTH_MIN value. A WAKE input of less than tWK_WIDTH_INVALID is filtered out, and if  
longer than tWK_WIDTH_MIN INH turns on and device enters standby mode. The region between the two may or  
may not be counted, see 8-47. Register 8'h12[7] determines the direction of the pulse or filter edge that is  
recognized. The status of the WAKE pin can be determined from register 8'h11[5:4]. When a WAKE pin change  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
takes place, the device registers the change as a rising edge or falling edge. This is latched until a 00b is written  
to the bits.  
tWK_WIDTH_MAX  
tWK_WIDTH_MIN  
Case 1  
tWK_WIDTH_INVALID  
No  
Detect  
Pulse not  
detected  
May  
May  
Pulse detected  
WAKE PIN  
0ms  
Wake pulse detected  
tWK_WIDTH_MAX  
Case 2  
tWK_WIDTH_MIN  
tWK_WIDTH_INVALID  
No  
Detect  
Pulse not  
detected  
May  
May  
Pulse detected  
WAKE PIN  
0ms  
Wake pulse not detected  
tWK_WIDTH_MAX  
Case 3  
tWK_WIDTH_MIN  
tWK_WIDTH_INVALID  
No  
Detect  
Pulse not  
detected  
May  
May  
Pulse detected  
WAKE PIN  
0ms  
Wake pulse not detected  
8-46. WAKE Pin Pulse Behavior  
WAKE PIN  
tWK_WIDTH_MIN  
tWK_WIDTH_INVALID  
INH PIN  
Case 1  
No  
Detect  
May  
Wake detection  
0ms  
Filtered wake detected  
WAKE PIN  
INH PIN  
Case 2  
tWK_WIDTH_MIN  
tWK_WIDTH_INVALID  
No  
Detect  
May  
Wake detecion  
0ms  
Filtered wake not detected  
8-47. WAKE Pin Filtered Behavior  
8.4.8.2.2 Cyclic Sense Wake  
Cyclic sense wake is a method using the high-side switch with the WAKE input pin to periodically check for a  
WAKE pin state change in standby and sleep modes. In sleep mode, cyclic sense wake reduces the quiescent  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
current of the device by reducing the WAKE circuitry to be active only during the on time of the HSS pin, see 图  
8-48 as an example for this. Periodically, the HSS pin turns on applying VSUP to the external local wake circuitry  
and the device samples the state of the WAKE pin. Each time the WAKE pin is sampled, the current state is  
compared to the previous state. If there has been a state change, the device wakes up and transitions to restart  
mode; otherwise, it remains in sleep mode. See 8-49 for the timing diagram. In standby mode, the same  
process is followed for determining a state change on the WAKE pin. A state change on the WAKE pin causes  
the device to initiate an interrupt and the RXD pin is latched low. When entering standby or sleep mode, this  
process is reset with the first HSS on time being the initial WAKE pin state and does not cause a wake event.  
The wake time is based upon tWK_CYC, which is the sampling window, as shown in Static WAKE. This HSS  
period and on time are determined by setting timer1 register, 8'h25[7:0] or timer 2 register 8'h26[7:0]. The  
sampling window, tWK_CYC, is determined by register 8'h12[5].  
VBAT  
VSUP  
470  
Pull down on WKRQ/INH pin  
100 nF  
for digital level output  
VSUP  
otherwise leave floating  
VDD33  
100 nF  
10 µF  
VCC  
VBAT VSUP  
VDD  
WKRQ  
100 k  
HSS  
3 k  
SW  
nCS  
CLK  
3.3 k  
WAKE  
LIMP  
I/O  
10 nF  
SDI  
SDO  
Cyclic  
sensing  
configuration  
nINT  
MCU  
VDD  
Responder  
Node  
10 k  
nRST  
VSUP  
Commander  
Node  
Pullup  
FSO  
DIV_ON  
PV  
1 k  
LIN Bus  
20 pF  
LIN  
LIN Controller  
Or  
SCI/UART  
RXD  
TXD  
220 pF  
GND  
GND  
8-48. Application Cyclic Sense Configuration  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
High  
High  
VSUP  
HSS  
tWK_CYC  
tWK_CYC  
tWK_CYC  
High  
High  
Switch  
3rd wake = high  
State change  
1st wake = low  
Low stored  
2nd wake = low  
No change  
WAKE  
VCC  
Wakes up device  
High  
UVCC  
tRSTN_act  
High  
nRST  
Mode  
Sleep  
Mode  
Restart  
Mode  
Standby  
Mode  
8-49. Cyclic Sensing Timing  
备注  
When the device enters fail-safe mode and turns off the HSS pin, the WAKE pin reverts to static  
mode, and must be reprogrammed for cyclic sensing when the device enters standby or normal mode.  
8.4.9 Mode Transitions  
When the device is transitioning between modes, the device needs the time tMODE_CHANGE and tNOMINIT to allow  
the change to fully propagate from the EN pin through the device into the new state.  
8.5 Programming  
The TLIN1431x-Q1 is 7-bit address access SPI communication port.  
8-9 shows a list of the registers in the device along with their respective addresses.  
8.5.1 SPI Communication  
The SPI communication uses a standard SPI interface. Physically the digital interface pins are nCS (Chip Select  
Not), SDI (SPI Data In), SDO (SPI Data Out) and CLK (SPI Clock). Each SPI transaction is initiated by a seven  
bit address with a R/W bit.  
The SPI data input data on SDI is sampled on the low to high edge of CLK. The SPI output data on SDO is  
changed on the high to low edge of CLK.  
See 8-50 and 8-51 for read and write method.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
nCS  
CLK  
SDI  
R/W  
= 1  
ADDRESS [6:0]  
DATA [7:0]  
SDO  
8-50. SPI Write  
nCS  
CLK  
SDI  
R/W  
= 0  
ADDRESS [6:0]  
SDO  
Filler byte  
00h  
DATA [7:0]  
8-51. SPI Read  
8.5.1.1 Cyclic Redundancy Check  
The TLIN1431x supports cyclic redundancy check (CRC) for SPI transactions and is default disabled. Register  
8'h0A[0] can be used to enable this feature. The default polynomial supports AutoSAR CRC8H2F, X8 + X5 + X3 +  
X2 + X + 1, see 8-7. CRC8 according to SAE J1850 is also supported and can be selected at register  
8'h0B[0].  
When CRC is enabled, a filler byte of 00h is used to calculate the CRC value during a read/write operation, see  
8-52 and 8-53.  
8-7. CRC8H27  
SPI Transactions  
CRC result width  
Polynomial  
8 bits  
2Fh  
FFh  
No  
Initial value  
Input data reflected  
Result data reflected  
XOR value  
No  
FFh  
DFh  
42h  
Check  
Magic Check  
8-8. CRC8 SAE J1850  
SPI Transactions  
CRC result width  
8 bits  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-8. CRC8 SAE J1850 (continued)  
SPI Transactions  
Polynomial  
1Dh  
FFh  
No  
Initial value  
Input data reflected  
Result data reflected  
XOR value  
No  
FFh  
4Bh  
C4h  
Check  
Magic Check  
nCS  
CLK  
SDI  
R/W  
= 1  
8-bit CRC of Address  
+ R/W + Data  
ADDRESS [6:0]  
DATA [7:0]  
SDO  
8-52. CRC SPI Write  
nCS  
CLK  
SDI  
R/W  
= 0  
Filler Byte  
Value = 00h  
8-bit CRC of Address  
+ R/W + Filler Byte  
ADDRESS [6:0]  
SDO  
Filler Byte  
Value = 00h  
8-bit CRC of Filler  
Byte + Data  
DATA [7:0]  
8-53. CRC SPI Read  
8.5.1.2 Chip Select Not (nCS)  
This input pin is used to select the device for a SPI transaction. The pin is active low, so while nCS is high the  
SPI Data Output (SDO) pin of the device is high impedance allowing an SPI bus to be designed. When nCS is  
low, the SDO driver is activated and communication may be started. The nCS pin is held low for a SPI  
transaction.  
8.5.1.3 Serial Clock Input (CLK)  
This input pin is used to input the clock for the SPI to synchronize the input and output serial data bit streams.  
The SPI Data Input is sampled on the rising edge of CLK and the SPI Data Output is changed on the falling  
edge of the CLK. See 8-54 .  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
ACTIONs: C = data capture, S = data shi ,  
L = load data out, P = process captured data  
SPI CLOCKING  
MODE 0 (CPOL = 0, CPHA = 0)  
nCS  
CLK  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SDI, SDO  
ACTION  
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
P
P
INTERNAL  
CLK  
INTERNAL_CLK = !CS xor CLK  
8-54. SPI Clocking  
8.5.1.4 Serial Data Input (SDI)  
This input pin is used to shift data into the device. Once the SPI is enabled by a low on nCS, the SDI samples  
the input shifted data on each rising edge of the SPI clock (SCK). The data is shifted into an 8-bit shift register.  
