TLIN2021A-Q1 [TI]

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器;
TLIN2021A-Q1
型号: TLIN2021A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器

文件: 总41页 (文件大小:2120K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
TLIN2021A-Q1 故障保LIN 收发器,配备抑制和唤醒功能  
1 特性  
2 应用  
• 符合面向汽车应用AEC-Q1001 标准  
• 符LIN 2.0LIN 2.1LIN 2.2LIN 2.2A ISO  
179874 电气物理(EPL) 规格标准  
• 符SAE J2602-1 面向汽车应用LIN 网络标准  
提供功能安全  
车身电子装置和照明  
汽车信息娱乐系统和仪表组  
混合动力电动汽车和动力总成系统  
工业运输  
3 说明  
可帮助进行功能安全系统设计的文档  
• 支12V 24V 应用  
• 宽工作输入电压范围:  
VSUP 范围4.5V 45V  
LIN 传输数据速率高20kbps  
LIN 接收数据速率高100kbps  
• 工作模式正常、待机和睡眠  
• 通过源识别提供低功耗模式唤醒支持:  
TLIN2021A-Q1 是一款本地互连网络 (LIN) 物理层收发  
器。LIN 是支持汽车车载网络的低速通用异步收发器  
(UART) 通信协议。  
TLIN2021A-Q1 发送器支持高达 20 kbps 的数据速  
率。收发器通过 TXD 引脚控制 LIN 总线的状态并通  
过其开漏 RXD 输出引脚报告总线的状态。该器件具有  
限流波形整形驱动器用于降低电磁发(EME)。  
– 通LIN 总线实现远程唤醒  
– 通WAKE 引脚实现本地唤醒  
– 通EN 引脚实现本地唤醒  
TLIN2021A-Q1 旨在为 12V 24V 应用提供支持具  
有宽输入工作电压范围。该器件支持低功耗睡眠模式,  
并可通LINWAKE 引脚EN 引脚唤醒功能从低功  
耗模式唤醒。该器件可以通过器件 INH 输出引脚选择  
性地启用节点上会存在的各种电源从而在整个系统级  
别减少电池电流消耗。  
• 集45kΩLIN 上拉电阻器  
• 使INH 引脚控制系统级功耗  
LIN 总线RXD 输出上实现上电/断电无干扰运  
器件信息  
封装(1)  
• 保护特性±60V LIN 总线容错、58V 负载突降支  
持、VSUP 上的欠压保护、TXD 显性状态超时、热  
关断、系统级未供电节点或接地断开失效防护  
• 结温范围-40°C 150°C  
• 可采8 SOIC、具有可湿性侧面VSON 和  
SOT23 封装  
封装尺寸标称值)  
4.90mm x 3.91mm  
3.00mm x 3.00mm  
2.90mm x 1.60mm  
器件型号  
SOIC (D) (8)(2)  
VSON (DRB) (8)  
SOT23 (DDF) (8)(2)  
TLIN2021A  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 产品预发布  
VBAT  
= 24 V  
VBAT  
= 24 V  
SW  
3 k  
SW  
INH  
3 kΩ  
VIN  
VIN  
Voltage Regulator  
Voltage Regulator  
EN  
EN  
VDD  
VDD  
VDD  
VDD  
Commander  
Node  
Pullup  
INH  
WAKE VSUP  
7
WAKE VSUP  
7
8
3
8
3
VDD  
VDD  
EN  
EN  
2
I/O  
2
I/O  
VDD  
VDD  
1 k  
LIN  
LIN  
6
TLIN2021A  
MCU  
LIN Controller  
or  
SCI/UART  
6
TLIN2021A  
MCU  
LIN Controller  
1
4
1
4
or  
RXD  
RXD  
220 pF  
220 pF  
SCI/UART  
TXD  
TXD  
5
GND  
5
GND  
简化版响应者节点原理图  
简化版指挥官节点原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFK7  
 