After eight (8) clock cycles and shifts, the addressed register is read giving the data to be shifted out on SDO.  
After eight clock cycles, the shift register is full and the SPI transaction is complete. If the command code is a  
write, the new data is written into the addressed register. When nCS has a falling edge, there will be 16-bits  
(CRC disabled) or 24-bits (CRC enabled) shifted in by CLK, at which time the nCS has a rising edge to deselect  
the device. 16 Clock cycles are required to shift 16-bits (CRC disabled) and 24 clock cycles for 24-bits (CRC  
enabled) during one SPI transaction (nCS is low). If more or less clock cycles than these are used, the SPIERR  
flag will be set. If CRC was enabled the CRCERR flag will be set. When writing to the device, any transaction  
other than 16 or 24 clock cycles could result in behavior that is outside of the specification.  
8.5.1.5 Serial Data Output (SDO)  
This pin is high impedance until the SPI output is enabled via nCS. Once the SPI is enabled by a low on nCS  
and a read command given, on the first falling edge of CLK, the shifting out of the data with each falling edge on  
CLK until all 8 bits have been shifted out the shift register.  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6 Registers  
The following tables contain the registers that the device use during SPI communication.  
8-9 lists the memory-mapped registers for the Device registers. All register offset addresses not listed in 表  
8-9 should be considered as reserved locations and the register contents should not be modified.  
8-9. Device Registers  
Address  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0h + formula DEVICE_ID_y  
Device Part Number  
8h  
REV_ID_MAJOR  
REV_ID_MINOR  
CRC_CNTL  
Major Revision  
9h  
Minor Revision  
Ah  
SPI CRC control  
Bh  
CRC_POLY_SET  
Scratch_Pad_SPI  
WAKE_PIN_CONFIG1  
WAKE_PIN_CONFIG2  
WD_CONFIG_1  
WD_CONFIG_2  
WD_INPUT_TRIG  
WD_RST_PULSE  
FSM_CONFIG  
FSM_CNTR  
Sets SPI CRC polynomial  
Read and Write Test Register SPI  
WAKE pin configuration 1  
WAKE pin configuration 2  
Watchdog configuration 1  
Watchdog configuration 2  
Watchdog input trigger  
Fh  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
28h  
29h  
50h  
51h  
52h  
53h  
56h  
57h  
58h  
5Ah  
5Eh  
Watchdog output pulse width  
Fail safe mode configuration  
Fail safe mode counter  
DEVICE_RST  
DEVICE_CONFIG1  
DEVICE_CONFIG2  
SWE_TIMER  
LIN_CNTL  
Device reset  
Device configuration 1  
Device configuration 2  
Sleep wake error timer configuration  
LIN transceiver control  
HSS_CNTL  
High side switch 1 and 2 control  
Pulse width modulation frequency select  
Pulse width modulation duty cycle two MSB select  
Pulse width modulation duty cycle eight LSB select  
Pulse width modulation frequency select  
Pulse width modulation duty cycle two MSB select  
Pulse width modulation duty cycle eight LSB select  
High side switch timer 1 configuration  
High side switch timer 2configuration  
Restart counter configuration  
nRST and FSO pin control  
Global Interrupts  
PWM1_CNTL1  
PWM1_CNTL2  
PWM1_CNTL3  
PWM2_CNTL1  
PWM2_CNTL2  
PWM2_CNTL3  
TIMER1_CONFIG  
TIMER2_CONFIG  
RSRT_CNTR  
nRST_CNTL  
INT_GLOBAL  
INT_1  
Interrupts  
INT_2  
Interrupts  
INT_3  
Interrupts  
INT_EN_1  
Interrupt enable for INT_1  
Interrupt enable for INT_2  
Interrupt enable for INT_3  
Interrupts  
INT_EN_2  
INT_EN_3  
INT_4  
INT_EN_4  
Interrupt enable for INT_4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Complex bit access types are encoded to fit into small table cells. 8-10 shows the codes that are used for  
access types in this section.  
8-10. Device Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RH  
H
R
Set or cleared by hardware  
Read  
Write Type  
H
H
Set or cleared by hardware  
Write  
W
W
W1C  
1C  
W
1 to clear  
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups  
form a hierarchical structure and  
the array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of a  
register array.  
8.6.1 DEVICE_ID_y Register (Address = 0h + formula) [reset = 0h]  
DEVICE_ID_y is shown in 8-55 and described in 8-11.  
Return to Summary Table.  
Device Part Number  
Offset = 0h + y; where y = 0h to 7h  
8-55. DEVICE_ID_y Register  
7
6
5
4
3
2
1
0
DEVICE_ID  
R-0b  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-11. DEVICE_ID_y Register Field Descriptions  
Bit  
Field  
DEVICE_ID  
Type  
Reset  
Description  
7-0  
R
0b  
The DEVICE_ID[1:8] registers determine the part number of the  
device.  
The reset values and value of each DEVICE_ID register are listed for  
the corresponding register address  
Address 00h = 54h = T  
Address 01h = 4Ch = L  
Address 02h = 49h = I  
Address 03h = 31h = 1  
Address 04h = 34h = 4  
Address 05h = 33h = 3  
Address 06h = 31h = 1  
Address 07h = 33h = 3 for 3.3 V LDO  
Address 07h = 35h = 5 for 5 V LDO  
8.6.2 REV_ID_MAJOR Register (Address = 8h) [reset = 01h]  
REV_ID_MAJOR is shown in 8-56 and described in 8-12.  
Return to Summary Table.  
Major Revision  
8-56. REV_ID_MAJOR Register  
7
6
5
4
3
2
1
1
1
0
Major_Revision  
R-01h  
8-12. REV_ID_MAJOR Register Field Descriptions  
Bit  
7-0  
Field  
Major_Revision  
Type  
Reset  
Description  
R
01h  
Major die revision  
8.6.3 REV_ID_MINOR Register (Address = 9h) [reset = 0h]  
REV_ID_MINOR is shown in 8-57 and described in 8-13.  
Return to Summary Table.  
Minor Revision  
8-57. REV_ID_MINOR Register  
7
6
5
4
3
2
0
Minor_Revision  
R-0b  
8-13. REV_ID_MINOR Register Field Descriptions  
Bit  
7-0  
Field  
Minor_Revision  
Type  
Reset  
Description  
R
0b  
Minor die revision  
8.6.4 CRC_CNTL Register (Address = Ah) [reset = 0h]  
CRC_CNTL is shown in 8-58 and described in 8-14.  
Return to Summary Table.  
SPI CRC register controls the CRC function. CRC_DIS bit can disable the CRC function.  
8-58. CRC_CNTL Register  
7
6
5
4
3
2
0
CRC_CNTL_RSVD  
CRC_EN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-58. CRC_CNTL Register (continued)  
R-0b  
R/W-0b  
8-14. CRC_CNTL Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
Description  
CRC_CNTL_RSVD  
CRC_EN  
R
0b  
CRC control reserved bits  
R/W  
0b  
CRC enable  
0b = Disable  
1b = Enable  
8.6.5 CRC_POLY_SET (Address = Bh) [reset = 00h]  
CRC_POLY_SET is shown 8-59 and described in 8-15.  
Return to Summary Table.  
This register will set which polynomial will be set for CRC. Defaults to AutoSAR 8-bit 0x2F.  
8-59. CRC_POLY_SET Register  
7
6
5
4
RSVD  
R
3
2
1
0
POLY_8_SET  
R/W-0b  
8-15. CRC_POLY_SET Register Field Description  
Bit  
Field  
Type  
Reset  
00h  
0b  
Description  
7-1  
0
RSVD  
R
Reserved  
POLY_8_SET  
R/W  
CRC polynomial select  
0b = X^8 + X^5 + X^3 + X^2 + X + 1 (0x2F)  
1b = X^8 + X^4 + X^3 + X^2 + 1 (0x1D SAE J1850)  
8.6.6 Scratch_Pad_SPI Register (Address = Fh) [reset = 0h]  
Scratch_Pad_SPI is shown in 8-60 and described in 8-16.  
Return to Summary Table.  
Read and Write Test Register SPI  
8-60. Scratch_Pad_SPI Register  
7
6
5
4
3
2
1
0
Scratch_Pad  
R/W-0b  
8-16. Scratch_Pad_SPI Register Field Descriptions  
Bit  
7-0  
Field  
Scratch_Pad  
Type  
Reset  
Description  
R/W  
0b  
Read and Write Test Register SPI  
8.6.7 WAKE_PIN_CONFIG1 Register (Address = 11h) [reset = 04h]  
WAKE_PIN_CONFIG1 is shown in 8-61 and described in 8-17.  
Return to Summary Table.  
Register to configure the behavior of the WAKE pin.  
8-61. WAKE_PIN_CONFIG1 Register  
7
6
5
4
3
2
1
0
WAKE_CONFIG  
WAKE_STAT  
WAKE_WIDTH_INVALID  
WAKE_WIDTH_MAX  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-61. WAKE_PIN_CONFIG1 Register (continued)  
R/W-00b  
R/W0C/H-00b  
R/W-01b  
R/W-00b  
8-17. WAKE_PIN_CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
WAKE_CONFIG  
R/W  
00b  
Wake pin configuration: Note: Pulse requires more programming  
00b = Bi-directional - either edge  
01b = Rising edge  
10b = Falling edge  
11b = Pulse  
5-4  
3-2  
1-0  
WAKE_STAT  
R/W0C/H  
00b  
01b  
00b  
Wake pin status  
00b = No change  
01b = Rising edge  
10b = Falling edge  
11b = Pulse  
WAKE_WIDTH_INVALID R/W  
Pulses less than or equal to these pulses are considered invalid  
00b = 5 ms and sets tWAKE_WIDTH_MIN to 10 ms  
01b = 10 ms and sets tWAKE_WIDTH_MIN to 20 ms  
10b = 20 ms and sets tWAKE_WIDTH_MIN to 40 ms  
11b = 40 ms and sets tWAKE_WIDTH_MIN to 80 ms  
WAKE_WIDTH_MAX  
R/W  
Maximum WAKE pin input pulse width to be considered valid.  
00b = 750 ms  
01b = 1000 ms  
10b = 1500 ms  
11b = 2000 ms  
8.6.8 WAKE_PIN_CONFIG2 Register (Address = 12h) [reset = 2h]  
WAKE_PIN_CONFIG2 is shown in 8-62 and described in 8-18.  
Return to Summary Table.  
Device wake configuration register  
8-62. WAKE_PIN_CONFIG2 Register  
7
6
5
4
3
2
1
0
WAKE_PULSE WAKE_SENSE TWK_CYC_SE  
nINT_SEL  
R/W-0b  
RXD_WK_CON  
FIG  
WAKE_LEVEL  
R/W-10b  
_CONFIG  
T
R/W-0b  
R/W/H-0b  
R/W-0b  
R/W-0b  
8-18. WAKE_PIN_CONFIG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WAKE_PULSE_CONFIG R/W  
0b  
Set WAKE pin expected pulse direction  
0b = Low > High > Low  
1b = High > Low > High  
6
WAKE_SENSE  
R/W/H  
0b  
WAKE pin configured for static or cyclic sensing wake  
0b = Static  
1b = Cyclic  
备注  
When Cyclic sensing is selected and the device goes to  
fail-safe mode it will automatically change to static  
sensing. If cyclic sensing is needed it will have to be  
reprogrammed.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-18. WAKE_PIN_CONFIG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
TWK_CYC_SET  
R/W  
0b  
Sets the tWK_CYC time (µs) for sampling the WAKE pin status (used  
for cyclic sensing)  
0b = 30  
1b = 75  
备注  
NOTE: tWK_CYC_SET works with timer1 and timer2. When  
using 75 µs tWK_CYC, 100 µs TIMER1/2_ON_WIDTH  
cannot be used.  
4-3  
nINT_SEL  
R/W  
00b  
nINT configuration selection: active low  
00b = Global interrupt  
01b = Watchdog failure output  
10b = Reserved  
11b = Wake request  
2
RXD_WK_CONFIG  
WAKE_LEVEL  
R/W  
R/W  
0b  
Configures RXD pin behavior from a wake event  
0b = Pulled low  
1b = Toggle  
1-0  
10b  
WAKE pin threshold level; Mid-point value in 2 V window.  
00b = 2.5 V  
01b = 2.8 V  
10b = 3 V  
11b = 3.3 V  
8.6.9 WD_CONFIG_1 Register (Address = 13h) [reset = 90h]  
WD_CONFIG_1 is shown in 8-63 and described in 8-19.  
Return to Summary Table.  
Watchdog configuration register.  
8-63. WD_CONFIG_1 Register  
7
6
5
4
3
2
1
0
WD_CONFIG  
R/W-10b  
WD_PRE  
R/W-01b  
RSVD  
R-0000b  
8-19. WD_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-0  
WD_CONFIG  
WD_PRE  
RSVD  
R/W  
10b  
Watchdog configuration  
00b = Disabled  
01b = Timeout  
10b = Window  
11b = Reserved  
R/W  
R
01b  
Watchdog prescalar  
00b = Factor 1  
01b = Factor 2  
10b = Factor 3  
11b = Factor 4  
0000b  
Reserved  
8.6.10 WD_CONFIG_2 Register (Address = 14h) [reset = 02h]  
WD_CONFIG_2 is shown in 8-64 and described in 8-20.  
Return to Summary Table.  
Watchdog timer and error counter register.  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-64. WD_CONFIG_2 Register  
7
6
5
4
3
2
1
0
WD_TIMER  
R/W-000b  
WD_ERR_CNT  
RH-0001b  
WD_STBY_DIS  
R/W-0b  
8-20. WD_CONFIG_2 Register Field Descriptions  
Bit  
Field  
WD_TIMER  
Type  
Reset  
Description  
7-5  
R/W  
000b  
Sets window or timeout times based upon the WD_PRE setting  
See WD_TIMER table  
4-1  
0
WD_ERR_CNT  
WD_STBY_DIS  
RH  
0001b  
0b  
Watchdog error counter  
Running count of errors up to 15 errors  
R/W  
Watchdog disable in standby mode  
0b = Enabled  
1b = Disabled  
8.6.11 WD_INPUT_TRIG Register (Address = 15h) [reset = 0h]  
WD_INPUT_TRIG is shown in 8-65 and described in 8-21.  
Return to Summary Table.  
Writing FFh resets WD timer if accomplished at appropriate time.  
8-65. WD_INPUT_TRIG Register  
7
6
5
4
3
2
1
0
WD_INPUT  
R/W1C-00h  
8-21. WD_INPUT_TRIG Register Field Descriptions  
Bit  
7-0  
Field  
WD_INPUT  
Type  
Reset  
Description  
R/W1C  
00h  
Write FFh to trigger WD  
8.6.12 WD_RST_PULSE Register (Address = 16h) [reset = 40h]  
WD_RST_PULSE is shown in 8-66 and described in 8-22.  
Return to Summary Table.  
Sets the watchdog error counter value.  
8-66. WD_RST_PULSE Register  
7
6
5
4
3
2
1
0
WD_ERR_CNT_SET  
R/W-01b  
RSVD  
R-000000b  
8-22. WD_RST_PULSE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
WD_ERR_CNT_SET  
R/W  
01b  
Sets the watchdog event error counter that upon reaching the count  
value, will cause the watchdog action.  
00b = Immediate trigger on each WD fail  
01b = Triggers when counter reaches 5  
10b = Triggers when counter reaches 9  
11b = Triggers when counter reaches 15  
5-0  
RSVD  
R
000000b  
Reserved  
8.6.13 FSM_CONFIG Register (Address = 17h) [reset = 0h]  
FSM_CONFIG is shown in 8-67 and described in 8-23.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Return to Summary Table.  
Configures the fail-safe mode  
8-67. FSM_CONFIG Register  
7
6
5
4
3
2
1
0
FS_CNTR_ACT  
R/W-0000b  
FS_STAT  
RH-000b  
FSM_DIS  
R/W-0b  
8-23. FSM_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FSM_CNTR_ACT  
R/W  
0000b  
Action if fail safe counter exceeds programmed value  
000b = Disabled  
0001b = Pull WKRQ/INH low for 1 s  
0010b = Perform soft reset  
0011b = Perform hard reset - POR  
0100b = Stop responding to wake events and go to sleep until power  
cycle reset  
0101b = Reserved  
0110b = Reserved  
0111b = Reserved  
1001b = Turn off VCC for 300 ms and set interrupt  
备注  
If LIMP is configured as INH then 0001b will impact  
cause the LIMP pin to go low for 1 s.  
All other values reserved  
3-1  
FSM_STAT  
RH  
000b  
Reason for entering failsafe mode  
000b = Not in FS mode  
001b = Thermal shut down event  
010b = Reserved  
011b = UVCC  
100b = OVCC  
101b = VCCSC  
110b = Watchdog failure  
111b = Restart counter exceeded  
These values are held until cleared by writing 0h to  
FSM_CNTR_STAT  
0
FSM_DIS  
R/W  
0b  
Fail safe mode disable: Excludes power up fail safe  
0b = Enabled  
1b = Disabled  
8.6.14 FSM_CNTR Register (Address = 18h) [reset = 0h]  
FSM_CNTR is shown in 8-68 and described in 8-24.  
Return to Summary Table.  