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram.........................................21  
9.3 Feature Description...................................................21  
9.4 Device Functional Modes..........................................24  
10 Application Information Disclaimer...........................29  
10.1 Application Information........................................... 29  
10.2 Typical Application.................................................. 29  
11 Power Supply Recommendations..............................31  
12 Layout...........................................................................31  
12.1 Layout Guidelines................................................... 31  
12.2 Layout Example...................................................... 32  
13 Device and Documentation Support..........................33  
13.1 Documentation Support.......................................... 33  
13.2 接收文档更新通知................................................... 33  
13.3 支持资源..................................................................33  
13.4 Trademarks.............................................................33  
13.5 Electrostatic Discharge Caution..............................33  
13.6 术语表..................................................................... 33  
14 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
7 Specification.................................................................... 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 ESD Ratings - IEC Specification.................................4  
7.4 Thermal Information....................................................5  
7.5 Recommended Operating Conditions.........................5  
7.6 Power Supply Characteristics.....................................6  
7.7 Electrical Characteristics.............................................6  
7.8 AC Switching Characteristics....................................10  
7.9 Typical Curves...........................................................11  
8 Parameter Measurement Information..........................13  
9 Detailed Description......................................................20  
9.1 Overview...................................................................20  
Information.................................................................... 33  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (January 2021) to Revision A (April 2022)  
Page  
• 删除了原理图后面的注释.................................................................................................................................... 1  
Changed the WAKE IIL parameter description from "Ligh-level input leakage current" to "Low-level input  
leakage current"..................................................................................................................................................6  
5 说明)  
TLIN2021A-Q1 集成了适用LIN 响应者节点应用的电阻器还集成ESD 保护和故障保护功能这些功能有助  
于减少应用中的外部元件数量。一旦发生接地漂移或电源电压断开该器件可防止反馈电流经 LIN 流向电源输  
入。  
TLIN2021A-Q1 还包含欠压检测、过热关断保护和接地失效保护功能。一旦发生故障情况此发送器便会立即关  
闭并在故障被排除之前一直保持关闭状态。  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
RXD  
EN  
1
2
3
4
8
7
6
5
INH  
RXD  
EN  
1
2
3
4
8
7
6
5
INH  
V
SUP  
VSUP  
LIN  
Thermal  
Pad  
WAKE  
TXD  
LIN  
WAKE  
TXD  
GND  
GND  
Not to scale  
Not to scale  
6-1. D Package, 8-Pin (SOIC), and DDF Package,  
8-Pin (SOT23) Top View  
6-2. DRB Package, 8-Pin (VSON), Top View  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
RXD  
EN  
NO.  
1
Digital  
Digital  
LIN receive data output, open-drain  
2
Sleep mode control input, integrated pull-down  
Local wake-up input, high voltage  
WAKE  
TXD  
GND  
LIN  
3
High Voltage  
Digital  
4
LIN transmit data input, integrated pulled down - active low after a local wake-up event  
Ground connection  
5
GND  
6
Bus IO  
LIN bus input/output line  
VSUP  
INH  
7
Supply  
High-voltage supply from the battery  
8
High Voltage  
Inhibit output to control system voltage regulators and supplies, high voltage  
Thermal  
Pad  
Electrically connected to GND, connect the thermal pad to the printed circuit board  
(PCB) ground plane for thermal relief  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7 Specification  
7.1 Absolute Maximum Ratings  
(1) (2)  
MIN  
0.3  
60  
0.3  
MAX  
60  
UNIT  
VSUP  
VLIN  
Supply voltage range (ISO 17987)  
LIN Bus input voltage (ISO 17987)  
WAKE pin input voltage  
V
V
V
60  
VWAKE  
60  
60 and VO ≤  
VINH  
INH pin output voltage  
V
0.3  
VSUP+0.3  
VLOGIC_INPUT  
VLOGIC_OUTPUT  
IO  
Logic input voltage  
6
6
8
4
V
V
0.3  
0.3  
Logic output voltage  
Digital pin output current  
Inhibit output current  
mA  
mA  
IO(INH)  
WAKE output current due to ground shift  
(VWAKE VGND) 0.3 V thus current out of the  
WAKE pin must be limited  
IO(WAKE)  
3
mA  
TJ  
Junction Temp  
165  
150  
°C  
°C  
55  
Tstg  
Storage temperature  
-65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM) classification level 3B: VSUP, INH, and WAKE with respect to  
ground  
±8000  
Human body model (HBM) classification level 3B: LIN with respect to ground  
±10000  
±4000  
VESD Electrostatic discharge  
V
Human body model (HBM) classification level 3A: all other pins, per AEC Q100-002(1)  
Charged device model (CDM) classification  
All pins  
±750  
level C5, per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 ESD Ratings - IEC Specification  
VALUE  
UNIT  
IEC 62228-2 per ISO 10605  
Contact discharge  
R = 330 , C = 150 pF (IEC 61000-4-2)  
LIN, VSUP, WAKE terminal to GND(1)  
LIN terminal to GND(1)  
±8000  
±8000  
VESD Electrostatic discharge  
V
IEC 62228-2 per ISO 10605  
Indirect contact discharge  
R = 330 , C = 150 pF (IEC 61000-4-2)  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.3 ESD Ratings - IEC Specification (continued)  
VALUE  
UNIT  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 1  
-100  
IEC 62215-3  
24 V electrical systems (3)  
Pulse 1  
-450  
75  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
24 V electrical systems (3)  
Pulse 2  
Non-synchronous transient  
LIN, VSUP, WAKE terminal to GND(1)  
injection  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 3a  
-150  
-225  
150  
VTRAN  
V
IEC 62215-3  
24 V electrical systems (3)  
Pulse 3a  
IEC 62228-2 per IEC 62215-3  
12 V electrical systems  
Pulse 3b  
IEC 62215-3  
24 V electrical systems (3)  
Pulse 3b  
225  
±30  
SAE J2962-1 per ISO 7637-3  
DCC - Slow transient pulse  
Direct capacitor coupling  
LIN terminal to GND(2)  
(1) Results given here are specific to the IEC 62228-2 Integrated circuits EMC evaluation of transceivers Part 2: LIN transceivers.  
Testing performed by OEM approved independent 3rd party, EMC report available upon request.  
(2) Results given here are specific to the SAE J2962-1 Communication Transceivers Qualification Requirements - LIN. Testing performed  
by OEM approved independent 3rd party, EMC report available upon request.  
(3) Verified during characterization  
7.4 Thermal Information  
TLIN2021A-Q1  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
126.2  
66.4  
DRB (VSON)  
8 Pins  
54.4  
DDF(SOT)  
8 PINS  
120.7  
60.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
61.1  
69.6  
26.8  
42.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
18.7  
2.3  
2.4  
ΨJT  
68.9  
26.7  
41.9  
ΨJB  
RθJC(bot)  
10.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Recommended Operating Conditions  
parameters valid across -40TJ 150(unless otherwise noted)  
MIN  
4.5  
0
NOM  
MAX  
45  
UNIT  
V
VSUP  
VLIN  
Supply Voltage  
LIN Bus input voltage  
45  
V
VLOGIC  
TJ  
Logic Pin Voltage  
0
5.25  
150  
V
Operating virtual junction temperature range  
Thermal shutdown rising  
Thermal shutdown falling  
Thermal shutdown hysteresis  
-40  
160  
°C  
°C  
°C  
°C  
TSDR  
TSDF  
TSD(HYS)  
150  
10  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.6 Power Supply Characteristics  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Supply Voltage and Current  
Device is operational beyond the LIN  
defined nominal supply voltage range  
See Figure 8-1  
Operational supply voltage  
Nominal supply voltage  
4.5  
45  
V
See Figure 8-2  
VSUP  
Normal and standby modes(1)  
See Figure 8-1  
See Figure 8-2  
4.5  
4.5  
45  
45  
V
V
Sleep mode  
Normal mode  
1.8  
1
7.5  
mA  
EN = VCC, RLIN 500 , CLIN 10 nF, INH  
= WAKE = VSUP  
Supply current  
Bus dominant  
Standby mode  
EN = 0 V, RLIN 500 , CLIN 10 nF, INH  
=WAKE = VSUP  
2.1  
mA  
Normal mode  
EN = VCC, INH = WAKE = VSUP  
400  
20  
850  
55  
µA  
µA  
Supply current  
Bus recessive  
ISUP  
Standby mode  
EN = 0 V, INH = WAKE = VSUP  
4.5 V < VSUP 27 V, TJ = 125℃  
EN = 0 V, LIN = WAKE = VSUP, TXD and  
RXD floating  
12  
20  
µA  
µA  
Supply current  
Sleep mode  
27 V < VSUP 45 V, TJ = 125℃  
EN = 0 V, LIN = WAKE = VSUP, TXD and  
RXD floating  
26  
UVSUPR  
UVSUPF  
UVHYS  
Under voltage VSUP threshold  
Under voltage VSUP threshold  
Ramp up  
4.15  
4
4.45  
V
V
V
Ramp down  
3.5  
Delta hysteresis voltage for VSUP under voltage threshold  
0.13  
(1) Normal mode ramp VSUP while LIN signal is a 10 kHz square wave with 50% duty cycle and 36 V swing.  
7.7 Electrical Characteristics  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.6  
5
UNIT  
RXD Output Terminal  
(4)  
VOL  
IOL  
Low-level voltage  
Based upon external pull-up to VCC  
LIN = 0 V, RXD = 0.4 V  
V
Low-level output current, open drain  
Leakage current, high-level  
1.5  
mA  
µA  
ILKG  
LIN = VSUP, RXD = VCC  
5  
TXD Input Terminal  
VIL  
Low-level input voltage  
0.8  
V
V
VIH  
ILKG  
High-level input voltage  
2
Low-level input leakage current  
TXD = 0 V  
5
8
µA  
5  
Standby mode after a local wake-up event  
VLIN = VSUP, WAKE = 0 V or VSUP, TXD = 1  
V
ITXD(WAKE)  
Local wake-up source recognition TXD  
Internal pull-down resistor value  
1.3  
mA  
RTXD  
EN Input Terminal  
125  
350  
800  
kΩ  
VIL  
Low-level input voltage  
0.8  
5.25  
500  
5
V
V
0.3  
2
VIH  
VHYS  
IIL  
High-level input voltage  
Hysteresis voltage  
By design and characterization  
EN = 0 V  
30  
mV  
µA  
Low-level input current  
Internal pull-down resistor  
5  
125  
REN  
350  
800  
kΩ  
LIN Terminal (Referenced to VSUP  
)
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TXD = VCC, IO = 0 mA  
7 V VSUP 45 V  
VOH  
VOH  
VOH  
VOL  
VOL  
VOL  
LIN recessive high-level output voltage(3)  
0.85  
VSUP  
TXD = VCC, IO = 0 mA  
7 V VSUP 18 V  
LIN recessive high-level output voltage(1) (2)  
LIN recessive high-level output voltage(3)  
LIN dominant low-level output voltage(3)  
LIN dominant low-level output voltage(1) (2)  
LIN dominant low-level output voltage(3)  
0.8  
3
VSUP  
TXD = VCC, IO = 0 mA  
4.5 V VSUP 7 V  
V
TXD = 0 V  
7 V VSUP 45 V  
0.2  
0.2  
1.2  
VSUP  
VSUP  
V
TXD = 0 V  
7 V VSUP 18 V  
TXD = 0 V  
4.5 V VSUP 7 V  
LIN dominant (including LIN dominant for  
wake up)  
See Figure 8-3  
VBUSdom  
Low-level input voltage(3)  
0.4  
VSUP  
See Figure 8-4  
LIN recessive  
See Figure 8-3  
See Figure 8-4  
VBUSrec  
High-level input voltage(3)  
0.6  
VSUP  
VIH  
VIL  
LIN recessive high-level input voltage(1) (2)  
LIN dominant low-level input voltge(1) (2)  
0.47  
0.4  
0.6  
VSUP  
VSUP  
7 V VSUP 18 V  
7 V VSUP 18 V  
0.53  
TXD & RXD open  
4.5 V VLIN 60 V  
VSUP_NON_OP  
VSUP where impact of recessive LIN bus < 5%(3)  
60  
V
0.3  
VBUS_CNT = (VBUSrec + VBUSdom)/2  
See Figure 8-3  
VBUS_CNT  
Receiver center threshold(3)  
0.475  
0.5  
0.525  
VSUP  
See Figure 8-4  
VHYS = VBUSrec - VBUSdom  
See Figure 8-3  
See Figure 8-4  
VHYS  
Hysteresis voltage (ISO 17987)  
Hysteresis voltage (SAE J2602)  
0.175  
VSUP  
VHYS = VIH - VIL  
See Figure 8-3  
See Figure 8-4  
VHYS  
0.07  
0.4  
75  
0.175  
1.0  
VSUP  
V
VSERIAL_DIODE  
IBUS(LIM)  
Serial diode LIN termination pull-up path  
Limiting current  
ISERIAL_DIODE = 10 µA  
0.7  
TXD = 0 V, VLIN = 36 V, RMeas = 480 Ω  
VSUP = 36 V, VBUSdom < 10.224 V  
120  
300  
mA  
Driver off/recessive, LIN = 0 V  
VSUP = 24 V  
IBUS_PAS_dom  
Receiver leakage current, dominant  
mA  
1  
See Figure 8-6  
Driver off/recessive, LIN VSUP  
4.5 V VSUP 45 V  
See Figure 8-7  
IBUS_PAS_rec1  
Receiver leakage current, recessive  
Receiver leakage current, recessive  
20  
5
µA  
µA  
Driver off/recessive, LIN = VSUP  
See Figure 8-7  
IBUS_PAS_rec2  
5  
GNDDevice = VSUP = 24 V  
RMeas = 1 kΩ  
IBUS_NO_GND  
Leakage current, loss of ground  
Leakage current, loss of ground(5)  
1.5  
mA  
mA  
1.5  
0 V < VLIN < 36 V  
VSUP = 8 V, GND = open, VSUP = 18 V, GND  
= open  
RCommander = 1 k, CL = 1 nF  
RResponder = 20 k, CL = 1 nF  
LIN = dominant  
Ileak gnd(dom)  
1
1  
VSUP = 8 V, GND = open, VSUP = 18 V, GND  
= open  
RCommander = 1 k, CL = 1 nF  
RResponder = 20 k, CL = 1 nF  
LIN = recessive  
Ileak gnd(rec)  
Leakage current, loss of ground(5)  
100  
µA  
100  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
µA  
VSUP = GND  
0 V VLIN 36 V  
IBUS_NO_BAT  
Leakage current, loss of supply  
5
IRSLEEP  
RPU  
Pull-up current source to VSUP sleep mode  
Pull-up resistor to VSUP  
VSUP = 27 V, LIN = GND  
Normal and standby modes  
VSUP = 14 V  
µA  
20  
1.5  
60  
20  
45  
kΩ  
CLIN  
Capacitance of the LIN pin  
25  
pF  
INH Output Terminal  
High level voltage drop INH with respect to VSUP  
Leakage current sleep mode  
IINH = - 0.5 mA  
INH = 0 V  
0.5  
1
V
ΔVH  
ILKG(INH)  
0.5  
µA  
0.5  
WAKE Input Terminal  
VSUP  
VIH  
VIL  
High-level input voltage  
Standby and sleep mode  
Standby and sleep mode  
V
V
1.8  
VSUP  
Low-level input voltage  
3.85  
IIH  
High-level input leakage current  
Low-level input leakage current  
WAKE hold time  
WAKE = VSUP - 1 V  
WAKE = 1 V  
µA  
µA  
µs  
25  
12.5  
IIL  
15  
25  
50  
tWAKE  
Wake up time from sleep mode  
5
Duty Cycle Characteristics  
THREC(MAX) = 0.744 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 7 V to 18 V, tBIT = 50 µs  
D1 = tBUS_rec(min)/(2 x tBIT  
See Figure 8-8 and Figure 8-9  
,
,
Duty cycle 1(3)  
D112V  
0.396  
0.396  
0.396  
ISO 17987 Param 27  
)
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 50 µs  
D112V  
D112V  
D212V  
D212V  
D212V  
D312V  
D312V  
Duty cycle 1(3) (6)  
D1 = tBUS_rec(min)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.744 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 7 V to 18 V, tBIT = 52 µs  
D1 = tBUS_rec(min)/(2 x tBIT  
See Figure 8-8 and Figure 8-9  
,
,
Duty cycle 1(1) (2) (6)  
)
THREC(MIN) = 0.422 x VSUP  
THDOM(MIN) = 0.284 x VSUP  
VSUP = 7 V to 18 V, tBIT = 50 µs  
D2 = tBUS_rec(MAX)/(2 x tBIT  
See Figure 8-8 and Figure 8-9  
,
,
Duty cycle 2(3)  
ISO 17987 Param 28  
0.581  
0.581  
0.581  
)
THREC(MIN) = 0.496 x VSUP  
THDOM(MIN) = 0.361 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 50 µs  
D2 = tBUS_rec(MAX)/(2 x tBIT  
See Figure 8-8 and Figure 8-9  
,
,
Duty cycle 2(3) (6)  
)
THREC(MIN) = 0.422 x VSUP  
THDOM(MIN) = 0.284 x VSUP  
VSUP = 7 V to 18 V, tBIT = 52 µs  
D2 = tBUS_rec(MAX)/(2 x tBIT  
,
,
Duty cycle 2(1) (2) (6)  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty cycle 3(3)  
ISO 17987 Param 29  
0.417  
0.417  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 96 µs  
Duty cycle 3(3) (6)  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty cycle 3(1) (2) (6)  
D312V  
D412V  
D412V  
D412V  
D124V  
D224V  
D324V  
D324V  
D424V  
0.417  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty cycle 4(3)  
ISO 17987 Param 30  
0.59  
0.59  
0.59  
D4 = tBUS_rec(MAX)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 96 µs  
Duty cycle 4(3) (6)  
D4 = tBUS_rec(MAX)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
VSUP = 7 V to 18 V, tBIT = 96 µs  
Duty cycle 4(1) (2) (6)  
D4 = tBUS_rec(MAX)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.710 x VSUP  
THDOM(MAX) = 0.554 x VSUP  
VSUP = 15 V to 36 V, tBIT = 50 µs  
D1 = tBUS_rec(min)/(2 x tBIT  
See Figure 8-8 and Figure 8-9  
,
,
Duty cycle 1  
ISO 17987 Param 72  
0.330  
)
THREC(MIN) = 0.446 x VSUP  
THDOM(MIN) = 0.302 x VSUP  
VSUP = 15.6 V to 36 V, tBIT = 50 µs  
D2 = tBUS_rec(MAX)/(2 x tBIT  
,
,
Duty cycle 2  
ISO 17987 Param 73  
0.642  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.744 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 7 V to 36 V, tBIT = 96 µs  
Duty cycle 3  
ISO 17987 Param 74  
0.386  
0.386  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MAX) = 0.645 x VSUP  
THDOM(MAX) = 0.581 x VSUP  
VSUP = 4.5 V to 7 V, tBIT = 96 µs  
Duty cycle 3 (6)  
D3 = tBUS_rec(min)/(2 x tBIT  
)
See Figure 8-8 and Figure 8-9  
THREC(MIN) = 0.422 x VSUP  
THDOM(MIN) = 0.284 x VSUP  
VSUP = 4.5 V to 36 V, tBIT = 96 µs  
D2 = tBUS_rec(MAX)/(2 x tBIT  
See Figure 8-8 and Figure 8-9  
,
,
Duty cycle 2 (6)  
ISO 17987 Param 75  
0.591  
0.581  
)
THREC(MAX) = 0.665 x VSUP  
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 52 µs  
,
,
D1LB  
D2LB  
D3LB  
D4LB  
Duty cycle 1 at low battery(1) (2) (6)  
Duty cycle 2 at low battery(1) (2) (6)  
Duty cycle 3 at low battery(1) (2) (6)  
Duty cycle 4 at low battery(1) (2) (6)  
0.396  
0.396  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 52 µs  
THREC(MAX) = 0.665 x VSUP  
,
THDOM(MAX) = 0.499 x VSUP  
VSUP = 5.5 V to 7 V, tBIT = 96 µs  
,
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
VSUP = 6.1 V to 7 V, tBIT = 96 µs  
0.581  
10.8  
THREC(MAX) = 0.744 x VSUP  
,
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Recessive to dominant  
THDOM(MAX) = 0.581 x VSUP  
7 V VSUP 18 V, tBIT = 52 µs  
tREC(MAX)_D1 - tDOM(MIN)_D1  
Tr-d max_D1  
µs  
µs  
THREC(MAX) = 0.422 x VSUP  
,
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Dominant to recessive  
THDOM(MAX) = 0.284 x VSUP  
7 V VSUP 18 V, tBIT = 52 µs  
tDOM(MAX)_D2 - tREC(MIN)_D2  
Td-r max_D2  
8.4  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.7 Electrical Characteristics (continued)  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
THREC(MAX) = 0.778 x VSUP  
THDOM(MAX) = 0.616 x VSUP  
7 V VSUP 18 V, tBIT = 96 µs  
tREC(MAX)_D3 - tDOM(MIN)_D3  
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Recessive to dominant  
Tr-d max_D3  
Td-r max_D4  
Tr-d max_low  