Set fail safe counter and status  
8-68. FSM_CNTR Register  
7
6
5
4
3
2
1
0
FSM_CNTR_SET  
R/W-0h  
FSM_CNTR_STAT  
RH-0h  
8-24. FSM_CNTR Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
FSM_CNTR_SET  
R/W  
0h  
Sets the number of times FS mode enters before action taken. Value  
is one less than the number of times FS mode is entered. Range is  
0-15, representing entering fail-safe mode 1-16 times.  
Copyright © 2022 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-24. FSM_CNTR Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
FSM_CNTR_STAT  
RH  
0h  
Reads back the number of time FSM has been entered in a row up  
to 15. Can be cleared by writing 0h.  
8.6.15 DEVICE_RST Register (Address = 19h) [reset = 0h]  
DEVICE_RST is shown in 8-69 and described in 8-25.  
Return to Summary Table.  
Forces a soft or hard reset.  
8-69. DEVICE_RST Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00h  
SF_RST  
R/W1C-0b  
HD_RST  
R/W1C-0b  
8-25. DEVICE_RST Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00h  
0b  
Description  
7-2  
1
RESERVED  
SF_RST  
R
Reserved  
R/W1C  
Soft Reset: Writing a 1 causes a soft reset. Device registers return to  
default values while keeping INH on.  
0
HD_RST  
R/W1C  
0b  
Hard Reset: Forces a power on reset when writing a 1.  
备注  
NOTE: This will set the PWRON interrupt flag.  
8.6.16 DEVICE_CONFIG (Address = 1Ah) [reset = 80h]  
DEVICE_CONFIG is shown in 8-70 and described in 8-26  
Return to Summary Table.  
Enables SPI to work in sleep mode if VIO is available.  
WKRQ/INH and LIMP pin configuration.  
8-70. DEVICE_CONFIG Register  
7
6
5
4
3
2
1
0
WKRQ_POL_S WKRQ_INH_DI INH_LIMP_SEL  
LIMP_DIS  
LIMP_SEL_RESET  
R/W - 00b  
LIMP_RESET  
RSVD  
EL  
S
R/W-1b  
R/W-0b  
R/W - 0b  
R/W - 0b  
R/W1C - 0b  
R - 0b  
8-26. DEVICE_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WKRQ_POL_SEL  
WKRQ_INH_DIS  
INH_LIMP_SEL  
R/W  
1b  
Selects the polarity for the WKRQ pin  
0b = Low  
1b = High  
6
5
R/W  
R/W  
0b  
0b  
WKRQ/INH pin disable  
0b = Enabled  
1b = Disabled  
Pin function select function of INH pin  
0b = INH  
1b = LIMP  
Note: This only works if WKRQ/INH pin is configured for INH at  
power-up. If pin is WKRQ writing to this bit will be ignored.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-26. DEVICE_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
LIMP_DIS  
R/W  
0b  
LIMP pin disable  
0b = Enabled  
1b = Disabled  
3-2  
LIMP_SEL_RESET  
R/W  
0b  
Selects the method to reset/turnoff the LIMP pin  
00b = On third successful input trigger the error counter receives  
01b = First correct input trigger  
10b = SPI write to 8'h1A[1] = 1  
11b = Reserved  
1
0
LIMP_RESET  
RSVD  
R/W1C  
R
0b  
0b  
LIMP reset  
Writing a one to this location resets the LIMP pin to off state and bit  
automatically clears  
Reserved  
8.6.17 DEVICE_CONFIG2 (Address = 1Bh) [reset = 0h]  
DEVICE_CONFIG2 is shown in 8-71 and described in 8-27  
Return to Summary Table.  
LIMP pin configuration and control.  
8-71. DEVICE_CONFIG2 Register  
7
6
5
4
3
2
1
0
LIMP_HSS_SEL  
LIMP_HSS_CNTL  
R/W-000b  
LIMP_HSS_ON WAKE_WIDTH  
_MAX_DIS  
RSVD  
R/W-00b  
R/W-0b  
R/W-0b  
R-0b  
8-27. DEVICE_CONFIG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LIMP_HSS_SEL  
R/W  
00b  
Selects LIMP pin function  
00b = LIMP  
01b = High side switch  
10b = INH  
11b = Reserved  
5-3  
LIMP_HSS_CNTL  
R/W  
000b  
Selects the method of control for the LIMP pin when configured as a  
high side switch  
000b = On/Off  
001b = PWM1  
010b = PWM2  
011b = Timer1  
100b = Timer2  
101b - 111b = Reserved  
2
1
0
LIMP_HSS_ON  
R/W  
R/W  
R
0b  
0b  
0b  
When LIMP is configured as HSS and control is On/Off this bit turns  
on or off the LIMP pin.  
0b = Off  
1b = On  
WAKE_WIDTH  
_MAX_DIS  
Disables the Max limit, tWK_PULSE_WIDTH_MAX detection when pulse is  
selected for WAKE pin wake up.  
0b = Enabled  
1b = Disabled  
RSVD  
Reserved  
8.6.18 SWE_TIMER (Address = 1Ch) [reset = 30h]  
SWE_TIMER is shown in 8-72 and described in 8-28  
Return to Summary Table.  
Sleep wake error timer configuration. Power up always sets to default value.  
Copyright © 2022 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-72. SWE_TIMER Register  
7
6
5
4
3
2
1
RSVD  
R
0
SWE_DIS  
R/W-0b  
SWE_TIMER_SET  
R/W-0110b  
8-28. SWE_TIMER Register Field Descriptions  
Bit  
Field  
SWE_DIS  
Type  
Reset  
Description  
7
R/W  
0b  
Sleep wake error disable: NOTE: This disables the device from  
starting the tINACT_FS timer. If enabled, a SPI read or write must take  
place within this window or the device will go back to sleep.  
0b = Enabled  
1b = Disabled  
6-3  
SWE_TIMER_SET  
R/W  
0110b  
Sets the timer used for tINACT_FS (minutes)  
0000b = 2  
0001b = 2.5  
0010b = 3  
0011b = 3.5  
0100b = 4  
0101b = 4.5  
0110b = 5 (default)  
0111b = 5.5  
1000b = 6  
1001b = 6.5  
1010b = 8  
1011b = 8.5  
1100b = 10  
1101b = 0.5  
1111b = 1  
2-0  
RSVD  
R
0b  
Reserved  
8.6.19 LIN_CNTL (Address = 1Dh) [reset = 00h]  
LIN_CNTL is shown in 8-73 and described in 8-29  
Return to Summary Table.  
LIN transceiver mode and DTO control. Port 1 is the TLIN1431x-Q1 LIN control.  
8-73. LIN_CNTL Register  
7
6
5
4
3
2
1
0
LIN_MODE  
R/W/H-00b  
LIN_DTO_DIS  
R/W - 0b  
LIN_RSVD  
R - 00000b  
8-29. LIN_CNTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LIN_MODE  
R/W/H  
00b  
Port 1 LIN mode control  
00b = Standby mode  
01b = Sleep Mode  
10b = Normal Mode  
11b = Fast Mode  
5
LIN_DTO_DIS  
LIN_RSVD  
R/W  
R
0b  
Port 1 LIN dominant state timeout disable  
0b = Enabled  
1b = Disabled  
4-0  
00000b  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.20 HSS_CNTL (Address = 1Eh) [reset = 0h]  
HSS_CNTL is shown in 8-74 and described in 8-30  
Return to Summary Table.  
HSS high side switch control.  
8-74. HSS_CNTL Register  
7
6
5
4
3
2
1
0
HSS_EN  
R/W-0b  
HSS_CNTL  
R/W-000b  
HSS_RSVD  
R-0000b  
8-30. HSS_CNTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HSS_EN  
R/W  
0b  
High side switch, HSS, enable  
0b = Disabled  
1b = Enabled  
6-4  
HSS_CNTL  
R/W  
000b  
Control for HSS  
000b = On/Off  
001b = PWM1  
010b = PWM2  
011b = Timer1  
100b = Timer2  
101b = HSSC  
110b - 111b = Reserved  
Note: selecting HSSC control disables FSO output capability  
3-0  
HSS_RSVD  
R/W  
0000b  
Reserved  
8.6.21 PWM1_CNTL1 (Address = 1Fh) [reset = 0h]  
PWM1_CNTL1 is shown in 8-75 and described in 8-31  
Return to Summary Table.  
Sets the pulse width modulation frequency, PWM1.  
8-75. PWM1_CNTL1 Register  
7
6
5
4
3
2
1
0
PWM1_FREQ  
R/W-0b  
PWM1_FREQ_RSVD  
R-0b  
8-31. PWM1_CNTL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWM1_FREQ  
R/W  
0b  
PWM frequency select (Hz)  
0b = 200  
1b = 400  
6-0  
PWM1_FREQ_RSVD  
R
0b  
Reserved  
8.6.22 PWM1_CNTL2 (Address = 20h) [reset = 0h]  
PWM1_CNTL2 is shown in 8-76 and described in 8-32  
Return to Summary Table.  