Td-r max_low  
15.9  
µs  
THREC(MIN) = 0.389 x VSUP  
THDOM(MIN) = 0.251 x VSUP  
7 V VSUP 18 V, tBIT = 96 µs  
tDOM(MAX)_D4 - tREC(MIN)_D4  
Transmitter propagation delay timings for the duty  
cycle(1) (2) (6)  
Dominant to recessive  
17.28  
10.8  
8.4  
µs  
µs  
µs  
THREC(MAX) = 0.665 x VSUP  
,
Low battery transmitter propagation delay timings  
for the duty cycle(1) (2) (6)  
Recessive to dominant  
THDOM(MAX) = 0.499 x VSUP  
5.5 V VSUP 7 V, tBIT = 52 µs  
tREC(MAX)_low - tDOM(MIN)_low  
THREC(MAX) = 0.496 x VSUP  
THDOM(MAX) = 0.361 x VSUP  
6.1 V VSUP 7 V, tBIT = 52 µs  
tDOM(MAX)_low - tREC(MIN)_low  
Low battery transmitter propagation delay timings  
for the duty cycle(1) (2) (6)  
Dominant to recessive  
(1) SAE 2602 commander node load conditions: 5.5 nF/4 kand 899 pF/20 kΩ  
(2) SAE 2602 responder node load conditions: 5.5 nF/875 and 899 pF/900 Ω  
(3) ISO 17987 bus load conditions (CLINBUS, RLINBUS) include 1 nF/1 kΩ; 6.8 nF/660 Ω; 10 nF/500 Ω.  
(4) RXD uses open drain output structure therefore VOL level is based upon microcontroller supply voltage.  
(5) Ileak gnd = (VBAT - VLIN)/RLoad  
(6) Specified by design  
7.8 AC Switching Characteristics  
parameters valid across -40TJ 150(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device Switching Characteristics  
Receiver rising propagation delay time  
ISO 17987 Param 31  
trx_pdr  
trx_pdf  
trx_pdr  
trx_pdf  
6
6
5
5
µs  
µs  
µs  
µs  
4.5 V VSUP < 5.5 V, RRXD = 2.4 k,  
CRXD = 20 pF  
See Figure 8-10 and Figure 8-11  
Receiver falling propagation delay time  
ISO 17987 Param 31  
Receiver rising propagation delay time  
ISO 17987 Param 31  
5.5 V VSUP, RRXD = 2.4 k, CRXD = 20  
pF  
See Figure 8-10 and Figure 8-11  
Receiver falling propagation delay time  
ISO 17987 Param 31  
Rising edge with respect to falling edge  
trx_sym = trx_pdf trx_pdr),  
RRXD = 2.4 k, CRXD = 20 pF  
See Figure 8-10 and Figure 8-11  
Symmetry of receiver propagation delay time  
Receiver rising propagation delay time  
ISO 17987 Param 32  
trs_sym  
2
µs  
2  
tLINBUS  
tCLEAR  
Minimum dominant time on LIN bus for wake-up  
See Figure 8-14, Figure 9-2 and Figure 9-3  
25  
8
65  
25  
150  
50  
µs  
µs  
Time to clear false wake-up prevention logic if LIN  
bus had a bus stuck dominant fault (recessive  
time on LIN bus to clear bus stuck dominant fault)  
See Figure 9-3  
Time to change from normal mode to sleep  
mode through EN pin  
See Figure 8-12  
tMODE_CHANGE Mode change delay time  
2
15  
45  
µs  
µs  
Time for normal mode to initialize and data  
on RXD pin to be valid, includes  
tMODE_CHANGE for standby to normal mode.  
See Figure 8-12  
tNOMINT  
Normal mode initialization time(1)  
Time it takes for valid data on RXD upon  
power-up  
tPWR  
Power-up time  
1.5  
80  
ms  
ms  
tTXD_DTO  
Dominant state time out  
20  
50  
(1) The transition time from sleep mode to normal mode includes both tMODE_CHANGE and tNOMINT  
.
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.9 Typical Curves  
40  
35  
30  
25  
20  
15  
10  
5
1.8  
1.6  
1.4  
1.2  
1
-55°C  
25°C  
125°C  
150°C  
-55°C  
25°C  
125°C  
150°C  
0.8  
0.6  
0
0
0
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
D001  
D002  
7-1. VOH vs VSUP vs Temperature  
7-2. VOL vs VSUP vs Temperature  
3
2.5  
2
500  
450  
400  
350  
300  
250  
200  
150  
1.5  
1
-55°C  
25°C  
125°C  
150°C  
-55°C  
25°C  
125°C  
150°C  
0.5  
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
D003  
D004  
7-3. ISUP (DOM) vs VSUP vs Temperature  
7-4. ISUP (REC) vs VSUP vs Temperature  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-55°C  
25°C  
125°C  
150°C  
-55°C  
25°C  
125°C  
150°C  
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
0
5
10  
15  
Supply Voltage (V)  
20  
25  
30  
35  
40  
D005  
D005  
7-5. ISUP(STBY_DOM) vs VSUP vs Temperature  
7-6. ISUP(STBY_REC) vs VSUP vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
7.9 Typical Curves (continued)  
16  
14  
12  
10  
8
-55°C  
25°C  
125°C  
150°C  
6
0
5
10  
15  
20  
25  
Supply Voltage (V)  
30  
35  
40  
D007  
7-7. ISUP(SLP) vs VSUP vs Temperature  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
1
RXD  
8
7
INH  
5 V  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
2
VSUP  
EN  
3
WAKE  
6
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
LIN  
4
TXD  
5
Jitter: < 25 ns  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-1. Test System: Operating Voltage Range with RX and TX Access: Parameters 9, 10  
Trigger Point  
Delta t = + 5 µs (tBIT = 50 µs)  
RX  
2 * tBIT = 100 µs (20 kBaud)  
Copyright © 2019, Texas Instruments Incorporated  
8-2. RX Response: Operating Voltage Range  
A
Period T = 1/f  
Amplitude  
(signal range)  
LIN Bus Input  
Frequency: f = 20 Hz  
Symmetry: 50%  
Copyright © 2019, Texas Instruments Incorporated  
8-3. LIN Bus Input Signal  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
1
RXD  
INH  
8
7
5 V  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
2
VSUP  
EN  
6
5
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
3
4
WAKE  
TXD  
LIN  
Jitter: < 25 ns  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-4. LIN Receiver Test with RX access Param 17, 18, 19, 20  
8
7
RXD  
EN  
1
2
INH  
5 V  
Power Supply 1  
Resolution: 10mV/ 1mA  
VSUP  
VPS1  
Accuracy: 0.2%  
D
6
5
3
4
WAKE  
TXD  
LIN  
Power Supply 2  
Resolution: 10mV/ 1mA  
VPS2  
Accuracy: 0.2%  
RBUS  
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-5. VSUP_NON_OP Param 11  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
8
7
RXD  
EN  
1
2
INH  
5 V  
Power Supply  
Resolution: 10mV/ 1mA  
Accuracy: 0.2%  
VSUP  
RMEAS = 499  
6
3
4
LIN  
WAKE  
TXD  
5
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-6. Test Circuit for IBUS_PAS_dom; TXD = Recessive State VBUS = 0 V, Param 13  
Power Supply 1  
Resolution: 10mV/ 1mA  
1
2
8
7
INH  
RXD  
EN  
5 V  
VPS1  
Accuracy: 0.2%  
VSUP  
Power Supply 2  
Resolution: 10mV/ 1mA  
1 k  
6
Accuracy: 0.2%  
VPS2  
LIN  
3
4
WAKE  
TXD  
VPS2 2 V/s ramp [8 V < 18 V]  
VDROPR < 20 mV  
5
GND  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-7. Test Circuit for IBUS_PAS_rec Param 14  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
8
7
INH  
1
2
RXD  
5 V  
Power Supply 1  
Resolution: 10mV/ 1mA  
VSUP  
EN  
VPS1  
Accuracy: 0.2%  
RMEAS  
6
3
4
WAKE  
LIN  
Pulse Generator  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
Power Supply 2  
Resolution: 10mV/ 1mA  
VPS2  
5
Accuracy: 0.2%  
TXD  
GND  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-8. Test Circuit Slope Control and Duty Cycle Param 27, 28, 29, 30  
TBIT  
D = 50%  
TXD (Input)  
D124: 0.710 * VSUP  
D324: 0.744 * VSUP  
D112: 0.744 * VSUP  
D312: 0.778 * VSUP  
THREC(MAX)  
THDOM(MAX)  
THREC(MIN)  
THDOM(MIN)  
Thresholds  
RX Node 1  
D112: 0.581 * VSUP  
D312: 0.616 * VSUP  
D124: 0.554 * VSUP  
D324: 0.581 * VSUP  
LIN Bus  
Signal  
D212: 0.422 * VSUP  
D412: 0.389 * VSUP  
D224: 0.446 * VSUP  
D424: 0.422 * VSUP  
VSUP  
Thresholds  
RX Node 2  
D212: 0.284 * VSUP  
D412: 0.251 * VSUP  
D224: 0.302 * VSUP  
D424: 0.284 * VSUP  
tBUS_REC(MIN)  
tBUS_DOM(MAX)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
tBUS_DOM(MIN)  
tBUS_REC(MAX)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
8-9. Definition of Bus Timing Parameters  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
8
7
INH  
1
2
RXD  
5 V  
Power Supply 1  
Resolution: 10mV/ 1mA  
VSUP  
EN  
VPS1  
Accuracy: 0.2%  
RMEAS  
6
3
4
WAKE  
LIN  
Pulse Generator  
Power Supply 2  
Resolution: 10mV/ 1mA  
tR/tF: Square Wave: < 20 ns  
tR/tF: Triangle Wave: < 40ns  
Frequency: 20 ppm  
VPS2  
5
Accuracy: 0.2%  
TXD  
GND  
Jitter: < 25 ns  
Measurement Tools  
O-scope:  
DMM  
Copyright © 2019, Texas Instruments Incorporated  
8-10. Propagation Delay Test Circuit; Param 31, 32  
D1: 0.744 * VSUP  
D3: 0.778 * VSUP  
D124: 0.710 * VSUP  
D324: 0.744 * VSUP  
THREC(MAX)  
Thresholds  
RX Node 1  
D1: 0.581 * VSUP  
D3: 0.616 * VSUP  
D124: 0.554 * VSUP  
D324: 0.581 * VSUP  
THDOM(MAX)  
LIN Bus  
Signal  
D2: 0.422 * VSUP  
D4: 0.389 * VSUP  
D224: 0.446 * VSUP  
D424: 0.422 * VSUP  
VSUP  
THREC(MIN)  
Thresholds  
RX Node 2  
D2: 0.284 * VSUP  
D4: 0.251 * VSUP  
D224: 0.302 * VSUP  
D424: 0.284 * VSUP  
THDOM(MIN)  
RXD: Node 1  
D1 (20 kbps)  
D3 (10.4 kbps)  
trx_pdr(1)  
trx_pdf(1)  
RXD: Node 2  
D2 (20 kbps)  
D4 (10.4 kbps)  
trx_pdr(2)  
trx_pdf(2)  
8-11. Propagation Delay  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
Wake Event  
tMODE_CHANGE  
tNOMINT  
tMODE_CHANGE  
EN  
Transition  
Sleep  
Standby  
Transition  
Normal  
Normal  
MODE  
Indeterminate  
Ignore  
Mirrors  
Bus  
Wake Request  
RXD = Low  
RXD  
Floating  
Indeterminate Ignore  
Mirrors Bus  
8-12. Mode Transitions  
EN  
Weak Internal Pulldown  
TXD  
Weak Internal Pulldown  
VSUP  
LIN  
RXD  
Floating  
Sleep  
MODE  
Normal  
Copyright © 2019, Texas Instruments Incorporated  
8-13. Wake-up Through EN  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
0.6 x VSUP  
LIN  
0.6 x VSUP  
VSUP  
0.4 x VSUP  
0.4 x VSUP  
t < tLINBUS  
tLINBUS  
TXD  
Weak Internal Pull-down  
EN  
Floating  
RXD  
MODE  
Sleep  
Standby  
Normal  
Copyright © 2019, Texas Instruments Incorporated  
8-14. Wake-up through LIN  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TLIN2021A-Q1 is a local interconnect network (LIN) physical layer transceiver, compliant to LIN 2.0, LIN 2.1,  
LIN 2.2, LIN 2.2A, SAE J2602-1, SAE J2602-2, ISO 179874, and ISO 179877 standards. LIN is a low-speed  
universal asynchronous receiver transmitter (UART) communication protocol focused on automotive in-vehicle  
networking.  
The device transmitter supports data rates from 2.4-kbps to 20-kbps and the receiver supports data rates up to  
100-kbps for end-of-line programming. The device controls the state of the LIN bus through the TXD pin and  
reports the state of the bus through its open-drain RXD output pin. The LIN protocol data stream on the TXD  
input is converted by the device into a LIN bus signal using an optimized electromagnetic emissions current-  
limited wave-shaping driver as outlined by the LIN physical layer specification. The receiver converts the data  
stream to logic-level signals that are sent to the microcontroller through the open-drain RXD pin. The LIN bus  
has two states: dominant state (voltage near ground) and recessive state (voltage near battery). In the recessive  
state, the LIN bus is pulled high by the transceivers internal pull-up resistor (45-k) and a series diode. No  
external pull-up components are required for responder node applications. Commander node applications  
require an external pull-up resistor (1-k) as well as a series diode per the LIN specification.  
The device is designed to support 12-V and 24-V applications with a wide input voltage operating range and also  
supports low-power sleep mode. The device supports wake-up from low-power mode through wake over LIN,  
the WAKE pin, or the EN pin. The device allows for system-level reductions in battery current consumption by  
selectively enabling the various power supplies that may be present on a node through the INH output pin.  
The TLIN2021A-Q1 integrates ESD protection and fault protection which allow for a reduction in the required  
external components in the applications. In the event of a ground shift or supply voltage disconnection, the  
device prevents back-feed current through LIN to the supply input.  
The TLIN2021A-Q1 also includes undervoltage detection, temperature shutdown protection, and loss-of-ground  
protection. In the event of a fault condition, the transmitter is immediately switched off and remains off until the  
fault condition is removed.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
9.2 Functional Block Diagram  
INH  
VSUP/2  
RXD  
VSUP  
Comp  
Filter  
EN  
45 kΩ  
350 kΩ  
Wake Up  
State & Control  
VSUP  
Fault Detection  
& Protection  
LIN  
WAKE  
WAKE  
DR/  
Slope  
CTL  
Dominant  
State  
Time-Out  
TXD  
350 kΩ  
GND  
Copyright © 2019, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 LIN  
This high voltage input/output pin is the single-wire LIN bus transmitter and receiver. The LIN pin can survive  
transient voltages up to 60-V. Reverse currents from the LIN to supply (VSUP) are minimized with blocking  
diodes, even in the event of a ground shift or loss of supply (VSUP).  
9.3.1.1 LIN Transmitter Characteristics  
The LIN transmitter has thresholds and AC switching parameters according to the LIN specification. The  
transmitter is a low-side transistor with internal current limitation and thermal shutdown. During a thermal  
shutdown condition, the transmitter is disabled to protect the device. There is an internal pull-up resistor with a  
serial diode structure to VSUP, so no external pull-up components are required for LIN responder node  
applications. An external pull-up resistor and series diode to VSUP must be added when the device is used in a  
commander node application per the LIN specification.  
9.3.1.2 LIN Receiver Characteristics  
The receiver characteristic thresholds are proportional to the device supply pin in accordance to the LIN  
specification.  
The receiver is capable of receiving higher data rates, > 100 kbps, than supported by LIN or SAEJ2602  
specifications. This allows the TLIN2021A-Q1 to be used for high-speed downloads at the end-of-line production  
or other applications. The actual data rate achievable depends on system time constants (bus capacitance and  
pull-up resistance) and driver characteristics used in the system.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
9.3.1.2.1 Termination  
There is an internal pull-up resistor with a serial diode structure to VSUP, so no external pull-up components are  
required for the LIN responder node applications. An external pull-up resistor (1-k) and a series diode to VSUP  
must be added when the device is used for commander node applications as per the LIN specification.  
9-1 shows a commander node configuration and how the voltage levels are defined  
Voltage drop across the  
Simplified Transceiver  
VLIN_Bus  
diodes in the pull-up path  
VSUP  
VSUP  
VSUP/2  
RXD  
VBattery  
VSUP  
VLIN_Recessive  
Receiver  
Filter  
1 kQ  
45 kQ  
LIN Bus  
LIN  
TXD  
350 kQ  
GND  
Transmitter  
with slope control  
VLIN_Dominant  
t
Copyright © 2019, Texas Instruments Incorporated  
9-1. Commander Node Configuration with Voltage Levels  
9.3.2 TXD  
TXD is the interface to the MCU LIN protocol controller or SCI and UART that is used to control the state of the  
LIN output. When TXD is low the LIN output is dominant (near ground) and when TXD is high the LIN output is  
recessive (near VSUP), see 9-1.  
The TXD input structure is compatible with 3.3-V and 5-V microcontrollers and integrates a weak pull-down  
resistor. The LIN bus is protected from being stuck dominant through a system failure driving TXD low through  
the dominant state time-out timer. When a change of state on the WAKE pin initiates a local wake-up event, the  
TXD pin is pulled hard to ground indicating a local wake-up event. The hard pull to ground is released upon the  
rising edge on the EN pin. If an external pull-up resistor is added to the TXD pin to the microcontroller's IO  
voltage then TXD is pulled high to indicate a remote wake-up event.  
9.3.3 RXD  
RXD is the interface to the MCUs LIN protocol controller or SCI and UART, which reports the state of the LIN  
bus voltage. LIN recessive (near VSUP) is represented by a high level on the RXD and LIN dominant (near  
ground) is represented by a low level on the RXD pin. The RXD output structure is an open-drain output stage.  
This allows the device to be used with 3.3-V and 5-V microcontrollers. If the microcontroller's RXD pin does not  
have an integrated pull-up, an external pull-up resistor to the microcontroller's IO supply voltage is required. In  
standby mode, the RXD pin is driven low to indicate a wake-up request.  
9.3.4 VSUP  
VSUP is the power supply pin. VSUP is connected to the battery through an external reverse-blocking diode, see  
9-1. If there is a loss of power at the ECU level, the device has extremely low leakage from the LIN pin, which  
does not load the bus down. This is optimal for LIN systems in which some of the nodes are unpowered (ignition  
supplied) while the rest of the network remains powered (battery supplied).  
9.3.5 GND  
GND is the device ground connection. The device can operate with a ground shift as long as the ground shift  
does not reduce the VSUP below the minimum operating voltage. If there is a loss of ground at the ECU level, the  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
device has extremely low leakage from the LIN pin, which does not load the bus down. This is optimal for LIN  
systems in which some of the nodes are unpowered (ignition supplied) while the rest of the network remains  
powered (battery supplied).  
9.3.6 EN  
EN controls the operational modes of the device. When EN is high the device is in normal operating mode  
allowing a transmission path from TXD to LIN and from LIN to RXD. When EN is low, the device is put into sleep  
mode and there are no transmission paths available. The device can enter normal mode only after wake-up. EN  
has an internal pull-down resistor to ensure the device remains in low power mode even if EN floats.  
9.3.7 WAKE  
The WAKE pin is a high-voltage input used for the local wake-up (LWU) function. This function is explained  
further in 9.4.4.1 section. The pin is defaulted to bidirectional edge trigger, meaning it recognizes a local  
wake-up (LWU) on a rising or falling edge of WAKE pin transition.  
9.3.8 INH  
The TLIN2021A-Q1 inhibit, INH, output pin can be used to control the enable of system power-management  
devices allowing for a significant reduction in battery quiescent current consumption while the application is in  
sleep mode. The INH pin has two states: driven high and high impedance. When the INH pin is driven high, the  
terminal shows VSUP minus a diode voltage drop. In the high impedance state the output is left floating. The INH  