Set the two most significant bit for the 10-bit PWM1. These work with register h'21 PWM1_CNTL3.  
8-76. PWM1_CNTL2 Register  
7
6
5
4
3
2
1
0
PWM1_RSVD  
PWM1_DC_MSB  
Copyright © 2022 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-76. PWM1_CNTL2 Register (continued)  
R-0b  
R/W-00b  
8-32. PWM1_CNTL2L Register Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
Reset  
Description  
PWM1_RSVD  
R
0b  
Reserved  
PWM1_DC_MSB  
R/W  
00b  
Most significant two bits for 10-bit PWM1 duty cycle select. Works  
with 'h21[7:0]  
00b = 100% off when used with 'h21[7:0] and it is 00h  
xxb = on time with an increase of ~ 0.1% when used with 'h21[7:0]  
11b = 100% of when used with 'h21[7:0] and it is FFh  
备注  
Minimum on-time during PWM is limited to the on and off-time of the high side switch. This will make  
certain PWM values unusable like 00 0000 0001.  
8.6.23 PWM1_CNTL3 (Address = 21h) [reset = 00h]  
PWM1_CNTL3 is shown in 8-77 and described in 8-33  
Return to Summary Table.  
Bits 0 - 7 of the 10-bit PWM1. Used with register h'20[1:0] PWM1_CNTL2.  
8-77. PWM1_CNTL3 Register  
7
6
5
4
3
2
1
0
PWM1_DC  
R/W-00h  
8-33. PWM1_CNTL3 Register Field Descriptions  
Bit  
Field  
PWM1_DC  
Type  
Reset  
Description  
7
R/W  
00h  
Bits 0 - 7 of the 10-bit PWM1  
00h = 100% off when used with 'h20[1:0] = 00b  
xxh = On time with an increase of ~ 0.1% when used with 'h20[1:0]  
FFh = 100% on when used with 'h20[1:0] = 11b  
8.6.24 PWM2_CNTL1 (Address = 22h) [reset = 0h]  
PWM2_CNTL1 is shown in 8-78 and described in 8-34  
Return to Summary Table.  
Sets the pulse width modulation frequency, PWM2.  
8-78. PWM2_CNTL1 Register  
7
6
5
4
3
2
1
0
PWM2_FREQ  
R/W-0b  
PWM2_FREQ_RSVD  
R-0b  
8-34. PWM2_CNTL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWM2_FREQ  
R/W  
0b  
PWM frequency select (Hz)  
0b = 200  
1b = 400  
6-0  
PWM2_FREQ_RSVD  
R
0b  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.25 PWM2_CNTL2 (Address = 23h) [reset = 0h]  
PWM2_CNTL2 is shown in 8-79 and described in 8-35  
Return to Summary Table.  
Set the two most significant bit for the 10-bit PWM2. These work with register h'24 PWM2_CNTL3.  
8-79. PWM2_CNTL2 Register  
7
6
5
4
3
2
1
0
PWM2_RSVD  
R-0b  
PWM2_DC_MSB  
R/W-00b  
8-35. PWM2_CNTL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
1-0  
PWM2_RSVD  
R
0b  
Reserved  
PWM2_DC_MSB  
R/W  
00b  
Most significant two bits for 10-bit PWM2 duty cycle select. Works  
with 'h24[7:0]  
00b = 100% off when used with 'h24[7:0] and it is 00h  
xxb = on time with an increase of ~ 0.1% when used with 'h24[7:0]  
11b = 100% of when used with 'h24[7:0] and it is FFh  
8.6.26 PWM2_CNTL3 (Address = 24h) [reset = 0h]  
PWM2_CNTL3 is shown in 8-80 and described in 8-36  
Return to Summary Table.  
Bits 0 - 7 of the 10-bit PWM2. Used with register h'23[1:0] PWM2_CNTL2.  
8-80. PWM2_CNTL3 Register  
7
6
5
4
3
2
1
0
PWM2_DC  
R/W-00h  
8-36. PWM2_CNTL3 Register Field Descriptions  
Bit  
7-0  
Field  
PWM2_DC  
Type  
Reset  
Description  
R/W  
00h  
Bits 0 - 7 of the 10-bit PWM2  
00h = 100% off when used with 'h23[1:0] = 00b  
xxh = On time with an increase of ~ 0.1% when used with 'h23[1:0]  
FFh = 100% on when used with 'h23[1:0] = 11b  
备注  
Minimum on-time during PWM is limited to the on and off-time of the high side switch. This will make  
certain PWM values unusable like 00 0000 0001.  
8.6.27 TIMER1_CONFIG (Address = 25h) [reset = 00h]  
TIMER1_CONFIG is shown in 8-81 and described in 8-37  
Return to Summary Table.  
Sets timer 1 period and on time. Careful selection is important as selecting a 200ms on width and a 10ms period  
is not possible.  
8-81. TIMER1_CONFIG Register  
7
6
5
4
3
2
1
0
TIMER1_ON_WIDTH  
TIMER1_RSVD  
TIMER1_PERIOD  
Copyright © 2022 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-81. TIMER1_CONFIG Register (continued)  
R/W-0h  
R-0b  
R/W-000b  
8-37. TIMER1_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TIMER1_ON_WIDTH  
R/W  
0b  
Sets the high side switch on time (ms) for timer 1  
0000b = Off (HSS is high impedance)  
0001b = 0.1  
0010b = 0.3  
0011b = 0.5  
0100b = 1  
0101b = 10  
0110b = 20  
0111b = 30  
1000b = 40  
1001b = 50  
1010b = 60  
1011b = 80  
1100b = 100  
1101b = 150  
1110b = 200  
1111b = On (HSS is on 100%)  
备注  
NOTE: tWK_CYC which is set by tWK_CYC_SET works with  
these times to determine if a state change has taken  
place on the WAKE pin. When tWK_CYC is set at 65 µs  
the 100 µs on width time cannot be used.  
3
TIMER1_RSVD  
R
0b  
0b  
Reserved  
2-0  
TIMER1_PERIOD  
R/W  
Sets the timer period (ms) for timer 1  
000b = 10  
001b = 20  
010b = 50  
011b = 100  
100b = 200  
101b = 500  
110b = 1000  
111b = 2000  
8.6.28 TIMER2_CONFIG (Address = 26h) [reset = 00h]  
TIMER2_CONFIG is shown in 8-82 and described in 8-38  
Return to Summary Table.  
Sets timer 2 period and on time. Careful selection is important as selecting a 200ms on width and a 10ms period  
is not possible.  
8-82. TIMER2_CONFIG Register  
7
6
5
4
3
2
1
0
TIMER2_ON_WIDTH  
R/W-0h  
TIMER2_RSVD  
R-0b  
TIMER2_PERIOD  
R/W-000b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-38. TIMER2_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
TIMER2_ON_WIDTH  
R/W  
0b  
Sets the high side switch on time (ms) for timer 2  
0000b = Off (HSS is high impedance)  
0001b = 0.1  
0010b = 0.3  
0011b = 0.5  
0100b = 1  
0101b = 10  
0110b = 20  
0111b = 30  
1000b = 40  
1001b = 50  
1010b = 60  
1011b = 80  
1100b = 100  
1101b = 150  
1110b = 200  
1111b = On (HSS is on 100%)  
备注  
NOTE: tWK_CYC which is set by tWK_CYC_SET works with  
these times to determine if a state change has taken  
place on the WAKE pin. When tWK_CYC is set at 65 µs  
the 100 µs on width time cannot be used.  
3
TIMER2_RSVD  
R
0b  
0b  
Reserved  
2-0  
TIMER2_PERIOD  
R/W  
Sets the timer period (ms) for timer 2  
000b = 10  
001b = 20  
010b = 50  
011b = 100  
100b = 200  
101b = 500  
110b = 1000  
111b = 2000  
8.6.29 RSRT_CNTR (Address = 28h) [reset = 40h]  
RSRT_CNTR is shown in 8-83 and described in 8-39  
Return to Summary Table.  
Restart mode counter set and counter. Determines the number of times the device has entered restart mode and  
when it will transition to sleep mode once programmed counter value has been reached. Counter should be  
reset often to avoid this transition.  
8-83. RSRT_CNTR Register  
7
6
5
4
3
2
1
0
RSRT_CNTR_SEL  
R/W-4h  
RSRT_CNTR  
R/W1C-0h  
8-39. RSRT_CNTR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RSRT_CNTR_SEL  
R/W  
4h  
Selects the number of times the device can enter restart mode prior  
to device entering sleep mode. Range is 0-15, representing entering  
restart mode 1-16 times.  