pin is high in the normal and standby modes and is low when in sleep mode. A 100 kΩload can be added to the  
INH output to ensure a fast transition time from the driven high state to the low state and to also force the pin low  
when left floating.  
The INH terminal should be considered a high-voltage logic terminal and not a power output. Thus should be  
used to drive the EN terminal of the systems power-management device and not used as a switch for the power-  
management supply itself. This terminal is not reverse battery protected and thus should not be connected  
outside the system module.  
9.3.9 Local Faults  
The TLIN2021A-Q1 has several protection features that are described as follows.  
9.3.10 TXD Dominant Time-Out (DTO)  
While the LIN driver is in active mode a TXD DTO circuit prevents the local node from blocking network  
communication in the event of a hardware or software failure where TXD is held dominant longer than the time-  
out period tTXD_DTO. The TXD DTO circuit is triggered by a falling edge on TXD. If no rising edge is seen before  
the time-out constant of the circuit, tTXD_DTO, expires the LIN driver is disabled releasing the bus line to the  
recessive level. This keeps the bus free for communication between other nodes on the network. The LIN driver  
is re-activated on the next dominant to recessive transition on the TXD terminal, thus clearing the dominant time-  
out. During this fault, the transceiver remains in normal mode, the integrated LIN bus pull-up termination remains  
on, and the LIN receiver and RXD terminal remain active reflecting the LIN bus data.  
The TXD pin has an internal pull-down to ensure the device fails to a known state if TXD is disconnected. If EN  
pin is high at power-up, the TLIN2021A-Q1 enters normal mode. With the internal TXD connected low, the DTO  
timer starts. To avoid a tTXD_DTO fault, a recessive signal should be put onto the TXD pin before the tTXD_DTO  
timer expires, or the device should be into sleep mode by connecting EN pin low.  
9.3.11 Bus Stuck Dominant System Fault: False Wake-Up Lockout  
The TLIN2021A-Q1 contains logic to detect bus stuck dominant system faults and prevents the device from  
waking up falsely during the system fault. Upon entering sleep mode, the device detects the state of the LIN bus.  
If the bus is dominant, the wake-up logic is locked out until a valid recessive on the bus clears the bus stuck  
dominant fault, preventing excessive current use, see 9-2 and 9-3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
RXD  
EN  
LIN Bus  
tLINBUS  
< tLINBUS  
< tLINBUS  
9-2. No Bus Fault: Entering Sleep Mode with Bus Recessive Condition and Wake-up  
RXD  
EN  
tLINBUS  
tLINBUS  
tLINBUS  
LIN Bus  
tCLEAR  
< tCLEAR  
9-3. Bus Fault: Entering Sleep Mode With Bus Stuck Dominant Fault, Clearing, and Wake-up  
9.3.12 Thermal Shutdown  
The TLIN2021A-Q1 transmitter is protected by limiting the current. If the junction temperature, TJ, of the device  
exceeds the thermal shutdown threshold, TJ > TSDR, the device puts the LIN transmitter into the recessive state.  
Once the over temperature fault condition has been removed and the junction temperature has cooled beyond  
the hysteresis temperature, the transmitter is re-enabled. During this fault, the transceiver remains in normal  
mode, the integrated LIN bus pull-up termination remains on, the LIN receiver and RXD terminal remain active  
reflecting the LIN bus data.  
9.3.13 Under Voltage on VSUP  
The device contains a power on reset circuit to avoid false bus messages during under voltage conditions when  
VSUP is less than UVSUP  
.
9.3.14 Unpowered Device  
In automotive applications, some LIN nodes in a system can be unpowered, ignition supplied, while others in the  
network remains powered by the battery. The device has extremely low unpowered leakage current from the bus  
so an unpowered node does not affect the network or load it down.  
9.4 Device Functional Modes  
The TLIN2021A-Q1 has three functional modes of operation: normal, sleep, and standby. The next sections  
describe these modes and how the device transitions between the different modes. 9-4 graphically shows the  
relationship while 9-1 shows the state of pins.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
9-1. Operating Modes  
LIN BUS  
TERMINATION  
TRANSMITTE  
R
MODE  
EN  
TXD  
RXD  
INH  
COMMENT  
Weak current  
pull-up  
Sleep  
Low  
Low  
High  
Weak pull-down  
Floating  
Floating  
Off  
Off  
On  
Weak pull-down if LIN bus wake-  
up; Strong pull-down if a local  
wake-up event (WAKE pin)  
Wake-up event detected,  
waiting on MCU to set  
EN  
Standby  
Normal  
Low  
High  
High  
45-kΩ  
45-kΩ  
High: recessive state  
Low: dominant state  
LIN transmission up to 20  
kbps  
LIN Bus Data  
Unpowered System  
VSUP < UVSUP  
VSUP < UVSUP  
VSUP > UVSUP  
EN = Low  
VSUP < UVSUP  
VSUP > UVSUP  
EN = High  
Standby Mode  
Driver: Off  
RXD: Low  
TXD:  
VSUP < UVSUP  
weak pull-down for LIN bus wake  
Hard pull-down for WAKE pin wake  
INH: On  
Normal Mode  
LIN termination: 45 k  
Driver: On  
RXD: LIN Bus Data  
TXD:  
High for recessive  
Low for dominant  
INH: On  
Sleep Mode  
EN = High  
LIN bus wake up or  
WAKE pin wake up  
Driver: Off  
RXD: Floating  
TXD: Weak pull-down  
INH: Off  
LIN termination: Weak pull-up  
EN = Low  
EN = High  
LIN termination: 45 kΩ  
9-4. Operating State Diagram  
9.4.1 Normal Mode  
The EN pin controls the mode of the device. If the EN pin is high at power-up the device powers up in normal  
mode, if the EN is low at power-up the device powers up in standby mode. In normal mode the receiver and  
transmitter fully operational. The LIN transmitter transmits data from the LIN controller to the LIN bus up to the  
LIN specified maximum data rate of 20-kbps. The LIN receiver detects the data stream on the LIN bus up to data  
rates of 100-kbps and outputs the data on RXD output for the LIN controller. Upon an EN pin transition from low  
to high the TLIN2021A-Q1 transitions from sleep mode to normal mode in t tNOMINT  
.
9.4.2 Sleep Mode  
Sleep mode is the lowest power mode of the TLIN2021A-Q1 and is only entered from normal mode when the EN  
pin transitions from high to low for t > tMODE_CHANGE. In sleep mode, the LIN driver and receiver are switched off,  
the LIN bus is weakly pulled up, and the transceiver cannot send or receive data. The INH pin is switched to a  
floating output in sleep mode causing any system power elements controlled by the INH pin to be switched off  
thus reducing the system power consumption. While the device is in sleep mode, the following conditions exist:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TLIN2021A-Q1  
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
The LIN bus driver is disabled and the internal LIN bus termination is switched off to minimize power loss if  
LIN is short circuited to ground.  
A weak current pull-up is active to prevent false wake-up events in case an external connection to the LIN  
bus is lost.  
The normal receiver is disabled.  
EN input, WAKE pin and LIN wake-up receiver are active.  
The TLIN2021A-Q1 supports three methods for wake-up from sleep mode:  
Wake-up over the LIN bus via the LIN wake-up receiver.  
Local wake-up via the WAKE pin.  
Local wake-up via the EN pin. The EN pin must be set high for t > tNOMINT in order for the device to wake-up.  
9.4.3 Standby Mode  
Standby mode is entered whenever a wake-up event occurs through LIN bus or the WAKE pin while the device  
is in sleep mode. In standby mode, the LIN bus responder termination circuit, 45-kΩ, is on. When a wake-up  
event occurs and the TLIN2021A-Q1 enters standby mode the RXD pin is driven low signaling the wake-up  
event to the LIN controller.  
The TLIN2021A-Q1 exits standby mode and transitions to normal mode when the EN pin is set high for longer  
than tMODE_CHANGE where the normal LIN transmitter and receiver are fully operational and bi-directional  
communication is possible.  
9.4.4 Wake-Up Events  
There are three ways to wake-up the TLIN2021A-Q1 from sleep mode:  
Remote wake-up initiated by the falling edge of a recessive-to-dominant state transition on the LIN bus where  
the dominant state is held longer than tLINBUS filter time. After the tLINBUS filter time has been met a rising  
edge on the LIN bus going from dominant-to-recessive initiates a remote wake-up event. The pattern and  
tLINBUS filter time used for the LIN wake-up prevents noise and bus stuck dominant faults from causing false  
wake requests.  
A local wake-up event due to the EN pin being set high for t > tMODE_CHANGE  
.
A local wake-up event due to a change in voltage level on the WAKE pin for t > tWAKE  
9.4.4.1 Local Wake-Up (LWU) via WAKE Input Terminal  
The WAKE terminal is a bi-directional high-voltage input which can be used for local wake-up (LWU) requests via  
a voltage transition. A LWU event is triggered on either a low-to-high or high-to-low transition since it has bi-  