3-0  
RSRT_CNTR  
R/W1C  
0h  
Provides the number of times the device has entered restart mode  
and should be cleared prior to reaching the RSRT_CNTR_SEL value  
Copyright © 2022 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.30 nRST_CNTL (Address = 29h) [reset = 00h]  
nRST_CNTL is shown in 8-84 and described in 8-40  
Return to Summary Table.  
Configures nRST pin and FSO pin.  
8-84. nRST_CNTL Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
nRST_PULSE_ FSO_POL_SEL  
WIDTH  
FSO_SEL  
RSVD  
R/W-0b  
R/W-0b  
R/W/H-000b  
R-0b  
8-40. nRST_CNTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
00b  
0b  
Description  
7-6  
5
RSVD  
R
Reserved  
nRST_PULSE_WIDTH  
R/W  
Sets the pulse width for toggling nRST from high-->low-->high when  
device enters restart mode (ms)  
0b = 2  
1b = 15  
4
FSO_POL_SEL  
R/W  
0b  
Selects the polarity for the FSO pin  
0b = Active low  
1b = Active high  
备注  
Selects the output level when register 8'h29[3:1] = 110b  
making the pin a general-purpose output pin; 0 = Low  
and 1 = High  
3-1  
FSO_SEL  
R/W/H  
000b  
Selects the information that will cause this pin to be pulled to the  
state selected by 'h29[4]  
000b = VCC Interrupt (overvoltage, undervoltage or short)  
001b = WD interrupt event  
010b = Reserved  
011b = Local wake request (LWU)  
100b = Bus wake request (WUP)  
101b = Fail-safe mode entered  
110b = General purpose output  
111b = Reserved  
0
RSVD  
R
0b  
Reserved  
8.6.31 INT_GLOBAL Register (Address = 50h) [reset = A0h]  
INT_GLOBAL is shown in 8-85 and described in 8-41.  
Return to Summary Table.  
Logical OR of all to certain interrupts.  
8-85. INT_GLOBAL Register  
7
6
5
4
3
2
1
0
GLOBALERR  
RH-1b  
INT_1  
RH-0b  
INT_2  
RH-1b  
INT_3  
RH-0b  
RSVD  
RH-0b  
INT_4  
RH-0b  
RSVD  
R-0b  
RSVD  
R-0b  
8-41. INT_GLOBAL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
GLOBALERR  
INT_1  
RH  
1b  
Logical OR of all interrupts  
Logical OR of INT_1 register  
Logical OR of INT_2 register  
6
RH  
0b  
5
INT_2  
RH  
1b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-41. INT_GLOBAL Register Field Descriptions (continued)  
Bit  
4
Field  
Type  
RH  
RH  
RH  
RH  
RH  
Reset  
Description  
INT_3  
RSVD  
INT_4  
RSVD  
RSVD  
0b  
Logical OR of INT_3 register  
Reserved  
3
0b  
2
0b  
Logical OR of INT_4 register  
Reserved  
1
0b  
0
0b  
Reserved  
8.6.32 INT_1 Register (Address = 51h) [reset = 0h]  
INT_1 is shown in 8-86 and described in 8-42.  
Return to Summary Table.  
8-86. INT_1 Register  
7
6
5
4
3
2
1
0
WD  
RSVD  
R-0b  
LWU  
WKERR  
RSVD  
R-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-42. INT_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD  
R/W1C  
0b  
Watchdog event interrupt.  
NOTE: This interrupt bit will be set for every watchdog error event  
and does not rely upon the Watchdog error counter  
6
5
4
RSVD  
LWU  
R
0b  
0b  
0b  
Reserved  
R/W1C  
R/W1C  
Local wake up  
WKERR  
Wake error bit is set when the SWE timer has expired and the state  
machine has returned to Sleep mode  
3-0  
RSVD  
R
0b  
Reserved  
8.6.33 INT_2 Register (Address = 52h) [reset = 40h]  
INT_2 is shown in 8-87 and described in 8-43.  
Return to Summary Table.  
8-87. INT_2 Register  
7
6
5
4
3
2
1
0
SMS  
PWRON  
OVCC  
UVSUP  
R/W1C-0b  
RSVD  
R-0b  
UVCC  
TSD_VCC_LIN TSD_HSS_LIM  
P
R/W1C-0b  
R/W1C-1b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
8-43. INT_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SMS  
R/W1C  
0b  
Sleep mode status flag. Only sets when sleep mode is entered by a  
fault  
6
5
4
3
2
1
0
PWRON  
R/W1C  
R/W1C  
R/W1C  
R
1b  
0b  
0b  
0b  
0b  
0b  
0b  
Power on  
OVCC  
VCC overvoltage  
UVSUP  
VSUP undervoltage  
RSVD  
Reserved  
UVCC  
R/W1C  
R/W1C  
R/W1C  
VCC undervoltage  
TSD_VCC_LIN  
TSD_HSS_LIMP  
Thermal Shutdown due to VCC or LIN  
Thermal Shutdown due to HSS or LIMP  
Copyright © 2022 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8.6.34 INT_3 Register (Address 53h) [reset = 0h]  
INT_3 is shown in 8-88 and described in 8-44.  
Return to Summary Table.  
8-88. INT_3 Register  
7
6
5
4
3
2
1
0
SPIERR  
R/W1C-0b  
RSVD  
R-0b  
FSM  
CRCERR  
R/W1C/U-0b  
VCCSC  
RSRT_CNT  
R/W1C/U-0b  
RSVD  
R-0b  
R/W1C-0b  
R/W1C/U-0b  
8-44. INT_3 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description0b  
SPIERR  
RSVD  
FSM  
R/W1C  
R
0b  
Sets when SPI status bit sets  
Reserved  
6
0b  
5
R/W1C  
R/W1C/U  
R/W1C/U  
R/W1C/U  
R
0b  
Entered fail-safe mode. Can be cleared while in failsafe mode.  
SPI CRC error detected  
4
CRCERR  
VCCSC  
0b  
3
0b  
VCC short detected  
2
RSRT_CNT  
RSVD  
0b  
Restart counter exceeded programmed count  
Reserved  
1-0  
0b  
8.6.35 INT_EN_1 Register (Address = 56h) [reset = B0h]  
INT_EN_1 is shown in 8-89 and described in 8-45.  
Return to Summary Table.  
Interrupt mask for INT_1.  
8-89. INT_EN_1 Register  
7
6
5
4
3
2
1
0
WD_EN  
R/W-1b  
RSVD  
R-0b  
LWU_EN  
R/W-1b  
WKERR_EN  
R/W-1b  
RSVD  
R-0000b  
8-45. INT_EN_1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R
Reset  
Description  
WD_EN  
RSVD  
1b  
Watchdog event interrupt enable  
Reserved  
6
0b  
5
LWU_EN  
WKERR_EN  
RSVD  
1b  
Local wake up enable  
Wake error enable  
Reserved  
4
1b  
3-0  
0000b  
8.6.36 INT_EN_2 Register (Address = 57h) [reset = 37h]  
INT_EN_2 is shown in 8-90 and described in 8-46.  
Return to Summary Table.  
Interrupt mask for INT_2.  
8-90. INT_EN_2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
OVCC_EN  
UVSUP_EN  
RSVD  
UVCC_EN  
TSD_VCC_LIN TSD_HSS_LMI  
_EN  
P_EN  
R/W-1b  
R/W-1b  
R-0b  
R/W-1b  
R/W-1b  
R/W-1b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-46. INT_EN_2 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RSVD  
R
0b  
Reserved  
OVCC_EN  
UVSUP_EN  
RSVD  
R/W  
R/W  
R
1b  
VCC over voltage enable  
VSUP undervoltage enable  
Reserved  
4
1b  
3
0b  
2
UVCC_EN  
TSD_VCC_LIN_EN  
TSD_HSS_LIMP_EN  
R/W  
R/W  
R/W  
1b  
VCC undervoltage enable  
Thermal shutdown enable for VCC and LIN  
Thermal shutdown due to HSS or LIMP enable  
1
1b  
0
1b  
8.6.37 INT_EN_3 Register (Address =58h) [reset = BCh]  
INT_EN_3 is shown in 8-91 and described in 8-47.  
Return to Summary Table.  
Interrupt mask for INT_3.  
8-91. INT_EN_3 Register  
7
6
5
4
3
2
1
0
SPIERR_EN  
RSVD  
FSM_EN  
CRCERR_EN  
VCCSC_EN  
RSRT_CNT_E  
N
RSVD  
R-0b  
R/W-1b  
R-0b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
8-47. INT_EN_3 Register Field Descriptions  
Bit  
7
Field  
SPIERR_EN  
Type  
R/W  
R
Reset  
Description  
1b  
SPI error interrupt enable  
Reserved  
6
RSVD  
0b  
5
FSM_EN  
R/W  
R/W  
R/W  
R/W  
R
1b  
Fail-safe mode interrupt enable  
SPI CRC error interrupt enable  
VCC short circuit interrupt enable  
4
CRCERR_EN  
VCCSC_EN  
RSRT_CNT_EN  
RSVD  
1b  
3
1b  
2
1b  
Exceeding programmed restart counter interrupt enable  
Reserved  
1-0  
0b  
8.6.38 INT_4 Register (Address = 5Ah) [reset = 0h]  
INT_4 is shown in 8-92 and described in 8-48.  