directional input thresholds. The WAKE pin could be used with a switch to VSUP or to ground. If the terminal is  
unused it should be pulled to VSUP or ground to avoid unwanted parasitic wake-up events. When a LWU event  
takes place the TXD pin is pulled hard to GND letting the LIN controller know that the wake-up event was due to  
the WAKE pin and not a wake over LIN event.  
The LWU circuitry is active in standby mode and sleep mode. If a valid LWU event occurs in standby mode, the  
device remains in standby mode and drive the RXD output low. If a valid LWU event occurs in sleep mode, the  
device transitions to standby mode and drives the RXD output low. The LWU circuitry is not active in normal  
mode. To minimize system-level current consumption, the internal bias voltages of the terminal follows the state  
on the terminal with a delay of tWAKE(MIN). A constant high level on WAKE has an internal pull-up to VSUP, and a  
constant low level on WAKE has an internal pull-down to GND.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
INH  
Pull-down  
Latched Low  
TXD  
RXD  
*
Mode  
Sleep Mode  
Standby Mode  
9-5. Local Wake-Up Rising Edge  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
INH  
Pull-down  
Latched Low  
TXD  
RXD  
*
Mode  
Sleep Mode  
Standby Mode  
Copyright © 2019, Texas Instruments Incorporated  
9-6. Local Wake-Up Falling Edge  
9.4.4.2 Wake-Up Request (RXD)  
When the TLIN2021A-Q1 encounters a wake-up event from the WAKE pin or the LIN bus, the RXD output is  
driven low until EN is asserted high, the device enters normal mode. Once the device enters normal mode, the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
wake-up event is cleared, and the RXD output is released. The RXD output is fully operational and reflects the  
receiver output from the LIN bus.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
10 Application Information Disclaimer  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
The TLIN2021A-Q1 can be used in both a responder node application and a commander node application in a  
LIN network.  
10.2 Typical Application  
The device integrates a 45-kpull-up resistor and series diode for responder node applications. For commander  
node applications, an external 1-kpull-up resistor with series blocking diode can be used. 10-1 shows the  
device being used in both commander node and responder node applications.  
VSUP  
Commander  
Node  
VREG  
VSUP  
SW  
GND  
3 k  
EN  
VDD  
VDD  
VSUP  
INH  
2
WAKE  
(4)  
EN  
8
3
7
I/O  
VDD  
Commander  
Node  
MCU w/o  
pull-up(2)  
Pullup(3)  
VDD I/O  
1 kΩ  
LIN  
MCU  
TLIN2021A  
6
LIN Controller  
Or  
1
4
220 pF  
RXD  
TXD  
SCI/UART(1)  
GND  
5
VSUP  
Responder  
Node  
VREG  
VSUP  
SW  
3 k  
GND  
EN  
VDD  
VDD  
VSUP  
INH  
2
WAKE  
3
(4)  
EN  
8
7
I/O  
VDD  
MCU w/o  
pull-up(2)  
VDD I/O  
LIN  
MCU  
TLIN2021A  
6
LIN Controller  
Or  
1
4
220 pF  
RXD  
TXD  
SCI/UART(1)  
GND  
5
(1) If RXD on MCU or LIN responder node has internal pull-up; no external pull-up resistor is needed.  
(2) If RXD on MCU or LIN responder node does not have an internal pull-up requires external pull-up resistor.  
(3) Commander node applications require and external 1 kpull-up resistor and serial diode.  
(4) Decoupling capacitor values are system dependent but usually have 100 nF, 1 µF and 10 µF  
10-1. Typical LIN Bus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
10.2.1 Design Requirements  
The RXD output structure is an open-drain output stage which allows the TLIN2021A-Q1 to be used with 3.3-V  
and 5-V controllers. If the RXD pin of the controller does not have an integrated pull-up, an external pull-up  
resistor to the controller's IO voltage is required. The external pull-up resistor value should be between 1-kΩ to  
10-kΩ. The VSUP pin of the device should be decoupled with a 100-nF capacitor by placing it close to the VSUP  
supply pin. The system should include additional decoupling on the VSUP line as needed per the application  
requirements.  
10.2.2 Detailed Design Procedures  
10.2.2.1 Normal Mode Application Note  
When using the TLIN2021A-Q1 in systems which are monitoring the RXD pin for a wake-up request, special  
care should be taken during the mode transitions. The output of the RXD pin is indeterminate for the transition  
period between states as the receivers are switched. The application software should not look for an edge on the  
RXD pin indicating a wake-up request until tMODE_CHANGE has been met. This is shown in 8-12  
10.2.2.2 TXD Dominant State Time-Out Application Note  
The maximum dominant TXD time allowed by the TXD dominant state time-out limits the minimum possible data  
rate of the device. The LIN protocol has different constraints for commander node and responder node  
applications thus there are different maximum consecutive dominant bits for each application case thus different  
minimum data rates.  
10.2.2.3 Standby Mode Application Note  
If the TLIN2021A-Q1 detects an under voltage on VSUP the RXD pin transitions low signaling to the controller  
that the TLIN2021A-Q1 is in standby mode. The transceiver should be returned to sleep mode for the lowest  
power state.  
10.2.3 Application Curves  
10-2 and 10-3 show the propagation delay from the TXD pin to the LIN pin for the dominant to recessive  
and recessive to dominant edges. Device was configured in commander mode with external pull-up resistor (1  
k) and 680 pF bus capacitance.  
10-2. Dominant To Recessive Propagation Delay 10-3. Recessive to Dominant Propagation Delay  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
11 Power Supply Recommendations  
The TLIN2021A-Q1 was designed to operate directly from a car battery, or any other DC supply ranging from  
4.5-V to 45-V. The VSUP pin of the device should be decoupled with a 100-nF capacitor by placing it close to the  
VSUP supply pin. The system should include additional decoupling on the VSUP line as needed per the application  
requirements. Device has been designed and tested to support supply ramp rates equal to or slower than 0.5  
V/µs.  
12 Layout  
For the PCB design to be successful, start with design of the protection and filtering circuitry. Because ESD  
transients have a wide frequency bandwidth from approximately 3-MHz to 3-GHz, high-frequency layout  
techniques must be applied during PCB design. Placement at the connector also prevents these noisy events  
from propagating further into the PCB and system.  
12.1 Layout Guidelines  
Pin 1(RXD): The RXD pin is an open-drain output and requires and external pull-up resistor in the range of 1-  
kand 10-kto function properly. If the controller paired with the transceiver does not have an integrated  
pull-up, an external resistor should be placed between RXD and the supply voltage for the controller.  
Pin 2 (EN): EN is an input pin that is used to place the device in low-power sleep mode. If this feature is not  
used, the pin should be connected to the supply voltage for the controller through a series resistor using a  
pull-up value between 1-kand 10-k. Additionally, a series resistor may be placed on the pin to limit current  
on the digital lines in the case of an over voltage fault.  
Pin 3 (WAKE): SW1 is oriented in a low-side configuration which is used to implement a local WAKE event.  
The series resistor R5 is needed for protection against over current conditions as it limits the current into the  
WAKE pin when the ECU has lost its ground connection. The pull-up resistor R4 is required to provide  
sufficient current during stimulation of a WAKE event. In this layout example R4 is set to 3-kΩand R5 is set  
to 33-kΩ.  
Pin 4 (TXD): The TXD pin is the transmit input signal to the device from the controller. A series resistor can  
be placed to limit the input current to the device in the case of an over-voltage on this pin. A capacitor to  
ground can be placed close to the input pin of the device to help filter noise.  
Pin 5 (GND): This is the ground connection for the device. This pin should be tied to the ground plane  
through a short trace with the use of two vias to limit total return inductance.  
Pin 6 (LIN): The LIN pin connects to the TLIN2021A-Q1 to the LIN bus. For responder node applications a  
220 pF capacitor to ground is implemented. For commander node applications an additional series resistor  
and blocking diode should be placed between the LIN pin and the VSUP pin, see Typical LIN Bus.  
Pin 7 (VSUP): This is the supply pin for the device. A 100-nF capacitor should be placed close to the VSUP  
supply pin for local power supply decoupling.  
Pin 8 (INH):The INH pin is used for system power-management. A 100-kΩload can be added to the INH  
output to ensure a fast transition time from the driven high state to the low state and to also force the pin low  
when left floating.  
备注  
All ground and power connections should be made as short as possible and use at least two vias to  
minimize the total loop inductance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TLIN2021A-Q1  
 
 
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
12.2 Layout Example  
GND  
GND  
RXD  
EN  
INH  
VSUP  
LIN  
R3  
INH  
VSUP  
C2  
VSUP  
WAKE  
TXD  
R1  
To Switch  
R2  
LIN  
C1  
GND  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TLIN2021A-Q1  
 
TLIN2021A-Q1  
ZHCSMB3A MARCH 2021 REVISED APRIL 2022  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
13.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TLIN2021A-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TLIN2021ADRBRQ1  
ACTIVE  
SON  
DRB  
8
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
TL021A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TLIN2021ADRBRQ1  
SON  
DRB  
8
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SON DRB  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TLIN2021ADRBRQ1  
8
3000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.75  
1.55  
(0.2) TYP  
6X 0.65  
(0.19)  
4
5
SYMM  
9
2.5  
2.3  
1.95  
1
8
0.36  
0.26  
8X  
PIN 1 ID  
(OPTIONAL)  
0.1  
0.05  
C A B  
C
SYMM  
0.5  
0.3  
8X  
4225036/A 06/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
(1.65)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
6X (0.65)  
SYMM  
9
(1.95) (2.4)  
(0.95)  
(R0.05) TYP  
4
5
(Ø 0.2) VIA  
TYP  
(0.575)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225036/A 06/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VSON - 1 mm max height  
DRB0008J  
PLASTIC QUAD FLAT PACK- NO LEAD  
(2.8)  
2X  
(1.51)  
8X (0.6)  
8X (0.31)  
SYMM  
1
8
2X  
(1.06)  
6X (0.65)  
SYMM  
(1.95)  
(0.63)  
9
(R0.05) TYP  
4
5
METAL  
TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
81% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4225036/A 06/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TLIN2021ADRBRQ1

具有抑制和唤醒功能的汽车类故障保护 LIN 收发器 | DRB | 8 | -40 to 125
TI

TLIN2022A-Q1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器
TI

TLIN2022ADMTRQ1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器 | DMT | 14 | -40 to 125
TI

TLIN2022ADRQ1

具有显性状态超时故障保护功能的双路本地互连网络 (LIN) 收发器 | D | 14 | -40 to 125
TI

TLIN2024A-Q1

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器
TI

TLIN2024ARGYRQ1

具有显性状态的汽车类四路本地互连网络 (LIN) 收发器 | RGY | 24 | -40 to 125
TI

TLIN2027-Q1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器
TI

TLIN2027DRBRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | DRB | 8 | -40 to 125
TI

TLIN2027DRQ1

适用于 K-Line、具有故障保护功能的汽车本地互联网络 (LIN) 收发器 | D | 8 | -40 to 125
TI

TLIN2029A-Q1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029A-Q1_V01

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI

TLIN2029ADRBRQ1

TLIN2029A-Q1 Fault Protected LIN Transceiver with Dominant State Timeout
TI