Return to Summary Table.  
Interrupt for LIN and high side switch.  
8-92. INT_4 Register  
7
6
5
4
3
2
1
0
LIN_WUP  
R/W1C-0b  
LIN_DTO  
R/W1C-0b  
RSVD  
R-00b  
HSSOC  
HSSOL  
R/W1C-0b  
RSVD  
R-00b  
R/W1C-0b  
8-48. INT_4 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
LIN_WUP  
LIN_DTO  
RSVD  
R/W1C  
R/W1C  
R
0b  
LIN bus wake  
6
0b  
LIN dominant state timeout  
Reserved  
5-4  
3
00b  
0b  
HSSOC  
HSSOL  
R/W1C  
R/W1C  
High side switch over current  
High side switch open load  
2
0b  
Copyright © 2022 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
8-48. INT_4 Register Field Descriptions (continued)  
Bit  
Field  
RSVD  
Type  
Reset  
Description  
1-0  
R
00b  
Reserved  
8.6.39 INT_EN_4 Register (Address = 5Eh) [reset = CCh]  
INT_EN_4 is shown in 8-93 and described in 8-49.  
Return to Summary Table.  
Interrupt mask for INT_4.  
8-93. INT_EN_4 Register  
7
6
5
4
3
2
1
0
LIN_WUP_EN  
R/W-1b  
LIN_DTO_EN  
R/W-1b  
RSVD  
R-00b  
HSSOC_EN  
R/W-1b  
HSSOL_EN  
R/W-1b  
RSVD  
R-00b  
8-49. INT_EN_4 Register Field Descriptions  
Bit  
7
Field  
LIN_WUP_EN  
Type  
R/W  
R/W  
R
Reset  
Description  
1b  
LIN bus wake interrupt enable  
6
LIN_DTO_EN  
RSVD  
1b  
LIN dominant state timeout interrupt enable  
Reserved  
5-4  
3
00b  
1b  
HSSOC_EN  
HSSOL_EN  
RSVD  
R/W  
R/W  
R
High side switch over current interrupt enable  
High side switch open load interrupt enable  
Reserved  
2
1b  
1-0  
00b  
8.6.40 Reserved Registers  
All other registers not provided up to 'h7F are reserved.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TLIN1431-Q1  
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TLIN1431x-Q1 can be used in both responder node and commander node applications in a LIN network.  
The device comes with the ability to support remote wake up request and local wake up request. It can provide  
the power to the local processor as well as providing watchdog supervision for the processor.  
9.1.1 Device Brownout Information  
During a brownout condition where VSUP stays above VnPORF, the device pin and mode behavior is as per 图  
9-1. When VSUP falls below VnPORF, the device enters power-on reset as per 9-2  
High  
VSUP  
4.7 V UVSUPR 5.4 V  
4.0 V UVSUPF 4.6 V  
3.5 V VnPORR 4.2 V  
3.1 V  
3.0 V VnPORF 2.5 V  
> VnPORF  
WKRQ/INH  
UVCCF  
UVCCR  
tLDOON  
VCC  
tRSTN_act  
nRST  
Mode  
FSM  
enabled  
Normal, Fast, Standby  
Mode dependent  
UVSUP  
Restart  
Standby  
Set high but if no Vcc  
will be indeterminate  
RXD  
9-1. Brownout Above VnPORF  
Copyright © 2022 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
High  
VSUP  
WKRQ/INH  
VCC  
4.7 V UVSUPR 5.4 V  
3.5 V VnPORR 4.2 V  
4.0 V UVSUPF 4.6 V  
3.0 V VnPORF 2.5 V  
Below  
VnPORF  
VDET_INH  
UVCCR  
UVCCF  
tLDOON  
tRSTN_act  
nRST  
Mode  
UVSUP  
Init  
Normal, Fast, Standby  
Mode dependent  
Off  
Restart  
Standby  
RXD  
Floating  
9-2. Brownout Below VnPORF  
9.2 Typical Application  
The device comes with an integrated 45 kpull-up resistor and series diode for responder node applications.  
For commander node applications, an external 1 kpull-up resistor with series blocking diode can be used. 图  
9-3 shows the device in SPI control mode in a responder node application. 9-4 shows the device in pin control  
mode for a responder node application.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TLIN1431-Q1  
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
470  
Pull down on WKRQ/INH pin  
for digital level output  
otherwise leave floating  
100 nF  
VSUP  
VDD33  
100 nF  
10 µF  
VCC  
VBAT VSUP  
VDD  
WKRQ  
100 k  
HSS  
3 k  
SW  
nCS  
CLK  
3.3 k  
WAKE  
LIMP  
I/O  
10 nF  
SDI  
SDO  
Cyclic  
sensing  
configuration  
nINT  
MCU  
VDD  
Responder  
Node  
10 k  
nRST  
VSUP  
Commander  
Node  
Pullup  
FSO  
DIV_ON  
PV  
1 k  
LIN Bus  
20 pF  
LIN  
LIN Controller  
Or  
SCI/UART  
RXD  
TXD  
220 pF  
GND  
GND  
9-3. Typical LIN Responder Node in SPI Control Mode  
Copyright © 2022 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
VBAT  
VSUP  
470  
VSUP  
100 nF  
VDD  
100 nF  
3 k  
10 µF  
SW  
VCC  
VBAT  
VDD  
VSUP  
3.3 k  
WAKE  
LIMP  
VDD  
10 nF  
10 k  
nRST  
DIV_ON  
PV  
HSS  
20 pF  
MCU  
WDT can be connect to GND,  
VCC or left floating depending  
upon watchdog window timing  
requirements  
WKRQ  
WDT  
100 k  
I/O  
Responder  
Node  
HSSC  
WDI  
nWDR  
VSUP  
EN  
Commander  
PIN  
Node  
10 k  
Pullup  
1 k  
LIN  
LIN Bus  
LIN Controller  
Or  
SCI/UART  
RXD  
TXD  
220 pF  
GND  
GND  
9-4. Typical LIN Responder Node in Pin Control Mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9.2.1.1 Normal Mode Application Note  
When using the TLIN1431x-Q1 in systems which are monitoring the RXD pin for a wake-up request, special care  
should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition period  
between states as the receivers are switched. The application software should not look for an edge on the RXD  
pin indicating a wake-up request until tMODE_CHANGE. This is shown in 7-5. When transitioning to normal  
mode, there is an initialization period shown as tNOMINIT  
.
9.2.1.2 Standby Mode Application Note  
If the TLIN1431x-Q1 detects an under-voltage on VSUP, the RXD pin transitions low, and signals to the software  
that the device is in standby mode and should be returned to sleep mode for the lowest power state.  
9.2.1.3 TXD Dominant State Timeout Application Note  
The minimum dominant TXD time allowed by the minimum tTXD_DTO limits the minimum possible data rate of the  
device. The LIN protocol has different constraints for commander and responder node applications. Thus, there  
are different maximum consecutive dominant bits for each application case and thus different minimum data  
rates.  
9.2.2 Detailed Design Procedures  
Commander node applications require and external 1 kpull-up resistor and serial diode.  
Copyright © 2022 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.2.3 Application Curves  
The characteristic curves show the LDO performance between 0 V and 5.5 V when ramping up and ramping  
down.  
3.6  
3.3  
3
5
4.5  
4
-40°C  
25°C  
85°C  
105°C  
125°C  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
3.5  
3
2.5  
2
1.5  
1
-40°C  
25°C  
85°C  
105°C  
125°C  
0.5  
0
-0.3  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D029  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D012  
VSUP (V)  
VSUP (V)  
VCC = 3.3 V  
ICC Load = 125 mA Ramp Up  
VCC = 5 V  
ICC Load = 125 mA Ramp Down  
9-5. VCC vs VSUP Across Temperature  
9-6. VCC vs VSUP Across Temperature  
3.6  
3.3  
3
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
-0.3  
-10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D027  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D016  
VSUP (V)  
VSUP (V)  
VCC = 3.3 V  
ICC Load = 125 mA Ramp Down  
VCC = 5 V  
ICC Load = 125 mA Ramp Up  
9-7. VCC vs VSUP Across Temperature  
9-8. ISUP vs VSUP Across Temperature  
140  
120  
100  
80  
9
8
7
6
5
60  
4
3
40  
2
20  
-40°C  
25°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
85°C  
105°C  
125°C  
1
0
0
-20  
-1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D025  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
D045  
VSUP (V)  
VSUP (V)  
VCC = 3.3 V  
ICC Load = 125 mA Ramp Up  
VCC = 5 V  
Sleep Mode  
Ramp Down  
9-9. ISUP vs VSUP Across Temperature  
9-10. ISUP vs VSUP Across Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TLIN1431-Q1  
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9-11. LIN Bus Performance  
9-12. Recessive to Dominant Propagation Delay  
9-13. Dominant to Recessive Propagation Delay  
9.3 Power Supply Recommendations  
The TLIN1431x-Q1 was designed to operate directly off a car battery, or any other DC supply ranging from 5.5 V  
to 28 V. A 100 nF decoupling capacitor should be placed as close to the VSUP pin of the device as possible.  
Copyright © 2022 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
9.4 Layout  
PCB design should start with design of the protection and filtering circuitry because ESD and EFT have a wide  
frequency bandwidth from approximately 3 MHz to 3 GHz. High frequency layout techniques must be applied  
during PCB design. Placement at the connector also prevents these noisy events from propagating further into  
the PCB and system.  
9.4.1 Layout Guidelines  
The layout example and information below are for a responder node with the following configuration: See 图  
9-14.  
Responder node  
SPI control  
WKRQ  
WAKE and High-side switch configured for cyclic sensing  
The following are the layout guidelines based upon the provided configuration:  
Pin 1 (VSUP): This is the supply pin for the device. A 100 nF decoupling capacitor (C1) should be placed as  
close to the device as possible. Other bulk decoupling capacitance should be considered.  
Pin 2 (VCC): Output source, either 3.3 V or 5 V depending upon the version of the device and has a 10 μF  
decoupling capacitor (C2) to ground as close to the device as possible. This pin is connected to external  
circuitry for a limp home mode if the watchdog has timed out causing a reset  
Pin 3 (nRST): This pin connects to the processors and functions in one of two manners; as a reset pin for the  
TLIN1431x-Q1 or an indicator to the processor of an under-voltage and watchdog failure event. The pin has a  
10 kΩresistor (R1) pulled up to the processor I/O voltage rail.  
Pin 4 (WDT/CLK): In SPI control mode, this pin (CLK) is connected directly to the processor as the SPI CLK  
input to the TLIN1431x-Q1.  
Pin 5 (nWDR/SDO): In SPI control mode, this pin (SDO) is connected directly to the processor as the SPI  
serial data output from the TLIN1431x-Q1.  
Pin 6 (WDI/SDI): In SPI control mode, this pin (SDI) is connected directly to the processor as the SPI serial  
data input into the TLIN1431x-Q1.  
Pin 7 (PIN/nCS): For SPI control mode, this pin (nCS) should be connected directly to the processor as the  
SPI chip select to the TLIN1431x-Q1.  
Pin 8 (EN/nINT): In SPI control mode, this pin becomes an output interrupt pin that is provided to the  
processor.  
Pin 9 (HSSC/FSO): In SPI control mode, this pin (FSO) is connected directly to the processor, external  
transceiver or general purpose SBC as a selectable interrupt or control pin.  
Pin 10 (PV): This pin is connected directly to a processor ADC and has a 20 pF capacitor (C3) to GND.  
Pin 11 (DIV_ON): The pin is connected to a processor which controls when the VBAT monitoring in the  
TLIN1431x-Q1 is enabled.  
Pin 12 (TXD): The TXD pin is the LIN transceiver input from the processors. A series resistor can be placed  
to limit the input current to the device in the event of an over-voltage on this pin. A capacitor to ground can be  
placed close to the input pin of the device to filter noise. These are system level dependent and not covered  
here as usually not needed.  
Pin 13 (RXD): The RXD is the LIN transceiver receive output to the processor. The pin is a push-pull output  
and can be connected directly to the processor without external pull-ups.  
Pin 14 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 15 (LIN): This pin connects to the LIN bus. For responder nodes, a 220 pF capacitor (C4) to ground is  
implemented. For commander nodes, an additional series resistor and blocking diode should be placed  
between the LIN pin and the VSUP pin.  
Pin 16 (WKRQ/INH): This pin can be the high-voltage inhibit output pin or the digital wake output pin. The  
example shows the pin configured as WKRQ which requires a 100 kΩresistor (R2) to ground at power up.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
Pin 17 (WAKE): This pin connects to VSUP through a resistor divider (R3 and R4) with the center tap  
connected to a switch to ground or VSUP and is used as the local wake up pin. A 10 nF capacitor (C5) to  
ground should be placed at this center tap as shown in the application drawings. In the layout example, the  
pin is configured to work with the HSS pin using the cyclic sensing wake capability of the device.  
Pin 18 (HSS): This pin is the high-side switch output  
Pin 19 (LIMP): This pin as a high-side switch that is used for a limp home function that provides VSUP to an  
external circuit which is not shown.  
Pin 20 (VBAT): This pin is used for battery monitoring is comes from the battery prior to the blocking diode. It  
has a 470 Ωresistor (R5) in series and a 100 nF capacitor (C6) to GND.  
备注  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
9.4.2 Layout Example  
This is a layout example for the TLIN1431x-Q1 configured for SPI control supporting following:  
Cyclic Sensing using the WAKE pin and HSS pin  
Digital wake output, WKRQ pin.  
VBAT  
VSUP  
R5  
C1  
C6  
GND  
GND  
C2  
R1  
VCC  
19  
2
LIMP  
Processor  
I/O Vrail  
HSS  
nRST  
R4  
C5  
WAKE  
CLK  
To Switch  
R3  
GND  
SDO  
WKRQ  
LIN  
R2  
C4  
GND  
SDI  
nCS  
GND  
RXD  
TXD  
nINT  
FSO  
9
12  
GND  
C3  
9-14. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation see the following:  
LIN Standards:  
ISO 17987-1: Road vehicles -- Local Interconnect Network (LIN) -- Part 1: General information and use  
case definition  
ISO 17987-4:2016: Road vehicles -- Local Interconnect Network (LIN) -- Part 4: Electrical Physical Layer  
(EPL) specification 12V/24V  
SAEJ2602-1:2021: LIN Network for Vehicle Applications  
LIN2.0, LIN2.1, LIN2.2 and LIN2.2A specification  
EMC requirements:  
SAE J2962-2:  
HW Requirements for CAN, LIN, FR V1.3: German OEM requirements for LIN  
ISO 10605: Road vehicles - Test methods for electrical disturbances from electrostatic discharge  
ISO 11452-4:2011: Road vehicles - Component test methods for electrical disturbances from narrowband  
radiated electromagnetic energy - Part 4: Harness excitation methods  
ISO 7637-1:2015: Road vehicles - Electrical disturbances from conduction and coupling - Part 1:  
Definitions and general considerations  
ISO 7637-3: Road vehicles - Electrical disturbances from conduction and coupling - Part 3: Electrical  
transient transmission by capacitive and inductive coupling via lines other than supply lines  
IEC 62132-4:2006: Integrated circuits - Measurement of electromagnetic immunity 150 kHz to 1 GHz -  
Part 4: Direct RF power injection method  
IEC 61000-4-2  
IEC 61967-4  
CISPR25  
Conformance Test requirements:  
ISO 17987-7: Road vehicles -- Local Interconnect Network (LIN) -- Part 7: Electrical Physical Layer (EPL)  
conformance test specification  
SAE J2602-2:2021: LIN Network for Vehicle Applications Conformance Test  
Application Notes:  
TLINx441 LDO Performance, SLLA427  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 商标  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TLIN1431-Q1  
 
 
 
 
 
TLIN1431-Q1  
ZHCSQ68A MAY 2022 REVISED DECEMBER 2022  
www.ti.com.cn  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TLIN1431-Q1  
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN14313RGYRQ1  
TLIN14315RGYRQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGY  
RGY  
20  
20  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TL313  
TL315  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jan-2023  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TLIN14315RGYRQ1

适用于具有集成 VREG 和看门狗的 12V 系统的汽车 LIN SBC | RGY | 20 | -40 to 125
TI

TLIN1441-Q1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器
TI

TLIN14413DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN14413DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN14415DMTRQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN14415DMTTQ1

具有集成电压稳压器和看门狗的汽车本地互联网络收发器 | DMT | 14 | -40 to 125
TI

TLIN2021A-Q1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器
TI

TLIN2021ADRBRQ1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器 | DRB | 8 | -40 to 125
TI

TLIN2022A-Q1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器
TI

TLIN2022ADMTRQ1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器 | DMT | 14 | -40 to 125
TI

TLIN2022ADRQ1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器 | D | 14 | -40 to 125
TI

TLIN2024A-Q1

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器
TI